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In this thesis, the problem of spectrum recovery is investigated from the

viewpoint of linear prediction. The mean square error of an r-step predictor is the

criterion used for the derivation of the spectral representation associated with a finite

set of covariance functions.

The Maximum entropy method is developed in parallel with the extension

problem. Following Youla [1], it is shown that the maximum entropy method (l'vRM)

is the most robust one among all extensions of the original sequence.

Finally, a new pole-zero representation is developed for the case of a finite

sequence of covariance functions. The parameters defining the spectrum estimator are

derived following the same approach as for the maximum entropy method.
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Chapter l

INTRODUCTION

LIlDtroduction:

One of the most challenging problem in modem spectral estimation theory is

the problem of spectrum recovery in the presence of incomplète information about

the underlying stochastic process.

A vast amount of literature is available about this exciting area [1-14]. Of

these, the recent developments of Y oula [1] parametrizing the class of all spectrum

extensions is especially noteworthy. Our research which goes along the recent trend

of the "pole-zero" modeling presents a new approach to the problem of the realization

of the power spectrum from a given finite set of error-free covariance functions of the

stochastic process.

The main idea is to consider the problem of spectrum recývery as a problem of

linear prediction. The mean square error of an r-step predictor is used as the criterion

for selecting the appropriate spectrum estimator.

In the first part of this thesis the concept of innovations is introduced . The

mean square error of the r-step predictor is easily derived through the use of the

whitening transformation.

In chapter 3 we formulate the problem of spectrum estimation from

incomplete data. The maximum entropy method is then introduced through the use of

the maximization of the minimum value of the prediction error for a I-step predictor

model.

To consider the spectrum extension problem, where we start with a finite covariance
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sequence and following Youla [1], we show that the maximum entropy method is the

most robust among all methods that provide an extension of the original sequence.

In chapter 4 we consider the case of the 2-step predictor. It is shown that the

spectral representation in this case is an ARMA(n,1).

Chapter 5 summarizes the work done and make some suggestions regarding future

research.

-
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Chapter 2

PREDIcrION FILTER

2.1 Factorization and Innovations:

The derivation of the prediction error Er of the r-step predictor is of prime

interest. Its derivation is made easier through the use of the innovations approach

which in essence is a whitening transformation that transforms the original

observations to a white noise process by means of a causal invertible linear filter.

The original observations x(n) and the innovation process contain the same statistical

information. Therefore in deriving Er the orthonormal process i(n) will be used instead

ofx(n).

00

x(n)= E b(k)i(n-k)
k-O

00

i (n ) = E I (k ),x (n -Ie )

The power spectrum corresponding to x(n) is:

S.a; ( ') =Sü ( ').B (ei').B (e -il)

since S;i ( , ) = 1 then the power spectrum is :

S.a; ( ') =B (eil).B (e -il) = lB (ei') 12

Liz)
I

jCn)

rtg 2.1: Whitening and Innovation filter.

L(z): Whitening filter

B(z): Innovation filter

(21.1)

(21.2)

(21.3)

(2L4)



(2.21)

_ ý _

2.2 Derivation of the prediction error:

Given the infinite past of the stochastic process x(i), we want to find the r-step

predictor of x(n).

First we develop the theory for the case of the l-step predictor and shall extend it to

the general case of the r-step predictor.

2.2.1 Expression of el for the f-step predictor:

We wish to estimate the present value of x(n) given x(O),x(I),x(2), ...,x(n-l)

00

£(n)=E[x(n) Ix(n-k), k ý 1]= E a(k)x(n-k)
k 21

The problem is to determine the coefficients ak which correspond to the coefficients

of the prediction filter. The solution is obtained by minimizing the mean-square error

el =x (n )-£(n). However in our case we are only interested in the expression of el"

Let's recall (2.1.1):

00

x(n)= E b(k)j(n-k)
k -0

00

The estimate of_x(n) is £(n ) = E a (k)x (n -k) which can be shown [10] to be equal to
k -1

