République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique

Université Mentouri de constantine Faculté des science exactes Département de chimie N°d'ordre: 93/D3c/2021 Série : 15 /CH/ 2021

Thèse

Pour l'obtention du diplôme de doctorat en chimie Option: chimie inorganique

Intitulée

"Synthèse, étude structurale et propriétés physico-chimiques de complexes de coordination de la benzothiazole et de la sulfanilamide"

Présentée par Chebout Oussama

Devant le jury:

Prof. H. Merazig	Université de Constantine-1	Président
Prof. C. Boudaren	Université de Constantine-1	Directeur de thèse
Prof. S. Bouacida	Université Larbi ben M'hidi	Examinateur
Prof. K. Bouchouit	Université de Constantine-3	Examinateur
Prof. M. Boudraa	Université de Constantine-1	Encadreur invité

Remerciements

Dieu merci de m'avoir donné la volonté et le courage pour réaliser ce travail.

Ce travail a été réalisé à l'unité de recherche chimie de l'environnement et moléculaire structurale URCHEMS de l'université frères Mentouri, Constantine sous la direction du Professeur **M'hamed Boudraa** à qui j'adresse mes sincères reconnaissances pour les efforts qu'il a deployé afin de mener ce travail à bien. Mes remerciements pour son encadrement, sa disponibilité, son expérience, son encouragement, sa générosité, sa confiance en mes capacités, ses précieux conseils tout au long de ce travail, toutes ses corrections pour ce manuscrit et surtout pour sa patience et ses aides matérielles pour la réalisation d'une très bonne expérience et la contribution effective à l'élaboration de ce thème. Qu'il trouve ici l'expression de ma gratitude, de mon profond respect et de ma reconnaissance infinie.

Mes vifs remerciements pour le Professeur **Hocine Merazig** à l'université des frères Mentouri de Constantine et directeur de URCHEMS qui m'a accueilli chaleureusement et intégré pendant toute la durée de ce travail:

Mes vifs remerciements pour Monsieur **Sofiane Bouacida**, Professeur à l'université L'Arbi Ben M'hidi Oum El Bouaghi pour son aide à la résolution structurale.

Je tiens également à remercier Monsieur **Kamel Ouari**, Professeur à l'Université Ferhat ABBAS Sétif-1, pour sa contribution à la realisation des études électrochimiques.

Que Monsieur Chaouki Boudaren, Professeur à l'Université des frères Mentouri, Que Monsieur Karim Bouchouit, Professeur à l'Université de Constantine-3, trouvent ici mes sincères salutations pour l'honneur qu'ils m'ont fait en participant à ce jury et d'examiner ce travail. Je tiens également à remercier **Souad Hazam**, ingénieur de recherche au CRAPC Expertise (Algeria). Les essais que nous avons pu réaliser sur les échantillons de complexes de sulfanilamide en Analyse thermique ont été tardifs et sont ainsi un peu trop "frais" pour figurer dans ce manuscrit mais pourraient donner prochainement un très bon complément à cette étude.

Je remercie tout particulièrement ma tente **Zarfa Tolba**, Professeur à l'Université de Constantine-3 pour la compréhension et pour ses conseils, ses encouragements et son aide qui m'ont permis de finir ce travail.

J'exprime ma gratitude et ma reconnaissance à tous les enseignants de URCHEMS pour leur compétence et leur contribution à ma formation.

Un grand merci à tout le personnel du laboratoire de chimie qui m'a accueilli chaleureusement et intégré pendant toute la durée de cette expérience surtout les ingénieurs pour l'ambiance du travail, leur aide précieuse et leur disponibilité.

Je tiens à remercier vivement mes collègues, mes amis et tous ce qui ont participé de près ou de loin pour l'achèvement de cette thèse.

Enfin, je remercie chaleureusement et profondément toute ma famille qui m'a enseigné les valeurs humaines aussi pour son encouragement, sa présence à mes côtés pour la réalisation de ce travail.

Je lui exprime ici ma vive reconnaissance.

Dédicaces

A tous ceux qui me sont chers:

A mon père pour tous ses sacrifices, son encouragement et ses précieux conseils durant toutes mes années d'études qu'il trouve ici toute ma reconnaissance, ma gratitude et à qui je souhaite une longue vie.

A la mémoire de ma très chère mère trop tôt arrachée de notre affection et qui avais tant aimé voir ce jour, permet moi aujourd'hui de te rendre ce bien faible hommage pour tes efforts, ta gentillesse, ta tendresse, ta compréhension, tes sacrifices consentis pour moi et ta grandeur d'âme qu'est pour moi un modèle difficile à dépasser.

Nulle dédicace ne saurait traduire toute l'affection, l'admiration et la reconnaissance que j'ai pour toi et rien ne puisse égaler tous ce que tu m'as donnés.

A mes frères pour l'intérêt qu'ils ont porté à mes études, leur encouragement, leur présence à mes côtés que leur vie soit pleine de bonheur et de succès.

A ma sœur pour leur tendresse, gentillesse et leur encouragement qu'elles trouvent ici mon profond attachement.

A mes grands-mères maternelles à qui je souhaiterai longue vie.

A tous mes oncles paternels et maternels.

- A toutes mes tantes paternelles et maternelles
- A tous mes amis

A tous mes collègues

Sommaire

a	•
Some	naire
Donn	

Sommaire

Introduction générale :	1
Bibliographie :	12
Chapitre 1 : Techniques d'analyse :	
1.1. Analyse par spectroscopie Infrarouge (IR-FT) :	20
1.2. La spectroscopie d'absorption Ultraviolet-Visible :	21
1.3. Diffraction des rayons X sur monocristal :	22
1.3.1. Choix du monocristal :	22
1.3.2. Collecte des données de diffraction :	22
1.3.3. Résolution et l'affinement structural :	23
1.4. Diffraction des rayons X sur poudre :	24
1.5. Analyse thermique ATG/ ATD/ DSC :	25
1.5.1. Analyse thermogravimétrie ATG :	25
1.5.2. Analyse thermique différentielle ATD :	25
1.5.3. Analyse calorimétrique différentielle DSC :	25
1.6. Etude électrochimique :	27
1.7. Activité antimicrobienne :	28
1.7.1. Description des bactéries étudiées :	28
1.7.1.1 Escherichia coli	28
1.7.1.2. Staphylococcus aureus	28
1.7.1.3. Pseudomonas aeruginosa	29
1.8. L'activité antibactérienne :	29
1.8.1. Principe de la méthode	30
1.9. Chélation de fer	30
1.8.1. Mode opératoire :	30
Bibliographie :	32

Chapitre 2 : Synthèse et étude structurale de composés hybrides et de coordination à	ı base
de benzothiazole.	
2.1. Etude structurale de { $[Sb_2Cl_6O] (C_7H_6NS)_2$ } noté (1)	34
2.1.1. Synthèse	34
2.1.2. Caractérisation structurale au RX sur monocristal	34
2.2. Etude structurale du composé { $[SnCl_6].3(C_7H_5NS).2(C_7H_6NS)$ } noté (2)	38
2.2.1. Synthèse	38
2.1.2. Caractérisation structurale au RX sur monocristal	39
2.3. Structure du complexe { $[SnCl_6]$.2(C_7H_6NS) .2H ₂ O} noté (3)	44
2.3.1. Synthèse	44
2.3.2. Caractérisation structurale au RX sur monocristal	44
2.4. Synthèse du complexe $[Zn(NO_3)_2(C_7H_5NS)_2]$ noté (4)	48
2.4.1. Synthèse	48
2.4.2. Caractérisation structurale au RX sur monocristal	48
2.5. Structure du complexe $[ZnCl_2(C_7H_5NS)_2]$ noté (5)	53
2.5.1. Synthèse	53
2.5.2. Caractérisation structurale au RX sur monocristal	53
2.6. Structure du complexe { $[Cu(CH_3CO_2)_2 (C_7H_5NS)](C_7H_5NS)$ } noté (6)	58
2.6.1. Synthèse	58
2.6.2. Caractérisation structurale au RX sur monocristal	59
Bibliographie :	64
Chanitra 3 · Synthèse et Caractérisation de complexes de coordination de la sulfanile	mida

Chapitre 3 : Synthèse et Caractérisation de complexes de coordination de la sulfanilamide avec le cuivre.

3.0. Caractérisation de la sulfanilamide	68
3.0.1. Étude par spectroscopie infrarouge	68
3.0.2. Étude par spectroscopie UV-Visible	69

a	•
Somn	101100
SOIIII	iuiie

3.0.3. Décomposition thermique de la sulfanilamide	70
3.1. Synthèse et caractérisation du complexe [$Cu(NO_3)_2(H_2O)(C_6H_8N_2O_2S)_2$] noté (7)	70
3.1.1. Synthèse	70
3.1.2. Propriétés physico-chimiques	71
3.1.3. Etude par spectroscopie infrarouge	71
3.1.4. Étude par spectroscopie d'absorption UV-Visible	73
3.1.5. Caractérisation structurale par DRX sur monocristal	73
3.1.6. Étude thermique	77
3.2. Synthèse et caractérisation du complexe [$Cu(NO_3)_2(H_2O)_2(C_6H_8N_2O_2S)_2$] (8)	79
3.2.1. Synthèse	79
3.2.2. Propriétés physico-chimiques	79
3.2.3. Etude par spectroscopie infrarouge	79
3.2.4. Etude par spectroscopie d'absorption UV-Visible	80
3.2.5. Caractérisation structurale par DRX sur monocristal	82
3.2.6. Étude thermique	87
3.2.7 Caractérisation par diffraction des rayons X sur poudre des complexes (7) e	et
(8)	88
3.2.7. Étude électrochimique des composés (7) et (8)	90
3.3. Synthèse et caractérisation du complexe $[Cu_3 Cl_6 (C_3H_7NO)_2(C_6H_8N_2O_2S)_4]_n$ noté(9)	92
3.3.1. Synthèse	92
3.3.2. Propriétés physico-chimiques	93
3.3.3. Etude par spectroscopie infrarouge	93
3.3.4. Etude par spectroscopie d'absorption UV-Visible	95
3.3.5. Caractérisation structurale par DRX sur monocristal	97
3.3.6. Étude thermique	100
3.4. Synthèse et caractérisation du complexe $[CuCl_2(C_3H_7NO)(C_6H_8N_2O_2S)]_n$ noté(10)	102

	3.4.1. Synthèse	102
	3.4.2. Propriétés physico-chimiques	102
	3.4.3. Etude par spectroscopie infrarouge	102
	3.4.4. Etude par spectroscopie d'absorption UV-Visible	104
	3.4.5. Caractérisation structurale par DRX sur monocristal	105
	3.4.6. Étude thermique	110
	3.4.7 Caractérisation par diffraction des rayons X sur poudre les complexes (9) et	t
	(10)	111
	3.4.8. Étude électrochimique des composés (9) et (10)	113
3.5. Syr	nthèse et caractérisation du complexe $[Cu(C_3H_7NO)_2(C_6H_8N_2O_2S)_2.2(NO_3)]_n$ noté	Ś
(11)		114
	3.5.1. Synthèse	114
	3.5.2. Propriétés physico-chimiques	115
	3.5.3. Etude par spectroscopie infrarouge	115
	3.5.4. Etude par spectroscopie d'absorption UV-Visible	116
	3.5.5. Caractérisation structurale par DRX sur monocristal	117
	3.5.6 Caractérisation par diffraction des rayons X sur poudre le complexe (11)	120
	3.5.7. Étude thermique	120
	3.5.8. Étude électrochimique	121
	3.6. Activité biologique des composés (7) à (11)	126
	3.6.1. Activité antibactérienne :	126
	3.6.2. Activité métal chélate :	129
Bibliographie	:	131
Conclusion g	énérale :	
Annexes :		
Publications	:	
Résumé :		

Liste de figures :

Figure. 1 : La molécule de benzothiazole.	2
Figure. 2 : Exemple de synthèse d'un dérivé de benzothiazole.	2
Figure. 3 : Les trois molécules PABA, sulfanilamide et protonsil sulfanilamide.	4
Figure 1.1: Unité asymétrique du composé (1).	35
Figure 1.2: Environnement de l'atome d'antimoine.	36
Figure 1.3: Interactions de type N–H…Cl, C–H…Cl et C–H…O.	38
Figure 2.1: Projection de la maille du composé (2) sur le plan (010).	40
Figure 2.2: Projection de la structure (2) sur le plan (001).	41
Figure 2.3: Projection de la structure (2) sur le plan (010).	41
Figure 2.4: Projection de la structure (2) sur le plan (100).	42
Figure 2.5: Interactions C–H…Cl et N-H…N dans le composé (2).	43
Figure 3.1: Représentation ORTEP du composé (3).	45
Figure 3.2: Projection de la structure (3) sur le plan (010).	46
Figure 3.3: Projection de la structure (3) sur le plan (001).	46
Figure 3.4: Projection de la structure (3) sur le plan (100).	47
Figure 3.5: Liaisons hydrogènes dans le composé (3).	48
Figure 4.1: Molécule du composé (4).	49
Figure 4.2: Les cycles des liaisons hydrogène de type C-H····O selon le plan (b, c).	51
Figure 4.3: Projection de la structure du composé (4) sur le plan (010).	51
Figure 4.4: Projection de la structure du composé (4) sur le plan (001).	51
Figure 4.5: Surface de Hirshfeld tracée sur d _{norm} et empreintes des interactions hydrogènes du	
composé (4).	52
Figure 5.1: Molécule du complexe de coordination (5).	54
Figure 5.2: Projection de la structure du composé (5) sur le plan (100).	55

Figure 5.3: Projection de la structure du composé (5) sur le plan (010).	55
Figure 5.4: Projection de la structure du composé (5) sur le plan (001).	56
Figure 5.5: Les interactions intermoléculaires de type π - π dans le composé (5).	56
Figure 5.6: Structure poreuse, tunnels parallèles à l'axe c.	57
Figure 5.7: Surface de Hirshfeld tracée sur d _{norm} et empreintes des interactions hydrogènes du	
composé (5).	58
Figure 6.1: Molécule du composé (6).	60
Figure 6.2: Interactions C-HO intra moléculaire dans le composé (6).	61
Figure 6.3: Vue sur le plan (100) des interactions C-HO dans le composé (6).	62
Figure 6.4: Vue sur le plan (010) des interactions C-HO dans le composé (6).	62
Figure 6.5: Vue sur le plan (001) des interactions C-HO dans le composé (6).	63
Figure A: Spectre IR de la sulfanilamide.	69
Figure B: Effet du solvant sur l'intensité et la position des bandes d'absorption UV-visible de la	
sulfanilamide dans différents solvants.	69
Figure C: Décomposition thermique de la sulfanilamide.	70
Figure 7.1 : Spectre IR du ligand et du complexe (7).	72
Figure 7.2: Effet du solvant sur l'intensité et la position de la bande du complexe (7).	73
Figure 7.3 : Unité asymétrique du complexe (7).	74
Figure 7.4: Empilement de la structure (7) selon le plan (b, c).	75
Figure 7.5 : Cycles des liaisons hydrogènes dans le composé (7).	76
Figure 7.6: Surface de Hirshfeld tracée sur d _{norm} et empreintes des interactions hydrogènes.	77
Figure 7.7 : Courbes DSC et TG-DTG du complexe (7).	78
Figure 8.1 : Spectre IR du complexe (8) comparé à celui du ligand.	80
Figure 8.2 : Effet du solvant sur l'intensité et la position de la bande du complexe (8).	81
Figure 8.3: Unité asymétrique du complexe (8).	83
Figure 8.4 : Différents types de liaisons hydrogènes dans le composé (8).	84

Figure 8.5 : Interactions intermoléculaires N–O··· <i>Cg</i> et O–H··· <i>Cg</i> dans le complexe (8).	85
Figure 8.6: Surface de Hirshfeld tracée sur d _{norm} et empreintes des interactions hydrogènes dans	
le composé (8).	86
Figure 8.7: Enchainement des polyèdres dans le composé (8) ; vue sur le plan (a, c).	87
Figure 8.8 : Courbes TG-DTG du complexe [Cu $(NO_3)_2(H_2O)_2(C_6H_8N_2O_2S)_2$].	88
Figure 8.9: Diagramme de diffraction des rayons X par la poudre de (7).	89
Figure 8.10: Diagramme de diffraction des rayons X par la poudre de (8).	89
Figure 8.11 : Voltammogrammes cycliques du ligand et des complexes (7) et (8) dans une	
solution 0,1 M de LiClO ₄ /DMSO à une vitesse de balayage de 100 mV/s.	90
Figure 8.12: Voltammogrammes cycliques des complexes (7) et (8) dans une solution 0,1 M	
de LiClO4 / DMSO à différentes vitesses de balayage.	92
Figure 9.1 : Spectre IR du complexe (9).	95
Figure 9.2 : Effet du solvant sur l'intensité et la position de la bande du complexe (9).	96
Figure 9.3 : Environnement du cuivre dans le composé (9).	98
Figure 9.4: Chaine polymérique du composé (9).	98
Figure 9.5: Projection selon l'axe a de l'enchainement des polyedres de coordination de (9).	99
Figure 9.6: Projection selon l'axe b de l'enchainement des polyedres de (9).	99
Figure 9.7: Liaisons hydrogènes dans le polymère (9).	100
Figure 9.8 : Courbes TG-DTG-DSC du complexe (9).	101
Figure 10.1 : Spectre IR du complexe (10).	104
Figure 10.2 : Spectre UV de (10) dans différents solvants.	105
Figure 10.3 : Unité asymétrique du composé (10).	107
Figure 10.4 : Environnement octaédrique de Cu dans le composé (10).	107
Figure 10.5 : Enchainement polymérique 1D suivant [010].	108
Figure 10.6: Différentes interactions dans le composé (10).	109
Figure 10.7: Courbes DSC-TG-DTG du complexe (10).	111

Figure 10.8: Diagramme de diffraction des rayons X par la poudre de (9).	112
Figure 10.9: Diagramme de diffraction des rayons X par la poudre de (10).	112
Figure 10.10 : Voltamogrammes cycliques des complexes (9) et (10) dans une solution 0,1 M de	e
LiClO ₄ /DMSO à différentes vitesses de balayage.	112
Figure 11.1: Spectre IR du complexe (11).	116
Figure 11.2 : Effet du solvant sur l'intensité et la position de la bande dans le complexe (11).	117
Figure 11.3 : Unité asymétrique du composé (11).	118
Figure 11.4 : Structure en 2D du composé (11).	119
Figure 11.5 : Disposition des couches polymériques parallèles au plan (b, c) du complexe (11).	120
Figure 11.6: Diagramme de diffraction des rayons X par la poudre de complexe (11).	121
Figure 11.7: Courbes DSC-TG-DTG du complexe (11).	122
Figure 11.8 : Voltamogrammes cycliques du complexe (11) dans une solution 0,1M de	
LiClO ₄ /ACN à différentes vitesses de balayage.	122
Figure 11.9: Voltamogrammes cycliques du complexe (11) dans différents solvants à différentes	8
vitesses de balayage.	124
Figure 11.10 : Courants maximux anodiques en fonction de $v^{1/2}$ du complexe (11) dans les	
solvants étudiés.	125
Figure 11.11: Effet de la viscosité du solvant sur les potentiels électrochimiques de demi-onde.	126
Figure 1 : Activité antibactérienne des complexes (7) à (11) et l'antibiotique Bactrim.	128

Liste de tableaux

Tableau 1.1: Données cristallographiques et conditions d'enregistrement et d'affinement.	35
Tableau 1.2: Quelques liaisons choisies.	37
Tableau 1.3: Quelques angles de liaisons choisis.	37
Tableau 1.4: Liaisons hydrogènes dans le composé (1).	38
Tableau 2.1: Données cristallographiques et conditions d'enregistrement et d'affinement.	39
Tableau 2.2: Liaisons hydrogènes dans le composé (2).	43
Tableau 2.3: Les interactions de type π - π et C-H··· π .	43
Tableau 3.1: Données cristallographiques et conditions d'enregistrement et d'affinement.	44
Tableau 3.2: Liaisons hydrogènes dans le composé (3).	47
Tableau 4.1: Données cristallographiques et conditions d'enregistrement et d'affinement.	49
Tableau 4.2: Liaisons hydrogènes dans le composé (4).	50
Tableau 5.1: Données cristallographiques et conditions d'enregistrement et d'affinement.	53
Tableau 5.2: Liaisons hydrogènes dans le composé (5).	54
Tableau 6.1: Données cristallographiques et conditions d'enregistrement et d'affinement.	59
Tableau 6.2: Liaisons hydrogènes dans le composé (6).	61
Tableau A : Bandes d'absorption du ligand sulfanilamide.	68
Tableau 7.1: Données cristallographiques et conditions d'enregistrement du complexe (7).	73
Tableau 7.2: Liaisons hydrogènes dans le composé (7).	75
Tableau 7.3: Données thermiques de la décomposition du complexe (7).	79
Tableau 7.4: Paramètres thermodynamiques de la première décomposition du complexe (7).	97
Tableau 8.1: Données cristallographiques et conditions d'enregistrement du composé (8).	82
Tableau 8.2: Liaisons hydrogènes dans le composé (8).	83
Tableau 8.3: Interactions N–O···Cg et O–H···Cg dans le composé (8).	85
Tableau 8.4: Données thermiques de la décomposition du complexe (8).	88

Tableau 8.5: Paramètres thermodynamiques de la première décomposition du complexe (8).	88
Tableau 8.6: Données électrochimiques des complexes (7) et (8) dans DMSO/LiClO ₄ .	92
Tableau 9.1: Bandes d'absorptions et leurs fréquences de vibration dans le complexe (9).	94
Tableau 9.2: Données cristallographiques et conditions d'enregistrement du complexe (9).	96
Tableau 9.3: Liaisons hydrogènes dans le composé (9).	100
Tableau 9.4: Données thermiques de la décomposition du complexe (9).	101
Tableau 9.5: Données thermodynamiques de la décomposition du complexe (9).	102
Tableau 10.1: Bandes d'absorptions et leurs fréquences de vibration dans le complexe (10).	103
Tableau 10.2: Données cristallographiques et conditions d'enregistrement du complexe (10).	105
Tableau 10.3: Liaisons hydrogènes dans le composé (10).	108
Tableau 10.4: Données thermiques de la décomposition du complexe (10).	110
Tableau 10.5: Données thermodynamiques de la décomposition du complexe (10).	111
Tableau 10.6: Données électrochimiques des complexes (9) et (10) dans le DMSO/LiClO4 à	
diverses vitesses de balayage.	114
Tableau 11.1: Données cristallographiques et conditions d'enregistrement du complexe (11).	117
Tableau 11.2 : Interactions hydrogènes dans le complexe (11).	120
Tableau 11.3 : Données électrochimiques du complexe (11) dans l'acétonitrile à différentes	
vitesses de balayage.	123
Tableau 11.4: Propriétés voltamétriques cycliques du complexe (11) dans différents solvants.	125
Tableau 1: Résultats de l'activité antimicrobienne in vitro du Bactrim® et des complexes (7)-	
(11) vis-à-vis des souches testées.	127
Tableau 2 : Valeurs d'IC ⁵⁰ pour l'activité chélates des complexes testés.	128

Introduction générale

Introduction générale :

La chimie de coordination a connu un développement important dans plusieurs domaines médicinaux, pharmaceutiques et dans les secteurs industriels et technologiques [1]. Les composés hétérocycliques prennent une classe fondamentale des composés organiques qui sont utilisés dans différents domaines de recherche tels que les catalyseurs, les produits pharmaceutiques et la photoluminescence.

La chimie des composés soufrés est la source privilégiée de nombreux sujets d'étude au laboratoire. L'atome de soufre étant très important dans la chimie du vivant, abondant dans plusieurs composés naturels comme l'allicine, l'ajoène (l'ail), lenthionine et dans les acides aminés (Cystéine, Méthionine). Elle a des intérêts divers et utilisée entre autres :

- pour prévenir l'agrégation des plaquettes du sang ou dans la lutte contre le cancer.
- dans l'industrie pharmaceutique (médicament comme le bactrim).
- dans l'agrochimie (engrais) [2].

Les hétérocycles contenant les thiazoles sont présents dans de nombreux produits naturels tels que les bléomycine, épothilone A et la dolastatine 10. Les benzothiazoles (BZT) et leurs dérivés appartiennent à cette classe. La molécule du benzothiazole est plane et constituée d'un cycle 1, 3-thiazole à 5 atomes fusionnés à un cycle benzénique (figure 1). Le benzothiazole est la structure de base de nombreux composés thérapeutiquement utiles. Le pharmacophore de la molécule est le cycle thiazole. L'atome d'azote et l'atome de soufre dans la partie thiazole se sont avérés être des éléments importants pour un grand nombre d'activités des benzothiazoles. Les dérivés du benzothiazole ont fait l'objet d'intenses études approfondies, car le pharmacophore est l'une des structures privilégiées de la chimie médicinale. Les benzothiazoles (benzothiazole et dérivés) sont devenus une structure de base pour diverses applications thérapeutiques incluant les activités anticancéreux [3], anticonvulsivant [4], antidiabétique [5], antioxydant [6], antiviral [7], anti-inflammatoire [8], anti-tuberculeux [9], antipaludéen [10], antihelminthique [5], analgésique [11].

Figure. 1 : La molécule de benzothiazole.

Les benzothiazoles ont des activités antimicrobiennes contre les bactéries gramnégatives et gram-positives (par exemple, E. coli, Pseudomonas aeruginosa, la bactérie Entero, Staphylococcus epidermis, etc.) et la levure (par exemple Candida albicans) **[12, 13]**. Ils sont également utilisés dans l'industrie comme accélérateurs de vulcanisation. Divers benzothiazoles tels que les 2-arylbenzothiazoles ont reçu beaucoup d'attention en raison de leur structure unique et de leurs utilisations en tant qu'agents d'imagerie radioactifs amyloïdes.

Le cycle de benzothiazole est présent dans divers composés naturels marins et terrestres, qui ont des propriétés biologiques utiles [14-17].

Plusieurs molécules à base de benzothiazole sont utilisées dans la pratique clinique, comme le riluzole **[18, 19]**, l'éthoxzolamide **[20]**, le frentizole **[21]**, le zopolrestat **[22]** et la thioflavine **[23]**.

Le benzothiazole et ses dérivés ne sont pas difficiles à préparer et les substitutions les plus courantes se font en position 2 (Fig. 2) [24-27].

R= Ph: 2-OH/4-OHPh: 3-NO₂/4-NO₂Ph: 3,4-OMePh: 2,4-CIPh: 9-Anthracene 3.5-IBu-4-OHPh: 1-Naphthalene: 5-NO₂-1-Naphthalene

Figure. 2 : Exemple de synthèse d'un dérivé de benzothiazole.

Les benzothiazoles constituent une classe importante de composés heterocycliques contenant N et S **[28]**. Les complexes métalliques des ligands chélateurs N et S ont attiré une considérable attention en raison de leurs propriétés physicochimiques intéressantes et de leurs activités pharmacologiques. Les atomes N et S jouent un rôle important dans la coordination des métaux sur les sites actifs de diverses métallobiomolécules. Les cations des métaux de transition jouent un rôle vital dans un grand nombre de processus biologiques **[28-30]**. De plus, l'activité peut être augmentée lorsque le ligand biologiquement actif est coordinné à un ion de métal de transition. Dans les dernières années, beaucoup de complexes d'ions des métaux de transition ont été signalés. En effet des complexes de cuivre (II) **[28, 31-37]**, de nickel (II) **[31, 34, 38-40]** et de Co (II) **[34,38-40]** ont été publiés. De plus, les dérivés de benzothiazole et leur métal complexes ont été étudiés en raison de leurs propriétés fluorescentes et luminescentes **[32, 41-44]** et de la possibilité de donner naissance à des arrangements supramoléculaires **[45, 46]**.

Dans ce contexte, l'objectif de notre travail au départ était la synthèse et la caractérisation structurale, vibrationnelle, thermique et biologique des complexes des éléments de transition et de quelques autres métaux avec le benzothiazole. Mais pour des raisons de disponibilité des produits de base, nous étions obligés de se limiter à la synthèse de faibles quantités de complexes et de les caractériser structuralement. Trois complexes de coordination et trois composés hybrides ont été synthétisés et caractérisés aux rayons X sur monocristal.

Une autre molécule très intéressante est la sulfanilamide dérivée du composé paraaminobenzenesulfonamide. Les sulfanilamides, furent les premiers agents chimiothérapeutiques efficaces largement utilisés pour guérir l'infection bactérienne chez l'homme. Ils sont appelés sulfonamides, en raison de la présence d'un groupe sulfonamide -SO₂NH₂ [47]. Le paminobenzènesulfonamide a été synthétisé pour la première fois en 1908 par Paul Gelmo, mais sa valeur a été découverte encore plus tôt. En 1932, une entreprise allemande a préparé une teinture rouge 4-(4'-sulfamylphenylazo)-m-phénylènediamine et en 1935 Domagk a signalé un remarquable effet curatif de ce composé et l'a nommé «prontosil». Dans la même année, un groupe de chercheurs de l'institut Pasteur en France ont constaté que la propriété antibactérienne du médicament résidait dans la partie p-aminobenzènesulfonamide de la molécule [48]. Dans les trois décenies qui suivent, plus de 5400 dérivés de la sulfanilamide ont été synthétisés et étudiés par des sociétés pharmaceutiques au Royaume-Uni aux États-Unis, en Allemagne et en France [49].

Figure. 3 : Les trois molécules PABA, sulfanilamide et protonsil sulfanilamide.

La sulfanilamide existe sous trois formes cristallographiques α , β , γ [50]. La sulfanilamide se révèle être active contre plusieurs types de bactéries et donc utilisée dans le traitement des maladies par exemple, pneumonie, gonorrhée, méningite, amygdalite, infections des sinus, etc.

Depuis la confirmation que la partie para amino benzène sulfonamide est la moitie active de la molécule de protonsil, un grand nombre de composés sulfonamides actifs ont été synthétisés dans la recherche de médicaments ayant une activité ou une gamme antibactérienne accrue [51-54].

L'introduction au début des années 1940 des sulfamides pyramidés, dont la sulfapyrimidine [55], la sulfadimidine [56], la sulfamérazine [57] et la sulfadiazine [57, 58] ont entraîné une utilisation accrue de ces sulfamides pour le traitement d'infections bactériennes spécifiques dans le domaine vétérinaire. À la fin des années 1950, un certain nombre d'autres dérivés avaient été mis au point pour le traitement, notamment la sulfadiméthoxine, la sulfaméthoxypyridazine et la sulfaméthoxazole. Ces sulfonamides ont montré un profil d'innocuité amélioré ou une présence plus prolongée dans le corps [59-61].

4

Les sulfamides sont des poudres cristallines blanches, de caractère légèrement acide et faiblement solubles dans l'eau. Certains sulfonamides sont amphotères en raison de la présence du groupe amine lié au cycle aromatique.

Les travaux menés par Woods [62, 63] indiquent clairement que la sulfanilamide doit être antagoniste de l'acide p-aminobenzoïque (PABA), un précurseur biologique de la méthionine. Les sulfamides inhibent l'enzyme acide folique synthétase, qui est impliquée dans la conversion de PABA à l'acide folique (folate ou vitamine B9). Cela provoque une carence en acide folique entraînant des lésions bactériennes cellulaires. L'acide folique dérivé du PABA est important dans le métabolisme bactérien.

L'activité antibactérienne des sulfonamides ne se limite qu'aux micro-organismes qui synthétisent leur propre acide folique. Les composés sulfonamides initialement employés comme la sulfanilamide, la sulfapyridine et le sulfathiazole sont obsolètes en raison de leur toxicité élevée. Souvent, les effets secondaires les plus observés sont la cristallurie, les lésions rénales et l'hémecturie. Du côté gastro-intestinal, les effets indésirables incluent la nausée, le vomissement, la douleur abdominale, la diarrhée, etc.

Des recherches ont montré l'importance de la complexation en particulier dans le domaine pharmaceutique. Certaines théories ont été avancées préconisant qu'une partie de l'action du médicament se produit par complexation. Le complexe donc formé peut entraîner la précipitation du métal ou la formation d'un composé stable soluble dans la solution et donc le type de métal chélaté est d'une grande importance. Si le ligand forme avec le métal un complexe de chélatation stable et soluble dans l'eau, il est dit agent séquestrant. La séquestration est la suppression d'une propriété ou de la réaction d'un métal sans élimination de ce métal du système ou de la phase où il se trouve par aucun processus de précipitation ou extraction. La séquestration a deux utilisations pharmaceutiques importantes, dans l'analyse et dans l'élimination des ions indésirables en solution.

Des études ont également été menées pour synthétiser des complexes avec les nonmétaux de transition. Varshney et collaborateurs ont synthétisé des complexes de Pb(II) avec des bases de schiff derivées de la sulfanilamide. Ces complexes ont été testés contre les bactéries à Gram positif (*S.aureus* et *S.subtilis*) et les bactéries à Gram négatif (E. coli) et il a été constaté que les complexes métalliques sont beaucoup plus actifs que les ligands [64]. L'intérêt a été développé en raison de la flexibilité synthétique, le nombre de coordination inhabituel des principaux éléments du groupe IV, en particulier du silicium, dans les complexes avec des ligands donneurs d'azote et de sulfure d'oxygène ainsi qu'aux diverses stéréochimies.

Avec les métaux de transition, des centaines de complexes avec les dérivées de la sulfanilamide ont été étudiés. Maurya et collaborateurs ont rapporté la synthèse de certains complexes de Ru(II) avec la sulfamérazine et la sulfadiazine [65].

Un grand nombre de complexes se sont révélés plus bactériostatiques que les médicaments eux-mêmes [66-69]. Par exemple, le Ni(II) –sulfadiméthoxine [70] et le Cu (II) – sulfacétamide [71] ont montré une activité antimicrobienne plus élevée que les ligands libres.

Récemment, plusieurs auteurs ont rapporté des études sur les complexes des sulfonamides montrant la polyvalence de ces ligands et l'importance de leurs complexes dans la chimie de coordination [72-75]. Même si certains exemples de complexes métal-dérivé de la sulfonamide basés sur $NH_2 - Ph - SO_2 - NH - R$ ont été rapportés [72, 73, 74, 75-79] la littérature reste très pauvre concernant les complexes de la sulfanilamide en raison de la faible affinité de cette molécule pour les ions métalliques. En effet, <u>Wruble</u> a signalé la synthèse de silversulfanilamide colloïdale [80]. <u>Palenik</u> et collaborateurs ont décrit la structure cristalline et moléculaire du chloro (diméthylglyoximato) - (diméthylglyoxime) (sulfanilamide) cobalt (III) –

monohydrate [81]. Topacli et Topacli ont rapporté la structure cristalline et les simulations semiempiriques des spectres infrarouges des complexes Co- et Cd-sulfanilamide [82]. Benmebarek et collaborateurs rapporté synthèse cristalline ont la et la structure du bis(4aminobenzènesulfonamide)dichloridozinc [83]. Récemment, Prajapat et collaborateurs ont rapporté la synthèse et la caractérisation de complexes à base de la sulfanilamide avec Fe(III), Ni(II) et Cu(II) [84].

Dans les complexes de coordination, le choix du métal central est primordial. C'est lui qui détermine le nombre de ligands qui lui sont liés et la géométrie du complexe, donc il joue un rôle important dans les propriétés qui en découlent. Les métaux souvent utilisés dans la chimie de coordination sont les éléments de transition, suiviés des métaux pauvres et rarement les éléments métalloides.

Un exemple des éléments métalloides est l'antimoine Sb. Bien qu'il ne soit pas essentiel à la vie, il joue un rôle thérapeutique dans la santé humaine via l'interaction avec les biomolécules. Les composés d'antimoine intéragissent avec les nucléotides, les acides aminés, les peptides, les protéines et les enzymes qui sont étroitement liés à leur absorption, accumulation, redox, transport et excrétion dans le corps humain et à leurs activités antimicrobiennes, anticancéreuses, antivirales et antiparasitaires. L'étude des interactions des complexes d'antimoine avec leurs cibles biomoléculaires potentiels au niveau moléculaire conduira à une amélioration significative de notre compréhension du mécanisme d'action des médicaments antimoniés dans les systèmes biologiques. Dans les systèmes biologiques, les états d'oxydation les plus courants, plus stables de l'antimoine sont l'antimonate (III) et l'antimonate (V). Sb(III) à une forte attraction pour les ligands azotés, oxygénés et thiolates et son nombre de coordination (CN) peut varier. Alors que les conformations de coordination des complexes Sb(V) sont généralement simples ou octaèdres déformés en raison de l'absence des électrons à longue paire d'ions Sb(V) [**85-87**].

Un exemple des métaux pauvres est l'étain. C'est un métal phare de l'âge du bronze. Il appartient à la 5éme ligne et à la $14^{\text{éme}}$ colonne de la classification périodique (z=50) et a une configuration électronique à l'état fondamental [Kr] $5s^24d^{10}5p^2$, cette dernière est permise à la formation des ions Sn⁺² et Sn⁺⁴. Dans l'état d'oxydation Sn⁺², c'est les électrons de la sous couche de valence *p* qui sont mis pour former les liaisons par contre le Sn⁺⁴ est le plus stable et sa géométrie est tétraédrique correspondant à une hybridation sp³ (SnCl₄, SnI₄ et SnBr₄) ou une géométrie octaédrique correspondant à une hybridation d²sp³ (généralement des complexes). Les composés d'étain sont utilisés dans l'industrie comme opacifiant des glaçures céramiques, robinetterie et dans la fabrication des peintures et des plastiques. D'autres applications sont très

importantes dans la chimie :

- la catalyse homogène pour l'oxydation des composés aromatiques.

- la catalyse dans les réactions de Friedel-Crafts d'acylation, d'alkylation et de cyclisation.

- l'agriculture et la préservation du bois [88-91].

Un autre élément des métaux pauvres est le zinc. Le zinc est un élément chimique du symbole Zn présent dans le corps humain, les plantes et dans les animaux [92, 93]. Le zinc (z=30) est un élément qui appartient à la 4éme ligne et à la $12^{\text{éme}}$ colonne de la classification périodique, à l'état fondamental sa configuration électronique est [Ar] $3d^{10}$ $4s^2$, l'état d'oxydation le plus courant est Zn(II). Le zinc a une chimie de coordination étendue que celle de certains des éléments de 3d. Il adopte généralement une géométrie tétraédrique. Cependant, on découvre des complexes de Zn(II) ayant une coordinence cinq (bipyramide à base triangulaire) et une coordinence six (octaédrique) [94]. Les composés du Zn(II) sont généralement incolores et diamagnétiques.

Dans le système biologique, le zinc est coordinné par l'atome de soufre de la cystéine et l'atome d'azote de l'histidine (ligands de base molle) ou par des anions carboxylates d'aspartate (ligands de base durs). Ce métal peut avoir des propriétés anti-inflammatoires in vivo et in vitro est capable de stabiliser les membranes lysosomales ainsi que de moduler les activités du complément et des macrophages [95]. Il intervient aussi dans de nombreuses réactions enzymatiques et joue des rôles multiples dans les organismes :

- il intervient dans le métabolisme des protéines et des graisses.

- il permet la production des prostaglandines (composés pouvant exercer une action antiinflammatoire)

- il stabilise diverses hormones : insuline et gustine.

- Il est important pour la croissance [92,96-97].

Un métal très utilisé dans les complexes de coordination, c'est le cuivre. Un élément chimique des métaux de transition, présent dans l'état Cu(I) et Cu(II) dans les organismes vivants [98]. Il est parmi les 25 éléments les plus abondants dans la croûte terrestre, sous forme de sulfure de cuivre-fer et de sulfure de cuivre, par ex. chalcopyrite (CuFeS₂), bornite (Cu₅FeS4) et chalcocite (Cu₂S) [99]. Il est l'un des trois métaux utilisés pour la première fois par l'homme depuis le plus longtemps (avec l'or que l'on trouve à l'état natif) et le fer (d'origine météoritique) [100].

Le cuivre (Z=29) est un élément de transition, situé entre le nickel et le zinc dans le groupe I_B du tableau périodique, a une configuration électronique de [Ar] $3d^{10} 4s^1$. C'est un métal noble et se trouve à cinq états d'oxydation : Cu(0), Cu(I), Cu(II), Cu(III) et Cu(IV), l'état d'oxydation 0, III et IV se trouve rarement [**101**].

Composés du cuivre (0) :

On connaît très peu de composés qui contiennent du cuivre à l'état zéro-valent; en tant que monomères simples, il serait paramagnétique, le cuivre ayant un électron non apparié dans l'orbitale 4s. Le seul composé supposé être de ce type, $K_2CuC_{32}H_{16}N_8$, a été préparé en réduisant la phtalocyanine de cuivre (II) avec du potassium dans l'ammoniaque liquide; il forme une amine $K_2CuC_{32}H_{16}N_8.4NH_3$, est facilement oxydé en phtalocyanine de cuivre (II). Composés du cuivre (I) :

L'ion Cu(I) est classé comme un acide mou, dans cet état d'oxydation le cuivre à une sous-couche 3d remplie et les composés du cuivre (I) sont habituellement blancs et diamagnétiques. Le nombre de coordination le plus commun adopté par le cuivre (I) est de quatre (tétraédrique), l'atome de métal étant entouré par les quatre ligands. Les nombres de coordination de deux (linéaire) et trois (planaire trigonal) sont également connus mais sont beaucoup moins communs en raison de son diamagnétisme et de sa nature symétrique (qui minimise les effets de relaxation quadripolaires).

Composés du cuivre (II) :

L'ion Cu(II) est classé comme un acide dur, dans cet état d'oxydation le cuivre à une configuration électronique $ls^2 2s^2 2p^6 3s^2 3p^6 3d^9$. Dans l'ion Cu(II) isolé, les orbitales d (dxy, dxz, dyz, dx^2-y^2 et dz^2) sont dégénérés, ce qui signifie qu'elles ont toutes la même énergie. En présence d'un champ de ligands, les énergies des orbitales d se divisent. Les nombres de coordination adoptés par le cuivre (II) sont quatre (tétraédrique ou plan carrée), cinq (bipyramide à base triangulaire ou pyramide à base carrée) et six (octaédrique). La géométrie octaédrique régulière est très rare à cause de la présence du neuvième électron qui provoque une distorsion sur l'octaèdre (l'effet Jahn-Teller) [**102**]. Dans un environnement octaédrique, les orbitales dxy, dxz et dyz (t_{2g}) sont diminuées en énergie, et les orbitales dx^2-y^2 et dz^2 (eg) sont augmentées en énergie. Cette variation des énergies des orbitales a conduit à l'abaissement de la symétrie (octaèdre déformé) et la stabilisation des complexes [**103**].

Les degrés d'oxydation I et II donnent de très nombreux complexes de coordination et des intérêts biologiques, on retrouve dans le système biologique ou il transporte (dioxygène ou électron), les hémocyanines (transport de dioxygène dans les mollusques), les cytochromes A et A3 (transport d'électron) dans les chaines du vivant et les protéines et il est catalyseur (centre catalytique de très nombreuses réactions biologiques). Ce métal a une importance dans :

- la médecine (antimicrobien, anti-inflammatoire et dans la fabrication de couronnes dentaires).

- l'agricole (fongicides, algicides, suppléments nutritionnels) [101].

Notre laboratoire a développé depuis quelques années un axe de recherche consacré à la synthèse et l'études des complexes à base de ligands soufrés principalement des complexes à base de benzothiazole, thiophène acide, sulfaméthoxazole et de sulfanilamide. Le présent travail s'inscrit dans le même axe de recherche. Dans ce travail, nous présentons la synthèse et la caractérisation de nouveaux complexes de benzothiazole et de la sulfanilamide.

Six complexes de benzothiazoles avec Sb, Sn, Cu et Zn et cinq complexes de la sulfanilamide avec le cuivre ont été synthétisés et caractérisés.

Le premier chapitre concerne les différentes voies de synthèse et les techniques de caractérisation utilisées et qui sont essentiellement la diffraction des rayons X sur monocristal, la spectroscopie infra rouge, UV, la thermogravimétrie, l'électrochimie et l'activité antibactérienne.

Le deuxième chapitre est réservé à la synthèse et à l'étude structurale de six nouveaux complexes de coordination et hybride de benzothiazole dont l'un a fait l'objet d'une publication internationale.

Le dernier chapitre est consacré à la synthèse, l'étude structurale et les propriétés physicochimiques des cinq complexes de coordination du cuivre avec la sulfanilamide.

Enfin, une conclusion générale résumant les résultats obtenus.

Bibliographie :

[1]: B. Machura, M. Wolff, E. Benoist and Y. Coulais, Journal of Organometallic Chemistry 724(2013) 82-87.

[2]: A. Valle, G. Boschin, M. Negri, P. Abbruscato, C. Sorlini, A. d'Agostina and E. Zanardini, Journal of Applied Microbiology 101(2006) 443–452.

[3]: S.T. Huang, I.J. Hseib and C. Chena, Bioorg. Med. Chem. 14 (2006) 6106–6119.

[4]: N. Siddiqui, S.N. Pandeya, S.A. Khau, J. Stables, A. Rana, M. Alam, F. MdArshad and M.A. Bhat, Biorg. Med. Chem., Int. Curr. Pharm. 17(2007) 255-259.

[5]: S.R. Pattan, Ch. Suresh, V.D. Pujar, V.V.K. Reddy, V.P. Rasal and B.C. Koti, Ind. J. Chem., (2008) 2404-2408.

[6]: D. Cressier, C. Proullac, P. Hernandez, C. Amourette, M. Diserbo, C. Lion and G. Rima, Biorg. Med. Chem., 17(2009) 5275-5284.

[7]: T. Akhtar, S. Hameed, N. Al-Masoudi, R. Loddo and P. Colla, Acta Pharm., 58(2008) 135-149.

[8]: B.M. Gurupadayya, M. Gopal, B. Padmashali and V.P. Vaidya, Ind. J. Heterocy. Chem, (2005) 169- 172.

[9]: F.J. Palmer, R.B. Trigg, and J.V. Warrington, J. Med. Chem., (1971) 248-251.

[10]: A. Burger, S.N. and Sawhey, J. Med. Chem., 11(1968) 270-273.

[11]: N. Siddiqui, M. Alam and A.A. Siddiqui, Asian J. Chem, 16(2004) 1005-1008.

[12]: M. Gjorgjieva, T. Tomasic, D. Kikelj and L. Peterlin Masic, Current Medicinal Chemistry, 25(2018) 1-19

[13]: M. Singh, S.K. Singh, M. Gangwar and G. Nath, RSC Adv., 4(2014) 19013-19023.

[14]: M. Ban, H. Taguchi, T. Katsushima, M. Takahashi, K. Shinoda, A. Watanabe, T. Tominaga, Bioorg. Med. Chem. 6 (1998) 1069

[15]: Y.-J. Cao, J.C. Dreixler, J.J. Couey, K.M. Houamed, Eur. J. Pharmacol. 449 (2002) 47.

[16]: S.R. Nagarajan, G.A. De Crescenzo, D.P. Getman, H.-F. Lu, J.A. Sikorski, J.L. Walker, J.J.Mcdonald, K.A. Houseman, G.P. Kocan, N. Kishore, P.P. Mehta, C.L. Funkes-Shippy, L.Blystone, Bioorg. Med. Chem. 11 (2003) 4769

[17]: G. Turan-Zitouni, S. Demirayak, A. Ozdemir, Z.A. Kaplancikli, M.T. Yildiz, Eur. J. Med.Chem. 39 (2003) 267

[18]: H.M. Bryson, B. Fulton, P. Benfield and A. Riluzole, Drugs, 52(1996) 549-563.

[19]: N. Nagoshi, H. Nakashima and M.G. Fehlings, Molecules, 20(2015) 7775-7789.

[20]: X.Q. Deng, M.X. Song, C.X. Wei, F.N. Li and Z.S. Quan, Med Chem., (2010) 313-320.

[21]: N.D. Amnerkar and K.P. Bhusari, Eur. J. Med. Chem., (2010), 149-159.

[22]: G.M. Sreenivasa, E. Jayachandran and B. Shivakumar, Arch. Pharm. Res. (2009) 150-157

[23]: P. Jimonet, F. Audiau, M. Barreau, J.-C. Blanchard, A. Boireau, Y. Bour, M. A. Coleno, A.

Doble, G. Doerflinger, C. D. Huu, M. H. Donat, J. M. Duchesne, P. Ganil, C. Gueremy, E.

Honore, B. Just, R. Kerphirique, S. Gontier, P. Hubert, P. M. Laduron, J.L. Blevec, M. Meunier,

J. M. Miquet, C. Nemecek, M. Pasquet, O. Piot, J. Pratt, J. Rataud, M. Reibaud, J. M. Stutzmann,

and S. Mignani. J. Med. Chem. 1999, 42, 2828-2843

[24]: H.Y. Guo, J.C. Li and Y.L. Shang, Chinese Chemical Letters, 20 (2009) 1408-1410.

[25]: N.P. Prajapati, R.H. Vekariya, M.A. Borad and H.D. Patel, RSC Adv., 4(2014) 60176-60208.

[26]: R.K. Gill, R.K. Rawal and J. Bariwal, Arch. Pharm., 348(2015) 155-178.

[27]: A. Shaista and P. Amrita, IJPSR, 8(12)(2017) 4909-4929.

[28]: P. Jimonet, F. Audiau, M. Barreau, J.C. Blanchard, A. Boireau, Y. Bour, M.A. Coleno, A. Doble, J. Joseph and G.B. Janaki, J. Mol. Struct. 1063(2014) 160–169.

[29]: I. Sakyan, E. Logoglu, S. Arslan, N. Sari, N.S. Akiyan, Bio Metals 17(2004)115–120 20.

[**30**]: G.Y. Yeap, B.T. Heng, N. Faradiana, R. Zulkifly, M.M. Ito, M. Tanabe and D. Takeuchi, J. Mol. Struct. 1012(2012) 1–11.

[31]: D.M. Abd El-Aziz, S.E.H. Etaiw and E.A. Ali, J Mol Struct 1048(2013) 487–499.

[**32**]: X.B. Fu, G.T. Weng, D.D. Liu, X.Y. Le, J. Photochem Photobiol A: Chem 276(2013) 83– 95.

[33]: W. Freinbichler, A. Soliman, R.F. Jameson, G.N.L. Jamesond and W. Linert, Spectrochim Acta A 74(2009) 30–35.

[34]: P.P. Netalkar, A. Kamath, S.P. Netalkar and V.K. Revankar, Spectrochim Acta A 97(2012) 762–770.

[35]: G. Doerflinger, C.D. Huu, M.H. Donat, J.M. Duchesne, P. Ganil, C. Gueremy, E. Honor,
B. Just, S.E.H. Etaiw, D.M. Abd El-Aziz, E.H. Abd El-Zaher and E.A. Ali, Spectrochim Acta A 79(2011) 1331–1137.

[36]: P.U. Maheswari, M. van der Ster, S. Smulders, S. Barends, G.P. van Wezel, C. Massera, S. Roy, H. den Dulk, P. Gamez and J. Reedijk, Inorg Chem 47(2008) 3719–3727.

[37]: K. Marjani, M. Mousavi and D.L. Hughes, Trans Met Chem 34(2009) 85-89.

[**38**]: E.K. Beloglazkina, I.V. Yudin, A.G. Majouga, A.A. Moiseeva, A.L. Tursina, N.V. Zyk, Russ. Chem. Bull. Int. Ed. 55(2006) 1803–1809.

[39]: C. Leelavathy and S.A. Antony, Spectrochim Acta A 113(2013) 346–355.

[40]: F. Zhang, Q.Y. Lin, S.K. Li, Y.L. Zhao, P.P. Wang and M.M. Chen, Spectrochim Acta A 98(2012) 436–443.

- [41]: E. Koyama, G. Yang, S. Tsuzuki and K. Hiratani, Eur J Org Chem (2002)1996–2006.
- [42]: K.Y. Ho, W.Y. Yu, K. Cheung and C.M. Che, Dalton Trans (1999) 1581–1586.

[43]: Y. Yang, B. Li, L. Zhang and Y. Guan, J. Luminescence 145(2014) 895–898.

[44]: Q. Chu, D.A. Medvetz, M.J. Panzner and Y. Pang, Dalton Trans 39(2010) 5254–5259.

[45]: M.M. Bishop, L.F. Lindoy, B.W. Skelton and A. White, Supramol Chem 13(2001) 293–301.

[46]: M.M. Bishop, AHW. Lee, L.F. Lindoy and P. Turner, Polyhedron 22(2003) 735–743.

[47]: A.S.J.P.A.M. Van Miert, J. Vet. Pharmacol. Therap. 17(1994), 309-316

[48]: J. Trefouel, T.J. Trefouel, F. Nitti and D. Bovet, Comptes rendus de la Societe de Biologie, 120(1935) 756-758.

[49]: L. Neipp, In Experimental Chemotherapy, 2(1964) 170-240. Eds R.J. Schnitzer and F. Hawking. Academic Press, New York.

[50]: A. Novak, J. Lascombe and M. L. Josien, J. Phys. Colloques, 27(1966), C2-38-C2 48.

[51]: D.G. Steyn, Journal of the South African Veterinary Medical Association, 13(1942) 120-128.

[52]: D.G. Steyn, Journal of the South African Veterinary Medical Association, 14(1943) 31-37.

[53]: G.N Gould, The Veterinary Record, 55(1943) 107-108.

[54]: J.A.S Millar, Journal of the American Veterinary Medical Association, 102(1943) 51-56.

[55]: L.A. Klein, A.L. Klackner and R.O. Biltz, American Journal of Veterinary Research, 2(1941) 334-340.

[56]: J.M. Sprague, L.W. Kissinger and R.M. Lincoln, Journal of the American Chemical Society, 63(1941) 3028-3030.

[57]: A.D. Welch, P.A. Mattis, A.R. Latven, W.M. Benson and E.H. Shields, Journal of Pharmacology, 77(1943) 357-391.

[58]: A.H. Bryan, Army Veterinary Bulletin, Washington, 37(1943) 34-45.

[59]: R.E. Bagdon, In Experimental Chemotherapy, 2(1964) 249-306. Eds R.J. Schnitzer and F. Hawking. Academic Press, New York-London.

[60]: T. Struller, Antibiotics and Chemotherapy, 14(1968) 179-215

[61]: N. Anand, Handbook of Experimental Pharmacology. 64(1983) 25-54. Ed Hitchings, G.H. Springer Verlag, Berlin-Heidelberg.

[62]: D.D. Woods and R.G. Tucker, In the strategy of Chemotherapy. (1958) 1-28. Eds S.T. Cowan. and E. Rowatt, Cambridge University Press, London.

[63]: D.D. Woods, British Journal of Experimental Pathology, 21(1940) 74-90.

[64]: A. K. Varshney and J. P. Tandon, Syntb. Reacf. Inorg. Met. Org. Chem., 17(1987) 651.

[65]: R.C. Maurya and P. Patel, Spectrocopy Letters, 32(2) (1999) 213-236.

- [66]: K.K. Pandey and R. Kaushal, Indian J. Appl. Gem., 32(1969) 96. 186.
- [67]: K.K. Chatturvedi and R. Kaushal, Indian J. Pharm., 37(1975) 85.
- [68]: J.R.J. Sorenson, Chem. Br., (1984) 1110-1113
- [69]: E.E. Chufán, J.C. Pedregosa and J. Borrás, Vib. Spectrosc., 15(1997) 191–199
- [70]: S.C. Chaturvedi, S.H. Mishra and K.L. Bhargava, Sci. Cult., 46(1980) 401-402

[71]: F. Blasco, R. Ortiz, L. Perelló, J. Borrás, J. Amigo and T. Debaerdemaeker, J. Inorg.Biochem., 53(1994) 117–126.

[72]: E. Borrás, G. Alzuet, J. Borrás, J. Server-carrió, A. Castiňeiras, M. Liu-González and F. Sanz-Ruiz, Polyhedron, 19(2000) 1859–1866.

[73]: B. Macías, M.V. Villa, E. Fiz., I. García, A. Castiñeiras, M. Gonzalez-Alvarez, J. Borrás, J. Inorg. Biochem., 88(2002) 101–107.

[74]: M.H. Torre, G. Facchin, E. Kremer, E.E. Castellanos, O.E. Piro and E.J. Baran, J. Inorg. Biochem., (2003) 200–204.

[75]: R. Cejudo-Marín, G. Alzuet, S. Ferrer, J. Borrás, A. Castiňeiras, E. Monzani and L. Casella, Inorg. Chem., 43(2004) 6805–6814.

[76]: L.L. Marques, G.M. de Oliveira and E. Schulz Lang, Z. Anorg. Allg. Chem., (2006) 2310-2314.

[77]: L.L. Marques, E.S. Lang, H. Fenner and E.E. Castellano, Z. Anorg. Allg. Chem., 631(2005) 745-748.

[78]: U. Tailor and H. Patel, Journal of Molecular Structure, 1088(2015) 161–168.

[79]: C.M. Sharaby, M.F. Amine and A.A. Hamed, Journal of Molecular Structure, 1134(2017) 208–216.

[80]: M. Wruble, J. Am. Pharm. Assoc., 32(1943) 80.

[81]: G.J. Palenik, D.A. Sullivan and D.V. Naik, J. Am.Chem.Soc., 98(1976) 1177.

[82]: C. Topacli and A. Topacli, Journal of Molecular Structure, 654(2003) 153–159.

[83]: S. Benmebarek, M. Boudraa, S. Bouacida, H. Merazig and G. Dénès, Acta Cyst., E70 (2014) m28-m29.

[84]: G. Prajapat, R. Gupta and N. Bhojak, Orient. J. Chem., 35(1) (2019), 308-317.

[85]: J. A. Cleverty, (2003). Comprehensive Coordination Chemistry II: From Biology to Nanotechnology Amsterdam; Boston: Elsevier Science.

