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Abstract

This thesis presents innovative advancements in state observation methods within the
framework of model-free control, focusing on the integration of derivative and algebraic
estimators into the ultra-local model implementation. By leveraging Taylor’s expansion
coefficients of any order, the estimation process offers a robust framework for parameter
estimation, discretely implemented using operational mathematical concepts and FIR
filters. A comparative analysis between derivative and algebraic estimators is conducted,
assessing their performance in state observation through tests on a DC motor’s position
trajectory control strategy under disturbances and uncertainty. Furthermore, this research



introduces and extensively tests the model-free Control (MFC) technique in the context of
variable-speed wind turbines, employing algebraic estimating methods. This expansion
of MFC into renewable energy marks a significant milestone, with applications including
energy capture optimization in low-speed wind regions and extension to a multi-variable
model-free control (MV-MFC) for high-speed wind regions through the integration of
pitch and torque control mechanisms. Moreover, this thesis establishes a merger between
flatness-based control and model-free control (F-MFC), leveraging their combined potential
to enhance wind turbine control. This integrated strategy aims to improve adaptability,
robustness, and performance benefits, shaping the future of wind energy conversion system
control methods. The efficacy and reliability of the proposed control strategies are validated
through extensive testing with MATLAB and the FAST simulator.

Keywords: Model-free Control, Algebraic Estimation, Intelligent PID, Flatness control,
Disturbance rejection, Variable speed/pitch wind-turbine, DC motors.

Résumé

Cette thèse présente des avancées innovantes dans les méthodes d’observation de l’état
dans le cadre du commande sans modèle, en mettant l’accent sur l’intégration d’estima-
teurs dérivés et algébriques dans la mise en œuvre du modèle ultra-local. En utilisant
les coefficients d’expansion de Taylor d’ordre quelconque, le processus d’estimation offre
un cadre robuste pour l’estimation des paramètres, implémenté discrètement à l’aide de
concepts mathématiques opérationnels et de filtres FIR. Une analyse comparative entre les
estimateurs dérivés et algébriques est menée, évaluant leur performance dans l’observation
de l’état à travers des tests sur la stratégie de commande de trajectoire de position d’un
moteur à courant continu sous des perturbations et de l’incertitude. De plus, cette recherche
introduit et teste largement la technique de commande sans modèle (CSM) dans le contexte
des éoliennes à vitesse variable, en utilisant des méthodes d’estimation algébriques. Cette
expansion du CSM dans les énergies renouvelables marque une étape importante, avec des
applications comprenant l’optimisation de la capture d’énergie dans les régions de vent à
basse vitesse et l’extension à une commande sans modèle multi-variable (MV-CSM) pour
les régions de vent à haute vitesse grâce à l’intégration de mécanismes de contrôle de pas
et de couple. De plus, cette thèse établit une fusion entre la commande par platitude et la
commande sans modèle, exploitant leur potentiel combiné pour améliorer la commande
des éoliennes. Cette stratégie intégrée vise à améliorer l’adaptabilité, la robustesse et les
avantages de performance, façonnant l’avenir des méthodes de commande des systèmes



de conversion d’énergie éolienne. L’efficacité et la fiabilité des stratégies des commandes
proposées sont validées par des tests approfondis avec MATLAB et le simulateur FAST.
Cette procédure de validation garantit la préparation au déploiement dans le monde réel,
renforçant la confiance dans leurs performances dans divers contextes opérationnels.

Mots Clée : Commande sans modèle, Estimation algébrique, PID intélligent, Com-
mande par platitude, Rejet des perturbations, Éolienne à vitesse/angle de pas variable,
Moteurs à courant continu.
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General Introduction

The control of dynamic systems has undergone significant advancements in recent
years, with the emergence of model-free control techniques offering new perspectives
and approaches. This thesis explores the integration of model-free control and algebraic
estimation methods, aiming to enhance the performance and robustness of control systems
in various engineering applications. Through a combination of theoretical analysis, algo-
rithm development, and experimental validation, this research addresses key challenges
in control engineering, particularly focusing on dynamic systems such as DC motors and
variable-speed wind turbines.

The literature on model-free control and algebraic estimation provides valuable insights
into the theoretical foundations and practical applications of these techniques in control
engineering. Previous studies have demonstrated the effectiveness of model-free control
approaches in various domains, including robotics, aerospace, and renewable energy systems.
However, limited research exists on the integration of model-free control with algebraic
estimation methods, particularly in the context of flatness control.

The theoretical framework guiding this research draws upon principles from control
theory, optimization, and system identification. Ultra-local model and algebraic estimators
serve as fundamental concepts, providing a theoretical basis for the development of novel
control strategies without explicit system modeling. Additionally, flatness-based control
offers a theoretical framework for representing complex nonlinear systems, complementing
the adaptability and robustness of model-free control technique.

The findings of this research are expected to have significant implications for both
theory and practice in the field of control engineering. By advancing the understanding
and application of model-free control technique combined with algebraic estimation, this
study aims to contribute to the development of more robust and adaptive control strategy
for a wide range of engineering systems. The proposed approaches in this research have
the potential to improve the performance, efficiency, and reliability of dynamic systems,
including DC motors and variable-speed wind turbines.

The present study conducts extensive research, attempting to reveal the significant

1



GENERAL INTRODUCTION

consequences of robust state observation in strengthening control system stability by
detailed comparison analysis and simulation tests. This study examines the design and
implementation of model-free controllers, employing the ultra-local model along with
derivative and algebraic estimators to address essential features such as discrete realization
and parameter tuning using FIR filters.

In the context of DC motor position tracking, algebraic and derivative estimators
demonstrate superior performance in robust tracking toward Coulomb friction disturbances
and uncertainties, outperforming traditional PID controllers. Transitioning to variable-
speed wind turbine systems, model-free controllers emerge as a promising avenue, with the
algebraic estimator presenting itself as an alternative to conventional state observers. This
not only ensures robust closed-loop performance but also streamlines the control strategy,
particularly in scenarios where acquiring accurate dynamical models poses formidable
challenges.

Furthermore, the integration of flatness-based model-free control within wind turbine
systems underscores exceptional capabilities in optimizing wind energy capture and reg-
ulating power generation across varying speeds. This approach significantly contributes
to enhancing system robustness, guaranteeing reliable performance even in the face of
uncertainties and disturbances.

Key Contributions

The main contributions of this thesis can be summarized as follow:

1) Advancement of the ultra-local model-based estimators: This thesis explores
and applies the approaches of the ultra-local model observations in model-free control
theory. Using Taylor’s expansion parameters for arbitrary orders entails creating ultra-local
models based on derivative/algebraic estimators. The study carefully describes the discrete
application of these techniques, which include FIR filters and operational calculus.

2) Validation and extension of model-free control (MFC) approach: This
thesis also introduces and extensively tests the model-free Control (MFC) technique to
variable-speed wind turbines based on algebraic estimating. This expands the effective
application of MFC to a new discipline of renewable energy.

3) Optimization of low-speed energy capture: In this research we apply model-
free control based on wind estimation for maximizing energy capture in low-speed wind

2



GENERAL INTRODUCTION

regions. This objective aims to improve wind energy transformation systems’ efficiency by
tailoring control strategies to exploit optimal power coefficients.

4) Enhancement of high-speed Power quality: This study extends the model-free
control (MFC) to a multi-variable model-free control (MV-MFC) in high-speed wind
regions. By integrating pitch and torque control mechanisms, the objective is to sustain
satisfactory power quality, ensuring stability and performance even under demanding wind
conditions.

5) Integration of flatness approach with model-free control: This research
establishes a merge between flatness-based control and model-free control (MFC), using
their combined potential to improve wind turbine control. This integrated strategy seeks
to improve adaptability, robustness, and performance benefits, bringing in the future of
cutting-edge wind energy conversion system control methods.

6) Simplifying system modeling complexity: Elimination of the difficulties as-
sociated with system modeling in wind turbines, facilitating real-time updates devoid
of concerns regarding linearity or specific parameter identification. This simplification
enables agile adaptation to dynamic environmental conditions, enhancing overall system
responsiveness.

Organization of the thesis:

This thesis is structured into four main chapters:
Chapter 1 provides an introduction to the research topic, outlining the objectives,

methodology, and theoretical framework of the study. Chapter 2 focuses on developing
and implementing the model-free control technique for controlling the position of a DC
motor employing the ultra-local model combined with real-time derivative and algebraic
estimators. Chapter 3 explores model-free control approache to variable-speed wind
turbines, addressing challenges related to energy capture and power quality under varying
wind conditions. Chapter 4 investigates the integration of flatness-based control with
model-free techniques for wind turbine control, examining the benefits and challenges of
this combined approach.

3



Chapter 1

Model-Free and Flatness Control:
Introductory Concepts

1.1 Introduction

In the realm of control systems engineering, the pursuit of precision, adaptability, and
robustness has driven the evolution of control methodologies beyond traditional model-
based approaches [1]. This journey has led to the emergence of model-free control and
flatness control as pivotal paradigms offering innovative solutions to complex control
problems across various domains. This chapter delves into the state of the art and
introductory concepts of model-free control and flatness control, exploring their theoretical
foundations, practical applications, and potential synergies.

Control systems traditionally rely on accurate mathematical models to predict system
behavior and design control strategies accordingly [2]. However, the inherent complexity,
nonlinearity, and uncertainties present in many real-world systems often challenge the
efficacy of model-based approaches. Model-free control offers an alternative paradigm by
leveraging data-driven techniques to directly learn control policies from system interactions,
without explicit knowledge of system dynamics [3]. Reinforcement learning, adaptive
control, and other model-free techniques have garnered significant attention for their ability
to tackle complex control tasks in diverse domains such as robotics, autonomous vehicles,
and process control [4].

In parallel, flatness control has emerged as a powerful methodology for addressing the
trajectory tracking and disturbance rejection challenges inherent in nonlinear systems [5].
The concept of flatness centers around the idea of reparameterizing a nonlinear system
such that its state and input trajectories become trivial, enabling straightforward control
design and analysis. By exploiting the flatness property, controllers can achieve precise
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trajectory tracking and disturbance rejection, even in the presence of nonlinearities and
uncertainties [6].

This chapter provides a comprehensive overview of model-free control and flatness
control, clarifying their fundamental principles, key techniques, and practical applications.
We explore various algorithms and methodologies employed in model-free control, ranging
from reinforcement learning to adaptive control, highlighting their advantages and limita-
tions. Additionally, we delve into the theory and approaches underlying flatness control,
shedding light on differential flatness, input-output flatness, and their implications for
control system design.

Moreover, we discuss the merge of model-free control and flatness control, exploring
the potential synergies between these two approaches and their implications for advancing
control system performance. In the next chapters, we propose to unlock new avenues for
addressing complex control challenges and enhancing system performance by combining the
data-driven adaptability of model-free control with the trajectory optimization capabilities
of flatness control.

In summary, this chapter serves as a comprehensive guide to the state of the art and
introductory concepts of model-free control and flatness control. By understanding the
principles and techniques underlying these paradigms, we can navigate the complexities of
modern control systems and harness the full potential of data-driven and trajectory-based
control methodologies.

1.2 Model-free Control

This section overviews model-free control, focusing on its fundamental principles, key
concepts, literature review, and applications.

1.2.1 What is model-free control ?

Approaches and control techniques can be classified into two categories: control laws
that require prior knowledge of a model of the system to be controlled (referred to as
Model-based Control) and those that do not require model knowledge (referred to as Model-
free Control). Although theoretically, they can provide good performance, implementing
control strategies based on model knowledge is challenging. Indeed, the mathematical
model resulting from modeling generally does not accurately reflect the dynamics of the
system. Furthermore, due to external effects, the system’s dynamics can change, which
can significantly degrade performance.

