Titre : |
"Application de l’intégrale de chemin à certains systèmes quantiques déformés" |
Type de document : |
texte imprimé |
Auteurs : |
Zohra KHIAT, Auteur ; Larbi Guechi, Directeur de thèse |
Editeur : |
constantine [Algérie] : Université Constantine 1 |
Année de publication : |
2014 |
Importance : |
54 f. |
Format : |
30 cm. |
Note générale : |
2 copies imprimées disponibles
|
Langues : |
Français (fre) |
Catégories : |
Français - Anglais Physique
|
Tags : |
Intégrales de chemin, propagateur, fonction de Green, potentiel de Coulomb, oscillateur sphérique, oscillateur en forme d’anneau, potentiel de Hartmann, potentiel de Pöschl-Teller modifié, potentiel de Morse, spectre d’énergie, états liés.
Path integrals, propagator, Green function, Coulomb potential, spherical oscillator, oscillator ring-shaped Hartmann potential, potential modified Pöschl -Teller, Morse potential, energy spectrum, bound states.
تكاملات المسار , حامل الموجة ,دالةGreen , كمون Coulomb ,الهزّاز الكروي ,الهزّاز بشكل حلقي , كمون Hartmann , كمون Morse ,كمون Pöschl-Teller معدّل , طيف الطاقة ,الحالات المقيدة . |
Index. décimale : |
530 Physique |
Résumé : |
"This work concerns the application of the Feynman path integrals method to two dynamical systems interesting theoretical physics and quantum chemistry.
In the context of non-relativistic quantum mechanics, we have undertaken a detailed study of the problem of a particle in a general electric potential with axial symmetry. This potential generalizes the ring-shaped oscillator and Hartmann system. The variables are separated completely in polar coordinates. For two specific types of V (r), the energies of the discrete spectrum and the corresponding wave functions are determined.
In the context of relativistic quantum mechanics, we have discussed the problem of a spinless particle of mass M and charge (-e ) in the presence of a vector potential and a scalar potential with spherical symmetry and of general Pöschl -Teller type which depends on a positive deformation parameter q . When q is greater than or equal to unity, the approximate radial Green's function for the l-wave is built in a compact form. For 0 < q < 1, the radial Green's function for the wave s (l = 0), is calculated without approximation by means of the perturbation technique. In both cases, the condition of quantization of energy and the wave functions are obtained. As a special case, when the vector potential and the scalar potential are of Morse type, the energy spectrum and the wave functions are found by passing the limit q →0.
"
|
Diplôme : |
Magistère |
En ligne : |
../theses/physique/KHI6512.pdf |
Format de la ressource électronique : |
pdf |
Permalink : |
index.php?lvl=notice_display&id=9626 |
"Application de l’intégrale de chemin à certains systèmes quantiques déformés" [texte imprimé] / Zohra KHIAT, Auteur ; Larbi Guechi, Directeur de thèse . - constantine [Algérie] : Université Constantine 1, 2014 . - 54 f. ; 30 cm. 2 copies imprimées disponibles
Langues : Français ( fre)
Catégories : |
Français - Anglais Physique
|
Tags : |
Intégrales de chemin, propagateur, fonction de Green, potentiel de Coulomb, oscillateur sphérique, oscillateur en forme d’anneau, potentiel de Hartmann, potentiel de Pöschl-Teller modifié, potentiel de Morse, spectre d’énergie, états liés.
Path integrals, propagator, Green function, Coulomb potential, spherical oscillator, oscillator ring-shaped Hartmann potential, potential modified Pöschl -Teller, Morse potential, energy spectrum, bound states.
تكاملات المسار , حامل الموجة ,دالةGreen , كمون Coulomb ,الهزّاز الكروي ,الهزّاز بشكل حلقي , كمون Hartmann , كمون Morse ,كمون Pöschl-Teller معدّل , طيف الطاقة ,الحالات المقيدة . |
Index. décimale : |
530 Physique |
Résumé : |
"This work concerns the application of the Feynman path integrals method to two dynamical systems interesting theoretical physics and quantum chemistry.
In the context of non-relativistic quantum mechanics, we have undertaken a detailed study of the problem of a particle in a general electric potential with axial symmetry. This potential generalizes the ring-shaped oscillator and Hartmann system. The variables are separated completely in polar coordinates. For two specific types of V (r), the energies of the discrete spectrum and the corresponding wave functions are determined.
In the context of relativistic quantum mechanics, we have discussed the problem of a spinless particle of mass M and charge (-e ) in the presence of a vector potential and a scalar potential with spherical symmetry and of general Pöschl -Teller type which depends on a positive deformation parameter q . When q is greater than or equal to unity, the approximate radial Green's function for the l-wave is built in a compact form. For 0 < q < 1, the radial Green's function for the wave s (l = 0), is calculated without approximation by means of the perturbation technique. In both cases, the condition of quantization of energy and the wave functions are obtained. As a special case, when the vector potential and the scalar potential are of Morse type, the energy spectrum and the wave functions are found by passing the limit q →0.
"
|
Diplôme : |
Magistère |
En ligne : |
../theses/physique/KHI6512.pdf |
Format de la ressource électronique : |
pdf |
Permalink : |
index.php?lvl=notice_display&id=9626 |
|