Liste des figures

Chapitre I

Figure I.1 : Synoptique général d'un système de communications par fibre optique.	7
Figure I.2 : Schémas bloc d'une chaine de transmission optique.	7
Figure I.3 : Emission optique d'un VCSEL et d'une diode laser à émission par la Tranche	9
Figure I.4 : Structure d'un laser classique Fabry-Perot.	11
Figure I.5 : Principe d'une diode laser VCSEL.	12
Figure I.6 : Equation d'évolution et paramètres physique du VCSEL.	13
Figure I.7 : Structure d'une fibre optique.	14
Figure I.8 : Propagation d'un rayon dans la fibre optique.	15
Figure I.9 : Diamètres, indices de réfraction et modes de propagation du signal des trois types	17
de fibre.	
Figure I.10 : Section transversale d'une fibre à saut d'indice et d'une fibre à indice graduel.	18
Figure I.11 : Variation de l'indice du cœur d'une fibre optique à gradient d'indice.	19
Figure I.12 : Structure d'une fibre multimode à saut d'indice.	20
Figure I.13 : Profil d'une fibre monomode à saut d'indice.	21
Figure I.14 : Courbure d'une fibre optique.	23
Figure I.15 : Micro-courbure d'une fibre optique.	23
Figure I.16 : Calcul de l'atténuation de raccordement dans les fibres optiques.	24
Figure I.17 : Fenêtres optimales d'une fibre optique.	25
Figure I.18 : Structure d'une photodiode PIN.	28
Figure I.19 : Niveaux d'énergies de la photodiode PIN.	29
Chapitre II	
Figure II.1 : Interfaces L/A et A/L du langage VHDL-AMS.	39
Figure II.2 : Description de la méthodologie de conception dans l'environnement VHDL-AMS.	41
Figure II.3 : Structure d'un modèle VHDL-AMS.	44
Figure II.4 : Vue général d'un modèle VHDL-AMS.	46
Figure II.5 : Les terminaux de l'entité.	49
Figure II.6 : Illustration de la quantité de branche pour le domaine électrique	50
Figure II.7 : Structure fondamentale d'un modèle obtenu grâce à l'approche systématique.	61
Chapitre III	
Figure III.1 : Bloc diagramme type d'un modèle de composant.	71
Figure III.2 : Bloc diagramme d'une ligne de transmission optoélectronique.	71
Figure III.3 : Structure du sous-répertoire dans la bibliothèque.	74

Figure III. 4 : Courant d'injection en régime sinusoïdale.

80

Figure III. 5 : Courant d'injection en régime dynamique (forme carré).	82
Figure III.6 : Courant d'injection pseudo aléatoire.	82
Figure III.7 : Organigramme de la génération d'un bruit blanc gaussien en VHDL-AMS.	86
Figure III.8 : Dispersion dans les fibres multi-modes.	88
Figure III.9 : Différents types de dispersion.	88
Figure III.10 : L'influence de la dispersion chromatique sur le signal de sortie.	90
Figure III.11 : Profil de l'indice de réfraction d'une FOGI. (a) : à la jonction cœur-gaine-vide,	94
Figure III.12 : Variation de l'indice de réfraction à la jonction cœur-gaine d'une FOSI.	95
Figure III.13 : Structure d'un amplificateur de transimpédence.	97
Figure III.14 : structure simple utilisée dans la modélisation du TIA.	97
Chapitre IV	
Figure IV.1 : Réponse du VCSEL en régime statique : (a) Nombre de porteurs; (b) Nombre de	108
photons; (c) Tension à travers de la cavité; (d) Puissance optique de sortie.	
Figure IV.2 : Réponse dynamique du VCSEL avec une source sinusoïdale.	109
Figure IV.3 : Réponse dynamique du VCSEL avec une source carrée.	110
Figure IV.4 : Réponse dynamique du VCSEL avec une source pseudo-aléatoire.	111
Figure IV.5 : Réponse temporelle en sinusoïdale et en créneaux de la puissance électrique,	111
optique et dissipée.	
Figure IV.6 : Variation du courant de seuil du VCSEL en fonction de la température.	112
Figure IV.7 : Variation de la puissance optique à la sortie du VCSEL en fonction du courant	113
d'injection pour plusieurs valeurs de températures.	
Figure IV.8 : Changement des paramètres du VCSEL en fonction de la température: (a)	114

Rendement efficace optique; (b) Energie de Gap ; (c) Gain optique ; (d) Longueur d'onde; (e) Densité effective dans la bande de conduction ; (f) Densité effective dans la bande de valence.

