

ISSN 1600-5368 journals.iucr.org/e

Crystal structure of ethyl 2-chloro-6-methylquinoline-3-carboxylate

Hasna Hayour, Abdelmalek Bouraiou, Sofiane Bouacida, Saida Benzerka and Ali Belfaitah

Acta Cryst. (2014). E70, o941

IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

0941

V = 582.16 (9) Å³

Mo $K\alpha$ radiation

 $0.18 \times 0.14 \times 0.12 \text{ mm}$

 $\mu = 0.32 \text{ mm}^-$ T = 150 K

Z = 2

OPEN a ACCESS

Crystal structure of ethyl 2-chloro-6methylquinoline-3-carboxylate

Hasna Hayour,^a Abdelmalek Bouraiou,^a Sofiane Bouacida,^{b,c}* Saida Benzerka^b and Ali Belfaitah^a

^aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique. PHYSYNOR, Université Constantine 1, 25000 Constantine, Algeria, ^bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, and ^cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie. Université Oum El Bouaghi, Algeria. *Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 22 July 2014; accepted 22 July 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{13}H_{12}CINO_2$, the dihedral angle between the planes of the quinoline ring system (r.m.s. deviation = 0.029 Å) and the ester group is 54.97 (6)°. The C– $O-C-C_m$ (m = methyl) torsion angle is -140.62 (16)°. In the crystal, molecules interact *via* aromatic π - π stacking [shortest centroid–centroid separation = 3.6774(9) Å] generating (010) sheets.

Keywords: crystal structure; 2-chloro-3-formylquinoline; ethyl ester; $\pi - \pi$ stacking.

CCDC reference: 1015360

1. Related literature

For background to 2-chloro-3-formylquinolines, see: Michael (2004); Abdel-Wahab et al. (2012). For our previous work in this area, see: Benzerka et al. (2012, 2013).

2. Experimental

2.1. Crystal data C13H12CINO2

 $M_r = 249.69$

Triclinic, $P\overline{1}$ a = 6.0391 (5) Å b = 7.2986 (6) Å c = 13.4323 (12) Å $\alpha = 98.238(6)^{\circ}$ $\beta = 90.123 (5)^{\circ}$ $\gamma = 96.429 \ (6)^{\circ}$

2.2. Data collection

Bruker APEXII diffractometer	5190 measured reflections
Absorption correction: multi-scan	2061 independent reflections
(SADABS; Bruker, 2006)	1872 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.690, \ T_{\max} = 0.747$	$R_{\rm int} = 0.016$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.078$ S = 1.062061 reflections

156 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.25 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

We are grateful to all personel of the PHYSYNOR Laboratory, Université Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7259).

References

- Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, i, 211-276.
- Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309-313.
- Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F., Carboni, B. & Belfaitah, A. (2013). Lett. Org. Chem. 10, 94-99.
- Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
- Farrugia, L. J. (2012), J. Appl. Cryst. 45, 849-854.
- Michael, J.-P. (2004). Nat. Prod. Rep. 21, 650-668.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o941 [doi:10.1107/S1600536814016900]

Crystal structure of ethyl 2-chloro-6-methylquinoline-3-carboxylate

Hasna Hayour, Abdelmalek Bouraiou, Sofiane Bouacida, Saida Benzerka and Ali Belfaitah

S1. Comment

The 2-chloro-3-formylquinolines occupy a prominent position as key intermediates for further annelation and various functional group inter-conversions (Abdel-Wahab *et al.*, 2012; Michael, 2004). As part of our ongoing studies in this area (Benzerka *et al.*, 2012, 2013), we now describe the synthesis and single-crystal X-ray structure of the title compound, (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the quinoline ring is three times substituted by two methyl, one chlore and one ethyl carboxylate. The crystal packing can be described as double layers parallel to (010) plane (Fig. 2). It features $\pi \cdots \pi$ stacking, distances controid-controid between aromatic rings are from 3.6774 (9) to 4.2262 (9) Å.