5
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We can define model-free control as any type of control that does not require knowledge
of the model of the system to be implemented. Still, rather only general information
about the system is required, including its class, order, inputs, and outputs. Despite its
limitations and the subject of much criticism in the control community, the PID controller,
as a simple-to-implement model-free control, is the most widely used controller in the
industrial world. Finding another model-free control strategy with higher performance
has become one of the concerns of control researchers. In this research, our objective is to
explore new approaches that combine model-free control with other techniques.

1.2.2 Overview of traditional control methods and their limita-

tions.

Starting from the late 1960s, modern control theory has significantly evolved and expanded.
Notable branches, including variable structure control [7], robust control [8], adaptive
control [9], system identification [10], optimal control [11], stochastic theory [12], and
many other control methods have widespread applications in various fields, including
traffic systems, aerospace, and industrial operations. Despite its maturity, modern control
theory still presents numerous theoretical and practical challenges, emphasizing the field’s
continual need for innovation and improvement.

1.2.2.1 Identification and Modeling

Model-based control (MBC) or modern control theory began with introducing Kalman’s
parametric state-space theory in 1960 and applying optimal control techniques [1, 2]. Its
application flourished, especially in aerospace, leveraging precise models readily available
in the field. Modern control theory encompasses approaches for either linear or nonlinear
systems. LQR design [13], Zero-pole assignment [14], and robust control [8] are examples
of linear control system design techniques. On the other hand, controller design techniques
for nonlinear systems frequently include feedback linearization [15], backstepping [16], and
Lyapunov-based designs [17]. Together, these approaches show the common architecture
of MBC systems. When using MBC theory in practice, the first step is to model or identify
the plant. Then, using the certainty equivalency principle, controller design is based on
the obtained plant model, assuming that the plant model accurately represents the actual
system. Modeling and plant identification are therefore crucial elements of MBC theory.

In order to model a plant from first principles, parameters must be calibrated using
measured data, either online or offline. Using identification theory, one can create a plant
model within a model set that either fully captures the true system or comes close to it [10].

6



`CHAPTER 1. MODEL-FREE AND FLATNESS CONTROL: INTRODUCTORY CONCEPTS

Regardless of whether modeling is conducted through first principles or data identification,
it inherently involves approximating the true system, inevitably incurring some error
[18]. Unmodeled dynamics are invariably present in the modeling process, contributing to
potential inaccuracies in closed-loop control systems designed using model-based control
(MBC) approaches [19].

Efforts have been directed towards enhancing robustness against model errors while
retaining the advantages of MBC design. Robust control approach has explored different
ways to describe errors of the model in closed-loop system configurations, including
additive and multiplicative descriptions, as well as assumptions regarding modeling errors
or noises. Nevertheless,the uncertainty characterizations utilized in robust theory design
techniques often do not align with those derived from physical-mathematical modeling
and identification techniques [10].

Challenges persist in establishing a perfect control theory, primarily due to the inherent
trade-off between unmodeled dynamics and robustness. Achieving high accuracy in plant
modeling requires significant effort and cost, and there is no efficient means of producing
an accurate model. Additionally, addressing complexities such as parameter variations
or structural changes over time poses further challenges. High-order system dynamics
may necessitate controller order reduction for practical implementation, highlighting the
paradox of striving for accuracy in modeling only to simplify the model for control design
[19].

1.2.2.2 Model-based control design

The principle of certainty equivalency, a cornerstone of model-based control (MBC) theory,
assumes that controllers are effective only if designed based on a plant model within the
assumed set. Deviations from this set cause poor performances and system instability due
to the sensitivity of closed-loop systems to even minor modeling errors [20].

Even with an accurate model, theoretical analyses covering stability, convergence, and
robustness may yield limited insights if there are unfounded presumptions about the
system. The MBC theory’s architecture, illustrated in Fig. 2.1, underscores the system
model’s central role and assumptions in controller design and system analysis. However, a
discrepancy persists between the model constructed based on assumptions and the actual
plant, potentially undermining the effectiveness of MBC approaches if overlooked during
design and analysis.

Nonlinear control systems design methods such as Lyapunov-based approaches, back-
stepping, and feedback linearization rely heavily on accurate plant models. However,
the unmodeled dynamics’ existence uncertainty can undermine the effectiveness of these
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Figure 1.1: Architecture of MBC theory

methods. Inaccuracies in the model’s structure and dynamic equations can significantly
impact system performance since controllers incorporate these details [21]. The significant
disparity between the elegant theories of model-based control (MBC) and practical imple-
mentation poses a major challenge, leading to various issues in real-world applications.
When the model is unavailable, or its assumptions are invalid, it becomes challenging
to make significant conclusions. The reliance of MBC on the model underscores its
characterization as a "model theory" rather than solely a control theory to some extent.

1.2.2.3 Model-free control design

This section provides an introduction to "intelligent" PID controllers (iPIDs), which are a
counterpart to "model-free control" in a unified manner, considering recent advances [22].
The approach integrates basic differential algebra with outdated analytical techniques. A
new online parameter estimation method simplifies identification methods. The significance
of iPIDs, particularly iP, is highlighted in dealing with friction. The prevalence of classic
PID controllers in industry and their challenges in complex tuning situations are attributed
to their connection with iPIDs, as demonstrated through elementary sampling. Chapter
4.1 presents a detailed mathematical explanation of the approach.

Let’s review some key theoretical concepts underlying the model-free control approach.
Our focus is on systems that have a single control variable u and a single output variable
y for simplicity’s sake. Instead of relying on a complex mathematical model, we adopt an
ultra-local model represented in Fig 2.2 as:

y(ν) = F + αu (1.1)

where, F is updated regularly and encompasses both the various potential disturbances
and the unappreciated plant parts despite requiring any differentiation, α is constant, and
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Figure 1.2: Architecture of MFC theory

u represents the input control signal. The estimation:

• requires only a brief period of time.

• is characterized by algebraic equations that incorporate low-pass filters such as
repeated time integrals.

• is robust to appropriately significant noises.

The determined input-output data of the controlled plant is the only factor that
influences the controller design in the MFC methodology. Fig. 2.1 illustrates the MFC
methodology’s architecture. One of this system’s features is that it solely uses the
measurement of I/O data from the closed-loop systems for both control system analysis
and MFC controller design. The plant model vanishes and loses its ability to control the
procedure. The closed-loop control system’s measurement of I/O data serves as both a
standard for control system performance and the origin of controlled problems. More
details will be discussed in Chapter 2.

1.2.3 Model-free control applications

With the advancement of technology and information science, industries such as chemical,
metallurgical, electronics, machinery, transportation, and logistics have experienced signif-
icant transformations. Those sectors operate on a large scale with complex production
technologies and equipment, making modeling processes employing traditional rules or
identification methods increasingly challenging. Consequently, conventional model-based
control (MBC) approaches have become ineffective in addressing control problems in
such industries. Moreover, huge quantities of data are continuously generated by modern
industrial processes, and this data contains important details about the states of the
equipment and the operations of the processes. Leveraging this data, both online and
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offline, for controller design, state prediction, performance evaluation, decision-making,
and fault diagnosis becomes crucial, especially without having precise process models.
Thus, the development of model-free control theory (MFC) has emerged as a pressing
issue in both theory and application domains.

The term "Model-free" has recently gained traction in the control community. While
several MFC methods exist, they are often referred to by various identities such as data-
driven control, modelless control, data-based control, iterative feedback tuning (IFT)[3],
virtual reference feedback tuning (VRFT)[23], active disturbance rejection (ADRC) [24]
and iterative learning control (ILC)[25]. Although these terms are used interchangeably,
there are subtle differences between them.

Several publications in a wide variety of fields have demonstrated the efficiency and
simplicity of MFC approach, we will mention here the most intersting ones.

Among the first tests of MFC was the DC-DC converter system [26]. MFC have been
applied to Quadrotor Vehicle Quadrotor Vehicle by Younes [27]. Application reported
by Frédéric Lafont includes information on a concrete greenhouse and comparisons with
Boolean controllers[28]. A proposed algorithm were introduced based on an integrated
structure between the Nonlinear Integral-Backstepping technique (NIB) and the MFC in
[29] for a Quadrotor UAV. MFC technique has been also introduced in medical field to
solve the problem of regulating glycemia of Type-1 Diabetes(TlD) [30] and the problem
of immune therapy [31]. A novel cascade model free adaptive control method (MFAC)
with an intelligent PID (i-PID) algorithm is proposed for the attitude adjustment of a
multi-input multi-output (MIMO) quadrotor aircraft [32].In order to control the attitude
and position of a quadrotor whose model includes parameter variations, uncertainties, and
external disturbances, Haoping developed a model-free-based terminal sliding-mode control
(MFTSMC) strategy. This method combines a sliding-mode technique with a model-free
control approach, allowing for the elimination of tracking error in a finite amount of time
[33]. Xinyi Zhang considers a model-free based neural network control with time-delay
estimation (TDE-MFNNC) for lower extremity exoskeleton [34]. Raul-Cristian proposes a
hybrid controller that consists of a second order data–driven Model–Free Control (MFC),
and a Takagi-Sugeno Fuzzy (TSF) logic controller for nonlinear Multi Input–Multi Output
(MIMO) twin rotor aerodynamic systems (TRASs) [35]. In [36] Mircea-Bogdan presents a
novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems
by the combination of iterative learning control (ILC) and primitives where the optimal
trajectory tracking solution is obtained in terms of previously learned solutions to simple
tasks called primitives. Kaihui Zhao suggests a robust model-free nonsingular terminal
sliding-mode control (MFNTSMC) algorithm based on the ultra-local model to reduce
the influence of permanent magnet (PM) demagnetization for PM synchronous motors
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Figure 1.3: The number of annual publications related to MFC since 2009

(PMSMs) [37]. In [38], model-free fractional-order nonsingular fast terminal sliding mode
control (MFF-TSM) based on time delay estimation (TDE) is proposed for the lower-limb
robotic exoskeleton in the presence of uncertainties and external disturbance. Ghazally
I.Y comprises the model-free based intelligent PID controller, the fuzzy logic controller,
the time-delay estimation, and the particle swarm optimization to control the vibration of
an active vehicle suspension systems [39]. Recently, Fliess and Cédric introduced MFC as
a Service in the industrial internet of Things and machine learning [40, 41]. Figure. 2.3
shows the number of annual publications related to MFC since 2009.

This thesis introduces and validates the Model-free approach to variable speed wind
turbine in Chapter 3.

1.3 Flatness Control

This section presents the key point of flatness control lies in its ability to ensure that a
dynamic system exhibits flat outputs. Flatness control aims to manipulate a system’s
inputs in such a way that the outputs become simple functions of a few "flat" variables.
These flat outputs essentially capture all the relevant information about the system’s
behavior. This approach offers advantages in terms of simplifying control design, facilitating
trajectory planning, and enhancing robustness to disturbances.

1.3.1 Fundamentals of Flatness

The concept of flatness emerged from the need to address the challenges posed by nonlinear
systems in control engineering. Traditional control techniques struggled with the complexity
of nonlinear dynamics, motivating researchers to seek alternative approaches. In the 1980s
and early 1990s, researchers were seeking ways to simplify the control of nonlinear systems.
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In 1995, a group of researchers published a seminal paper in the International Journal
of Control titled "Flatness and Defect of Nonlinear Systems: Introductory Theory and
Examples," exploring the concept of "flatness" as a means to achieve this goal. The paper
laid out the basic principles of flatness control and provided illustrative examples [5] and
marked a significant milestone in the formalization of flatness theory. Another important
paper, published in 1999 in the IEEE Transactions on Automatic Control, titled "A
Lie-Bäcklund approach to equivalence and flatness of nonlinear systems," further advanced
the theory by introducing Lie-Bäcklund transformations for analyzing the equivalence and
flatness of nonlinear systems [42].