00

E b (k )j (n -k). Therefore:
k-l

00 00

f:1 =x (n ) - £(n ) = E b (k )j (n -le )- E b (k )j (n -le) =b (O)j (n )
k -0 k-1

Thus

(222)

(223)
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1.2.2 Expression of e, for an r-step predictor:

The generalization of the previous result to the case of the r-step predictor is

straightforward; given x(O),x(l),x(2), ... we wish to estimate x(n):

00 00

£(n)= E a(k)x(n-k)= E b(k)j(n-k) (224)
k -, k -,

00

x (n ) = E b (k )j (n -k)
k -0

k -0 k-,

00 00

e, (n ) =x (n )- £(n ) = E b (k )j (n -Ie)- E b (k )j (n -k) (225)

,-1
¬, = E b (k )j (n -k) (226)

k-O

The mean-square error is therefore:

2,
,-1 l

P,=ElI ¬,(n)1 J=E Ib(k)1
k-O

(227)



- 6-

Chapter 3

Maximum entropy spectral estimator

3.1 Mathematical preliminaries :

For a given zero mean second order stationary discrete time stochastic process

x( n) we define the covariance function c( i) by :

c (i) =E [x (n )x· (i +n)] I i I
=0-+00 (3.1.1)

00

where x· denotes the complex conjugate of x. The complex numbers c (i )]0 possess

the representation

1 +.. o.,
c(i)=- f e

+IJ dF(I)
Zn- ....

(3.1.2)

where F (I) is a bounded monotonie non decreasing function. The derivative

S (1)=
dF(1/)

> 0 defines the spectral density of the process x(n) and exists for almost
d8

all8{1].

II F (I/) is absolutely continuous then c( i) is given by :

I i I =0-+00 (3.1.3)

3.2 Spectral realization concept:

The spectral density S (6) and the discrete covariance functions

c (i), I i I
=0-+00 form a fourier transform pair [10] :

s (6)= Ë c (i).e
-jil

i--CD
(3.2.1)

c (i) = _1_
f

+ffS
(8)e

+ ji'd 8 (3.2.2)
Zn- -ff

The relation (3.21) suggests that the computation of S (8), in the presence of a finite

set of data cj
;

S I i I
=0 -+ n , requires the knowledge of the remaining covariance
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functions c( n + 1), c( n + 2), etc ....

00

A question arises as to how c(i)]O should be specified in order to guarantee that the

covariance sequence is positive semi-definite,

One method of interest is the Maximum Entropy Method (MEM), first pro-

posed by Burg [13]. The MEM is characterized by the fact that the completion of the

original data c(O),c( 1),c(2), ... ,c(n) is such that the time series corresponding to the

complete sequence has maximum entropy.

In the next section, following Youla [11 we show that the power spectrum correspond-

ing to the MEM is the same as the spectrum obtained by maximization of the error

variance of the t-step predictor filter.
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3.3 Spectrum estimator in the case of I-step predictor:

3.3.1 Preliminary notations:

We have previously shown that the process x(n) can be realized as the output

of a causal filter with transfer function B(z) driven by the white noise i(n):

00

x(n)= E b(k)j(n-k)
le -0

E [i(n )]=0

E[i(n)j*U)] = 6,.j

Consider the following coefficients d(k) and f(k) :

-
E d,oZ'

00
Ie

,-1

E I(k).z =e k =1ý
le -0

1(0)=1
Then [1]:

(3.3.1)

(3.3.2)

(3.3.3)

d(O)
b(k)=/(k)exp----

2
(3.3.4)

with the following explicit relations for the 1 Ie

' s and die' s

dýij dýij
1 (1) -d (1) 1 (2) =d (2) + 1 (3) =d (3) +d (2).d (1) +

2 6

andl (k)=d (k)+d (1).d (k-l)+... k >2
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3.3.2 Kolmogorofl's mean-square error formula:

In the case of linear prediction with lead 1 the mean square error (MSE) is :

2 2 1 + ..