S2. Experimental

Into a solution of NaCN (3 mmol) in absolute ethanol (15 ml), was added, in portion and at 0 °C, a mixture of 1 mmol of 2-chloro-3-formyl-6-methylquinoline and activated manganese dioxide (6.7 mmol). The reaction mixture was stirred for 3 h at rt. Purification of the corresponding compound was carried out by diluting the reaction mixture with CH_2Cl_2 and filtering through a small column packed with 4 cm of celite and 3 cm of silica gel. The pure compound was recovered after evaporation of solvents. Colourless blocks of (I) were obtained by dissolving the pure compound in EtOH and allowing the solution to slowly evaporate at room temperature.

S3. Refinement

All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene) and $U_{iso}(H) = 1.5$ or 1.2(carrier atom).

Figure 1

The structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A diagram of the layered crystal packing of (I) viewed down the *a* axis.

Ethyl 2-chloro-6-methylquinoline-3-carboxylate

Crystal data	
$C_{13}H_{12}CINO_2$	Z = 2
$M_r = 249.69$	F(000) = 260
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.424 {\rm ~Mg} {\rm ~m}^{-3}$
a = 6.0391 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 7.2986 (6) Å	Cell parameters from 2875 reflections
c = 13.4323 (12) Å	$\theta = 2.8 - 25.0^{\circ}$
$\alpha = 98.238 \ (6)^{\circ}$	$\mu = 0.32 \text{ mm}^{-1}$
$\beta = 90.123 (5)^{\circ}$	T = 150 K
$\gamma = 96.429 \ (6)^{\circ}$	BLOCK, colourless
$V = 582.16 (9) \text{ Å}^3$	$0.18 \times 0.14 \times 0.12 \text{ mm}$

Data collection

Bruker APEXII diffractometer Graphite monochromator CCD rotation images, thin slices scans Absorption correction: multi-scan (SADABS; Bruker, 2006) $T_{min} = 0.690, T_{max} = 0.747$ 5190 measured reflections	2061 independent reflections 1872 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -7 \rightarrow 7$ $k = -8 \rightarrow 8$ $l = -16 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.078$ S = 1.06 2061 reflections 156 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0383P)^2 + 0.2333P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C10	0.6109 (2)	0.4100 (2)	0.31856 (11)	0.0233 (3)	
C11	0.7716 (3)	0.2270 (2)	-0.23686 (11)	0.0281 (4)	
H11A	0.7218	0.3141	-0.2768	0.042*	
H11B	0.7582	0.105	-0.2757	0.042*	
H11C	0.9246	0.2644	-0.2169	0.042*	
C12	0.7931 (3)	0.6667 (2)	0.42998 (12)	0.0356 (4)	
H12A	0.9531	0.6636	0.4327	0.043*	
H12B	0.7258	0.5967	0.4805	0.043*	
C13	0.7400 (4)	0.8609 (3)	0.44891 (14)	0.0491 (5)	
H13A	0.8105	0.9297	0.3995	0.074*	
H13B	0.7934	0.9171	0.5149	0.074*	
H13C	0.5815	0.8625	0.4447	0.074*	
01	0.70435 (19)	0.58589 (15)	0.33028 (8)	0.0290 (3)	
O2	0.6007 (2)	0.31046 (17)	0.38231 (9)	0.0374 (3)	
C1	0.3008 (2)	0.27029 (19)	0.19204 (11)	0.0204 (3)	
C2	0.5237 (2)	0.35132 (19)	0.21333 (11)	0.0203 (3)	
C3	0.6587 (2)	0.36577 (19)	0.13282 (11)	0.0209 (3)	