Flatness control operates on the principle of transforming a nonlinear dynamic system
into a form where the outputs are described by flat variables. These flat outputs are chosen
to simplify control design and trajectory planning. By exploiting the flatness property,
control engineers can design controllers that directly manipulate these flat outputs, thereby
simplifying control synthesis and trajectory tracking tasks.

1.3.2 Mathematical Formulation

By introducing the concepts of flatness and linearizing output, a novel perspective on the
complete linearization issue through dynamic feedback is put forth [15]. This section aims
to demonstrate how beneficial such a viewpoint can be for movement tracking [5, 42, 43, 44].
The late 1980s saw the invention of flatness-based control and differential flatness theory.
Since then, these concepts have continuously progressed, offering effective answers to
complex control and state estimation problems [45].

A differentially flat system is defined as follows: Since f is a smooth vector field, a
system ẋ = f(x, u) with state vector x ∈ Rn and input vector u ∈ Rm is differentially flat
if there is a vector y ∈ Rm with the form:

y = h
(
x, u, u̇, . . . , u(r)

)
(1.2)

That is,
x = ϕ

(
y, ẏ, . . . , y(q)

)
u = α

(
y, ẏ, . . . , y(q)

) (1.3)

as smooth functions h, ϕ, and α. Accordingly, the m algebraic variables yi, i =

1, 2, . . . ,m describe the new system. y = h
(
x, u, u̇, . . . , u(r)

)
was the definition of the flat

output provided above. Zero-flat systems are those in which the flat output is solely a
function of the state vector x. Nevertheless, it could be necessary to represent the flat
output as a function of the control u and its derivatives in addition to the state vector x.
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This necessity arises in more complex scenarios, such as when dealing with dynamic
feedback linearization or applying dynamic extension techniques. In such cases, the
system’s state vector is extended by including the control inputs and their derivatives as
additional state variables. This extension allows for a more comprehensive and flexible
description of the system, accommodating the intricacies of control and state estimation
problems. By incorporating these elements, we ensure that the flat output adequately
captures the dynamic behavior of the system, facilitating more effective control strategies
and solutions.

Equation (2.3) demonstrates that the flat output and its derivatives can be used to
express the state vector of the differentially flat system and its control inputs. In the
study of differential flatness, the fundamental question is whether there exists a function
y = h() given by y = h

(
x, u, u̇, . . . , u(r)

)
, such that the state vector of the system x and

the control input u can be stated as functions of y and of its derivatives, as in Eq. (2.3).
This is given by the differential equations that describe the nonlinear system dynamics
ẋ = f(x, u).

1.3.3 Literature review of Flatness applications

Flatness control is a versatile and effective technique with applications spanning diverse
domains, showcasing its broad applicability in optimizing system performance and achieving
precise control objectives. Its utility is evident in stabilizing and maneuvering quadrotor
UAVs for precise trajectory tracking, allowing these unmanned aerial vehicles to navigate
through complex environments with ease [46]. Additionally, it enhances the navigation
capabilities of autonomous underwater vehicles, enabling them to explore underwater
terrain accurately and efficiently [47]. In industrial settings, flatness control facilitates
precise manipulation of robotic arms [48], ensuring accurate assembly and manufacturing
processes [49]. Moreover, it plays a pivotal role in optimizing wind turbine energy capture,
maximizing power generation efficiency while minimizing structural loads [50]. In hybrid
energy systems, such as those combining fuel cells and renewable sources, flatness control
manages power flow to maximize energy output and system stability [51]. It also controls
electric vehicle powertrains, optimizing power distribution for enhanced performance
and range [52]. In aerospace applications, flatness control maintains satellite orientation
in space missions, ensuring precise positioning and stabilization [53]. Additionally, it
regulates industrial processes like chemical reactors and distillation columns, optimizing
production efficiency and quality [54]. In aircraft flight dynamics, flatness control enables
autonomous navigation and altitude control, ensuring safe and efficient flight operations [55].
Furthermore, it finds applications in smart grid energy management [52], HVAC systems
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[54], biomedical systems[56], water treatment plants [57], renewable energy microgrids [58],
and traffic management systems [59], contributing to improved efficiency, reliability, and
sustainability across various industries and applications.

1.4 Combination of Flatness with other control strate-

gies

Combining control techniques can indeed lead to improved system performance and robust-
ness. Here are a few research papers that demonstrate the integration of flatness/model-free
control approaches with other control techniques.

The integration of flatness control with various other control techniques offers significant
added value across different applications. In traditional control methods, such as adaptive
[60] control and proportional-derivative-integral (PID) control [61], combining them with
flatness control enhances robustness and adaptability, ensuring precise motion control
despite uncertainties. Additionally, integrating flatness control with fuzzy logic [62] or
backstepping control [63] enables robust and adaptive regulation of system dynamics,
particularly in complex systems like DC motor speed control or hydraulic servo systems.
Moreover, combining flatness control with modern techniques like reinforcement learning
[64] or model predictive control [65, 66] enhances system performance and autonomy.
Reinforcement learning enables the system to learn optimal control policies, while model
predictive control anticipates future behavior, both ensuring efficient trajectory tracking
and navigation, as seen in applications such as autonomous vehicles or wind turbines.
Furthermore, incorporating flatness control with fault detection techniques like sliding
mode observers[67] improves system reliability by enabling real-time fault detection and
isolation in electromechanical systems. Finally, integrating flatness control with deep
reinforcement learning or artificial neural networks [68, 69] enhances adaptability and
efficiency, maximizing performance in tasks such as solar tracking or quadcopter trajectory
tracking. In essence, these combinations leverage the strengths of each method to achieve
superior control performance, stability, and robustness across diverse applications.

This thesis significantly contributes by showcasing the innovative integration of the
differential flatness approach with the model-free control technique. Combining flatness-
based control with model-free control (MFC) offers a synergistic approach that leverages
the structured framework of flatness-based control for system modeling and analysis while
harnessing the adaptability and resilience of MFC to uncertainties and disturbances. This
integration enhances adaptability, robustness, and performance benefits, as flatness-based
control ensures precise system output regulation and decoupling of nonlinear dynamics,
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while MFC optimizes control actions in real-time based on online observations. By merging
these methodologies, control strategies become more versatile, future-proofed, and capable
of achieving superior performance in dynamic and uncertain environments, making them
particularly valuable for applications such as wind energy conversion systems. This is
deeply discussed in Chapter 4.
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Chapter 2

Model-Free and Flatness Control:
Introductory Concepts

2.1 Introduction

In the realm of control systems engineering, the pursuit of precision, adaptability, and
robustness has driven the evolution of control methodologies beyond traditional model-
based approaches [1]. This journey has led to the emergence of model-free control and
flatness control as pivotal paradigms offering innovative solutions to complex control
problems across various domains. This chapter delves into the state of the art and
introductory concepts of model-free control and flatness control, exploring their theoretical
foundations, practical applications, and potential synergies.

Control systems traditionally rely on accurate mathematical models to predict system
behavior and design control strategies accordingly [2]. However, the inherent complexity,
nonlinearity, and uncertainties present in many real-world systems often challenge the
efficacy of model-based approaches. Model-free control offers an alternative paradigm by
leveraging data-driven techniques to directly learn control policies from system interactions,
without explicit knowledge of system dynamics [3]. Reinforcement learning, adaptive
control, and other model-free techniques have garnered significant attention for their ability
to tackle complex control tasks in diverse domains such as robotics, autonomous vehicles,
and process control [4].

In parallel, flatness control has emerged as a powerful methodology for addressing the
trajectory tracking and disturbance rejection challenges inherent in nonlinear systems [5].
The concept of flatness centers around the idea of reparameterizing a nonlinear system
such that its state and input trajectories become trivial, enabling straightforward control
design and analysis. By exploiting the flatness property, controllers can achieve precise
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trajectory tracking and disturbance rejection, even in the presence of nonlinearities and
uncertainties [6].

This chapter provides a comprehensive overview of model-free control and flatness
control, clarifying their fundamental principles, key techniques, and practical applications.
We explore various algorithms and methodologies employed in model-free control, ranging
from reinforcement learning to adaptive control, highlighting their advantages and limita-
tions. Additionally, we delve into the theory and approaches underlying flatness control,
shedding light on differential flatness, input-output flatness, and their implications for
control system design.

Moreover, we discuss the merge of model-free control and flatness control, exploring
the potential synergies between these two approaches and their implications for advancing
control system performance. In the next chapters, we propose to unlock new avenues for
addressing complex control challenges and enhancing system performance by combining the
data-driven adaptability of model-free control with the trajectory optimization capabilities
of flatness control.

In summary, this chapter serves as a comprehensive guide to the state of the art and
introductory concepts of model-free control and flatness control. By understanding the
principles and techniques underlying these paradigms, we can navigate the complexities of
modern control systems and harness the full potential of data-driven and trajectory-based
control methodologies.

2.2 Model-free Control

This section overviews model-free control, focusing on its fundamental principles, key
concepts, literature review, and applications.

2.2.1 What is model-free control ?

Approaches and control techniques can be classified into two categories: control laws
that require prior knowledge of a model of the system to be controlled (referred to as
Model-based Control) and those that do not require model knowledge (referred to as Model-
free Control). Although theoretically, they can provide good performance, implementing
control strategies based on model knowledge is challenging. Indeed, the mathematical
model resulting from modeling generally does not accurately reflect the dynamics of the
system. Furthermore, due to external effects, the system’s dynamics can change, which
can significantly degrade performance.
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We can define model-free control as any type of control that does not require knowledge
of the model of the system to be implemented. Still, rather only general information
about the system is required, including its class, order, inputs, and outputs. Despite its
limitations and the subject of much criticism in the control community, the PID controller,
as a simple-to-implement model-free control, is the most widely used controller in the
industrial world. Finding another model-free control strategy with higher performance
has become one of the concerns of control researchers. In this research, our objective is to
explore new approaches that combine model-free control with other techniques.

2.2.2 Overview of traditional control methods and their limita-

tions.

Starting from the late 1960s, modern control theory has significantly evolved and expanded.
Notable branches, including variable structure control [7], robust control [8], adaptive
control [9], system identification [10], optimal control [11], stochastic theory [12], and
many other control methods have widespread applications in various fields, including
traffic systems, aerospace, and industrial operations. Despite its maturity, modern control
theory still presents numerous theoretical and practical challenges, emphasizing the field’s
continual need for innovation and improvement.

2.2.2.1 Identification and Modeling

Model-based control (MBC) or modern control theory began with introducing Kalman’s
parametric state-space theory in 1960 and applying optimal control techniques [1, 2]. Its
application flourished, especially in aerospace, leveraging precise models readily available
in the field. Modern control theory encompasses approaches for either linear or nonlinear
systems. LQR design [13], Zero-pole assignment [14], and robust control [8] are examples
of linear control system design techniques. On the other hand, controller design techniques
for nonlinear systems frequently include feedback linearization [15], backstepping [16], and
Lyapunov-based designs [17]. Together, these approaches show the common architecture
of MBC systems. When using MBC theory in practice, the first step is to model or identify
the plant. Then, using the certainty equivalency principle, controller design is based on
the obtained plant model, assuming that the plant model accurately represents the actual
system. Modeling and plant identification are therefore crucial elements of MBC theory.