Pl=E[Iýll]=lb(O)1 =exp-J InS(8)d9 (3.3.5)
à ....

proof [10]: S (8) = lB (ei') 12 where B (ei') is a minimum phase.

0'
letz .ýJ

but

which implies :

+.. + ..

J In S(8)d9= J In I
B(ej' 12d9

.... ....

dz =jzd9

+.. 1
SO J In I

B(ej' 12d9 =
; -In B(z).B(z·l)dz

ý JZ

1 1 1)"
; -In B(z)dz + ; -In B(z· dz

jz jz

1 1 1)
;, :-/n B(z)dz =

; -. In B(z· dz
JZ JZ

1 +.. 2 1- J In S(8)d9=- I -In B(z)dz
ý ý ý jz

(3.3.6)

(3.3.7)

By using the cauchy integral theorem with the contour of integration the unit cercle

wehave:

or

1 1
-

; -In B(z)dz =/n b(O)
ý jz

1 1 2-
;

-In B(z)dz =ln I b(O) I

ý jz
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Finally the mean square error is :

1 +1r

Pl =
I b (0) I

2 =exp=r: fin S (I)d' (3.3.8)
â ..

The relations between the coefficients b(k), f(k) and d(k) are the following:

(3.3.9)lb (0) Il.exp d (0)

b(0) =f(O) exp d(0)/2
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3.3.3 Autoregressive (AR) spectrum estimator:

The Ci' S are chosen such that the MSE P1is maximized or as we will see later

the entropy is maximum. Recalling relation (loU) we see that maximizing lb (0) 12 is

the same as maximizing the exponential function.

Since the exponential function is monotonie then it will be sufficient to maximize its

argument. Define
1 + ..

A=- f In S(l)dS
2", -li'

(3.3.9)

replacing S (I) by (3.2.1 ) we get:

..
1 + 00 ."

,A=- f ln E c(i).e-J' dl
2"r -.. ;-ý(D

Let's differentiate A with respect to c; I i I
=n + 1ý

BA 1 +.. e..jj' 1" e..jj'

-=- f ----dS=- J dS=O
ôc, :à -li' 2"r -lf S (I)·

Ë c(i).e-j;'
; --.CD

(3.3.10)

(3.3.11)

1
Therefore the coefficients of the fourier series expansion of - are equal to zero

S(I)

for I i I >n +1
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Thus S (6) can be expressed as :

(3.3.12)
1

S(6) =---

i-ý

:Ai =:A.
ý SO as to insure that S (6) is positive and real.

The next step is to find the,xj 's corresponding to the expansion of S (6) . We use the

fact that S (6) must be consistent with the known fuctions c(i) I i I
= ()..... n

n -_,
Consider the polynomial A ( fi ) = E ,xi e

ýJ

i--n

Since A (fi) is positive then by Riesz's theorem [11] we can find a unique minimum
-,

phase T ( e! ) such that:

(3.3.13)

with T(ei')= Ë t(i).e-j;'
j -0

+.,
Let z =e J then

" .

T(z)= E t(i) .zý
i -0

1
+ ..

e
+;j'

1 +.. ..,
Butc(i)= - J S(1)e

+J' dl == -
J dl

21r .... 27r .... A(I)
Ii I <n

(3.3.14)

"
Using this relation we next form the sum E t (i ).c (m -i) :

i -0

m·l
_jZ q%,

m·l
1" 1 z ". ..ý t(i).c(m-i) = - f . E t(r).z dz = -

ý
;ýo 27rj T(z ).T(z-l) ;-0 27r T(z-l)

(3.3.15)
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T( z ) is minimum phase therefore T( Z-l
) is a maximum phase (all its zeros are

located outside the unit circle). By recalling the Cauchy integral theorem we conclude

that:

1
m=O

m-l
t·(O)

1 z
(3.3.16)-i dz =

2.j T(£l)
0 m = l,2,3, "". ,n

Therefore:

1
m=O

t·(O)
,.