[86]: H. Sun, (2011). Biological Chemistry of Arsenic, Antimony and Bismuth. Wiley.

[87]: C. Y. Wang, (2012). Antimony: Its History, Chemistry, Mineralogy, Geology, Metallurgy, Uses, Preparations, Analysis, Production, and Valuation; With Complete Bibliographies Forgotten Books.

[88]: C. S. Anderson, (2017). Conflict minerals from the Democratic Republic of the Congo. Tin processing plants, a critical part of the tin supply chain Reston, VA: U.S. Geological Survey.

[89]: P. A. Cusack, Applied Organometallic Chemistry. 12(1998) 520–520.

[90]: I. Persson, P. d'Angelo and D. Lundberg, Chemistry – A European Journal. 22(2016) 18583–18592.

[91]: J. L. Vignes, G. Andre and F. Kapala, (2017-2018). Données industrielles, économiques, géographiques sur les principaux produits chimiques, métaux et matériaux 11 edition.

[92]: C. F. Mills, (1989). Zinc in human biology Berlin: Springer.

[93]: N. Roohani, R. Hurrell, R. Kelishadi and R. Schulin, J. Res. Med. Sci. 18(2013) 144 – 157.

[94]: J. Burgess and R. H. Prince, (2006). Encyclopedia of Inorganic Chemistry, Vol. p. American Cancer Society.

[95]: C. W. Denko, (1989). Copper and Zinc in Inflammation, Vol. edited by R. Milanino, K.D. Rainsford & G.P. Velo, pp. 1–5. Dordrecht: Springer Netherlands.

[96]: J. Koca, C.G. Zhan, R. C. Rittenhouse and R. L Ornstein, Journal of Computational Chemistry. 24(2003) 368–378.

[97]: A. S. Prasad, (1993). Biochemistry of Zinc Springer US.

[98]: E. J. Massaro, (2002). Handbook of Copper Pharmacology and Toxicology Humana Press.

[99]: A. K. Biswas and W. G. Davenport, (2013). Extractive Metallurgy of Copper Elsevier.

[100]: J. R. Davis, (2001). ASM Specialty Handbook: Copper and Copper Alloys Materials Park, OH: ASM International. [101]: D. G. Barceloux and D. D. Barceloux, Journal of Toxicology: Clinical Toxicology.37(1999) 217 – 230.

[102]: M. Melník, M. Kabešovå, M. Koman, Ľ. Macåškovå, J. Garaj, C. E. Holloway and A. Valent, Journal of Coordination Chemistry. 45(1998) 147–359.

[103]: R. R. Conry, (2006). Encyclopedia of Inorganic Chemistry, Vol. p. American Cancer Society.

Chapitre 1 : techniques d'analyses
Tous les composés étudiés dans cette thèse ont été synthétisés aux laboratoires de URCHEMS.

La spectroscopie UV-visible et les mesures cristallographiques ont été réalisées à URCHEMS. Plusieurs techniques de caractérisation ont été utilisées et réalisés en collaboration avec des laboratoires hors ceux de URCHEMS. Nous tenons à les remercier pour leur contribution à ce travail.

Les études électrochimiques ont été faites au laboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculté de technologie, Université Ferhat Abbas Sétif-1, Algérie.

Les tests biologiques, activités antibactériennes et chélation fer/ferreux ont été réalisés au Laboratoire de Biosurveillance et Environnement, Département de Biologie, Université Badji Mokhtar, Annaba 023000, Algérie.

Les spectres IR ont été réalisés au laboratoire des composants actifs et matériaux (LACM) à l'université d'Oum El Bouaghi.

Les analyses thermogravimétriques et la diffraction X sur poudre ont été réalisées au Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, CRAPC Expertise Alger.

1.1. Analyse par spectroscopie Infrarouge (IR-FT) :

La spectroscopie Infrarouge est l'une des techniques spectroscopiques les plus utilisées pour la caractérisation et l'identification des composés. Elle est basée sur l'absorption des rayons IR par les composés grâce à la détection des vibrations caractéristiques de certaines liaisons chimiques. Cette technique permet de connaitre les fonctions chimiques présentes dans les composés.

Les spectres IR des composés obtenus ont été réalisé au laboratoire des composants actifs et matériaux (LACM) à l'université d'Oum El Bouaghi, par un spectrophotomètre à transformé de Fourier Bruker OPTIK GmbH RAM II sous la forme de monocristaux. Ils ont été enregistrés en transmitance dans la zone de fréquence 4000 à 400 cm⁻¹.

1.2. La spectroscopie d'absorption Ultraviolet-Visible :

La spectroscopie UV-visible (UV-vis) a été appliquée avec de nombreuses façons pour servir l'analyse qualitative et quantitative ainsi que pour étudier la structure électronique (les transitions entre les niveaux énergétiques) et pour mesurer l'étendue de conjugaison. Les transitions sont généralement entre deux orbitales liante (ou doublé libre) anti-liante (ou non liante vacante) [1].

L'application de la spectroscopie UV-vis est vaste, peut être utilisée pour evaluer la dissolution des ingrédients pharmaceutiques actifs des formulations, la stabilité des composés, la cinétique de la réaction, les équilibres et la liaison entre le métal et le ligand **[2]**.

Les spectres UV-Visible des composés obtenus ont été réalisé au sein de l'unité de recherche de chimie de l'environnement et moléculaire structurale (URCHEMS) à l'aide d'un spectrophotomètre « Optizen 2120 UV ».

1.3. Diffraction des rayons X sur monocristal :

La diffraction des Rayons X est la technique la plus importante des techniques de caractérisation structurale. En rencontrant un cristal, ces rayonnements subissent, en particulier, le phénomène de diffraction. L'interprétation de ce phénomène permet de déduire deux types d'informations :

- analyse de la symétrie : caractéristique de la maille, réseau, groupe spatial et groupe ponctuel.

- architecture des molécules d'une part et l'agencement des molécules d'autre part, autrement dit,
la détermination de l'arrangement atomique dans l'espace tridimensionnel.

L'étude de la structure cristalline se base sur trois points :

- choix du monocristal

- collecte des données de diffraction
- résolution et affinement de la structure

1.3.1. Choix du monocristal

Il faut commencer par choisir un monocristal, sans macles ni inclusions apparentes, c'est à dire un cristal sans angles rentrants et d'un aspect homogène. Si on pense avoir deux cristaux accolés, on peut tenter de les séparer à l'aide d'une aiguille. On note la taille et la morphologie du cristal, puis on le colle sur une tige de verre ou on le prend à l'aide d'une plume spéciale.

1.3.2. Collecte des données de diffraction :

Un diffractomètre Bruker Apex II [3] muni d'un système de refroidissement du cristal (basse température T=150K) a été utilisé pour l'enregistrement des données de diffraction. L'utilisation du molybdène comme anticathode, produit un rayonnement plus dur : $\lambda = 0,71073$ Å. Le rayon de la sphère d'Ewald associé $r_{SE} = 1/\lambda$ est donc plus grand, ce qui signifie que le nombre de réflexions accessibles est plus élevé et permet donc de réduire d'autant le domaine angulaire à explorer (θ), avec la même résolution. L'objectif est d'aller le plus loin possible en θ pour avoir accès aux informations structurales les plus fines possibles. En effet, plus le nombre de réflexions collectées (les réflexions faibles en l'occurrence) est important, meilleure est la statistique donc l'erreur sur la mesure et plus on pourra affiner de paramètres indépendants lors de la résolution structurale. De manière générale, le cristal est distant de 35 mm du détecteur. L'ordinateur calcule une stratégie basée sur des scans en φ et en ω . Pour former une image. Le diffractomètre amène le cristal en position de diffraction puis effectue une rotation de 0,2° à 2° autour de φ . Chaque image est mesurée le plus longtemps possible pour atteindre une précision optimale de la mesure des intensités mais sans dépasser la saturation du détecteur. Notons qu'il y a fréquemment une différence marquée entre quelques réflexions très intenses (à bas θ), la plupart des réflexions et les réflexions faibles (à haut θ). Pour avoir une bonne mesure de l'intensité de ces taches faibles, on dépasse en général le temps de saturation calculé pour les taches les plus intenses. On effectue alors des scans supplémentaires avec un temps de pose plus court pour avoir également une bonne mesure des taches intenses à bas θ .

1.3.3. Résolution et l'affinement structural :

Dans une première étape, les intensités diffractées sont corrigées des effets de Lorentz polarisation et d'extinction, puis la majorité des corrections d'absorption sont réalisées à l'aide d'une méthode semi-empirique par la technique « Multi-scan ». Les structures cristallines des composés étudiés sont résolues par les méthodes directes couplées aux synthèses de Fourier différences à l'aide des programmes *SIR92* [4]. Les différents paramètres structuraux (positions atomiques x, y, z paramètres de déplacement isotropes (Uiso) ou anisotropes (Uaniso) et occupations statiques des sites cristallographiques) ont été affinés par la méthode des moindres carrés appliquée sur le carré des modules des facteurs de structure $|F^2|$.

A l'aide du programme SHELEX-97 **[5]**, les positions des atomes d'hydrogènes ont été déterminés par analyse des cartes de fourrier différence ou ont été calculées géométriquement par l'intermédiaire du programme CALC-OH. Tous ces programmes ont été utilisés via l'interface WINGX. La cohérence des donnés est contrôlée par deux valeurs R_{int} et R_{sigma}.

$$R_{int} = \frac{\sum |F_0^2 - \langle F_0^2 \rangle|}{\sum F_0^2} \quad \text{et} \quad R_{sigma} = \frac{\sum \sigma(F_0^2)}{\sum F_0^2}$$

 $\langle F_o^2 \rangle$: valeur moyenne de toutes les réflexions équivalentes mesurées.

 $\sigma(F_{0}^{2})$: déviation standard estimée pour une réflexion moyenne.

La validité du modèle est estimée à l'aide de différents facteurs d'accord R. ces facteurs doivent converger vers un minimum et doivent être fournis lorsque la structure est publiée. Les trois facteurs les plus couramment utilisés sont :

Le facteur pondéré basé sur le F² : wR ou wR2 $WR = \sqrt{\frac{W(F_0^2 - F_c^2)^2}{\sum WF_0^2}}$

Le deuxième facteur non pondéré, est basé sur les F : R ou R1 $R = \frac{\sum ||F_0| - |F_c||}{\sum |F_0|}$

Le dernier facteur est connu sous le nom « goodness of fit » : GOOF, Gof, ou simplement S.

$$s = \sqrt{\frac{w(F_o^2 - F_c^2)^2}{N_R - N_P}}$$

Dans cette équation, N_R est le nombre de réflexions indépendantes et N_P le nombre de paramètres affinés. Théoriquement, si le schéma de pondération est bien choisi, la valeur de s doit être voisine de 1.

Les représentations structurales ont été réalisées à l'aide des logiciels ORTEP [6], Mercury [7] et DIAMOND [8].

Tous les atomes d'hydrogène ont été initialement localisés dans la carte Fourier différentielle et ensuite placés par calcul en idéalisant leurs positions géométriques avec C—H = 0.93, N—H = 0.89 et O—H = 0.83 Å et tel que Uiso(H) = 1.2Ueq(C,N) et Uiso(H) = 1.5Ueq(O).

1.4. Diffraction des rayons X sur poudre :

La diffraction des rayons X (sur poudre) est une méthode d'analyse physico-chimique la plus utilisée en chimie de l'état solide. C'est une technique d'analyse quantitative et qualitative.

L'échantillon a été préparé par la sélection d'un ensemble de cristaux (environ10 mg) sous un microscope optique. Les cristaux sont broyés à l'aide dans un mortier en agate jusqu'à l'obtention d'une poudre assez fine. Un porte échantillon en un monocristal orienté de silicium a été utilisé. L'échantillon réduit en poudre a été étalé en une très fine couche sur le silicium.

La diffraction des rayons X sur poudre des composés (7) à (11) a été réalisée en utilisant un diffractomètre D8 ADVANCE A25 BRUKER fonctionnant en géométrie Bragg-Brentano. Il est équipé d'un détecteur de type SSD160 mode (1D) permettant l'acquisition rapide d'un diffractogramme sur une large gamme angulaire. La géométrie du goniomètre est θ/θ . Pour réduire le temps d'analyse, le domaine angulaire a été défini de 5 à 56° en 2 θ avec un pas de 0.04° et un temps de pose de 5'. Le diffractomètre est équipé d'un tube à rayon X de 1000W (40 KV, 25mA) avec anode en cuivre ($\lambda_{K\alpha 1}$: 1.54060 Å).

1.5. Analyse thermique ATG/ ATD/ DSC :

L'analyse thermique couvre un groupe de techniques dans lesquelles une propriété de l'échantillon est contrôlée en fonction du temps où la température. Tandis que la température de l'échantillon est programmée, l'échantillon est maintenu dans une atmosphère spécifiée. Les thermogrammes des composés obtenus ont été réalisés au centre de recherche scientifique et technique en analyses physico-chimique CRAPC, Alger.

1.5.1. Analyse thermogravimétrie ATG :

Mesure de la variation de masse d'un échantillon lorsqu'il est exposé à un régime de température dans une atmosphère contrôlée. La technique permet la quantification, une perte de masse (décomposition, vaporisation et réduction) ou gain de masse (oxydation et absorption). Deux techniques sont couplées avec ATG : Analyse thermique différentielle (ATD) et l'analyse calorimétrique différentielle (DSC). Cette technique fournit une indication précise concernant la perte de la masse globale.

1.5.2. Analyse thermique différentielle ATD :

La méthode consiste à mesurer la différence de température ΔT entre un échantillon et une substance de référence, tous deux soumis à une même loi d'échauffement ou de refroidissement généralement linéaire. La référence est « inerte » c'est à dire qu'elle ne subit aucune transformation physique ou chimique dans le domaine de température considéré.

L'enregistrement de ΔT en fonction de la température ou du temps représente le pic d'ATD, pic qui peut être endothermique ($\Delta T < 0$ et $\Delta H > 0$) ou exothermique ($\Delta T > 0$ et $\Delta H < 0$) selon la nature de la transformation considérée.

1.5.3. Analyse calorimétrique différentielle DSC :

L'analyse enthalpique différentielle ou D.S.C. est une technique d'analyse thermique basée sur la mesure du flux de chaleur différentiel entre un échantillon et une référence inerte soumis à une même loi d'échauffement ou de refroidissement linéaires. Dans le cadre de ce travail, les analyses thermogravimétries (ATG), couplées avec l'analyse thermique différentielle (ATD) et l'analyse calorimétrique différentielle ont été réalisé avec un appareil de type SDT Q600 de TA Instruments ou les conditions expérimentales et d'enregistrement sont :

- masse des échantillons à analyser : 10 à 20 mg
- gamme de température : de l'ambiante à 1100°C.
- vitesse de chauffe : 10°C/min
- précision calorimétrique: ±2%.
- sensibilité en ATD: 0,001°C.
- sensibilité en ATG: 0,1 µg.
- creusets alumine ou creusets de platine.

La stabilité thermique des composés étudiés a été également caractérisée par les paramètres cinétiques obtenus à partir de l'étude réalisée dans des conditions non isothermes. Les valeurs calculées de ΔE , A, ΔS , ΔH et ΔG , pour les différentes décompositions sont données dans des tableaux.

Pour un composé donné, la fraction α de la substance décomposée à la température de pointe Ts sur la courbe DTG est donnée par : $\alpha = \frac{W_0 - W_t}{W_0 - W_f}$ où Wt est la masse du composé à une température donnée Ts. Wo et Wf sont les poids initial et final de la substance. Selon Horowitz et Metzger [9], l'ordre n de la réaction peut être calculé à partir de l'équation :

$$1-\alpha = n^{1/(1-n)}.$$

Pour une décomposition thermique du solide, l'équation cinétique pour les conditions non isothermes peut être exprimée par $\frac{d\alpha}{dt} = Ae^{\frac{-E}{RT}}f(\alpha)$ où A est le facteur pré-exponentiel ou le facteur de fréquence, E est l'énergie d'activation de la réaction et $f(\alpha)$ est la fonction de conversion dépendante du mécanisme de réaction. Puisque l'analyse thermogravimétrique est

effectuée à une vitesse de chauffe constante $\beta = \frac{dT}{dt}$, l'équation différentielle suivante est obtenue :

$$\frac{d\alpha}{dT} = \frac{A}{\beta} e^{\frac{-E}{RT}} f(\alpha) \quad \text{ou} \quad \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} e^{\frac{-E}{RT}} dT \quad \text{et} \quad \int_0^\alpha \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} \int_0^T e^{\frac{-E}{RT}} dT$$

Dans la présente étude, la méthode de Coats et Redfern [10] exprimée par les relations suivantes :

$$\ln\left[\frac{-\ln(1-\alpha)}{T^2}\right] = \ln\left[\frac{AR}{\beta E}\left(1-\frac{2RT}{E}\right)\right] - \frac{E}{RT} \quad \text{pour} \quad n=1 \quad \text{et}$$

 $\ln\left[\frac{1-(1-a)^{1-n}}{T^2(1-n)}\right] = \ln\left[\frac{AR}{\beta E}\left(1-\frac{2RT}{E}\right)\right] - \frac{E}{RT} \text{ pour } n \neq 1 \text{ est utilisée pour déterminer les paramètres}$

cinétiques.

Puisque $1 - \frac{2RT}{E}$ diffère peu de l'unité, un tracé de $\ln\left[\frac{-\ln(1-\alpha)}{T^2}\right]$ en fonction de 1/T pour n = 1 et $\ln\left[\frac{1-(1-\alpha)^{1-n}}{T^2(1-n)}\right]$ vs 1/T pour n \neq 1, donne une ligne droite et E peut être calculé à partir de la pente et de la valeur de fréquence A (constante d'Arrhenius) de l'ordonnée à l'origine.

L'entropie ΔS , l'enthalpie d'activation ΔH et l'énergie libre d'activation ΔG ont été calculées par des relations thermodynamiques standards : $\Delta S = R \ln \frac{Ah}{kT}$, $\Delta H = E-RT$ et $\Delta G = \Delta H$ - Ts. ΔS où, k et h sont respectivement les constantes de Boltzman et de Planck.

 $h = 1.380649 {\times} 10^{-23} \text{ J/K} , \quad k = 6.62607015 {\times} 10^{-34} \text{ J}{\cdot} \text{s}$

1.6. Etude électrochimique :

Les mesures électrochimiques ont été effectuées sur un potentiostat PGZ 301, sous azote une température ambiante. Les potentiels redox des complexes ont été évalués par voltampérométrie cyclique en utilisant une cellule à trois électrodes constituées d'un carbone vitreux comme électrode de travail, d'un fil de platine comme électrode auxiliaire et d'un calomel saturé comme électrode de référence. Des voltamogrammes cycliques ont été réalisés en utilisant 0,1 M de LiClO₄ comme électrolyte support et 10 à 3 M de complexes dans le diméthylsulfoxyde.

1.7. Activité antimicrobienne

1.7.1. Description des bactéries étudiées

Les bactéries sont des micro-organismes vivants au même titre que les virus et les champignons. Elles sont très nombreuses et sont souvent considérées comme des agents pathogènes, agressifs, responsables des maladies plus ou moins graves.

1.7.1.1 Escherichia coli

E. coli (Escherichia coli) est une bactérie qui vit dans notre intestin. C'est l'un des êtres vivants les plus simples et les mieux compris. C'est un organisme minuscule à cellule unique qui peut vivre dans de nombreux environnements différents, dans le sol, l'eau, sur les organismes vivants, les plantes, les êtres humains et les animaux. E. Coli est une bactérie gram négatif, ses cellules sont en forme de bâtonnets, d'environ 2,5 µm de long. E. coli appartient au genre Escherichia de la famille des bactéries enterobacteriaceae. Les entérobactéries sont communément appelées bactéries entériques, ou bactéries qui peuvent survivre dans le tractus gastro-intestinal (GI), formé par les structures du système digestif (cavité buccale, oesophage, estomac, intestins, rectum et anus). E. coli est généralement un commensal, mais dans des situations spécifiques, il peut causer de nombreuses maladies humaines, notamment les maladies gastro-intestinales, les diarrhées, les infections des voies urinaires, les infections bactériennes dans le sang et les méningites [**11, 12**].

1.7.1.2. Staphylococcus aureus

Le Staphylococcus aureus autrement appelé staphylocoque doré est une bactérie à gram positif. C'est un coccus, de forme arrondie, qui se présente sous la forme de diplocoques (des coccis associés par deux) ou d'amas ayant la forme de grappes de raisin. Il appartient au genre Staphylococcus de la famille des Staphylococcae **[13]**. Le staphylococcus aureus est très fréquent à l'état commensal et pathogène. Cette bactérie provoque une grande variété d'infections, telles que les infections des follicules pileux, de l'acné, les furoncles qui sont des abcès plus profonds remplis de pus de la peau, les infections de l'oreille moyenne et des voies urinaires. Il peut causer des méningites, des infections profondes comme l'ostéomyélite (une infection localisée de l'os qui survient habituellement chez les enfants de moins de 12 ans) et des infections du coeur appelées endocardites **[14, 15]**.

1.7.1.3. Pseudomonas aeruginosa

Pseudomonas aeruginosa ou bacille pyocyanique, c'est une bactérie à gram négatif, vit dans le sol, l'eau et les milieux humides. Elle appartient à la famille des Pseudomonadaceaes. Cette bactérie est très fréquente à l'état pathogène et provoque des infections externes (l'otite des piscines), la folliculite des spas, l'otite externe maligne et les infections oculaires et des infections internes sévères (pneumonie, infections des voies urinaires, infections de la circulation sanguine, infections des os et des articulations et infections des valves cardiaques) **[16, 17]**.

1.8. L'activité antibactérienne :

Afin de tester les effets antimicrobiens des nanoparticules, plusieurs méthodes d'analyse sont employées. Les bactéries ou les levures sont cultivées en milieu de culture liquide qui leur apporte les éléments nutritifs nécessaires à leur croissance et à leur multiplication. À 37 °C dans un milieu riche, certaines souches bactériennes, comme *E. coli*, se divise pour donner une nouvelle génération toutes les 20 minutes. Certaines levures, comme *S. cerevisiea*, font une division cellulaire toutes les 2 heures. De cette manière, en absence de nanoparticules, les bactéries ou les levures se divisent rapidement.

La croissance d'une population microbienne dans un milieu de culture liquide non renouvelé peut être quantifiée par la mesure de la densité optique dans le temps. Le plus simple test d'activité consiste à mesurer l'évaluation de la densité optique de microbes en solution suite à l'ajout de nanoparticules. Les effets des nanoparticules sur les micro-organismes est plus facile à observer au cours de la phase de croissance exponentielle, quand les bactéries et les levures se développent avec un taux de croissance maximal et constant. Si elles se trouvent dans un milieu qui contient les nanoparticules, la densité bactérienne décroîtra avec le temps. Les nanoparticules peuvent arrêter la croissance des microbes (effet biostatique) ou les tuer (effet biocide). Ces tests, faciles à effectuer, sont employés pour déterminer la concentration minimale des nanoparticules nécessaire à éliminer les microbes, l'effet de leurs tailles et formes sur l'activité antimicrobienne, la spécificité vis-à-vis de souche de bactéries ou champignons, ainsi que pour élucider le mécanisme d'action.

1.8.1. Principe de la méthode :

Un disque de papier buvard stérile de 6 mm de diamètre imprégné du produit à tester est placé sur une gélose (4 mm d'épaisseur ; dans des boîtes de Pétri de 90 mm de diamètre) préalablement inoculée avec la souche. A 37°C et après une incubation de 24 heures, le produit diffuse radialement du disque dans la gélose en formant ainsi un gradient de concentration. Si le produit est toxique pour la souche, il se forme un halo ou une zone autour du disque. Plus grande est cette zone, plus la souche est sensible. Des disques témoins (eau distillée stérile) et des disques de comparaison (antibiotique) sont inclus dans les essais.

1.9. Chélation du fer ferreux :

La chélation de fer des composés testés a été déterminée par la méthode de <u>Decker</u> et Welch **[18]**. Elle est basée sur l'inhibition de la formation des complexes Fe-Ferrozine. L'évaluation de la chélation du fer se fait par l'utilisation du ferrozine pour la formation des complexes avec le fer résiduel dans le milieu réactionnel à une absorbance à 593 nm.

1.9.1. Mode opératoire :

Réactif utilisé : FeCl₂, ferrozine et EDTA

Solution (S1) : on prépare une solution aqueuse (100ml) de concentration 0,002 mol/l de FeCl₂. 2H₂O

Solution (S2) : on prépare une solution aqueuse (10ml) de concentration 0,05 mol/l de ferrozine

Un volume de 40 μ L de méthanol est ajouté à un volume de 40 μ L du composé synthétisé et de 40 μ L de (**S1**), puis un volume de 80 μ L de la solution (**S2**) est ajouté au mélange. Le tout est incubé pendant 10 minutes à température ambiante. La lecture des absorbances est réalisée à l'aide d'un spectrophotomètre UV-visible à 593 nm. On utilise une solution de FeCl₂, ferrozine et l'EDTA comme standard. Le pourcentage de chélation du fer est déterminé par la formule suivante.

% de chélation de fer =
$$\frac{(A_s - A_c)}{A_c} * 100$$

 A_S : Absorbance de la solution standard. A_C : Absorbance de la solution de l'échantillon.

Bibliographie :

[1]: A. Boukhari, (2001). Spectroscopie, rappels de cours, exercices et problèmes corrigés.Publications de l'université Badji Mokhtar- Annaba.

- [2]: A. Edwards and B. Alexander, (2010). Encyclopedia of Spectroscopy and Spectrometry.
- [3]: Bruker. (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- [4]: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C., Burla, G. Polidori and M. J. Camalli, Appl. Cryst. 27(1994) 435.
- [5]: G. M. Sheldrick, Acta Cryst. A64 (2008) 112–122.
- [6]: L. J. J. Farrugia, Appl. Cryst. 45(2012) 849–854.
- [7]: C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R., Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek & P. A. Wood, J. Appl. Cryst. 41(2008) 466-470].

[8]: K. Brandenburg, (2006). Diamond. Crystal Impact GbR, Bonn, Germany.

[9]: H.H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464-1468.

[10]: A.W. Coats and J.P. Redfern, Nature, 68 201 (1964) 68-69.

[11]: S. D. Manning, M. D. B. Hilary and D. Heymann, (2010). Escherichia Coli Infections Chelsea House Pub.

[12]: H. C. Berg, (2004). E. coli in Motion New York: Springer-Verlag.

[13]: R. Rappuoli, (2017). Staphylococcus aureus: Microbiology, Pathology, Immunology, Therapy and Prophylaxis Springer International Publishing.

[14]: L. Freeman-Cook and K. D. Freeman-Cook, (2006). Staphylococcus Aureus Infections Chelsea House Publishers.

[15]: A. Fetsch, (2017). Staphylococcus aureus London: Academic Press.

[16]: M. Campa, M. Bendinelli and H. Friedman, (2019). SERBIULA (Sistema Librum 2.0).

[17]: J.L. Ramos, (2004). Pseudomonas: Volume 1 Genomics, Life Style and Molecular Architecture Springer US.

[18]: E.A. Decker and B. Welch, Journal of Agriculture and Food Chemistry, 38(1990) 674-677.

Chapitre 2 : synthèse et caractérisation structurale de complexes à base de benzothiazole

Ce chapitre concerne les composés hybrides et de coordination à base de benzothiazole. Un composé hybride est un système qui présente deux composantes, l'une organique et l'autre inorganique, mélangées à l'échelle moléculaire. Trois composés hybrides et trois complexes de coordination à base de benzothiazole ont été synthétisés et caractérisés aux rayons X sur monocristal.

Dans ce travail, nous présentons la synthèse et l'étude structurale de deux composés hybrides à base d'étain et un avec l'antimoine et trois complexes de coordination avec le zinc et le cuivre.

2.1. Etude structurale du composé ${[Sb_2Cl_6O] (C_7H_6NS)_2}_n$ noté (1)

2.1.1. Synthèse :

Le composé { $[Sb_2Cl_6O]$ (C_7H_6NS)₂ $]_n$ noté (1) nommé *catena*-poly[bis(1,3-benzothiazol-3ium)[[dichloridoantimonate(III)]-di-1-chlorido-1-oxido-[dichloridoantimonate(III)]-1-chlorido]] a été synthétisé à partir d'une solution aqueuse de chlorure d'antimoine SbCl₃ (45.6 mg, 0.2mmol) avec une solution éthanoïque de benezothiazole (0.5 ml, 4.6 mmol). Le mélange réactionnel est porté à reflux sous agitation continue pendant 3h. La solution résultante a été laissée au repos à la température ambiante. Des cristaux incolores ont été obtenus après quelques jours.

Schéma réactionnel du composé (1).

2.1.2. Caractérisation structurale au RX sur monocristal :

L'unité asymétrique du complexe (1) est composée d'une partie anionique : tri- μ -chlorido- μ -oxido-diantimonate et d'une partie cationique formée de deux cations benzothiazolium (figure 1.1). Le composé cristallise dans le système monoclinique, groupe d'espace P2₁/c (tableau 1.1).

Empirical formula, weight(g/mol)	Sb ₂ C ₁₄ H ₁₂ Cl ₆ N ₂ OS ₂ , 744.58
Crystal system, Space group, Z	Monoclinic, P2 ₁ /n, 4
a, b, c (Å)	10.2826(2), 16.2448(3), 14.9849(3)
β(°)	111.674(1)
$V(Å^3)$	2326.09(8)
$d_{calc}(g/cm^3), \mu(mm^{-1})$	2.126, 3.20
F(000)	1416
Crystal size(mm ³), colour	$0.17 \times 0.13 \times 0.11$, colourless
20 range for data collection (°)	5.834 to 56.948
Limites h, k, l	-11 <h<13, -19<k<21,="" -19<l<18<="" td=""></h<13,>
Reflections collected, independent, $[I > 2\sigma(I)]$	20349, 5344, 4627
R _{int}	0.026
R, Rw, S	0.022, 0.05, 1.02
Data, restraints, parameters	5344, 0, 244
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.54, -0.77

Tableau 1.1 : Données cristallographiques et conditions d'enregistrement et d'affinement.

Figure 1.1 : Unité asymétrique du composé (1).

La moitié inorganique peut être décrite comme un enchainement unidimensionnel de deux types de polyèdres de Sb. Dans le premier polyèdre, l'atome Sb1 a une géométrie pyramidale à base carrée. Quatre atomes de chlore (Cl₃, Cl₄, Cl₅ et Cl₆) forment la base carrée et un atome d'oxygène O1 occupe la position apicale. L'atome Sb1 se trouve à 0.3011(2) Å de la base du polyèdre du côté opposé du sommet. Dans le deuxième polyèdre, l'atome d'oxygène O1 occupe la position apicale et les quatre atomes de chlore (Cl1, Cl2, Cl5, Cl6) forment le plan équatorial avec l'atome Sb2 se trouvant à 0.4168 (1) Å au-dessous du plan. La géométrie de l'atome Sb2 peut être décrite comme un octaèdre déformé (figure 1.2). En effet, une sixième coordination est observée à une distance plus longue. L'atome Sb2 coordinne avec l'atome Cl3ⁱ adjacent à une distance égale à 3.546 (4) Å [code de symétrie : (i) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$]. Cette distance est significativement plus courte que la somme des rayons de Van der Waals (r_{sb}=2.01 Å, r_{Cl}=1.91 Å) et en bon accord avec ce qui a été mentionné dans la littérature [1, 2]. Dans cette molécule l'angle entre les deux plans équatoriaux est 75.86(2)°. Les distances de pont Sb-O sont 1.9404 (16) et 1.9464(17) Å (tableau 1.2). Ces valeurs sont comparables à celles trouvées dans le composé Sb₂Cl₂O₂ [3-5]. A l'exception de la longue liaison (Sb2-Cl3ⁱ), les liaisons Sb-Cl de terminaison sont comprises entre 2.3974(8) et 2.4982(8) Å et sont plus courtes que celles des ponts [2.7522(8) - 3.3244(9) Å] et sont similaires aux liaisons de même type dans le composé C₂₆H₂₈N₈O₆Sb₄Cl₁₀ [3,6]. Cependant, l'angle Sb-O-Sb est différent de ceux dans les composés $Cs_2Sb_2O_2(OH)_8$ [7] et $Sb_2Cl_6O_2$ [3] (tableau 1.3). Les molécules de benzothiazole sont quasiment planes.

Figure 1.2 : Environnement de l'atome d'antimoine.

Atom	Atom	Length/Å
Sb1	01	1.9404 (16)
Sb1	Cl3	2.4982 (8)
Sb1	Cl4	2.4545 (7)
Sb1	C15	2.7522 (8)
Sb1	Cl6	2.9524 (8)

Atom	Atom	Length/Å
Sb2	01	1.9460 (17)
Sb2	Cl1	2.3974 (8)
Sb2	Cl2	2.4081 (7)
Sb2	Cl6	3.3244 (9)
Sb2	Cl5	3.0473 (8)

Tableau 1.2: Quelques liaisons choisies.

Tableau 1.3 : Quelques angles de liaisons choisis.

Atom	Atom	Atom	Angle (°)
01	Sb1	Cl4	88.74 (6)
01	Sb1	Cl6	78.52 (6)
Cl5	Sb1	Cl6	82.88 (2)
Cl3	Sb1	Cl6	92.87 (2)
Cl4	Sb1	Cl6	166.56 (3)
Cl3	Sb1	Cl5	166.17 (3)

Atom	Atom	Atom	Angle (°)
01	Sb2	Cl5	73.22 (5)
01	Sb2	Cl1	91.07 (6)
01	Sb2	Cl6	69.00 (6)
Cl1	Sb2	Cl2	91.64 (3)
Cl5	Sb2	Cl6	72.59 (2)
Cl1	Sb2	Cl5	93.65 (2)
Cl1	Sb2	Cl6	158.15 (3)
Cl2	Sb2	C15	161.21 (2)

La cohésion du cristal est assurée par des liaisons hydrogènes (tableau 1.4). Les entités cationiques et anioniques sont liées les unes aux autres à travers des interactions intermoléculaires de type N–H…Cl, C–H…Cl et C–H…O faisant intervenir des atomes d'azote et de carbone du cation benzothiazolium d'une part et des atomes de chlores et d'oxygène d'un anion d'autre part, ces interactions ont permis la génération d'un réseau tridimensionnel (figure 1.3).

Des interactions π - π existent entre les cycles de benzothiazolium (Cg1-Cg1, Cg1-Cg2). En effet, des interactions Cg1-Cg2 à 3.711 (18) Å sont observées entre les cycles benzéniques (C9-C10-C11-C12-C13-C14) et les cycles thiazoles (C8-S2-C9-C14-N2) du benzothiazole. Aussi, des interactions Cg1-Cg1 sont constatées entre les cycles benzéniques (C2-C3-C4-C5-C6-C7) voisins à une distance de 3.8452 (16) Å.

D–H…A	D-H	Н…А	D····A	D–H…A
N1—H1N·····Cl6 ⁱ	0.86	2.37	3.200 (3)	162
N2—H2N······Cl6 ⁱⁱ	0.86	2.35	3.145 (3)	153
C1—H1·····O1	0.93	2.27	3.152 (4)	159
C8—H8·····Cl5 ⁱⁱⁱ	0.93	2.72	3.327 (3)	124
C10—H10······Cl3 ^{iv}	0.93	2.78	3.612 (3)	150
C13—H13······Cl2 ⁱⁱ	0.93	2.76	3.524 (3)	140

Tableau 1.4 : Liaisons hydrogènes dans le composé (1).

Codes de symétrie : ⁱ -x, y-1/2, -z+3/2 ; ⁱⁱ -x+1, y-1/2, -z+3/2 ; ⁱⁱⁱ x+1, y, z ; ^{iv} x, -y+1/2, z-1/2

Figure 1.3 : Interactions de type N-H…Cl, C-H…Cl et C-H…O.

2.2. Etude structurale du composé {[SnCl₆].3(C₇H₅NS).2(C₇H₆NS)} noté (2)

2.2.1. Synthèse :

Le bisbenzothiazolium tribenzothiazole hexacholoridostannate(IV) de formule générale $C_{35}H_{27}Cl_6N_5S_5Sn$ noté (2) a été synthétisé à partir des solutions éthanoïques de chlorure d'étain SnCl₄.2H₂O et du benzothiazole de la même manière de synthèse du composé (1). Des cristaux incolores ont été obtenus après quelques jours.

Schéma réactionnel du composé (2).

2.2.2. Caractérisation structurale au RX sur monocristal :

Les structures (2) jusqu'à (6) de ce chapitre ont été déterminées en utilisant la suite Olex2 [8], résolues avec le programme de résolution structurale olex2.solve [9] à l'aide de (charge flipping) et affinées avec le package d'affinement ShelXL [10] par la méthode de minimisation des moindres carrés sur les facteurs de structure. Le tableau 2.1 donne les caractéristiques cristallographiques, conditions d'enregistrement et d'affinement du composé (2).

Tableau 2.1: Données cristallographiques et conditions d'enregistrement et d'affinement.

Empirical formula, weight(g/mol)	SnC ₃₅ H ₂₇ Cl ₆ N ₅ S ₅ , 504.65
Crystal system, Space group, Z	Triclinic, P-1, 2
a, b, c (Å)	8.4898(14), 10.3362(17), 11.8830(2)
α, β, γ (°)	81.904 (1), 76.000(1), 81.466 (1)
$V(A^3)$	994.6(3)
$d_{calc} (g/cm^3), \mu(mm^{-1})$	1.685, 1.343
F(000)	504
Crystal size (mm ³), colour	$0.15 \times 0.07 \times 0.03$, colourless
2Θ range for data collection (°)	5.426 to 50.306
Limites h, k, l	-10 <h<10, -12<k<12,="" -14<l<14<="" td=""></h<10,>
Reflections collected, independent	8748, 3495
R _{int}	0.0186
R, Rw, S	0.0210, 0.0498, 1.010
Data, restraints, parameters	3495, 0, 235
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.54, -0.41

Le composé (2) cristallise dans le triclinique P-1. La maille élémentaire contient un groupement $[SnCl_6]$ et cinq molécules du ligand dont deux benzothiazolium (figure 2.1).

Figure 2.1: Projection de la maille du composé (2) sur le plan (010).

Dans l'entité inorganique [SnCl₆]⁻², le métal est localisé sur un centre d'inversion. Sa géométrie de coordination est octaédrique légèrement déformée. Les liaisons Sn-Cl sont comprises entre 2.4258(7) et 2.4382(7) Å. Les angles Cl-Sn-Cl non linéaires sont compris entre 89.83(2) et 92.10(2). Ces valeurs sont très proches de ceux trouvées dans la littérature [11-14]. Les distances C-N et C-S et les angles C-N-C et C-S-C (tableau 2.2 et 2.3) sont proches de celles de la littérature [15-18].

Les entités organiques sont quasiment planes et la distance entre deux plans parallèles de deux molécules de même type est égale à 3.388Å. Les plans moyens des molécules de benzothiazolium, benzothiazole et benzothiazole désordonnés font des angles de 80.12, 74.38 et 53.54° . Les figures 2.2, 2.3 et 2.4 montrent la disposition des octaèdres [SnCl₆]⁻² dans le réseau cristallin.

Figure 2.2: Projection de la structure (2) sur le plan (001).

Figure 2.3: Projection de la structure (2) sur le plan (010).

Figure 2.4: Projection de la structure (2) sur le plan (100).

Dans le composé (2), la cohésion entre les entités anioniques et cationiques est assurée par des interactions intermoléculaires de type hydrogène N-H····N et C-H...Cl (tableau 2.2). Les interactions N-H···N font intervenir l'azote du cycle thiazole de la molécule benzothiazole d'une part et l'azote du cycle thiazole du cation benzothiazolium d'autre part (figure 2.5). Les interactions anion-cation sont de type C-H····Cl, elles sont observées entre les atomes de carbone du benzothiazolium d'une part et les atomes de chlore d'un anion d'autre part.

D'autres interactions intermoléculaires de type π - π sont observées entre les cycles phényle, thiazole et benzothiazole (*Cg*1-*Cg*2, *Cg*2-*Cg*2, *Cg*2-*Cg*3) (tableau 2.3). Des interactions de type π - π sont observées entre les différents cycles du benzothiazolium. Une autre interaction intermoléculaire de type C–H··· π est observée encore entre le cycle benzénique du benzothiazole (*Cg*2) et l'atome d'hydrogène d'un cycle benzénique du cation benzothiazolium à une distance égale 2.821 Å.

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
N21-H21···N11	0.86	1.81	2.671(3)	173.7
C25-H25Cl1 ⁱ	0.93	2.79	3.573(2)	142.2
C27-H27Cl3 ⁱⁱ	0.93	2.68	3.583(3)	163.2

 Tableau 2.2: Liaisons hydrogènes dans le composé (2).

Codes de symétrie : i x+1, y-1, z; ii x+1, y, z.

Tableau 2.3 : Les interactions de type π - π et C-H··· π .

Interactions π - π du benzothiazole (Å)		Distance π - π du benzothiazolium (Å)	
Cg1-Cg2	3.654	Cg1-Cg2	4.183
Cg2-Cg2	3.679	Cg2-Cg2	3.652
Cg2-Cg3	3.499	Cg2-Cg3	3.737
		Cg3-Cg3	4.058

Figure 2.5: Interactions C-H···Cl et N-H...N dans le composé (2).

2.3. Etude structurale du composé {[SnCl₆].2(C₇H₆NS).2H₂O} noté (3)

2.3.1. Synthèse :

Le composé (**3**) de formule { $[SnCl_6].2(C_7H_6NS).2H_2O$ } nommé bisbenzothiazoliumhexa choloridostannate(IV) dihydrate est incolore. Il a été synthétisé comme (**1**) et (**2**) en utilisant une solution éthanoïque de chlorure d'étain dihydraté $SnCl_4.2H_2O$ (0.5 ml, 4.4 mmol) avec une solution éthanol/eau de benzothiazole (1.0 ml, 9.2 mmol).

Schéma réactionnel du composé (3).

2.3.2. Caractérisation structurale au RX sur monocristal :

La structure a été déterminée en utilisant la suite Olex2 [8], résolue avec le programme de résolution structurale olex2.solve [9] à l'aide (charge flipping) et affinée avec le package d'affinement ShelXL [10] par la méthode de minimisation des moindres carrés sur les facteurs de structure. Les données cristallographiques, conditions d'enregistrement et les conditions d'affinement sont rassemblées dans le tableau 3.1.

Tableau 3.1 : Données cristallographiques et conditions d'enregistrement et d'affinement.

Empirical formula, weight(g/mol)	$SnC_{14}H_{16}Cl_6N_2O_2S_2$, 639.80
Crystal system, Space group, Z	Triclinic, P-1, 2
a, b, c (Å)	7.1720(4), 8.3671(4), 10.3756(5)
α, β, γ (°)	92.4780(2), 109.8530(2), 99.8660(2)
$V(A^3)$	573.50(5)
d_{calc} (g/cm ³), μ (mm ⁻¹)	1.853, 2.008
F(000)	314
Crystal size(mm ³), colour	$0.5 \times 0.13 \times 0.3$, colourless
2Θ range for data collection (°)	6.112 to 54.866
Limites h, k, l	-9 <h<9, -10<k<10,="" -13<l<13<="" td=""></h<9,>

Reflections collected, independent	9393, 2577
R _{int}	0.0281
R, Rw, S	0.0321, 0.0526, 1.036
Data, restraints, parameters	2577, 3, 132
° _2	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ A}^{-5})$	0.35, -0.33

Le complexe hybride (**3**) est composé d'une partie anionique hexacholoridostannate (IV) $[SnCl_6]^{-2}$, une partie cationique de deux benzothiazolium et deux molécules d'eau (figure 3.1).

Figure 3.1: Représentation ORTEP du composé (3).

La moitié inorganique $[SnCl_6]^{-2}$ est formée d'un cation Sn⁺⁴ localisé sur un centre d'inversion. La géométrie de l'étain est octaédrique légèrement déformée. Les octaèdres $[SnCl_6]$ sont isolés (figure 3.2). Au sein de ce polyèdre de coordination, les longueurs de liaison Sn-Cl sont comprises entre 2.4243(6) et 2.4426(8) Å. Les angles Cl-Sn-Cl non linéaires quasiment droits et sont compris entre 89.46 (0.02)° et 90.08 (0.02)° et sont en bon accord avec ceux de la littérature [11-14,19]. La molécule organique est plane. La plus grande déviation par rapport au plan moyen de la molécule est de 0.016 Å pour l'atome de soufre. Les projections de la structure sur les plans cristallographiques (001), (010) et (001) montre que la structure est formée de couches alternées d'entités inorganiques [SnCl₆] et des molécules de benzothiazolium et d'eaux (figures 3.2, 3.3 et 3.4). Les molécules organiques sont parallèles les unes aux autres et d'orientations opposées.

Figure 3.2: Projection de la structure (3) sur le plan (010).

Figure 3.3: Projection de la structure (3) sur le plan (001).

Figure 3.4: Projection de la structure (3) sur le plan (100).

Dans le composé, l'eau joue un rôle important dans la stabilité du composé. Les molécules d'eau sont liées aux molécules organiques par des interactions O1...H1-N1 et O1...H7-C7, et liées avec les entités inorganiques [SnCl₆] via les interactions O1-H1w... Cl1 et O1-H2w... Cl3. De plus, la cohésion du cristal est renforcée par les interactions C-H...Cl. Ces interactions génèrent des cycles de type $R^2_1(4)$ et $R^2_3(8)$ (figure 3.5). Les longueurs et les angles des liaisons hydrogènes sont reportés dans le tableau 3.2.

D-HA	D-H (Å)	HA (Å)	D-A (Å)	D-HA (°)
N1-H101 ¹	0.88	1.82	2.691(3)	172.9
C2-H2Cl3 ²	0.95	2.97	3.745(3)	139.3
C5-H5Cl1 ³	0.95	2.85	3.631(3)	140.0
C5-H5Cl2 ³	0.95	2.89	3.626(3)	135.1
C7-H7Cl2	0.95	2.81	3.367(3)	118.1
C7-H7O1 ⁴	0.95	2.50	3.240(3)	134.4

Tableau 3.2 : Liaisons hydrogènes (Å, °) *dans le composé* (3).

01-H1ACl3 ⁵	0.859(18)	2.596(19)	3.451(3)	174(5)
O1-H1BCl1	0.867(19)	2.73(2)	3.589(3)	172(5)

Codes de symétrie : ¹ x,1+y,+z; ² 1+x,1+y,+z; ³ 1-x,1-y,-z; ⁴ 2-x,1-y,1-z; ⁵ 1+x,+y,+z

Figure 3.5 : Liaisons hydrogènes dans le composé (3).

2.4. Etude structurale du composé [Zn(NO₃)₂(C₇H₅NS)₂] noté (4)

2.4.1. Synthèse :

Le composé bis(benzothiazole)-bis(nitrato-O)zinc(II) de formule $[Zn(NO_3)_2(C_7H_5NS)_2]$ noté (**4**) a été synthétisé à partir d'une solution éthanoïque de nitrate de zinc $(Zn(NO_3)_2.6H_2O)$ (0.5 ml, 4.4 mmol) avec du benezothiazole (1.0 ml, 9.2 mmol). Le mélange réactionnel est porté à reflux sous agitation continue pendant 3h. La solution résultante a été laissée au repos à la température ambiante. Des cristaux incolores ont été obtenus après quelques jours.

Schéma réactionnel du composé (4).

2.4.2. Caractérisation structurale au RX sur monocristal :

Les données cristallographiques, conditions d'enregistrement et les conditions d'affinement sont rassemblées dans le tableau 4.1. Les coordonnées atomiques, les facteurs

d'agitations thermiques anisotropes, les distances interatomiques, les angles, les liaisons et les angles de torsion sont consignés en annexe (4).

Figure 4.1: Molécule du composé (4).

Le composé (4) cristallise dans le triclinique P-1. Le cation métallique Zn^{+2} est coordinné à quatre atomes, deux atomes d'azote de deux benzothiazoles et deux atomes d'oxygène de deux nitrates (figure 4.1).

 Tableau 4.1 : Données cristallographiques et conditions d'enregistrement et d'affinement.

Empirical formula, weight(g/mol)	$ZnC_{14}H_{10}N_4O_6S_2$, 459.75
Crystal system, Space group, Z	Triclinic, P-1, 2
a, b, c (Å)	7.7326(2), 7.9420(2), 15.3539(3)
α, β, γ (°)	85.1620(10), 89.1050(10), 67.9530(10)
$V(Å^3)$	870.72(4)
d_{calc} (g/cm ³), μ (mm ⁻¹)	1.754, 1.692
F(000)	464
Crystal size(mm ³), colour	$0.3 \times 0.2 \times 0.04$, colorless
20 range for data collection (°)	6.6698 to 53.986
Limites h, k, l	-9 <h<9, -10<k<10,="" -19<l<19<="" td=""></h<9,>
Reflections collected, independent	22243, 3763
R _{int}	0.0147
R, Rw, S	0.0281, 0.0691, 1.049
Data, restraints, parameters	3763, 0, 244
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.47, -0.22

Le zinc adopte une géométrie tétraédrique légèrement déformée. Les deux liaisons Zn – O sont 1.9788(15) et 1.9941(14) Å légèrement inférieures aux liaisons Zn-N (Zn-N2 = 2.0447(15) Å, Zn – N1 = 2.0291(16) Å). Les angles autour de Zn sont compris entre 95.31(6)° et 129.59(6)°. Ces valeurs sont en bon accord avec d'autres composés similaires [20-23].

A grande distance, deux interactions Zn····O sont observées à 2.592 (Zn-O6) et 2.707 Å (Zn-O3). Ce type d'interactions a été observé dans d'autres complexes comme dans $C_{20}H_{22}N_6O_8Zn$ [24], $C_{22}H_{30}N_6O_7Zn$, CH_2Cl_2 , 0.5(H₂O) [25] et $C_{12}H_{18}N_8O_8Zn$ [26]. Les deux molécules organiques sont quasiment planes et font un angle dièdre de 84.41°. Le métal est presque dans le plan de la molécule C1, C2, ..., C7 (0.011 Å) et s'éloigne de 0.318 Å du plan de l'autre molécule.

Dans le composé (**4**) la cohésion entre les molécules est assurée par des interactions intra et intermoléculaires de type hydrogène, ces ponts impliquent des contacts de type C-H…O et forment des cycles de type $R^{2}_{1}(4)$, $R^{1}_{1}(8)$ et $R^{2}_{2}(18)$ (figure 4.2). Les longueurs des liaisons et les angles des liaisons hydrogènes sont reportés dans le tableau 4.2. Ce nombre important d'interactions engendre une structure tridimensionnelle (figure 4.3, 4.4).

D	Н	А	d(D-H)/Å	d(HA)/Å	d(D-A)/Å	D-H-A/°
C1	H1	$O5^1$	0.93	2.48	3.083(2)	123.0
C4	H4	$O6^2$	0.93	2.62	3.342(3)	135.1
C9	H9	O3	0.93	2.47	3.361(3)	159.4
C14	H14	O3 ³	0.93	2.56	3.229(3)	129.5
C14	H14	$O4^3$	0.93	2.61	3.349(3)	136.9

 Tableau 4.2: Liaisons hydrogènes dans le composé (4)

Codes de symétrie: ¹-1+x,+y,+z; ²2-x,1-y,2-z; ³+x,-1+y,+z

Figure 4.2 : Les cycles des liaisons hydrogènes de type C-H…O selon le plan (b, c).

Figure 4.3 : Projection de la structure du composé (4) sur le plan (010).

Figure 4.4 : Projection de la structure du composé (4) sur le plan (001).

Les interactions intermoléculaires ont été étudiées quantitativement et visualisées avec Crystal Explorer17.5 [27]. Les tracés d_{norm} , courbes et 2D fingerprint [28] sont représentés dans la figure 4.5. Les taches rouges sur la surface de Hirshfeld [29] représentent les contacts H····O tandis que les régions bleues correspondent à des interactions faibles telles que les contacts H···S. Les interactions O···H (37.7 %), H···H (15.6%), H···C (9%) et H···S (8.9%) sont les principaux facteurs dans l'adhésion du cristal avec la contribution de C···S (5.7%), suivie de C···C (5.3%) et O···C (5.3%) et N···H/H···N (2.8%).

Figure 4.5 : Surface de Hirshfeld tracée sur d_{norm} et empreintes des interactions hydrogènes du composé (4).

2.5. Etude structurale du composé [ZnCl₂(C₇H₅NS)₂] noté (5)

2.5.1. Synthèse :

Le composé dichloro-bis(benzothiazole)zincat(II) de formule $[ZnCl_2(C_7H_5NS)_2]$ noté (5) a été synthétisé comme précédemment en utilisant ($ZnCl_2.6H_2O$) (4.4 mmol) et benzothiazole (9.2 mmol). Ce composé cristallise dans le monoclinique, C2/c (tableau 5.1).

Schéma réactionnel du composé (5).

2.5.2. Caractérisation structurale au RX sur monocristal :

Tableau 5.1 : Données cristallographiques et conditions d'enregistrement et d'affinement.

ZnC ₁₄ H ₁₀ Cl ₂ N ₂ S ₂ , 203.31
Monoclinic, C2/c, 8
7.9240(12), 12.9510(2), 15.0140(2)
90.6240(2)
1540.6(4)
1.753, 2.203
816
$0.2 \times 0.09 \times 0.04$, colorless
6.028 to 53.994
-10 <h<7, -16<k<15,="" -19<l<18<="" td=""></h<7,>
4836, 1689
0.0595
0.0322, 0.0658, 1.013
1689, 0, 96
0.31, -0.41

Le cation métallique est lié à deux atomes N de deux benzothiazoles et deux Cl (figure 5.1). Le zinc adopte une géométrie tétraédrique légèrement déformée. Le zinc est situé sur un centre d'inversion. Les deux liaisons Zn–Cl sont identiques et égales 2.2240(6) Å et sont

légèrement supérieures aux deux liaisons Zn-N. Les angles autour du zinc sont compris entre 104.97(5) et 116.19(3)°. Ces valeurs sont en bon accord avec d'autres composés similaires [20-23].

Figure 5.1 : Molécule du complexe de coordination (5).

La molécule du benzothiazole est plane et le Zinc est presque dans ce plan.

Dans le composé (5), la cohésion entre les entités est assurée par des interactions intramoléculaires de type hydrogène, ces ponts impliquent des contacts de type C—H…Cl (tableau 5.2 et figures 5.2, 5.3, 5,4). Ces interactions assurent la stabilité du cristal et génèrent une structure 3D.

Tableau 5.2: Liaisons hydrogènes dans le composé (5).

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C7	H7	Cl1 ¹	0.93	2.73	3.403(3)	130.2
C2	H2	Cl1	0.93	2.90	3.659(3)	139.9
C5	H5	Cl1 ²	0.93	2.90	3.773(3)	156.2

¹ 1/2+x,-1/2+y,+z; ² 1/2+x,1/2-y,-1/2+z

D'autres interactions intermoléculaires de type π - π sont observées entre les cycles du benzène, thiazole et benzothiazole (*Cg*1-*Cg*1, *Cg*1-*Cg*2, *Cg*3-*Cg*3) (figure 5.5).

De plus, la structure du composé (5) est poreuse, elle présente trois tunnels le long de l'axe \vec{c} . Les dimensions de ces tunnels sont 3.325, 3.616 et 4.876 Å (figure 5.6).

Figure 5.2 : Projection de la structure du composé (5) sur le plan (100).

Figure 5.3 : Projection de la structure du composé (5) sur le plan (010).

Figure 5.4 : Projection de la structure du composé (5) sur le plan (001).

Figure 5.5: Les interactions intermoléculaires de type π - π dans le composé (5).

Figure 5.6: Structure poreuse : tunnels parallèles à l'axe c.

L'étude quantitativement des interactions intermoléculaires et visualisées avec Crystal Explorer17.5 (figure 5.7) montre que les interactions Cl…H (30.1 %), H…H (23%) et H…S (15%) sont les principaux facteurs dans l'adhésion du cristal avec la contribution de C…C (10%), suivie de C…H (9.6%) et S…C (5.3%). Les taches rouges sur la surface de Hirshfeld représentent les contacts H…Cl tandis que les régions bleues correspondent à des interactions faibles telles que les contacts H…N.

Figure 5.7: Surface de Hirshfeld tracée sur d_{norm} et empreintes des interactions hydrogènes du composé (5).

2.6. Etude structurale du composé {[Cu(CH₃CO₂)₂(C₇H₅NS)](C₇H₅NS)} noté (6)

2.6.1. Synthèse :

Le composé bis-(benzothiazole-N)-tétrakis(μ_2 -atétato-O)-di-copper(II)bis-(benzothiazole) de formule {[Cu(CH₃CO₂)₂ (C₇H₅NS)](C₇H₅NS)} noté (**6**) a été synthétisé à partir d'une solution éthanoïque d'acétate de cuivre (0.5 ml, 4.4 mmol) et du benezothiazole (1.0 ml, 9.2 mmol) selon la méthode de synthèse habituelle. Des cristaux verts ont été obtenus après quelques jours.

Schéma réactionnel du composé (6).

2.6.2. Caractérisation structurale au RX sur monocristal :

Les données cristallographiques, conditions d'enregistrement et d'affinement sont rassemblées dans le tableau 6.1. Les coordonnées atomiques, les facteurs d'agitations thermiques anisotropes, les distances interatomiques, les angles, les liaisons et les angles de torsion sont consignés en annexe (6).

Tableau 6.1 : Données cristallographiques et conditions d'enregistrement et d'affinement.

