Titre : |
Commande et identification par les ondelettes floues et optimisation par les algorithmes evolutionnaires. |
Type de document : |
texte imprimé |
Auteurs : |
Faouzi Titel, Auteur ; Khaled Belarbi, Directeur de thèse |
Editeur : |
جامعة الإخوة منتوري قسنطينة |
Année de publication : |
2018 |
Importance : |
110 f. |
Format : |
30 cm. |
Note générale : |
2 copies imprimées disponibles. |
Langues : |
Français (fre) |
Catégories : |
Français - Anglais Electronique
|
Tags : |
Système d’inférence flou Les algorithmes évolutionnaires Réseaux de neurone flou Optimisation multiobjectif NSGAII Contrôleur neuro-flou Réseaux d’ondelettes Réseaux d’ondelettes floues Identification et Contrôle Fuzzy inference system Evolutionary algorithms Fuzzy neural network Multiobjective
optimization Neuro-Fuzzy Controller Wavelet neural network Fuzzy wavelet network Identification and Control أنظمة المنطق الغامض الخواريزمات المتطورة الأنظمة العصبية الغامضة ميكانيزمات البحث المتعددة الأهداف المراقب العصبي الغامض الشبكة المويجية الغامضة التعريف و المراقبة |
Index. décimale : |
621 Electronique |
Résumé : |
In this work, two approaches for designing fuzzy inference systems from data are developed. These approaches are characterized by their ability to automatically extract and improve knowledge from numerical data and to preserve interpretability of fuzzy rules during the optimization process.
In the first approach, a Neuro-Fuzzy Controller network, called NFC that implements a Mamdani fuzzy inference system is proposed. This network includes neurons able to perform fundamental fuzzy operations. Connections between neurons are weighted through binary and real weights. Then a new algorithm called mixed Binary-Real Non dominated Sorting Genetic Algorithm II (MBR-NSGA II) is developed to perform both accuracy and interpretability of the NFC by minimizing two objective functions. In order to preserve interpretability of fuzzy rules during the optimization process, some constraints are imposed.
The approach is tested on two control examples: the pole and cart system and a helicopter simulator model.
In the second approach, a genetic algorithm based method for designing fuzzy wavelet neural network (FWNN) is presented. The proposed framework combines several soft computing techniques such as fuzzy inference system, wavelet neural network and genetic algorithm. Thus, the structure of the proposed FWNN consists of combination of two network structures, one containing the fuzzy reasoning mechanism and the other containing Wavelet neural networks. Then a genetic algorithm based method is used to find optimal values of the parameters of the both network structures. The ability of the technique in identifying non linear dynamical systems is demonstrated on two examples. Also, this approach is tested for the control of two dynamic plants commonly used in the literature.
|
Diplôme : |
Doctorat en sciences |
En ligne : |
../theses/electronique/TIT7194.pdf |
Format de la ressource électronique : |
pdf |
Permalink : |
index.php?lvl=notice_display&id=10769 |
Commande et identification par les ondelettes floues et optimisation par les algorithmes evolutionnaires. [texte imprimé] / Faouzi Titel, Auteur ; Khaled Belarbi, Directeur de thèse . - جامعة الإخوة منتوري قسنطينة, 2018 . - 110 f. ; 30 cm. 2 copies imprimées disponibles. Langues : Français ( fre) |