(3.3.17)E t(i).c (m -i) =-

i -0
m = 1,2,3, "".,110

which is equivalent to the system of equations:

t(n).c (0) +t(n-l).c(I) + ... +t(O).c (n) = 0

t(n).c(-l) +t(n-l).c(O) + ... +t(O).c(n-l) =- 0

+ ... 0 (3.3.18)

t (n).c (1-11) +t(n-l).c(-II) + ... +t(o).c (1) " 0

1
t(n).c (-II) +t(n-l).c(-n+l) + ... +t(O).c (0) "

t·(O)

and T(z)=t(n).z"" + t(n-1).z-(,.-1) + ... + teO)



- 14-

These standard Yule-Walker equations can be solved in a variety of ways [9-10]; Solv-

ing for T(z) we have [1]:

o c(O) c(l)

o c·(l) c(O)

c(n)

c (n -1)

"
t

c(l)0 c·(n -1) c·(n)

1
c(O)c·(n) c·(n-l)

t·(O)

0
oft

Z
-(II -1)

1Z

T(Z) " (3.3.19)

0 c(O) c(l) · .. c(n)

0 c·(l) c(O) · .. c (n -1)

· ..

o c·(n-l) c·(n) · .. c(l)
, 0 c·(n) c·(n-l) c(O)r
\

I
1

-(II -1),

-1 oft

1z z · ..

Let ý be the determJnant of order ft :

c (0) c (1) c (n)

c·(1) c (0) c (n -1)

-1 ý "Il
Û = ( ... '._( )

,I

c*(1I-1) c*(n) c ( 1)

c* (n) c*(1I-1) c (0)
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Then

c(O) c(l) c(n)

c-(l) c(O) c(II-I)

c-(n-l) c-(n) c(l)

z" Z-{II-1)
I

T( Z)-
I

t-(O)

From (3.3.19) we get:

(3.3.21)

c(O) c(l)

c-(l) c(O)

c(n-l) 0

c(II-2) 0

c(O) 0

1

t-(O)

All

L

1 4,.-1t(O)------------- - .

t-(O) 4,.

2
ý-l

It(O) I
=-

All

(3.3.22)

(3.3.23)
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and from (3.3.19) we get [1):

C (0) c(l) c(n)

c·(I) c(O) c (n -1)

T(Z )=
1

J ýfI·ýfI-l c·(n-l) c·(n) c(l)
-ft -(fi -1)

1z z

Therefore by replacing T (z ) in (33.12) we get the final expression for S (I).

The spectrum S (I) is completely determined by the known covariance functions

n

c (i »)0' An interesting remark at this point is that the maximization procedure doesn't

tell us anything about the location of the unknown Ci
'

S "

However by exploiting the positive definiteness of the covariance sequence we show in

the next section that the unknown Ci
'
s in the MEM case are located at the center of

successive circles whose center and radii at stage k depend only on the sequence of

order k-L

For a detailed derivation of these standard results see Youla [1) and Geronimus [5].
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3.4 Extension problem:

00

Given the finite set of covariance functions c (i)]
n

Let's form the determinant of order n + 1 with e ý c (n + 1) the unknown:

c (0) c (1) e

c·(l) c(O) c(n)

"

"

"

"

"

(3.4.1)

c·(n) c·(n -1) c (0) c (1)

e· c·(n) c·(l) c(O)

By the vertue of positive definitess of the sequence c(n):

(3.4.2)

(3.4.2) represents the equation for the interior of a circle, whose radius rll and center

Pli has been shown to be [1]:

ýII

r =-
Il

4,.-1
(3.4.3)

L
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c(1) c(n) 0

C(O) c(n-1) c(n)

c·(n-1) ... C(O) c(l)

Pit = (_1)"+1 ----------
ý-1

(3.4.4)

Our next step is to show that the sequence of radii 'It' 'It + 1'"" .etc is JDODOtoDe DOll

increasing.

The minors of âlt +1(e) at any stage k obey the following relation:

Dividing both sides by â;'1 we get:

âk+1 â; -â2(e) â2
â2(e>t

" .-_
âk_1

2 2 2
ât_1 ât_l ât_1

But
â2(e> .