Empirical formula, weight(g/mol)	CuC ₁₈ H ₁₆ N ₂ O ₄ S ₂ , 451.99
Crystal system, Space group, Z	Monoclinic, $P2_1/c$, 4
a, b, c (Å)	16.5799(4), 13.6009(3), 8.6697(2)
β (°)	99.3850(10)
$V(Å^3)$	1928.86(8)
$d_{calc} (g/cm^3), \mu(mm^{-1})$	1.556, 1.375
F(000)	924.0
Temperature (K)	150
Crystal size(mm ³), colour	$0.17 \times 0.13 \times 0.11$, green
2Θ range for data collection (°)	4.980 - 55.998
Limites h, k, l	-21 <h<21, -11<l<11<="" -17<k<17,="" td=""></h<21,>
Reflections collected, independent	42567, 4644
R _{int}	0.0302
R, Rw, S	0.0354, 0.0641, 1.044
Data, restraints, parameters	4644, 0, 246
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.34, -0.24

La figure 6.1 montre la molécule du composé (6). Dans le composé, la moitié des molécules de benzothiazole sont coordinées au cuivre. Les deux atomes de cuivre Cu1et Cu1ⁱ, (code de symétrie (i) 1-x, 1-y, -z) sont liés à quatre molécules d'acétates. Ce ligand adopte un

mode de coordination (O1-C1-O2) par le biais de deux atomes d'oxygène liés aux deux centres métalliques Cu1 et Cu1ⁱ (mode de coordination bidentate pontant syn-syn). Ce mode de coordination est très fréquent lorsque le ligand est un acétate ou acide carboxylique comme dans la structure de Cu₂(CH₃COO)₄(urea)₂ [**30**], (C₆H₁₁N₂)₂[Cu₂(C₂H₃O₂)₄Cl₂] [**31**] et les complexes [Cu₂(RCOO)₄(caf)₂] [**32**].

La distance Cu···Cu1ⁱ est de 2.9364(3)Å. Les atomes de cuivre adoptent une géométrie pyramidale à base carrée avec une valeur d'orthogonalité $\tau = 0.376$ [33] et les atomes N1, N1ⁱ occupent les sommets des deux pyramides. Les quatre liaisons Cu–O sont presque identiques et proches de 2.037 Å et la liaison Cu-N est de 2.0625(13) Å. Les angles autour du zinc sont compris entre 75.96(4)° et 99.72(5)°. Ces valeurs sont en bon accord avec d'autres composés similaires [Cu₂(C₁₉H₂₃N₇O)(C₂H₃O₂)₄]_n [34] et [Cu₂(C₂H₃O₂)₄(C₃H₅N₃S₂)₂] [35].

Figure 6.1 : Molécule du composé (6).

Les deux molécules de benzothiazole coordinnées avec les deux atomes de cuivre symétriques sont coplanaires, aussi les acétates avec les deux Cu. Cette plarinité est assurée par des interactions intramoléculaires de type $R^{1}_{1}(5)$ et $R^{1}_{1}(6)$ (figure 6.2). Les longueurs des liaisons et les angles des liaisons hydrogènes sont reportés dans le tableau 6.2.

D	Н	А	d(D-H)/Å	d(HA)/Å	d(D-A)/Å	D-HA/°
C17	H17	04	0.95	2.36	2.960(2)	120.7
C12	H12	03	0.95	2.42	3.252(2)	145.9

Tableau 6.2: Liaisons hydrogènes dans le composé (6).

Figure 6.2: Interactions C-H...O intra moléculaire dans le composé (6).

Dans le composé (6), la cohésion entre les entités est assurée par des interactions intermoléculaires π - π : Cg1...S: 3.516, Cg1...Cg1: 4.833, Cg1...H: 3.456 et Cg2...H: 3.03 Å (Cg1 cycle benzénique et Cg2 cycle thiazole) et génèrent un réseau tridimensionnel (figures 6.3, 6.4, 6.5).

Figure 6.3: vue sur le plan (100) des interactions C-H...O dans le composé (6).

Figure 6.4: vue sur le plan (010) des interactions C-H...O dans le composé (6).

Figure 6.5: vue sur le plan (001) des interactions C-H...O dans le composé (6).

Bibliographie:

[1]: A. Razak, H.-K. Fun, B. M. Yamin, K. Chinnakali, H. Zakaria and N. B. Ismail, Acta Cryst. C55(1999) 172–174.

[2]: M. Bujak and R. J. Angel, J. Phys. Chem. B, 110 (2006)10322–10331.

[3]: K. A. Abboud, R. C. Palenik, G. J. Palenik and R. M. Wood, Inorg. Chim. Acta, 360(2007) 3642–3646.

[4]: J. Fan, Acta Cryst. E65(2009), m12.

[5]: M. Y. Reza, M. M. Hossain, M. R. Karim, M. T. H. Tarafdera and D. L. Hughes, Acta Cryst. E66(2010) m116–m117.

[6]: M. O. M. Sghaier, K. Holderna-Natkaniec, P. Czarnecki, A. Wozniak-Braszak and S. Chaabouni, Polyhedron, 79(2014) 37–42.

[7]: A. A. Mikhaylov, E. A. Mel'nik, A.V. Churakov, V. M. Novotortsev, J. A. K. Howard, S. Sladkevich, J. Gun, S. Bharathi, O. Lev, P. V. Prikhodchenko. Inorganica Chimica Acta, 378(2011) 24–29.

[8]: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst. 42(2009) 339-341.

[9]: L. J. Bourhis, O. V. DolomanovR. J. Gildea, J. A. K. Howard and H. Puschmann, Acta Cryst. A71(2015) 59-75.

[10]: G.M. Sheldrick, Acta Cryst. C71(2015) 3-8.

[11]: A. Lemmerer, D. G. Billing and S.A. Reisinger, Acta Cryst. C63(2007) m97-m100.

[12]: S. Bouacida, H. Merazig, A. Beghidja and C. Beghidja, Acta Cryst. E61(2005) m1153-m1155.

[13]: F. Ye and H. Reuter, Acta Cryst, E69(2013) i10.

[14]: T. C. Keng, K. M. Lo and S. W. Ng, Acta Cryst. E67(2011) m659.

[15]: D. Matković-Čalogović, Z. Popović, V. Tralić-Kulenović, L. Racanè and G. Karminski-Zamola, Acta Cryst. C59 (2003) 0190-0191.

[16]: O. Chebout, M. Boudraa, S. Bouacida, H. Merazig and C. Boudaren, Acta Cryst. E72(2016) 212–214.

[17]: H. Bouchareb, S. Benmebarek, S. Bouacida, H. Merazig and M. Boudraa, Acta Cryst. E70(2014) m275.

[18]: K.-K. Zhang, X. Fang, H.-Y. Yu, H. Ke and J.-D. Wang, Acta Cryst. E66(2010) m1700–m1701.

[19]: S. Bouacida, H. Merazig, P. Benard-Rocherulle and C. Rizzoli, Acta Cryst, E63(2007) m379–m381.

[20]: X. Huixia, X. Bingshe, F. Xiaohong, C. Liuqing, W. Hua and H. Yuying, J. Photochemistry and Photobiology A: Chemistry 217(2011) 108–116.

[21]: S. Tripathi, S. K. Sachan and G. Anantharaman, Polyhedron. 119 (2016) 55-70.

[22]: R. Horikoshi, K. Okazawa and T. Mochida, J. Organometallic Chemistry 690(2005) 1793–1799.

[23]: B. Naskar, R. Modak, D.K. Maiti, S.K. Mandal, J.K. Biswas, T.K. Mondal and S. Goswami, Polyhedron, 117(2016) 834-846.

[24]: Q.-X. Liu, Z.-X. Zhao, X.-Jun. Zhao, Z.-Q. Yao, S.-J. Li and X.-G. Wang, Cryst. Growth Des, 11(2011) 4933–4942.

[25]: Z. Shirin, B.S. Hammes, C.R. Warthen and C.J. Carrano, J. Chem. Cryst., 33(2003) 5-6.

[26]: A. Hergold-Brundic, B. Kaitner, B. Kamenar, Inorganica Chimica Acta, 188(1991) 151-158.

[27]: P.R. Spackman, M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, D. Jayatilaka and M.A. Spackman, J. Appl. Cryst. 54 (2021) 1006-1011.

[28]: J.J. McKinnon, D. Jayatilaka and M.A. Spackman, Chem. Commun. (2007) 3814–3816.

[29]: C. Jelsch, K. Ejsmont and L. Huder, IUCrJ 1 (2014) 119–128.

[**30**]: K. M. Sarakinou, C. N. Banti, A. G.Hatzidimitriou, S. K. Hadjikakou, Inorganica Chimica Acta 517 (2021) 120-203.

[**31**]: N. Y. Serov, V. G. Shtyrlin, D. R. Islamov, O. N. Kataev and D. B. Krivolapov, Acta Cryst. E74 (2018) 981–986.

[32]: M. Tašner, D. Mrvoš-Sermek, E. Hajdarpašić, D. Matković-Čalogović, Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 39 (2) (2018) 91–101.

[33]: A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn and G.C. Verschoor J. Chem. Soc., Dalton Trans., (1984) 1349-1356

[34]: M. J. Ayodele, T. C. Green, W. A. C. V. Warsapperuma, M. D. E. Forbes and A. D. Ostrowski, Acta Cryst. E77 (2021) 319–323.

[35]: B. Torambetov, S. Kadirova, T. Toshmurodov, J. M. Ashurov, N. A. Parpiev and A. Ziyaev, Acta Cryst. E75 (2019) 1239–1242.

Chapitre 3 : synthèse et caractérisation de complexes de coordination de la sulfanilamide avec le cuivre

3.0. Caractérisation de la sulfanilamide :

3.0.1. Etude par spectroscopie infrarouge :

La figure A représente le spectre IR de la sulfanilamide. Les bandes observées dans l'intervalle 3476 et 3263 cm⁻¹ sont attribuées aux vibrations d'élongation antisymétriques et symétriques du groupe NH₂ de l'aniline et de la sulfonamide **[1-4]**. Une série de bandes observées entre 3000 et 2850 cm⁻¹ est due aux vibrations d'élongation C-H des cycles aromatiques. Les bandes correspondant aux vibrations δ NH₂ sont vues dans l'intervalle 1620-1565 cm⁻¹. Les vibrations caractéristiques du groupe SO₂ sont situées vers 1320, 1140, 570 et 550 cm⁻¹ **[5]**. La vibration d'élongation v(S-N) présente une bande forte dans le spectre infrarouge à l'environ de 884 cm⁻¹ et les vibrations à 1597 et 1502 cm⁻¹ correspondent à v(cycle) **[6]** (tableau A).

Vibration	Fréquence de vibration				
$\nu_a(NH_2)_{aniline}, \nu_s(NH_2)_{aniline}$	3475, 3371				
$v_s(NH_2)_{sulfa}$	3263				
$\nu(CH)_{aromatic}$	2970				
$\delta_s(NH_2)_{aniline}$	1627				
v(ring)	1597, 1505				
δ(CH)	1340				
$v_a(SO_2)$	1313, 1144				
$\delta(CH) + \delta_r(NH_2)_{aniline} + (S=O)$ bend	1094				
$\nu(SN) + \pi(CH)$	899				
$\pi(CS) + \pi(CN)$	680				
$\omega(NH_2)_{sulfa}$	-				
$\delta_{s}(SO_{2})$	583				
$\pi_{\text{Ring}} + \omega(\text{NH}_2)_{\text{aniline}} + \omega(\text{SO}_2)$	-				
Subscrip t, a: asymmetric; s: symmetric, r: rocking, v : stretching; δ : in-plane;					
π : out of plane bending; ω : wagging;					

Tableau A : Bandes d'absorption du ligand sulfanilamide.

Figure A: Spectre IR de la sulfanilamide.

3.0.2. Etude par spectroscopie UV-Visible:

Le spectre UV de la sulfanilamide présente deux bandes caractéristiques avec λ_{max} autour de 204 et 255 nm indiquant la présence de groupements chromophores benzène et sulfonamide attribués respectivement aux transitions $\pi \rightarrow \pi^*$ et n $\rightarrow \pi$ *[7, 8]. La figure B montre les bandes spectrales (λ max) de la sulfanilamide dans le méthanol, l'éthanol, le DMSO et dans le DMF à une concentration de 10⁻⁵M.

Figure B: Effet du solvant sur l'intensité et la position des bandes UV-visible de la sulfanilamide dans différents solvants.

3.0.3. Décomposition thermique de la sulfanilamide

La courbe TG de la sulfanilamide (figure C) indique que la molécule est stable jusqu'à 150° C et présente une perte rapide en masse à 310° C due au départ de SO₂ [9]. Le résidu à la fin de la décomposition représente environ 25% de la masse initiale et correspond aux cendres carboniques.

Figure C: Décomposition thermique de la sulfanilamide.

3.1. Synthèse et caractérisation du complexe [Cu(NO₃)₂(H₂O)(C₆H₈N₂O₂S)₂] noté (7).

3.1.1. Synthèse :

Le complexe [bis (4-aminobenzensulfonamide)-aqua-bis(nitrato)-copper(II)] de formule $[Cu(NO_3)_2(H_2O)(C_6H_8N_2O_2S)_2]$ noté (7) a été synthétisé à partir d'une solution aqueuse de nitrate de cuivre trihydraté (Cu(NO_3)_2.3H_2O) (222 mg, 1 mmol) et d'une solution d'acétonitrile de sulfanilamide (345 mg, 2 mmol). Le mélange réactionnel est porté à reflux avec agitation continue pendant 3h. La solution résultante a été laissée au repos à la température ambiante. Des cristaux jaunes ont été obtenus après quelques jours.

3.1.2. Propriétés physico-chimiques

- Solubilité : soluble dans l'éthanol, méthanol, DMF et DMSO.

- Température de fusion : 165°C

3.1.3. Etude par spectroscopie infrarouge :

Le spectre infrarouge du complexe (**7**) (figure 7.1) montre une bande d'absorption large au voisinage de 3500 cm⁻¹ attribuée à la vibration d'élongation de O-H et confirme la présence de molécules d'eau. Les bandes observées dans l'intervalle 3476 - 3290 cm⁻¹ sont attribuées aux vibrations d'élongation antisymétriques et symétriques du groupe NH₂ de l'aniline. Ces bandes $v_{as}(NH_2)_{aniline}$ et $v_{sy}(NH_2)_{aniline}$ ont été observées entre 3454 et 3232 cm⁻¹ dans les complexes de sulfanilamide Co et Cd [**10**]. Les bandes situées à 2364 et 2336 cm⁻¹ sont affectées aux vibrations du groupe nitrate et témoignent de sa présence [**11-13**]. Les vibrations caractéristiques du groupe SO₂ sont situées aux environs de 1339, 1147, 582 et 542 cm⁻¹ sont restées inchangées par rapport à celles du ligand. Aussi, les vibrations v(S-N) sont apparues à 902 cm⁻¹ et les vibrations à 1597 et 1502 correspondent à v(cycle) ne sont pratiquement pas modifiées dans le complexe (**7**) [**10**, **14**, **15**].

Les bandes autour de 462 et 506 cm⁻¹ dans le spectre correspondant aux v(Cu – N) et v(Cu – O) respectivement [12,16-18] indiquent la formation du complexe.

Figure 7.1 : Spectre IR du ligand et du complexe (7).

3.1.4. Étude par spectroscopie UV-Visible:

Le spectre UV du complexe (7) présente deux bandes d'absorptions caractéristiques de la transition $\pi \rightarrow \pi^*$ et $n \rightarrow \pi^*$ du groupement chromophore benzène et sulfonamide [7, 8]. Le spectre UV de la figure 7.2 montre les bandes spectrales du complexe (7) dans le méthanol, l'éthanol, le DMSO, et DMF. En ce qui concerne les positions maximales du complexe (7) par rapport au ligand sulfanilamide libre dans différents solvants, les spectres des complexes sont déplacés hypsochromiques. Dans l'éthanol, le méthanol, le DMSO et le DMF respectivement, la bande d'absorption intense à environ 255 nm est déplacée à 264, 263, 271 et 283 nm pour le complexe (7) indiquant la coordination des ligands avec l'ion Cu⁺² dans le complexe métallique, tandis que la première bande autour de 204 nm est trop faible lorsque le solvant est le DMSO ou le DMF. Dans l'éthanol, cette bande est décalée à 217 pour le complexe, alors que dans le méthanol elle est disparue pour le complexe. Ce déplacement peut s'expliquer par la diminution de la délocalisation électronique dans la molécule du ligand lors de la coordination avec un ion

métallique **[8, 19]**. La stabilisation par résonance de la sulfanilamide est fortement influencée par l'environnement polaire dans lequel se trouvent les molécules complexes.

Figure 7.2: Effet du solvant sur l'intensité et la position de la bande du complexe (7).

3.1.5. Caractérisation structurale par DRX sur monocristal :

Les données cristallographiques, les conditions d'enregistrement et d'affinement sont rassemblées dans le tableau 7.1. Pour les coordonnées atomiques, les facteurs d'agitations thermiques anisotropes, les distances interatomiques, les angles, les liaisons et les angles de torsion consulter l'article [20] <u>https://doi.org/10.1016/j.molstruc.2021.131346</u>.

 Tableau 7.1 : Données cristallographiques et conditions d'enregistrement du complexe (7).

Empirical formula, weight(g/mol)	Cu $C_{12}H_{18}N_6O_{11}S_2$, 549.98
Crystal system, Space group, Z	Orthorhombic, Pcab, 8
a, b, c (Å)	9.2146(3), 12.1362(3), 36.3848(9)
$V(Å^3)$	4068.92(19)
d_{calc} (g/cm ³), μ (mm ⁻¹)	1.796, 1.350
F(000)	2248

Crystal size(mm ³), colour	$0.18 \times 0.09 \times 0.05$, green
20 range for data collection (°)	5.596 to 51.996
Limites h, k, l	-11 <h<11, -14<k<14,="" 0<l<44<="" td=""></h<11,>
Reflections collected, independent $[I > 2\sigma(I)]$	10163, 3966
R _{int}	0.0304
R, Rw, S	0.0497, 0.0864, 1.060
Data, restraints, parameters	3966, 5, 310
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.48, -0.27

L'unité asymétrique du complexe (7) (figure 7.3) est constituée d'un atome central Cu1 saturé par un atome O1w d'une molécule d'eau (Cu1–O1w = 2,079 (2) Å et quatre oxygènes de deux anions NO₃ (Cu–O = 2.167(9) - 2.297(3) Å), et deux atomes N de deux sulfanilamides en trans disposition (Cu1-N1a = 2.033(2) Å, Cu1-N1b= 2.014(2) Å. L'un des deux nitrates est en désordre (sof = 0,611(8)/0,389(8)). Les atomes N1a et N1b sont presque symétriques par rapport au cuivre N1a-Cu1-N1b = $176.69(10)^{\circ}$. Les nitrates, O1w et le métal sont dans le même plan et la plus grande déviation est pour O23 (0.13 Å). Les deux cycles benzéniques font un angle de 37.37° .

Figure 7.3 : Unité asymétrique du complexe (7).

L'empilement cristallin de la structure se déploie en chaines parallèles au plan (b, c). Ces chaines sont formées par des polyèdres isolés (figure 7.4).

Figure 7.4: Empilement de la structure (7) selon le plan (b, c).

Dans le composé (7) la cohésion entre les entités est assurée par des interactions intra et intermoléculaires de type hydrogène, ces ponts impliquent des contacts de type C–H···O, N–H···O et O–H···O formant des cycles de type $R^{1}_{1}(5)$ et $R^{2}_{2}(20)$ (figure 7.5). Les longueurs des liaisons et les angles des liaisons hydrogène sont reportés dans le tableau 7.2.

D-H	А	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th></dha<>	d(DA)
C6B-H6B	O21 ⁽³⁾	0.950	2.632	142.17	3.432
C6B-H6B	O23 ⁽³⁾	0.950	2.487	155.58	3.375
C2A-H2A	O1A ⁽¹⁾	0.950	2.376	153.79	3.255
СЗА-НЗА	O13B(1)	0.950	2.650	114.00	3.158
C3B-H3B	O23(2)	0.950	2.591	138.13	3.358
N1B-H1BA	O21 ⁽³⁾	0.910	2.550	161.34	3.425
N1B-H1BB	O2B ⁽⁶⁾	0.910	2.089	171.03	2.991
N2B-H2BA	$O1B^{(3)}$	0.802	2.540	117.59	2.997
N2B-H2BA	O22 ⁽⁷⁾	0.802	2.388	152.27	3.120

 Tableau 7.2 : Liaisons hydrogènes dans le composé (7).

Chapitre 3 : Synthèse et caractérisation de complexes de coordination de la sulfanilamide avec le cuivre.

N2B-H2BB	O23 ⁽²⁾	0.820	2.243	169.41	3.053
N2A-H2AA	O13B ⁽¹⁾	0.837	2.524	129.21	3.121
N2A-H2AA	O13A ⁽¹⁾	0.837	2.340	130.80	2.956
N2A-H2AB	O2A ⁽⁴⁾	0.832	2.409	152.25	3.169
N1A-H1AA	O11 ⁽⁴⁾	0.910	2.451	152.34	3.285
N1A-H1AA	O13B ⁽⁴⁾	0.910	2.260	155.43	3.111
N1A-H1AB	O2A ⁽⁵⁾	0.910	2.509	139.70	3.256
O1W-H1WA	$O12B^{(3)}$	0.810	1.971	158.39	2.740
O1W-H1WA	O13A ⁽³⁾	0.810	2.234	150.82	2.968
O1W-H1WA	O12A ⁽³⁾	0.810	2.325	151.85	3.064
O1W-H1WB	O1A ⁽¹⁾	0.820	2.096	146.25	2.815

Codes de symétrie: ⁽¹⁾ x, y-1/2, -z+1/2; ⁽²⁾ -x+2, -y, -z+1; ⁽³⁾ x-1/2, -y+1/2, z; ⁽⁴⁾ x+1/2, -y+1/2, z; ⁽⁵⁾ x+1/2, -y, -z+1/2; ⁽⁶⁾ -x+3/2, y-1/2, -z+1; ⁽⁷⁾ -x+3/2, y+1/2, -z+1.

Figure 7.5 : Cycles des liaisons hydrogènes dans le composé (7).

Les interactions intermoléculaires ont été étudiées quantitativement et visualisées avec *Crystal Explorer17.5.* Les tracés d_{norm}, courbes et 2D fingerprint sont représentés dans la figure 7.6. Les taches rouges sur la surface de Hirshfeld représentent les contacts N-H…O et O-H…O tandis que les régions bleues correspondent à des interactions faibles telles que les contacts C-H···O. Les interactions O····H/H···O (58.5 %) sont le principal facteur dans l'adhésion du cristal avec la contribution H···H (15,5%) suivie de C···H/H···C (10.2%).

Figure 7.6: Surface de Hirshfeld tracée sur d_{norm} et empreintes des interactions hydrogènes.

3.1.6. Étude thermique :

La figure 7.7 montre les courbes DSC et TG-DTG du complexe (7). L'étude thermique du complexe (7) a été réalisée dans l'intervalle 20–1100 °C à une vitesse de chauffe β =10°C/min⁻¹ sous flux d'azote. Les zones de température des décompositions et la perte de masse correspondante l'échantillon est donné dans le tableau 7.3. Selon les courbes TG / DTG et DSC,

le complexe acquière une bonne stabilité à basse température. Le complexe (7) a été décomposé thermiquement en deux étapes successives.

La première étape est un processus de décomposition exothermique intense et rapide dans l'intervalle de température de 100–225°C avec une de perte de poids de 45% et un pic exothermique net à 165°C sur la courbe DSC ce qui correspond à une vitesse maximale de fusion. Le processus de décomposition se poursuit dans la plage de température 230–1100°C avec une faible exotherme à 340°C sur la courbe DSC, la perte de masse étant de 35,30% et la masse résiduelle de 17,51% correspondant à CuO en bon accord avec la valeur calculée (14,45%).

Figure 7.7 : Courbes DSC et TG-DTG du complexe (7).

La stabilité thermique du complexe (7) a également été caractérisée par les paramètres cinétiques obtenus à partir de l'étude réalisée dans des conditions non isothermes. Les valeurs calculées de ΔE , A, ΔS , ΔH et ΔG , pour différentes décompositions sont données dans les tableaux 7.3 et 7.4.

Décommonition	Domaine de	Perte de	Ts	Ondro n	Solid résiduel
Decomposition	Décomposition	masse (%)	(°C)	Ordre n	(%)
1	100-225	47	165	2	17 51
2	225-1100	35.30	340	2	17.51

 Tableau 7.3: Données thermiques de la décomposition du complexe (7).

Tableau 7.4 : Paramètres thermodynamiques de la première décomposition du complexe (7).

Etapes de décomposition	L'intervalle de température (T) de décomposition	E (kJ/mol)	A(s ⁻¹)	ΔH (kJ/mol)	ΔS (J/K.mol)	ΔG (kJ/mol)
1	100-225 47%	158.3	1.36.10 ¹⁷	154.65	79.89	119.65

3.2. Synthèse et caractérisation du complexe [Cu (NO₃)₂(H₂O)₂ (C₆H₈N₂O₂S)₂] noté (8):

3.2.1. Synthèse :

Le complexe [bis (4-aminobenzensulfonamide)-diaqua-bis(nitrato)-copper(II)] de formule $[Cu(NO_3)_2(H_2O)_2(C_6H_8N_2O_2S)_2]$ noté (8) a été synthétisé comme précédemment mais en utilisant une solution aqueuse de nitrate de cuivre trihydraté (Cu(NO₃)₂.3H₂O) (222 mg, 1 mmol) et une solution d'éthanol de sulfanilamide (345mg, 2 mmol). Des cristaux verts ont été obtenus après quelques jours.

3.2.2. Propriétés physico-chimiques

- Solubilité : soluble dans l'éthanol, méthanol, DMF et DMSO.
- Température de fusion : 155.90°C

3.2.3. Etude par spectroscopie infrarouge :

La figure 8.1 illustre le spectre infrarouge du complexe [bis (4-aminobenzensulfonamide)diaqua-bis(nitrato)-copper(II)]. Le spectre infrarouge du complexe (**8**) est similaire à celui du complexe (**7**), il présente une bande d'absorption large aux environs de 3500 cm⁻¹ attribuée à la vibration d'élongation de O-H. Les bandes observées dans l'intervalle 3476 - 3147 cm⁻¹ sont attribuées aux vibrations d'élongations antisymétriques $v_{as}(NH_2)_{aniline}$ et symétriques $v_{sy}(NH_2)_{aniline}$ du groupe NH₂ de l'aniline, ces valeurs sont similaires à celles trouvées dans les complexes de sulfanilamide Co et Cd [10]. Les bandes situées à 2364 et à 2336 cm ⁻¹ sont affectées aux vibrations du groupe nitrate [11,13]. Les bandes situées vers 1320, 1140, 570 et 550 cm-1 sont caractéristiques des vibrations du groupe SO₂ et restent inchangées par rapport à celles du ligand. Aussi, les vibrations d'élongation v(S-N) sont apparues aux environ de 900 cm⁻¹ [10, 14-15].

Les bandes autour de 492 et 518 cm⁻¹ dans le spectre correspondant v(Cu-N) et v(Cu-O) respectivement [12, 16].

Figure 8.1 : Spectre IR du complexe (8) comparé à celui du ligand.

3.2.4. Etude par spectroscopie UV-Visible :

Le complexe (8) présente deux bandes d'absorptions caractéristiques de la transition $\pi \rightarrow \pi^*$ et $n \rightarrow \pi^*$ du groupement chromophore benzène et sulfonamide. Le spectre UV de la figure 8.2 montre les bandes spectrales du complexe (8) dans le méthanol, l'éthanol, le DMSO, et DMF. En ce qui concerne les positions maximales du complexe (8) par rapport au ligand sulfanilamide libre dans différents solvants, les spectres des complexes sont déplacés hypsochromiques. Dans l'éthanol, le méthanol, le DMSO et le DMF respectivement, la bande d'absorption intense à environ 255 nm est déplacée à 261, 260, 272 et 270 nm pour le complexe (8) indiquant la coordination des ligands avec l'ion Cu (II) dans le complexe métallique, tandis que la première bande autour de 204 nm est trop faible lorsque le solvant est le DMSO ou le DMF. Dans l'éthanol, cette bande est décalée à 214 pour le complexe, tandis que dans le méthanol, elle est disparue pour le complexe. Ce déplacement peut s'expliquer par la diminution de la délocalisation électronique dans la molécule de ligand lors de la coordination avec un ion métallique. La stabilisation par résonance de la sulfanilamide est fortement influencée par l'environnement polaire dans lequel se trouvent les molécules complexes

Figure 8.2 : Effet du solvant sur l'intensité et la position de la bande du complexe (8).

3.2.5. Caractérisation structurale par DRX sur monocristal :

Les données cristallographiques, les conditions d'enregistrement et d'affinement sont rassemblées dans le tableau 8.1. Pour les coordonnées atomiques, les facteurs d'agitations thermiques anisotropes, les distances interatomiques, les angles, les liaisons et les angles de torsion consulter l'article [20] <u>https://doi.org/10.1016/j.molstruc.2021.131346</u>.

Tableau 8.1: Données cristallographiques et conditions d'enregistrement.

$Cu C_{12}H_{20}N_6O_{10}S_2$, 568.00
Orthorhombic, Pbn2 ₁ ,4
5.4431(5), 14.5184(13), 26.3870(2)
2085.3(3)
1.809, 1.324
1164
$0.3 \times 0.15 \times 0.05$, green
6.612 to 54.990
-18 <h<17, -34<l<33<="" -6<k<7,="" td=""></h<17,>
11510, 4600
0.0357
0.0447, 0.0920, 1.040
4600, 9, 322
2.22, -0.36

Le cation métallique Cu⁺² du complexe (**8**) a une géométrie octaédrique légèrement déformée. Le plan équatorial est défini par deux atomes d'azote opposés de deux amines de deux sulfanilamides et deux atomes d'oxygène de deux molécules d'eau (figure 8.3). Les longueurs des liaisons Cu–O et Cu–N sont compris entre 1.980(3) Å et 2.040(4) Å. Les positions apicales sont occupées par deux molécules de nitrates (2.384(3) et 2.387(3) Å) avec des distances sensiblement plus longues que les distances équatoriales en raison de l'effet de Jahn–Teller. Ces valeurs sont similaires à celles trouvées dans les complexes de cuivre (II) [21-22]. Les deux cycles benzéniques sont parallèles ainsi que les deux nitrates.

Figure 8.3: Unité asymétrique du complexe (8).

Dans le composé (8), la cohésion entre les entités est assurée par des interactions intra et intermoléculaires de type hydrogène, ces ponts impliquent des contacts de type N–H···O, N–H···N, C–H···O, O–H···N et O–H···O, formant ainsi des cycles de type $R_4^3(19)$, $R_3^4(10)$ et $R_3^4(13)$ (figure 8.4). Les longueurs des liaisons et les angles des liaisons des hydrogènes sont reportés dans le tableau 8.2.

D-H	А	d(D-H)	d(HA)	<dha< td=""><td>d(DA)</td></dha<>	d(DA)
N21-H21A	O5 ⁽¹⁾	0.890	2.082	160.43	2.936
N21-H21B	06	0.890	2.313	144.09	3.078
N11-H11A	O9	0.890	2.292	144.33	3.060
N11-H11B	N4 ⁽²⁾	0.890	2.699	143.75	3.457
N11-H11B	O8 ⁽²⁾	0.890	2.064	163.15	2.927
C13-H13	O9 ⁽³⁾	0.930	2.362	132.77	3.070
С23-Н23	O6 ⁽⁴⁾	0.930	2.462	129.74	3.139
O2W-H2WA	O7 ⁽⁷⁾	0.846	1.987	153.35	2.769
O2W-H2WA	N3 ⁽⁷⁾	0.846	2.697	138.12	3.374
O2W-H2WB	O10 ⁽²⁾	0.838	1.898	162.67	2.710
O2W-H2WB	N4 ⁽²⁾	0.838	2.548	159.64	3.346
O2W-H2WB	O8 ⁽²⁾	0.838	2.494	131.78	3.116
O1W-H1WA	O10 ⁽⁸⁾	0.843	1.990	155.52	2.780
O1W-H1WB	O7 ⁽¹⁾	0.856	1.867	170.14	2.715

Tableau 8.2: Liaisons hydrogènes dans le composé (8).

O1W-H1WB	O5 ⁽¹⁾	0.856	2.608	120.48	3.131
O1W-H1WB	N3 ⁽¹⁾	0.856	2.603	147.33	3.356
N12-H12A	O12 ⁽²⁾	1.085	2.051	155.02	3.069
N12-H12B	O21 ⁽⁵⁾	0.724	2.586	147.43	3.220
N22-H22A	O22 ⁽¹⁾	0.919	2.343	174.25	3.259
N22-H22B	O11 ⁽⁶⁾	0.779	2.395	168.67	3.162

Codes de symétrie : ⁽¹⁾ x, y–1, z; ⁽²⁾ x, y+1, z; ⁽³⁾ x+1/2, -y+3/2, z; ⁽⁴⁾ x–1/2, -y+1/2, z; ⁽⁵⁾ -x+1/2, y+1/2, z-1/2; ⁽⁶⁾ -x+1, -y+1, z+1/2; ⁽⁷⁾ x–1/2, -y+3/2, z; ⁽⁸⁾ x+1/2, -y+1/2, z.

Figure 8.4 : Les différents types de liaisons d'hydrogènes dans le composé (8).

Une autre interaction intermoléculaire de type N-O…Cg est observée entre le cycle benzénique de la sulfanilamide Cg1 (C11-C16) et Cg2 (C21-C26) d'une part et l'atome d'oxygène du groupement nitrate d'autre part et des interactions de type O-H…Cg sont observées entre le cycle benzénique de la sulfanilamide Cg1 et l'atome d'hydrogène H de la molécule d'eau (figure 8.5), les différentes distances sont reportées dans le tableau 8.3. Ces interactions ont permis la génération d'un réseau tridimensionnel.

Interaction N–O…Cg	Distance (Å)	Interaction O–H…Cg	Distance (Å)
N5-O6…Cg1	3.858 (5)	O11–H11A…Cg1	2.870
N5-07Cg1	3.404 (5)	/	/
N6-09Cg2	3.918(5)	/	/
N6-O10-Cg2	3.404 (5)	/	/

Tableau 8.3: Interactions N-O…Cg et O-H…Cg.

Figure 8.5 : Les interactions intermoléculaires N–O…Cg et O–H…Cg dans le complexe (8).

La figure 8.6 représente quantitativement des interactions intermoléculaires. Les taches rouges sur la surface de Hirshfeld représentent les contacts N-H···O et O-H...O tandis que les régions bleues correspondent à des interactions faibles telles que les contacts C-H···O. Les interactions O···H/H···O (60.4 %) sont le principal facteur dans l'adhésion du cristal avec la contribution H···H (18.3%) suivie de C···H/H···C (8.0%).

Figure 8.6: Surface de Hirshfeld tracée sur d_{norm} et empreintes des interactions hydrogènes dans le composé (8).

Les polyèdres se déploient en couches parallèles au plan (b, c), ces couches sont formées par des polyèdres isolés (figure 8.7).

Figure 8.7: Enchainement des polyèdres dans le composé (8) ; vue sur le plan (a, c).

3.2.6. Étude thermique :

La figure 8.8 montre les courbes DSC et TG-DTG du complexe (8). Les zones de température des décompositions et la perte de masse correspondante l'échantillon est donné dans le tableau 8.4. Selon les courbes TG / DTG et DSC, le complexe acquière une bonne stabilité à basse température. Le complexe (8) a été décomposé thermiquement en deux étapes successives.

La première étape est une perte de masse avec une valeur 49% et un pic exothermique net à 156°C sur la courbe DSC. Le processus de décomposition est lentement jusqu'à 1100 ° C avec un pic exothermique fort à 414,53 ° C sur la courbe DSC et la perte de masse étant de 30%. Le résidu métallique (13,82%) est resté après que la décomposition a été attribuée aux espèces CuO. La stabilité thermique du complexe (**8**) a également été caractérisée par les paramètres cinétiques obtenus à partir de l'étude réalisée dans des conditions non isothermes. Les valeurs de ΔE , A, ΔS , ΔH et ΔG , pour différentes décompositions sont calculées de même façon du complexe (**7**) et données dans le tableau 8.5.

Figure 8.8 : Les courbes TG-DTG du complexe [Cu (NO_3)₂(H_2O)₂($C_6H_8N_2O_2S$)₂].

 Tableau 8.4 : Les données thermiques de la décomposition du complexe 8.

Etapes	Domaine de	Perte de masse		Ondas a	Solid	
	décomposition T (°C)	(%)	18 (°C)	Ordre n	résiduel (%)	
1	100-250	49	156	2	12.00	
2	225-1100	30	414.53	2	13.82	

Tableau 8.5 : Les paramètres thermodynamiques de la première décomposition du complexe 8.

Etapes	L'intervalle de température de décomposition	E (kJ/mol)	A(s ⁻¹)	ΔH (kJ/mol)	ΔS (J/K.mol)	ΔG (kJ/mol)
1	50-250 (48%)	144.7	1.40.10 ¹⁶	141.13	61.16	114.89

3.2.7 Caractérisation par diffraction des rayons X sur poudre des complexes (7) et (8) :

Les données de diffraction des rayons X sur poudre (PXRD) ont été utilisées pour évaluer la pureté des complexes étudiés. Les figures 8.9 et 8.10 montrent les diagrammes expérimentaux de diffraction des rayons X sur poudre par rapport à ceux simulés à partir de données monocristallines pour les composés (7) et (8). La correspondance presque parfaite entre les modèles expérimentaux et simulés témoigne la pureté de nos échantillons.

Figure 8.9: Diagramme de diffraction des rayons X par la poudre de (7)

Figure 8.10: Diagramme de diffraction des rayons X par la poudre de (8)

3.2.8. Étude électrochimique :

Les comportements électrochimiques du ligand et des complexes de cuivre (7) et (8) ont été étudiés à la température ambiante en utilisant une voltamétrie cyclique dans des solutions de diméthylsulfoxyde, au milieu d'une plage dont le potentiel est de +1600 à -2200 mV/SCE (figure 8.11). Tous les potentiels électrochimiques ont été calibrés par rapport à Fc^+/Fc^0 .

Pour le ligand libre, la région anodique rapportée est caractérisée par l'existence de deux bosses ovales, à +1304 et +1417 mV / SCE, associées à l'oxydation du ligand approprié [23]. Ainsi, toutes les ondes redox, dans les voltamogrammes cycliques des complexes, ont été attribuées à l'activité rédox au centre métallique. Pour le composé (7), le processus de réduction électrochimiquement irréversible observé à -699 mV/SCE est attribué au processus redox Cu^I/Cu⁰ [24]. L'onde anodique apparue à 1356 mV est attribuée à l'oxydation du ligand [25]. Le complexe (7) a également une onde redox quasi réversible associée au processus rédox Cu (II) / Cu(I) [26-27]. Le potentiel de pic d'oxydation (Epa) pour cette onde est situé à 88 mV, tandis que l'onde de réduction inverse (Epc) est survenue à -108 mV et que le potentiel formel moyen [E_{1/2} = (Epa + Epc) / 2] est de -10 mV / SCE à 100 mV/s.

Figure 8.11 : Voltammogrammes cycliques du ligand HL, des complexes (7) et (8) dans une solution 0,1 M de LiClO₄ / DMSO à une vitesse de balayage de 100 mV / s.
Le voltamogramme cyclique de (8) dans le DMSO est constitué de quatre pics anodiques à -380, -16, +237 et +420 mV / SCE, toutes ces ondes sont irréversibles à l'exception de l'onde située à +420 mV/SCE qui s'avère couplée à l'onde de réduction à 120 mV/SCE correspondant au couple Cu(II) / Cu(I) avec un potentiel moyen $E_{1/2}$ égal à +270 mV/SCE [26-27]. Ce complexe a de nouveau une autre onde de réduction irréversible à -1220 mV/SCE en raison de la réduction Cu¹/Cu⁰; ces observations sont conformes aux résultats rapportés précédemment pour d'autres complexes du cuivre [28]. Les voltamogrammes cycliques des complexes (7) et (8) dans différents balayages les taux situés entre -500 et +500 mV, et entre -300 et 800 mV pour les complexes (7) et (8), sont respectivement présentés sur la figure 8.12.

La séparation pic à pic entre les potentiels de pic anodique et cathodique à une vitesse de balayage de 100 mV/s est respectivement de 196 et 300 mV pour les complexes (7) et (8). La valeur ΔE , en tant que paramètre identifiant le degré de réversibilité électrochimique, suggère que le complexe 8 fournit la réversibilité la plus faible, cette valeur étant la plus élevée par rapport à celle du complexe (7). Les valeurs plus hautes des potentiels de pic de séparation révèlent que les espèces réduites ne sont pas suffisamment stables pour subir une réoxydation, ce qui permet de reconstituer les mêmes espèces initiales de Cu(II) dans les conditions expérimentales. De plus, les potentiels de pic anodique et cathodique sont décalés respectivement vers les régions anodique et cathodique, lors de l'augmentation de la vitesse de balayage.

Le rapport entre les courants inverses et directs (Ipc/Ipa), pour les deux complexes étudiés, est resté proche de l'unité et s'est révélé indépendant de la vitesse de balayage (tableau 8.6). De plus, une relation linéaire entre le courant de pointe anodique et la racine carrée des vitesses de balayage (Ipc = f ($v^{1/2}$)) est observée, ces résultats ont confirmé que le processus redox Cu(II)/Cu(I), pour complexes, est un processus quasi-réversible contrôlé par diffusion [28].

91

Figure 8.12: Voltammogrammes cycliques des complexes (7) et (8) dans une solution 0,1 M de LiClO4 / DMSO à différentes vitesses de balayage : de l'intérieur vers l'extérieur, 25, 50, 75, 100, 125, 150, 175 et 200, mV/s

V (mV/s)	Epc (mV)		Epc (mV) $^{a}\Delta E$ (mV)		^b E _{1/2} (mV)		Ipc (µA/cm ²)		Ipc/ipa	
	(7)	(8)	(7)	(8)	(7)	(8)	(7)	(8)	(7)	(8)
25	-78	382	138	230	-9	267	4.4	2.39	0.99	1.11
50	-88	398	160	264	-8	266	6.2	3.25	0.82	1.11
75	-100	410	182	268	-9	267	7.32	3.74	0.85	1.12
100	-108	424	196	300	-10	272	8.1	4.18	0.94	1.07
125	-117	428	210	316	-12	270	8.33	4.68	0.97	1.08
150	-119	434	218	326	-10	271	8.55	5.08	0.98	1.08
175	-125	442	228	334	-11	271	9.07	5.47	0.99	1.09
200	-131	448	240	352	-11	272	9.85	5.63	0.97	1.10

Tableau 8.6: Données électrochimiques des complexes (7) et (8) dans DMSO/LiClO₄.

3.3. Synthèse et caractérisation du con	nplexe [Cu ₃ Cl ₆ (C	$C_{3}H_{7}NO)_{2}(C_{6}H_{8}N_{2}O_{2}S)_{4}$] _n noté (9):
3.3.1. Synthèse :			

Le complexe catena [(μ_2 -chloro)- tétrakis(4 aminobenzensulfonamide) bis(N,N diméthylformamide)-penta-chloro tri-copper(II)] de formule [Cu₃ Cl₆ (C₃H₇NO)₂(C₆H₈N₂O₂S)₄]_n noté (**9**) a été synthétisé à partir d'un mélange de la sulfanilamide (0.860 g, 0.5mmol) dissoute dans l'acétonitrile (15ml) et une solution de CuCl₂.2H₂O (0,8542 g, 5 mmol) dans l'eau/dmf (10ml/10ml/5ml). Le mélange réactionnel est porté à reflux sous agitation continue pendant 3h.

La solution résultante a été laissée au repos à la température ambiante. Des cristaux verts ont été obtenus après quelques jours.

$$\overset{\mathsf{NH}_2}{\underset{\mathsf{O}=\overset{\mathsf{NH}_2}{\underset{\mathsf{NH}_2}{\mathsf{NH}_2}}{\mathsf{NH}_2}} + \operatorname{CuCl_2.2H_2O} \quad \overset{\mathsf{H}_2\mathsf{O}, \text{ acétonitrile, DMF}}{\underset{\mathsf{Reflux 3h}}{\mathsf{Reflux 3h}}} \operatorname{[Cu_3(C_6H_8N_2O_2S)_4(C_3H_7NO)_2Cl_6]_n}$$

Schéma réactionnel du complexe (9).

3.3.2. Propriétés physico-chimiques :

-Solubilité : soluble dans les solvants aprotiques polaires DMF et DMSO et dans les solvants protiques polaires éthanol et méthanol.

-Point de fusion : 167.25 °C.

3.3.3. Étude par spectroscopie infrarouge :

Le tableau 9.1 montre les pics et bandes essentiels d'absorption IR du complexe (**9**). Les bandes entre 3371 et 3263 cm⁻¹ affectées aux vibrations d'élongation antisymétrique et symétrique du groupe NH₂ de l'aniline dans la sulfanilamide libre sont déplacées vers les nombres d'onde bas et observées respectivement entre 3335 et 3260 cm⁻¹ dans le complexe (**9**), ce qui suggère que ce groupe amine est impliqué dans la coordination avec les ions Cu [22]. Ce fait est conforme à la structure cristalline résolue du complexe de cuivre. Comme on pouvait s'y attendre, Les bandes situées vers 1320, 1140, 570 et 550 cm⁻¹ sont caractéristiques des vibrations du groupe SO₂ et restent inchangées par rapport aux celles du ligand. De plus, les vibrations à 884 cm⁻¹ de v(S-N) et à 1597 et 1502 correspondants à v(cycle) ne sont pratiquement pas modifiées dans le complexe [10,11,13,15].

La formation du complexe a été confirmée aussi par la présence des bandes vers 492 et 518 cm⁻¹ correspondant respectivement à v(Cu–N) et v(Cu–O) [12, 17, 18,29]. Le pic à 1440 cm⁻¹ est attribué à v(Cu-Cl) [30]. La bande intense à 1648 cm⁻¹ est attribuée à l'élongation du DMF carbonyle v(C = O) [31] suggérant que le DMF est coordonné avec le cation Cu (figure 9.1) [32].

Vibration du groupement	Fréquence
$\nu_a(NH_2)_{aniline,} \nu_s(NH_2)_{aniline}$	3422, 3335
$v_{s}(NH_{2})_{sulfa}$	3258
$\nu(CH)_{aromatic}$	2933
v(C=O)	1648
$\delta_s(NH_2)_{aniline}$	1648
v(ring)	1601, 1498
δ(CH)	1365
$\nu_a(SO_2)$	1330
δ(CH)	1190
$\nu_a(SO_2)$	1168, 1111, 1100
$\delta(CH) + \delta_r(NH_2)_{aniline} + (-S=O)$ bend	1060, 1022, 956
$\nu(SN) + \pi(CH)$	888, 854
$\pi(CS) + \pi(CN)$	839
$\pi(CS) + \pi(CN)$	696, 655
ω(NH2) sulfa	627
$\delta_{s}(SO_{2})$	570
$\pi_{\text{Ring}} + \omega(\text{NH}_2)_{\text{aniline}} + \omega(\text{SO}_2)$	548
$v_s(MN)_{aniline}$	510
$\nu_{s}(MN)_{sulfa}$	422

 Tableau 9.1 : Les bandes d'absorptions et leur vibration caractérisation du complexe (9).

Figure 9.1 : Le spectre d'absorption IR du complexe (9).

3.3.4. Étude par spectroscopie d'absorption UV-visible :

Le complexe (9) présente deux bandes d'absorptions caractéristiques de la transition $\pi \rightarrow \pi^*$ et $n \rightarrow \pi^*$ du groupement chromophore benzène et sulfonamide [7, 8]. Le spectre UV de la figure 9.2 enregistre les bandes spectrales de ce complexe dans le méthanol, l'éthanol, le DMSO, et DMF. En ce qui concerne les positions maximales des bandes du complexe par rapport au ligand sulfanilamide libre dans différents solvants, elles sont déplacées hypsochromiques. Dans l'éthanol, le méthanol, le DMSO et le DMF respectivement, la bande d'absorption intense à environ 255 nm est déplacée à 262, 264, 268 et 285 nm pour le complexe [Cu₃(C₆H₈N₂O₂S)₄(C₃H₆NO)₂Cl₆] indiquant la coordination des ligands avec Cu²⁺, tandis que la première bande autour de 204 nm est trop faible lorsque le solvant est le DMSO ou le DMF. Dans l'éthanol, cette bande est décalée à 209 pour le complexe, tandis que dans le méthanol, elle est décalée à 218 nm pour le complexe. Ce déplacement peut s'expliquer par la diminution de la délocalisation électronique dans la molécule du ligand lors de la coordination avec un ion métallique [8-19]. La stabilisation par résonance de la sulfanilamide est fortement influencée par l'environnement polaire dans lequel se trouvent les molécules complexes.

Figure 9.2 : Effet du solvant sur l'intensité et la position de la bande du complexe (9).

3.3.5. Caractérisation structurale par DRX sur monocristal :

Les données cristallographiques, les conditions d'enregistrement et d'affinement sont groupés dans le tableau 9.2. Pour les autres données, consulter [33] https://doi.org/10.1016/j.molstruc.2021.131446.

Tableau 9.2: Données cristallographiques et les conditions d'enregistrement.

Empirical formula, weight(g/mol)	$Cu_{3}C_{30}H_{46}Cl_{6}N_{10}O_{10}S_{4,}1238.33$
Crystal system, Space group, Z	Triclinic, P-1, 2
a, b, c (Å)	7.9720(3), 9.8651(5), 15.8523(7)
α, β, γ (°)	96.05(2), 100.41(2), 90.08(2)
$V(Å^3)$	1219.10(9)
$d_{calc} (g/cm^3), \mu(mm^{-1})$	1.687, 1.856
F(000)	629
Crystal size(mm ³), colour	$0.19 \times 0.08 \times 0.05$, green

20 range for data collection (°)	6.34 to 54.092
Limites h, k, l	-10 <h<10, -12<k<12,="" -20<l<20<="" td=""></h<10,>
Reflections collected, independent $[I > 2\sigma(I)]$	18467, 5227
R _{int}	0.0322
R, Rw, S	0.0594, 0.1501, 1.097
Data, restraints, parameters	5227, 0, 289
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ \AA}^{-3})$	1.36, -0.55

Le complexe de coordination (9) cristallise dans le triclinique P-1. L'unité asymétrique contient deux cations Cu^{2+} cristallographiquement distincts. L'atome Cu2 est situé sur un centre d'inversion et a un environnement octaédrique légèrement déformé. Le plan équatorial est défini par deux atomes d'azote N1A et N1A¹ des groupes amines de la sulfanilamide et deux atomes d'oxygène O1 et O1¹ de deux DMF [code de symétrie : ¹-x, 1-y, -z], tandis que les positions apicales sont occupées par deux chlores Cl3 et Cl3¹. Les longueurs de liaison Cu1-O1 et Cu1-N1A sont respectivement de 1,966 Å et 2,029 Å et de 2,947 Å. Les distances Cu-Cl varient entre 2.3146(12) et 2.7378(14) Å. Les angles *cisoïdes* sont compris entre 86,54 (5) et 93,46°. Ces valeurs sont similaires à celles des complexes de Cu⁺² de même géométrie, signalés dans la littérature [21, 34-35].

Le deuxième cation Cu1 présente une géométrie pyramidale à base carrée ($\tau = 0,30$) [36], où le plan basal est formé de trois atomes de chlore (Cl1, Cl2, Cl3) et un atome N1B du groupe amine du ligand sulfanilamide (Cu1–N1B, 2.034(4)Å; Cu1–Cl1, 2.3183(13)Å ; Cu1–Cl2, 2.2650(14) Å; Cu1–Cl3, 2.3146(12)Å (figure 9.3). Le plan moyen passant par ces atomes présente un écart maximal de 0,244 Å pour l'atome N1B. Le sommet de la pyramide est occupé par l'atome de chlore Cl1¹ et comme on l'observe habituellement, la longueur de la liaison Cu1 – Cl1¹ (2.7378 (14)Å) est plus longue que les distances Cu1-N et Cu1-Cl restantes (tableau 9.3). L'atome de cuivre est décalé du plan de base de 0,193 Å vers le sommet [37-40].

La structure étant centrosymétrique, les deux cuivre Cu1 et Cu1¹ de deux pyramides à base carrées {Cu2Cl1Cl2Cl3N1BCl1¹} et {Cu2¹Cl1¹Cl2¹Cl3¹N1B¹Cl1} sont doublement pontés via

deux atomes de chlore Cl1 et Cl1¹ en mode μ 2 (Cu2–Cl1–Cu2¹ et Cu2–Cl1¹–Cu2¹). La distance Cu1–Cu1¹ est de 3,480 Å. La pyramide à base carrée et le polyèdre octaédrique sont liés via un atome Cl1 en μ 2 et la distance Cu1–Cu2 est de 4,727 Å. Les polyèdres forment une chaîne infinie parallèle à [110] (figures 9.4, 9.5, 9.6).

Figure 9.3 : Environnement du cuivre dans le compose (9).

Figure 9.4: Chaine polymérique (les atomes H ont été omis pour des raisons de clareté).

Figure 9.5: Projection selon l'axe *a* de l'enchainement des polyedres de coordination (les atomes H ont été omis pour des raisons de clareté).

Figure 9.6: Projection selon l'axe b de l'enchainement des polyedres (les atomes H ont été omis pour des raisons de clareté).

Les chaines polymériques sont liées les unes aux autres par des interactions hydrogènes (tableau 9.3), ces interactions impliquent des contacts de type C—H…Cl, N—H…Cl, C—H…O formant ainsi des cycles de type $R^{1}_{2}(4)$, $R^{2}_{1}(4)$, $R^{1}_{2}(6)$, $R^{1}_{2}(7)$, $R^{2}_{2}(7)$ etc... et génèrent une structure tridimensionnelle (figure 9.7).

D	Н	A	d(D-H)/Å	d(HA)/Å	d(D-A)/Å	D-H-A/°
N1B	H1BB	$Cl2^1$	0.91	2.55	3.406(4)	156.7
C3B	H3BA	$O1B^2$	0.95	2.58	3.496(6)	162.1
N1A	H1AA	$Cl2^3$	0.91	2.71	3.399(4)	132.8
N1A	H1AB	Cl2	0.91	2.37	3.276(4)	170.9
C3A	НЗА	$O1B^4$	0.95	2.63	3.522(6)	157.0
C6A	H6A	Cl2	0.95	2.97	3.644(5)	128.7

Tableau 9.3: Longueurs angles des liaisons hydrogènes dans le composé (9).

¹-x,1-y,-z; ²1-x,1-y,1-z; ³-x,-y,-z; ⁴1-x,-y,-z.

Figure 9.7: Liaisons hydrogènes dans le polymère (9).

3.3.6. Analyse thermique

Selon les courbes TG/DTG et DSC, le complexe acquière une bonne stabilité à basse température (figure 9.8). La décomposition du complexe se fait en quatre étapes successives. La première étape est un processus de décomposition exothermique intense dans la plage de température de 156–219 °C avec la libération de deux DMF et perte de masse de 13% (perte de masse calculée 11,82%). La deuxième décomposition se produit dans la plage de température de 219 à 362 °C avec une perte de masse estimée à 33,6% (calculée à 36,2%) peut être attribuée à un dégagement de $3Cl_2 + 8NH_3$. La courbe DTG montre un fort pic exothermique à 297,3 °C. Les deux dernières étapes de décomposition dans les plages de température 362-581 et 581-1100 ° C avec des pertes de masse estimées à 9,4% et 23% sont dues à la décomposition complète du ligand et à la perte de la fraction organique restante. Le poids restant de 23% (calculé 19,20%) correspond au résidu métallique CuO.

Les valeurs thermodynamiques expérimentales ΔE , A, ΔS , ΔH et ΔG sont données dans les tableaux 9.4. et 9.5.

Figure 9.8 : Les courbes TG-DTG-DSC du complexe (9).

Tableau 9.4: Données thermiques de la décomposition du complexe (9).

Décom-	Décomposition	Perte de Masse		Ordra n	Dágidu (%)
position	T (°C)	(%)	18(C)	Office II	Kesidu (70)
1	140-219	12	167C= 440K	3.7	
2	219-362	33.6	298C= 571K	1.35	
3	362-581	9.4	445.6= 718.6K	1.78	
4	581-1100	23	917=1190K	1.75	23%
3 4	362-581 581-1100	9.4 23	445.6= 718.6K 917=1190K	1.78 1.75	23%

Décomps	T range	$\mathbf{E} \left(\mathbf{l}_{\mathbf{r}} \mathbf{l} / \mathbf{r}_{\mathbf{r}} \mathbf{s} \mathbf{l} \right)$	$\Lambda(a^{-1})$		ΔS	ΔG		
teps	(°C)	E (KJ/mol)	(mol) $A(s)$ $\Delta H(kJ/mol)$		$\begin{array}{c c} L (KJ/HOI) \\ \hline \end{array} \\ \hline \\ \hline$		(J/K.mol)	(kJ/mol)
1	140-219	29.285	3.14	25.194	-239.55	143.052		
2	219-362	86.926	4.8×10^5	82.178	-141.55	163.00		
3	362-581	59.141	45.6	53.166	-220.46	211.588		
4	581-1100	170.221	2.047×10^4	160.327	-173.88	376.244		
		∑ 345.573		∑ 320.865		∑ 893.884		

 Tableau 9.5: Données thermodynamiques de la décomposition du complexe (9).

