Liste des figures

Figure 1 Evolution de la production du bioéthanol en millions de litres par région du monde
Figure 2 Utilisation potentielle du bioéthanol
Figure 3 Schéma explicatf de production du Bioéthanol à partir de plusieurs sources d sucres
Figure 4 Structure chimique de l'inuline
Figure 5 Réaction générale des enzymes de type glycoside hydrolase
Figure 6 Sites de coupure des exo-hydrolase et des endo-hydrolase
Figure 7 Sites de coupures des endo et des exo-inulinase
Figure8 Schéma du mécanisme catalytique de l'exo-inulinase d'Aspergillu
awamori17
Figure 9 Division des levures par bourgeonnement1
Figure 10 Cycle de reproduction de la levure
Figure 11 Voies métaboliques chez les levures
Figure 12 Nœud métabolique du pyruvate et de l'acétaldéhyde
Figure 13 Localisation géographique de la région d'échantillonnage (TOLGA)3
Figure 14 Site d'échantillonnage : sol humide de palmeraie
Figure 15 Evaluation d'une dérivée4
Figure 16 Aspect macroscopique des 9 isolats levuriens obtenus à partir du sol d
palmeraie
Figure 17 Quantité du gaz dégagé par l'isolat L ₅ sur : (A) Glucose; (B) fructose; (C) Inuline
(D) Saccharose; (E) Raffinose5
Figure 18 Aspect macroscopique de l'isolat L ₅
Figure 19 Observation microscopique de l'isolat L_5 : (A) Coloration au bleu de méthylène
(B) bourgeon et (C) Pseudo-mycélium5
Figure 20 Test d'assimilation des substrats carbonés par l'isolat L ₅
Figure 21 Migration des bandes d'ADN de l'isolat L ₅ sur gel d'agarose : (a) <i>ITS</i> ; (b) ADN
18S (MM Marqueurs moléculaires)5
Figure 22 Séquences finales du gène ITS après avoir été corrigé à l'aide du programm
« Bioedit »5
Figure 23 Évolution de la concentration de la biomasse, de la concentration du fructose et d
la production d'éthanol par <i>P. caribbica</i> en fiole de 250mL

Figure 24 Effet de la température sur la production d'éthanol	7
Figure 25 Effet du pH sur la production d'éthanol.	58
Figure 26 Influence de la concentration initiale du substrat sur la production d'éthanol	58
Figure 27 Évolution de la concentration de la biomasse, de la concentration du fructose et d	le
la production d'éthanol par <i>P. caribbica</i> en fermenteur de 20 litres	60
Figure 28 Evolution de l'activité inulinasique (■) et la concentration de la biomasse (pendant la période d'incubation	` '
Figure 29 Evolution de l'activité inulinasique en fermenteur de 20litres (■) et concentration de la biomasse (♦) pendant la période d'incubation	
Figure 30 Influence du pH sur l'activité d'inulinase	63
Figure 31 Influence de la température sur l'activité d'inulinase	63
Figure 32 Etude de la thermostabilité de l'inulinase de <i>P. caribbica</i>	64
Figure 33 Quantité du gaz dégagé dans la cloche du Durham par P. caribbica sur milieu à	
base de l'artichaut6	55
Figure 34 Présentation des équations sous MatLab6	59
Figure 35 Evolution de la concentration de biomasse pendant le temps : ■, données	
expérimentales ; ●, données prédites par le modèle de Monod	2
Figure 36 Evolution de l'éthanol pendant le temps : ■, données expérimentales ; •, données	3
prédites par le modèle de Luedeking et Piret	3
Figure 37 Evolution de la consommation du substrat pendant le temps : ■, données	
expérimentales ; •, données calculées par le modèle modifié de Luedeking- Piret	13