In order to model a plant from first principles, parameters must be calibrated using
measured data, either online or offline. Using identification theory, one can create a plant
model within a model set that either fully captures the true system or comes close to it [10].
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Regardless of whether modeling is conducted through first principles or data identification,
it inherently involves approximating the true system, inevitably incurring some error
[18]. Unmodeled dynamics are invariably present in the modeling process, contributing to
potential inaccuracies in closed-loop control systems designed using model-based control
(MBC) approaches [19].

Efforts have been directed towards enhancing robustness against model errors while
retaining the advantages of MBC design. Robust control approach has explored different
ways to describe errors of the model in closed-loop system configurations, including
additive and multiplicative descriptions, as well as assumptions regarding modeling errors
or noises. Nevertheless,the uncertainty characterizations utilized in robust theory design
techniques often do not align with those derived from physical-mathematical modeling
and identification techniques [10].

Challenges persist in establishing a perfect control theory, primarily due to the inherent
trade-off between unmodeled dynamics and robustness. Achieving high accuracy in plant
modeling requires significant effort and cost, and there is no efficient means of producing
an accurate model. Additionally, addressing complexities such as parameter variations
or structural changes over time poses further challenges. High-order system dynamics
may necessitate controller order reduction for practical implementation, highlighting the
paradox of striving for accuracy in modeling only to simplify the model for control design
[19].

2.2.2.2 Model-based control design

The principle of certainty equivalency, a cornerstone of model-based control (MBC) theory,
assumes that controllers are effective only if designed based on a plant model within the
assumed set. Deviations from this set cause poor performances and system instability due
to the sensitivity of closed-loop systems to even minor modeling errors [20].

Even with an accurate model, theoretical analyses covering stability, convergence, and
robustness may yield limited insights if there are unfounded presumptions about the
system. The MBC theory’s architecture, illustrated in Fig. 2.1, underscores the system
model’s central role and assumptions in controller design and system analysis. However, a
discrepancy persists between the model constructed based on assumptions and the actual
plant, potentially undermining the effectiveness of MBC approaches if overlooked during
design and analysis.

Nonlinear control systems design methods such as Lyapunov-based approaches, back-
stepping, and feedback linearization rely heavily on accurate plant models. However,
the unmodeled dynamics’ existence uncertainty can undermine the effectiveness of these
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Figure 2.1: Architecture of MBC theory

methods. Inaccuracies in the model’s structure and dynamic equations can significantly
impact system performance since controllers incorporate these details [21]. The significant
disparity between the elegant theories of model-based control (MBC) and practical imple-
mentation poses a major challenge, leading to various issues in real-world applications.
When the model is unavailable, or its assumptions are invalid, it becomes challenging
to make significant conclusions. The reliance of MBC on the model underscores its
characterization as a "model theory" rather than solely a control theory to some extent.

2.2.2.3 Model-free control design

This section provides an introduction to "intelligent" PID controllers (iPIDs), which are a
counterpart to "model-free control" in a unified manner, considering recent advances [22].
The approach integrates basic differential algebra with outdated analytical techniques. A
new online parameter estimation method simplifies identification methods. The significance
of iPIDs, particularly iP, is highlighted in dealing with friction. The prevalence of classic
PID controllers in industry and their challenges in complex tuning situations are attributed
to their connection with iPIDs, as demonstrated through elementary sampling. Chapter
4.1 presents a detailed mathematical explanation of the approach.

Let’s review some key theoretical concepts underlying the model-free control approach.
Our focus is on systems that have a single control variable u and a single output variable
y for simplicity’s sake. Instead of relying on a complex mathematical model, we adopt an
ultra-local model represented in Fig 2.2 as:

y(ν) = F + αu (2.1)

where, F is updated regularly and encompasses both the various potential disturbances
and the unappreciated plant parts despite requiring any differentiation, α is constant, and
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Figure 2.2: Architecture of MFC theory

u represents the input control signal. The estimation:

• requires only a brief period of time.

• is characterized by algebraic equations that incorporate low-pass filters such as
repeated time integrals.

• is robust to appropriately significant noises.

The determined input-output data of the controlled plant is the only factor that
influences the controller design in the MFC methodology. Fig. 2.1 illustrates the MFC
methodology’s architecture. One of this system’s features is that it solely uses the
measurement of I/O data from the closed-loop systems for both control system analysis
and MFC controller design. The plant model vanishes and loses its ability to control the
procedure. The closed-loop control system’s measurement of I/O data serves as both a
standard for control system performance and the origin of controlled problems. More
details will be discussed in Chapter 2.

2.2.3 Model-free control applications

With the advancement of technology and information science, industries such as chemical,
metallurgical, electronics, machinery, transportation, and logistics have experienced signif-
icant transformations. Those sectors operate on a large scale with complex production
technologies and equipment, making modeling processes employing traditional rules or
identification methods increasingly challenging. Consequently, conventional model-based
control (MBC) approaches have become ineffective in addressing control problems in
such industries. Moreover, huge quantities of data are continuously generated by modern
industrial processes, and this data contains important details about the states of the
equipment and the operations of the processes. Leveraging this data, both online and
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offline, for controller design, state prediction, performance evaluation, decision-making,
and fault diagnosis becomes crucial, especially without having precise process models.
Thus, the development of model-free control theory (MFC) has emerged as a pressing
issue in both theory and application domains.

The term "Model-free" has recently gained traction in the control community. While
several MFC methods exist, they are often referred to by various identities such as data-
driven control, modelless control, data-based control, iterative feedback tuning (IFT)[3],
virtual reference feedback tuning (VRFT)[23], active disturbance rejection (ADRC) [24]
and iterative learning control (ILC)[25]. Although these terms are used interchangeably,
there are subtle differences between them.

Several publications in a wide variety of fields have demonstrated the efficiency and
simplicity of MFC approach, we will mention here the most intersting ones.

Among the first tests of MFC was the DC-DC converter system [26]. MFC have been
applied to Quadrotor Vehicle Quadrotor Vehicle by Younes [27]. Application reported
by Frédéric Lafont includes information on a concrete greenhouse and comparisons with
Boolean controllers[28]. A proposed algorithm were introduced based on an integrated
structure between the Nonlinear Integral-Backstepping technique (NIB) and the MFC in
[29] for a Quadrotor UAV. MFC technique has been also introduced in medical field to
solve the problem of regulating glycemia of Type-1 Diabetes(TlD) [30] and the problem
of immune therapy [31]. A novel cascade model free adaptive control method (MFAC)
with an intelligent PID (i-PID) algorithm is proposed for the attitude adjustment of a
multi-input multi-output (MIMO) quadrotor aircraft [32].In order to control the attitude
and position of a quadrotor whose model includes parameter variations, uncertainties, and
external disturbances, Haoping developed a model-free-based terminal sliding-mode control
(MFTSMC) strategy. This method combines a sliding-mode technique with a model-free
control approach, allowing for the elimination of tracking error in a finite amount of time
[33]. Xinyi Zhang considers a model-free based neural network control with time-delay
estimation (TDE-MFNNC) for lower extremity exoskeleton [34]. Raul-Cristian proposes a
hybrid controller that consists of a second order data–driven Model–Free Control (MFC),
and a Takagi-Sugeno Fuzzy (TSF) logic controller for nonlinear Multi Input–Multi Output
(MIMO) twin rotor aerodynamic systems (TRASs) [35]. In [36] Mircea-Bogdan presents a
novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems
by the combination of iterative learning control (ILC) and primitives where the optimal
trajectory tracking solution is obtained in terms of previously learned solutions to simple
tasks called primitives. Kaihui Zhao suggests a robust model-free nonsingular terminal
sliding-mode control (MFNTSMC) algorithm based on the ultra-local model to reduce
the influence of permanent magnet (PM) demagnetization for PM synchronous motors
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Figure 2.3: The number of annual publications related to MFC since 2009

(PMSMs) [37]. In [38], model-free fractional-order nonsingular fast terminal sliding mode
control (MFF-TSM) based on time delay estimation (TDE) is proposed for the lower-limb
robotic exoskeleton in the presence of uncertainties and external disturbance. Ghazally
I.Y comprises the model-free based intelligent PID controller, the fuzzy logic controller,
the time-delay estimation, and the particle swarm optimization to control the vibration of
an active vehicle suspension systems [39]. Recently, Fliess and Cédric introduced MFC as
a Service in the industrial internet of Things and machine learning [40, 41]. Figure. 2.3
shows the number of annual publications related to MFC since 2009.

This thesis introduces and validates the Model-free approach to variable speed wind
turbine in Chapter 3.

2.3 Flatness Control

This section presents the key point of flatness control lies in its ability to ensure that a
dynamic system exhibits flat outputs. Flatness control aims to manipulate a system’s
inputs in such a way that the outputs become simple functions of a few "flat" variables.
These flat outputs essentially capture all the relevant information about the system’s
behavior. This approach offers advantages in terms of simplifying control design, facilitating
trajectory planning, and enhancing robustness to disturbances.

2.3.1 Fundamentals of Flatness

The concept of flatness emerged from the need to address the challenges posed by nonlinear
systems in control engineering. Traditional control techniques struggled with the complexity
of nonlinear dynamics, motivating researchers to seek alternative approaches. In the 1980s
and early 1990s, researchers were seeking ways to simplify the control of nonlinear systems.
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In 1995, a group of researchers published a seminal paper in the International Journal
of Control titled "Flatness and Defect of Nonlinear Systems: Introductory Theory and
Examples," exploring the concept of "flatness" as a means to achieve this goal. The paper
laid out the basic principles of flatness control and provided illustrative examples [5] and
marked a significant milestone in the formalization of flatness theory. Another important
paper, published in 1999 in the IEEE Transactions on Automatic Control, titled "A
Lie-Bäcklund approach to equivalence and flatness of nonlinear systems," further advanced
the theory by introducing Lie-Bäcklund transformations for analyzing the equivalence and
flatness of nonlinear systems [42].

Flatness control operates on the principle of transforming a nonlinear dynamic system
into a form where the outputs are described by flat variables. These flat outputs are chosen
to simplify control design and trajectory planning. By exploiting the flatness property,
control engineers can design controllers that directly manipulate these flat outputs, thereby
simplifying control synthesis and trajectory tracking tasks.

2.3.2 Mathematical Formulation

By introducing the concepts of flatness and linearizing output, a novel perspective on the
complete linearization issue through dynamic feedback is put forth [15]. This section aims
to demonstrate how beneficial such a viewpoint can be for movement tracking [5, 42, 43, 44].
The late 1980s saw the invention of flatness-based control and differential flatness theory.
Since then, these concepts have continuously progressed, offering effective answers to
complex control and state estimation problems [45].

A differentially flat system is defined as follows: Since f is a smooth vector field, a
system ẋ = f(x, u) with state vector x ∈ Rn and input vector u ∈ Rm is differentially flat
if there is a vector y ∈ Rm with the form:

y = h
(
x, u, u̇, . . . , u(r)

)
(2.2)

That is,
x = ϕ

(
y, ẏ, . . . , y(q)

)
u = α

(
y, ẏ, . . . , y(q)

) (2.3)

as smooth functions h, ϕ, and α. Accordingly, the m algebraic variables yi, i =

1, 2, . . . ,m describe the new system. y = h
(
x, u, u̇, . . . , u(r)

)
was the definition of the flat

output provided above. Zero-flat systems are those in which the flat output is solely a
function of the state vector x. Nevertheless, it could be necessary to represent the flat
output as a function of the control u and its derivatives in addition to the state vector x.
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This necessity arises in more complex scenarios, such as when dealing with dynamic
feedback linearization or applying dynamic extension techniques. In such cases, the
system’s state vector is extended by including the control inputs and their derivatives as
additional state variables. This extension allows for a more comprehensive and flexible
description of the system, accommodating the intricacies of control and state estimation
problems. By incorporating these elements, we ensure that the flat output adequately
captures the dynamic behavior of the system, facilitating more effective control strategies
and solutions.