3.4. Synthèse et caractérisation du complexe [CuCl₂(C₃H₇NO)(C₆H₈N₂O₂S)]_n noté (10) :

3.4.1. Synthèse :

Le complexe de formule $[CuCl_2(C_3H_7NO)(C_6H_8N_2O_2S)]_n$ noté (**10**) a été synthétisé comme précédemment en utilisant (CuCl_2.2H_2O) (0.5 ml, 4.4 mmol) et la sulfanilamide (0.5 g, 4.6 mmol) auxquelles on a ajouté quelques gouttes de DMF et on remplace l'acétonitrile par éthanol. Des cristaux verts ont été obtenus après quelques jours.

$$= \sum_{\substack{NH_2 \\ NH_2}}^{NH_2} + CuCl_2.2H_2O \quad \xrightarrow{H_2O, \text{ éthanol, DMF}}_{\text{Reflux 3h}} \sum [Cu(C_3H_7NO)(C_6H_8N_2O_2S) Cl_2]_n$$

Schéma réactionnel du complexe (10).

3.4.2. Propriétés physico-chimiques du composé :

-Solubilité : Soluble dans l'éthanol, méthanol. DMF et DMSO

-Point de fusion : 153°C

3.4.3. Étude par spectroscopie infrarouge :

Le tableau 10.1 donne les bandes essentielles d'absorption IR du complexe (**10**). Le spectre est similaire à celui du complexe (**9**) avec des déplacements légers des bandes de vibration de quelques fonctions. Par exemple, les bandes de vibrations d'élongation antisymétrique et symétrique du groupe NH_2 de l'aniline sont observées entre 3371 et 3263 cm⁻¹ vs 3335 et 3263

cm⁻¹ dans le complexe (**9**). Déplacement vers 1329 et 1130 cm⁻¹ des vibrations du groupe SO₂ (1320 et 1140 cm⁻¹ dans (**9**)).

La formation du complexe (10) a été confirmée par la présence des bandes à 422 et 510 cm⁻¹ correspondant à v(Cu - N) et v(Cu - O) respectivement [12, 17, 18, 29]. Le spectre montre une bande intense à 1645 cm⁻¹ attribuée à l'élongation du DMF carbonyle v(C = O) [31], suggérant que le DMF est coordonné avec le cation Cu²⁺ (figure 10.1) [32].

Groupement	Fréquence (cm ⁻¹)
$\nu_a(NH_2)_{aniline}, \nu_s(NH_2)_{aniline}$	- , 3335
$v_{s}(NH_{2})_{sulfa}$	3263
v(CH) _{aromatic}	2939
v(C=O)	1645
$\delta_s(NH_2)_{aniline}$	1645
v(ring)	1601, 1499
v(Cu-Cl)	1435
δ(CH)	1344, 1167
$\nu_a(SO_2), \nu_a(SO_2)$	1329, 1130
$\delta(CH) + \delta_r(NH_2)_{aniline} + (-S=O)$ bend	1099, 1059, 1022
$v(SN) + \pi(CH)$	889
$\pi(CS) + \pi(CN)$	839, 696
ω(NH2) sulfa	-
$\delta_{s}(SO_{2})$	569
$\pi_{\text{Ring}} + \omega(\text{NH}_2)_{\text{aniline}} + \omega(\text{SO}_2)$	550
$\nu_s(MN)_{aniline}$	509
$\nu_s(MN)_{sulfa}$	422

Tableau 10.1: Bandes d'absorption et leurs vibrations caractérisations.

Figure 10.1 : Le spectre d'absorption IR du complexe (10).

3.4.4. Spectroscopie d'absorption UV-Visible :

Le complexe (10) présente deux bandes d'absorptions caractéristiques de la transition $\pi \rightarrow \pi^*$ et $n \rightarrow \pi^*$ du groupement chromophore benzène et sulfonamide [7, 8]. Le spectre UV de la figure 10.2 montre les bandes spectrales du complexe dans le méthanol, l'éthanol, le DMSO, et DMF. En ce qui concerne les positions maximales du complexe par rapport au ligand sulfanilamide libre dans différents solvants, les bandes caractéristiques du complexe sont déplacées hypsochromiques. Dans l'éthanol, le méthanol, le DMSO et le DMF respectivement, la bande d'absorption intense à environ 255 nm du ligand est déplacée à 250, 261, 266 et 275 nm pour le complexe (10), tandis que l'autre bande est trop faible lorsque le solvant est le DMSO ou le DMF. Dans l'éthanol, cette bande est intense et décalée à 209 nm et est moins intense et déplacée à 220 nm si le composé est dans le méthanol. Ces déplacements temoignent la présence d'un complexe de coordination [8-19].

Figure 10.2 : Spectre UV de (10) dans différents solvants.

3.4.5. Caractérisation structurale par DRX sur monocristal :

Les données cristallographiques, les conditions d'enregistrement et d'affinement sont groupés dans le tableau 10.2. Pour les autres données, consulter [33] https://doi.org/10.1016/j.molstruc.2021.131446.

 Tableau 10.2: Données cristallographiques et conditions d'enregistrement.

Empirical formula, weight (g/mol)	CuC ₉ H ₁₅ Cl ₂ N ₃ O ₃ S, 379.74
Crystal system, Space group, Z	Monoclinique, P2 ₁ /n, 4
a, b, c (Å)	15.7841(6), 5.7294(2), 17.5744(7)
β (°)	110.6090 (2)
V (Å ³)	1487.60(10)
d_{calc} (g/cm ³), μ (mm ⁻¹)	1.696, 1.973
F(000)	772.0
Crystal size(mm ³), colour	$0.18 \times 0.09 \times 0.04$, green
2Θ range for data collection (°)	9.004 - 49.998

Limites h, k, l	-18 <h<17, -6<k<6,="" 0<l<20<="" th=""></h<17,>
Reflections collected, independent,	4904, 2596
R _{int}	0.0092
R, Rw, S	0.0262, 0.0639, 1.064
Data, restraints, parameters	2596, 0, 188
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.42, -0.46

L'unité asymétrique est formée d'un cation central Cu^{+2} coordinné à deux chlores, une molécule de sulfanilamide et une molécule de DMF. La molécule de DMF est en désordre statique en deux positions A et B avec des occupations égales à 0.5 (figure 10.3).

Le complexe (**10**) cristallise dans le groupe d'espace P2₁/n. L'atome de cuivre adopte une géométrie octaédrique légèrement déformée. Le plan équatorial est défini par un atome d'azote N1 du groupe amine de la sulfanilamide, un oxygène O3 (O3A et O3B) du ligand DMF et deux atomes de chlorure Cl1 et Cl2 (Cu1-Cl1, 2.3014(5)Å; Cu1-Cl2, 2.2682(5)Å; Cu1-N1, 2.0572(17)Å; Cu1-O3, 1.9600(9)Å. L'atome de Cu est dans le plan équatorial avec une déviation moyenne de 0,071 Å. Les positions apicales sont occupées par deux atomes de chlore avec des distances Cu1-Cl1⁼ 2,793Å et Cu1-Cl1²= 2,974Å [codes de symétrie : ¹1/2-x, 1/2+y, 3/2-z ; ²1/2-x, -1/2+y, 3/2-z] sensiblement plus longues que les distances équatoriales en raison de l'effet Jahn-Teller comme observé dans la plupart des complexes de cuivre octaédrique [**41**]. Ces distances sont nettement plus courtes que la somme des rayons de van der Waals de 3,15 Å (rCu = 1,40Å et rCl = 1,75Å). Les angles cissoïdes sont compris entre 85,25(5) et 92.20(2)°. Ces valeurs sont similaires à celles dans des complexes de Cu⁺² rapportés dans la littérature [**21**].

Chaque octaèdre [CuCl₄NO] est lié à un autre par deux atomes Cl1 via le partage des bords et chaque pont atomique de Cl2 relie trois centres Cu en mode μ 3-Cl formant une chaîne en zigzag infinie le long de l'axe cristallographique b, géométriquement similaire à [(BiPc)₄ (Bi₄I₁₆)] [42] et (C₆H₁₁N₂)₄ [Bi₄I₁₆] [43]. La distance Cu1 ··· Cu1 est de 3,628 (11) Å (figure 10.5). Chapitre 3 : Synthèse et caractérisation de complexes de coordination de la sulfanilamide avec le cuivre.

Figure 10.3 : Unité asymétrique du composé (10).

Figure 10.4 : Environnement octaédrique de Cu dans le composé (10).

Figure 10.5 : Enchainement polymérique 1D suivant [010].

La cohésion de la structure est assurée par des interactions inter et intramoléculaires de type hydrogène entre les différentes entités (figure 10.6). Ces interactions impliquent des contacts de type $N-H\cdots$ Cl, $C-H\cdots$ O et $C-H\cdots$ Cl et donnent un réseau tridimensionnel. Les longueurs et les angles des liaisons des hydrogènes sont portés dans le tableau 10.3.

L'interaction de type C-H···O fait intervenir les atomes de carbone de la molécule N,N dimethylformamide (C1A, C1B, C2A, C2B) d'une part et les atomes d'oxygène (O1, O2) provenant de la molécule de sulfanilamide d'autre part. L'interaction de type C-H···Cl se fait entre les atomes de carbone (C5, C6, C1A, C1B) provenant de la molécule de DMF et les atomes de chlore C11. La dernière interaction de type N-H···Cl implique les atomes d'azote provenant de la molécule de sulfanilamide et les atomes de chlore C11 et C12.

D	Н	А	d(D-H)/Å	d(HA)/Å	d(D-A)/Å	D-H-A/°
N1	H1A	Cl2 ¹	0.89	2.75	3.6023(18)	161.0
N1	H1B	$Cl1^2$	0.89	2.94	3.3984(17)	113.9
N1	H1B	$Cl2^2$	0.89	2.66	3.5033(17)	159.2

Tableau 10.3: Liaisons hydrogènes dans le composé (10).

C5	H5	$Cl2^3$	0.93	2.83	3.675(2)	151.4
C6	H6	$Cl2^1$	0.93	2.96	3.800(2)	150.2
N2	H2B	Cl1 ⁴	0.86	2.84	3.289(2)	114.6
N2	H2B	$Cl2^3$	0.86	2.74	3.565(3)	160.4
C1A	H1AA	Cl2	0.93	2.65	3.215(4)	120.1
C2A	H2AA	O1 ⁵	0.96	2.62	3.416(7)	140.4
C2A	H2AA	$O2^6$	0.96	2.60	3.354(6)	135.5
C1B	H1BA	$Cl1^1$	0.93	2.76	3.433(5)	130.1
C2B	H2BA	$O2^6$	0.96	2.59	3.426(6)	145.7
C3B	H3BB	015	0.96	2.52	3.141(7)	122.2

¹1/2-x,1/2+y,3/2-z; ²1/2-x,-1/2+y,3/2-z; ³1/2+x,-1/2-y,1/2+z; ⁴1-x,-1-y,2-z; ⁵3/2-x1/2+y, 3/2-z; ⁶3/2-x,-1/2+y,3/2-z

Figure 10.6: Les différentes interactions dans le composé (10).

3.4.6. Étude thermique:

La figure 10.7 montre les courbes TG/DTG et DSC du complexe (**10**). Le complexe se décompose thermiquement en cinq étapes successives. Les zones de température des décompositions et la perte de masse correspondante l'échantillon est donné dans le tableau 10.4. Dans la première étape, la perte de masse de 10% (calculée 9,9%) peut être attribuée au dégagement d'une demi-molécule de DMF. La courbe DTG donne un pic exothermique à 153,63 °C (la température maximale du pic). La deuxième étape correspond à une perte de masse de 10% dans l'intervalle de température 173-210 °C représente la perte du reste de DMF. La prochaine décomposition dans l'intervalle 210 - 381 °C avec une perte de masse estimée à 31% (calculée 33,3%) peut être due à l'évaporation de $Cl_2 + 4NH_3$. La courbe DTG donne un pic exothermique à 294,29 °C. Le processus de décomposition se poursuit jusqu'à 1100 °C en trois étapes avec une perte de masse totale de 29% correspondant au reste organique restant. Le résidu métallique (20%) est attribué à CuO.

La stabilité thermique du complexe (10) a été également caractérisée par les paramètres cinétiques de la décomposition dans des conditions non isothermes. Les valeurs de ΔE , A, ΔS , ΔH et ΔG , pour les différentes décompositions sont calculées de la même façon que pour le complexe (7) et données dans les tableaux 10.4 et 10.5.

Etapes de décomposition		Domaine de	Perte de	T (0 C)	Ordre n de	Résidu
		décomposition (°C)	masse (%)	1s (°C)	la réaction	solide (%)
	1	100-172	10	153.63	1	
	2	173-210	10	181	2	
	3	210-381	31	294.3	1	20%
	4	381-520	7	410	1	2070
	5	520- 720	7	635	1	
	6	720-1100	15	900	1	

Tableau 10.4: Données thermiques de la décomposition du complexe (10).

Etapes de décomposition	Domaine de décomposition (°C)	E (kJ/mol)	A(s ⁻¹)	ΔH (kJ/mol)	ΔS (J/K.mol)	ΔG (kJ/mol)
1	373-446	58.643	1.08×10^{8}	55.095	-17.558	55.913
2	446-483	39.380	130x114	35.605	-207.92	130.00
3	483-654	7.489	1.2×10^{-3}	1.941	-307.52	212.697
4	654-793	209.314	5.146x10 ¹³	203.635	10.96	196.333
5	793- 993	19.508	5.33x10 ⁻³	11.958	-257.097	282.255
6	993-1383	70.659	0.9079	60.906	164.063	362.481
-	-	404.993	-	369.140	-	1239.679

Tableau 10.5: Données thermiques de la décomposition du complexe (10).

Figure 10.7: Les courbes DSC-TG-DTG du complexe (10).

3.4.7 Caractérisation par diffraction des rayons X sur poudre les complexes (9) et (10) :

La diffraction des rayons X sur poudre a été utilisée pour évaluer la pureté de phase des complexes isolés. Les figures 10.8 et 10.9 montrent les diagrammes expérimentaux de diffraction des rayons X sur poudre des cristaux broyés par rapport à ceux simulés pour les composés (**9**) et

(10). La correspondance presque parfaite entre les modèles expérimentaux et simulés témoigne de la pureté de nos phases cristallines.

Figure 10.8: Diagramme de diffraction des rayons X par la poudre de (9).

Figure 10.9: Diagramme de diffraction des rayons X par la poudre de (10).

3.4.8. Étude électrochimique :

Afin d'étudier le comportement redox des complexes (9) et (10), la technique voltamétrie cyclique a été exploitée. Les mesures électrochimiques ont été effectuées dans le solvant DMSO dans une plage de potentiel de +250 à -250 mV/SCE à différentes vitesses de balayage de 25 à 200 mV/s.

Le ligand libre est électro-inactif dans la plage de potentiel balayée. Les voltamogrammes cycliques représentatifs des complexes étudiés à différentes vitesses de balayage sont illustrés dans la figure 10.10. Les données électrochimiques avec les potentiels de crête sont mentionnées dans le tableau 10.6.

Les deux complexes du Cu (II) présentent des propriétés électrochimiques similaires. Un processus d'oxydo-réduction à un électron quasi réversible, mettant en jeu le couple Cu(II)/Cu(I) à -13 et 5 mV pour (**10**) et (**9**) respectivement. Le processus redox est identique avec les valeurs rapportées pour d'autres complexes de Cu (II) [44-46].

Figure 10.10 : Voltamogrammes cycliques des complexes (9) et (10) dans une solution
0,1 M de LiClO₄/DMSO à différentes vitesses de balayage : de l'intérieur vers l'extérieur,
de 25, 50, 75, 100, 125, 150, 175 et 200 mVs⁻¹.
Les incrustations montrent les courants anodiques vs v^{1/2}.

Pour ces systèmes redox quasi réversibles, les différences de potentiel de pic cathodique et anodique Δ Ep sont respectivement de 114 et 92 mV pour les complexes (**10**) et (**9**) à une vitesse de balayage de 100 mV/s. De plus, le rapport entre les courants de pointe anodique et cathodique

 I_{pa}/I_{pc} est proche de l'unité et indépendant du taux de balayage (tableau 10.6), un comportement électrochimique similaire est observé pour d'autres complexes du cuivre [45-46].

Le comportement redox des complexes du Cu (II) à l'électrode de carbone vitreux est contrôlé par la diffusion, ce qui est démontré par la dépendance linéaire de la hauteur du pic cathodique à la racine carrée de la vitesse de balayage, $v^{1/2}$ [47-48].

Tableau 10.6: Données électrochimiques des complexes de cuivre (9) et (10) dans le DMSO/LiClO₄ à diverses vitesses de balayage.

V (mV/s)	-Epc (mV/SCE)		^a ΔE (mV/SCE)		^b E _{1/2} (mV/SCE)		- Ipc (μA/cm ²)		Ірс/Іра	
(111 (75)	10	9	10	9	10	9	10	9	10	9
25	-55	-31	86	74	-12	6	-4	1.11	1.12	0.85
50	-62	-36	99	82	-13	5	-5.3	1.6	1.17	0.81
75	-66	-39	106	86	-13	4	-6.3	1.85	1.19	0.81
100	-71	-41	114	92	-14	5	-7.35	2	1.13	0.78
125	-74	-43	120	96	-14	5	-7.9	2.37	1.16	0.79
150	-77	-45	128	100	-13	5	-8.8	2.57	1.24	0.80
175	-79	-49	132	106	-13	4	-9.4	2.67	1.33	0.80
200	-80	-51	134	108	-13	3	-9.7	2.87	1.16	0.81

3.5 Synthèse et caractérisation du complexe [Cu(C₃H₇NO)₂(C₆H₈N₂O₂S).2(NO₃)]_n noté (11) 3.5.1. Synthèse:

Le complexe catena [bis-N,N diméthylformamide-bis(sulfanilamide-N) bis(sulfanilamide-O)-cuivre(II)] de formule [Cu(C₃H₇NO)₂(C₆H₈N₂O₂S)₂.2(NO₃)]_n noté (**11**) a été synthétisé à partir d'une solution aqueuse de nitrate de cuivre trihydraté (Cu(NO₃)₂.3H₂O) (0.5 ml, 4.4 mmol) et d'une solution éthanoïque de sulfanilamide (0.5 ml, 4.6 mmol). A cette solution, on a ajouté quelques gouttes de DMF. Le mélange réactionnel est porté à reflux sous agitation continue pendant 3h. La solution résultante a été laissée au repos à la température ambiante. Des cristaux verts ont été obtenus après quelques jours.

Schéma réactionnelle de complexe (11).

3.5.2. Propriétés physico-chimiques :

- Solubilité : Le composé est soluble dans les solvants aprotiques polaires : DMF, DMSO et dans les solvants (protique polaire (PP) : éthanol et méthanol

- Point de fusion: La température de fusion du complexe est 174°C.

3.5.3. Etude par spectroscopie infrarouge :

La figure 11.1 représente le spectre IR du complexe (11). A partir des fréquences des vibrations observées sur le spectre IR on a attribué les fonctions suivantes :

Les fréquences des vibrations observées entre 3356et 3224cm⁻¹ sont respectivement attribuées aux vibrations d'élongations antisymétriques et symétriques du groupe NH₂ de l'aniline. La bande située à1598 cm⁻¹ correspondant à la déformation du groupement amine δ NH₂. Les bandes situées à 1303, 1121, 569 et 548 cm⁻¹sont caractéristiques des vibrations du groupe SO₂. De plus, les vibrations de v(S-N) sont apparues à 908 cm⁻¹. La formation du complexe a été confirmé par la présence des bandes d'environs 410 et 462 cm⁻¹ correspondant respectivement à v(Cu – N) et v(Cu – O) [49-50]. Le spectre montre une bande intense à 1368 cm⁻¹, suggérant la présence de DMF coordinné [32].

Figure 11.1: spectre d'absorption IR du complexe (11).

3.5.4. Étude par spectroscopie d'absorption UV-Visible :

Le complexe (11) présente deux bandes d'absorptions caractéristiques de la transition $\pi \rightarrow \pi^*$ et $n \rightarrow \pi^*$ du ligand sulfonamide [7, 8].

Le spectre UV de la figure 11.2 montre les bandes spectrales du complexe dans le méthanol, l'éthanol, le DMSO, et DMF. En ce qui concerne les positions maximales du complexe par rapport au ligand sulfanilamide libre dans différents solvants, les spectres du complexe sont déplacés hypsochromiques. Dans l'éthanol, le méthanol, le DMSO et le DMF respectivement, la bande d'absorption intense à environ 255 nm est déplacée à 261, 261, 266 et 280 nm pour le complexe indiquant la coordination des ligands avec le métal tandis que la première bande autour de 215 nm est trop faible lorsque le solvant est le méthanol. Dans l'éthanol, cette bande est décalée à 209 et disparait quand le solvant est DMSO ou DMF. Lorsque le solvant est le DMF, une autre bande d'absorption autour de 526 correspondants à la transition d-d apparait. Ce déplacement peut s'expliquer par la diminution de la délocalisation électronique dans la molécule de ligand lors de la coordination avec un ion métallique [8,22].

Figure 11.2 : Effet du solvant sur l'intensité et la position de la bande dans le complexe (11).

3.5.5. Caractérisation structurale par DRX sur monocristal :

Les données cristallographiques, les conditions d'enregistrement et d'affinement sont rassemblées dans le tableau 11.1. Les coordonnées atomiques, les facteurs d'agitations thermiques anisotropes, les distances interatomiques, les angles, les liaisons et les angles de torsion sont consignés en annexe 7.

Tableau 11.1: Données cristallographiques et les conditions d'enregistrement.

Empirical formula, weight(g/mol)	$CuC_{18}H_{30}N_6O_6S_{2,}554.14$
Crystal system, Space group, Z	Monoclinique, P2 ₁ /c, 4
a, b, c (Å)	9.0103(3), 14.5550(5), 11.4318(4)
β(°)	109.136 (2)
V (Å ³)	1416.38(9)
d_{calc} (g/cm ³), μ (mm ⁻¹)	1.299, 0.958
F(000)	578
Crystal size(mm ³), colour	$0.18 \times 0.08 \times 0.03$, green

20 range for data collection (°)	7.528 to 53.994
Limites h, k, l	-11 <h<11, -14<l<13<="" -18<k<18,="" td=""></h<11,>
Reflections collected, independent	15886, 3088
R _{int}	0.0518
R, Rw, S	0.04940, 0.0980, 1.054
Data, restraints, parameters	3088, 6, 185
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{\AA}^{-3})$	0.35, -0.28

Le complexe (**11**) cristallise dans système monoclinique, groupe d'espace P2₁/c. C'est un polymère de coordination bidimensionnel. Le compose cristallise avec deux nitrates en désordre et la structure est résolue en mode squeeze. L'unité asymétrique du composé comporte un cation Cu^{2+} sur un centre d'inversion, une molécule de sulfanilamide et une molécule de DMF. L'atome de cuivre à une géométrie octaédrique légèrement déformée figure 11.3. Le plan équatorial est défini par deux atomes d'azote opposés provenant des groupes amine de la sulfanilamide et deux atomes d'oxygènes provenant de deux DMF, tandis que les positions apicales sont occupées par deux oxygènes de deux groupements sulfonamides de deux sulfanilamides. La liaison Cu1 – O3 est 1.9475(17)Å légèrement plus courte que la distance Cu1-N1=2.046(2) Å. Ces valeurs sont similaires à celles trouvées dans le composé ($C_{16}H_{18}Cu_2N_6O_{10}$)_n [51] et $C_{38}H_{46}Cu_2N_{10}O_8.2H_2O$ [52]. La liaison Cu1-O1=2.436(2) Å. Les angles autour de l'atome du cuivre varient entre 88.86(8) et 91.14(8)°. Ces valeurs sont en bon accord avec d'autres composés de géométries similaires tel que $C_{36}H_{36}C_{12}CuN_{12}O_{10}$ [53].

Figure 11.3 : Unité asymétrique du composé (11). 118

Dans la majorité des complexes de coordination de la sulfanilamide, la sulfanilamide est monodentate et c'est l'azote de l'amine (aniline) qui coordine comme dans le cas des composés (7), (8), (9) et (10) dans ce travail et aussi dans les composés $[ZnCl_2(C_6H_8N_2O_2S)_2]$ [54], $CoC_{14}H_{24}CIN_60_7S$ et $CoC_{14}H_{24}Cl_2N_50_6$ [55], M(sulfanilamide)₂ (M= Co, Cd) [56].

Dans ce composé, la sulfanilamide est bidentate. L'azote de l'aniline et un oxygène du groupe sulfonamide coordinnent de part et d'autre avec deux centres métalliques ce qui génèrent un polymère en 2D (figure 11.4). Ces plans polymères se disposent les uns sur les autres formant une structure en couches parallèles au plan (b,c) (figure 11.5).

Figure 11.4 : structure en 2D du composé (11).

Figure 11.5 : Disposition des couches polymériques parallèles au plan (b, c).

La cohésion du cristal est assurée par des interactions faibles C-H…O et C-H…N intra et intermoléculaires (tableau 11.2).

Tableau 11.2 : Interactions hydrogènes assurant la cohésion du cristal.

D	Η	А	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C8B	H8BB	$O2A^1$	0.98	2.55	3.408(17)	146.3
C6	H6	N1A	0.95	2.58	3.516(7)	167.4
C7	H7	01	0.95	2.61	3.170(4)	118.5

 $^{1}+x, 1/2-y, -1/2+z$

3.5.6 Caractérisation par diffraction des rayons X sur poudre le complexe (11):

Les données de diffraction des rayons X sur poudre (PXRD) ont été utilisées pour évaluer la pureté des complexes étudiés. La figure 11.6 montre le diagramme expérimental de diffraction des rayons X sur poudre par rapport à ceux simulés à partir de données monocristallines pour les composés (**11**). La correspondance presque parfaite entre les modèles expérimentaux et simulés témoigne la pureté de nos échantillons. Le diagramme théorique correspond à la structure du composé sans nitrate, alors que le diagramme expérimental représente le composé avec la présence des nitrates en désordre.

Figure 11.6: Diagramme de diffraction des rayons X par la poudre du complexe (11)

3.5.7. Eude thermique :

Le comportement thermique du composé (**11**) est représenté par les courbes DSC et TG-DTG de la figure 11.7. La courbe DSC du complexe (**11**) montre qu'un seul pic aigu exothermique à une température égale 177.80 °C avec une énergie d'activation égal 463.5 J/g. Les courbes TG-DTG de [Cu(C₆H₈N₂O₂S)₂(C₃H₇NO)₂.(NO₃)₂]_n mettent en évidence quatre paliers de décomposition. La première est située dans l'intervalle 152-220°C avec une perte de masse assez importante de 31.76% indiquant la fusion du composé. Ensuite un deuxième palier vers 220 °C avec une perte de masse observée de 4.25%. La troisième étape correspondant à la perte de poids rapide dans l'intervalle 270-345°C avec une perte de masse de 9.74% suivie d'une quatrième étape lente, effectuée entre 346-1100 °C avec une perte de masse de 33.59%. La décomposition du produit se termine vers 1100 °C ce qui conduit à la formation d'un oxyde de cuivre, le calcul de la perte de masse théorique pour l'étape de dégradation du complexe $[Cu(C_3H_7NO)_2(C_6H_8N_2O_2S)_2.(NO_3)_2]_n$ vers CuO est 76.48%. Ce résultat correspond à la valeur expérimentale 79.34%.

Figure 11.7: Courbes DSC-TG-DTG du complexe (11).

3.5.8. Eude électrochimique :

Le comportement électrochimique du complexe de cuivre (**11**) a été étudié dans un solvant (acétonitrile) dans une plage de potentiel allant de 0 à 1000 mV. Les voltamogrammes cycliques à différentes vitesses de balayage sont démontrés dans la Figure 11.8.

Figure 11.8 : Voltamogrammes cycliques du complexe (*11*) dans une solution 0,1*M* de LiClO₄/ACN à différentes vitesses de balayage : de l'intérieur vers l'extérieur, 25, 50, 100, 125, 150, 175 et 200 (mVs⁻¹).

Dans la gamme de potentiel étudiée, le complexe montre un processus redox quasi réversible à un électron. Le potentiel de demi-onde, $E_{1/2}$, est observé à 468 mV par rapport à la SCE. A titre de déduction, ce processus d'oxydo-réduction attribué à l'onde du couple Cu(II)/Cu(I) se rapporte avec les valeurs rapportées pour les complexes de Cu (II) [27,57].

Les valeurs du potentiel de pic anodique et cathodique dépendent légèrement de la vitesse de balayage. En augmentant les valeurs de fréquence de balayage, les potentiels de pic anodique et cathodique passent respectivement de la valeur la plus positive à la valeur la plus négative. La séparation entre le pic anodique et le pic cathodique (Ep) était comprise entre 138 et 184 mV. Cependant, ces valeurs sont supérieures à celles trouvées dans un couple rédox ferrocène / ferrocénium à un électron réversible [58], ce qui indique un processus d'électrode quasi réversible avec un transfert lent d'électrons, comme indiqué précédemment [27, 59,60].

Les valeurs de Δ Ep sont supérieures à la valeur idéale de 60 mV pour un processus à un électron totalement réversible, qui peut résulter d'une combinaison de faible solubilité de certains composés, de résistance de solutions non compensées et de cinétiques de transfert d'électrons supposées être lentes [58].

Tableau 11.3 : Données électrochimiques du complexe de cuivre dans l'acétonitrile à différentesvitesses de balayage.

v	Epa	Epc	ΔΕ	E _{1/2}	Ipa	Ірс	Ino/Ino	
(mV/s)	(mV)	(mV)	(mV)	(mV)	µA/cm ²	µA/cm ²	1pa/1pc	
25	538	400	138	469	18.75	20.68	0.91	
50	542	398	144	470	24.52	28.87	0.85	
75	548	392	156	470	29.09	34	0.86	
100	552	382	170	467	31.9	36.72	0.90	
125	554	384	170	469	36.6	42.07	0.87	
150	556	380	176	468	38.94	44.91	0.87	
175	558	378	180	468	41.59	48.41	0.86	
200	560	376	184	468	45.16	49.98	0.90	

Le rapport entre les courants inverses et directs (Ipa / Ipc) est resté presque égal à l'unité et a été trouvé indépendamment de la vitesse de balayage (tableau 11.3). En outre, une relation linéaire entre le courant de pointe anodique et la racine carrée des vitesses de balayage (Ipa = $f(v^{1/2})$) est observée (encadré de la figure 11.9), ce qui implique que ce processus électrochimique est principalement contrôlé par diffusion[28].

Les molécules de solvant jouent un rôle important dans le processus de transfert d'électrons oxydant centré sur le métal [61]. Afin d'étudier l'effet du solvant sur le comportement électrochimique du complexe, une étude électrochimique comparative a également été réalisée dans différents milieux, comme en témoignent la figure 11.9.

Figure 11.9: Voltamogrammes cycliques du complexe de cuivre dans différents solvants à différentes vitesses de balayage : de l'intérieur à l'extérieur, 25, 50, ..., 200 (mVs⁻¹). Électrolyte support 0,1 M LiClO₄.

Le solvant apparaît clairement non innocent dans le processus de transfert d'électrons Cu^{2+}/Cu^{+} . Les valeurs de potentiel anodique obtenues pour le complexe dans les différents solvants sont rapportées dans le tableau 11.4.

Solvente	Epa	ΔE	$E_{1/2}$	Ipa/Ipc	Viscosity
Solvains	(mV)	(mV)	(mV)		(mPa.s)
CAN	552	170	467	0.90	0.369
DCM	540	272	422	0.99	0.413
DMF	486	176	398	1.06	0.802
EtOH	424	172	338	0.92	1.074
DMSO	402	244	278	1.10	1.987

Tableau 11.4: Propriétés voltamétriques cycliques du complexe (11) dans différents solvants.

Les valeurs de séparation du potentiel de pic anodique et cathodique ΔE sont comprises entre 170 et 270 mV, ce qui indique un processus quasi réversible [32,34]. Le comportement redox du complexe (11) à l'électrode en carbone vitreux suit un processus de diffusion contrôlé dans tous les solvants étudiés [28]. Ceci est confirmé par le tracé en ligne droite des courants de pointe anodiques par rapport à la racine carrée des vitesses de balayage de 25 à 200 mV s⁻¹ (Figure 11.10).

Figure 11.10 : Courants maximaux anodiques en fonction de v^{1/2} *du complexe (11) dans les solvants étudiés.*

D'après les résultats de la figure 11.11, le potentiel de demi-onde dépend de la nature du solvant. Cependant, un décalage négatif significatif du potentiel de pic de demi-onde est observé en fonction de la viscosité du solvant.

Figure 11.11: Effet de la viscosité du solvant sur les potentiels électrochimiques de demi-onde.

3.6. Activité biologique des composés (7) à (11):

3.6.1. Activité antibactérienne :

Méthode d'application :

L'activité antibactérienne des cinq complexes de la sulfanilamide avec le cuivre a été évaluée in vitro contre *Staphylococcus aureus*, *Pseudomonas aeruginosa* et *Escherichia coli* qui sont des extraits des feuilles d'olivier. Les solutions de différentes concentrations ($C_1=2$ mg/ml, $C_2=4$ mg/ml, $C_3=6$ mg/ml et $C_4=10$ mg/ml) dans le DMSO des composés testés ont été utilisés. Des cellules microbiennes ont été tamponnées sur un milieu nutritif (Muller – Hinton). Des disques de papier filtres stériles Whatmann de 6 millimètres de diamètre sont imprégnés par la solution préparée (20µl). À l'aide d'une pince stérile, les disques sont déposés à la surface d'un milieu ensemencé (étalé) par une suspension microbienne (100µl). Les boîtes de Pétri inoculées ont été incubées à 37 °C dans l'étuve pendant 24 h. Les diamètres de la zone d'inhibition autour de chaque pastille ont été mesurés en millimètres et comparés avec l'antibiotique Bactrim®. La
sensibilité des souches aux différents composés a été classée selon le diamètre de la zone d'inhibition comme suit : moins de 8 mm : non sensible ; de 9mm à 14 mm : sensible ; de 15mm à 19 mm : très sensible ; plus de 20 mm : extrêmement sensible [62].

Résultats :

Le composé (7) et (9) possède une activité antibactérienne contre les souches tests *Escherichia coli, Staphylococcus aureus et Pseudomonas aeruginosa.* Le composé (8) exerce une activité antibactérienne contre les souches tests *Escherichia coli et Staphylococcus aureus.* Il n'exerce aucune inhibition contre la souche de *Pseudomonas aeruginosa.* Par contre, le complexe (10) possède une faible sensibilité contre les souches tests *Escherichia coli et Staphylococcus aureus et Pseudomonas aeruginosa.* Par contre, le *seudomonas aeruginosa et exerce une activité bactérienne contre la souche Staphylococcus aureus aureus avec des différents diamètres des zones d'inhibitions figure 1.*

Le composé (11) ne possède aucune activité antibactérienne contre les souches testées *Escherichia coli, Staphylococcus aureus et Pseudomonas aeruginosa*. Les zones d'inhibition des trois souches testées des cinq complexes synthétisés sont reportées dans le tableau 1.

Tableau	1: Résultat	s de l'activité	antimicrobienne	in vitro	du	Bactrim® of	et des	complexes	7-11
vis-à-vis	des souches	testées. Les z	ones d'inhibition	en (mm)).				

Souches testées		Escherichia	Staphylococcus	Pseudomonas
Concentration (mg/ml)		coli	aureus	aeruginosa
	10	11,5±2,12	11,50±0,70	10±00
Complexe	6	8±00	9,50±0,70	7±00
7	4	-	-	-
	2	-	-	-
	10	10±00	20±0.70	-
Complexe	6	8±00	17±0.50	-
8	4	8±00	15±0.50	-
	2	8±00	15±0.70	-

	10	12±00	20±0.70	10±00
Complexe	6	12±00	16±0.50	-
9	4	9±00	9±0.50	-
	2	8±00	7±0.70	-
	10	8±00	10±0.5	7±00
Complexe	6	7±00	10±0.50	-
10	4 - 7±00		-	
	2	-	-	-
	10	-	-	-
Complexe	6	-	-	-
11	4	-	-	-
	2	-	-	-
Bactrim	23 µg/ml	30.5	-	36.5

Figure 1 : L'activité antibactérienne des complexes (7) à (11) et l'antibiotique Bactrim.

3.6.2. Activité métal chélate :

La chélation de fer des complexes testés a été déterminée par la méthode de Decker and Welch (1990). Elle est basée sur l'inhibition de la formation des complexes Fe- Ferrozine. L'évaluation de la chélation du fer se fait par l'utilisation du ferrozine pour la formation des complexes avec le fer résiduel dans le milieu réactionnel à une absorbance à 593 nm.

Mode opératoire :

Réactif utilisé : FeCl₂, ferrozine et EDTA

Solution 1: on prépare 100ml d'une solution aqueuse 0,002 mmol/ml en FeCl₂. 2H₂O (S1).

Solution 2: on prépare 10ml d'une solution aqueuse 0,05 mmol/ml en ferrozine (S2).

Un volume de 40 μ L de méthanol est ajouté à une même quantité de 40 μ L 10⁻⁵M du composé et de 40 μ L de S1, puis un volume de 80 μ L de la solution S2 est additionnée au mélange. Le tout est incubé pendant 10 minutes à une température ambiante. La lecture des absorbances est réalisée à l'aide d'un spectrophotomètre UV-visible à 593 nm. On utilise une solution de FeCl₂, ferrozine et l'EDTA comme un standard. Le pourcentage de chélation du fer est déterminé par la formule suivante.

% de chélation de fer = $[(A_s - A_c)/A_c] * 100$

A_S : Absorbance de la solution standard.

A_C: Absorbance de la solution d'échantillon.

Résultats :

Les résultats obtenus montrent que les complexes exercent un effet chélateur très faible en comparaison avec le composé de référence EDTA. La ferrozine forme des complexes avec Fe⁺², mais en présence d'ions d'agents chélateurs, la formation du complexe est perturbée, ce qui entraîne une diminution de la couleur rouge des complexes [63]. La mesure de la réduction de la couleur permet donc d'estimer l'activité chélatante du chélateur coexistant. L'ion Fe⁺² possède la capacité de déplacer des électrons uniques grâce auxquels ils peuvent permettre la formation et la propagation de nombreuses réactions radicalaires, même à partir des radicaux relativement non

réactifs. Le composé le plus actif, a interféré avec la formation du complexe ferreux et ferrozine, suggérant qu'il a une activité chélatante et capture l'ion ferreux avant la ferrozine. Les valeurs de IC^{50} des composés testés sont rassemblées dans le tableau 2, ce qui est inférieur à l'EDTA standard ($IC^{50} = 13 \mu g/ml$) [64].

Composés testés	IC ⁵⁰ (μg)
Composé (7)	164,45±0,63
Composé (8)	28,96±0,24
Composé (9)	70,43±0,83
Composé (10)	49,24±0,31
Composé (11)	26,49±0,40

Tableau 2 : Valeurs d'IC⁵⁰ pour l'activité chélates des complexes testés.

Bibliographie :

[1]: A. Novak, J. Lascombe and M. L. Josien, J. Phys. Colloques, 27(1966), C2-38-C2 48.

[2]: C. Topacli and B. Kesimli, Spectrosc Lett, 34(4) (2001) 513-526.

[3]: G. Kanagaraj and G. N. Rao, Synth. React. Inorg. Met.-Org. Chem., 22(5) (1992) 559-574.

[4]: U. Tailor and H. Patel, J Mol Struct, 1088(2015) 161–168.

[5]: P.R. Chaudhary and D. J. Sen, Am. J.Adv. Drug Deliv, 1 2 (2013), 149-156.

[6]: A. Bodoki, G. Alzuet, A. Hangan, L. Oprean, F. Estevan, A. Castiñeiras, and J. Borrás, Inorganica Chim. Acta. 363(2010), 3139–3144.

[7]: F. Blasco, L. Perelló, J. Latorre, J. Borrás, and S. Garciá-Granda, J. Inorg. Biochem, 61 (1996) 143–154.

[8]: M. Lahtinen, J. Kudva, P. Hegde, K. Bhat, E. Kolehmainen, N. Venkatesh and D. Naral, J. Mol. Struct., 1060 (2014) 280–290.

[9]: L. E. Cook and D. A. Hilderband, Thermochimica Acta. 9 (1974) 129-133.

[10]:C. Topacli and A. Topacli, J Mol Struct, 654 (2003a) 131–137.

[11]: G. O. Ildiz and S. Akyuz, Vib. Spectrosc., 58 (2012) 12–18.

[12]: R.C. Maurya and P. Patel, Spectrosc. Lett., 32 (1999) 213–236.

[13]: A.B.P. Levere, E. Mantovani and B.S. Ramaswamy, Can. J. Chem, 49 (1971) 1957-1964.

[14]: H.T. Varghese, C.Y. Panicker and D. Philip, Spectrochim. Acta A, 65 (2006) 155–158.

[15]: C. Topacli and A. Topacli, J. Mol. Struct, 654 (2003b) 145–150.

[16]: S.T. Chew, K.M. Lo, S.K. Sinniah, K.S. Sim and K.W. Tan, R. Soc.Chem.Adv, 4 (2014) 61232–61247.

[17]: V. R. Delgado, M. M-Estarda, J.C. G-Ramos, L.F. H-Ayala, M. F-Alamo, L. R-Azuara, L.O-Frade, Procedia Chemistry 12 (2014) 115 – 120.

[18]: S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand and V. Bagchi, Dalton Trans, (2012) 4955–4964.

[19]: J. Anandakumaran, M.L. Sundararajan, T. Jeyakumar and M. Nasir Uddin, Am. Chem. Sci. J., 11(3) (2016) 1-14, Article no. ACSJ.22807.

[20]: O. Chebout, R. Bouchene, S. Bouacida, M. Boudraa, W. Mazouz, M. Merzougui, K. Ouari, C. Boudaren and H. Merazig, J. Mol. Struct, 1247 (2022) 131346.

[21]: Q. Meng, Y. Wu and C. Zhang, Acta Cryst., E66 (2010) m97.

[22]: A. Bult and H. B. Klasen, J. Pharm. Sci., 67 (1978) 284.

[23]: J-B. Tommasino, F.N.R. Renaud, D. Luneau and G. Pilet, Polyhedron, 30 (2011) 1663–1670.

[24]: A.K. Asatkar, M. Tripathi, S. Panda, R. Pande and S.S. Zade, Spectrochim. Acta, Part A, 171 (2017) 18–24.

[25]: E.K. Beloglazkina, A.G. Majouga, A.V. Mironov, A.V. Yudina, A.A. Moiseeva, M.A. Lebedeva, A.N. Khlobystov and N.V., Polyhedron, 63 (2013) 15–20.

[26]: M.K. Koley, O.P. Chouhan, S. Biswas, J. Fernandes, A. Banerjee, A. Chattopadhyay, B. Varghese, P.T. Manoharan and A.P Koley, Inorg. Chim. Acta, 456 (2017) 179-198.

[27]: X. Han, K. Shen, G. Huang, C. Li, S. Mao, X.Shi, and H. J. Wu, J.Mol. Struct., 1169 (2018),18-24.

[28]: A.P. Sandoval-Rojas, L. Ibarra, M.T. Cortés, M.A. Macías, L. Suescun, and J. Hurtado, J. Electroanal. Chem., 805 (2017), 60–67.

[29]: G.F.S. Whitehead, J. Ferrando-Soria, L. Carthy, R.G. Pritchard, S.J.Teat, G.A.Timco, and R.E.P. Winpenny, Dalton Trans. 45 (2016), 1638.

[**30**]: Nakamoto, Spectres infrarouge et Raman de composés inorganiques et de coordination, Wiley, New York. (1986), p. 251.

[31]: K. Homzová, K. Györyová, M. Koman, M. Melník and Z. Juhászová, Acta Cryst., C71 (2015).

[32]: P. Guerriero, U. Casellato, S. Tamburini, P.A. Vigato, and R. Graziani, Inorg.Chim.Acta, (1987),129, 127.

[33]: O. Chebout, C. Trifa, S. Bouacida, M. Boudraa, H. Imane, M. Merzougui, W. Mazouz, K. Ouari, C. Boudaren and H. Merazig, Journal of Molecular Structure 1248 (2022) 131446

[34]: S. Löw, J. Becker, C. Würtele, A. Miska, C. Kleeberg, U. Behrens, O. Walter and S. Schindler, Chem. Eur. J., 19(2013) 5342 – 5351.

[**35**]: K. Skorda, T. C. Stamatatos, A. P. Vafiadis, A. T. Lithoxoidou, A. Terzis, S. P. Perlepes, J. Mrozinski, C. P. Raptopoulou, J. C. Plakatouras, E. G. Bakalbassis, Inorg. Chim. Acta, 358 (2005) 565–582.

[**36**]: I.D. Brown, Chem. Rev., 109(12) (2009) 6858–6919.

[37]: M. Sundaralingam and J. A. Carrabine, J. Mol. Biol., 61(2) (1971) 287-309.

[**38**]: S. Zhang, W. Chen, B. Hu, Y. Chen, L. Zheng, Y. Li and W. Li, J. Coord. Chem., 65(23) (2012) 4147–4155.

[**39**]: R. D. Willett, Acta Cryst., E57 (2001) m605-m606.

[40]: M.A. Kurawa, C.J. Adams, A.G. Orpen, Acta Cryst., E64 (2008) m1053.

[41]: J. Hernandez-Gil, L. Perello, R. Ortiz, G. Alzuet, M. Gonzalez-Alvarez, M. Liu-Gonzalez, Polyhedron 28 (2009), 138–144.

[42]: R. Kubiak K. and Ejsmont, J. Mol. Struct., 474 (1999), 275–281.

[43]: W.-J. Chen, K.-B. Chu and J.-L. Song, Acta Cryst., (2018), C74.

[44]: M. Merzougui, K. Ouari, J. Weiss, J. Mol. Struct. 1120 (2016), 239-244.

[45]: S.A. Hosseini-Yazdi, S. Hosseinpour, A.A. Khandar, W. S. Kassel, N.A. Piro, Inorg. Chim. Acta, 427 (2015), 124-130.

[46]: L.A. Saghatforoush, S. Hosseinpour, M.W. Bezpalko, W. S. Kassel, Inorg. Chim. Acta, 484 (2019) 527-534.

[47]: J. Cisterna, V. Artigas, M. Fuentealba, P. Hamon, C. Manzur, V. Dorcet, J-R Hamon, D. Carrillo, Inorg. Chim. Acta, 462 (2017), 266-280.

[48]: V.T. Kasumova, F. Koksalb, M. Aslanoglua, Y. Yerli, Spectrochim. Acta, Part A, 77 (2010), 630–637.

[49]: M. Gaye, O. Sarr, A.S. Sall, O. Diouf, and S. Hadabere, Bull. Chem. Soc. Ethiop. 11(2) (1997), 111-119.

[50]: S. P. Sovilj, G. Vuèkovi, V. M. Leovac, and Mini. Polish J. Chem. 74 (2000), 945–954.

[51]: O. Z. Yeşilel, A. Mutlu, G. Günay, N.Caner, H. Ölmez, and O. J Büyükgüngör, Chem Crystallogr. 42 (2012), 519–523.

[52]: F. Semerci, O. Z. Yeşilel, H. Ölmez and O. Büyükgüngör, Inorganica. Chem Acta. 409 (2014), 407–417.

[53]: Y.-X. Peng, X.-L. Zhao, D. Xu, H.-F. Qian, and W. Huang, Dyes and Pigments. 136(2017), 559–568.

[54]: S. Benmebarek, M. Boudraa, S. Bouacida, H. Merazig and G. Dénès, Acta Cryst. E. 70(2014) m28–m29.

[55]: G.J. Palenik, D.A. Sullivan and D.V. Naik, J. Am.Chem.Soc., 98(1976) 1177.

[56]: C. Topacli and A. Topacli, J. Mol. Struct., 654 (2003c) 153–159.

[57]: M.R. Malachowski, M.E. Adams, D. Murray, R. White, N.A. Elia, L. Rheingold, L.N. Zakharov, and R.S. Kelly, Inorg. Chim. Acta, 362 (2009), 1247–1252.

[58]: Astruc, D.. Electron Transfer and Radical Reactions in Transition-Metal Chemistry, VCH: New York. Chapter 2, Electrochemistry, (1995) pp. 89.

[59]: S.Y. Ebrahimipour, I. Sheikhshoaie, J. Castro, W. Haase, M. Mohamadi, S. Foro, M. Sheikhshoaie and S.E. Mahani, Inorg. Chim. Acta, 430 (2015), 245-252.

[60]: A. Gubendran, J. Rajesh, K. Anitha and P. J. Athappan, Mol. Struct., 1075 (2014), 419-429.

[61]: M. Magni, A. Colombo, C. Dragonetti and P.Mussini, Electrochim. Acta, 141 (2014), 324–330.

[62]: A. G. Ponce, R. Fritz, C. E. del Valle, and S. I. Roura, Lebenson Wiss Technol. 36 (2003), 679–684.

[63]: H.Göçer, A. Akıncıoğlu, N. Öztaşkın, S. Göksu, and İ. Gülçin, Archiv Der Pharmazie. 346 (2013), 783–792.

[64]: M. A. Ebrahimzadeh, F. Pourmorad and A. R. Bekhradnia, African Journal of Biotechnology. Vol. 7 (18) (2008), 3188-3192.

Conclusion générale

Conclusion générale:

Cette thèse est le fruit d'un travail que nous avons commencé il y'a des années dans un domine de recherche sur les composés soufrés tel que les thiophènes acides, le benzothiazole, la sulfanilamide et la sulfaméthoxazole et leurs dérivées. Dans le présent travail, nous avons étudié la synthèse et la caractérisation de 11 nouveaux complexes. Six comple**xe**s de la benzothiazole et cinq composés de la sulfanilamide avec le cuivre.

Dans le chapitre 2, nous avons présenté la synthèse et la caractérisation structurale des six complexes de la benzothiazole, trois avec les métaux de transition Cu et Zn, deux complexes avec un métal pauvre Sn et un complexe avec un métalloïde Sb. Les métaux de transition forment des complexes de coordination, alors que le métalloïde et le métal pauvre Sn donne des hybrides.

Le premier composé est le polymère de formule $\{(C_7H_6NS)_2[Sb_2Cl_6O]\}_n$, ce composé cristallise dans le monoclinique, P2₁/c, (10.2826 (2)A, 16.2448 (3)A, 14.9849 (3)A, 111.674(1)). Le métal possède deux environnements différents. Sb1 à une géométrie pyramidale à base carrée et la géométrie de l'atome Sb2 peut être décrite comme un octaèdre déformé. Les molécules de benzothiazole sont quasiment planes.

Le deuxième composé est $(C_7H_6NS)_2$. $2(C_7H_6NS)^+[SnCl_6]^{-2}$. Il cristallise dans le triclinique P-1. La maille élémentaire contient un groupement $[SnCl_6]$ et cinq molécules du ligand dont deux benzothiazolium. Dans l'entité inorganique $[SnCl_6]^{-2}$, le métal est localisé sur un centre d'inversion. Sa géométrie est octaédrique légèrement déformée. Les liaisons Sn-Cl sont comprises entre 2.4258(7) et 2.4382(7) Å. Les angles Cl-Sn-Cl non linéaires sont varient entre 89.83(2) et 92.10(2).

Le complexe hybride (3) de formule $2(C_7H_6NS)[SnCl_6] 2H_2O$ est composé d'une partie anionique hexacholoridostannate (IV) $[SnCl_6]^{-2}$, une partie cationique de deux benzothiazolium et deux molécules d'eau. La moitié inorganique $[SnCl_6]^{-2}$ est formée d'un cation Sn⁺⁴ localisé sur un centre d'inversion. La géométrie de l'étain est octaédrique légèrement déformée. Les longueurs de liaison Sn-Cl sont comprises entre 2.4243(6) et 2.4426(8) Å et les angles Cl-Sn-Cl sont compris entre 89.46 (0.02)° et 90.08(0.02)°. Les molécules organiques sont parallèles les unes aux autres et d'orientations opposées.

Dans le composé, l'eau joue un rôle important dans la stabilité du composé. Les molécules d'eau sont liées avec les molécules organiques par le biais des liaisons O...H-N et O...H-C, et liées avec les entités inorganiques [SnCl₆] via les interactions O-H... Cl et O-H... Cl3. De plus, la cohésion du cristal est renforcée par les interactions C-H...Cl. Ces interactions génèrent des cycles de type $R^{2}_{1}(4)$ et $R^{2}_{3}(8)$.

Le composé (4) de formule Zn (C_7H_5NS)₂ (NO_3)₂ est un complexe de coordination et cristallise dans le triclinique P-1. Le cation métallique Zn⁺² est coordinné à quatre atomes, deux atomes d'azote de deux benzothiazoles et deux atomes d'oxygène de deux nitrates. Le zinc adopte une géométrie tétraédrique légèrement déformée. Les deux liaisons Zn – O et Zn-N varient entre sont 1.9788(15) et 2.0447(15). Les angles autour de Zn sont compris entre 95.31 (6)° et 129.59(6)°.

Dans le composé (4) la cohésion entre les molécules est assurée par des interactions intra et intermoléculaires de type hydrogène, ces ponts impliquent des contacts de type C-H···O et forment des cycles de type $R^2_1(4)$, $R^1_1(8)$ et $R_2^2(18)$. Ce nombre important d'interactions engendre une structure tridimensionnelle.

Un autre complexe de de coordination est le $Zn(C_7H_5NS)_2Cl_2$, Il cristallise dans le monoclinique C2/c. Le Zinc a une géométrie tétraédrique et lié à deux atomes N de deux benzothiazoles et deux Cl. Comme le zinc est situé sur un centre d'inversion, les deux liaisons Zn–Cl sont identiques et égales 2.2331(8)Å et sont légèrement supérieures aux deux liaisons Zn– N = 2.041(2)Å. Les angles autour du zinc sont compris entre 102.13 (9)° et 116.21(3)°. La cohésion entre les entités est assurée par des interactions intramoléculaires de type hydrogène, ces ponts impliquent des contacts de type C—H…Cl. Ces interactions assurent la stabilité du cristal et génèrent une structure 3D. D'autres interactions intermoléculaires de type π - π sont observées entre les cycles du benzène, thiazole et benzothiazole (Cg1-Cg1, Cg1-Cg2, Cg3-Cg3). De plus, la structure du composé (5) est poreuse, elle présente trois tunnels le long de l'axe \vec{c} . Les dimensions de ces tunnels sont 3.325, 3.616 et 4.876 Å.

Le sixième composé de coordination est le bis-(benzothiazole-N)-tétrakis(μ_2 -atétato-O)di-copper(II)bis-(benzothiazole) de formule [Cu(C₇H₅NS)(CH₃CO₂)₂].(C₇H₅NS) noté (6). Le système est monoclinique, Groupe d'espace P2₁/c. Dans la structure, la moitié des molécules de benzothiazole sont coordinées au cuivre. Les deux atomes de cuivre symétriques (Cu1et Cu1ⁱ, code de symétrie (i) -x, -y, -z) sont liés à quatre molécules d'acétates. Ce ligand adopte un mode de coordination (O-C-O) par le biais de deux atomes d'oxygène liés aux deux centres métalliques Cu1 et Cu1ⁱ (mode de coordination bidentate pontant syn-syn). Ce mode de coordination est très fréquent lorsque le ligand est un acétate ou acide carboxylique. La distance Cu···Cu1ⁱ est de 2.9364(3) Å. Les atomes de cuivre adoptent une géométrie pyramidale à base carrée avec une valeur d'orthogonalité $\tau = 0.376$. Les deux molécules de benzothiazole coordinnées avec les deux atomes de cuivre symétriques sont coplanaires. Aussi les acétates avec les deux Cu sont coplanaires deux à deux. La cohésion de cristal est assurée par des interactions intra et intermoléculaires de type hydrogène C–H···O et forment ainsi des cycles de type R²₁(4) et R²₁(8).

Dans le chapitre 3, nous avons présenté la synthèse par reflux de cinq nouveaux complexes de coordination à base de la sulfanilamide avec le cuivre.

Les deux premiers complexes étudiés sont des monomères de formules générales $[Cu(SA)_2(NO_3)_2(H_2O)]$ (7) et le $[Cu(SA)_2(NO_3)_2(H_2O)_2]$ (8) (SA : sulfanilamide NH₂-C₆H₄-SO₂NH₂). Ils cristallisent dans l'orthorhombique. Dans le premier composé, le cuivre adopte une géométrie bipyramidale a base triangulaire alors que son environnement est octaédrique dans l'autre composé. La stabilité des édifices cristallins dans les deux complexes est essentiellement assurée par des interactions inter et intramoléculaire de type C–H…O, O–H…N, N–H…O, N–

H…N et O– H…O. L'analyse par spectroscopie infrarouge est utilisée pour identifier les groupements fonctionnels majeurs dans les 2 complexes. Les analyses thermiques (DSC, ATG et DTG) des deux composes a permis de décrire leur mécanisme de décomposition. Ils sont stables jusqu'à 423 K puis se décomposent selon un processus s'une seule étape qui s'achève à 1373 K avec formation d'oxyde de cuivre CuO. Les propriétés électrochimiques des deux complexes de cuivre étudiés par voltamétrie cyclique sur une électrode en carbone vitreux dans le DMSO ont montré un procédé mono électronique quasi réversible Cu(II)/Cu(I). Le comportement redox des deux complexes suit un processus de diffusion contrôlé dans l'ensemble des taux de balayage étudiés. Les deux complexes possèdent des propriétés antibactériennes contre les souches *Escherichia coli, Staphylococcus aureus et Pseudomonas aeruginosa.*

Les deux composés [Cu₃(DMF)₂(SA)₄Cl₆]_n (**9**) et [Cu(DMF)(SA)Cl₂]_n (**10**) sont des polymères unidimensionnels. Le composé (9) cristallise dans le triclinique P-1, le composé (10) cristallise dans le monoclinique P2₁/n. Dans le composé (9) le cuivre possède deux environnements différents. Il adopte un environnement octaédrique et une géométrie pyramidale à base carrée. Dans le polymère (10), le cuivre est octaédrique. La stabilité des complexes est assurée par des interactions inter et intramoléculaire de type hydrogène. Thermiquement, le composé (9) se décompose en quatre étapes à partir de 140°C et perd la moitié de sa masse vers 360°C pour donner l'oxyde de cuivre en fin de décomposition à 1100°C. Le composé (10) commence à se décomposer vers 100°C et donne en fin de réaction CuO en passant par 6 étapes. Il perd 50% de sa masse juste à 380°C. L'électrochimie des complexes (9) et (10) indique que le processus d'oxydo-réduction Cu (II)/Cu(I) se déroule de manière quasi réversible dans le DMSO, avec un rapport de courant ipc / ipa proche d'un. Les deux complexes présentent des propriétés antibactériennes contre les souches testées *Escherichia coli, Staphylococcus aureus et Pseudomonas aeruginosa* mais à faibles zones d'inhibitions.