- Figure IV.9: Variation temporelle de la fréquence de relaxation.115Figure IV.10: Bande passante du VCSEL à -3dB.116
- Figure IV.11 : Coefficient de diffusion de porteur D_{nn} et de photons D_{ss} . 116 Figure III. 12: Forces de Langevin FN et FS et Bruit Blanc Gaussien (GWN). 117 Figure IV.13 : Résultat de simulation du bruit optique. 118 Figure IV.14 : Variation temporelle de la puissance optique avec le bruit. 118 Figure IV.15 : Diagramme bloc des couplages de la fibre optique. 119 Figure IV.16 : Variation de la dispersion modale d'une FOGI pour L = 500 m. 120 Figure IV.17 : Variation de la dispersion modale d'une FOGI pour L = 1 Km. 121 Figure IV.18 : Variation de : (a) la dispersion modale (τ_{mod}); (b) de la dispersion totale 121
- (τ_{tot}) en fonction de la longueur d'une FOGI.

Figure IV.19 : (a) Variation de la bande passante en fonction de la longueur d'une FOGI ; (b) 122

variation temporelle du produit B_p.L.

Annexes	
Figure IV.41 : Tension à la sortie du convertisseur TIA.	142
Figure IV.39 : Variation de courant d'obscurité en fonction de la température.	141
Figure IV.38 : Variation de courant d'obscurité en fonction de la tension de polarisation.	141
Figure IV.37 : Variation de la sensibilité en fonction de la longueur d'onde.	140
Figure IV.36 : Variation du courant à travers la capacité de jonction en fonction de V.	140
Figure IV.35 : Caractéristique C-V de la photodiode PIN.	139
Figure IV.34 : Caractéristique I-V de la photodiode PIN.	139
Figure III. 33 : Schéma équivalent d'une photodiode.	137
Figure IV.32 : Variation de la puissance optique en fonction de la longueur d'une FOSI.	135
longueurs.	
Figure IV.31 : Variation temporelle de la puissance optique à travers une FOGI pour plusieurs	135
longueurs: (a) $L = 1$ Km; (b) $L = 20$ Km; (c) $L = 50$ Km; (d) $L = 100$ Km.	
Figure IV.30 : Variation temporelle de la puissance optique à travers une FOMM pour plusieurs	134
longueurs : (a) $L = 300$ m; (b) $L = 1$ Km; (c) $L = 3$ Km; (d) $L = 6$ Km.	
Figure IV.29 : Variation temporelle de la puissance optique à travers une FOSI pour plusieurs	132
longueurs: (a) L= 1 Km ; (b) L= 10 Km ; (c) L = 20 Km ; (d) L = 50 Km.	
Figure IV.28 : Variation temporelle de la puissance optique à travers une FOGI pour plusieurs	130
FOMM.	
Figure IV.27 : Variations temporelle de la bande passante et des pertes de courbure dans une	127
Figure IV.26 : Variation temporelle des pertes de courbures dans une Fibre optique à SI.	126
SI.	
Figure IV.25 : Variation de la bande passante en fonction de la longueur d'une Fibre optique à	126
SI.	
Figure IV.24 : Variation de la dispersion totale en fonction de la longueur d'une Fibre optique à	125
la longueur d'une FOSI.	
Figure IV.23 : Variation de la dispersion modale et de la dispersion chromatique en fonction de	125
Figure IV.22 : Variation des coefficients de la dispersion modale et chromatique dans une FOSI.	124
Figure IV.21 : Variation de la vitesse de transmission dans une FOGI.	123
Figure IV.20 : Variation des pertes par courbures dans une FOGI.	123

Figure A.1 : Réponse sinusoïdale des puissances optiques à travers d'une FOGI en fonction du 154 temps pour : (a) L = 1 Km; (b) L = 10 Km; (c) L = 40 Km. Figure A.2 : Réponse sinusoïdale des puissances optiques à travers d'une FOSI pour : 155 (a) L = 500 m; (b) L = 2 Km; (c) L = 5 Km.