2" (e - Pk>
2

Ât_l

Which implies that :

(3.4.5)

(3.4.6)

(3.4.7)
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But from (3.4.2) we have

Ale +1 Ale
Therefore we have the inequality < -

Ale AIe_1

Ale +1 Ale
and rk =--

Ak Ak_1

(3.4.8)

By using the same argument for stage k + 1 we can prove that rie +2 < rie + 1
The

inequality is then true for any consecutive stages k and k+ 1 .Therefore the sequence

of radii of the given circles ýIe is montone non decreasing.
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00

Special case: For the case where the unknown functions c (i)] are chosen at the
n +1

00

center of the circles ýi] we have '" = '" +1
= '" +2

= ... ='k ='k +1
= ...

n

A"
with, =-"

A"_1

proof: Consider ek = c (k + 1)

Then if e is taken at the center of the circle rk jA(ek) = 0,we have from (3.4.5) :

---=- (3.4.13)
l:1k Ak_1

Now let's consider ek+1 = c(k +2) with c(k+l) already chosen at the center of the

circle rk
then:

Ak +2(ek +1)

Ak +1(ek)

Thus 'k +2
= 'k +1

= 'k

=------ (3.4.14)

The same argument is valid for any stage k.
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3.5 Relation between the MEM and the extension problem:

We have previously seen that while the maximum entropy method provides an

autoregressive representation for the spectrum S (8) it doesn't tell us very much

about tbe location of the remaining unknown covariance functions. By contrast, from

the extension problem we can conclude that given a finite covariance sequence the

remaining covariances are located at the center of the respective circles ýk'

k=n+ 1,n+2, ....

In this section we will show that the maximum entropy method is that particular

extension where the new covariances are located at the center of the circles

ýk ,k=n+ 1,n+2, ....

k-1
proof: Given c (i)]O we know that:

0' 2 1
S(8)= IB(eJ ) I

= ---

I T( ei' 12

âk_1
But from (3.3.21) I t(O) 12= -

lik

1 âi
Using the fact that I b (0) I

2 = we conclude that I b (0) I

2 = -
I t(O) 12 âi_1

(3.5.1)

.L

00 00

I b(O) 12 is maximum if the c(i)] are at the center of the circle 'il l' In that
n n+

â,. â,.
case all the radii are equal and their maximum is -, therefore I b (0) I

2 =- - is
â"_1 4,.-1

maximum .
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Hence, it implies that the entropy is maximum. Since the unknown covariance func-

tions are consistenly chosen at the center of the circles (k we may conclude that the

maximum entropy method presents a robust approach to spectrum estimation.
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chapter 4

POLE-ZERO MODEUNG

4.1 introduction:

Youla in [1], in addition to deriving a closed form expression for the entire

class of spectrum extensions, also suggested that it is possible to select a spectral den-

sity estimator which maximizes a function defined on the impulse response

coefficients br' s . The maximum entropy as we have seen in chapter 3 is a special case

where the parameter was taken to be lb (0) 12.

In this section we develop a new spectral estimator based on the first two

coefficients of the impulse response B(z). We define the function or criterion for

selecting the spectral estimator as the mean square error of the predictor filter.

In the first part we review some previous result on the predictor filter and then derive

the expression for the spectral estimator.

In the second part we derive the exact expressions for the parameters of S (I).