Le dernier complexe (11) de formule générale $[Cu(SA)_2(DMF)_2.2(NO_3)]_n$ (11) cristallise dans le monoclinique P21/c. Le cuivre est octaédrique. Alors que la sulfanilamide est monodentate dans les quatre complexes précédents et qu'elle coordinne par le biais de l'azote de l'aniline, dans le composé (11), elle est bidentate et les deux centres donneurs sont l'azote de l'aniline et un oxygène de la fonction sulfonamide. L'angle S-O-Cu est 167.89. Le composé (11) est un polymère bidimensionnel. La stabilité du complexe est assurée par des interactions inter et intramoléculaire de type hydrogène C-H···O, C-H···N et N-H···O. L'analyse thermique montre qu'il se décompose en trois étapes distinctes. La première, rapide et sa vitesse maximale est à 174C. Entre 157 et 200°C, 30% de sa masse s'évapore et plus de 60% à 420°C. Le comportement électrochimique prédit que le complexe de cuivre (11) présente un processus d'oxydo-réduction quasi réversible à un électron (Cu²⁺/Cu⁺) à E^{1/2} = 467 mV/SCE dans l'acétonitrile, avec un rapport de courant proche de l'unité. Une étude électrochimique comparative a également été réalisée dans différents milieux afin d'évaluer l'effet global du solvant sur le processus d'oxydo-réduction du complexe étudié. Les expériences de voltamétrie cyclique indiquent que les potentiels de crête demi-onde se décalent négativement avec l'augmentation de la viscosité dynamique du solvant utilisé. Le transfert d'électrons est un processus contrôlé par diffusion dans tous les solvants étudiés.

L'étude des propriétés antibactériennes montre que le complexe n'exerce aucune activité contre les souches testés *Escherichia coli, Staphylococcus aureus et Pseudomonas aeruginosa.* L'étude de l'activité métal chélate des cinq complexes synthétisés montre une forte activité dans le complexe (**11**) et une faible activité dans le complexe (**7**).

Annexe 1 : (Composé 1)

Table 1: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å) for (1).

Atom	Х	Y	Z	Uiso*/Ueq
S1	0.36748 (12)	0.17148 (5)	0.98344 (7)	0.0662 (3)
N1	0.1904 (3)	0.05865(18)	0.94373(19)	0.0539 (7)
H1N	0.114	0.0319	0.9156	0.065*
C1	0.2113 (4)	0.1303 (2)	0.9189 (2)	0.0653 (10)
H1	0.1448	0.1582	0.8683	0.078*
C2	0.4125 (3)	0.08232 (16)	1.05140 (19)	0.0386 (6)
C3	0.5374 (3)	0.0621 (2)	1.1261 (2)	0.0509 (8)
H3	0.612	0.0988	1.147	0.061*
C4	0.5459 (3)	-0.0141 (2)	1.1676 (2)	0.0528 (8)
H4	0.6282	-0.0293	1.2172	0.063*
C5	0.4350 (4)	-0.0684 (2)	1.1374 (2)	0.0516 (8)
H5	0.4439	-0.1191	1.1678	0.062*
C6	0.3131 (3)	-0.04978 (18)	1.0645 (2)	0.0474 (7)
H6	0.2391	-0.087	1.0443	0.057*
C7	0.3030 (3)	0.02653 (17)	1.02135 (19)	0.0372 (6)
S2	0.52690 (8)	0.11063 (4)	0.59703 (6)	0.04448 (17)
N2	0.7036 (2)	0.00265 (15)	0.68158 (18)	0.0436 (6)
H2N	0.7828	-0.0203	0.7127	0.052*
C8	0.6923 (3)	0.07956 (18)	0.6561 (2)	0.0465 (7)
H8	0.769	0.1143	0.6695	0.056*
C9	0.4653 (3)	0.01241 (16)	0.60657 (18)	0.0339 (6)
C10	0.3292 (3)	-0.01737 (19)	0.5748 (2)	0.0431 (7)
H10	0.2533	0.0166	0.5433	0.052*
C11	0.3111 (3)	-0.0985 (2)	0.5917 (2)	0.0501 (7)
H11	0.2208	-0.1199	0.5712	0.06*
C12	0.4237 (3)	-0.15006 (19)	0.6385 (2)	0.0530 (8)
H12	0.4069	-0.205	0.6482	0.064*
C13	0.5579 (3)	-0.12215 (18)	0.6705 (2)	0.0481 (7)
H13	0.6331	-0.1567	0.7016	0.058*
C14	0.5770 (3)	-0.03964 (16)	0.65440 (19)	0.0359 (6)
Sb1	-0.067085(18)	0.323213 (10)	0.767483 (12)	0.03143 (5)
Sb2	0.053422 (18)	0.221298 (11)	0.613337 (12)	0.03397 (5)
Cl1	0.01992 (9)	0.07748 (5)	0.63368 (7)	0.0589 (2)
Cl2	0.30403 (7)	0.20616 (5)	0.68094 (6)	0.05062 (18)
Cl3	0.13613 (8)	0.35386 (5)	0.91846 (5)	0.05065 (18)
Cl4	-0.14276 (8)	0.21318 (5)	0.84967 (6)	0.05007 (18)
Cl5	-0.24438 (8)	0.26668 (4)	0.59142 (6)	0.04931 (18)
01	0.05721 (19)	0.24501 (12)	0.74157 (12)	0.0391 (4)
Cl6	0.04721 (8)	0.42304 (5)	0.64881 (6)	0.0558 (2)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S 1	0.0921 (7)	0.0379 (4)	0.0703 (6)	0.0017 (4)	0.0319 (5)	0.0061 (4)
N1	0.0376 (13)	0.0731 (19)	0.0455 (15)	0.0001 (13)	0.0092 (12)	-0.0065 (14)
C1	0.073 (2)	0.071 (2)	0.0456 (19)	0.042 (2)	0.0148 (18)	0.0111 (17)
C2	0.0497 (16)	0.0334 (13)	0.0350 (15)	-0.0018 (12)	0.0181 (13)	-0.0021 (11)
C3	0.0474 (17)	0.062 (2)	0.0414 (17)	-0.0141 (15)	0.0139 (14)	-0.0112 (15)
C4	0.0485 (18)	0.076 (2)	0.0313 (15)	0.0127 (17)	0.0116 (14)	0.0045 (15)
C5	0.070 (2)	0.0477 (17)	0.0422 (17)	0.0085 (16)	0.0267 (17)	0.0122 (14)
C6	0.0581 (19)	0.0430 (16)	0.0458 (17)	-0.0131 (14)	0.0247 (15)	-0.0014 (13)
C7	0.0363 (14)	0.0440 (15)	0.0308 (14)	0.0019 (12)	0.0117 (12)	-0.0024 (11)
S2	0.0533 (4)	0.0327 (3)	0.0566 (5)	0.0085 (3)	0.0310 (4)	0.0065 (3)
N2	0.0318 (12)	0.0456 (13)	0.0510 (15)	0.0069 (11)	0.0125 (11)	-0.0009 (11)
C8	0.0454 (17)	0.0419 (16)	0.060 (2)	-0.0037 (13)	0.0282 (15)	-0.0071 (14)
C9	0.0385 (14)	0.0333 (13)	0.0329 (14)	0.0054 (11)	0.0168 (12)	0.0027 (11)
C10	0.0368 (15)	0.0549 (18)	0.0368 (15)	0.0077 (13)	0.0125 (12)	0.0067 (13)
C11	0.0422 (16)	0.061 (2)	0.0444 (17)	-0.0152 (15)	0.0135 (14)	-0.0025 (15)
C12	0.062 (2)	0.0387 (16)	0.058 (2)	-0.0107 (15)	0.0214 (17)	0.0041 (14)
C13	0.0533 (18)	0.0384 (15)	0.0495 (18)	0.0097 (14)	0.0153 (15)	0.0106 (13)
C14	0.0344 (13)	0.0375 (14)	0.0357 (14)	0.0054 (11)	0.0127 (12)	0.0011 (11)
Sb1	0.03409 (9)	0.02825 (9)	0.03458 (10)	0.00560 (7)	0.01575 (7)	-0.00018 (7)
Sb2	0.03473 (10)	0.04105 (10)	0.02678 (9)	0.00516 (8)	0.01211 (7)	-0.00064 (7)
Cl1	0.0568 (5)	0.0425 (4)	0.0830 (6)	-0.0050 (4)	0.0325 (4)	-0.0093 (4)
Cl2	0.0351 (4)	0.0611 (5)	0.0567 (5)	0.0025 (3)	0.0181 (3)	-0.0138 (4)
Cl3	0.0601 (5)	0.0487 (4)	0.0381 (4)	-0.0131 (4)	0.0122 (3)	-0.0065 (3)
Cl4	0.0570 (4)	0.0486 (4)	0.0529 (4)	-0.0093 (3)	0.0301 (4)	0.0031 (3)
Cl5	0.0457 (4)	0.0430 (4)	0.0491 (4)	-0.0024 (3)	0.0057 (3)	0.0020 (3)
01	0.0460 (11)	0.0463 (11)	0.0271 (9)	0.0225 (9)	0.0160 (8)	0.0044 (8)
Cl6	0.0466 (4)	0.0579 (5)	0.0518 (5)	-0.0107 (4)	0.0051 (4)	0.0103 (4)

Table 2: Atomic displacement parameters (Å) for (1) .

Table 4: Bond Lengths for (1).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S 1	C1	1.678 (4)	C8	H8	0.93
S 1	C2	1.732 (3)	C9	C10	1.388 (4)
N1	C1	1.265 (4)	C9	C14	1.393 (3)
N1	C7	1.404 (4)	C10	C11	1.368 (4)
N1	H1N	0.8599	C10	H10	0.93
C1	H1	0.93	C11	C12	1.391 (4)
C2	C7	1.385 (4)	C11	H11	0.93
C2	C3	1.396 (4)	C12	C13	1.360 (4)
C3	C4	1.373 (5)	C12	H12	0.93
C3	H3	0.93	C13	C14	1.389 (4)

C4	C5	1.379 (4)	C13	H13	0.93
C4	H4	0.93	Sb1	01	1.9404 (16)
C5	C6	1.358 (4)	Sb1	Cl4	2.4545 (7)
C5	H5	0.93	Sb1	Cl3	2.4982 (8)
C6	C7	1.384 (4)	Sb1	Cl5	2.7522 (8)
C6	H6	0.93	Sb1	Cl6	2.9524 (8)
S2	C8	1.679 (3)	Sb2	01	1.9460 (17)
S2	C9	1.742 (3)	Sb2	Cl1	2.3974 (8)
N2	C8	1.299 (4)	Sb2	Cl2	2.4081 (7)
N2	C14	1.392 (3)	Sb2	Cl5	3.0473 (8)

Table 4 : Bond Angles for (1).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	S 1	C2	89.81 (16)	C9	C10	H10	121.2
C1	N1	C7	114.1 (3)	C10	C11	C12	121.9 (3)
C1	N1	H1N	123	C10	C11	H11	119.1
C7	N1	H1N	122.9	C12	C11	H11	119.1
N1	C1	S 1	115.3 (3)	C13	C12	C11	121.6 (3)
N1	C1	H1	122.3	C13	C12	H12	119.2
S 1	C1	H1	122.3	C11	C12	H12	119.2
C7	C2	C3	120.2 (3)	C12	C13	C14	116.8 (3)
C7	C2	S 1	110.3 (2)	C12	C13	H13	121.6
C3	C2	S 1	129.4 (2)	C14	C13	H13	121.6
C4	C3	C2	117.5 (3)	C13	C14	N2	127.1 (3)
C4	C3	H3	121.3	C13	C14	C9	122.1 (3)
C2	C3	H3	121.3	N2	C14	C9	110.8 (2)
C3	C4	C5	121.4 (3)	01	Sb1	Cl4	88.74 (6)
C3	C4	H4	119.3	01	Sb1	Cl3	85.37 (6)
C5	C4	H4	119.3	Cl4	Sb1	Cl3	90.28 (3)
C6	C5	C4	121.8 (3)	01	Sb1	Cl5	80.90 (6)
C6	C5	H5	119.1	Cl4	Sb1	C15	91.00 (3)
C4	C5	H5	119.1	Cl3	Sb1	Cl5	166.17 (3)
C5	C6	C7	117.6 (3)	01	Sb1	Cl6	78.52 (6)
C5	C6	H6	121.2	Cl4	Sb1	Cl6	166.56 (3)
C7	C6	H6	121.2	Cl3	Sb1	Cl6	92.87 (2)
C6	C7	C2	121.5 (3)	Cl5	Sb1	Cl6	82.88 (2)
C6	C7	N 1	128.1 (3)	01	Sb2	Cl1	91.07 (6)
C2	C7	N1	110.4 (3)	01	Sb2	Cl2	88.67 (6)
C8	S2	C9	90.54 (14)	Cl1	Sb2	Cl2	91.64 (3)
C8	N2	C14	114.6 (2)	01	Sb2	C15	73.22 (5)
C8	N2	H2N	122.7	Cl1	Sb2	C15	93.65 (2)
C14	N2	H2N	122.7	Cl2	Sb2	C15	161.21 (2)

Annexes

N2	C8	S2	114.0 (2)	01	Sb2	Cl6	69.00 (6)
N2	C8	H8	123	Cl1	Sb2	Cl6	158.15 (3)
S2	C8	H8	123	Cl2	Sb2	Cl6	96.56 (2)
C10	C9	C14	120.0 (2)	Cl5	Sb2	Cl6	72.59 (2)
C10	C9	S2	130.0 (2)	Sb1	Cl5	Sb2	72.175 (18)
C14	C9	S2	110.0 (2)	Sb1	01	Sb2	123.56 (9)
C11	C10	C9	117.5 (3)	Sb1	Cl6	Sb2	65.814 (16)
C11	C10	H10	121.2				

Table 5 : Torsion Angles for (1).

Α	В	С	D	Angle/°	A	В	С	D	Angle/°
C7	N1	C1	S 1	-0.1 (4)	C8	N2	C14	C9	-1.1 (3)
C2	S 1	C1	N1	0.8 (3)	C10	C9	C14	C13	1.2 (4)
C1	S 1	C2	C7	-1.2 (2)	S2	C9	C14	C13	-178.9 (2)
C1	S 1	C2	C3	178.1 (3)	C10	C9	C14	N2	-178.8 (2)
C7	C2	C3	C4	-0.2 (4)	S2	C9	C14	N2	1.1 (3)
S 1	C2	C3	C4	-179.4 (2)	01	Sb1	Cl5	Sb2	-17.75 (6)
C2	C3	C4	C5	-0.6 (5)	Cl4	Sb1	Cl5	Sb2	-106.31 (2)
C3	C4	C5	C6	1.0 (5)	Cl3	Sb1	Cl5	Sb2	-11.07 (11)
C4	C5	C6	C7	-0.5 (4)	Cl6	Sb1	Cl5	Sb2	61.70 (2)
C5	C6	C7	C2	-0.3 (4)	01	Sb2	Cl5	Sb1	18.27 (6)
C5	C6	C7	N1	178.1 (3)	Cl1	Sb2	Cl5	Sb1	108.29 (3)
C3	C2	C7	C6	0.7 (4)	Cl2	Sb2	C15	Sb1	2.25 (9)
S 1	C2	C7	C6	180.0 (2)	Cl6	Sb2	Cl5	Sb1	-54.403 (18)
C3	C2	C7	N1	-178.0 (3)	Cl4	Sb1	01	Sb2	124.26 (11)
S 1	C2	C7	N1	1.3 (3)	Cl3	Sb1	01	Sb2	-145.35 (12)
C1	N1	C7	C6	-179.4 (3)	Cl5	Sb1	01	Sb2	33.05 (11)
C1	N1	C7	C2	-0.8 (4)	Cl6	Sb1	01	Sb2	-51.47 (11)
C14	N2	C8	S 2	0.6 (3)	Cl1	Sb2	01	Sb1	-124.01 (11)
C9	S 2	C8	N2	0.1 (2)	Cl2	Sb2	01	Sb1	144.37 (12)
C8	S 2	C9	C10	179.2 (3)	Cl5	Sb2	01	Sb1	-30.53 (10)
C8	S 2	C9	C14	-0.7 (2)	Cl6	Sb2	01	Sb1	46.83 (10)
C14	C9	C10	C11	-0.6 (4)	01	Sb1	Cl6	Sb2	24.73 (6)
S2	C9	C10	C11	179.5 (2)	Cl4	Sb1	Cl6	Sb2	6.05 (11)
C9	C10	C11	C12	-0.1 (4)	Cl3	Sb1	Cl6	Sb2	109.41 (2)
C10	C11	C12	C13	0.4 (5)	Cl5	Sb1	Cl6	Sb2	-57.378 (18)
C11	C12	C13	C14	0.2 (5)	01	Sb2	Cl6	Sb1	-25.97 (6)
C12	C13	C14	N2	179.1 (3)	Cl1	Sb2	Cl6	Sb1	-0.64 (7)
C12	C13	C14	C9	-1.0 (4)	Cl2	Sb2	Cl6	Sb1	-112.00 (2)
C8	N2	C14	C13	178.9 (3)	Cl5	Sb2	Cl6	Sb1	52.283 (18)

D	Н	А	D-H	Н…А	D…A	D–H…A
N1	H1N	Cl6 ¹	0.86	2.37	3.200 (3)	162
N2	H2N	Cl6 ²	0.86	2.35	3.145 (3)	153
C1	H1	01	0.93	2.27	3.152 (4)	159
C8	H8	Cl5 ³	0.93	2.72	3.327 (3)	124
C10	H10	Cl3 ^{iv}	0.93	2.78	3.612 (3)	150
C13	H13	$Cl2^2$	0.93	2.76	3.524 (3)	140

Table 6: Hydrogen Bonds for (1).

¹ -x, y-1/2, -z+3/2 ; ² -x+1, y-1/2, -z+3/2 ; ³ x+1, y, z ; ⁴ x, -y+1/2, z-1/2

Annexe 2 : (Composé 2)

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (2). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	Y	Z	U(eq)
Sn1	0	5000	0	18.96(7)
Cl1	-2905.0(7)	4816.0(6)	636.7(5)	29.62(14)
Cl2	-129.1(7)	6495.4(6)	1429.3(5)	33.17(14)
Cl3	549.4(8)	3114.9(6)	1391.5(6)	37.73(16)
S11	2093.5(8)	5381.6(6)	3572.1(6)	31.73(15)
S21	8085.6(8)	-223.1(7)	799.9(6)	37.50(16)
N11	4145(2)	3424.7(19)	2895.5(16)	26.4(4)
C15	2896(3)	4573(2)	5764(2)	30.1(5)
C11	4133(3)	3416(2)	4072(2)	24.0(5)
C26	6123(3)	-675(2)	1145.9(19)	23.1(5)
N21	5783(3)	1393.3(19)	1776.7(17)	29.8(5)
C14	3819(3)	3682(2)	6386(2)	32.8(6)
C12	5054(3)	2512(2)	4711(2)	30.1(5)
C17	3158(3)	4387(2)	2541(2)	30.1(5)
C13	4890(3)	2660(2)	5865(2)	34.0(6)
C21	5028(3)	323(2)	1686.9(18)	22.7(5)
C16	3064(3)	4437(2)	4594(2)	24.9(5)
C25	5599(3)	-1802(2)	930(2)	27.7(5)
C22	3375(3)	182(2)	2053(2)	30.5(5)
C27	7346(3)	1240(3)	1340(2)	38.3(6)
C23	2862(3)	-943(3)	1844(2)	36.5(6)
C24	3962(3)	-1926(2)	1282(2)	33.5(6)
S1	-430(2)	-2124.6(14)	5179.2(15)	41.0(3)
C7	-1169(8)	-1427(6)	4090(5)	37.3(14)
C1	-409(6)	335(4)	4573(4)	34.8(6)
C2	-110(5)	1619(4)	4587(4)	34.8(6)
C3	703(5)	1902(4)	5390(4)	34.8(6)
C4	1218(5)	901(5)	6181(4)	34.8(6)
C5	918(5)	-382(4)	6167(4)	34.8(6)
C6	105(7)	-665(3)	5364(5)	34.8(6)
N1	-1228(5)	-132(5)	3767(4)	29.5(10)
H15	2178.88	5247.2	6115.57	36
H21	5271.17	2083.84	2087.88	36
H14	3730.52	3759.88	7169.94	39
H12	5760.25	1826.43	4367.16	36
H17	3036.36	4528.61	1774.44	36
H13	5501.88	2071.17	6307.45	41
H25	6333.46	-2455.01	557.55	33
H22	2637.39	829.58	2429.56	37
H27	8013.3	1882.2	1324.51	46
H23	1758.76	-1053.83	2080.26	44
H24	3577.61	-2672.83	1146.24	40
H7	-1571.26	-1943.61	3668.12	45

H2	-453.97	2287.94	4058.06	42
H3	903.62	2760.25	5399.43	42
H4	1761.73	1090.74	6718.34	42
H5	1262.27	-1051.1	6695.88	42

Table 2: Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for (2). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sn1	17.40(12)	16.90(11)	23.30(12)	-1.40(8)	-6.27(8)	-2.30(8)
Cl1	19.9(3)	29.5(3)	39.2(3)	-5.8(2)	-4.3(2)	-4.2(2)
Cl2	30.3(3)	34.3(3)	38.6(3)	-16.6(3)	-9.2(3)	-1.2(2)
Cl3	41.0(4)	29.0(3)	48.7(4)	14.2(3)	-26.2(3)	-12.6(3)
S11	31.6(3)	29.1(3)	36.6(3)	-6.8(3)	-13.1(3)	1.7(2)
S21	23.1(3)	39.3(4)	48.3(4)	-8.7(3)	-1.8(3)	-4.8(3)
N11	30.9(11)	25.8(10)	24.8(10)	-3.8(8)	-7.8(8)	-7.1(8)
C15	28.7(13)	32.1(13)	31.1(13)	-9.9(10)	-2.5(10)	-9.9(10)
C11	23.5(12)	24.1(12)	26.5(12)	-4.4(9)	-4.8(9)	-8.8(9)
C26	23.3(12)	24.3(11)	20.6(11)	-0.1(9)	-5.5(9)	-1.0(9)
N21	41.3(13)	22.5(10)	27.8(11)	-6.3(8)	-10.1(9)	-3.4(9)
C14	38.5(15)	40.2(14)	22.7(12)	-2.2(11)	-7.0(10)	-15.4(11)
C12	32.3(14)	22.7(12)	34.9(14)	-2.4(10)	-7.8(10)	-2.6(10)
C17	34.2(14)	30.7(13)	28.5(13)	-3.2(10)	-9.6(10)	-10.0(11)
C13	38.7(15)	33.0(14)	32.3(14)	4.6(11)	-14.4(11)	-7.7(11)
C21	29.2(13)	20.1(11)	18.5(11)	0.1(9)	-7.0(9)	-0.9(9)
C16	22.5(12)	25.0(12)	29.6(13)	-3.8(10)	-7.0(9)	-7.4(9)
C25	36.5(14)	19.3(11)	25.9(12)	-2.0(9)	-7.5(10)	1.2(10)
C22	25.5(13)	31.2(13)	28.5(13)	1.3(10)	-1.3(10)	3.8(10)
C27	39.8(16)	33.9(14)	45.9(16)	-6.2(12)	-12.4(12)	-12.8(12)
C23	26.3(13)	41.4(15)	39.6(15)	9.1(12)	-7.5(11)	-9.9(11)
C24	43.2(16)	26.2(13)	34.8(14)	5.2(11)	-15.5(11)	-13.0(11)
S 1	46.9(9)	27.4(7)	49.7(9)	-6.5(6)	-9.2(7)	-8.7(6)
C7	56(4)	26(3)	31(3)	2(2)	-10(2)	-14(3)
C1	33.5(14)	28.2(16)	39.3(13)	-6.0(13)	1.4(10)	-6.9(11)
C2	33.5(14)	28.2(16)	39.3(13)	-6.0(13)	1.4(10)	-6.9(11)
C3	33.5(14)	28.2(16)	39.3(13)	-6.0(13)	1.4(10)	-6.9(11)
C4	33.5(14)	28.2(16)	39.3(13)	-6.0(13)	1.4(10)	-6.9(11)
C5	33.5(14)	28.2(16)	39.3(13)	-6.0(13)	1.4(10)	-6.9(11)
C6	33.5(14)	28.2(16)	39.3(13)	-6.0(13)	1.4(10)	-6.9(11)
N1	36(2)	20(2)	33(2)	-3(2)	-9.0(18)	-3(2)

Table 3 : Bond Lengths for (2).

A	tom	Atom	Length/Å	Atom	Atom	Length/Å
	Sn1	$Cl1^1$	2.4263(7)	N21	C21	1.387(3)
	Sn1	Cl1	2.4263(7)	N21	C27	1.297(3)
	Sn1	$Cl2^1$	2.4258(7)	C14	C13	1.397(4)
	Sn1	Cl2	2.4258(7)	C12	C13	1.373(4)
	Sn1	Cl3	2.4380(7)	C21	C22	1.388(3)

Annexes

Sn1	Cl3 ¹	2.4380(7)	C25	C24	1.371(4)
S11	C17	1.708(3)	C22	C23	1.374(4)
S11	C16	1.737(2)	C23	C24	1.399(4)
S21	C26	1.734(2)	S 1	C7	1.609(7)
S21	C27	1.700(3)	S 1	C6	1.696(3)
N11	C11	1.394(3)	C7	N1	1.336(7)
N11	C17	1.294(3)	C1	C2	1.3900
C15	C14	1.373(4)	C1	C6	1.3900
C15	C16	1.387(3)	C1	N1	1.478(5)
C11	C12	1.391(3)	C2	C3	1.3900
C11	C16	1.396(3)	C3	C4	1.3900
C26	C21	1.398(3)	C4	C5	1.3900
C26	C25	1.384(3)	C5	C6	1.3900

¹-x,1-y,-z.

Table 4: Bond Angles for (2).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl1	Sn1	$Cl1^1$	180.00(3)	C13	C12	C11	118.0(2)
Cl1	Sn1	Cl3 ¹	90.17(2)	N11	C17	S11	115.64(18)
Cl1	Sn1	Cl3	89.83(2)	C12	C13	C14	121.1(2)
$Cl1^1$	Sn1	Cl3 ¹	89.83(2)	N21	C21	C26	112.7(2)
$Cl1^1$	Sn1	Cl3	90.17(2)	N21	C21	C22	127.1(2)
Cl2	Sn1	$Cl1^1$	87.90(2)	C22	C21	C26	120.1(2)
Cl2	Sn1	Cl1	92.10(2)	C15	C16	S11	129.70(19)
$Cl2^1$	Sn1	$Cl1^1$	92.10(2)	C15	C16	C11	120.7(2)
$Cl2^1$	Sn1	Cl1	87.90(2)	C11	C16	S11	109.57(17)
$Cl2^1$	Sn1	Cl2	180.0	C24	C25	C26	117.8(2)
Cl2	Sn1	Cl3	90.72(3)	C23	C22	C21	118.0(2)
$Cl2^1$	Sn1	$Cl3^1$	90.72(3)	N21	C27	S21	115.04(19)
$Cl2^1$	Sn1	Cl3	89.28(3)	C22	C23	C24	121.5(2)
Cl2	Sn1	Cl3 ¹	89.28(3)	C25	C24	C23	120.9(2)
$Cl3^1$	Sn1	Cl3	180.0	C7	S 1	C6	90.0(3)
C17	S11	C16	89.66(12)	N1	C7	S 1	122.5(5)
C27	S21	C26	90.05(12)	C2	C1	C6	120.0
C17	N11	C11	112.0(2)	C2	C1	N1	126.7(3)
C14	C15	C16	118.1(2)	C6	C1	N1	113.3(3)
N11	C11	C16	113.1(2)	C3	C2	C1	120.0
C12	C11	N11	126.0(2)	C4	C3	C2	120.0
C12	C11	C16	120.8(2)	C3	C4	C5	120.0
C21	C26	S21	109.46(17)	C4	C5	C6	120.0
C25	C26	S21	128.89(18)	C1	C6	S 1	110.7(3)
C25	C26	C21	121.6(2)	C5	C6	S 1	129.3(3)
C27	N21	C21	112.7(2)	C5	C6	C1	120.0
C15	C14	C13	121.3(2)	C7	N1	C1	103.4(4)

¹-x,1-y,-z.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
S21	C26	C21	N21	1.3(2)	C16	C11	C12	C13	-0.5(3)
S21	C26	C21	C22	-179.57(17)	C25	C26	C21	N21	-177.3(2)
S21	C26	C25	C24	-179.31(18)	C25	C26	C21	C22	1.9(3)
N11	C11	C12	C13	179.7(2)	C22	C23	C24	C25	0.6(4)
N11	C11	C16	S11	0.2(2)	C27	S21	C26	C21	-1.59(18)
N11	C11	C16	C15	179.8(2)	C27	S21	C26	C25	176.8(2)
C15	C14	C13	C12	-0.1(4)	C27	N21	C21	C26	-0.1(3)
C11	N11	C17	S11	-0.5(3)	C27	N21	C21	C22	-179.2(2)
C11	C12	C13	C14	0.6(4)	S 1	C7	N1	C1	3.3(6)
C26	S21	C27	N21	1.7(2)	C7	S 1	C6	C1	2.9(3)
C26	C21	C22	C23	-1.4(3)	C7	S 1	C6	C5	-178.0(4)
C26	C25	C24	C23	-0.1(3)	C1	C2	C3	C4	0.0
N21	C21	C22	C23	177.6(2)	C2	C1	C6	S 1	179.2(4)
C14	C15	C16	S11	180.00(19)	C2	C1	C6	C5	0.0
C14	C15	C16	C11	0.5(3)	C2	C1	N1	C7	178.3(4)
C12	C11	C16	S11	-179.61(18)	C2	C3	C4	C5	0.0
C12	C11	C16	C15	-0.1(3)	C3	C4	C5	C6	0.0
C17	S11	C16	C15	-179.9(2)	C4	C5	C6	S 1	-179.0(5)
C17	S11	C16	C11	-0.41(17)	C4	C5	C6	C1	0.0
C17	N11	C11	C12	180.0(2)	C6	S 1	C7	N1	-3.9(5)
C17	N11	C11	C16	0.2(3)	C6	C1	C2	C3	0.0
C21	C26	C25	C24	-1.1(3)	C6	C1	N1	C7	-0.7(4)
C21	N21	C27	S21	-1.2(3)	N1	C1	C2	C3	-178.9(5)
C21	C22	C23	C24	0.2(4)	N1	C1	C6	S 1	-1.8(3)
C16	S11	C17	N11	0.5(2)	N1	C1	C6	C5	179.0(4)
C16	C15	C14	C13	-0.5(4)					

Table 5 : Torsion Angles for (2).

Table 6 : Hydrogen Bonds for (2).

D	Н	А	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N21	H21	N11	0.86	1.81	2.671(3)	173.7
C17	H17	$Cl1^1$	0.93	2.88	3.801(3)	173.6
C17	H17	Cl3	0.93	2.89	3.366(2)	113.0
C25	H25	$Cl1^2$	0.93	2.79	3.572(2)	142.1
C27	H27	$Cl3^3$	0.93	2.68	3.582(3)	163.2

¹-x,1-y,-z; ²1+x,-1+y,+z; ³1+x,+y,+z.

Refinement model description :

Number of restraints - 83, number of constraints – unknown.

Details:

- Fixed U_{iso} at 1.2 times of: All C(H) groups, All N(H) groups
- Rigid bond restraints C1, C2, C3, C4, C5, C6, N1, C7, S1 with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01

- U_{iso}/U_{aniso} restraints and constraints $C1 \approx C2 \approx C3 \approx C4 \approx C5 \approx C6 \approx N1 \approx C7 \approx S1$: within 2A with sigma of 0.04 and sigma for terminal atoms of 0.08, $U_{anis}(C1) = U_{anis}(C2) = U_{anis}(C3)$ = $U_{anis}(C4) = U_{anis}(C5) = U_{anis}(C6)$.

Others

- Fixed Sof: S1(0.5) C7(0.5) H7(0.5) C1(0.5) C2(0.5) H2(0.5) C3(0.5) H3(0.5) C4(0.5) H4(0.5)
 C5(0.5) H5(0.5) C6(0.5) N1(0.5).
- Aromatic/amide H refined with riding coordinates: C15(H15), N21(H21), C14(H14),
 C12(H12), C17(H17), C13(H13), C25(H25), C22(H22), C27(H27), C23(H23), C24(H24),
 C7(H7), C2(H2), C3(H3), C4(H4), C5(H5).
- Fitted hexagon refined as free rotating group: C1(C2,C3,C4,C5,C6).

Annexe 3 : (Composé 3)

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (3). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U(eq)
Sn1	5000	5000	5000	34.39(8)
Cl1	4140.6(10)	2057.4(7)	4956.5(6)	51.37(16)
Cl2	5931.6(11)	4632.3(8)	2976.3(6)	57.61(18)
Cl3	1570.3(10)	5014.9(9)	3505.4(7)	63.76(19)
S1	7632.0(12)	7223.0(9)	737.8(8)	64.1(2)
01	8861(5)	1834(3)	4542(2)	75.6(6)
N1	8276(3)	9764(3)	2320(2)	53.6(5)
C2	7821(4)	11912(3)	715(3)	56.5(7)
C1	7869(3)	10325(3)	1029(2)	42.5(5)
C5	7078(4)	9343(4)	-1351(2)	56.9(7)
C7	8199(4)	8202(4)	2304(3)	60.6(7)
C6	7500(3)	9058(3)	22(2)	43.5(6)
C3	7388(4)	12171(4)	-640(3)	67.4(8)
C4	7031(4)	10906(4)	-1653(3)	62.6(8)
H1	8561.01	10411.54	3081.07	64
H2	8077.82	12782.46	1409.87	68
H5	6832.93	8480.08	-2049.59	68
H7	8444.89	7659.59	3113.69	73
H3	7330.82	13244.1	-892.01	81
H4	6746.26	11135.37	-2581.7	75
H1A	9510(70)	2680(40)	4330(60)	170(20)
H1B	7670(50)	1780(60)	4600(60)	200(30)

Table 2: Anisotropic Displacement Parameters (Å²×10³) for CH19. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sn1	41.48(14)	32.37(12)	29.52(12)	5.12(9)	12.25(9)	7.98(9)
Cl1	75.8(4)	33.5(3)	43.6(3)	6.4(3)	21.4(3)	6.4(3)
Cl2	84.6(5)	51.0(4)	48.9(3)	5.8(3)	40.5(3)	8.5(3)
Cl3	47.7(4)	66.6(4)	63.3(4)	7.8(4)	1.1(3)	13.3(3)
S 1	77.0(5)	49.4(4)	63.5(4)	10.5(4)	24.6(4)	6.0(4)
01	96.9(19)	75.1(16)	55.7(12)	0.2(12)	20.3(12)	34.4(14)
N1	54.3(13)	70.9(15)	32.4(10)	3.7(11)	14.8(9)	5.4(11)
C2	58.0(17)	52.6(16)	59.9(16)	2.0(14)	23.8(13)	8.0(13)
C1	37.4(13)	53.0(14)	36.2(11)	7.8(11)	13.0(10)	5.9(11)
C5	50.9(16)	71.3(19)	35.7(13)	-3.0(13)	9.8(11)	-8.5(13)
C7	61.6(18)	67.5(19)	50.9(15)	24.4(15)	16.9(13)	9.5(14)
C6	39.9(13)	48.3(14)	36.3(12)	5.7(11)	10.0(10)	0.0(11)
C3	59.3(18)	68.5(19)	77(2)	32.4(18)	22.6(15)	14.8(15)
C4	50.8(17)	87(2)	41.6(14)	25.8(16)	8.6(12)	3.5(15)

Table 3: Bond Lengths for (3).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Sn1	$Cl1^1$	2.4280(6)	N1	C1	1.392(3)
Sn1	Cl1	2.4280(6)	N1	C7	1.298(3)
Sn1	Cl2	2.4325(6)	C2	C1	1.384(3)
Sn1	$Cl2^1$	2.4325(6)	C2	C3	1.369(4)
Sn1	Cl3	2.4242(6)	C1	C6	1.380(3)
Sn1	$Cl3^1$	2.4242(6)	C5	C6	1.393(3)
S1	C7	1.673(3)	C5	C4	1.362(4)
S1	C6	1.737(2)	C3	C4	1.385(4)

Table 4: Bond Angles for (3).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
$Cl1^1$	Sn1	Cl1	180.0	Cl3	Sn1	$Cl3^1$	180.0
Cl1	Sn1	$Cl2^1$	90.35(2)	C7	S 1	C6	90.16(13)
Cl1	Sn1	Cl2	89.65(2)	C7	N1	C1	114.1(2)
$Cl1^1$	Sn1	$Cl2^1$	89.65(2)	C3	C2	C1	117.0(3)
$Cl1^1$	Sn1	Cl2	90.35(2)	C2	C1	N1	127.6(2)
Cl2	Sn1	$Cl2^1$	180.00(3)	C6	C1	N1	110.8(2)
Cl3 ¹	Sn1	$Cl1^1$	90.08(2)	C6	C1	C2	121.6(2)
Cl3	Sn1	$Cl1^1$	89.92(2)	C4	C5	C6	117.4(2)
$Cl3^1$	Sn1	Cl1	89.92(2)	N1	C7	S 1	114.4(2)
Cl3	Sn1	Cl1	90.08(2)	C1	C6	S 1	110.51(17)
Cl3	Sn1	Cl2	89.46(2)	C1	C6	C5	120.7(2)
Cl3	Sn1	$Cl2^1$	90.54(3)	C5	C6	S 1	128.8(2)
Cl3 ¹	Sn1	$Cl2^1$	89.46(3)	C2	C3	C4	121.6(3)
Cl3 ¹	Sn1	Cl2	90.54(3)	C5	C4	C3	121.6(2)

¹ 1-x, 1-y, 1-z.

Table 5: Torsion Angles for (3).

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
N1	C1	C6	S 1	1.2(2)	C7	N1	C1	C2	179.4(3)
N1	C1	C6	C5	-179.3(2)	C7	N1	C1	C6	-0.8(3)
C2	C1	C6	S 1	-179.06(19)	C6	S 1	C7	N1	0.5(2)
C2	C1	C6	C5	0.5(4)	C6	C5	C4	C3	0.0(4)
C2	C3	C4	C5	0.5(4)	C3	C2	C1	N1	179.8(2)
C1	N1	C7	S 1	0.1(3)	C3	C2	C1	C6	0.1(4)
C1	C2	C3	C4	-0.6(4)	C4	C5	C6	S 1	178.9(2)
C7	S 1	C6	C1	-0.97(19)	C4	C5	C6	C1	-0.5(4)
C7	S 1	C6	C5	179.6(2)					

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N1	H1	$O1^1$	0.88	1.82	2.691(3)	172.9
C2	H2	$Cl3^2$	0.95	2.97	3.745(3)	139.3
C5	H5	$Cl1^3$	0.95	2.85	3.631(3)	140.0
C5	H5	$Cl2^3$	0.95	2.89	3.626(3)	135.1
C7	H7	Cl2	0.95	2.81	3.367(3)	118.1
C7	H7	$O1^4$	0.95	2.50	3.240(3)	134.4
01	H1A	Cl3 ⁵	0.859(18)	2.596(19)	3.451(3)	174(5)
01	H1B	Cl1	0.867(19)	2.73(2)	3.589(3)	172(5)

Table 6: Hydrogen Bonds for (3).

¹+x,1+y,+z; ²1+x,1+y,+z; ³1-x,1-y,-z; ⁴2-x,1-y,1-z; ⁵1+x,+y,+z.

Refinement model description:

Number of restraints - 3, number of constraints - 0

Details:

- Fixed Uiso at 1.2 times of: All C(H) groups, All N(H) groups
- Restrained distances

O1-H1A 0.91 with sigma of 0.02

O1-H1B 0.91 with sigma of 0.02

H1B-H1A 1.45 with sigma of 0.04

- Aromatic/amide H refined with riding coordinates: N1(H1), C2(H2), C5(H5), C7(H7), C3(H3), C4(H4)

Annexe 4 : (Composé 4)

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (4). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	Y	Z	U(eq)
Zn	9239.3(3)	7172.5(3)	7390.6(2)	42.45(8)
S 1	7399.8(6)	4501.7(7)	9745.2(3)	48.46(12)
S2	7387.2(8)	4335.9(7)	5395.5(3)	53.44(13)
N2	8308(2)	6422(2)	6316.8(9)	40.8(3)
C8	7820(2)	7364(2)	5489.7(10)	36.6(3)
C1	10246(2)	3836(2)	8758.3(10)	37.3(3)
N1	8902(2)	5446(2)	8384.5(9)	40.9(3)
C6	9675(2)	3129(2)	9524.4(10)	37.6(3)
C7	7379(2)	5894(3)	8835.0(12)	46.5(4)
C5	10859(3)	1553(3)	9998.4(12)	46.5(4)
C2	12026(3)	2931(3)	8436.9(12)	49.6(4)
C4	12596(3)	675(3)	9667.1(15)	57.5(5)
C3	13163(3)	1354(3)	8894.5(15)	59.2(5)
C13	7253(2)	6426(2)	4898.8(11)	40.5(3)
C9	7863(3)	9072(2)	5235.1(12)	47.6(4)
C12	6688(3)	7174(3)	4046.2(12)	52.8(4)
C10	7311(3)	9797(3)	4392.0(13)	58.0(5)
C11	6721(3)	8861(3)	3809.7(13)	59.9(5)
C14	8134(3)	4853(3)	6339.2(13)	49.0(4)
04	11824.6(19)	6702(2)	6978.5(9)	54.1(3)
01	7368(2)	9410.1(19)	7816.4(11)	63.3(4)
N3	7681(2)	10830(2)	7552.6(11)	52.8(4)
N4	12717(2)	7082(2)	7576.5(11)	52.8(4)
05	14265(2)	7077(3)	7422.4(13)	87.1(6)
03	8932(3)	10669(2)	7025.5(12)	79.4(5)
06	11932(3)	7443(3)	8279.9(11)	83.3(5)
O2	6707(3)	12298(2)	7802.0(16)	97.1(7)
H7	6329.99	6923.27	8668.29	56
H5	10487.3	1112.22	10518.87	56
H2	12428	3384.65	7928.32	60
H4	13410.31	-391.72	9963.64	69
H3	14343.91	720.22	8683.86	71
H9	8253.22	9702.76	5622.21	57
H12	6303.48	6548.42	3653.92	63
H10	7332.74	10934.87	4207.84	70
H11	6340.63	9395.86	3247.22	72
H14	8402.69	4056.25	6842.61	59

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Zn	50.16(13)	43.13(12)	35.15(11)	1.78(8)	-1.68(8)	-19.73(9)
S1	38.7(2)	61.5(3)	46.3(2)	3.1(2)	5.06(17)	-21.7(2)
S2	67.1(3)	44.9(2)	57.1(3)	-4.2(2)	-4.2(2)	-30.9(2)
N2	45.2(7)	41.9(7)	38.4(7)	1.6(6)	-2.0(6)	-20.8(6)
C8	37.0(7)	38.6(8)	34.0(7)	-3.0(6)	3.8(6)	-14.1(6)
C1	42.7(8)	39.4(8)	32.5(7)	-2.4(6)	-0.5(6)	-18.8(7)
N1	43.9(7)	43.7(7)	35.0(7)	2.4(6)	-2.6(6)	-17.3(6)
C6	39.0(8)	44.0(8)	34.6(8)	-2.7(6)	-0.7(6)	-21.1(7)
C7	40.0(8)	50.1(10)	46.3(9)	4.5(8)	-5.1(7)	-15.0(7)
C5	54.6(10)	48.6(9)	40.0(9)	6.0(7)	-4.3(7)	-25.4(8)
C2	54.1(10)	48.6(10)	43.1(9)	-3.4(8)	12.8(8)	-16.3(8)
C4	56.9(11)	43.9(10)	63.1(12)	7.0(9)	-7.4(9)	-11.2(8)
C3	52.3(11)	50.2(11)	64.9(13)	-3.8(9)	10.6(9)	-8.3(9)
C13	40.9(8)	41.1(8)	40.1(8)	-6.7(7)	4.4(6)	-15.5(7)
C9	64.3(11)	42.5(9)	40.3(9)	-3.7(7)	2.9(8)	-25.0(8)
C12	62.8(11)	58.2(11)	37.7(9)	-11.0(8)	-0.1(8)	-21.7(9)
C10	85.3(15)	44.9(10)	44.3(10)	3.7(8)	5.2(9)	-26.7(10)
C11	80.6(14)	59.6(12)	33.5(9)	2.2(8)	-0.9(9)	-20.7(10)
C14	57.6(10)	46.0(9)	47.4(10)	6.0(8)	-5.9(8)	-25.8(8)
O4	53.1(7)	60.4(8)	51.8(8)	-5.0(6)	-2.4(6)	-24.6(6)
01	72.4(9)	41.5(7)	75.2(10)	0.4(7)	13.5(8)	-22.1(7)
N3	66.6(10)	42.7(8)	48.4(9)	-2.1(7)	6.7(8)	-20.2(7)
N4	55.1(9)	52.0(9)	52.9(9)	10.2(7)	-10.3(7)	-24.4(7)
05	56.0(10)	110.6(16)	99.3(15)	19.3(12)	-18.8(9)	-41.7(10)
O3	93.8(13)	64.3(10)	80.5(12)	-5.2(8)	30.0(10)	-31.4(9)
06	114.5(15)	94.8(13)	49.9(9)	-7.6(9)	5.7(9)	-49.6(12)
O2	119.5(16)	45.6(9)	123.7(17)	-21.1(9)	52.5(13)	-27.0(10)

Table 2: Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for (4). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 3 : Bond Lengths for (4).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Zn	N2	2.0290(14)	N1	C7	1.301(2)
Zn	N1	2.0448(14)	C6	C5	1.394(2)
Zn	O4	1.9941(14)	C5	C4	1.373(3)
Zn	01	1.9788(15)	C2	C3	1.371(3)
S 1	C6	1.7329(17)	C4	C3	1.394(3)
S 1	C7	1.7036(19)	C13	C12	1.396(3)
S2	C13	1.7345(18)	C9	C10	1.377(3)
S2	C14	1.705(2)	C12	C11	1.368(3)
N2	C8	1.399(2)	C10	C11	1.392(3)
N2	C14	1.300(2)	O4	N4	1.278(2)
C8	C13	1.393(2)	01	N3	1.272(2)
C8	C9	1.392(2)	N3	03	1.228(2)
C1	N1	1.394(2)	N3	O2	1.217(2)
C1	C6	1.397(2)	N4	05	1.215(2)

C1	C2	1.397(2)	N4	O6	1.232(3)

Table 4 : Bond Angles for (4).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N2	Zn	N1	103.63(6)	C5	C6	C1	121.67(16)
O4	Zn	N2	96.83(6)	N1	C7	S 1	116.72(14)
O4	Zn	N1	117.66(6)	C4	C5	C6	117.40(17)
01	Zn	N2	111.96(7)	C3	C2	C1	117.92(17)
01	Zn	N1	95.31(6)	C5	C4	C3	121.22(18)
01	Zn	O4	129.59(6)	C2	C3	C4	121.76(19)
C7	S 1	C6	89.32(8)	C8	C13	S2	109.72(13)
C14	S2	C13	89.45(9)	C8	C13	C12	121.41(17)
C8	N2	Zn	128.99(11)	C12	C13	S2	128.87(15)
C14	N2	Zn	120.14(12)	C10	C9	C8	117.92(18)
C14	N2	C8	110.86(15)	C11	C12	C13	117.48(18)
C13	C8	N2	113.58(15)	C9	C10	C11	121.33(19)
C9	C8	N2	126.08(16)	C12	C11	C10	121.50(18)
C9	C8	C13	120.34(16)	N2	C14	S2	116.37(14)
N1	C1	C6	113.87(15)	N4	O4	Zn	108.12(12)
N1	C1	C2	126.14(15)	N3	01	Zn	112.19(12)
C2	C1	C6	119.98(16)	O3	N3	01	118.02(17)
C1	N1	Zn	127.63(11)	O2	N3	01	119.72(18)
C7	N1	Zn	121.28(12)	O2	N3	03	122.21(18)
C7	N1	C1	110.49(14)	05	N4	O4	118.89(19)
C1	C6	S1	109.57(12)	05	N4	06	124.0(2)
C5	C6	S 1	128.76(13)	06	N4	O4	117.09(18)

Table 5: Torsion Angles for (4).

Α	В	C	D	Angle/°	Α	В	C	D	Angle/°
Zn	N2	C8	C13	179.26(11)	C6	S1	C7	N1	-0.40(16)
Zn	N2	C8	C9	-0.7(2)	C6	C1	N1	Zn	169.28(11)
Zn	N2	C14	S2	-178.67(9)	C6	C1	N1	C7	-1.8(2)
Zn	N1	C7	S 1	-170.42(9)	C6	C1	C2	C3	0.1(3)
Zn	04	N4	05	-172.26(15)	C6	C5	C4	C3	1.1(3)
Zn	04	N4	06	7.4(2)	C7	S1	C6	C1	-0.63(13)
Zn	01	N3	03	6.6(2)	C7	S 1	C6	C5	179.08(17)
Zn	01	N3	02	-175.89(19)	C5	C4	C3	C2	0.7(4)
S 1	C6	C5	C4	178.04(15)	C2	C1	N1	Zn	-10.7(3)
S2	C13	C12	C11	-179.54(16)	C2	C1	N1	C7	178.24(18)
N2	C8	C13	S2	-1.06(18)	C2	C1	C6	S 1	-178.54(14)
N2	C8	C13	C12	178.99(16)	C2	C1	C6	C5	1.7(3)
N2	C8	C9	C10	-179.31(18)	C13	S2	C14	N2	-0.57(16)
C8	N2	C14	S2	0.1(2)	C13	C8	C9	C10	0.8(3)
C8	C13	C12	C11	0.4(3)	C13	C12	C11	C10	0.6(3)
C8	C9	C10	C11	0.2(3)	C9	C8	C13	S2	178.86(14)
C1	N1	C7	S 1	1.3(2)	C9	C8	C13	C12	-1.1(3)
C1	C6	C5	C4	-2.3(3)	C9	C10	C11	C12	-0.9(4)
C1	C2	C3	C4	-1.3(3)	C14	S2	C13	C8	0.89(13)

N1	C1	C6	S 1	1.49(18)	C14	S2	C13	C12	-179.17(18)
N1	C1	C6	C5	-178.24(15)	C14	N2	C8	C13	0.7(2)
N1	C1	C2	C3	-179.93(18)	C14	N2	C8	C9	-179.26(18)

Table 6 : Hydrogen Bonds for (4).

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C7	H7	$O5^1$	0.93	2.48	3.083(2)	123.0
C5	H5	$O6^2$	0.93	2.62	3.342(3)	135.1
C9	H9	O3	0.93	2.47	3.361(3)	159.4
C14	H14	$O3^3$	0.93	2.56	3.229(3)	129.5
C14	H14	$O2^3$	0.93	2.61	3.349(3)	136.9

¹-1+x,+y,+z; ²2-x,1-y,2-z; ³+x,-1+y,+z.

Refinement model description:

Number of restraints - 0, number of constraints - unknown.

Details:

- Fixed U_{iso}

At 1.2 times of: All C(H) groups

- Rigid bond restraints O4, O1, O3, O2, O5, O6, N1, N2 with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01
- U_{iso}/U_{aniso} restraints and constraints $O4 \approx O1 \approx O3 \approx O2 \approx O5 \approx O6 \approx N1 \approx N2$: within 2A with sigma of 0.04 and sigma for terminal atoms of 0.08.
- Aromatic/amide H refined with riding coordinates: C7(H7), C5(H5), C2(H2), C4(H4), C3(H3), C9(H9), C12(H12), C10(H10), C11(H11), C14(H14)

Annexe 5 : (Composé 5)

Table 1: Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement
Parameters (Å ² ×10 ³) for (5). U _{eq} is defined as 1/3 of of the trace of the orthogonalised U _{IJ} tenso

Atom	x	Y	Z.	U(eq)
Co1	5000	3566.0(4)	2500	15.95(17)
Cl1	2579.6(9)	4496.7(6)	2452.4(5)	23.3(2)
S1	6230.7(11)	1022.1(6)	523.8(6)	27.1(2)
N1	5255(3)	2589.4(18)	1439.6(17)	17.7(6)
C1	4867(3)	2821(2)	546(2)	15.8(7)
C7	5972(4)	1679(2)	1497(2)	22.6(7)
C6	5322(4)	2047(2)	-58(2)	21.2(7)
C2	4097(4)	3726(2)	241(2)	20.2(7)
C3	3805(4)	3828(3)	-655(2)	25.3(8)
C5	5019(4)	2155(3)	-965(2)	27.0(8)
C4	4257(4)	3052(3)	-1255(2)	29.5(8)
H7	6322.17	1403.94	2044.52	27
H2	3791.88	4245.85	637.47	24
H3	3293.03	4427.16	-872	30
H5	5319.97	1638.92	-1366.09	32
H4	4038.02	3144.49	-1862.65	35

Table 2: Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for (5). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Co1	21.5(3)	11.1(3)	15.2(3)	0	-2.5(2)	0
Cl1	27.4(4)	19.4(4)	23.1(4)	-0.2(3)	-1.4(3)	6.7(3)
S 1	26.9(5)	17.7(5)	36.8(6)	-11.6(4)	-0.8(4)	3.7(3)
N1	18.6(13)	13.4(14)	21.0(15)	-0.3(11)	-2.8(11)	0.0(10)
C1	14.0(15)	18.7(18)	14.6(17)	-0.9(13)	1.5(12)	-1.6(11)
C7	23.3(17)	16.6(18)	27.9(19)	-1.5(14)	-2.8(14)	3.6(13)
C6	14.1(16)	22.3(18)	27.1(19)	-8.2(15)	-0.1(13)	-1.1(12)
C2	21.5(16)	19.0(18)	20.2(18)	0.9(14)	2.4(13)	0.3(13)
C3	21.1(17)	33(2)	21.6(19)	6.7(16)	0.5(14)	0.1(14)
C5	21.2(17)	37(2)	23(2)	-17.1(16)	3.4(14)	-2.9(14)
C4	23.4(18)	50(2)	15.5(18)	-2.9(17)	2.0(14)	-7.6(16)

Table 3 : Bond Lengths for (5).

r		<u>^</u>			<u>^</u>
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Co1	Cl1	2.2331(8)	N1	C7	1.309(4)
Co1	Cl1 ¹	2.2331(8)	C1	C6	1.399(4)
Co1	$N1^1$	2.041(2)	C1	C2	1.393(4)
Co1	N1	2.041(2)	C6	C5	1.380(5)
S 1	C7	1.700(3)	C2	C3	1.363(4)
S 1	C6	1.735(3)	C3	C4	1.395(4)
N1	C1	1.398(4)	C5	C4	1.374(5)

 $^{1}1$ -x,+y,1/2-z.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl1	Co1	$Cl1^1$	114.49(5)	C2	C1	N1	125.5(3)
$N1^1$	Co1	$Cl1^1$	113.59(7)	C2	C1	C6	120.3(3)
N1	Co1	$Cl1^1$	105.79(7)	N1	C7	S 1	116.8(2)
N1	Co1	Cl1	113.59(7)	C1	C6	S 1	109.3(2)
$N1^1$	Co1	Cl1	105.79(7)	C5	C6	S 1	129.3(2)
$N1^1$	Co1	N1	103.19(14)	C5	C6	C1	121.3(3)
C7	S 1	C6	89.61(15)	C3	C2	C1	118.0(3)
C1	N1	Co1	125.88(19)	C2	C3	C4	121.4(3)
C7	N1	Co1	123.7(2)	C4	C5	C6	117.6(3)
C7	N1	C1	110.1(3)	C5	C4	C3	121.3(3)
N1	C1	C6	114.1(3)				

Table 4: Bond Angles for (5).

 1 1-x,+y,1/2-z.

Table 5: Torsion Angles for (5).

Α	В	С	D	Angle/°	Α	В	C	D	Angle/°
Co1	N1	C1	C6	173.94(19)	C7	S 1	C6	C1	-0.6(2)
Co1	N1	C1	C2	-6.1(4)	C7	S 1	C6	C5	-179.8(3)
Co1	N1	C7	S 1	-174.60(13)	C7	N1	C1	C6	0.0(3)
S 1	C6	C5	C4	179.3(2)	C7	N1	C1	C2	-180.0(3)
N1	C1	C6	S 1	0.5(3)	C6	S 1	C7	N1	0.7(2)
N1	C1	C6	C5	179.8(3)	C6	C1	C2	C3	0.1(4)
N1	C1	C2	C3	-179.9(3)	C6	C5	C4	C3	0.0(5)
C1	N1	C7	S 1	-0.5(3)	C2	C1	C6	S 1	-179.5(2)
C1	C6	C5	C4	0.2(4)	C2	C1	C6	C5	-0.2(4)
C1	C2	C3	C4	0.1(4)	C2	C3	C4	C5	-0.1(5)

Table 6 : Hydrogen Bonds for (5).