Equation (2.3) demonstrates that the flat output and its derivatives can be used to
express the state vector of the differentially flat system and its control inputs. In the
study of differential flatness, the fundamental question is whether there exists a function
y = h() given by y = h

(
x, u, u̇, . . . , u(r)

)
, such that the state vector of the system x and

the control input u can be stated as functions of y and of its derivatives, as in Eq. (2.3).
This is given by the differential equations that describe the nonlinear system dynamics
ẋ = f(x, u).

2.3.3 Literature review of Flatness applications

Flatness control is a versatile and effective technique with applications spanning diverse
domains, showcasing its broad applicability in optimizing system performance and achieving
precise control objectives. Its utility is evident in stabilizing and maneuvering quadrotor
UAVs for precise trajectory tracking, allowing these unmanned aerial vehicles to navigate
through complex environments with ease [46]. Additionally, it enhances the navigation
capabilities of autonomous underwater vehicles, enabling them to explore underwater
terrain accurately and efficiently [47]. In industrial settings, flatness control facilitates
precise manipulation of robotic arms [48], ensuring accurate assembly and manufacturing
processes [49]. Moreover, it plays a pivotal role in optimizing wind turbine energy capture,
maximizing power generation efficiency while minimizing structural loads [50]. In hybrid
energy systems, such as those combining fuel cells and renewable sources, flatness control
manages power flow to maximize energy output and system stability [51]. It also controls
electric vehicle powertrains, optimizing power distribution for enhanced performance
and range [52]. In aerospace applications, flatness control maintains satellite orientation
in space missions, ensuring precise positioning and stabilization [53]. Additionally, it
regulates industrial processes like chemical reactors and distillation columns, optimizing
production efficiency and quality [54]. In aircraft flight dynamics, flatness control enables
autonomous navigation and altitude control, ensuring safe and efficient flight operations [55].
Furthermore, it finds applications in smart grid energy management [52], HVAC systems
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[54], biomedical systems[56], water treatment plants [57], renewable energy microgrids [58],
and traffic management systems [59], contributing to improved efficiency, reliability, and
sustainability across various industries and applications.

2.4 Combination of Flatness with other control strate-

gies

Combining control techniques can indeed lead to improved system performance and robust-
ness. Here are a few research papers that demonstrate the integration of flatness/model-free
control approaches with other control techniques.

The integration of flatness control with various other control techniques offers significant
added value across different applications. In traditional control methods, such as adaptive
[60] control and proportional-derivative-integral (PID) control [61], combining them with
flatness control enhances robustness and adaptability, ensuring precise motion control
despite uncertainties. Additionally, integrating flatness control with fuzzy logic [62] or
backstepping control [63] enables robust and adaptive regulation of system dynamics,
particularly in complex systems like DC motor speed control or hydraulic servo systems.
Moreover, combining flatness control with modern techniques like reinforcement learning
[64] or model predictive control [65, 66] enhances system performance and autonomy.
Reinforcement learning enables the system to learn optimal control policies, while model
predictive control anticipates future behavior, both ensuring efficient trajectory tracking
and navigation, as seen in applications such as autonomous vehicles or wind turbines.
Furthermore, incorporating flatness control with fault detection techniques like sliding
mode observers[67] improves system reliability by enabling real-time fault detection and
isolation in electromechanical systems. Finally, integrating flatness control with deep
reinforcement learning or artificial neural networks [68, 69] enhances adaptability and
efficiency, maximizing performance in tasks such as solar tracking or quadcopter trajectory
tracking. In essence, these combinations leverage the strengths of each method to achieve
superior control performance, stability, and robustness across diverse applications.

This thesis significantly contributes by showcasing the innovative integration of the
differential flatness approach with the model-free control technique. Combining flatness-
based control with model-free control (MFC) offers a synergistic approach that leverages
the structured framework of flatness-based control for system modeling and analysis while
harnessing the adaptability and resilience of MFC to uncertainties and disturbances. This
integration enhances adaptability, robustness, and performance benefits, as flatness-based
control ensures precise system output regulation and decoupling of nonlinear dynamics,
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while MFC optimizes control actions in real-time based on online observations. By merging
these methodologies, control strategies become more versatile, future-proofed, and capable
of achieving superior performance in dynamic and uncertain environments, making them
particularly valuable for applications such as wind energy conversion systems. This is
deeply discussed in Chapter 4.
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Chapter 3

Algebraic and Derivative Estimation

3.1 Inroduction

In the field of system identification, accurate parameter estimation is crucial for interpret-
ing the dynamics of systems and establishing efficient control strategies. Conventional
approaches frequently depend on iterative numerical optimization procedures, which
can be computationally demanding and susceptible to noise. Algebraic estimating ap-
proaches present an attractive choice as they offer both rapidity and precision in parameter
estimation.

In 2004, algebraic estimation techniques were introduced which led to a significant
change in the field of system identification. Their approach, centered around polynomial
modeling, offered an original take on the subject. Instead of using iterative optimization
methods, these techniques approach the parameter identification problem as an algebraic
one, allowing for direct estimation of system coefficients using input-output data. This
method is especially beneficial for linear systems, as the connection between inputs and
outputs can be expressed through polynomial functions [70].

Mboup and Join extended the algebraic framework to compute individual estimators
for each coefficient in the polynomial model. Derivative estimation is a technique that
overcomes the difficulties associated with simultaneously estimating values, such as the issue
of calculating inverses of poorly conditioned matrices. These issues can lead to inaccurate
results, especially when there is interference. The proposed derivative estimation computes
the derivatives of a system by analyzing each coefficient separately. This approach
guarantees that the estimations obtained are robust and reliable [71].

Based on Mboup, Join, and Fliess’ approach, the following research has advanced
derivative estimation in the algebraic context. According to Mboup, Join, and Fliess [72],
sliding-window estimation methods adapt the estimation window size to system dynamics.
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This dynamic technique makes derivative estimate algorithms more resilient, especially
when system parameters change. Recent advances in machine learning and optimization
have integrated algebraic and data-driven methods to improve complex system parameter
identification accuracy and efficiency.

This chapter delves into innovative state observation methods within the scope of
model-free control. Specifically, it introduces derivative and algebraic estimators for
state observation to the ultra-local model implementation. The estimation process utilizes
Taylor’s expansion coefficients of any order, providing a framework for parameter estimation.
The proposed approach is discretely implemented using operational mathematical concepts
and FIR filters.

The study conducts a comparative analysis between derivative and algebraic estimators,
examining their performance in state observation. Tests are conducted on a DC motor’s
position trajectory control strategy under disturbances and uncertainty. The ultra-local
model employed in this study solely relies on system input and output measurements,
making it independent of initial conditions. Furthermore, the proposed design aims to
minimize nonlinearities and enhance Coulomb friction robustness, as demonstrated through
empirical analysis.

3.2 Derivative Estimation

The identification of the parameters of a constricted Taylor expansion of random order
is the basis of the derivative estimation approach. To accomplish this, it is necessary to
suppose that the output signal x̃(t) represents an analytic variable and may therefore be
represented using Taylor series that is truncated at t = 0.

x̃(t) ≈ x(t) =
n∑

j=0

x(j)(0)

j!
tj (3.1)

Identifying these coefficients requires math procedures in a domain similar to the Laplace
transform. After converting the expression again to the time domain, the estimation
filters are discretized into sliding-window finite impulse response filters for applications in
real-time.

A more comprehensive formulation for estimators of arbitrary order can be found
in the works [72, 73]. Throughout this thesis, we will offer a detailed explanation of
the development of these estimators, aiming to clarify the fundamental concepts of the
algebraic technique.
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3.2.1 1st Order estimation

This section presents the filtering and derivation of first-order estimation:

3.2.1.1 Filtering of first order estimation

Let’s delve into the initial estimation of the noisy output signal x̃(t) near t = 0:

x(t) = a0 + a1t (3.2)

The transformation to the Laplace form results in the operational form of Equation
(4.2) being expressed as follows:

X(s) =
a0
s

+
a1
s2

(3.3)

By factoring every component of the equation by s2, we obtain:

s2X(s) = sa0 + a1 (3.4)

This allows us to separate and eliminate a1 by multiplying both sides with the differen-
tiating operator d

ds
:

2sX(s) + s2
d

ds
X(s) = a0 (3.5)

To avoid time derivatives and filtering, the multiplication of both sides by 1
s3

is
performed. Each factor involving X(s) is integrated at least one time:

2
1

s2
X(s) +

1

s

d

ds
X(s) =

a0
s3

(3.6)

Transforming the right side of the expression back to the time domain:

d

sα
, α ≥ 1, d ∈ D←→ d

tα−1

(α− 1)!
(3.7)

By utilizing the Cauchy equation for iterated integration [74], we can derive an
expression in closed form to feed the multiplier 1

sα
dn

dsn
in just one integral. This is possible

because differentiation of X(s) according to s corresponds to factorization by −t in the
time domain, and left factorization X(s) by 1

sα
, α ≥ 1 corresponds to repeated integrals.

1

sα
dn

dsn
X(s)←→ (−1)n

(α− 1)!

∫ t

0

(t− τ)α−1τnx(τ)dτ (3.8)
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By applying the above relation, Equation (2.6) can be converted again into the time
domain:

2

∫ t

0

(t− τ)x(τ)dτ −
∫ t

0

τx(τ)dτ = a0
t2

2!
(3.9)

By restructuring the formula, we may identify the factor a0 as:

a0 =
2

t2

∫ t

0

(2t− 3τ)x(τ)dτ (3.10)

By replacing the function x(t) with x̃(t), Equation (4.10) shall be viewed as being a
first-order filtered estimation of the signal. This form of approximation is particularly
useful for estimating the signal over short time intervals when t > 0. Additional information
regarding the digital implementation of sliding-window estimators will be presented in the
following section.