H3	0.804	0.4231	0.1429	0.025*	
C4	0.5801 (2)	0.29487 (19)	0.03486 (11)	0.0193 (3)	
C5	0.7131 (2)	0.29932 (19)	-0.05125 (11)	0.0216 (3)	
H5	0.8595	0.3552	-0.0441	0.026*	
C6	0.6313 (2)	0.22322 (19)	-0.14494 (11)	0.0217 (3)	
C7	0.4081 (3)	0.1369 (2)	-0.15399 (11)	0.0242 (3)	
H7	0.3517	0.083	-0.2172	0.029*	
C8	0.2740 (2)	0.1305 (2)	-0.07286 (11)	0.0231 (3)	
H8	0.1283	0.0733	-0.0812	0.028*	
C9	0.3560 (2)	0.21049 (19)	0.02358 (11)	0.0198 (3)	
Cl1	0.11327 (6)	0.26599 (5)	0.29105 (3)	0.02749 (13)	
N1	0.2174 (2)	0.20436 (16)	0.10369 (9)	0.0218 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C10	0.0187 (7)	0.0291 (8)	0.0229 (8)	0.0065 (6)	0.0032 (6)	0.0034 (6)
C11	0.0327 (9)	0.0288 (8)	0.0235 (8)	0.0071 (7)	0.0035 (7)	0.0039 (6)
C12	0.0407 (10)	0.0442 (10)	0.0191 (8)	0.0002 (8)	-0.0072 (7)	-0.0014 (7)
C13	0.0723 (14)	0.0412 (11)	0.0298 (10)	0.0039 (10)	-0.0100 (9)	-0.0065 (8)
O1	0.0382 (6)	0.0265 (6)	0.0204 (5)	-0.0006 (5)	-0.0049 (5)	0.0009 (4)
O2	0.0440 (7)	0.0414 (7)	0.0278 (6)	-0.0020 (5)	-0.0028 (5)	0.0144 (5)
C1	0.0213 (7)	0.0180 (7)	0.0237 (8)	0.0053 (6)	0.0043 (6)	0.0061 (6)
C2	0.0212 (7)	0.0177 (7)	0.0231 (7)	0.0056 (6)	0.0015 (6)	0.0040 (6)
C3	0.0185 (7)	0.0188 (7)	0.0253 (8)	0.0014 (6)	-0.0005 (6)	0.0034 (6)
C4	0.0202 (7)	0.0144 (7)	0.0240 (7)	0.0040 (5)	0.0008 (6)	0.0039 (6)
C5	0.0190 (7)	0.0195 (7)	0.0270 (8)	0.0029 (6)	0.0014 (6)	0.0052 (6)
C6	0.0266 (8)	0.0169 (7)	0.0235 (7)	0.0070 (6)	0.0022 (6)	0.0058 (6)
C7	0.0306 (8)	0.0202 (7)	0.0218 (8)	0.0044 (6)	-0.0045 (6)	0.0023 (6)
C8	0.0217 (7)	0.0193 (7)	0.0279 (8)	0.0002 (6)	-0.0031 (6)	0.0043 (6)
C9	0.0209 (7)	0.0155 (7)	0.0241 (7)	0.0043 (5)	0.0005 (6)	0.0053 (6)
Cl1	0.0230 (2)	0.0336 (2)	0.0276 (2)	0.00604 (15)	0.00824 (15)	0.00777 (16)
N1	0.0200 (6)	0.0194 (6)	0.0267 (7)	0.0027 (5)	0.0020 (5)	0.0052 (5)

Geometric parameters (Å, °)

С10—О2	1.1971 (18)	C1—C2	1.419 (2)
C10—O1	1.3308 (18)	C1—Cl1	1.7501 (14)
C10—C2	1.494 (2)	C2—C3	1.365 (2)
C11—C6	1.501 (2)	C3—C4	1.404 (2)
C11—H11A	0.96	С3—Н3	0.93
C11—H11B	0.96	C4—C5	1.411 (2)
C11—H11C	0.96	C4—C9	1.421 (2)
C12—O1	1.4588 (19)	C5—C6	1.368 (2)
C12—C13	1.475 (3)	С5—Н5	0.93
C12—H12A	0.97	C6—C7	1.420 (2)
C12—H12B	0.97	C7—C8	1.362 (2)
C13—H13A	0.96	С7—Н7	0.93