D	Н	А	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C7	H7	$Cl1^1$	0.93	2.73	3.403(3)	130.2
C2	H2	Cl1	0.93	2.90	3.659(3)	139.9
C5	H5	$Cl1^2$	0.93	2.90	3.773(3)	156.2

¹ 1/2+x,-1/2+y,+z; ² 1/2+x,1/2-y,-1/2+z.

Refinement model description:

Number of restraints - 0, number of constraints - unknown.

Details:

- Fixed Uiso At 1.2 times of: All C(H) groups
- Aromatic/amide H refined with riding coordinates:

C6(H6), C3(H3), C1(H1), C4(H4), C5(H5)

Annexe 6 : (Composé 6)

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (6). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	у	Z	U(eq)
Cu1	5755.9(2)	5228.6(2)	1075.3(2)	26.13(6)
S2	8149.5(4)	4639.2(4)	9276.9(8)	62.56(16)
C17	7232.4(10)	4422.7(12)	2997(2)	35.6(3)
S 1	8107.1(3)	4500.0(3)	4344.9(6)	44.45(11)
01	4959.8(8)	4973.6(11)	2560.8(15)	47.4(3)
O2	6195.4(8)	5346.4(11)	-965.7(14)	47.5(3)
03	5343.7(8)	6634.4(9)	800.4(17)	51.1(3)
O4	5812.3(8)	3724.5(9)	743.4(17)	49.5(3)
C1	4221.7(10)	4749.9(11)	2293.4(19)	32.1(3)
C3	4676.6(10)	6864.9(11)	4(2)	35.4(3)
C4	4434.2(16)	7930.4(14)	-79(3)	70.0(7)
C2	3795.2(12)	4574.0(16)	3670(2)	50.0(5)
N1	6835.8(8)	5235.0(9)	2640.0(15)	30.1(3)
C16	7948.2(9)	5758.3(12)	4482.2(19)	34.1(3)
C15	8408.0(11)	6448.8(15)	5428(2)	48.1(4)
C14	8124.7(13)	7402.3(15)	5356(3)	54.2(5)
C13	7407.2(12)	7667.0(14)	4384(2)	48.6(5)
C12	6952.7(10)	6988.9(12)	3434(2)	38.2(4)
C11	7231.5(9)	6019.8(11)	3484.1(17)	29.0(3)
C27	7592.4(13)	3564.8(17)	8983(3)	61.0(6)
N2	7902.7(10)	2855.6(13)	8303(2)	55.7(4)
C21	8654.8(11)	3136.8(14)	7940(2)	43.2(4)
C26	8896.2(11)	4091.2(14)	8397(2)	44.1(4)
C25	9626.3(13)	4478.0(18)	8073(3)	59.3(6)
C24	10101.8(14)	3890(2)	7294(3)	72.6(7)
C23	9863.1(15)	2942(2)	6844(3)	71.1(7)
C22	9147.6(14)	2557.2(17)	7158(3)	58.5(5)
H17	7046.26	3814.09	2531.36	43
H4A	3850.77	7986.7	-502.04	105
H4B	4753.41	8282.13	-760.9	105
H4C	4540.38	8217.25	971.39	105
H2A	4163.04	4744.34	4636.4	75
H2B	3641.29	3879.4	3701.04	75
H2C	3303.08	4983.39	3572.02	75
H15	8898.24	6270.11	6096.82	58
H14	8427.42	7890.57	5987.06	65
H13	7226.18	8330	4374.63	58
H12	6464.46	7174.96	2765.53	46
H27	7075.62	3501.61	9311.66	73
H25	9791.54	5127.47	8380.39	71
H24	10603.36	4138.8	7059.23	87
H23	10204.21	2553.37	6307.45	85
H22	8989.72	1905.89	6848.66	70

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu1	22.82(9)	30.82(10)	24.04(10)	-0.48(7)	1.66(7)	-2.72(7)
S2	63.8(4)	49.1(3)	77.2(4)	-5.8(3)	18.5(3)	6.7(2)
C17	32.9(8)	35.6(8)	36.8(9)	-0.8(7)	0.7(7)	1.3(6)
S 1	38.4(2)	42.9(2)	47.5(3)	-0.19(19)	-6.66(19)	10.33(18)
01	35.1(6)	72.9(9)	35.6(7)	3.5(6)	9.8(5)	-8.5(6)
O2	41.2(7)	71.5(9)	30.8(6)	-0.3(6)	9.1(5)	-11.1(6)
03	44.5(7)	37.3(7)	65.8(9)	0.1(6)	-8.2(6)	2.3(6)
04	48.7(8)	33.0(6)	61.4(9)	-6.1(6)	-6.9(6)	-2.7(5)
C1	36.0(8)	32.1(7)	30.3(8)	1.8(6)	11.4(7)	0.8(6)
C3	39.0(9)	28.1(7)	39.9(9)	-1.0(6)	8.8(7)	-0.5(6)
C4	73.2(15)	30.0(9)	99(2)	-4.9(11)	-8.9(14)	6.5(10)
C2	49.1(11)	69.3(13)	35.6(10)	2.0(9)	18.7(9)	-7.6(9)
N1	29.3(6)	30.6(6)	30.3(7)	-0.4(5)	4.5(5)	-2.1(5)
C16	28.1(8)	40.0(8)	33.4(8)	-0.5(7)	2.7(6)	3.4(6)
C15	35.7(9)	55.8(11)	47.8(11)	-7.8(9)	-8.2(8)	-1.6(8)
C14	48.9(11)	50.3(11)	58.9(13)	-15.4(9)	-4.4(10)	-8.3(9)
C13	48.8(11)	36.7(9)	58.3(12)	-6.6(8)	2.2(9)	-0.9(8)
C12	35.8(9)	34.9(8)	42.1(10)	1.4(7)	1.3(7)	0.8(7)
C11	26.0(7)	34.8(8)	26.8(7)	2.2(6)	6.1(6)	-3.3(6)
C27	43.8(11)	64.4(14)	77.9(16)	4.0(11)	19.6(11)	0.1(10)
N2	47.0(9)	52.1(10)	68.2(12)	1.7(8)	10.4(9)	-7.1(8)
C21	40.6(9)	45.5(10)	42.0(10)	3.9(8)	2.1(8)	0.5(7)
C26	41.7(10)	46.3(10)	42.2(10)	5.7(8)	0.4(8)	1.0(8)
C25	48.5(12)	64.5(13)	61.2(14)	9.2(11)	-2.0(10)	-13.6(10)
C24	41.7(12)	104(2)	73.2(17)	19.6(15)	13.5(11)	-5.3(12)
C23	57.9(14)	92.5(19)	66.5(15)	3.8(14)	21.0(12)	19.0(13)
C22	60.8(13)	58.3(13)	56.5(13)	-3.4(10)	9.5(11)	8.0(10)

Table 2: Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for (6). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 3 : Bond Lengths for (6).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu1	$Cu1^1$	2.9364(3)	C3	C4	1.502(2)
Cu1	01	2.0189(12)	N1	C11	1.396(2)
Cu1	O2	2.0268(12)	C16	C15	1.390(2)
Cu1	O3	2.0313(13)	C16	C11	1.397(2)
Cu1	O4	2.0701(12)	C15	C14	1.377(3)
Cu1	N1	2.0625(13)	C14	C13	1.389(3)
S2	C27	1.725(2)	C13	C12	1.376(3)
S2	C26	1.726(2)	C12	C11	1.395(2)
C17	S 1	1.7111(17)	C27	N2	1.281(3)
C17	N1	1.297(2)	N2	C21	1.389(2)
S 1	C16	1.7387(17)	C21	C26	1.397(3)
01	C1	1.245(2)	C21	C22	1.389(3)
O2	$C1^1$	1.249(2)	C26	C25	1.390(3)
03	C3	1.245(2)	C25	C24	1.375(4)
----	--------	----------	-----	-----	----------
04	$C3^1$	1.244(2)	C24	C23	1.386(4)
C1	C2	1.503(2)	C23	C22	1.364(3)

¹1-x,1-y,-z.

Table 4: Bond Angles for (6).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	Cu1	$Cu1^1$	77.84(4)	$O4^1$	C3	C4	116.75(17)
01	Cu1	O2	159.40(5)	C17	N1	Cu1	120.35(11)
01	Cu1	O3	89.66(6)	C17	N1	C11	110.47(14)
01	Cu1	O4	88.16(6)	C11	N1	Cu1	129.15(10)
01	Cu1	N1	99.72(5)	C15	C16	S 1	129.11(14)
O2	Cu1	$Cu1^1$	81.58(4)	C15	C16	C11	121.52(16)
O2	Cu1	O3	89.15(6)	C11	C16	S 1	109.34(12)
O2	Cu1	O4	85.75(6)	C14	C15	C16	117.36(17)
O2	Cu1	N1	100.18(5)	C15	C14	C13	121.57(18)
03	Cu1	Cu1 ¹	83.62(4)	C12	C13	C14	121.38(18)
03	Cu1	O4	159.36(5)	C13	C12	C11	117.92(16)
03	Cu1	N1	108.22(5)	N1	C11	C16	114.18(14)
04	Cu1	$Cu1^1$	75.86(4)	C12	C11	N1	125.53(14)
N1	Cu1	Cu1 ¹	168.00(4)	C12	C11	C16	120.24(15)
N1	Cu1	O4	92.38(5)	N2	C27	S2	117.40(16)
C27	S2	C26	88.52(10)	C27	N2	C21	109.86(18)
N1	C17	S 1	116.79(13)	N2	C21	C26	114.71(17)
C17	S 1	C16	89.21(8)	N2	C21	C22	125.16(19)
C1	01	Cu1	130.39(12)	C22	C21	C26	120.12(18)
$C1^1$	O2	Cu1	124.90(11)	C21	C26	S2	109.50(14)
C3	03	Cu1	123.62(11)	C25	C26	S2	129.57(17)
$C3^1$	O4	Cu1	131.97(12)	C25	C26	C21	120.87(19)
01	C1	$O2^1$	125.21(15)	C24	C25	C26	117.9(2)
01	C1	C2	117.80(16)	C25	C24	C23	121.2(2)
$O2^1$	C1	C2	116.99(15)	C22	C23	C24	121.3(2)
03	C3	C4	118.43(16)	C23	C22	C21	118.6(2)
$O4^1$	C3	03	124.82(15)				

¹1-x,1-y,-z

Table 5 : Torsion Angles for (6).

А	В	С	D	Angle/°	Α	В	С	D	Angle/°
Cu1	01	C1	$O2^1$	-1.6(3)	C15	C14	C13	C12	-0.8(3)
Cu1	01	C1	C2	178.03(13)	C14	C13	C12	C11	0.5(3)
Cu1	03	C3	$O4^1$	-1.5(3)	C13	C12	C11	N1	177.92(16)
Cu1	03	C3	C4	178.75(16)	C13	C12	C11	C16	0.4(2)
Cu1	N1	C11	C16	178.31(10)	C11	C16	C15	C14	0.7(3)
Cu1	N1	C11	C12	0.7(2)	C27	S2	C26	C21	0.51(16)
S 2	C27	N2	C21	-0.2(3)	C27	S2	C26	C25	177.9(2)
S 2	C26	C25	C24	-177.27(18)	C27	N2	C21	C26	0.6(3)

C17	S 1	C16	C15	178.41(18)	C27	N2	C21	C22	-178.1(2)
C17	S 1	C16	C11	0.29(12)	N2	C21	C26	S2	-0.8(2)
C17	N1	C11	C16	0.50(19)	N2	C21	C26	C25	-178.39(18)
C17	N1	C11	C12	-177.14(15)	N2	C21	C22	C23	178.2(2)
S 1	C17	N1	Cu1	-178.30(7)	C21	C26	C25	C24	-0.2(3)
S 1	C17	N1	C11	-0.27(18)	C26	S2	C27	N2	-0.2(2)
S 1	C16	C15	C14	-177.22(16)	C26	C21	C22	C23	-0.4(3)
S 1	C16	C11	N1	-0.51(16)	C26	C25	C24	C23	0.0(4)
S 1	C16	C11	C12	177.27(12)	C25	C24	C23	C22	0.0(4)
N1	C17	S 1	C16	-0.01(14)	C24	C23	C22	C21	0.2(4)
C16	C15	C14	C13	0.2(3)	C22	C21	C26	S2	178.01(16)
C15	C16	C11	N1	-178.79(15)	C22	C21	C26	C25	0.4(3)
C15	C16	C11	C12	-1.0(2)					

¹1-x,1-y,-z.

Table 6: Hydrogen Bonds for (6).

D	Н	А	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C17	H17	O4	0.95	2.36	2.960(2)	120.7
C12	H12	O3	0.95	2.42	3.252(2)	145.9

Refinement model description:

Number of restraints - 30, number of constraints - unknown.

Details:

- Fixed Uiso

At 1.2 times of: All C(H) groups

At 1.5 times of: All C(H,H,H) groups

- Rigid bond restraints O1, C1, C2 with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01 O3, C3, C4 with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01
- Uiso/Uaniso restraints and constraints $O1 \approx C1 \approx C2$: within 1.7A with sigma of 0.04 and sigma for terminal atoms of 0.08

 $O3 \approx C3 \approx C4$: within 1.7A with sigma of 0.04 and sigma for terminal atoms of 0.08

- Aromatic/amide H refined with riding coordinates: C17(H17), C15(H15), C14(H14), C13(H13),
 C12(H12), C27(H27), C25(H25), C24(H24), C23(H23), C22(H22)
- Idealised Me refined as rotating group: C4(H4A,H4B,H4C), C2(H2A,H2B,H2C)

Annexe 7 : (Composé 11)

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (11). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
Cu1	0	0	0	26.55(15)
S 1	1736.9(8)	-354.0(5)	3519.4(6)	30.00(18)
O3	1103(2)	1162.0(12)	86.9(18)	34.1(4)
01	1291(3)	-260.5(15)	2206.4(18)	42.0(5)
N1A	361(8)	73(4)	3894(7)	41.4(6)
O2B	879(6)	170(4)	4185(6)	41.4(6)
N1B	3534(10)	-22(5)	4026(8)	41.4(6)
O2A	3205(8)	33(4)	4308(6)	41.4(6)
N3	3100(3)	2129.9(18)	895(3)	51.2(7)
N1	-1823(3)	648.8(15)	353(2)	32.3(5)
C8A	2211(10)	2937(5)	260(9)	66(2)
C9A	4717(12)	2304(9)	1619(12)	75(3)
C8B	2750(20)	2691(13)	-194(19)	73(4)
C9B	4510(30)	2280(20)	2070(20)	67(4)
C4	1711(3)	-1535.8(19)	3843(2)	29.9(6)
C2	-2396(4)	2232(2)	-294(3)	45.0(8)
C6	-1032(3)	1914(2)	1835(3)	38.2(7)
C3	2376(4)	-1846(2)	5038(3)	44.7(8)
C1	-1756(3)	1609.4(18)	637(3)	30.6(6)
C5	1009(3)	-2152(2)	2910(3)	37.1(7)
C7	2405(3)	1350(2)	821(3)	40.7(7)
H1A	-2693.81	558.88	-319.56	39
H1B	-1989.76	347.5	996.07	39
H8AA	2105.28	2914.26	-620.48	99
H8AB	2771.47	3498.5	628.83	99
H8AC	1166.21	2936.15	349.31	99
H9AA	5194.79	1738.84	2042.31	113
H9AB	4761.48	2781.68	2234.78	113
H9AC	5291.45	2511.16	1073.5	113
H8BA	3346.17	2469.14	-716.74	110
H8BB	3043.42	3329.15	47.62	110
H8BC	1623.74	2658.4	-655.16	110
H9BA	4233	2741.03	2598.11	100
H9BB	5406.16	2506.1	1849.03	100
H9BC	4787.35	1703.83	2528.21	100
H2	-2855.53	2023.3	-1121.63	54
H6	-553.38	1488.5	2478.01	46
H3	2823.09	-1420.37	5688.9	54
H5	506.76	-1937.75	2090.43	45
H7	2940.29	882.11	1379.56	49

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu1	27.4(2)	18.1(2)	33.8(3)	-1.50(17)	9.61(18)	-3.10(17)
S 1	33.3(3)	25.8(4)	30.3(4)	4.0(3)	9.4(3)	0.3(3)
03	31.1(10)	22.5(10)	46.0(11)	0.5(8)	9.1(8)	-5.7(7)
01	50.9(12)	39.9(12)	30.3(11)	9.9(9)	6.8(9)	-6.1(9)
N1A	45(2)	33.5(11)	42(2)	-3.9(11)	9.4(12)	-6.2(11)
O2B	45(2)	33.5(11)	42(2)	-3.9(11)	9.4(12)	-6.2(11)
N1B	45(2)	33.5(11)	42(2)	-3.9(11)	9.4(12)	-6.2(11)
O2A	45(2)	33.5(11)	42(2)	-3.9(11)	9.4(12)	-6.2(11)
N3	38.2(13)	31.9(14)	71.8(19)	-0.9(13)	2.3(12)	-10.8(11)
N1	31.7(11)	25.6(12)	40.0(13)	-3.6(10)	12.6(10)	-3.6(9)
C8A	66(4)	34(3)	83(5)	10(3)	5(3)	-8(3)
C9A	45(3)	64(4)	97(6)	-8(5)	-3(4)	-23(3)
C8B	68(6)	46(6)	91(6)	16(5)	7(5)	-12(5)
C9B	46(6)	58(5)	81(7)	-5(7)	-1(6)	-17(5)
C4	32.1(13)	27.4(14)	29.2(13)	3.1(11)	8.6(10)	1.0(11)
C2	63(2)	32.4(17)	29.4(15)	-7.4(12)	1.8(14)	-0.1(14)
C6	43.6(16)	32.2(16)	31.8(15)	3.1(12)	2.9(12)	6.3(12)
C3	64(2)	31.7(16)	29.1(15)	-0.7(12)	3.1(14)	-4.3(14)
C1	29.7(13)	25.5(14)	36.9(15)	-3.9(11)	11.2(11)	-0.3(10)
C5	44.2(15)	31.8(16)	26.9(14)	4.6(11)	0.1(12)	$-\overline{3.2(12)}$
C7	34.0(15)	30.5(16)	52.2(18)	-1.1(13)	6.8(13)	-2.4(12)

Table 2: Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (11). The Anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + 2hka^* b^* U_{12} + ...]$.

Table 3: Bond Lengths for (11).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cu1	03	1.9475(17)	N1B	O2A	0.511(8)
Cu1	O3 ¹	1.9476(18)	N3	C8A	1.472(7)
Cu1	01	2.436(2)	N3	C9A	1.443(10)
Cu1	O1 ¹	2.436(2)	N3	C8B	1.434(16)
Cu1	$N1^1$	2.046(2)	N3	C9B	1.54(2)
Cu1	N1	2.046(2)	N3	C7	1.286(4)
S 1	01	1.427(2)	N1	C1	1.432(3)
S 1	N1A	1.567(9)	C4	C3	1.377(4)
S 1	O2B	1.464(7)	C4	C5	1.378(4)
S 1	N1B	1.605(9)	C2	$C3^2$	1.372(4)
S 1	O2A	1.448(8)	C2	C1	1.373(4)
S 1	C4	1.761(3)	C6	C1	1.382(4)
03	C7	1.229(3)	C6	$C5^2$	1.388(4)

¹-x,-y,-z; ²-x,1/2+y,1/2-z.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
03	Cu1	O3 ¹	180.0	O2A	S 1	N1B	18.4(3)
O3 ¹	Cu1	01^1	91.14(8)	O2A	S 1	C4	108.8(2)
$O3^1$	Cu1	01	88.86(8)	C7	O3	Cu1	125.81(19)
03	Cu1	O1 ¹	88.86(8)	S1	01	Cu1	167.89(15)
03	Cu1	01	91.14(8)	O2A	N1B	S 1	63.2(17)
03	Cu1	N1	91.04(8)	N1B	O2A	S 1	98.4(19)
O3 ¹	Cu1	N1	88.96(8)	C9A	N3	C8A	115.2(6)
O3 ¹	Cu1	$N1^1$	91.04(8)	C8B	N3	C9B	124.2(11)
03	Cu1	$N1^1$	88.96(8)	C7	N3	C8A	119.9(4)
01	Cu1	$O1^1$	180.0	C7	N3	C9A	124.9(6)
N1	Cu1	01^{1}	89.45(9)	C7	N3	C8B	118.8(7)
$N1^1$	Cu1	01	89.45(9)	C7	N3	C9B	115.5(10)
N1	Cu1	01	90.55(9)	C1	N1	Cu1	121.24(17)
$N1^1$	Cu1	01^1	90.55(9)	C3	C4	S1	119.8(2)
N1	Cu1	$N1^1$	180.00(11)	C3	C4	C5	119.6(3)
01	S 1	N1A	105.9(3)	C5	C4	S 1	120.5(2)
01	S 1	O2B	118.8(2)	$C3^2$	C2	C1	120.5(3)
01	S 1	N1B	104.7(3)	C1	C6	$C5^2$	119.4(3)
01	S 1	O2A	120.1(2)	$C2^3$	C3	C4	120.2(3)
01	S 1	C4	107.16(13)	C2	C1	N1	119.5(2)
N1A	S 1	C4	105.3(3)	C2	C1	C6	119.9(3)
O2B	S 1	N1A	18.5(3)	C6	C1	N1	120.6(2)
O2B	S 1	C4	110.8(2)	C4	C5	$C6^3$	120.2(2)
N1B	S 1	C4	107.4(3)	03	C7	N3	125.2(3)

Table 4: Bond Angles	for	(11).
----------------------	-----	-------

Table 5 : Torsion Angles for (11).

Α	В	С	D	Angle/°	А	В	С	D	Angle/°
Cu1	03	C7	N3	-177.7(3)	N1B	S 1	C4	C5	-125.4(3)
Cu1	N1	C1	C2	94.3(3)	O2A	S 1	01	Cu1	-132.1(7)
Cu1	N1	C1	C6	-84.5(3)	O2A	S 1	C4	C3	36.3(3)
S 1	C4	C3	$C2^1$	-178.4(3)	O2A	S 1	C4	C5	-144.7(3)
S 1	C4	C5	$C6^1$	178.2(2)	C8A	N3	C7	O3	13.4(8)
01	S 1	N1B	O2A	149.2(13)	C9A	N3	C7	O3	-169.8(7)
01	S 1	O2A	N1B	-34.9(15)	C8B	N3	C7	O3	-27.8(15)
01	S 1	C4	C3	167.6(2)	C9B	N3	C7	O3	165.3(12)
01	S 1	C4	C5	-13.4(3)	C4	S 1	01	Cu1	103.3(7)
N1A	S 1	01	Cu1	-8.8(7)	C4	S 1	N1B	O2A	-97.1(13)
N1A	S 1	C4	C3	-79.9(4)	C4	S 1	O2A	N1B	88.9(14)
N1A	S 1	C4	C5	99.1(3)	C3	C4	C5	$C6^1$	-2.8(5)
O2B	S 1	01	Cu1	-23.2(7)	$C3^2$	C2	C1	N1	178.6(3)
O2B	S 1	C4	C3	-61.3(3)	$C3^2$	C2	C1	C6	-2.6(5)
O2B	S 1	C4	C5	117.7(3)	C5	C4	C3	$C2^1$	2.6(5)
N1B	S 1	01	Cu1	-142.8(7)	$C5^2$	C6	C1	N1	-178.8(3)
N1B	S 1	C4	C3	55.6(4)	$C5^2$	C6	C1	C2	2.3(5)

 $^{1}-x,-1/2+y,1/2-z;^{2}-x,1/2+y,1/2-z.$

Table 6: Hydrogen Bonds for (11).

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C8B	H8BB	$O2A^1$	0.98	2.55	3.408(17)	146.3
C6	H6	N1A	0.95	2.58	3.516(7)	167.4
C7	H7	01	0.95	2.61	3.170(4)	118.5

 $^{1}+x, 1/2-y, -1/2+z.$

Refinement model description:

Number of restraints - 56, number of constraints - unknown.

Details:

- Fixed U_{iso}:

At 1.2 times of: All C(H) groups, All N(H,H) groups

At 1.5 times of: All C(H,H,H) groups

 Rigid bond restraints N3, C8A, C8B, C9A, C9B with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01 S1, O2A, O2B

with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01

- U_{iso}/U_{aniso} restraints and constraints

 $N3 \approx C8A \approx C8B \approx C9A \approx C9B$: within 2A with sigma of 0.005 and sigma for terminal atoms of 0.01

 $S1 \approx O2A \approx O2B$: within 2A with sigma of 0.005 and sigma for terminal atoms of 0.01

 $U_{anis}(O2B) = U_{anis}(O2A) = U_{anis}(N1A) = U_{anis}(N1B)$

Others

```
Sof(C8B)=Sof(H8BA)=Sof(H8BB)=Sof(H8BC)=Sof(C9B)=Sof(H9BA)=Sof(H9BB)=Sof(H
9BC)= 1-FVAR(1)
```

Sof(C8A)=Sof(H8AA)=Sof(H8AB)=Sof(H8AC)=Sof(C9A)=Sof(H9AA)=Sof(H9AB)=Sof(H 9AC)=FVAR(1)

Sof(N1B)=Sof(O2A)=1-FVAR(2)

Sof(N1A)=Sof(O2B)=FVAR(2)

- Secondary CH2 refined with riding coordinates: N1(H1A,H1B).
- Aromatic/amide H refined with riding coordinates: C2(H2), C6(H6), C3(H3), C5(H5), C7(H7).
- Idealised Me refined as rotating group: C8A(H8AA,H8AB,H8AC),
 C9A(H9AA,H9AB,H9AC), C8B(H8BA,H8BB,H8BC), C9B(H9BA,H9BB, H9BC).

Publication

Received 31 December 2015 Accepted 14 January 2016

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; organic–inorganic hybrid compound; antimony; hydrogen bonding; π – π stacking

CCDC reference: 1447413 **Supporting information**: this article has supporting information at journals.iucr.org/e

catena-Poly[bis(1,3-benzothiazol-3-ium) [[dichloridoantimonate(III)]-di-µ-chlorido-µ-oxido-[chloridoantimonate(III)]-µ-chlorido]]

Oussama Chebout,^a Mhamed Boudraa,^a Sofiane Bouacida,^{a,b}* Hocine Merazig^a and Chaouki Boudaren^a

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Frères Montouri Constantine, 25000, Algeria, and ^bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria. *Correspondence e-mail: Bouacida_Sofiane@yahoo.fr

The title compound, $\{(C_7H_6NS)_2[Sb_2Cl_6O]\}_n$, contains two benzothiazolidium cations and one tri- μ -chlorido-trichlorido- μ -oxido-diantimonate(III) anion. The structure of the inorganic cation may be described as as being built up from two polyhedra, *i.e.* a square-pyramidal SbCl₄O and a distorted octahedral SbOCl₅ unit, sharing a common face (comprising the O atom and two Cl atoms). The two benzothiazole cations are quasi-planar and subtend a dihedral angle of 19.93 (5)°. The crystal packing can be described by alternating (100) layers and [001] chains of the organic cations and inorganic anions connected through an extensive three-dimensional network of N—H···Cl, C—H···O and C—H···Cl hydrogen bonds. This is consolidated by slipped π - π stacking, with centroid-tocentroid distances between the benzothiazole rings of 3.7111 (18)–3.8452 (16) Å. These interactions link the molecules within the layers and also link the layers together and reinforce the cohesion of the ionic structure.

1. Chemical context

The coordination chemistry of antimony has both a practical and theoretical interest (Abboud *et al.*, 2007; Bujak & Angel, 2006). Recently, the use of antimony complexes in cancer chemotherapy has become a topic of interest (Demicheli *et al.*, 2006; Rais *et al.*, 2000). As part of our ongoing studies of benzothiazole-based coordination networks (Bouchareb *et al.*, 2014), we now report the polymeric structure of new organic-inorganic hybrid compound $\{(C_7H_6NS)_2[Sb_2Cl_6O]\}_n$, (I).

OPEN @ ACCESS

2. Structural commentary

The title compound contains two benzothiazolidium cations and one tri- μ -chlorido-trichlorido- μ -oxido-diantimonate(III) anion (Sb₂Cl₆O²⁻). The molecular geometry and the atom-numbering scheme are shown in Fig. 1.

The structure of the inorganic anion may be described as two polyhedra, square-pyramidal $SbCl_4O$ and distorted octahedral $SbOCl_5$, sharing a common face (O1, Cl5 and Cl6). In

Figure 1

The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

the first polyhedron, four Cl atoms (Cl3-Cl4-Cl5-Cl6) form a basal plane with the Sb1 atom lying 0.3011 (2) Å below the plane. The apical position is occupied by the O1 atom. In the second polyhedron, the O1 atom occupies the apical position and four Cl atoms (Cl1-Cl2-Cl5-Cl6) form the base equatorial plane with Sb2 displaced by 0.4168 (1) Å from it. The geometry of the Sb2 atom can be described as distorted octahedral, a sixth coordination is observed at a longer distance, with Sb2 coordinated by the adjacent Cl3ⁱ atom at a distance of 3.546 (4) Å [symmetry code: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$], forming an infinite chain parallel to [001] (Fig. 2). This distance is significantly shorter than the sum of the relevant van der Waals radii of 4.01 Å (rSb = 2.1 Å and rCl = 1.91 Å) agreement with those and in good found in $[SbCl_3(C_{25}H_{22}O_2P_2)]$ (Razak *et al.*, 1999) and in [(CH₃)₂NH(CH₂)₂NH₃][SbCl₅] (Bujak & Angel, 2006). In this molecule, the angle between the two equatorial planes is 75.86 (2)°.

The Sb—O bridge distances of 1.9404 (16) and 1.9460 (17) Å are similar to those found in the $Sb_2Cl_6O_2$ moiety (Abboud *et al.*, 2007). Excluding the longest bond (Sb2—Cl3ⁱ), the terminal Sb—Cl bonds are in the range

Figure 2 View of a polymeric chain of Sb_2Cl_6O along the c axis.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D—H	$H \cdot \cdot \cdot A$	$D \cdots A$	D — \mathbf{H} ··· A
N1—H1N···Cl6 ⁱ	0.86	2.37	3.200 (3)	162
N2—H2N···Cl6 ⁱⁱ	0.86	2.35	3.145 (3)	153
C1—H1···O1	0.93	2.27	3.152 (4)	159
C8—H8· · · Cl5 ⁱⁱⁱ	0.93	2.72	3.327 (3)	124
C10-H10···Cl3 ^{iv}	0.93	2.78	3.612 (3)	150
C13—H13···Cl2 ⁱⁱ	0.93	2.76	3.524 (3)	140

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) x + 1, y, z; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$

2.3974 (8)–2.4982 (8) Å and are shorter than the bridging bonds [2.7522 (8)–3.3244 (9) Å] and are in good agreement with those found in $C_{26}H_{28}N_8O_6Sb_4Cl_{10}$ (Abboud *et al.*, 2007). However, the Sb–O–Sb bond angle is 123.56 (9)° which is very different to that observed in $Cs_2Sb_2O_2$ (OH)₈ (Mikhaylov *et al.*, 2011) and the Sb₂Cl₆O₂ moiety (Abboud *et al.*, 2007). The dihedral angle between the mean planes of the two benzothiazole cations is 19.93 (5)°.

3. Supramolecular features

The crystal packing can be described by alternating (100) layers and [001] chains of organic cations and inorganic anions connected through an extensive network of N—H···Cl, C—H···Cl and C—H···Cl hydrogen bonds, leading to the formation of a three-dimensional network (Table 1, Fig. 3). The packing is consolidated by slipped π - π stacking with centroid-to-centroid distances of 3.7111 (18)–3.8452 (16) Å between the benzothiazole rings. These interactions link the molecules within the layers and also link the layers together, reinforcing the cohesion of the ionic structure.

Figure 3

Part of diagram packing of the title compound, viewed along the *a* axis, showing alternating chains and layers connected by N—H···Cl and C— H···Cl hydrogen bonds (shown as dashed lines).

research communications

4. Synthesis and crystallization

A solution of $SbCl_3$ (45.6 mg, 0.2 mmol) in water (10 ml) was added dropwise to a solution of benzothiazole (0.5 ml, 4.6 mmol) in ethanol (10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. Colorless crystals were obtained after several days.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were placed into idealized positions and refined using the riding-atom approximation. The applied constraints were: C—H = 0.93 Å and N—H = 0.86 Å, $U_{iso} = 1.2U_{eq}$ (C or N).

Acknowledgements

This work is supported by the 'Unité de recherche de Chimie de l'Environnement et Moléculaire Structurale', CHEMS, Université de Constantine, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie – Algérie).

References

- Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642-3646.
- Bouchareb, H., Benmebarek, S., Bouacida, S., Merazig, H. & Boudraa, M. (2014). *Acta Cryst.* E70, m275.
- Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Crystal Impact, Bonn, Germany.
- Bruker (2011). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322-10331.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Demicheli, C., Santos, L. S., Ferreira, C. S., Bouchemal, N., Hantz, E., Eberlin, M. N. & Frézard, F. (2006). *Inorg. Chim. Acta*, 359, 159– 167.

Table	2
Experi	mental details.

Crystal data	
Chemical formula	$(C_7H_6NS)_2[Sb_2Cl_6O]$
<i>M</i> _r	744.58
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	295
a, b, c (Å)	10.2826 (2), 16.2448 (3), 14.9849 (3)
β (°)	111.674 (1)
$V(Å^3)$	2326.09 (8)
Z	4
	Μο Κα
μ (mm ⁻¹)	3.20
Crystal size (mm)	$0.17 \times 0.13 \times 0.11$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2002)
T_{\min}, T_{\max}	0.630, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	20349, 5344, 4627
R _{int}	0.026
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.651
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.050, 1.02
No. of reflections	5344
No. of parameters	244
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}$, $\Delta \rho_{\rm min}$ (e Å ⁻³)	0.54, -0.77

Computer programs: *APEX2* and *SAINT* (Bruker, 2011), *SIR2002* (Burla *et al.*, 2005), *SHELXL97* (Sheldrick, 2008), *ORTEP-3 for Windows* and *WinGX* (Farrugia, 2012) and *DIAMOND* (Brandenburg & Berndt, 2001).

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Mikhaylov, A. A., Mel'nik, E. A., Churakov, A. V., Novotortsev, V. M., Howard, J. A. K., Sladkevich, S., Gun, J., Bharathi, S., Lev, O. & Prikhodchenko, P. V. (2011). *Inorg. Chim. Acta*, 378, 24–29.
- Rais, S., Perianin, A., Lenoir, M., Sadak, A., Rivollet, D., Paul, M. &
- Deniau, M. (2000). Antimicrob. Agents Chemother. 44, 2406–2410. Razak, I. A., Fun, H.-K., Yamin, B. M., Chinnakali, K., Zakaria, H. & Ismail, N. B. (1999). Acta Cryst. C55, 172–174.
- Sheldrick, G. M. (2002). *SADABS*. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2016). E72, 212-214 [doi:10.1107/S2056989016000785]

catena-Poly[bis(1,3-benzothiazol-3-ium) [[dichloridoantimonate(III)]-di- μ chlorido- μ -oxido-[chloridoantimonate(III)]- μ -chlorido]]

Oussama Chebout, Mhamed Boudraa, Sofiane Bouacida, Hocine Merazig and Chaouki Boudaren

Computing details

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2011); data reduction: *SAINT* (Bruker, 2011); program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

catena-Poly[1,3-benzothiazol-3-ium [[dichloridoantimonate(III)]-di-µ-chlorido-µ-oxido-[chloridoantimonate(III)]-µ-chlorido]]

Crystal data (C₇H₆NS)₂[Sb₂Cl₆O] $M_r = 744.58$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.2826 (2) Å b = 16.2448 (3) Å c = 14.9849 (3) Å $\beta = 111.674$ (1)° V = 2326.09 (8) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\min} = 0.630, T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.050$ S = 1.025344 reflections F(000) = 1416 $D_x = 2.126 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8790 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 3.20 \text{ mm}^{-1}$ T = 295 KBlock, colorless $0.17 \times 0.13 \times 0.11 \text{ mm}$

20349 measured reflections 5344 independent reflections 4627 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -11 \rightarrow 13$ $k = -19 \rightarrow 21$ $l = -19 \rightarrow 18$

244 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0186P)^2 + 1.5448P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm A}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.36748 (12)	0.17148 (5)	0.98344 (7)	0.0662 (3)
N1	0.1904 (3)	0.05865 (18)	0.94373 (19)	0.0539 (7)
H1N	0.114	0.0319	0.9156	0.065*
C1	0.2113 (4)	0.1303 (2)	0.9189 (2)	0.0653 (10)
H1	0.1448	0.1582	0.8683	0.078*
C2	0.4125 (3)	0.08232 (16)	1.05140 (19)	0.0386 (6)
C3	0.5374 (3)	0.0621 (2)	1.1261 (2)	0.0509 (8)
Н3	0.612	0.0988	1.147	0.061*
C4	0.5459 (3)	-0.0141 (2)	1.1676 (2)	0.0528 (8)
H4	0.6282	-0.0293	1.2172	0.063*
C5	0.4350 (4)	-0.0684 (2)	1.1374 (2)	0.0516 (8)
Н5	0.4439	-0.1191	1.1678	0.062*
C6	0.3131 (3)	-0.04978 (18)	1.0645 (2)	0.0474 (7)
H6	0.2391	-0.087	1.0443	0.057*
C7	0.3030 (3)	0.02653 (17)	1.02135 (19)	0.0372 (6)
S2	0.52690 (8)	0.11063 (4)	0.59703 (6)	0.04448 (17)
N2	0.7036 (2)	0.00265 (15)	0.68158 (18)	0.0436 (6)
H2N	0.7828	-0.0203	0.7127	0.052*
C8	0.6923 (3)	0.07956 (18)	0.6561 (2)	0.0465 (7)
H8	0.769	0.1143	0.6695	0.056*
C9	0.4653 (3)	0.01241 (16)	0.60657 (18)	0.0339 (6)
C10	0.3292 (3)	-0.01737 (19)	0.5748 (2)	0.0431 (7)
H10	0.2533	0.0166	0.5433	0.052*
C11	0.3111 (3)	-0.0985 (2)	0.5917 (2)	0.0501 (7)
H11	0.2208	-0.1199	0.5712	0.06*
C12	0.4237 (3)	-0.15006 (19)	0.6385 (2)	0.0530 (8)
H12	0.4069	-0.205	0.6482	0.064*
C13	0.5579 (3)	-0.12215 (18)	0.6705 (2)	0.0481 (7)
H13	0.6331	-0.1567	0.7016	0.058*
C14	0.5770 (3)	-0.03964 (16)	0.65440 (19)	0.0359 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Sb1	-0.067085 (18)	0.323213 (10)	0.767483 (12)	0.03143 (5)	
Sb2	0.053422 (18)	0.221298 (11)	0.613337 (12)	0.03397 (5)	
C11	0.01992 (9)	0.07748 (5)	0.63368 (7)	0.0589 (2)	
C12	0.30403 (7)	0.20616 (5)	0.68094 (6)	0.05062 (18)	
C13	0.13613 (8)	0.35386 (5)	0.91846 (5)	0.05065 (18)	
Cl4	-0.14276 (8)	0.21318 (5)	0.84967 (6)	0.05007 (18)	
C15	-0.24438 (8)	0.26668 (4)	0.59142 (6)	0.04931 (18)	
01	0.05721 (19)	0.24501 (12)	0.74157 (12)	0.0391 (4)	
C16	0.04721 (8)	0.42304 (5)	0.64881 (6)	0.0558 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U ²³
S1	0.0921 (7)	0.0379 (4)	0.0703 (6)	0.0017 (4)	0.0319 (5)	0.0061 (4)
N1	0.0376 (13)	0.0731 (19)	0.0455 (15)	0.0001 (13)	0.0092 (12)	-0.0065 (14)
C1	0.073 (2)	0.071 (2)	0.0456 (19)	0.042 (2)	0.0148 (18)	0.0111 (17)
C2	0.0497 (16)	0.0334 (13)	0.0350 (15)	-0.0018 (12)	0.0181 (13)	-0.0021 (11)
C3	0.0474 (17)	0.062 (2)	0.0414 (17)	-0.0141 (15)	0.0139 (14)	-0.0112 (15)
C4	0.0485 (18)	0.076 (2)	0.0313 (15)	0.0127 (17)	0.0116 (14)	0.0045 (15)
C5	0.070 (2)	0.0477 (17)	0.0422 (17)	0.0085 (16)	0.0267 (17)	0.0122 (14)
C6	0.0581 (19)	0.0430 (16)	0.0458 (17)	-0.0131 (14)	0.0247 (15)	-0.0014 (13)
C7	0.0363 (14)	0.0440 (15)	0.0308 (14)	0.0019 (12)	0.0117 (12)	-0.0024 (11)
S2	0.0533 (4)	0.0327 (3)	0.0566 (5)	0.0085 (3)	0.0310 (4)	0.0065 (3)
N2	0.0318 (12)	0.0456 (13)	0.0510 (15)	0.0069 (11)	0.0125 (11)	-0.0009 (11)
C8	0.0454 (17)	0.0419 (16)	0.060 (2)	-0.0037 (13)	0.0282 (15)	-0.0071 (14)
C9	0.0385 (14)	0.0333 (13)	0.0329 (14)	0.0054 (11)	0.0168 (12)	0.0027 (11)
C10	0.0368 (15)	0.0549 (18)	0.0368 (15)	0.0077 (13)	0.0125 (12)	0.0067 (13)
C11	0.0422 (16)	0.061 (2)	0.0444 (17)	-0.0152 (15)	0.0135 (14)	-0.0025 (15)
C12	0.062 (2)	0.0387 (16)	0.058 (2)	-0.0107 (15)	0.0214 (17)	0.0041 (14)
C13	0.0533 (18)	0.0384 (15)	0.0495 (18)	0.0097 (14)	0.0153 (15)	0.0106 (13)
C14	0.0344 (13)	0.0375 (14)	0.0357 (14)	0.0054 (11)	0.0127 (12)	0.0011 (11)
Sb1	0.03409 (9)	0.02825 (9)	0.03458 (10)	0.00560 (7)	0.01575 (7)	-0.00018 (7)
Sb2	0.03473 (10)	0.04105 (10)	0.02678 (9)	0.00516 (8)	0.01211 (7)	-0.00064 (7)
Cl1	0.0568 (5)	0.0425 (4)	0.0830 (6)	-0.0050 (4)	0.0325 (4)	-0.0093 (4)
Cl2	0.0351 (4)	0.0611 (5)	0.0567 (5)	0.0025 (3)	0.0181 (3)	-0.0138 (4)
C13	0.0601 (5)	0.0487 (4)	0.0381 (4)	-0.0131 (4)	0.0122 (3)	-0.0065 (3)
Cl4	0.0570 (4)	0.0486 (4)	0.0529 (4)	-0.0093 (3)	0.0301 (4)	0.0031 (3)
C15	0.0457 (4)	0.0430 (4)	0.0491 (4)	-0.0024 (3)	0.0057 (3)	0.0020 (3)
01	0.0460 (11)	0.0463 (11)	0.0271 (9)	0.0225 (9)	0.0160 (8)	0.0044 (8)
Cl6	0.0466 (4)	0.0579 (5)	0.0518 (5)	-0.0107 (4)	0.0051 (4)	0.0103 (4)

Geometric parameters (Å, °)

S1—C1	1.678 (4)	C8—H8	0.93	
S1—C2	1.732 (3)	C9—C10	1.388 (4)	
N1-C1	1.265 (4)	C9—C14	1.393 (3)	
N1—C7	1.404 (4)	C10—C11	1.368 (4)	
N1—H1N	0.8599	C10—H10	0.93	

C1—H1	0.93	C11—C12	1.391 (4)
C2—C7	1.385 (4)	С11—Н11	0.93
C2—C3	1.396 (4)	C12—C13	1.360 (4)
$C_3 - C_4$	1 373 (5)	C12—H12	0.93
C3—H3	0.93	C12 - C12	1 389 (4)
C4-C5	1 379 (4)	C13_H13	0.93
C4—H4	0.93	Sh101	1 9404 (16)
C5 C6	1 358 (4)	Sb1_01	2,4545(7)
C5 H5	0.03	Sb1 C13	2.4343(7) 2.4082(8)
C6 C7	1.384(A)	Sb1 C15	2.7522(8)
	0.03	Sb1 C16	2.7522(8)
$c_0 = h_0$	0.95	Sb1-Cl0 Sb2 O1	2.9324(6)
$S_2 = C_0$	1.079(3)	Sb2	1.9400(17)
S2—C9	1.742(3)	Sb2—CII	2.3974 (8)
N2	1.299 (4)		2.4081 (7)
N2—U14	1.392 (3)	Sb2—Cl5	3.04/3 (8)
N2—H2N	0.8599	Sb2—C16	3.3244 (9)
C1 - S1 - C2	89.81 (16)	C9—C10—H10	121.2
C1 - N1 - C7	114 1 (3)	C10-C11-C12	121.2 121.9(3)
C1 - N1 - H1N	123	C10-C11-H11	119.1
C7—N1—H1N	122 9	C_{12} C_{11} H_{11}	119.1
$\mathbf{N}_{1} = \mathbf{C}_{1} = \mathbf{S}_{1}$	115 3 (3)	$C_{12} = C_{11} = I_{11}$	1216(3)
N1_C1_H1	122.3	$C_{13} = C_{12} = C_{11}$	121.0 (3)
S1 C1 H1	122.5	$C_{13} - C_{12} - H_{12}$	119.2
SI = CI = HI	122.3	C12 - C12 - C14	119.2
$C_{1} = C_{2} = C_{3}$	120.2(3)	C12 - C13 - C14	110.8 (3)
C/-C2-S1	110.3 (2)	C12—C13—H13	121.0
$C_3 = C_2 = S_1$	129.4 (2)	C12—C13—H13	121.6
C4 - C3 - C2	117.5 (3)	C13—C14—N2	127.1 (3)
C4—C3—H3	121.3	C13—C14—C9	122.1 (3)
С2—С3—Н3	121.3	N2—C14—C9	110.8 (2)
C3—C4—C5	121.4 (3)	O1—Sb1—Cl4	88.74 (6)
C3—C4—H4	119.3	O1—Sb1—Cl3	85.37 (6)
C5—C4—H4	119.3	Cl4—Sb1—Cl3	90.28 (3)
C6—C5—C4	121.8 (3)	O1—Sb1—Cl5	80.90 (6)
С6—С5—Н5	119.1	Cl4—Sb1—Cl5	91.00 (3)
C4—C5—H5	119.1	Cl3—Sb1—Cl5	166.17 (3)
C5—C6—C7	117.6 (3)	O1—Sb1—Cl6	78.52 (6)
С5—С6—Н6	121.2	Cl4—Sb1—Cl6	166.56 (3)
С7—С6—Н6	121.2	Cl3—Sb1—Cl6	92.87 (2)
C6—C7—C2	121.5 (3)	Cl5—Sb1—Cl6	82.88 (2)
C6—C7—N1	128.1 (3)	O1—Sb2—Cl1	91.07 (6)
C2—C7—N1	110.4 (3)	O1—Sb2—Cl2	88.67 (6)
C8—S2—C9	90.54 (14)	Cl1—Sb2—Cl2	91.64 (3)
C8—N2—C14	114.6 (2)	O1—Sb2—Cl5	73.22 (5)
C8—N2—H2N	122.7	Cl1—Sb2—Cl5	93.65 (2)
C14—N2—H2N	122.7	Cl2—Sb2—Cl5	161.21 (2)
N2—C8—S2	114.0 (2)	O1—Sb2—Cl6	69.00 (6)
N2—C8—H8	123	Cl1—Sb2—Cl6	158.15 (3)

S2—C8—H8 C10—C9—C14 C10—C9—S2 C14—C9—S2 C11—C10—C9 C11—C10—H10	123 120.0 (2) 130.0 (2) 110.0 (2) 117.5 (3) 121.2	Cl2—Sb2—Cl6 Cl5—Sb2—Cl6 Sb1—Cl5—Sb2 Sb1—O1—Sb2 Sb1—Cl6—Sb2	96.56 (2) 72.59 (2) 72.175 (18) 123.56 (9) 65.814 (16)
C7—N1—C1—S1	-0.1 (4)	C8—N2—C14—C9	-1.1 (3)
C2—S1—C1—N1	0.8 (3)	C10-C9-C14-C13	1.2 (4)
C1—S1—C2—C7	-1.2 (2)	S2—C9—C14—C13	-178.9 (2)
C1—S1—C2—C3	178.1 (3)	C10—C9—C14—N2	-178.8 (2)
C7—C2—C3—C4	-0.2 (4)	S2—C9—C14—N2	1.1 (3)
S1—C2—C3—C4	-179.4 (2)	O1—Sb1—C15—Sb2	-17.75 (6)
C2—C3—C4—C5	-0.6 (5)	Cl4—Sb1—Cl5—Sb2	-106.31 (2)
C3—C4—C5—C6	1.0 (5)	Cl3—Sb1—Cl5—Sb2	-11.07 (11)
C4—C5—C6—C7	-0.5 (4)	Cl6—Sb1—Cl5—Sb2	61.70 (2)
C5—C6—C7—C2	-0.3 (4)	O1—Sb2—Cl5—Sb1	18.27 (6)
C5—C6—C7—N1	178.1 (3)	Cl1—Sb2—Cl5—Sb1	108.29 (3)
C3—C2—C7—C6	0.7 (4)	Cl2—Sb2—Cl5—Sb1	2.25 (9)
S1—C2—C7—C6	180.0 (2)	Cl6—Sb2—Cl5—Sb1	-54.403 (18)
C3—C2—C7—N1	-178.0 (3)	Cl4—Sb1—O1—Sb2	124.26 (11)
S1—C2—C7—N1	1.3 (3)	Cl3—Sb1—O1—Sb2	-145.35 (12)
C1—N1—C7—C6	-179.4 (3)	Cl5—Sb1—O1—Sb2	33.05 (11)
C1—N1—C7—C2	-0.8 (4)	Cl6—Sb1—O1—Sb2	-51.47 (11)
C14—N2—C8—S2	0.6 (3)	Cl1—Sb2—O1—Sb1	-124.01 (11)
C9—S2—C8—N2	0.1 (2)	Cl2—Sb2—O1—Sb1	144.37 (12)
C8—S2—C9—C10	179.2 (3)	Cl5—Sb2—O1—Sb1	-30.53 (10)
C8—S2—C9—C14	-0.7 (2)	Cl6—Sb2—O1—Sb1	46.83 (10)
C14—C9—C10—C11	-0.6 (4)	O1—Sb1—Cl6—Sb2	24.73 (6)
S2—C9—C10—C11	179.5 (2)	Cl4—Sb1—Cl6—Sb2	6.05 (11)
C9—C10—C11—C12	-0.1 (4)	Cl3—Sb1—Cl6—Sb2	109.41 (2)
C10-C11-C12-C13	0.4 (5)	Cl5—Sb1—Cl6—Sb2	-57.378 (18)
C11—C12—C13—C14	0.2 (5)	O1—Sb2—Cl6—Sb1	-25.97 (6)
C12—C13—C14—N2	179.1 (3)	Cl1—Sb2—Cl6—Sb1	-0.64 (7)
C12—C13—C14—C9	-1.0 (4)	Cl2—Sb2—Cl6—Sb1	-112.00 (2)
C8—N2—C14—C13	178.9 (3)	Cl5—Sb2—Cl6—Sb1	52.283 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1 <i>N</i> ···Cl6 ⁱ	0.86	2.37	3.200 (3)	162
N2—H2N···Cl6 ⁱⁱ	0.86	2.35	3.145 (3)	153
C1—H1…O1	0.93	2.27	3.152 (4)	159
C8—H8····Cl5 ⁱⁱⁱ	0.93	2.72	3.327 (3)	124
C10—H10…Cl3 ^{iv}	0.93	2.78	3.612 (3)	150
C13—H13…Cl2 ⁱⁱ	0.93	2.76	3.524 (3)	140

Symmetry codes: (i) -x, y-1/2, -z+3/2; (ii) -x+1, y-1/2, -z+3/2; (iii) x+1, y, z; (iv) x, -y+1/2, z-1/2.

ELSEVIE R

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstr

Two copper(II) coordination complexes based on sulfanilamide ligand: Synthesis, structure, thermal analyzes, electrochemical properties and biological activities

Oussama Chebout^a, Rafika Bouchene^b, Sofiane Bouacida^{a,b,*}, M'hamed Boudraa^a, Wissam Mazouz^c, Moufida Merzougui^{d,e}, Kamel Ouari^d, Chaouki Boudaren^a, Hocine Merazig^a

^a Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Constantine 1 25000, Algeria

^b Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria

^c Laboratoire de Biosurveillance et Environnement, Département de Biologie, Université Badji Mokhtar, Annaba 023000, Algeria

^d Laboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif-1, Sétif 19000, Algeria

^e Département Génie de l'Environnement, Faculté des Sciences et de la Technologie, Université Mohamed El-Bachir El-Ibrahimi, Bordj Bou-Arreridj 34030, Algeria

ARTICLE INFO

Article history: Received 11 May 2021 Revised 8 August 2021 Accepted 19 August 2021 Available online 24 August 2021

Keywords: Sulfanilamide Copper(II) complexes Single crystal Thermogravimetric analysis Electrochemical analysis Antibacterial activities

ABSTRACT

Two mononuclear copper(II) complexes of sulfanilamide; [CuL2(NO3)2(H2O)2] and [CuL2(NO3)2(H2O)] with L = 4-aminobenzensulfonamide; were synthesized and characterized using different physicochemical studies: IR and UV-vis spectra, single crystal X-ray diffraction (XRD), thermogravimetric analysis and electrochemical investigation. In the crystal structures of both complexes, sulfanilamide is found to exhibit a monodentate behaviour coordinating through the amino nitrogen atom. The Cu(II) ion exhibits a distorted octahedral environment in complex (1), while in compound (2) it presents trigonal bipyramidal geometry. The thermal behavior of (1) and (2) was also discussed using TGA/DTA and DSC curves which showed that both complexes acquire good stability at lower temperature. Thermogravimetric data have been utilized to assess the kinetic and thermodynamic parameters using Coats and Redfern integral equations. Electrochemical behavior of the sulfanilamide ligand and its copper(II) complexes (1) and (2) has been investigated at room temperature using cyclic voltammetry technique in DMSO. The Cu(II)/Cu(I) redox system was found to be consistent with the quasi-reversible diffusion-controlled process. The antimicrobial activity of synthetized metal complexes against various tested organisms such as Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli and Pseudomonas aeruginosa) in different concentration reveals variable responses depending on the strain and the concentration of the compounds tested.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

For their utilitarian properties and interesting structures, coordination complexes have received increasing interest. The rapid development of materials science and crystal engineering has greatly promoted the use of coordination complexes as functional materials such as photocatalysts, supercapacitors, nonlinear optical materials and porous materials. Thus, pharmaceutical scientists, biologists and medicinal chemists have also engaged in the search for coordination complexes for biomedical applications [1–4].

Sulfanilamide and its derivatives, that belong to Sulfa drugs, represent an important class of medicinally active compounds which are extensively used as antibacterial agents [5–9]. Transition metal complexes derived from these drugs have received significant attention as important diagnostic and therapeutic agents [10]. The metal complexes with sulfa drugs have been found to be more bacteriostatic than the drugs themselves [10,11]. Namely, Ni(II)-sulfadimethoxine [12] and Cu(II)-sulfacetamide [13] have shown higher antimicrobial activity than free ligands. The metallodrug chemistry exploits effectively the coordination properties of metal

^{*} Corresponding author at: Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Constantine 1 25000, Algeria.

E-mail address: bouacida.sofiane@univ-oeb.dz (S. Bouacida).

ions as well as the donor behavior of these latter drug molecules in the design of advanced therapeutic agents that possess improved pharmacological properties. Sulfanilamide molecule contains three potential donor sites i.e. two N atoms of amino and sulfonamide groups and O atom of sulfonyl group. Recently, Prajapat et al. [14,15] reported the synthesis and the characterization of Fe(III), Ni(II) and Cu(II) complexes of sulfanilamide. They found that the drug Sulfa performed as a monodentate as well as bidentate ligand, facilitating six coordinate octahedral geometry around Ni(II) and Cu(II) ions and a four coordinate tetrahedral geometry around Fe(III) ion. Even, if some examples of metal–sulfonamide coordination complexes based on commercially availibale NH₂–Ph–SO₂– NH–R ligand have been reported [16–22], the literature remains very poor concerning the crystal structure characterization [23– 25].

Recently, several authors have reported studies of Cu(II) complexes based sulfonamides showing the versatility of these ligands and the importance of their complexes in coordination chemistry [16–18,26]. In this background, we report herein the crystal structure, vibrational spectroscopy, thermal behavior, electrochemical chemistry and antibacterial activity of two new coordination copper(II) complexes with sulfanilamide namely bis(4-aminobenzensulfonamide)-diaqua-bis(nitrato)-copper (II) ($C_{12}H_{20}CuN_6O_{12}S_2$) (1) and bis(4-aminobenzensulfon- amide)-aqua-bis(nitrato)-copper(II) ($C_{12}H_{18}CuN_6O_{11}S_2$) (2).

2. Experimental

2.1. Characterization techniques

Single crystal X-ray diffraction experiments were carried out at 295 K on a Bruker Apex II diffractometer using Mo K α radiation (λ = 0.71073 Å). Molecular graphics: Mercury [27], Diamond [28], ORTEP-3 [29] and platon/pluton [30], Software used to prepare material for publication: WINGX [31].