3.2.1.2 Derivation of first-order estimation

Let’s analyze the first estimation of the output noisy signal x̃(t) at t = 0, as previously
described in s domain:

X(s) =
a0
s

+
a1
s2

(3.11)

Factoring in each side by s, we acquire:

sX(s) = a0 +
a1
s

(3.12)

This allows us to isolate a0, which can be removed by factoring with the differentiation
operation d

ds
:

X(s) + s
d

ds
X(s) = −a1

s2
(3.13)

Further factoring by 1
s2

aims to eradicate filtering and time derivativion, with each
element involving X(s) being integrated once:

X(s)

s2
+

1

s

d

ds
X(s) = −a1

s4
(3.14)

By utilizing the established principles of Cauchy formula and Laplace Transformation
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for repetitive integration, we derive:∫ t

0

(t− τ)x(τ)dτ −
∫ t

0

τx(τ)dτ = −a1
t3

3!
(3.15)

By restructuring the equation, we can find the first estimate of the derivative:

a1 = −
6

t3

∫ t

0

(t− 2τ)x(τ)dτ (3.16)

3.2.2 2nd Order estimation

This section presents the filtering and derivation of second-order estimation:

3.2.2.1 Filtering of second order estimation

Let us examine the second-order estimation of the noisy signal x̃(t) at t = 0:

x(t) = a0 + a1t+ a2
t2

2
(3.17)

Employing the Laplace Transform:

X(s) =
a0
s

+
a1
s2

+
a2
s3

(3.18)

Factoring by s3 to isolate a2 :

s3X(s) = s2a0 + sa1 + a2 (3.19)

Employing d
ds

to eliminate a2:

3s2X(s) + s3
d

ds
X(s) = 2sa0 + a1 (3.20)

Further application of d
ds

to eliminate a1:

6sX(s) + 6s2
d

ds
X(s) + s3

d2

ds2
X(s) = 2a0 (3.21)

Factoring by 1
s4

to eliminate filtering and time derivatives:

6
1

s3
X(s) + 6

1

s2
d

ds
X(s) +

1

s

d2

ds2
X(s) = 2a0

1

s4
(3.22)

Returning to time domain transformation:
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3

∫ t

0

(t− τ)2x(τ)dτ − 6

∫ t

0

(t− τ)x(τ)dτ +

∫ t

0

τ 2x(τ)dτ = 2a0
t3

3!
(3.23)

The second-order filter is acquired by arranging terms:

a0 =
3

t3

∫ t

0

(
3t2 − 12tτ + 10τ 2

)
x(τ)dτ (3.24)

3.2.2.2 Derivation of first-order estimation

Let’s explore the second-order estimation of the noisy signal x̃(t) which has already been
described in s domain:

X(s) =
a0
s

+
a1
s2

+
a2
s3

(3.25)

Factoring by s3 to isolate a2 :

s3X(s) = s2a0 + sa1 + a2 (3.26)

Utilizing differentiation with relative to s to exlude a2:

3s2X(s) + s3
d

ds
X(s) = 2sa0 + a1 (3.27)

Factoring by 1
s

to isolate a0:

3sX(s) + s2
d

ds
X(s) = 2a0 +

a1
s

(3.28)

Further differentiation relative to s, aiming to eliminate a0:

3X(s) + 5s
d

ds
X(s) + s2

d2

ds2
X(s) = −a1

1

s2
(3.29)

Factoring by 1
s3

:

3
1

s3
X(s) + 5

1

s2
d

ds
X(s) +

1

s

d2

ds2
X(s) = −a1

1

s5
(3.30)

Returning to time domain transformation:

3

2

∫ t

0

(t− τ)2x(τ)dτ − 5

∫ t

0

(t− τ)τx(τ)dτ +

∫ t

0

τ 2x(τ)dτ = −a1
t4

4!
(3.31)

By restructuring the equation, we can find the first estimate of the derivative a1:
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a1 = −
12

t4

∫ t

0

(
3t2 − 16tτ + 15τ 2

)
x(τ)dτ (3.32)

3.2.2.3 Derivation of second-order estimation

Let’s explore the second-order estimation of the noisy signal x̃(t) which has already been
described in s domain:

X(s) =
a0
s

+
a1
s2

+
a2
s3

(3.33)

Factoring by s2 to isolate a1 :

s2X(s) = sa0 + a1 +
a2
s

(3.34)

Applying the differential operator d
ds

to eliminate a1 gives:

2sX(s) + s2
d

ds
X(s) = a0 −

a2
s2

(3.35)

Further application of the differential operator d
ds

to eliminate a0 results in:

2X(s) + 4s
d

ds
X(s) + s2

d2

ds2
X(s) = 2a2

1

s3
(3.36)

Using 1
s3

as a scaling factor, we get:

2
1

s3
X(s) + 4

1

s2
d

ds
X(s) +

1

s

d2

ds2
X(s) = 2a2

1

s6
(3.37)

Returning to time domain transformation:∫ t

0

(t− τ)2x(τ)dτ − 4

∫ t

0

(t− τ)τx(τ)dτ +

∫ t

0

τ 2x(τ)dτ = 2a2
t5

5!
(3.38)

restructuring the equation provides the second-order derivative’s estimate:

a2 = ẍ(t) =
60

t5

∫ t

0

(
t2 − 6tτ + 6τ 2

)
x(τ)dτ (3.39)

After a series of mathematical operations, we’ve derived expressions for estimating
the second-order derivatives of a noisy signal x̃(t) around t = 0. By manipulating the
Laplace Transform representation in the operational domain and performing differential
operations, we obtained equations in terms of a0, a1, and a2, the coefficients of the signal
approximation. These equations were then transformed back to the time domain to obtain
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practical formulas for estimating the second-order derivative ẍ(t). These expressions
involve integrals of the signal x(t) over specific ranges, providing a method to estimate
the curvature of the signal at t = 0. These results can be particularly useful in signal
processing and system identification tasks that will be used in estimating the ultra-local
model.

3.2.3 Implementation of the Derivative Estimator in Discrete

Form

The estimators formulated in the preceding section target the estimation of the j-order
derivative of a given noisy signal x̃(t), which is represented by an n-order Taylor expansion
evaluated at t = 0:

x̃(t) ≃ x(t) =
n∑

j=0

x(j)(0)
tj

j!
(3.40)

The estimations hold true within a limited time frame ϵ. In a broader context, the
j-order derivative estimator, where every component associated with x(t) undergoes at
least one integration, is articulated as follows:

x(j)(t) ≃ x(j)(0) = aj =
k

q(t)

∫ t

0

P̃ (t, τ)x(τ)dτ, 0 < t < ϵ (3.41)

This method can be applied within a short time frame of fixed duration T :

aj =
k

q(T )

∫ T

0

Q̃(T, τ)x(τ)dτ =

∫ T

0

kQ̃(T, τ)

q(T )
x(τ)dτ =

∫ T

0

Q(T, τ)x(τ)dτ (3.42)

The equation presented provides an estimate for the parameter aj = x(j)(0), which is
accurate only at t = 0. It relies on a Taylor series expansion centered at t = 0. While this
estimate is exact for noise-free polynomial input signals, it gradually deviates for arbitrary
signals as time progresses. This deviation arises from assuming that a polynomial near
t can effectively approximate the input signal. It’s crucial to note that this estimator is
non-causal, meaning that to estimate the derivative at t = 0, function values x(t) for t > 0

are necessary. This necessity prompts an approach adjustment to create a causal estimator
at any given time t. Initially, let’s explore the Taylor expansion r(τ) centered at τ = 0

of a random signal r̃(τ). The coefficients of this expansionmay be established using the
estimators discussed afterward:
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r̃(τ) ≃ r(τ) =
n∑

j=0

aj
τ j

j!
⇒ aj =

∫ T

0

Q(T, τ)r(τ)dτ (3.43)

Taking into account the variable transformations, τ ≜ t− δ and x(δ) ≜ r(t− δ) :

x(δ) ≜ r(t− δ) =
n∑

j=0

aj
(t− δ)j

j!
(3.44)

The preceding equation is a Taylor expansion of r̃(τ) near δ = t, as well as a signal
transformation of the variable δ. It’s straightforward to demonstrate that:

x(j)(t) =
dj

dδj
(r(t− δ))

∣∣∣∣
δ=t

= (−1)jaj (3.45)

Rewriting the expression for aj with the changed variable :

aj =

∫ T

0

Q(T, τ)r(τ)dτ =

∫ T

0

Q(T, τ)x(t− τ)dτ (3.46)

The ultimate equation represents a causal estimator computed at a flexible time t,
employing a constant estimation window of duration T :

aj = x(j)(t) = (−1)j
∫ T

0

Q(T, τ)x(t− τ)dτ (3.47)

The digital realization of this estimator entails employing the trapezoidal integration
approach to construct a digital Finite Impulse Response (FIR) filter. This process involves
specifying T = TsN , where T denotes the duration of the estimation window, Ts signifies
a constant sampling interval and (N + 1) represents the total number of samples. By
leveraging this approach, the estimator can be seamlessly integrated into digital systems,
providing accurate derivative estimations within a defined time window:

aj = x(j)(t) ≃ (−1)j
N+1∑
k=1

αkQ (T, τk)x (t− τk) (3.48)

To minimize computational efficiency, the discretization of Q (T, τk) is precomputed.
Simultaneously, after the trapezoidal integration, we consider the coefficients αk:

36



`CHAPTER 3. ALGEBRAIC AND DERIVATIVE ESTIMATION

Q̂αk
(T, τk) =

[
α1Q (T, τ1) α2Q (T, τ2) . . . αN+1Q (T, τN+1)

]
τk = (k − 1)Ts

αk =
Ts

2
, k = 1 or k = N + 1

αk = Ts, k = 2, 3, . . . , N

(3.49)

The vector x̂ (t− τk), housing the latest N + 1 samples, is arranged vertically. With
each sample clock cycle, the entire vector undergoes a shift operation. This process involves
discarding the oldest value while incorporating the most recent value x(t) into the initial
position of the vector. By employing this mechanism, the vector continuously maintains
the most recent samples, facilitating efficient real-time processing of the input signal:

x̂ (t− τk) =


x(t)

x (t− Ts)
...

x (t− TsN)

 (3.50)

Ultimately, at each sample time, the product of Q̂αk
(T, τk) and x̂ (t− τk) yields a

real-time approximation of aj:

aj(t) = x(j)(t) ≃ (−1)j
N+1∑
k=1

αkQ (T, τk)x (t− τk) = (−1)jQ̂αk
(T, τk) x̂ (t− τk) (3.51)

Remark (1). A compromise between accuracy and immunity to noise:

• The choice of the estimation window T plays a crucial role in striking a balance
between immunity to noise and accuracy in derivative estimation.

• Lower T values offer advantages such as faster filter response and improved local
signal modeling.

• Conversely, larger values of T enhance noise immunity and provide better high-
frequency filtering properties.

Remark (2). Impact of window Size on filter response

• Smaller T values contribute to a more agile filter response, allowing it to adapt
quickly to rapid changes in the input signal.
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• This agility is particularly advantageous in scenarios where capturing transient signal
features or responding promptly to signal variations is essential.

Remark (3). Enhanced noise immunity with larger window sizes:

• Larger T values are beneficial for improving noise immunity, as they enable the filter
to effectively suppress high-frequency noise components.

• By encompassing a broader time window, the filter can integrate information from a
more extended temporal range, thereby enhancing its ability to distinguish between
signal and noise.

Remark (4). Numerical precision and sampling frequency

• In addition to window size, numerical precision is a critical concern in derivative
estimation algorithms.

• Increasing the sampling frequency is an alternative approach to enhance precision,
but it may be limited by hardware constraints, particularly if the system is already
operating at maximum frequency.

3.3 Ultra-local model estimation

In systems where the system output y is impacted by the system input u, governed by a
non-linear yet essentially smooth function S, the relationship between these variables is
encapsulated in a differentiation equation, as articulated in Equation (4.52) :

S
(
t, u, u̇, . . . , u(m), y, ẏ, . . . , y(n)

)
= 0 (3.52)

Here, the equation captures the relationship between time t, input signal u, its deriva-
tives up to mth order, output signal y, and its derivatives to the nth order. This formulation
provides a comprehensive view of how the system dynamics evolve over time in response
to input stimuli [71].

When there exists an index i within the range (0, n) for which ∂S
∂y(i)

≠ 0, the absolute
function theorem offers a local simplification, revealing the relationship:

y(i) = S
(
t, u, u̇, ..., u(m), y, ẏ, ..., y(i−1), y(i+1), ..., y(n)

)
(3.53)

This equation unravels the ith derivative of the output y as a function of input and
output derivatives, providing valuable insights into the intricate dynamics governing the
system’s behavior.
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Fliess’s model-free control methodology [75] suggests using an ultra-local model instead
of complex nonlinear models, as shown in Equation (4.53). Equation (4.54) demonstrates
an ultra-local representation that simplifies system behavior:

y(v)(t) = F (t) + βu(t) (3.54)

To optimize transient performance, y(ν) represents the νth-order derivative of the
system output. On the other hand, F summarizes the unmodeled dynamics of the system,
including unknown perturbations, and is constantly updated in real time using algebraic
or derivative-based approaches. The non-physical coefficient β is carefully chosen to match
y(ν) and βu in terms of magnitude and sign, enhancing closed-loop performance through
iterative experimentation.