C13—H13B	0.96	С8—С9	1.407 (2)
С13—Н13С	0.96	С8—Н8	0.93
C1—N1	1.2935 (19)	C9—N1	1.3673 (19)
O2—C10—O1	125.26 (14)	C3—C2—C1	116.71 (13)
O2—C10—C2	124.26 (14)	C3—C2—C10	121.18 (13)
O1—C10—C2	110.47 (12)	C1—C2—C10	122.05 (13)
C6—C11—H11A	109.5	C2—C3—C4	120.61 (13)
C6-C11-H11B	109.5	С2—С3—Н3	119.7
H11A—C11—H11B	109.5	С4—С3—Н3	119.7
C6—C11—H11C	109.5	C3—C4—C5	123.51 (13)
H11A—C11—H11C	109.5	C3—C4—C9	117.37 (13)
H11B—C11—H11C	109.5	C5—C4—C9	119.10 (13)
O1—C12—C13	107.55 (14)	C6—C5—C4	121.45 (13)
O1—C12—H12A	110.2	С6—С5—Н5	119.3
C13—C12—H12A	110.2	С4—С5—Н5	119.3
O1—C12—H12B	110.2	C5—C6—C7	118.37 (13)
C13—C12—H12B	110.2	C5—C6—C11	121.79 (13)
H12A—C12—H12B	108.5	C7—C6—C11	119.84 (13)
C12—C13—H13A	109.5	C8—C7—C6	121.99 (14)
C12—C13—H13B	109.5	С8—С7—Н7	119
H13A—C13—H13B	109.5	С6—С7—Н7	119
C12—C13—H13C	109.5	C7—C8—C9	119.98 (14)
H13A—C13—H13C	109.5	С7—С8—Н8	120
H13B—C13—H13C	109.5	С9—С8—Н8	120
C10-01-C12	117.45 (12)	N1-C9-C8	118.90 (13)
N1-C1-C2	125.71 (13)	N1-C9-C4	122.00 (13)
N1-C1-C11	115.40 (11)	C8-C9-C4	119.10(13)
C^2 — C^1 — C^{11}	118 82 (11)	C1—N1—C9	117 48 (12)
	110.02 (11)		117.10 (12)
O2-C10-O1-C12	-2.8 (2)	C9—C4—C5—C6	-0.4 (2)
C2-C10-O1-C12	178.41 (12)	C4—C5—C6—C7	-0.6 (2)
C13—C12—O1—C10	-140.62 (16)	C4—C5—C6—C11	-179.88 (13)
N1—C1—C2—C3	2.2 (2)	C5—C6—C7—C8	1.0 (2)
Cl1—C1—C2—C3	-174.62 (10)	C11—C6—C7—C8	-179.76 (13)
N1-C1-C2-C10	-174.93 (13)	C6—C7—C8—C9	-0.2 (2)
Cl1—C1—C2—C10	8.23 (18)	C7—C8—C9—N1	179.20 (12)
O2—C10—C2—C3	-123.43 (17)	C7—C8—C9—C4	-0.9 (2)
O1—C10—C2—C3	55.34 (18)	C3—C4—C9—N1	2.7 (2)
O2—C10—C2—C1	53.6 (2)	C5-C4-C9-N1	-178.89 (12)
O1—C10—C2—C1	-127.63 (14)	C3—C4—C9—C8	-177.25 (12)
C1—C2—C3—C4	-2.9 (2)	C5—C4—C9—C8	1.2 (2)
C10—C2—C3—C4	174.25 (12)	C2-C1-N1-C9	1.0 (2)
C2—C3—C4—C5	-177.71 (13)	Cl1—C1—N1—C9	177.90 (9)
C2—C3—C4—C9	0.7 (2)	C8—C9—N1—C1	176.48 (12)
C3—C4—C5—C6	177.92 (13)	C4—C9—N1—C1	-3.4 (2)
	~ /		