IR spectra were recorded with a Bruker OPTIK GmbH RAM II spectrometer in the region 4000–600 cm⁻¹. UV-visible spectra were recorded on Optizen 2120 UV spectrophotometer in the region 200–600 nm.

Powder X-Ray Diffractometric analysis (PXRD) was carried out at room temperature on a Bruker D8-A25-Advanced diffractometer in BraggBrentano θ - θ -geometry (goniometer radius 280 mm) with CuK α radiation ($\lambda = 1.5406$ Å) in a 2θ range of 5° to 56° with a step size of 0.04°.

The thermogravimetric TG, ATD and DSC curves were recorded on an SDT Q600 TA instrument (temperature range 50–1100 °C and heating rate = 10° C/min) under a nitrogen flow at 100 ml/min. A crucible of α -alumina was used. Thermal analyzes (TG, DTG and DTA) were carried out using a TA Universal Analysis.

Electrochemical measurements were performed on a PGZ 301 potentiostat, under nitrogen at room temperature. The redox potentials of the complexes were evaluated by cyclic voltammetry employing a three-electrode cell consisting of a glassy carbon as working electrode, a platinum-wire as auxiliary electrode and saturated calomel as reference electrode. Cyclic voltammograms were carried out using 0.1 M LiClO₄ as supporting electrolyte and 10^{-3} M of complexes in dimethylsulfoxide.

The antimicrobial activity of metal complex against various tested organisms was performed by zone inhibition method (NC-CLS, 1997). The petri plates containing Muller-Hinton agar were seeded with 100 μ l of bacterial suspension. A disc of sterile buvardpaper 6 mm in diameter is soaked with 20 μ l of compound. The discs are deposited on the surface of the agar seeded. The petri plates were incubated at 37 °C for 24 h. Bactrim® (23 mg/ml) were used as standard antibiotics for anti bacterial activity.

2.2. Synthesis and crystallization

All solvents and chemicals were used as received. Sulfanilamide from alfa aesar 98% M = 172 (1.720 g, 10 mmol) dissolved in ethanol (15 ml) was added to a solution of CuCl₂.2H₂O merck M = 170.84 (1.708 g, 10 mmol) in water/ethanol (10 ml/10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature.After several days, blue single crystals (1) suitable for X – ray diffraction were obtained, washed with water and dried in air. Compound (2), greenyellow color was prepared as (1) but under hydrothermal conditions (120 °C, 3 days).

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The structures were solved by direct methods using SHELXS97 [32] and refined on F² by full-matrix least squares using the SHELXL-97 crystallographic software (Macrae et al., 2006). Anisotropic thermal parameters refined for all of the non-hydrogen atoms. The hydrogen atoms were placed in geometrically calculated positions, with C-H = 0.93 Å. They were refined with riding models with fixed isotropic displacement parameters, with Uiso(H) = 1.2Ueq(C) for C-H groups. The H atoms of the water ligand and sulfonamide group $-SO_2-NH_2$ were located in difference Fourier maps and refined isotropically. In the check cif for the complex (1) two alerts level B are observed because of a large residual electronic density with 2.81e/Å³ from 1.56 Å of O11atom; this last one has no chemical significance.

3. Results and discussion

3.1. Structural description of (1) and (2)

Single-crystal X-ray diffraction analysis reveals that complexes (1) and (2) crystallize in the orthorhombic system. Crystallographic data of both are listed in Table 1. The ORTEP diagrams with the atomic labeling scheme of the two complexes are given in Fig. 1 with selected bond lengths and bond angles listed in Table S1.

The crystal structures of studied compounds consist of a mononuclear species where the sulfanilamide ligand coordinates in a monodentate manner and the nitrate groups involve only one of their oxygens in coordination. The copper(II) in these entities presents a different coordination environment. The coordination setting of the Cu atom in (1) is best described as having a slightly distorted octahedral geometry. The equatorial plane is defined by two opposite nitrogen atoms from amino groups of the organic ligand in trans positions at a distance of Cu1-N3 = 2.037(4) Å and Cu1-N4 = 2.044(4) Å and two oxygen atoms from two aqua molecules with almost identical Cu-O link lengths [Cu-O1W = 1.984(2) Å and Cu-O2W = 1.985(2) Å]. The axial positions are occupied by two nitrate oxygen atoms O11 and O21 with Cu–O distances of 2.383(3) Å and 2.384(3) Å, repectively. The perpendicularity of the ligands is indicated by the values of the transoid angles N3-Cu1-N4 = 179.37(13)°, O11-Cu1- $O21 = 179.66(15)^{\circ}$ and $O1W-Cu1-O2W = 179.67(17)^{\circ}$. The cisoid angles are in the range of 87.34 (12) - 94.43 (10)° indicating distortion of the octahedral structure. These values are similar with those of reported copper(II) octahedral complexes involving sulfanilamide ligand [33,34]. The copper(II) ion in complex (2) is five coordinate with two N atoms belonging to two amino groups of two organic ligands at a distance of Cu1-N3 = 2.031(2) Å and Cu1-N4 = 2.015 (2) Å, one oxygen atom O1W of one water molecule with Cu1-O1W = 2.081 (2) Å and two O atoms belonging to two monodentate nitrate anions with Cu1-O11 = 2.296 (2) Å and Cu1-O21 = 2.116 (2) Å. The coordination geometry analysis reveals that

Table 1

Crystal	data	and	structure	refinements	for	(1)	and	(2)
CIYSLAI	udid	anu	structure	rennements	101	(1)	anu	(2).

Crystal data	(1)	(2)
Chemical formula Formula weight (g mol- ¹) Crystal system Space group Unit cell dimensions (Å, °) a	$C_{12}H_{20}CuN_6O_{12}S_2$ 568 Orthorhombic Pbn21 5.4431(5)	C ₁₂ H ₁₈ CuN ₆ O ₁₁ S ₂ 549.99 Orthorhombic Pcab 9.2146(3)
b c Volume (Å ³), Z, μ/mm^{-1} Calculated density (g cm ⁻³) F(000) Crystal size (mm ³) θ range for data collection (°) Limiting indices Reflections collected/unique Data/restraints/parameters Goodness-of-fit on F ²	$\begin{array}{l} 14.5184(13)\\ 26.387(2)\\ 2085.2(3), 4, 1.324\\ 1.809\\ 1164\\ 0.15\times0.07\times0.04\\ 2.806-33.376\\ -8\leq h\leq 8; -22\leq k\leq 22; \ 0\leq l\leq 40\\ 10845/4070 \ [R_{int}=0.0429]\\ 4070/11/323\\ 0.975\\ \end{array}$	$\begin{array}{l} 12.1362(3)\\ 36.3848(9)\\ 4068.92(19), 8, 1.35\\ 1.796\\ 2248\\ 0.18\times 0.09\times 0.05\\ 2.798-31.039\\ -13 {\leq} h {\leq} 13; \ {-}17 {\leq} k {\leq} 17; \ 0 {\leq} l {\leq} 52\\ 15026/6378 \ [R_{int}=0.0391]\\ 6378/3/307\\ 0.969\\ \end{array}$
Final R indexes $[1 > =2\sigma$ (1)] Final R indexes [all data] Largest difference peak and hole (e Å ⁻³) CCDC Number	$R_1 = 0.0402$, $WR_2 = 0.0886$ $R_1 = 0.0549$, $WR_2 = 0.0947$ 2.65, -0.37 2082985	

Fig. 1. ORTEP drawing and atom labeling scheme for complexes (1) and (2).

the degree of trigonality index value is $\tau_5 = 0.63$ [35], indicating that the metal center lies in a distorted trigonal bipyramidal geometry (The τ_5 value is defined as the diference between the two largest donor-metal-donor angles divided by 60 and has a $\tau_5 = 0$ value for a perfect square pyramid and a $\tau_5 = 1$ for a perfect trigonal bipyramid). Nevertheless, the almost linear N4–Cu1–N3 angle (176.47(5)° and the two angles O21–Cu1–O11 and O1w–Cu1–O21; of about 134.80 (3)° and 138.48(5)°, repectively; justify the description of the complex (1) as a basally-distorted trigonal bipyramid.

The r.m.s deviation of the equatorial plan (O11O21O1w) is 0.022 Å with the Cu(II) atom 0.0378 (5) Å away from the plane. The coordinated nitrate ions in (1) and (2) are essentially planar with maximun r.m.s deviations of 0.0016 Å and the aromatic rings are almost planar with maximun r.m.s deviations of 0.0146 Å and with an average C–C bond distance of 1.388 Å in (1) and 1.383 Å in (2).

The richness of the complex molecules (1) and (2) in hydrogen bond donors and acceptors involve the possibility of forming a relatively complex supramolecular network. As shown in Fig. 2(a),

Fig. 2. Projection of the crystal packing of (1) towards b-axis with representation of octahedron environments. The green dotted lines indicate hydrogen bond interactions.

Table 2Hydrogen-bond geometry (A, $^{\circ}$) for complex (1).

D—H…A	D—H	H…A	D…A	D—H…A
01W–H1W…023 ⁱ	0.88 (4)	1.98 (3)	2.777 (4)	151 (4)
01W–H2W…011 ⁱⁱ	0.87 (4)	2.53 (4)	3.133 (3)	127 (4)
01W–H2W…013 ⁱⁱ	0.87 (4)	1.85 (4)	2.712 (4)	171 (4)
N3-H3A-022	0.89	2.29	3.058 (4)	144
N3–H3 <i>B</i> …O21 ⁱⁱⁱ	0.89	2.06	2.924 (4)	163
02W-H3W-013 ^{iv}	0.87 (4)	1.99 (3)	2.765 (4)	148 (4)
N4–H4A…O11 ⁱⁱ	0.89	2.08	2.934 (4)	160
N4-H4B…012	0.89	2.32	3.080 (4)	144
02W-H4W021 ⁱⁱⁱ	0.88 (4)	2.47 (4)	3.114 (4)	131 (4)
02W–H4W…023 ⁱⁱⁱ	0.88 (4)	1.86 (4)	2.708 (4)	163 (4)
N5–H5B…O2 ⁱⁱⁱ	0.86	2.22	3.075 (4)	174
N6–H6B…O3 ⁱⁱ	0.86	2.42	3.261 (5)	166
C3-H3-02	0.93	2.55	2.922 (4)	104
C5-H5-022v	0.93	2.37	3.069 (5)	132
C13–H13…O12 ^{vi}	0.93	2.46	3.136 (5)	130
C15-H1503	0.93	2.56	2.923 (4)	104

Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) -x+3/2, y+1/2, z; (v) -x+3/2, y-1/2, z; (vi) -x+1/2, y+1/2, z.

the molecular structure of (1) is stabilized via intramolecular N-H…O_(nitrate), C-H…O_(sulfonyl) [the corresponding distances are presented in Table 2] and $O_{(water)}$ -H··· π interactions [with H1W···Cg1 distance of 2.84 Å and H3W...Cg2 distance of 2.82 Å; Cg1 and Cg2 are the centroids of the C1-C6 and C11-C16 rings, respectively]. The one dimensional propagation of the chain structure of (1) is shown in Fig. 2b. Infinit chains are packed along the *a*-axis through inversion-related pairs of intermolecular O-H...O, N-H...O and C-H-O hydrogen bonds where sulfonyl groups and nitrate anions O atoms operate as acceptors (Table 2). Further intermolecular N(sulfonyl)–H··· π interaction, at a distance of H5A···Cg2 = 2.68 Å and H6A...Cg2 = 2.96 Å, link the chains into a three dimensional wave-like supramolecular network (Fig. 3). From the packing view of complex (1) shown in Fig. 2, the 3D network is also stabilized by NO3... π interactions with an O...Cg1 distance of 3.9153 (4) Å and 3.4020 (3) Å for O22 and O23 in that order; and O...Cg2 distance of 3.8550(4) Å and 3.4017(3) Å for O12 and O13, respectively.

Table 3				
Hydrogen-bond	geometry (A,	°) for	complex	(2).

D−H…A	D—H	Н…А	D…A	$D-H\cdots A$
01W-H1W01 ⁱ	0.74 (2)	2.19 (2)	2.8111 (17)	142 (2)
01W-H2W-012 ⁱⁱ	0.89(2)	2.05 (2)	2.858 (2)	150 (2)
01W–H2W…013 ⁱⁱ	0.89(2)	2.56 (2)	3.371 (3)	152 (2)
N3–H3A…011 ⁱⁱⁱ	0.90	2.47	3.2891	152
N3–H3A…O13 ⁱⁱⁱ	0.90	2.49	3.331 (3)	157
N3-H3BO2 ^{iv}	0.90	2.52	3.2519 (17)	139
N4–H4A…O21 ⁱⁱ	0.90	2.56	3.4214 (18)	161
N4—H4B…O3 ^v	0.90	2.09	2.9873 (18)	172
N5-H5B013 ⁱ	0.86	2.33	3.0514 (19)	142
N6–H6B…O22 ^{vi}	0.86	2.35	3.117 (2)	148
N6–H6B…O4 ⁱⁱ	0.86	2.50	2.9903 (19)	117
C2-H2-01 ⁱ	0.93	2.39	3.2523 (19)	153
C3-H3-02	0.93	2.53	2.9066 (19)	104
C12-H12-023 ⁱⁱ	0.93	2.50	3.370 (2)	156
C13-H1303	0.93	2.50	2.8918 (19)	105

Symmetry codes: (i) x, y-1/2, -z+1/2; (ii) x-1/2, -y+1/2, z; (iii) x+1/2, -y+1/2, z; (iv) x+1/2, -y, -z+1/2; (v) -x+3/2, y-1/2, -z+1; (vi) -x+3/2, y+1/2, -z+1.

However, there are no significant $\pi - \pi$ interactions between adjacent aromatic rings of the sulfa ligand. The distance between Cg and Cg is 5.4431 (5) Å, which is out of the range (3.3–3.8 Å) considered for significant $\pi - \pi$ interactions [36].

An interesting side of the crystal packing diagram of (2), viewed along the crystallographic *a* axis (Fig. 4), is illustrated by a rich oxygen hydrogen bond acceptor environment. The supramolecular arrangement of complex (2) is dominated by O–H···O, N–H···O and C–H···O hydrogen bonding interactions; with the corresponding geometry parameters presented in Table 3; resulting in infinite zigzag chains prolonged along the c axis as revealed in Fig. 5. In addition, the sulfonyl groups of the organic ligand are involved in $S = O \cdots \pi$ interaction, with O···Cg2 distance of 3.3936(12) Å where Cg2 is the centroid of the C11–C16 ring. However, as observed in compound (1), there are no significant π - π interactions between adjacent aromatic rings of the sulfanilamide ligand. The distance between Cg and Cg is greater than 4.60 Å.

Fig. 3. View of the packing of (1) along a-axis, visualising N-0... π and N-H... π interactions denoted by pink dotted lines.

Fig. 4. Projection of the crystal packing of (2) towards a-axis. The green dotted lines indicate hydrogen bonds.

Fig. 5. View of the packing of (2) along b-axis, with representation of octahedron environments, visualising $S = 0...\pi$ interactions as pink dotted lines.

Fig. 6. Infrared spectra of sulphanilamide (L) and complexes (1) and (2).

3.2. IR spectral studies

The FTIR spectra of sulfanilamide ligand and its newly synthesized complexes (1) and (2) were recorded within the range 4000– 400 cm⁻¹ and used to identify the absorption frequencies due to the characteristic vibration bands of different functional groups (Fig. 6).

According to a vibrational spectroscopic study made by Ogruc Ildiz and Akyuz [37], the infrared spectra of the free molecule indicate that the sulfanilamide used in the preparation of the studied Cu(II) complexes adopts the conformation (II). The orientation of amino groups both in the sulfon and aniline side of the molecule with respect to the phenyl ring is confirmed by single-crystal structural analysis of the two complexes.

The IR spectra of sulfanilamide and its Cu(II) complexes show all the characteristic vibration bands of sulfanilamide ligand. In the IR spectra of **(1)** and **(2)**, the broad absorption at about 3500 cm⁻¹ attributed to the stretching vibration of OH confirms the presence of a coordinated water molecule. The discernible bands observed in the range 3476–3147 cm⁻¹ are assigned to the antisymmetric and symmetric stretching vibrations of aniline NH₂ group. These bands $\nu_{as}(NH_2)_{aniline}$ and $\nu_{sy}(NH_2)_{aniline}$ had been observed in the range 3454 and 3232 cm⁻¹ in both Co and Cd sulfanilamide complexes [24]. The bands at 2364 and 2336 cm⁻¹ are assigned to nitrato group vibrations and indicate the presence of coordinated nitrate groups in these complexes [9,38–40].

As expected, the characteristic vibrations of the SO₂ group at 1320, 1140, 570 and 550 cm⁻¹ remain unchanged with respect to those of the ligand. Also, the ν (S-N) vibrations at 884 cm⁻¹ and the vibrations at 1597 and 1502 cm⁻¹ correspond to ν (ring) are practically not changed in the complexes [24,37,41].

The bands around 492 and 518 cm⁻¹ in the spectra of (1) and (2) corresponding to ν (Cu–N) and ν (Cu–O), respectively [9,42–44] indicate the formation of the complexes which is consistent with the X-ray results.

3.3. UV-Visible spectroscopy

It is known that the characteristic UV bands with λ_{max} around 204 and 255 were indicative of the presence of benzene chromophore and sulfonamide moiety that is assigned to inter-ligand $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions, respectively [14,45]. The recorded spectra and the spectral bands (λ_{max}) of sulfanilamide (L) and complexes (1) and (2) in methanol, ethanol, DMSO and in DMF, at a concentration of 10⁻⁵ M are given in Fig. 7.

Regarding to peak positions of complexes (1) and (2) versus free sulfanilamide ligand in different solvents, the spectras of complexes are moved hypsochromic. In methanol, ethanol, DMSO and DMF, respectively, the intense absorption band at about 255 nm is shifted to 261, 260, 272 and 270 nm for complex (1) and to 264, 263, 271 and 283 nm for complex (2) indicating the coordination of ligands with Cu(II) ion in their metal complexes, while the first band around 204 nm is too weak when the solvent is DMSO or DMF. In ethanol, this band is shifted to 214 for complex (1) and 217 for complex (2), whereas in methanol it is shifted to 224 nm for the ligand and disappeared for both complexes. This shfting can be explained by the decrease of electron delocalisation in the ligand molecule upon coordination with a metal ion [14,46]. The resonance stabilisation of sulfanilamide is greatly influenced by the polar environment in which the complex molecules are located.

3.4. Powder X-ray diffraction (PXRD)

The Powder X-ray Diffraction (PXRD) data were collected using a Bruker D8-A25-Advance diffractometer and used to evaluate the phase purity of the isolated complexes. Figs. 8 and 9 show the experimental powder X-Ray diffraction patterns in comparison to those simulated from single crystal data for both compounds (1) and (2), respectively. The near perfect match between experimental and simulated patterns indicates the presence of pure crystalline phases in bulk samples.

Fig. 7. UV-Visible spectras of sulfanilamide (L) and complexes (1) and (2).

Fig. 8. Powder X-ray diffraction (PXRD) diagram of (1).

Fig. 9. Powder X-ray diffraction (PXRD) diagram of (2).

3.5. Thermal analysis

The thermal study of the complexes was carried out in the temperature range 20–1100 °C at a heating rate $\beta = 10$ °C min⁻¹ under nitrogen flow. Thermogravimetric and differential thermal analysis techniques are represented in Fig. 10. The temperature ranges of decompositions and the corresponding mass loss of species are given in Table 4.

According to the TG/DTG and DSC curves, both the complexes acquire good stability at lower temperature. The decompositions of the two complexes are almost similar with two distinct stages with variable mass loss.

For the compound (1), the loss in weight in the first step is 49% with a sharp exothermic peak at 156 °C on DSC curve. The decomposition process continues slowly until 1100 °C with a weak exothermic sharp at 414.53 °C on DSC curve and the loss in the weight being 30%. The metallic residue (13.82%) remained after the decomposition was attributed to CuO species.

For complex (2), the first stage is an intense exothermic and fast decomposition process in the temperature range of 100–225 °C with a weight loss value of 45 % with a sharp exothermic peak at 165 °C on DSC curve which corresponds to a maximum rate of melting. The decomposition process continues in the temperature range 230–1100 °C with a weak exothermic sharp at 340 °C on DSC curve, the mass loss being 35.30% and the residual mass is 17.51% corresponding to CuO in good agreement with the calculated value (14.45%).

Thermal stability of the two complexes was also characterized by the kinetic parameters obtained from the study performed under non-isothermal conditions. The calculated values of ΔE^* , A, ΔS^* , ΔH^* and ΔG^* , for the first decompositions are given in Table 5.

The fraction α of the substance decomposed at the DTG peak temperature Ts is given by: $\alpha = \frac{W_0 - W_f}{W_0 - W_f}$ where Wt is mass of the compound at a given temperature T_s, W_o and W_f are the initial and final weights of the substance, respectively. According to Horowitz and Metzger [47], the order n of the reaction can be calculated from the equation $(1-\alpha) = n^{1/(1-n)}$. For both the two complexes, the order n for the first decomposition is 2.

For the solid thermal decomposition, the kinetic equation for non-isothermal conditions can be expressed $\frac{d\alpha}{dt} = Ae^{\frac{-E}{RT}} f(\alpha)$ where A is the pre-exponential factor or the frequency factor, E is the activation energy of the reaction and $f(\alpha)$ is the conversion function dependent on the reaction mechanism. Since the thermogravimetric analysis is carried out at a constant heating rate β =dT/dt, the following differential equation is obtained:

$$\frac{d\alpha}{dT} = \frac{A}{\beta} e^{\frac{-E}{RT}} f(\alpha) \text{ or } \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} e^{\frac{-E}{RT}} dT \text{ and } \int_{0}^{\alpha} \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} \int_{0}^{T} e^{\frac{-E}{RT}} dT$$

In the present study, Coats and Redfern method [48] expressed as the following relationship is used for determining kinetic parameters:

$$\ln\left[\frac{\ln(1sa)^{1-n}}{T^2(1sn)}\right] = \ln\left[\frac{AR}{\beta E}\left(1-\frac{2RT}{E}\right)\right] - \frac{E}{RT}$$

Since 1-2RT/E differs little from unity, a plot of $\ln\left[\frac{\ln(1la)^{1-n}}{T^2(1ln)}\right]$ versus $\frac{1}{T}$ for n = 2, gives a straight line and E^{*} can be calculated from the slope and the value of frequency factor A (Arrhenius constant) from the intercept.

Fig. 10. Thermogravimetric curves of complexes (1) and (2).

Table 4Thermal data of the decomposition of complexes 1 and 2.

Complex	Decomposition steps	Decomposition T (°C) range	Mass loss (%)	Ts (°C)	Order n	Solid residue (%)
(1)	1	100-250	49	156	2	13.82
	2	225-1100	30	414.53		
(2)	1	100–225	47	165	2	17.51
	2	225-1100	35.30	340		

Table 5

Thermodynamic parameters of the first decomposition of complexes 1 and 2.

Complex	Decomposition steps	E (kJ/mol)	$A(s^{-1})$	$\Delta H (kJ/mol)$	ΔS (J/K.mol)	$\Delta G (kJ/mol)$
(1)	1	144.7	$1.40.10^{16}$	141.13	61.16	114.89
(2)	1	158.3	$1.36.10^{17}$	154.65	79.89	119.65

The entropy ΔS^* , the activation enthalpy ΔH^* and the free energy of activation ΔG^* were calculated by standard thermodynamic relations: $\Delta S^* = R \ln \frac{Ah}{kT}$, $\Delta H^* = E^* - RT_s$ and $\Delta G^* = \Delta H^* - T_s \Delta S^*$ where, k and h are the Boltzman and Planck constants, respectively.

The experimental values of ΔE^* , A, ΔS^* , ΔH^* and ΔG^* data for the first decomposition of the two complexes show that the complex (**2**) is comparatively more stable than the complex (**1**). This is due to Cu···O (nitrate) interactions and to extensive inter- and intramolecular O–H···O and C–H···O hydrogen bonds in (**2**). The positive values of gibbs free energy (ΔG), indicates that the complexes are stable at room temperature.

3.6. Electrochemistry studies

The electrochemical behavior of the sulfanilamide ligand and the copper complexes (1) and (2) has been investigated at room temperature using cyclic voltammetry, in a potential range +1600 to -2200 mV/SCE, employing a three-electrode cell consisting of a glassy carbon as working electrode, a platinum-wire as auxiliary electrode and saturated calomel as reference electrode. Cyclic voltammograms were carried out using 0.1 M LiClO₄ as supporting electrolyte and 10^{-3} M of complexes in dimethylsulfoxide (Fig. 11). All the electrochemical potentials were calibrated versus Fc⁺/Fc⁰.

For the free ligand, the reported anodic region is characterized by the existence of two oval humps, at +1304 and +1417 mV/SCE, associated to the oxidation of the appropriate ligand [49]. Therefore all the redox waves, in the cyclic voltammograms of the complexes, were attributed to the redox activity at the metal center.

The cyclic voltammogram of (1) in DMSO present four anodic peaks at - 380, - 16, + 237 and +420 mV/SCE, all these waves

are irreversible except the wave situated at +420 mV/SCE which is found to be coupled to the reduction wave at 120 mV/SCE corresponding to the Cu(II)/Cu(I) couple with average potential $E_{\frac{1}{2}}$ equal to +270 mV/SCE) [50,51]. This complex exhibits again another irreversible reduction wave at -1220 mV/SCE due to the Cu¹/Cu⁰ reduction, these observations are in accord with the results reported earlier for other copper complexes [52].

For the compound (**2**), the electrochemically irreversible reduction process observed at -699 mV/SCE is assigned to the Cu¹/Cu⁰ redox process [53]. The anodic wave occurred at 1356 mV is attributed to the ligand oxidation [54]. Complex (**2**) exhibits also aquasi-reversible redox wave assigned to Cu(II)/Cu(I) redox process [50,51]. The oxidation peak potential (Epa) for this wave is located at 88 mV whereas the reverse reduction wave (Epc) appeared at -108 mV and the average formal potential $[E_{1/2} = (Epa + Epc)/2]$ is -11 mV/SCE at 100 mV/s.

The cyclic voltammograms of (1) and (2) complexes in different scanning rates, plotted between -300 and 800 mV, and between -500 and +500 mV, for (1) and (2) complexes, respectively, are prone in Fig. 12.

The peak-to-peak separation between the anodic and the cathodic peak potentials at 100 mV/s scan rate, are, respectively 300 and 196 mV for (1) and (2) complexes. ΔE value, as a parameter identifying the degree of electrochemical reversibility, suggests that the complex (1) provides the smallest reversibility as this value was the highest one than that of the complex (2). The higher values of separation peak potentials reveals that the reduced species is not stable enough to undergo re-oxidation forming back the same initial Cu(II) species under the experimental condition. Furthermore, the anodic and cathodic peak potentials get shifted towards the an

Fig. 11. Cyclic voltammograms of sulfanilamide (L) and complexes (1) and (2) in 0.1 M LiClO₄/DMSO solution at scan rate of 100 mV/s.

Fig. 12. Cyclic voltammograms of (1) and (2) complexes in 0.1 M LiClO₄/DMSO solution at various scan rates: from inner to outer, 25, 50, 75, 100, 125,150, 175 and 200 mV/s.

 Table 6

 Electrochemical data of (1) and (2) copper complexes in DMSO/LiClO₄.

	E _{pc} (n	nV)	$\Delta E(r$	nV)	E _{1/2} (m)	V)	i_{pc} (Δ	A/cm ²)	i _{pc} /i _{pa}	
(mV/s) (1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
25	382	-78	230	138	267	-9	2.39	4.4	1.11	0.99
50	398	-88	264	160	266	-8	3.25	6.2	1.11	0.82
75	410	-100	268	182	267	-9	3.74	7.32	1.12	0.85
100	424	-108	300	196	272	-10	4.18	8.1	1.07	0.94
125	428	-117	316	210	270	-12	4.68	8.33	1.08	0.97
150	434	-119	326	218	271	-10	5.08	8.55	1.08	0.98
175	442	-125	334	228	271	-11	5.47	9.07	1.09	0.99
200	448	-131	352	240	272	-11	5.63	9.85	1.10	0.97

odic and cathodic region, respectively, when increasing the scan rate.

The Ratio of reverse to forward currents (i_{pc}/i_{pa}) , for both studied complexes, remained close to unity and was found independent of the scan rate (Table 6). In addition, a lin-

ear relationship between the anodic peak current and the square root of the scan rates $(i_{pc} = f(v^{1/2}))$ is observed, these results confirmed that the Cu(II)/Cu(I) redox process, for the complexes, is a quasi-reversible diffusion-controlled process [55].

Table 7

Antibacterial Activity (Gram Positive and negative) of complexes (1) and (2).

Diameter of inhibition zone (mm)							
Compounds	[C] mg/ml	E. coli	S. aureus	P. aeruginosa			
(1)	10	5.0 ± 0.0	14.0 ± 0.0	-			
	6	3.0 ± 0.2	13.5 ± 6.4	-			
	4	-	11.0 ± 4.2	-			
	2	-	11.0 ± 4.2	-			
(2)	10	8.5 ± 2.1	11.5 ± 0.7	10.0 ± 0.0			
	6	$6.0~\pm~1.0$	9.0 ± 0.2	7.0 ± 0.0			
	4	$3.0~\pm~1.0$	6.5 ± 0.7	2.0 ± 0.0			
	2	-	-	-			

3.7. Metal chelating and antibacterial activities

As excess free irons have been implicated in the induction and formation of free radicals in biological systems, we tested our compounds in a metal chelating assay. Both synthesized compounds (1) and (2) demonstrated chelating activities. Compound (1) was the most active compounds (IC^{50} (μ g) = 28, 96 ± 0,24), while the weakest activity was detected in (2) (IC^{50} (μ g) = 164,45 ± 0,63).

For the evaluation of the antibacterial potential of our compounds, we preferred to test them against several targets, since each of them has cell structure and a particular metabolism. The antimicrobial activity of metal complex were carried against various tested organisms such as Gram positive (*Staphylococcus aureus*) and Gram negative (*Escherichia coli and Pseudomonas aeruginosa*) (extracts of olives leaf) in different concentration. The testing process was performed by disc diffusion-zone inhibition method. The diameters of the inhibition zone around each disc were measured in millimeter [56]. The results of antimicrobial screening of the prepared compound are listed in Table 7. The results reveal variable responses depending on the strain and the concentration of the compounds tested.

According to the obtained results, while the two complexes are inactive against the two Gram-negative strains: *E. coli* and *P. aerug-inosa*, the Gram-positive strain *S. aureus* is the most sensitive strain against the compound **(1)** and is in good agreement with those found by Krátký et al. [57].

4. Conclusion

The present study discusses the synthesis, spectral and X-ray diffraction characterization, thermal decomposition studies and antimicrobial testing for two new Cu(II) complexes of Sulfanilamide. The X-ray diffraction analysis showed that both complexes are mononuclear and crystallize in the orthorhombic system, therefore, the sulfanilamide ligand displays a monodentate mode of coordination. Six coordinate octahedral geometry was found around Cu(II) ions in (1) and a four coordinate trigonal bipyramidal geometry has been assigned to complex (2). The compounds are stable at room temperature and the hydrogen bonding plays an important role in the stabilization of the three-dimensional frameworks. From the cyclic voltammetric investigations, the redox activity of the complexes (1) and (2) is attribuated to the metal center. The cyclic voltammograms of (1) and (2) at different scan rates illustrate a linear relationship between the anodic peak currents and the square root of the scan rates, $i_{pc} = f(v^{1/2})$, which confirm a mono electronic quasi-reversible diffusion-controlled process of the Cu(II)/Cu(I) redox couple. The antimicrobial activity of the metal complexes against various tested organisms, such as Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli and Pseudomonas aeruginosa) at different concentrations, reveals variable responses depending on the strain and the concentration of the compounds tested. The two complexes are inactive against the two Gram negative strains: *E. coli* and *P. aeruginosa*. The Gram positive *S. aureus*. is the most sensitive strain against the compound (1).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are grateful to the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique) and ATRST (Agence Thématique de Recherche en Sciences et Technologie) for the Financial support.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.molstruc.2021.131346.

References

- D. Braga, F. Grepioni, L. Maini, R. Brescello, L. Cotarca, Simple and quantitative mechanochemical preparation of the first zinc and copper complexes of the neuroleptic drug gabapentin, CrystEngComm 10 (2008) 469, doi:10.1039/ B719451J.
- [2] B. Li, X. Yu, H. Pang, Q. Shen, Y. Hou, J. Xin, H. Ma, Rational regulation of transition metals in polyoxometalate hybrids without noble metal assistance for efficient light-driven H₂ production, Chem. Commun. 56 (2020) 7199–7202, doi:10.1039/D0CC00846J.
- [3] G. Wang, T. Chen, C.J. Gómez-García, F. Zhang, M. Zhang, H. Ma, H. Pang, X. Wang, L. Tan, A high-capacity negative electrode for asymmetric supercapacitors based on a PMo₁₂ coordination polymer with novel water-assisted proton channels, Small 16 (2020) 2001626, doi:10.1002/smll.202001626.
- [4] Q. Shen, C.J. Gómez-García, W. Sun, X. Lai, H. Pang, H. Ma, Improving the photocatalytic H₂ evolution activity of Keggin polyoxometalates anchoring copperazole complexes, Green Chem. 23 (2021) 3104–3114, doi:10.1039/D1GC00692D.
- [5] A. Scozzafava, T. Owa, A. Mastrolorenzo, C.T. Supuran, Anticancer and antiviral sulfonamides, Curr. Med. Chem. 10 (2003) 925–953, doi:10.2174/ 0929867033457647.
- [6] P.A. Ajibade, G.A. Kolawole, P. O'Brien, M. Helliwell, J. Raftery, Cobalt(II) complexes of the antibiotic sulfadiazine, the X-ray single crystal structure of [Co(C₁₀H₉N₄O₂S)2(CH₃OH)₂], Inorg. Chim. Acta 359 (2006) 3111–3116, doi:10. 1016/j.ica.2006.03.030.
- [7] P.A. Vigato, S. Tamburini, The challenge of cyclic and acyclic schiff bases and related derivatives, Coord. Chem. Rev. 248 (2004) 1717–2128, doi:10.1016/j.cct. 2003.09.003.
- [8] T.S.B. Baul, S. Basu, D. DeVos, A. Linden, Amino acetate functionalized Schiff base organotin(IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitro cytotoxicity studies, Invest. N. Drugs. 27 (2009) 419– 431, doi:10.1007/s10637-008-9189-1.
- [9] R.C. Maurya, P. Patel, Synthesis, magnetic and special studies of some novel metal complexes of Cu(II), Ni(II), Co(II), Zn[II), Nd(III), Th(IV), and UO₂(VI) with schiff bases derived from sulfa drugs, viz., Sulfanilamide/Sulfamerazine and ovanillin, Spectrosc. Lett. 32 (1999) 213–236, doi:10.1080/00387019909349979.
- [10] E.E. Chuťán, J.C. Pedregosa, J. Borrás, Spectroscopic behaviour of metaldrug complexes. Infrared spectra of Cu(II) complexes with 5-amino-1,3,4thiadiazole-2-thiol (Hatm), Vib. Spectrosc. 15 (1997) 191–199, doi:10.1016/ S0924-2031(97)00033-7.
- [11] J. Casanova, G. Alzuet, J. Borrás, Metal complexes of sulfanilamide derivatives. Spectroscopic characterization of the dichloro disulfathiazole methanol copper(II) complex, Inorg. Chim. Acta 211 (1993) 183–186, doi:10.1016/ S0020-1693(00)85600-5.
- [12] T. Ulusoy, A. Topaçli, S. ide, Spectroscopic and structural studies on Nisulfadimethoxine complex, Pharm. Acta Heluetiae 72 (1998) 295–300, doi:10. 1016/S0031-6865(97)00038-1.
- [13] F. Blasco, R. Ortiz, L. Perelló, J. Borrás, J. Amigo, T. Debaerdemaeker, Spectroscopic and structural studies on Ni-sulfadimethoxine complex, J. Inorg. Biochem. 53 (1994) 117–126, doi:10.1016/0162-0134(94)85026-7.
- [14] G. Prajapat, R. Gupta, N. Bhojak, Thermal, spectroscopic and antimicrobial properties of novel nickel(II) complexes with sulfanilamide and sulfamerazine drugs, CSIJ 24 (2) (2018) 1–13, doi:10.9734/CSJI/2018/44158.
- [15] G. Prajapat, R. Gupta, N. Bhojak, Home about us editorial board indexed in current issue coming issue archives submission contact us microwave assisted synthesis, structural characterization, thermal analysis and antibacterial studies of Fe(III), Ni(II) and Cu(II) complexes of sulfanilamide, Orient. J. Chem. 35 (1) (2019) 308–317, doi:10.13005/ojc/350137.

- [16] E. Borrás, G. Alzuet, J. Borrás, J. Server-carrió, A. Castiñeiras, M. Liu-González, F. Sanz-Ruiz, Coordination chemistry of sulfamethizole: crystal structures of [Cu(sulfamethizolate)2(py)2(OH2)].H2O, [M(sulfamethizolate)2(py)2(OH2)2] [M=Co and Ni] and {Cu(sulfamethizolate)2(dmf)2}∞, Polyhedron 19 (2000) 1859–1866, doi:10.1016/S0277-5387(00)00474-5.
- [17] B. Macías, M.V. Villa, E. Fiz, I. García, A. Castiňeiras, M. Gonzalez-Alvarez, J. Borrás, Crystal structure of [Cu(N-quinolin-8-yl-p-toluenesulfonamidate)(2)]: study of its interaction with DNA and hydrogen peroxide, J. Inorg. Biochem. 88 (2002) 101–107, doi:10.1016/S0162-0134(01)00302-6.
- [18] M.H. Torre, G. Facchin, E. Kremer, E.E. Castellanos, O.E. Piro, E.J. Baran, Characterization of a Cu(II) complex of sulfadimethoxine, J. Inorg. Biochem. (2003) 200–204, doi:10.1016/S0162-0134(02)00632-3.
- [19] L.L. Marques, E.S. Lang, H. Fenner, E.E. Castellano, Synthesis and characterization of [Hg(sulfamethoxazolato)2]·2DMSO and[Cu₂(μ-CH₃CO₂)4(sulfamethoxazole)2], Z. Anorg. Allg. Chem. 631 (2005) 745–748, doi:10.1002/zaac.200400443.
- [20] L.L. Marques, G.M. de Oliveira, E.S. Lang, Effects of coordinating solvents on the supramolecular assembling of tectons arised from the metallation of sulfamethoxazole: synthesis and structural characterization of polymeric [Cd(sulfamethoxazolato)2(L)2]n {L = N,N-dimethylformamide (DMF); Dimethyl Sulfoxide (DMSO)} and [Cd(sulfamethoxazolato)2(Py)2]n-n(Py)(Py = pyridine), Z. Anorg. Allg. Chem. (2006) 2310–2314, doi:10.1002/zaac.200600167.
- [21] U. Tailor, H. Patel, Synthesis, spectroscopic characterization, antimicrobial activity and crystal structure of [Ag2(C10H10N3O3S)2(C5H5N)3], J. Mol. Struct. 1088 (2015) 161–168, doi:10.1016/j.molstruc.2015.02.014.
- [22] C.M. Sharaby, M.F. Amine, A.A. Hamed, Synthesis, structure characterization and biological activity of selected metal complexes of sulfonamide Schiff base as a primary ligand and some mixed ligand complexes with glycine as a secondary ligand, J. Mol. Struct. 1134 (2017) 208–216, doi:10.1016/j.molstruc.2016. 12.070.
- [23] G.L. Palenik, D.A. Sullivan, D.V. Naik, A ligand-induced proton shift (LIPS) in two cobaloxime complexes. The crystal and molecular structures of chloro(dimethylglyoximato)(dimethylglyoxime)(sulfanilamide)cobalt(III) monohydrate and chloro(dimethylglyoximato)(dimethylglyoxime)(4chloroaniline)cobalt(III) dihydrate, J. Am. Chem. Soc. 98 (1976) 1177, doi:10.1021/ja00421a021.
- [24] C. Topacli, A. Topacli, J. Mol. Struct. 654 (2003) 131–137 145-150, 153-159, doi:10.1016/S0022-2860(03)00202-3, 10.1016/S0022-2860(02)00473-8, 10.1016/S0022-2860(03)00201-1.
- [25] S. Benmebarek, M. Boudraa, S. Bouacida, H. Merazig, G. Dénès, Bis(4amino-benzene-sulfonamide-N⁴)di-chlorido-zinc, Acta Cryst. E70 (2014) m28m29, doi:10.1107/S160053681303417X.
- [26] R. Cejudo-Marín, G. Alzuet, S. Ferrer, J. Borrás, A. Castiňeiras A., E. Monzani, L. Casella, Functional superoxide dismutase mimics. Structural characterization and magnetic exchange interactions of Copper(II)–N-substituted sulfonamide dimer complexes, Inorg. Chem. 43 (2004) 6805–6814, doi:10.1021/ic049718w.
- [27] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van De Streek, *Mercury*: visualization and analysis of crystal structures, J Appl. Crystallogr. 39 (2006) 453, doi:10.1107/S002188980600731X.
- [28] K. Brandenburg, Diamond, Demonstrated Version, Crystal Impact GbR, Bonn, Germany, 2005.
- [29] L.J. Farrugia, ORTEP-3 for Windows a version of ORTEP-III with a Graphical User Interface (GUI), J. Appl. Crystallogr 30 (1997) 565, doi:10.1107/ S0021889897003117.
- [30] A.L. Spek, Structure validation in chemical crystallography, Acta Crystallogr D 65 (2009) 148–155, doi:10.1107/S090744490804362X.
- [31] L.J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr. 32 (1999) 837, doi:10.1107/S0021889899006020.
- [32] G.M. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A64 (2008) 112, doi:10.1107/S0108767307043930.
- [33] Q. Meng, Y. Wu, C. Zhang, catena-Poly[[dianilinedichloridocopper(II]]-2-2,5bis-(4-pyrid-yl)-1,3,4-oxadiazole], Acta Crystallogr. E66 (2010) m97, doi:10. 1107/S1600536809054191.
- [34] A. Bult, H.B. Klasen, Structures of silver sulfonamides, J. Pharm. Sci. (1978) 67284, doi:10.1002/jps.2600670249.
- [35] A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) perchlorate, J. Chem. Soc. Dalton Trans. (1984) 1349–1356, doi:10.1039/DT9840001349.
- [36] C. Janiak, A critical account on π - π stacking in metal complexes with aromatic nitrogen-containing ligands, J. Chem. Soc. Dalton Trans. (2000) 3885– 3896, doi:10.1039/B0030100.
- [37] G. Ogruc Ildiz, S. Akyuz, Conformational analysis and vibrational study of sulfanilamide, Vib. Spectrosc. 58 (2012) 12–18, doi:10.1016/j.vibspec.2011.10.005.

- [38] N.F. Curtis, Y.M. Curtis, Some Nitrato-Amine Nickel(II) Compounds with Monodentate and Bidentate Nitrate Ions, Inorg. Chem. 4 (6) (1965) 804–809, doi:10. 1021/ic50028a007.
- [39] K. Keeton, A.B.P. Levere, Four-, five-, and six-coordinate metal complexes of di(2-pyridyl) disulfide and 1,2-di(2 -pyridyl)ethane. Further studies of the infrared spectra of pyridine-metal complexes, Inorg. Chem. 10 (1) (1971) 47–55, doi:10.1021/ic50095a011.
- [40] A.B.P. Levere, E. Mantovani, B.S. Ramaswamy, Infrared Combination Frequencies in Coordination Complexes containing Nitrate Groups in various Coordination Environments. A Probe for the Metal–Nitrate Interaction, Can. J. Chem. 49 (1971) 1957–1964, doi:10.1139/v71-315.
- [41] H.T. Varghese, C.Y. Panicker, D. Philip, Vibrational spectroscopic studies and ab initio calculations of sulfanilamide, Spectrochim. Acta Part A 65 (2006) 155– 158, doi:10.1016/j.saa.2005.09.040.
- [42] S.T. Chew, K.M. Lo, S.K. Sinniah, K.S. Sim, K.W. Tan, Synthesis, characterization and biological evaluation of cationic hydrazone copper complexes with diverse diimine co-ligands, R. Soc. Chem. Adv. 4 (2014) 61232–61247, doi:10. 1039/C4RA11716F.
- [43] P.R. Reddy, A. Shilpa, N. Raju, P. Raghavaiah, Synthesis, structure, DNA binding and cleavage properties of ternary amino acid Schiff base-phen/bipy Cu(II) complexes, J. Inorg. Biochem. 105 (2011) 1603–1612, doi:10.1016/j.jinorgbio. 2011.08.022.
- [44] S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand, V. Bagchi, Molecular drug design, synthesis and structure elucidation of a new specific target peptide based metallo drug for cancer chemotherapy as topoisomerase I inhibitor, Dalton Trans. (2012) 4955–4964, doi:10.1039/C2DT12044E.
- [45] M. Lahtinen, J. Kudva, P. Hegde, K. Bhat, E. Kolehmainen, N. Venkatesh, D. Naral, Synthesis, characterization, thermal and antimicrobial studies of Nsubstituted sulfanilamide derivatives, J. Mol. Struct. 1060 (2014) 280–290, doi:10.1016/j.molstruc.2013.12.063.
- [46] J. Anandakumaran, M.L. Sundararajan, T. Jeyakumar, M. Nasir Uddin, Transition metal complexes of 4-aminobenzenesulfonamide 1,3-benzodioxole-5carbaldehyde: synthesis, characterization and biological activities, Am. Chem. Sci. J. 11 (3) (2016) 1–14, doi:10.9734/ACSJ/2016/22807.
- [47] H.H. Horowitz, G. Metzger, A new analysis of thermogravimetric traces, Anal. Chem. 35 (1963) 1464–1468, doi:10.1021/ac60203a013.
- [48] A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data, Nature 68 (201) (1964) 68–69, doi:10.1038/201068a0.
- [49] J-B. Tommasino, F.N.R. Renaud, D. Luneau, G. Pilet, Multi-biofunctional complexes combining antiseptic copper(II) with antibiotic sulfonamide ligands: Structural, redox and antibacterial study, Polyhedron 30 (2011) 1663–1670, doi:10.1016/j.poly.2011.03.033.
- [50] M.K. Koley, O.P. Chouhan, S. Biswas, J. Fernandes, A. Banerjee, A. Chattopadhyay, B. Varghese, P.T. Manoharan, A.P. Koley, Spectroscopic, electrochemical and DNA binding studies of some monomeric copper(II) complexes containing N2S(thiolate)Cu core and N4S(disulfide)Cu core, Inorg. Chim. Acta 456 (2017) 179–198, doi:10.1016/j.ica.2016.10.045.
- [51] X. Han, K. Shen, G. Huang, C. Li, S. Mao, X. Shi, H. Wu, Synthesis, structure, electrochemical properties and superoxide radical scavenging activities of two thiocyanate copper(II) complexes with different pyridyl-benzoxazole ligands, J. Mol. Struct. 1169 (2018) 18–24, doi:10.1016/j.molstruc.2018.05.058.
- [52] V. R-Delgado, M. M-Estarda, J.C. G-Ramos, L.F. H-Ayala, M. F-Alamo, L. R-Azuara, L. O-Frade, Electrochemical behavior of metal complexes with a N₂S₂ ligand, Proced. Chem. 12 (2014) 115–120, doi:10.1016/j.proche.2014.12.049.
- [53] A.K. Asatkar, M. Tripathi, S. Panda, R. Pande, S.S. Zade, Cu(1) complexes of bis(methyl)(thia/selena) salen ligands: Synthesis, characterization, redox behavior and DNA binding studies, Spectrochim. Acta Part A 171 (2017) 18–24, doi:10.1016/j.saa.2016.07.029.
- [54] E.K. Beloglazkina, A.G. Majouga, A.V. Mironov, A.V. Yudina, A.A. Moiseeva, M.A. Lebedeva, A.N. Khlobystov, N.V. Zyk, Synthesis, X-ray crystallography and electrochemistry of three novel copper complexes with imidazole-containing hydantoin and thiohydantoins, Polyhedron 63 (2013) 15–20, doi:10.1016/j.poly. 2013.07.014.
- [55] A.P. Sandoval-Rojas, L. Ibarra, M.T. Cortés, M.A. Macías, L. Suescun, J. Hurtado, Synthesis and characterization of copper(II) complexes containing acetate and N,N-donor ligands, and their electrochemical behavior in dopamine detection, J. Electroanal. Chem. 805 (2017) 60–67, doi:10.1016/j.jelechem.2017.10.018.
- [56] A.G. Ponce, R. Fritz, C. del Valle, S.I. Roura, Antimicrobial activity of essential oils on the native microflora of organic Swiss chard, Lebensm. Wiss. Technol. 36 (2003) 679–684, doi:10.1016/S0023-6438(03)00088-4.
- [57] M. Krátký, J. Vinšová, M. Volková, V. Buchta, F. Trejtnar, J. Stolaříková, Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold, Eur. J. Med. Chem. 50 (2012) 433–440, doi:10.1016/j.ejmech.2012.01.060.

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstr

Two new copper (II) complexes with sulfanilamide as ligand: Synthesis, structural, thermal analysis, electrochemical studies and antibacterial activity

Oussama Chebout^a, Chahrazed Trifa^a, Sofiane Bouacida^{a,b,*}, Mhamed Boudraa^a, Habila Imane^a, Moufida Merzougui^{c,d}, Wissam Mazouz^e, Kamel Ouari^c, Chaouki Boudaren^a, Hocine Merazig^a

^a Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Frères Montouri Constantine, 25000, Algeria

^b Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria

^c Laboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif-1, Sétif 19000, Algeria

^d Département Génie de l'Environnement, Facultédes Sciences et de la Technologie, UniversitéMohamed El-Bachir El-Ibrahimi, Bordj Bou-Arreridj 34030, Algeria

^e Laboratoire de Biosurveillance et Environnement, Département de Biologie, Université Badji Mokhtar, Annaba 023000, Algeria

ARTICLE INFO

Article history: Received 23 May 2021 Revised 31 August 2021 Accepted 3 September 2021 Available online 5 September 2021

Keywords:

Sulfanilamide Copper metal complexes Hirshfeld surface analysis Thermogravimetric analysis Electrochemical studies and antibacterial activities

ABSTRACT

Two new copper(II) complexes of sulfanilamide, namely $[Cu_3(C_6H_8N_2O_2S)_4(C_3H_6NO)_2Cl_6]_n$ (1) and $[Cu(C_6H_8N_2O_2S)(C_3H_6NO)Cl_2]$ (2), were synthesized and characterized by spectrometric methods, thermal analysis, single crystal X-ray diffraction and electrochemical investigation. In the crystal structures of both complexes, sulfanilamide is found to exhibit a monodentate behaviour coordinating through the amino nitrogen atom. In complex (1), the Cu(II) ions are five and six-coordinated with a square pyramidal and a slightly distorted octahedral geometry, respectively. Both structure of 1 and 2 have a 1D polymeric nature. In complex (2), the Cu(II) cations are six-coordinated with a slightly distorted octahedral geometry. Important interactions upon the molecular packing were also performed by the analysis of their Hirshfeld surfaces and compared to the 2D-fingerprint plots. Thermal stability of these crystalline materials has been investigated by thermogravimetric and differential thermal analysis (TG– DTA) technique and DSC curves, which showed that both complexes have high thermal stability and are stable up to 500°C.

Thermogravimetric data have been utilized to assess the kinetic and thermodynamic parameters such as Δ S, Δ H and Δ G were determined by using the Coats-Redfern method. The electrochemical process was carried out by cyclic voltammetry in DMSO/ lithium perchlorate (LiClO4) 10⁻¹ M as an electrolyte support, the Cu(II)/ Cu(I) redox system was found to be consistent with the quasi-reversible diffusion-controlled process. The antimicrobial activity of synthetized metal complexes against various tested organisms such as Gram positive (*Staphylococcus aureus*) and Gram negative (*Escherichia coli and Pseudomonas aeruginosa*) in different concentration reveals variable responses depending on the strain and the concentration of the compounds tested.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Complexes containing copper (II) have attracted much attention owing to their superior biological and catalytic properties [1,2]. In the last several years, the research in this field has been developing rapidly for coordination polymers [3,4]. Sulfanilamide ligand represents an important class of medicinally active compounds which are successfully employed as antibacterial agents [5,6]. Biological and pharmacological properties of sulfanilamide derivates are well known for many years [7–10]. Morever, metal- sulfanilamide have attracted increasing attention owing to their antimicrobial activity. Sulfanilamide molecule contains three potential donor sites i.e. two N atoms of amino and sulfonamide groups and O atom of sulfonyl group, and the molecule has excellent ability to form chelates with transition metal ions [11–14]. However, a few examples of metalsulfanilamide complexes have been reported [15–17], the literature

^{*} Corresponding author: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria. *E-mail address:* bouacida.sofiane@univ-oeb.dz (S. Bouacida).

remains very poor concerning the structural characterization of these complexes due to the difficulties in obtaining single-crystals [18].

Recently, several authors have reported studies of Cu(II) complexes based sulfanilamide showing the versatility of these ligands and the importance of their complexes in coordination chemistry [16,19]. Based on the aforementioned points, we report here the syntheses crystal structure, vibrational spectroscopy, thermal behavior, electrochemical chemistry and antibacterial activity of two new coordination copper(II) complexes with sulfanilamide and DMF respectively.

2. Experimental

2.1. Materials

All reagents were commercial products and were used without further purification.

IR spectra were recorded with a Bruker OPTIK GmbH RAM II spectrometer in the region 4000-400 cm⁻¹. UV-visible spectra were recorded on Optizen 2120 UV spectrophotometer in the region 200–600 nm.

The thermogravimetric TG, ATD and DSC curves were recorded on an SDT Q600 TA instrument (temperature range 50–1100°C and heating rate = 10° C/min) under a nitrogen flow at 100ml/min. A crucible of α -alumina was used. Thermal analyses (TG, DTG and DTA) were carried out using a TA Universal Analysis.

Electrochemical measurements were performed on a PGZ 301 Potentiostat under nitrogen at room temperature. The redox potentials of the complexes were evaluated by cyclic voltammetry employing a three-electrode cell consisting of a glassy carbon as working electrode, a platinum-wire as auxiliary electrode and saturated calomel as reference electrode. Cyclic voltammograms were carried out using 0.1 M LiClO₄ as supporting electrolyte and 10^{-3} M of complexes in dimethylsulfoxide.

Ferrous ion chelating activity was assessed according to the method reported by Gali and Bedjou [20] with slight modifications. The reaction mixture was prepared by mixing 40 μ l of each synthesized compound or the standard Ethylenediaminetetraacetic Acid (EDTA) with 40 μ l of methanol and, 80 μ l of Ferene (0.5 mM). The absorbance of the Fe²⁺-ferene complex was measured at 562 nm. The absorbance of the Fe²⁺-ferene complex was measured at 562 nm after 10 min of incubation at room temperature. Results were reported as inhibition percentages were calculated using the formula:

$$I(\%) = \frac{Ac - As}{Ac} * 100$$

Where I (%) is the percentage of inhibition, Ac and As are the absorbances of the control and the test sample after 10 min, respectively. IC_{50} value corresponding to the concentration of the sample, which inhibits 50 %, was determined from the inhibition curves at different concentrations.

The compounds were screened *in vitro* for antimicrobial properties. The panel of pathogens involved *Staphylococcus aureus* as a Gram-positive bacterium, *Escherichia coli* and *Pseudomonas aeruginosa* as a Gram-negative bacteria. This test was performed by agar diffusion method [21]. Mueller-Hinton agar was used for bacterial growth. The solutions of the compound were prepared by dissolving DMSO as a solvent. A series of different concentrations were prepared to determine the lowest concentration that could affect the pathogen. Each experiment was carried out in triplicate. Values are means \pm standard deviation (SD). Statistical analysis was performed by the non-parametric Kruskal-Wallis test (non-parametric ANOVA) followed by Dunn's multiple comparisons test using GraphPad Software (version 6.01, California corporation). Results were significantly different at p < 0.05.

2.2. Synthesis and crystalization

Complexes (1) and (2) were synthesized by reaction of CuCl₂. $2H_2O$ (0.8542 g, 5 mmol), sulfanilamide (0.860g, 5 mmol) in a similar process, but with Acetonitrile-DMF-H2O (v/v/v = 15mL/10mL/5mL) and EtOH-DMF-H2O (v/v/v = 10mL/10mL/5mL) solvent systems, respectively. The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature (Scheme 1). After several days, blue (1) and green (2) single crystals suitable for X-ray diffraction were obtained, washed with water and dried in air.

2.3. Single crystal X-ray and Hirshfeld surface analysis

Crystal data, data collection and structure refinement details are summarized in Table 1. The crystallographic data for the two compounds were carried out on an automatic diffractometer APEX II, Bruker-AXS with graphite-monochromated Mo K α radiation (λ =0.71073 Å). The crystalline structure was solved by the direct methods using SHELXS-2014 [22], then refined on the basis of F2 using the software SHELXL-2014. All non-hydrogen atoms were found from Fourier syntheses of electron density and were refined anisotropically. The hydrogen atoms were placed in geometrically calculated positions, with C-H = 0.93 Å. They were refined with riding models with fixed isotropic displacement parameters, with Uiso(H) = 1.2Ueq(C) for C-H groups. The H atoms of the sulfonamide group -SO2-NH2 were located in difference Fourier maps and refined isotropically. The structure of complex 1 is refined with a little twining for a better quality of refinement with the major component of the twin is about 96%. The DMF ligand of (2) is statistically disordered over two positions. The DIAMOND program and ORTEP-3 for Windows program were used for generating the structures [23,24].