4.2 Pole-zero model:

The prediction error for the r-step predictor is:

r-l
¬r

= E b (k )j (n -k)
k -0

For the case of a two-step predictor P, becomes :

P
2

= E lb (k) 12 = lb (0) 12 + lb (1) 12

k -0

(4ý1)

(4.2.2)

(4.23)
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recalling (3.3.3):

b (0) = / (0) . exp
d (0)

= exp
d (0)

2 2

b(1) = /(1). exp
d(O)

.: d(1). exp
d(O)

2 2

1
+ ..

d(O) = -. Jln S(8)dB
2w -ft

with
1

+ ..
0'

d (1) = -. J e
+J

" InS (8) dB
à -ft

00

Differentiating with respect to the unknown c (i)] 1:n+

(4.2.4)

BÂt

[

1 + .. e';j' d*(1) +"e-jlCi-1)
--= -.[1+ Id(1)11. J -dl+ . J dl

Bc(i) 2w -ft 5(8) 2w -ft 5(1)

d(1)+-.
2w

+"e-jl(i+l)

ý

d(O)
J dexp-=O

-ft 5(8) 2
(4.25)



- 25 -

Let 1 +
I a (1) I

2 = 0: and {J = â

(
1) then:

8Ât 1 +,..
-4"1 [0: + {J ". e

+jl + {J. e-j']

ý(l')
= -. J . e } dB = 0 (4.2.6)

CA; 27r -li'
S (6)

[a + p ". e
+j' + /J. e-jl,

which implies that the fourier series for the real function -=---__;._ __ ----=___;,ýJ

S(I)

truncates.

Thus

and

+., .,
S (6) =

0 + p ". e } + p. e
-J

Ë l(i). e';j'
i._,.

(4ý7)

li = l.; " to insure that S (8) is real;

b(l) b(l)
d(l) = - so P =d(l) = - and

b (0) b (0)

Finally S (8) can be written as :

0=1+
b(l)

b(O)

2

,

L

b·(l). b(O). e+il +
I b(O) 12 +

I b(l) 12 + b(l). b·(O). e-j'

S (8) = (4.28)

I b (0) I
2. Ë l(i). e

';j'

i._,.

Again by Riesz's theorem Ë l(i). e
';i'

can be expressed as the product
i·_,.

W( ei'). W( e -jý where W( ei') is a minimum phase.
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The numerator can be written as ,(-1). ei' + ,(0) + ,(1). e-i'

ý.

,(+1) = b(1). b·(O)

with: r(-I)=b(0).b·(1)

(0) =
I b(O) 12 +

I b(l) 12

Fmally :

I b(O) + b(l). e-i' 12
S (I) - ýý-ý-....:_

I b (0) 12"
I W( », 12

(4.2.9)
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4.3 Derivation or the spectrum parameters:

Now that we have the expression of S (8) the next step is to derive the rela-

tions for its parameters.

"
Let's form the sum E .\(k).c (m -k) :

k-O

i, (') jl(". -4) -jllc
ý r l .e .e

" 1" ii ; --1

E .\(k).c(m-k) = -E.\(k) J ------d' (4.3.1)
k -0 271' k -0 _ 1T "

Ib(0)12E '\(i).e-4i'
;-.,.

1 1 .

z'" -
. E r(i).z-4

1
i--1

1 z"'-l.(r(+I).z-l+r(O)+r(-I).z)--f dz=-; ds »

271'j
I b(O) 12.W(z ) 21rj

I b(O) 12( .\·(0)+.\·(1).z + ... +.\·(n).z" )

located outside the unit circle, therefore by using Cauchy's integral relation we have:

W(i') = .\·(0) + '\·(I).z + ... + .\·(n).z" is a maximum phase; all its zeros are

(4.3.3)m =1

A m=O

r( +1)

o m =2,3, ...,n

Il

E .\(k).c(m-k) =

k-O

1 z"'-2.(r( + 1)+r(0).z +r(-1).z2)
= -. f dz: (4.3.2)

271'j
I b(O) 12( '\. (0)+.\· (1).z + ... +.\·(n).z" )



- 28 -

where A is defined by :

[

r( + I)+r(O).z +r(-I).z2

1

a
À.(O)+À.(I).z + ... À.(n ).z"A=----------

az z-O

À*(O)r(O) - r(1)ý*(1)
=

1 b(O) 12.À*(0)2

jr
( + 1) =b (1).b * (0)

with: r(-1) =b*(l).b (0)

reO) = lb (0) 12 +
1
b (1) 12

For a 2-step predictor the equations are the following [3]:

II

E a (k) . c (m -k) = c (m ) 2 <m < n
le -2

P2 = E[ 1£211 = c(O)- ý a(k). c(-k)
le -2

2
The coefficients ale] are easily obtained from the matrix equation:

n

-1
a = R . e

where aT :.
[ a (2),a (3), ... ,a (n )], CT = [c (2),c (3), .".,c (n ) ]

c(O) c(2-n)

and R-

c(n-2) c(O)

(4.3.4)

(4.3.5)

(4.3.6)

(4.3.7)
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The above equations can be combined together to form the following system:

ý
,
"

IP2
Ê ¢(k) " c (m -le) -

k-O
o

where the set of coefficients "k is defined as:

m=O

m -2,3,4, .. .,11

and 1/J(0) = 1 ,1/J(1) :.: O.

Now it remajN to find b(O) and b(1) to completely characterize S ( ').

The system of equations (4.3.3) and (4.3.8) can be written in the follOWÎDl:

1

Ê
¢(k)

. c(m-le) =- Ê
1/J(k) .. c(l-1e)

k-O Pz k-O Pz

maO

(4.3.10)

o m -2,3,4, "".,11

1 maO

o

By comparing the two sets of equations we may choose :

m -2,3, .."".

>"(k) ¢(k)---
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for k=O

which is equal to
r (0)

P21 b(O) 12ý·(0)

ý(O) = ¢(O)A_
=

ý·(O)J(O) - r(1)"\·(1)
p

2 P 21 b (0) 12ý·(0)2
.A

because ý(1) :II ¢(1)- " 0
P2

For m = 1 we have the equality :

r(l)--...;.....;....--.-
A lb (0) 12ý·(O)

,.
where Pl= E1/.(k).c(I-k)

k-O

r(O)P 1

r(I):.: --

from (4.3.12) and (4.3.14) we bave the system:

r(O)P 1

r(l) = :II b (l)b·(O)
P2

The
. b (1) .

th th l' f th ý 11' .rauo -
IS en e so unon 0 e 10 owmg equanon:

b(O)

(4.3.12)

(4.3.13)

(4.3.14)

(4.3.15)

(4.3.16)

(4.3.17)
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Pz
where the ratio - is fixed by the known covariance functions.

Pl

Finally:

11+_b_(1_).ëi' 12

S ( 9) = b_(;_;O);...__ _

I
À(0)+À(1).ëi' + ... +À(n ).ij,., 12

h
b (1) .

d
.

d fr h
.

adrati
.were --

IS etemnne am t e previous qu abc equation,
b(O)

These solutions are at best only partial for two reasons:

(4.3.18)

First, for real data one must demonstrate that the filter parameters

b(O),b(l»)(O»)(l), ...)(n) are real. More importantly, the denominator polynomial

À(O) +À(l)z
-1

+ ... +À(n)z ý must be shown to be free of zeros inside the unit circle.

These are important features and must be demonstrated before one could claim the

realization of the desired Wiener factor.



Chapter 5

Conclusion and Recommendations

!el: Conclusion:

The research presented in this thesis has concentrated on using the mean square error

of a 1 and 2 step predictor as the criterion for the derivation of the spectrum estima-

tor.

The work has proceeded from the case of the 1-step predictor, where it is shown that

the spectral representation of the time series is an AR model, to the case of the 2-step

predictor where the the spectral representation is shown to be an ARMA(n,1) model

5.2: Recommendations for future research:

In this thesis we considered the simple case of the l-step and 2-step predictor.

The 2-step predictor filter solutions developed here are only partial for two reasons:

First, for real real data one must demonstrate that the filter parameters are real. More

importantly, the denominator polynomial À(O) + À( l)z
-1

+ ... + À(n )z
-n must be shown to

be free of zeros inside the unit circle. These are important features and must be

demonstrated before one could claim the realization of the desired Wiener factor.

Investigation of these problems together with the more general r-step predictor

forms a potential area for future research.
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