This simplified representation is an effective approximation of system dynamics over
short time intervals, providing a practical basis for control synthesis and eliminating the
need for complex nonlinear modeling, consequently streamlining gain tuning processes.

In the closed-loop system, Equation (4.54) incorporates an intelligent PID controller,
with F (t) expressed as:

F (t) = y(v)(t)− βu(t) (3.55)

The system control input is formulated as:

u = −F − y
(v)
d + uC

β
(3.56)

Here, y(v)d symbolizes the vth derivative of the output desired trajectory, while uC represents
the causal feedback control input.

Incorporating these equations yields a comprehensive expression for system behavior,
ensuring effective tracking and convergence towards the reference trajectory, as delineated
in Equations (4.57), (4.58), and (4.59).

y(v) = F + β

(
−F − y

(v)
d + uc

β

)
= y

(v)
d − uc (3.57)

Afterwards,
y(v) − y

(v)
d + uc = 0 (3.58)

e(v) + uc = 0 (3.59)

Here, e(v) represents the vth derivative error of the tracking error (e = y − yd). The
control signal uc is selected to ensure asymptotic tracking, where the output approaches
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the desired trajectory as expressed by Equation (4.60),

lim
t→+∞

e(t) = 0 (3.60)

3.3.1 Intelligent PIDs (iPIDs)

The distinction between the intelligent and conventional controllers is inspired by the work
of D’Andréa Novel [76]. The PID control, i.e., u, can be computed based on the error e.
Let’s reformulate the control signal in Equation (4.56) using a conventional PID controller:

u = −
F − ÿd +KP e+KI

∫
e+KDė

β
(3.61)

Here, we set v = 2 in Equation (4.54). By substituting Equation (4.54) into Equation
(4.61), we define the intelligent proportional-integral-derivative controller (iPID) as:

This equation omits F , thereby removing uncertainties and unmodeled plant dynamics.
Equation (4.61) meets tracking requirements through the careful adjustment of gains
KP , KI , KD, resulting in a stable linear differential equation with constant real coefficients.

Introducing various combinations of controller gains in a proportional-integral-derivative
(PID) controller design can result in different types of controllers with unique control
characteristics.

• When KP ̸= 0, KI = 0, KD = 0, it results in an intelligent Proportional (iP) con-
troller.

• When KP ̸= 0, KI = 0, KD ̸= 0, it leads to an intelligent Proportional-Derivative
(iPD) controller.

• When KP ̸= 0, KI ̸= 0, KD ̸= 0, it forms an intelligent Proportional-Integral-Derivative
(iPID) controller.

Each of these configurations provides distinct control characteristics that are tailored
to meet specific system requirements.

3.3.2 Online estimation of the ultra-local model through algebraic

estimation

The process of identifying the parameter F which is the basis of the ultra-local model entails
employing algebraic estimation techniques, a methodology outlined by [77]. Alternatively,
numerical differentiation, which involves estimating derivatives, serves as another viable
approach outlined in Section 4.2.1.
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Let’s investigate the implications of Equation (4.54) based on classical operational
calculus principles. Here, we replace the parameter F with Fapprox(Alg)

, an approximation
assumed to be constant over the interval [t, t+ T ]. To calculate Fapprox(Alg)

, we follow the
previous systematic approach.

Setting v = 1 in Equation (4.54), we initiate the process by performing a Laplace
transformation:

sY (s)− y(0) =
Fapprox(Alg)

s
+ βU(s) (3.62)

Next, we proceed to differentiate Equation (4.62) with respect to s to exclude y(0):

Y (s)− s
d

ds
Y (s) = −s−2Fapprox(Alg)

+ β
d

ds
U(s) (3.63)

To further refine our analysis, we factor Equation (4.63) by 1
s2

, aiming to integrate
every coefficient once. This action efficiently filters and removes time derivatives, resulting
in a low-pass filter that effectively reduces noise:

1

s2
Y (s) +

1

s

d

ds
Y (s) = − 1

s−4
Fapprox (Alg) + β

1

s3
d

ds
U(s) (3.64)

After careful observation, we discover that differentiating Y (s) in the operational
domain corresponds to factorization by (−tà in the time domain. Furthermore, the left
factorization of Y (s) by 1

sα
, α ≥ 1 is consistent with looping integrals. To obtain a

closed-form equation, we employ the Cauchy formula for occurring again integration of
the operator 1

sα
dn

dsn
, which results in only one integral:

1

sα
dn

dsn
Y (s)←→ (−1)n

(α− 1)!

∫ t

0

(t− τ)α−1τny(τ)dτ (3.65)

Finally, after a series of mathematical manipulations, we derive the approximated time
domain equation (4.64) as:

Fapprox(Alg) =
−6
t3

∫ t

0

(t− 2τ)y(τ)dτ − 6β

t3

∫ t

0

τ(t− τ)u(τ)dτ (3.66)

These sequential steps outline a systematic approach to estimating the parameter
Fapprox(Alg)

using algebraic techniques, allowing for effective analysis and control of dynamic
systems.
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3.3.3 Online estimation of the ultra-local model through derivative

estimation

The alternative method to F parameter estimation in Equation (4.54) involves identifying
it through the derivative estimation of the noisy output signal y(v) in Equation (4.55).

Recall that Equation (4.55) represents the expression for F (t), where F is computed as
the difference between the v-th derivative of the output signal y and the control input u.

Choosing v = 1 yields:

F (t) = ẏ(t)− βu(t) (3.67)

As discussed in Section 4.2.1.2, the first-order derivative estimation can be obtained
through:

ẏ = a1 = −
6

t3

∫ t

0

(t− 2τ)y(τ)dτ (3.68)

Thus, the function representing dynamics Fapprox(Der)
can be determined in real-time

using the first-order derivative estimator, as shown in Equation (4.68):

Fapprox(Der)
= ẏ − βu(t) = − 6

t3

∫ t

0

((t− 2τ)y(τ)− βu(t))dτ (3.69)

Remark. It’s worth noting that if the designer opts to work with a second-order derivative,
the ultra model can be estimated following a similar procedure as detailed in Section
4.2.2.3.

3.3.4 Discrete implementation of the ultra-local model through

Derivative estimation

The procedures outlined in Eqs (4.66) and (4.69) for estimating the function F will be
translated into digital implementations employing an FIR filter given in Section 4.2.3. For
alternative implementations utilizing ALIEN filters, refer to [78].

Consider ỹ(t) from Equation (4.67), approximated for ϵ with j = 1 in Equation (4.41):

ẏ ≃ ẏ(0) = a1 =
k

q(t)

∫ t

0

Q̃(t, τ)y(τ)dτ ; 0 < t < ϵ (3.70)

For a short time fixed-length window T :
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ẏ = a1 =
k

q(T )

∫ T

0

Q̃(T, τ)y(τ)dτ =

∫ T

0

kQ̃(T, τ)

q(T )
y(τ)dτ =

∫ T

0

Q(T, τ)x(τ)dτ (3.71)

The description estimates ẏ = a1 at t = 0.

1. Suppose Taylor expansion y(τ) close to τ = 0 for ỹ(τ) :

ỹ(τ) ≃ y(τ) =
n∑

j=0

a1τ ⇒ a1 =

∫ T

0

Q(T, τ)y(τ)dτ (3.72)

2. By transforming variables τ ≜ t− θ and y(θ) ≜ x(t− θ):

y(θ) ≜ x(t− θ) =
n∑

j=0

a1(t− θ) (3.73)

Consider this as a Taylor expansion x̃(τ) for θ = t with an inverse signal for the
parameter θ:

ẏ(t) =
d

dθ
(x(t− θ))

∣∣∣∣
θ=t

= (−1)a1 (3.74)

3. Again by transforming variables a1:

a1 =

∫ T

0

Q(T, τ)x(τ)dτ =

∫ T

0

Q(T, τ)y(t− τ)dτ (3.75)

Thus,

ẏ(t) = a1 = (−1)
∫ T

0

Q(T, τ)y(t− τ)dτ (3.76)

Applying Equation (4.48) results in :

ẏ(t) = a1 ≃ (−1)
N+1∑
k=1

αkQ (T, τk) y (t− τk) (3.77)

The representation of Q (T, τk) in discrete form is theoretically estimated to decrease
computational expenses, incorporating coefficients (αk) obtained through trapezoidal
integration in Eqs (4.49) and (4.50).

Finally, the real-time update estimation of ẏ is provided by:
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ẏ(t) = a1(t) ≃ (−1)
N+1∑
k=1

αkQ (T, τk) y (t− τk) = (−1)Q̂αk
(T, τk) ŷ (t− τk) (3.78)

Ultimately, following the estimation of ẏ and referencing equation (4.69), the previous
control input is employed to observe the present parameter F , which can be resolved using
this expression:

F̂k(DER)
= ẏk − βuk−1 (3.79)

3.3.5 Discrete implementation of the ultra-local model through

Algebraic estimation

Returning to the estimation method of F as shown in (4.66), An FIR filter is obviously
appropriate for digital implementations. We enhanced the previous technique and incorpo-
rated the constrained fixed-length window T in a reverse integration approach to enable a
viable online implementation of the estimator discussed in section 4.3.4.

The current instance, F is viewed as an independent temporal constant, which is
unaffected by the signal during reverse integration. Following additional variable manipu-
lations, equation (4.80) emerges as the definitive formulation for the algebraic estimator of
F(Alg).

Changing a few factors, the representation of F in (4.66) becomes the following:

F =
−6
T 3

∫ T

0

(t− 2τ)y(t− τ)dτ − 6β

T 3

∫ T

0

τ(T − τ)u(t− τ)dτ (3.80)

A good variable selection entails storing the obtained discrete filter coefficients in a
vector while accounting for trapezoidal integration coefficients. order to stay out of an
algebraic loop, we use the prior value of FAlg to estimate the present control input. As a
result, the determination of FAlg remains constant, posing no additional challenge in this
approach, despite the approximation being made within a short sliding window T .

3.4 Algebraic Derivative Estimation for Position Con-

trol of a DC Motor

DC motors, despite their higher operating costs, are widely employed in industry sectors
for their remarkable capacity for speed control [79]. Studies on DC motor position control
have led to various techniques, adaptable across a wide range to track different load inputs.
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Previous research has covered diverse applications such as motion control of disks [80],
overhead crane control [81], liquid pumps [82], wheeled mobile manipulators [83], and
positioning tables [84], considering Coulomb frictions and unmodeled dynamics. Recently,
interest has grown in control techniques leveraging DC motors’ high precision and speed.
Time response is crucial for efficiency, especially as electromechanical applications shrink.
Various control techniques, including integration of discrete-time algorithms [85], sliding
mode control [86], classical control with adaptive approaches [87, 88], and adaptive control
using bacterial foraging algorithms [89] has been investigated. Researchers have studied
disturbance observer-based control [90] and optimization strategies using LQG controllers
[91].

This section introduces a model-free control technique for DC motor position tracking,
utilizing an ultra-local approach along with the simultaneous use of derivative and algebraic
estimators. The methodology relies on FIR filters for effective implementation. Additionally,
a straightforward and efficient tuning algorithm for the ultralocal model parameter is
presented, along with a comparative study.

3.4.1 DC motor modeling

The linear model utilized to describe the behavior of the DC motor encompasses consider-
ations for Coulomb friction effects and unstable disturbance input, as discussed in [92].
The underlying dynamic equation for this model, which is based on Newton’s second law,
is as follows:

kV = J
¨̂
θm + v

˙̂
θm + Γ̂c(

˙̂
θm) (3.81)

The coefficients are as follows:

• v: Signifies the viscous friction coefficient in N ·m · s.