The Hirshfeld surfaces (HS) and the 2D-fingerprint plots (FP) of the complexes (1–2) were generated using the CrystalExplorer 17.5 program [25]. The crystallographic information files (CIFs) obtained from the single crystal X-ray diffraction analysis were used as input files. The d_{norm} surfaces were mapped over a scale of -0.648 (red) to 1.672 (blue) for (1) and -1.260 (red) to 1.515 (blue) for (2). 2-D fingerprint plots were obtained with the combination of d_i and d_e distances, in the scale of 0.4 to 2.6 Å to summarize the contacts present in the crystal structure of the complexes.

3. Results and discussion

3.1. Crystal structures descriptions of complexes (1) and (2)

Selected bond lengths and angles for complexes (1) and (2) are listed in Table S1.

Compound (1) crystallizes in triclinic space group $P\overline{1}$, the asymmetric unit contains two copper atoms, two sulphanilamide ligands are crystallographically independent and one DMF molecule (Fig. 1), out of the two copper atoms, Cu(2) occupies a special position 1 d with site multiplicity of 0.5. In addition, the two Cu (II) cations exhibit two types of coordination geometry (Fig. 2a). Cu1 ion is penta-coordinate by one N atom from one amino group of one organic ligand, two terminal chloride ions and two bridging chloride atoms. The parameter τ [26] is calculated to be 0.30 $(\tau = 0$ for standard square pyramidal and $\tau = 1$ for trigonal bipyramidal), which indicates the distorted square pyramidal geometry. The equatorial positions are occupied by three chloride $(\text{Cl}_1,\ \text{Cl}_2,\ \text{Cl}_3)$ and one nitrogen atom $N_{1\text{A}}$ from amino group of sulfanilamide ligand with a distances (Cu₁-N_{1A} = 2.031(4) Å; Cu₁- $Cl_1 = 2.3189(13)$ Å; Cu_1 - $Cl_2 = 2.2641(14)$ Å; Cu_1 - $Cl_3 = 2.3156(12)$ Å), respectively, while the apical position is occupied by the (Clⁱ symmetry code: (i) -x, 1-y,-z) chloride atom, with slightly larger

Scheme 1. Synthetic Procedures of the title Compounds (1) and (2)

Table 1

Crystal data and structure refinements for (1) and (2).

Crystal data	(1)	(2)
Chemical formula	C ₁₅ H ₂₃ Cl ₃ Cu _{1.5} N ₅ O ₅ S ₂	$C_9H_{15}Cl_2CuN_3O_3S$
Formula weight (g mol-1)	619.16	379.74
Temperature (K)	150	150
Wavelength (Å)	0.71073 Μο-Κα	0.71073 Mo-Kα
Crystal system	Triclinic	Monoclinic
Space group, Number in ITC	P-1, 2	P2 ₁ /n, 14
Unit cell dimensions (Å, °)		
а	7.9720 (3)	15.7841 (6)
b	9.8651 (5)	5.7294 (2)
С	15.8523 (7)	17.5744 (7)
α	96.056 (2)	90.00
β	100.411 (2)	110.609 (2)
γ	90.084 (2)	90.00
Volume (Å ³), Z, μ /mm ⁻¹	1219.06 (9), 2, 1.86	1487.60 (10), 4, 1.97
Calculated density (g cm-3)	1.676	1.696
F(000)	629	772
Crystal size (mm ³)	$0.19\times0.08\times0.05$	$0.21 \times 0.16 \times 0.11$
heta range for data collection (°)	3.2-27	4.2-36.7
Limiting indices	-10≤h≤10; -12≤k≤12; -20≤l≤20	-26≤h≤24; -9≤k≤9; 0≤l≤29
Reflections collected/unique	$18512/4488 [R_{int} = 0.032]$	$13658/5793 [R_{int} = 0.018]$
Data/restraints/parameters	5236/6/301	7410/3/191
Goodness-of-fit on F ²	1.111	1.064
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.051, wR_2 = 0.153$	$R_1 = 0.032$, $wR_2 = 0.088$
Final R indexes [all data]	$R_1 = 0.059, wR_2 = 0.146$	$R_1 = 0.045, wR_2 = 0.083$
Largest difference peak and hole $(e^{A^{-3}})$	1.39, -0.44	0.80, -0.53
CCDC Number	2079461	2079462

bond length (Cu₁-Cl₁ⁱ = 2.7385 (14) Å) (Fig. 2b). However, Cu(2) has a slightly distorted octahedral geometry. The equatorial plane is defined by two opposite nitrogen atoms N_{1B} andN_{1B}ⁱⁱ (Symmetry code: (ii) -x+1, -y, -z) from amino groups of the organic ligand in *trans* position at a distance of Cu₂-N1B = 2.029(4)Å and two oxygen atoms O₂₁ and O₂₁ⁱⁱ (Symmetry code: (ii) -x+1, -y, -z) from two DMF with Cu–O distances of 1.968(4)Å. The perpendicularity of the ligands is indicated by the values of the *transoid* angles N_{1B}-Cu₂-N_{1B}ⁱⁱ = 180° and O₂₁-Cu₂-O₂₁ⁱⁱ = 180°. The *cisoid* angles are in the range of 86.33(16) – 93.67 (16)° indicating distortion of

the octahedral structure. These values are similar with those of reported copper(II) octahedral complexes involving sulfanilamide ligand [27–31].

The copper polyhedra are linked together through the $\mu 2$ -bridging Cl1 and μ -Cl3 anions to form a one-dimensional linear chain-like structure extending along [010] (Fig. 3a), with the Cu₁-Cu₁ⁱ separation of 3.480(8) Å and Cu₁-Cu₂ is 4.727(6) Å respectively. These one dimensional arrangements are interconnected into three dimensional structure via four N-H...Cl (d_{NCl} = 3.278(5)-3.437(4) Å), five C-H...Cl (d_{Ccl} = 3.389(6)-

Fig. 1. The coordination environment around the two crystallographically independent Cu(II) centres in (1).

Fig. 2. (a)/(b) Highlights of the coordination polyhedra for the two crystallographically independent Cu(II) ions. [Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z].

3.645(6) Å) and two C–H...O (d_{CO} = 3.497(6)–3.521(6) Å), respectively (Table 2) (Fig. 3b). The three-dimensional structure is also stabilized by C–H... π interaction, with H24B···Cg1 distance of 2.87 Å where Cg1 is the centroid of the C_{1B}–C_{6B} ring.

Compound (2) crystallizes in monoclinic P2₁/n space group, with an asymmetric unit containing one Cu²⁺ ion, one sulphanilamide ligand, one DMF molecule and two chloride anion (Fig. 4). The coordination environment of the Cu atom is best described as having a slightly distorted octahedral geometry (Fig. 5). The equatorial plane is defined by one nitrogen atom N1 from amino group of the organic ligand at a distance Cu₁–N₁ = 2.0591 (11) Å, one oxygen atom O22A from DMF ligand with Cu-O link length [Cu-O22 = 1.9589 (11) Å], and two chloride atoms Cl₁ and Cl₂ [Cu₁-Cl₁ = 2.3014(3) Å; Cu₁-Cl₂ = 2.2.2673(3) Å]. The axial positions are occupied by two chloride atoms with Cu₁-Cl₁ⁱ = 2.7923(3) Å and Cu₁-Cl_{1ⁱⁱ} = 2.9545(3) Å [Symmetry codes: (*i*) -x+1/2, y+1/2, -z+3/2; (*ii*) -x+1/2, y-1/2, -z+3/2], repectively. The perpendicularity of the ligands is indicated by the values of the *transoid* angles N1-Cu₁-Cl₂ = 174.13(3)° and O22A-Cu₁-Cl₁ = 175.45(3)°.The *cisoid* angles are in the range of 85.21 (3) – 92.25 (3)° indicating distortion of the octahedral structure. These values are similar with those of reported copper (II) octahedral complexes involving sulfanilamide ligand [32].

Fig. 3. (a) the one dimensional polymeric chains of (1) extending along [010] axis. Fig. (b) the hydrogen bond interactions found in (1).

Complex (2) presents a 1D coordination polymer, formed at the expense of single chlorido bridges between neighboring copper atoms (only the atoms Cl1 are bridging). In the polymeric chain, running along the *b* axis, the copper atoms are separated by 3.6281(4) Å (Fig. 6a). In complex (2), there exist weaker N–H...Cl, C–H...Cl and C–H…O hydrogen bonding interactions (Table 3). The hydrogen bonds link the adjacent chains to forma 3D supramolecular framework (Fig. 6b). The hydrogen bonding interactions could enhance the stability of the compound.

3.2. Hirshfeld surface analysis

The Hirshfeld surface (HS) is a tool used to investigate intermolecular interactions in crystal structures. The Crystal Explorer 17 program was used to generate the HS and 2D fingerprint plots of the complexes (1) and (2). The d_{norm} HS is obtained combining the normalized distances from the closer atom inside the surface (d_i) and outside the surface (d_e) to the Hirshfeld surface, showing all the contacts of the crystal structure. The red regions indicate the

Fig. 4. An ONRTEP style plot of asymmetric unit and atom labeling scheme for compound (2). Displacement ellipsoids are given at 50% (only one part of the disordered DMF is represented).

Fig. 5. The coordination environment of the Cu atom in (2) [Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2; (ii) -x+1/2, y-1/2, -z+3/2] (disorder have been omitted for clarity).

Table	2
-------	---

Hydrogen bonds geometries of (1).

D-HA	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
C2A-H2A Cl1	0.95	2.81	3.498(5)	130
C3A-H3A 01A(iii)	0.95	2.58	3.497(6)	162
C6A-H6ACl1(iv)	0.95	2.81	3.531(5)	133
C6A-H6A Cl3(v)	0.95	2.9	3.604(5)	132
C3B-H3B 01A(ii)	0.95	2.63	3.521(6)	157
C6B-H6B Cl2	0.95	2.97	3.645(6)	129
C22-H22Cl3	0.95	2.61	3.389(6)	139
N1A-H1A1Cl3(v)	0.91	2.56	3.437(4)	163
N1A-H1A2Cl2(i)	0.91	2.55	3.410 (4)	157
N1B-H1B1Cl2(vi)	0.91	2.71	3.400(5)	133
N1B-H1B2Cl2	0.91	2.38	3.278(5)	171

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z; (v) -x+1, -y+1, -z;; (vi) -x, -y, -z.

contacts shorter than the sum of the van der Walls radii of the involved atoms, while the blue and white regions indicate the contacts longer and closer to the van der Waals limit, respectively. The Fig. 7a shows the HS of the complexes (1) and (2).

Table 3	
Hydrogen bonds geometrie	es of (2).

D-HA	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
N1-H1A Cl2(i)	0.89	2.75	3.6002(11)	161
N1-H1B Cl1(ii)	0.89	2.94	3.4000(11)	114
N1B-H1BCl2(ii)	0.89	2.66	3.5024(11)	159
C6-H6 Cl2(i)	0.93	2.96	3.7953(13)	150
C23A-H23ACl2	0.93	2.64	3.213(3)	120
C25A-H25A01(iii)	0.96	2.62	3.417(5)	140
C25A-H25AO2(iv)	0.96	2.6	3.357(4)	136
C23B-H23BCl1(i)	0.93	2.76	3.433(3)	130
C25B-H25DO2(iv)	0.96	2.59	3.428(4)	146
C26B-H26EO1(iii)	0.96	2.53	3.143(4)	122

Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2; (ii) -x+1/2, y-1/2, -z+3/2; (iii) -x+3/2, y+1/2, -z+3/2; (iv) -x+3/2, y-1/2, -z+3/2.

The d_{norm} HS of the complexes (1) and (2) show red spots, which indicate the presence of close-contacts in the crystal structure of both complexes, such as H…H, H…O, H…Cl and H…C contacts. The Fig. 7b presents the fingerprint plots of the complexes

(a) the one dimensional polymeric chains of (2) extending along [010] axis.

(b) the hydrogen bond interactions found in (2).

Fig. 6. (a) the one dimensional polymeric chains of (2) extending along [010] axis. (b) the hydrogen bond interactions found in (2) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).

(1) and (2), describing the intermolecular interactions around the Hirshfeld surface and their contributions. The fingerprint plots of (1) and (2) are very similar, indicating that the H…H and H…O are the most contributors for the crystal packing of these complexes, with the H…H contacts contributing with 32.7% and 8.5% for (1) and (2), respectively, while the O…H/H…O contacts contributing with 23.4% for (1) and 27.2% for (2), 14.3% for C…H/H…C contacts in (1) and 8.3% in (2). Comparing the fingerprints plots of the complexes (1) and (2), is observed the spike of Cl…Cu/Cu.·Cl contacts contributing with 2.1% and 3.1% for (1) and (2), respectively.

3.3. IR spectral studies

The infrared spectra of sulfanilamide ligand and the newly synthesized complexes (1) and (2) helped to indicate regions of absorption due to the respective vibrations. The IR spectra of sulfanilamide and its complexes with copper are almost identical; all the vibration bands of sulfanilamide are present in the spectra of complexes (1) and (2) Fig. 8.

Based on previous studies of complexes with sulfonamides [13,19,33,34] a tentative assignment of the most important bands is given in Table 4. The bands observed at 3371 and 3263 cm⁻¹ are

(a) Views of the 3D Hirshfeld surface mapped over d_{norm}

(b) the 2D fingerprint plots and the relative contributions to the Hirshfeld

Fig. 7. (a) Views of the 3D Hirshfeld surface mapped over d_{norm} . (b) the 2D fingerprint plots and the relative contributions to the Hirshfeld surface area of the various close intermolecular contacts in compounds (1) and (2) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).

assigned respectively to the antisymmetric and symmetric stretching vibrations of aniline NH_2 group. These bands are shifted respectively to 3335 and 3260 cm⁻¹ in both complexes (1) and (2) suggesting that this amino group is involved in the coordination with the Cu ions [35].

As expected, the characteristic vibrations of the SO₂ group at 1320, 1140, 570 and 550 cm⁻¹ remain unchanged with respect to those of the ligand. Also, the ν (S-N) vibrations at 884 cm⁻¹ and the vibrations at 1597 and 1502 correspond to ν (ring) are practically not changed in the complexes [36–38]. The strong band at 1648 and 1645 cm⁻¹ in (1) and (2) respectively, attributed to stretching DMF carbonyl ν (C=O) [39], indicate the coordination of DMF to the Cu cation. The bands around 492 and 518 cm⁻¹ in the spectra of (1) and (2) corresponding to ν (Cu–N) and ν (Cu–O), respectively indicate the formation of the complexes consistent with the X-ray results [40–43].

3.4. UV-visible spectroscopy

It is known that the characteristic UV bands with λ max around 204 and 255 were indicative of the presence of benzene chromophore and sulfonamide moiety that is assigned to inter-ligand $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions respectively [44,45]. The recorded spectra and the spectral bands (λ max) of sulfanilamide and complexes (1) and (2) in methanol, ethanol, DMSO and in DMF, at a concentration of 10⁻⁵ M are given in Fig. 9.

Regarding to peak positions of complexes (1) and (2) versus free sulfanilamide ligand in different solvents, the spectra of complexes are moved hypsochromic. In ethanol, methanol, DMSO and DMF respectively, the intense absorption band at about 255 nm is shifted to 262, 264, 268 and 285 nm for complex (1) and to 261, 261, 266 and 278 nm for complex (2) indicating the coordination of ligands with Cu(II) ion in their metal complexes, while the first

Fig. 8. Infrared spectra of: HL- sulfanilamide, complexe (1) and complexe (2).

band around 204 nm is too weak when the solvent is DMSO or DMF. In ethanol, this band is shifted to 209 for both complexes, whereas in methanol it is shifted to 224 nm for the ligand and to 218 for both complexes. This shifting can be explained by the decrease of electron delocalization in the ligand molecule upon coordination with a metal ion [45,46]. The resonance stabilization of sulfanilamide is greatly influenced by the polar environment in which the complex molecules are located.

3.5. Thermal analysis

The thermal study of the complexes was carried out in the temperature range 20–1100°C at a heating rate β =10°Cmin⁻¹ under nitrogen flow. Thermogravimetric and differential thermal analysis techniques are represented in Fig. 10. The temperature ranges of decompositions and the corresponding mass loss of species are given in Table 5.

Fig .9. UV-Visible spectra of: HL- sulfanilamide, complexe (1) and complexe (2).

Fig. 10. The TG/DTG and DSC curves of compound (1) and compound (2).
Journal of Molecular Structure 1248 (2022) 131446

Table 4

IR spectra (4000-400cm ⁻¹)	of the HL	ligand and	complexes ((1)	and	(2)),
--	-----------	------------	-------------	-----	-----	-----	----

Sulfa	Sulfa (obs)	(1)	(2)
$v_{a}(NH_{2})_{aniline}$	3475	3422	-
$v_{\rm s}(\rm NH_2)_{\rm aniline}$	3371	3335	3335
$v_{s}(NH_{2})_{sulfa}$	3263	3258	3263
$\nu(CH)_{aromatic}$	2970	2933	2939
ν(C=0)	-	1648	1645
$\delta_{s}(NH_{2})_{aniline}$	1627	1648	1645
v(ring)	1597	1601	1601
v(ring)	1505	1498	1499
	-	1433	1435
$\delta(CH)$	1340	1365	1344
$v_a(SO_2)$	1313	1330	1329
$\delta(CH)$	-	1190	1167
$v_a(SO_2)$	1144	1168 - 1111 - 1100	1130
$\delta(CH) + \delta_r(NH_2)_{aniline} + (-S=0)$ bend	1094	1060 - 1022 - 956	1099 - 1059 - 1022
$\nu(SN) + \pi(CH)$	899	888 - 854	889
$\pi(CS) + \pi(CN)$	-	839	839
$\pi(CS) + \pi(CN)$	680	696 - 655	696
ω (NH2) sulfa	-	627	-
$\delta_{s}(SO_{2})$	583	570	569
$\pi_{\text{Ring}} + \omega(\text{NH}_2)_{\text{aniline}} + \omega(\text{SO}_2)$	-	548	550
$v_{s}(MN)_{aniline}$	-	510	509
$\nu_{s}(MN)_{sulfa}$	-	422	422

Subscript, a: asymmetric; s: symmetric, r: rocking, s: scissoring, ν : stretching; δ : in-plane bending; π : out of plane bending; ω : wagging; ρ : rocking

Table 5Thermal data of the decomposition of complexes (1) and (2).

Complexes	Decomposition steps	DecompositionT (°C) range	Ts (°C)	Order n	Solid residue (%)
(1)	1	140-219	167C	3.7	23%
	2	219-362	298C	1.35	
	3	362-581	445.6	1.78	
	4	581-1100	917	1.75	
(2)	1	100-172	153.63	1	20%
	2	173-210	181	2	
	3	210-381	394.3	1	
	4	381-520	410	1	
	5	520-720	635	1	
	6	720-1100	900	1	

According to the TG/DTG and DSC curves, both the complexes acquire good stability at lower temperature. The decompositions of the two complexes acquired in many stages.

The TG curve of (1) displays four weight losses. The first is 13% from 156-219 ° C, corresponding to removal of two DMF molecules (calculated value is 11.82%). The second loss occurs from 219-360 °C, with weight loss of 33.6%, assigned to the decomposition of ligand, with a strong exothermic peak at 297.3 °C on DTG. The two last steps of decomposition in the temperature ranges 362–581 and 581–1100 °C with the estimated mass loss 9.4% and 23% are due to the complete decomposition of the ligand and loss of the remaining organic moiety. The remaining weight of 23% (calculated 19.20%) corresponds to metallic residue CuO.

For complex (2), the first weight loss of 10% occurred between 100 and 172°C, corresponding to the release of half molecule of DMF (calculated 9.9%). At the same time, an intense exothermic peak was observed in the DTG curve at 153.63°C. The second and third weight-loss steps in the temperature ranges 173-210°C and 210-381°C with the estimated mass loss 10% and 31% are due to decomposition of ligand. Also, the weight loss is continued in the range 381-1000 °C leaving to CuO in good agreement with the calculated value (20 %).

Thermal stability of the two complexes was also characterized by the kinetic parameters obtained from the study performed under non-isothermal conditions. The calculated values of ΔE^* , A, $\Delta S^*, \ \Delta H^*$ and $\Delta G^*,$ for different decompositions are given in Table 6.

The fraction α of the substance decomposed at the DTG peak temperature Ts is given by: $\alpha = \frac{W_0 - W_f}{W_0 - W_f}$ where Wt is mass of the compound at a given temperature Ts, Wo and Wf are the initial and final weights of the substance, respectively. According to Horowitz and Metzger [47], the order n of the reaction can be calculated from the Equation $(1-\alpha) = n^{1/1-n}$.

For the solid thermal decomposition, the kinetic equation for non-isothermal conditions can be expressed $\frac{d\alpha}{dt} = Ae^{\frac{-E}{RT}}f(\alpha)$ where A is the pre-exponential factor or the frequency factor, E is the activation energy of the reaction and $f(\alpha)$ is the conversion function dependent on the reaction mechanism. Since the thermogravimetric analysis is carried out at a constant heating rate $\beta = dT/dt$, the following differential equation is obtained $\frac{d\alpha}{dT} = \frac{A}{\beta}e^{\frac{-E}{RT}} f(\alpha)$ or

$$\frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} e^{\frac{-E}{RT}} . dT \text{ and } \int_{0}^{\alpha} \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} \int_{0}^{T} e^{\frac{-E}{RT}} . dT$$

In the present study, Coats and Redfern method [48] expressed as the following relationship is used for determining kinetic parameters: $\ln[\frac{-\ln(1-\alpha)}{T^2}] = \ln[\frac{AR}{\beta E}(1-\frac{2RT}{E})] - \frac{E}{RT}$ for n = 1 and $\ln[\frac{1-(1-\alpha)^{1-n}}{T^2(1-n)}] = \ln[\frac{AR}{\beta E}(1-\frac{2RT}{E})] - \frac{E}{RT}$ for $n \neq 1$

Since 1-2RT/E differs little from unity, a plot of: $\ln[\frac{-\ln(1-\alpha)}{T^2}]$ versus $\frac{1}{T}$ for n = 1 and $\ln[\frac{1-(1-\alpha)^{1-n}}{T^2(1-n)}]$ vs $\frac{1}{T}$ for $n \neq 1$, give a straight

Table 6

The calculated values of ΔE^* , A, ΔS^* , ΔH^* and ΔG^* , for different decompositions of complexes (1) and (2).

Complexes	Decomp. Steps	T range (°C)	E (kJ/mol)	$A(s^{-1})$	$\Delta H (kJ/mol)$	ΔS (J/K.mol)	$\Delta G (kJ/mol)$
(1)	1	140-219	29.285	3.14	25.194	-239.55	143.052
	2	219-362	86.926	4.8×10^{5}	82.178	-141.55	163.00
	3	362-581	59.141	45.6	53.166	-220.46	211.588
	4	581-1100	170.221	2.047×10^{4}	160.327	-173.88	376.244
			Total 345.573		Total 320.865		Total 893.884
(2)	1	373-446	58.643	1.08×10^{8}	55.095	-17.558	55.913
	2	446-483	39.380	130 × 114	35.605	-207.92	130.00
	3	483-654	7.489	1.2×10^{-3}	1.941	-307.52	212.697
	4	654-793	209.314	5.146×10^{13}	203.635	10.96	196.333
	5	793- 993	19.508	5.33×10^{-3}	11.958	-257.097	282.255
	6	993-1383	70.659	0.9079	60.906	164.063	362.481
			Total 404.993		Total 369.140		Total 1239.679

line and E can be calculated from the slope and the value of frequency factor A (Arrhenius constant) from the intercept.

The entropy ΔS , the activation enthalpy ΔH and the free energy of activation ΔG were calculated by standard thermodynamic relations: $\Delta S = R \ln \frac{Ah}{kT}$, $\Delta H = E - RT_s$ and $\Delta G = \Delta H - T_s \Delta S$ where, k and h are the Boltzman and Planck constants, respectively.

The experimental values of ΔE , A, ΔS , ΔH and ΔG data for different decompositions of the two complexes show that the complex (2) is comparatively more stable than the complex (1). This is due to Cu...O(nitrate) interactions and to extensive inter and intramolecular O–H...O and C–H...O hydrogen bonds in (2). The highest activation energies (E) and enthalpy of activation (ΔH) for the two complexes may be due to the presence of stronger bonding interaction and stable species involved in the decomposition of complexes [49]. The positive values of Gibbs free energy (ΔG), indicates that the complexes are stable at room temperature.

3.6. Electrochemical investigation

The redox electrochemical behavior of the free ligand and the corresponding complexes were examined by cyclic voltammetry in DMSO solution containing 0.1 M lithium perchlorate (LiClO₄) as supporting electrolyte. The complexes (1) and (2) undergo a quasi-reversible one-electron redox process involving (Cu^{II}/Cu^I) couple.

The experimental apparatus and protocol for cyclic voltammetric study were the same reported in a previous work [50], using a PGZ 301 potentiostat in conjunction with a three-electrode system containing a glassy carbon electrode (3 mm in diameter) as working electrode, a Pt wire as counter electrode and a saturated calomel electrode (SCE) as reference. All measurements were performed in dimethylsulfoxide, DMSO, containing 0.1 M LiClO₄ as supporting electrolyte at room temperature and under nitrogen. The electrochemical potentials were calibrated versus Fc⁺/Fc, an internal standard (E_{1/2} 420 mV vs SCE).

In order to investigate the redox behavior of the complexes (1) and (2), cyclic voltammetric technique was exploited. The electrochemical measurements have been carried out in DMSO in the potential range +250 to -250 mV/SCE at different scan rate 25 to 200 mV/s.

The free ligand is electro inactive within the potential range scanned. Representative cyclic voltammograms of the studied complexes at various scan rates are shown in Fig. 11. The electrochemical data with peak potentials are reported in Table 7.

Both the Cu(II) complexes exhibited similar electrochemical properties. A quasi-reversible one electron redox process, involving the Cu(II)/Cu(I) couple at 5 and -13 mV for (1) and (2), respectively, is shown. This redox process is in agreement with the values reported for other Cu(II) complexes [51–55].

For these quasi-reversible redox systems, the difference cathodic to anodic peak potential ΔE_p is of 92 and 114 mV for (1) and (2) complexes at 100 mV/s scan rate, respectively. In addition, the ratio of anodic to cathodic peak currents I_{pa}/I_{pc} is close to unity, and it is independent of the scan rate (Table 5), similar electrochemical behavior is observed for other copper complexes [51–55].

The redox behavior of Cu(II) complexes at glassy carbon electrode is controlled by the diffusion, which is demonstrated by the linear dependence of the cathodic peak height on the square root of the scan rate, $v^{1/2}$ [50,55].

3.7. Ferrous ion chelating activity

Transition metals such as iron are well known to catalyze the production of free radical via the Fenton reaction, especially the highly reactive hydrogen radical (OH·). This radical can induce damages to proteins, lipids, and nucleic acids, which can trigger several processes involved in the etiology of several diseases. Consequently, the sequestration of these ions can prevent the generation of free radicals and the oxidation of biological molecules [56]. The ability of synthesized compounds to bind iron ions was evaluated using ferene as a competing agent, which forms a purple complex with ferrous ions presenting a maximum of absorption at 562 nm. According to the Table 8, results showed that CH240 was the most actif compound with IC50 value: $26,49\pm0,40\mu$ g/ml followed

Table 7									
Electrochemical data of	(1) a	nd (2) copper	complexes in	n DMSO	/LiClO₄	at various	scan	rates.

V	-Epc (mV	/SCE)	$^{a}\Delta E (mV/SCE)$		^b E _{1/2} (mV	/SCE)	-ipc (∆A/o	rm²)	Ipc/ipa	
(mV/s)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
25	-31	-55	74	86	6	-12	1.11	-4	0.85	1.12
50	-36	-62	82	99	5	-13	1.6	-5.3	0.81	1.17
75	-39	-66	86	106	4	-13	1.85	-6.3	0.81	1.19
100	-41	-71	92	114	5	-14	2	-7.35	0.78	1.13
125	-43	-74	96	120	5	-14	2.37	-7.9	0.79	1.16
150	-45	-77	100	120	5	-13	2.57	-8.8	0.80	1.24
175	-49	-79	106	132	4	-13	2.67	-9.4	0.80	1.33
200	-51	-80	108	134	3	-13	2.87	-9.7	0.81	1.16

Fig. 11. Cyclic voltammograms of (a) complex (1) and (b) complex (2) in 0.1 M LiClO₄/DMSO solution at various scan rates: from inner to outer, 25, 50, 100, 125, 150, 175 and 200 mVs⁻¹. The insets show the anodic currents vs $v^{1/2}$.

Table 8

metal chelating activity of synthesized compound.						
Compounds	IC50 (µg/ml)					
CH240	26,49±0,40 ^b					
CH302	49,24±0,31 ^c					
EDTA	12,11±0,32 ^a					

by CH302 which had an IC50 value of $49,24\pm0,31 \mu g/ml$. Both of our synthesized compounds are less actif than the positif control EDTA, which gave an IC50 value $12,11\pm0,32\mu g/ml$.

Values are reported as mean \pm SD of three experiments. Values with different subscript letters in the same column are significantly different at $p{<}0.05$

3.8. Antibacterial activity

For the evaluation of the antibacterial potential of our compounds, we preferred to test them against several targets, because each of them has cell structures and a particular metabolism. The sensitivity of the strains to the different compounds was

Concentration (mg/ml)

Fig. 13. Antimicrobial activity of complex (1) and complex (2).

classified according to the diameter of the zone of inhibition as follows [57]:

6

5

\$ 9 10

- \checkmark Diameter less than 8 mm: not sensitive
- $\sqrt{}$ Diameter from 9 14 mm: sensitive;

2 3

Ó

- \checkmark Diameter from 15 19 mm: very sensitive;
- \checkmark Diameter more than 20 mm: extremely sensitive

The results reveal variable responses depending on the strain and the concentration of the coumpound tested (Fig. 12).

According to the results (Fig. 13), Compound CH240 displayed the highest zone of inhibition against all the tested strains. It can observe that the antibacterial activity of our compounds has high effect on the Gram-negative bacterium *S. aureus*, that was extremely sensitive to CH240 at 10^{-2} concentration (20±0.70mm), while it was sensitive to CH302 at the same concentration (10±0.5mm). Gram-positive bacteria *E. coli* and *P. aeruginosa* were sensitive to CH240 compound while they were not sensitive to CH302 compound.

The antibacterial properties of sulfonamides are related to the inhibition of the enzyme dihydropteroate synthase (DHPS). In bacteria, sulfonamides act as competitive inhibitors of the enzyme dihydropteroate synthetase, DHPS, which catalyses the conversion of PABA (para-aminobenzoic acid) to dihydropteroate, a key step in folate synthesis. Hence, sulfonamides exhibit a bacteriostatic rather than bactericidal effect [58].

4. Conclusion

•

÷

÷.

é

ż

ŝ,

181

In summary, Two new copper(II) complexes of sulfanilamide ligand and DMF have been prepared and fully characterized. Complex (1) contains μ_2 -bridging Cl₁ and Cl₃ anions to form a onedimensional linear chain-like structure extending along [010], with each Cu (II) ion exhibiting pseudo square pyramidal and the slightly distorted octahedral geometry. Complex (2) presents a 1D coordination polymer, formed at the expense of single chlorido bridges between neighboring copper atoms running along b axis, with each Cu (II) ion exhibiting highly distorted octahedral geometry. The sulfanilamide ligand, acting as a monodentate ligand, binds to copper(II) through the amine nitrogen atom. All interactions in crystal structures of (1) and (2) have been also studied by Hirshfeld surface analysis. Electrochemical study of both (1) and (2) complexes indicates that Cu^{II}/Cu^{I} redox process takes place quasi-reversibly in DMSO, with current ratio ipc/ipa close to one. The antimicrobial activity of metal complex against various tested organisms such as Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli and Pseudomonas aeruginosa) in different concentration reveals variable responses depending on the strain and the concentration of the compounds tested. The complex (2) is almost insensitive against test microorganisms. The Gram-positive S. aureus. is the most sensitive strain against the compound (1).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors are grateful to the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique) and ATRST (Agence Thématique de Recherche en Sciences et Technologie) for the Financial support.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.molstruc.2021.131446.

References

- [1] A. Das, R.I. Kureshy, P.S. Subramanian, N.H. Khan, S.H.R. Abdi, H.C. Bajaj, Synthesis and characterization of chiral recyclable dimeric copper(II)-salen complexes and their catalytic application in asymmetric nitroaldol (Henry) reaction, Catal. Sci. Technol. 4 (2014) 411–418, doi:10.1039/C3CY00638G.
- [2] Z. Ma, L. Wei, E.C. Alegria, L.M.D.R.S. Martins, M.F.C. Guedes da, A.J.L. Pombeiro, Synthesis and characterization of copper(II) 4'-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols, Dalton Trans. 43 (2014) 4048–4058, doi:10.1039/C3DT53054J.
- [3] K.H. Thebo, H.A. Shad, A.A. Thebo, J. Raftery, Synthesis and Structural Characterization of Copper(II) Complex of 2,2'Bipyridyl and L-Lysine, Crystallogr. Rep. 59 (2014) 1063–1067, doi:10.1134/S1063774514080082.
- [4] G. Liu, B. Chen, J.T. Cheng, A New AzidoBridged Copper(II) Complex Containing Nitronyl Nitroxide Radicals: Syntheses, Crystal Structures, Crystallogr. Rep. 59 (2014) 1033–1063, doi:10.1134/S1063774514060182.
- [5] I. Iakovidis, I. Delimaris, S.M. Piperakis, Copper and Its Complexes in Medicine: A Biochemical Approach, Mol. Biol. Int. 11 (2011) 1–13, doi:10.4061/2011/ 594529.
- [6] T. Gelbrich, A.L. Bingham, T.L. Threlfall, M.B. Hursthouse, δ-Sulfanilamide, Acta Crystallogr. C64 (2008) o205-o207, doi:10.1107/S0108270108005696.
- [7] E.H. Northey, Structure and chemotherapeutic activities of sulfanilamide derivatives, Chem. Rev. 27 (1940) 85–197, doi:10.1021/cr60086a006.
- [8] X.-L. Wang, K. Wan, C.-H. Zhou, Synthesis of novel sulfanilamide-derived 1,2,3triazoles and their evaluation for antibacterial and antifungal activities, Eur. J. Med. Chem. 45 (2010) 4631–4639, doi:10.1016/j.ejmech.2010.07.031.
- [9] H. Turkmen, G. Zengin, B. Buyukkircali, Synthesis of sulfanilamide derivatives and investigation of in vitro inhibitory activities and antimicrobial and physical properties, Bioorg. Chem. 39 (2011) 114–119, doi:10.1016/j.bioorg.2011.02.004.
- [10] M. Lahtinen, J. Kudva, P. Hegde, K. Bhat, E. Kolehmainen, N. Venkatesh, D. Naral, Synthesis, Characterization, Thermal and Antimicrobial studies of N-substituted Sulfanilamide derivatives, J. Mol. Struct. 1060 (2014) 280–290, doi:10.1016/j.molstruc.2013.12.063.
- [11] A.K. El-Sawaf, M.A. Azzam, A.M. Abdou, H. Anouar, Synthesis, spectroscopic characterization, DFT and antibacterial studies of newly synthesized cobalt(II, III), nickel(II) and copper(II) complexes with Salicylaldehyde N(4)antipyrinylthiosemicarbazone, Inorg. Chim. Acta 483 (1) (2018) 116–128, doi:10.1016/j.ica.2018.08.013.
- [12] J.B. Tommasino, F.N.R. Renaud, D. Luneau, G. Pilet, Multi-biofunctional complexes combining antiseptic copper(II) with antibiotic sulfonamide ligands: Structural, redox and antibacterial study, Polyhedron 30 (2011) 1663–1670, doi:10.1016/j.poly.2011.03.033.
- [13] U. Tailor, H. Patel, Synthesis, spectroscopic characterization, antimicrobial activity and crystal structure of [Ag₂(C₁₀H₁₀N₃O₃S)₂(C₅H₅N)₃], J. Mol. Struct. 1088 (2015) 161–168, doi:10.1016/j.molstruc.2015.02.014.
- [14] K.K. Narang, J.K. Gupta, Sulfadrug Complexes of Zinc(II), Cadmium(II) and Mercury(II), Transit. Met. Chem. 2 (1977) 181–183, doi:10.1007/BF01402716.
- [15] G. Prajapat, R. Gupta, N. Bhojak, Microwave Assisted Synthesis, Structural Characterization, Thermal Analysis and Antibacterial Studies of Fe(III), Ni(II) and Cu(II) Complexes of Sulfanilamide, Orient. J. Chem. 35 (1) (2019) 308–317, doi:10.13005/ojc/350137.
- [16] É.B. Coropceanu, A.P. Rija, V.N. Shafranskii, O.A. Bologa, M. Gdaniec, S.T. Malinovskii, Structure of sulfanimamide-containing cobalt(III) dioximates with the [ZrF₆]^{2–} AND [BF₄][–] anions, J. Struct. Chem. 48 (2007) 1110–1117, doi:10.1007/ s10947-007-0178-6.
- [17] G.J. Palenik, D.A. Sullivan, D.V. Naik, A Ligand-Induced Proton Shift (LIPS) in Two Cobaloxime Complexes. The Crystal and Molecular Structures of Chloro(dimethylg1yoximato)- (dimeth ylg1yoxime)(sulfanilamide)cobalt(111) Monohydrate and Chloro(dimethylg1yoximato)- (dimethylg1yoxime)(4chloroaniline)cobalt(111) Dihydrate, J. Am. Chem. Soc. 98 (1976) 1177-1182, doi:10.1021/ja00421a021.

- [18] C. Topacli, A. Topacli, Semi-empirical infrared spectra simulations of metal complexes of sulfanilamide, J. Mol. Struct. 654 (2003) 153–159, doi:10.1016/ S0022-2860(03)00201-1.
- [19] S. Benmebarek, M. Boudraa, S. Bouacida, H. Merazig, G. Dénès, Bis(4aminobenzenesulfonamide-κN⁴) - dichloridozinc, Acta Crystallogr. E70 (2014) m28-m29, doi:10.1107/S160053681303417X.
- [20] L. Gali, F. Bdjou, Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis, S. Afr. J. Bot. 120 (2019) 163–169, doi:10.1016/j.sajb.2018. 04.011.
- [21] A. Sid, F. Mahdi, A. Messai, N. Ziani, M. Mokhtari, Synthesis, Characterization and Antimicrobial Screening of Some Novel 3- (Naphtalen-1 and 2-yl) -5- Aryl-2-Pyrazolines Synthesized by Condensation of Hydrate Hydrazine to Appropriate α , β -Unsaturated Ketones, J. Chem. Biol. Phys. Sci. 5 (2015) 1125–1130.
- [22] G.M. Sheldrick, Crystal structure refinement with SHELXL, ActaCryst. C71 (2015) 3–8, doi:10.1107/S2053229614024218.
- [23] K. Brandenburg, H. Putz, Diamond, Crystal Impact GbR, Bonn, Germany, 1999. [24] L.J. Farrugia, ORTEP-3 for Windows-a version of ORTEP-III with a Graphi-
- [24] L.J. Farrugia, ORTEP-3 for Windows-a version of ORTEP-III with a Graphical User Interface (GUI), J. Appl. Crystallogr. 30 (5) (1997) 565, doi:10.1107/ S0021889897003117.
- [25] M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, A.M. Spackman, Crystal Explorer17, University of Western Australia, 2017.
- [26] A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, C.G. Verschoor, J. Chem.Soc., Synthesis, Structure, and Spectroscopic Properties of Copper(11) Compounds containing Nitrogen-Sulphur Donor Ligands; the Crystal and Molecular Structure of Aqua[1,7-bis(N-methylbenzimidazol-2'-yl)- 2,6-dithiaheptane]copper(ii) Perchlorate, Dalton Trans. (1984) 1349–1356, doi:10.1039/DT9840001349.
- [27] M. Sundaralingam, J.A. Carrabine, Stereochemistry of Nucleic Acids and their Constituents, J. Mol. Biol. 61 (1971) 287–309, doi:10.1016/0022-2836(71) 90381-0.
- [28] S. Zhang, W. Chen, B. Hu, Y. Chen, L. Zheng, Y. Li, W. Li, A cubane-like [Ni404] cluster and a chloro-bridged dinuclear copper complex incorporating a hydroxyl-rich ligand: syntheses and crystal structures, J. Coord. Chem. 65 (23) (2012) 4147–4155, doi:10.1080/00958972.2012.735364.
- [29] R.D. Willett, Aqua-di-μ₂-chloro-bis(diethylenetriamine)dicopper(II) dichloride, Acta Crystallogr. E57 (2001) m605–m606, doi:10.1107/S1600536801019808.
- [30] M.A. Kurawa, C.J. Adams, A.G. Orpen, Di-μ-chlorido-bis-[di-chlorido(3,3',5,5'tetra-methyl-4,4'-bipyrazol-1-ium-κN²) copper(II)] dihydrate, Acta Crystallogr. E64 (2008) m1053-m1054, doi:10.1107/S1600536808022605.
- [31] Q. Meng, Y. Wu, C. Zhang, Aqua-di-μ₂-chloro-bis (diethylenetriamine)dicopper(II) dichloride, Acta Crystallogr. E66 (2010) m97, doi:10.1107/S1600536809054191.
- [32] S. Löw, J. Becker, C. Wrtele, A. Miska, C. Kleeberg, U. Behrens, O. Walter, S. Schindler, Reactions of Copper(II) Chloride in Solution: Facile Formation of Tetranuclear Copper Clusters and Other Complexes That Are Relevant in Catalytic Redox Processes, Chem. Eur. J. 19 (2013) 5342–5351, doi:10.1002/chem. 201203848.
- [33] J. Hernández-Gil, L. Perelló, R. Ortiz, G. Alzuet, M. González-Álvarez, M. Liu-González, Synthesis, structure and biological properties of several binary and ternary complexes of copper(II) with ciprofloxacin and 1,10 phenanthroline, Polyhedron 28 (2009) 138–144, doi:10.1016/j.poly.2008.09.018.
- [34] G. Kanagaraj, G.N. Rao, Synthesis and Characterization of Some First Row Transition Metal Complexes of 4-Amino-N-(5-methyl-3-isoxazolylbenzenesulfonamide (Sulfamethoxazole), Synth. React. Inorg. Met.Org. Chem. 22 (5) (1992) 559–574, doi:10.1080/15533179208020229.
- [35] S.M. Tailor, U.H. Patel, Synthesis, spectroscopic characterization, antimicrobial activity and crystal structure of [Ag₂(C₁₀H₁₀N₃O₃S)₂(C₅H₅N)₃], J. Mol. Struct. 1088 (2015) 161–168, doi:10.1016/j.molstruc.2015.02.014.
- [36] A. Bult, H.B. Klasen, Silver sulfadiazine, J. Pharm. Sci. 67 (1978) 284, doi:10. 1016/S0099-5428(08)60202-6.
- [37] G.O. Ildiz, S. Akyuz, Conformational analysis and vibrational study of sulfanilamide, Vib. Spectrosc. 58 (2012) 12–18, doi:10.1016/j.vibspec.2011. 10.005.
- [38] H.T. Varghese, C.Y. Panicker, D. Philip, Vibrational spectroscopic studies and ab initio calculations of sulfanilamide, Spectrochim. Acta Part A 65 (2006) 155– 158, doi:10.1016/j.saa.2005.09.040.
- [39] C. Topacli, B. Kesimli, Investigation on sulfanilamide and its interaction with some metals and lincomycin by infrared spectroscopy, Spectrosc. Lett. 34 (4) (2001) 513–526, doi:10.1081/SL-100105097.
- [40] K. Homzová, K. Györyová, M. Koman, M. Melník, Z. Juhászová, Synthesis, crystal structure, and spectroscopic and thermal properties of the polymeric compound catena-poly[[bis(2,4-dichlorobenzoato)zinc(II)]-µ-isonicotinamide], Acta Crystallogr. C71 (2015) 814–819, doi:10.1107/S2053229615014862.
- [41] R.C. Maurya, P. Patel, Synthesis, magnetic and special studies of some novel metal complexes of Cu(II), Ni(II), Co(II), Zn[II), Nd(III), Th(IV), and UO₂(VI) with schiff bases derived from sulfa drugs, viz., Sulfanilamide/Sulfamerazine and ovanillin, Spectrosc. Lett. 32 (1999) 213–236, doi:10.1080/00387019909349979.
- [42] S.T. Chew, K.M. Lo, S.K. Sinniah, K.S. Sim, K.W. Tan, Synthesis, characterization and biological evaluation of cationic hydrazone copper complexes with diverse diimine co-ligands, R. Soc. Chem. Adv. 4 (2014) 61232–61247, doi:10. 1039/C4RA11716F.
- [43] P.R. Reddy, A. Shilpa, N. Raju, P. Raghavaiah, Synthesis, structure, DNA binding and cleavage properties of ternary amino acid Schiff base-phen/bipy Cu(II) complexes, J. Inorg. Biochem. 105 (2011) 1603–1612, doi:10.1016/j.jinorgbio. 2011.08.022.

- [44] S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand, V. Bagchi, Molecular drug design, synthesis and structure elucidation of a new specific target peptide based metallo drug for cancer chemotherapy as topoisomerase I inhibitor, Dalton Trans. (2012) 4955–4964, doi:10.1039/C2DT12044E.
- [45] M. Lahtinen, J. Kudva, P. Hegde, K. Bhat, E. Kolehmainen, N. Venkatesh, D. Naral, Synthesis, Characterization, Thermal and Antimicrobial studies of N-substituted Sulfanilamide derivatives, J. Mol. Struct. 1060 (2014) 280–290, doi:10.1016/j.molstruc.2013.12.063.
- [46] G. Prajapat, R. Gupta, N. Bhojak, Thermal analysis of types of water associated with metal complexes of sulfanilamide, CSIJ 24 (2) (2018) 1–13 Article no. CSIJ. 44158, doi:10.9734/CSJI/2018/44158.
- [47] J. Anandakumaran, M.L. Sundararajan, T. Jeyakumar, M.N. Uddin, Transition Metal Complexes of 4-aminobenzenesulfonamide 1,3-benzodioxole-5carbaldehyde: Synthesis, Characterization and Biological Activities, Am. Chem. Sci. J. 11 (3) (2016) 1–14 Article no. ACSJ.22807, doi:10.9734/ACSJ/2016/22807.
- [48] H.H. Horowitz, G. Metzger, A New Analysis of Thermogravimetric Traces, Anal. Chem. 35 (1963) 1464–1468, doi:10.1021/ac60203a013.
- [49] A.W. Coats, J.P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature 201 (1964) 68-69, doi:10.1038/201068a0.
- [50] L.E. Cook, D.A. Hildebrand, The Thermogravimetry of sulfanilamide and related sulfa drugs, Thermochim. Acta 9 (1974) 129–133, doi:10.1016/0040-6031(74) 85005-7.
- [51] M. Merzougui, K. Ouari, J. Weiss, Ultrasound assisted synthesis, characterization and electrochemical study of a tetradentate oxovanadium diazomethine complex, J. Mol. Struct. 1120 (2016) 239–244, doi:10.1016/j.molstruc.2016.05. 046.
- [52] S.A. Hosseini-Yazdi, S. Hosseinpour, A.A. Khandar, W.S. Kassel, N.A. Piro, Copper(II) and nickel(II) complexes with two new bis(thiosemicarbazone) ligands: synthesis, characterization, X-ray crystal structures and their electrochemistry behavior, Inorg. Chim. Acta 427 (2015) 124–130, doi:10.1016/j.ica.2014.12.011.

- [53] L.A. Saghatforoush, S. Hosseinpour, M.W. Bezpalko, W. Scott Kassel, X-ray crystal structural and spectral studies of copper(II) and nickel(II) complexes of functionalized bis(thiosemicarbazone) ligands and investigation of their electrochemical behaviour, Inorg. Chim. Acta 484 (1) (2019) 527–534, doi:10.1016/ j.ica.2018.04.053.
- [54] J. Cisterna, V. Artigas, M. Fuentealba, P. Hamon, C. Manzur, V. Dorcet, J-R. Hamon, D. Carrillo, Nickel(II) and copper(II) complexes of new unsymmetricallysubstituted tetradentate Schiff base ligands: Spectral, structural, electrochemical and computational studies, Inorg. Chim. Acta 462 (2017) 266–280, doi:10. 1016/j.ica.2017.04.001.
- [55] V.T. Kasumova, F. Koksalb, M. Aslanoglua, Y. Yerli, Synthesis, spectroscopic characterization and reactivity studies of oxovanadium(IV) complexes with bulky N,N' -polymethylenebis(3,5-t Bu2salicylaldimine) ligands, Spectrochim. Acta Part A, 77 (2010) 630–637, doi:10.1016/j.saa.2010.06.040.
 [56] W. Mazouz, N.E.H. Haouli, L. Gali, T. Vezza, C. Bensouici, S. Mebrek, T. Hamel,
- [56] W. Mazouz, N.E.H. Haouli, L. Gali, T. Vezza, C. Bensouici, S. Mebrek, T. Hamel, J. Galvez, S. Djeddi, Antioxidant, anti-alzheimer, anti-diabetic, and anti-inflammatory activities of the endemic halophyte Limonium spathulatum (Desf.) kuntze on LPS-stimulated RAW264 macrophages, S. Afr. J. Bot. 135 (2020) 101–108, doi:10.1016/j.sajb.2020.08.021.
- [57] A.G. Ponce, R. Fritz, C.E. del Valle, S.I. Roura, Antimicrobial activity of essential oils on the native microflora of organic Swiss chard, Lebensm. Wiss. Technol. 36 (2003) 679–684, doi:10.1016/S0023-6438(03)00088-4.
- [58] W. Boufas, N. Dupont, M. Berredjem, K. Berrezag, I. Becheker, H. Berredjem, N.E. Aouf, Synthesis and antibacterial activity of sulfonamides. SAR and DFT Studies, J. Mol. Struct. 1074 (2014) 180–185, doi:10.1016/j.molstruc.2014. 05.066.

ملخص

هذه الأطروحة هي نتيجة عمل بدأناه منذ سنوات في مجال البحث عن مركبات الكبريت مثل حمض الثيوفين والبنزوثيازول والسلفانيلاميد والسلفاميثوكسازول ومشتقاتها. في هذا العمل ، درسنا تحضير 11 مركبًا جديدًا: ستة مركبات من البنزوثيازول وخمسة مركبات من السلفانيلاميد مع النحاس.

تتكون معقدات البنزوثيازول الستة من معادن انتقالية مثل النحاس والزنك ، واثنتان مع معدن ما بعد الانتقال Sn و واحد يحتوي على الفلزات Sb. تشكل المعادن الفلزية والانتقالية معقدات تنسيقية ، بينما تعطي معادن ما بعد الانتقال والفلزية مركبات هجينة.

معقدات السلفانيلاميد كلها بالنحاس. أول معقدين هما مونومرات. في هذا المعقد [Cu(SA)₂(NO₃)₂(H₂O)₂] ، يكون المعدن ثماني السطوح (SA: sulfanilamide) وفي المركب الثاني ، [Cu(SA)₂(NO₃)₂ (H₂O)] ، النحاس خماسي التنسيق في المستوى ، بالإضافة إلى أنه ينسق عموديًا على المستوى مع جزيئين من السلفانيلاميد في ترتيب انتقالي.

تم فحص اثنين من البوليمرات أحادية البعد Cu3 (DMF)₂ (SA)₄Cl₆] و Cu3 (DMF)(SA)Cl₂]]. في الأول ، يحتوي النحاس على بيئتين مختلفتين ، حيث يتبنى بيئة ثماني السطوح وهندسة هرمية مربعة الشكل. في المركب الآخر ، النحاس ثماني السطوح.

يتبلور المركب الأخيرذو الصيغة العامة _n[Cu (SA)₂(DMF)_{2.2}(NO₃)] في النظام أحادي الميل ، P2₁/c. هذا المعقد النحاس ثماني السطوح. في حين أن السلفانيلاميد أحادي النيتروجين في المجمعات الأربعة السابقة وينسق من خلال نيتروجين الأنيلين ، في هذا المركب يكون ثنائي السطر والمركزان المانحون هما نيتروجين الأنيلين وأكسجين من وظيفة السلفوناميد. المركب عبارة عن بوليمر ثنائي الأبعاد.

تتميز معقدات السلفانيلاميد بتقنيات تحليلية مختلفة. تم التحقق من ثباتها الحراري عن طريق قياس الثقل الحراري. بالإضافة إلى ذلك ، تم القيام بأنشطتهم المضادة للبكتيريا على ثلاث سلالات. كما تم فحص سلوكهم الكهر وكيميائي.

الكلمات المفتاحية: البنزوثيازول، السلفانيلاميد ، الخصائص الطيفية، الثبات الحراري، دراسة بنيوية ، حيود الاشعة السنية، تحليل مساحة هارشفلد، النشاط المضاد للبكتيريا، نشاط مخالب المعادن و الدراسة الكهروكيميائية.

Résumé :

Cette thèse est le fruit d'un travail que nous avons commencé il y'a des années dans un domaine de recherche sur les composés soufrés tels que les thiophènes acides, le benzothiazole, la sulfanilamide, la sulfaméthoxazole et leurs dérivées. Dans le présent travail, nous avons étudié la synthèse et la caractérisation de 11 nouveaux complexes. Six comple**xe**s de la benzothiazole et cinq composés de la sulfanilamide avec le cuivre.

Les six complexes de la benzothiazole sont deux avec les métaux de transition Cu et Zn, deux avec un métal pauvre Sn et un avec un métalloïde Sb. Les métaux de transition forment des complexes de coordination, alors que le métalloïde et le métal pauvre Sn donne des hybrides.

Les complexes de la sulfanilamide sont tous avec le cuivre. Les deux premiers complexes sont des monomères. Dans le composé $[Cu(SA)_2(NO_3)_2(H_2O)_2]$, le cuivre est octaedrique (SA : sulfanilamide NH₂-C₆H₄-SO₂NH₂).

Dans le deuxième composé, $[Cu(SA)_2(NO_3)_2(H_2O)]$, les deux nitrates sont bidentates, et le cuivre est pentacoordinné dans le plan, en outre, il coordinne perpendiculairement au plan avec deux sulfanilamides en trans disposition.

Deux polymères unidimensionnels $[Cu_3(DMF)_2(SA)_4Cl_6]_n$ et $[Cu(DMF)(SA)Cl_2]_n$ ont été examinés. Dans le premier, le métal possède deux environnements différents, il adopte un environnement octaédrique et une géométrie pyramidale à base carrée. Dans l'autre, le cuivre est octaédrique.

Le dernier complexe de formule générale $[Cu(SA)_2(DMF)_2.2(NO_3)]_n$ cristallise dans le monoclinique P21/c. Le cuivre est octaédrique. Alors que la sulfanilamide est monodentate dans les quatre complexes précédents et qu'elle coordinne par le biais de l'azote de l'aniline, dans ce composé elle est bidentate et les deux centres donneurs sont l'azote de l'aniline et un oxygène de la fonction sulfonamide. Le composé est un polymère bidimensionnel.

Les complexes de la sulfanilamide ont été caractérisés par différentes techniques d'analyse. Leur stabilité thermique a été vérifiée par thermogravimétrie. En outre, des tests d'activité antibactérienne sur trois souches ont été faits. Aussi, leur comportement électrochimique a été examiné.

Mots clés: benzothiazole, sulfanilamide, propriétés physico-chimique, la stabilité thermique, étude structurale, DRX, l'analyse de surface d'Hirshfeld, d'activité antibactérienne, l'activité métal chélate et étude électrochimique.

Abstract:

This thesis is the result of a work that we began years ago in a field of research on sulfur compounds such as thiophenes acid, benzothiazole, sulfanilamide, sulfamethoxazole and their derivatives. In this work, we studied the synthesis and characterization of 11 new complexes: six complexes of benzothiazole and five compounds of sulfanilamide with copper.

The six benzothiazole complexes are two with transition metals Cu and Zn, two with a post transition metal Sn and one with the metalloid Sb. The transition metals form coordination complexes, while metalloid and post transition metal gives hybrids.

Sulfanilamide complexes are all with copper. The first two complexes are monomers. In the compound $[Cu(SA)_2(NO_3)_2(H_2O)_2]$, the metal is octahedral (SA : sulfanilamide NH₂-C₆H₄-SO₂NH₂).

In the second compound, $[Cu(SA)_2(NO_3)_2(H_2O)]$, both nitrates are bidentates, and Cu is pentacoordinated in the plane, in addition, it coordinates perpendicular to the plane with two sulfanilamide molecules in trans disposition.

Two one-dimensional polymers $[Cu_3(DMF)_2(SA)_4Cl_6]_n$ and $[Cu(DMF)(SA)Cl_2]_n$ were examined. In the first, the metal has two different environments, it adopts an octahedral environment and a square-based pyramidal geometry. In the other compound, copper is octahedral.

The last complex of general formula $[Cu(SA)_2(DMF)_2.2(NO_3)]_n$ crystallizes in the monoclinic system, P2₁/c. Copper is octahedral. While sulfanilamide is monodentate in the four preceding complexes and it coordinates through aniline nitrogen, in this compound it is bidentate and the two donor centers are aniline nitrogen and an oxygen of the sulfonamide function. The compound is a two-dimensional polymer.

Sulfanilamide complexes have been characterized by different analytical techniques. Their thermal stability was verified by thermogravimetry. In addition, their antibacterial activities on three strains were done. Also, their electrochemical behavior was examined.

Key words: benzothiazole, sulfanilamide, physicochemical properties, thermal stability, structural study, XRD, Hirshfeld surface analysis, antibacterial activity, metal chelate activity and electrochemical study.