• V : Represents the input voltage supplied to the DC motor system as a control input
signal.

• J : Denotes the inertia of the motor’s gear in units of kg ·m2.

• k: Stands for the electromechanical factor, measured in N ·m/V.

• Γ̂c: Represents the torque resulting from unknown friction affecting the motor’s
dynamics.

The non-linear component of friction, perceived as a disturbance, is described by the
following equation:
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Table 3.1: DC motor characteristics

Variable Value
k (N ·m/V) 0.21
J (kg·m2) 6.87× 10−5

v (N ·m · s) 1.041× 10−3

n 50

Γ̂c = Γ̂Coulsign(
˙̂
θm) (3.82)

Γ̂Coul represents the static friction value exceeding the rotational velocity required to
initiate rotation around the vertical axis. The terms ¨̂

θm, ˙̂
θm, and ˙̂

θm denote the angular
acceleration (rad/s2), angular velocity (rad/s), and angular position (rad) of the motor,
respectively. Parameter n denotes the motor gear reduction factor. Therefore, θm = θ̂m/n,
where θm refers to the motor’s gear position and θ̂m denotes the motor shaft’s position.
Additionally, Γc = Γ̂c/n, where Γc represents the motor gear’s Coulomb friction torque.

The simulated DC motor model is the RH-8D-6006-E036AL-SP(N) [88], capable of
rotating its shaft within the vertical axis in both left and right directions. Table 4.1
contains the parameter description.

3.4.2 Problem formulation

Given the complexities of the DC motor dynamics described by equation (4.81), it’s
imperative to have a reference path θ

(
mt) that exhibits sufficient smoothness to facilitate

trajectory tracking. It’s important to consider input signal variations (V ) and output
noise (θm(t)). In addition, the system is subject to unknown nonlinear effects caused by
model parameter uncertainties or Coulomb friction. Despite these challenges, the feedback
controller’s main goal is to achieve precise asymptotic tracking of θ∗m(t) using the system
output θm(t).

3.4.3 Model-free Control Design

This section delineates the feedback control technique employed to achieve position tracking
for the DC motor. The efficacy of model-free control laws hinges notably on the parameters
β and iPID/iPD gains. Consequently, to enhance performance, a tuning methodology is
expounded upon in sections 4.4.3.1 and 4.4.3.2 for β and iPD/iPID gains, respectively.
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Figure 3.1: MFC scheme

3.4.3.1 iPID/iPD gains tuning procedures

In the upcoming simulations, both iPD and iPID controllers are utilized, assuming a
constant value of v = 1 in equation (4.54):

F (t) = ẏ(t)− βu(t) (3.83)

The closed-loop system incorporates an intelligent PID (i-PID) controller, as illustrated
in Fig. ??. It operates according to the equation:

u =
−F + yd −KI

∫
e−KP e−KDė

β
(3.84)

Here, yd denotes the reference trajectory, e = yd − y represents the error tracking, and
KP , KI , KD are the conventional PID tuning gains.

For the iPD controller, the choice of KP = λ2, KI = 0, and KD = 2λ, λ ∈ R+ ensures
the closed loop’s stability, characterized by two real negative poles at −λ:

ë+ λ2e+ 2λė = 0 (3.85)

On the other hand, the iPID controller is characterized by KP = 3λ2, KI = λ3, and
KD = 3λ, λ ∈ R+, resulting in three real negative poles within a stable closed loop at −λ:

ë+ λ3

∫
e+ 3λ2e+ 3λė = 0 (3.86)
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3.4.3.2 Tunning procedure of β

According to (4.84), the dynamics of the present output signal can be showed as follows:

ẏ = F̃ (t) + β̃(t)u (3.87)

in which β̃(t) and F̃ (t) denote two unspecified time-varying functions. As a result, we
can rewrite this equation to demonstrate the dependency on an additional term:

F = F̃ (t) + (β̃(t)− β)u (3.88)

u = −

(
F̂ − ẏd

β

)
−Q(e) (3.89)

Q(e) denotes the tracking error correction.
Integrating (4.86) into (4.89) and setting Q(e) to 0, thus focusing solely on the feed-

forward equation of the control signal, yields:

ẏ =
β̃(t)

β
ẏd +

(
F̃ (t)− β̃(t)

β
F̂

)
(3.90)

The sensitivity of F̂ measurement to specific dynamics underscores the criticality of
selecting β to closely match the actual system gain and minimize changes in F .
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Figure 3.2: parameter’s tuning procedure β

As the parameter β tends towards infinity, the control input u outlined in equation
(4.89) approaches Q(e). In this limiting scenario, the controller configuration simplifies
to resemble that of a conventional PID controller, where the control action is primarily
dictated by the error term.

Conversely, when β approaches zero from the positive side (β → 0+), the control
signal u predominantly relies on the estimated value F̂ . Consequently, tuning β becomes
a straightforward process by setting Q(e) to zero and observing the system’s response
to different β values. Initially, selecting a sufficiently high β results in an approximate
suppression of the control signal, effectively rendering it close to zero. Subsequently,
decreasing the value of β gradually elevates the average control signal until it reaches a
level where the condition of the reference closed-loop (ẏ = ẏd) is satisfied. This iterative
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process allows for the fine-tuning of β to achieve the desired performance of the control
system. For a visual representation and better understanding, refer to Figure 4.2, which
illustrates the stepwise procedure for tuning the parameter β.

3.4.4 Simulations results

Numerical simulations are undertaken to validate the effectiveness of the deployed control
strategy in achieving rapid convergence of the tracking error to a confined region near
zero. Additionally, the simulations aimed to assess the control law’s ability the control
effort low and ensure smooth transient responses, even in the presence of inaccuracies in
the expert input, such as perturbations stemming from Coulomb friction effects or noisy
measurements affecting the system.

The controller gains are selected by positioning poles of the closed-loop appropriately
along the real negative axis. Throughout this search, the poles were positioned at p = −100
rad/s, along with the PD and PID gains KP , KI , KD were calculated using the expressions
outlined in (4.85) and (4.86).

Two different trajectories demonstrate the effectiveness of the model-free control method
via the ultra-local model based on derivative/algebraic estimators:

1. Sinusoidal Position Tracking: This trajectory follows a sinusoidal pattern defined
by θ∗m = A sin(ωt) +B, where A = π/12 (rad) represents the amplitude, B = π/36

(rad) represents the bias, and ω = 1 (rad/s) represents the frequency.

2. Nominal Trajectory: This trajectory is defined by an eighth-order Bezier polynomial,
smoothly using interpolation from 0 to 1 throughout the period of time [ti, tf ]. It
can be expressed as:

θ∗m(t) = θ∗m(ti) + (θ∗m(tf )− θ∗m(ti))φ (τ, tf , ti) (3.91)

where τ = (t− ti) / (tf − ti).

The study made use of a 10kHz sampling frequency. Equations (4.66) and (4.69) used
a fixed sampling time of Ts = 10−4s, an estimation window of T = 0.2s, as well as a
total of N = 2000 samples both the derivative and algebraic estimation techniques for F

These parameters were chosen to ensure accurate estimation of the system dynamics while
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Figure 3.3: Sinusoidal trajectory - Position tracking employing derivatives and algebraic
estimators based on the ultra-local model

balancing computational efficiency.

In the forthcoming section, (Der) designates the approximation of parameter F via
angular velocity in Equation (4.54), while (Alg) represents the algebraic approximation of
F in Equation (4.69). The measured output, denoted as (y), the reference input yd, and
the control signal (u) are symbolized by (θm(t)), (θ∗m(t)), and (V ), respectively.

The output’s first-order derivative ẏ, utilized in Equation (4.66), undergoes estimation
using a derivative estimator, evaluated with a theoretical derivator, as illustrated in Fig.
4.4. Various β values were employed for each estimation approach to ensure a desirable
response, guided by Fig. 4.3.

The tuning procedure outlined in the preceding section was executed to use the control
law for ultra-local model-based estimators. This method commences by setting the
proportional gain KP to null. Subsequently, a reference trajectory is introduced when the
plant is stationary, and open-loop system responses are observed across different β values.
Starting with βAlg = 1000 and βDer = 1000, their values are systematically decreased until
the control signal tends to oscillate, eventually reaching βAlg = 1 and βDer = 45. Following
this, the proportional gain KP is adjusted to ensure a reasonable tracking error. Finally,
βAlg and βDer are established at 3 and 100, respectively. This precise process ensures
robust and efficient control law application.
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Figure 3.4: An estimate of the angular velocity derived from a sinusoidal trajectory ˆ̇y = ( ˆ̇θm(t))

Figure 3.5: An estimate of the unmodeled dynamics for a sinusoidal trajectory

Figure 4.2 presents the numerical results obtained from the demonstrated controllers,
showcasing their effectiveness in maintaining the desired sinusoidal output position despite
the presence of various sources of uncertainties. At t = 0.01 s, the online update procedure
for both the function F and the angular velocity begins, as depicted in Figs. 4.4 and
4.5, respectively. Simultaneously, the voltage control effort signal, portrayed in Figs. 4.6
and 4.7, is actively utilized to counteract perturbations stemming from Coulomb friction
effects, ensuring precise trajectory tracking and system stability.
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Figure 3.6: Sinusoidal trajectory - Control signal input using algebraic estimator and iPD

Figure 3.7: Sinusoidal trajectory - Control signal input using derivative estimator and iPD
controllers

Figure 4.8 illustrates the error in position tracking employing the pair-stated controllers
derived from the derivative and algebraic estimators. Through feedback control, the
angular position of the DC motor is finely adjusted, minimizing state errors within a short
timeframe while compensating for errors in model parameters.
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Table 3.2: Sinusoidal trajectory - The efficiency of the control methods according to the ITAE,
ISE, and IAE criteria

Control technique ISE IAE ITAE
iPD + Derivative Estimator 0.12× 10−2 0.03 0.03
iPD + Algebraic Estimator 0.48× 10−3 0.01 0.002

Classical PD 0.4× 10−2 0.19 0.96

Figure 3.8: Sinusoidal trajectory - Error tracking with algebraic/derivative estimators and iPD

Figure 3.9: Perturbed Bezier’s trajectory - The DC motor’ position tracking using iPID with
algebraic estimator and considering Coulomb’s friction effects
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Table 3.3: Perturbed Bezier’s trajectory - The efficiency of the control methods according to
the ITAE, ISE, and IAE criteria

Control technique ISE IAE ITAE
iPD + Derivative Estimator 0.41×10−2 0.09 0.21
iPD + Algebraic Estimator 0.1×10−2 0.08 0.19

Classical PID 0.86×10−2 0.26 0.47

Figure 3.10: Perturbed Bezier’s trajectory - Position tracking of the DC motor using iPID with
derivative estimator and considering Coulomb’s friction effects

The investigation findings demonstrate remarkable efficiency in model-free control
tracking, particularly enhanced when incorporating an integral component. In comparison,
the derivative scheme yielded a noisier control signal, rendering the system less robust.
While expanding the estimation window can enhance filtering features, it introduces a
delay that may potentially destabilize the closed-loop system.

Figures 4.9 and 4.10 present cases where an eighth-order Bezier’s polynomial input
disturbance signal is applied, generating significant deformations in the input signal. This
setup allows for the evaluation of the controller’s smoothing effectiveness in cases utilizing
derivative and algebraic estimators.

Additionally, the performance evaluation of the control methodologies has been con-
ducted based on integral time absolute tracking error (ITAE), integral absolute tracking
error (IAE), and integral squared tracking error (ISE). These metrics are defined as
follows:
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ITAE =

∫ tf

ti

t |eθm(t)| dt,

IAE =

∫ tf

ti

|eθm(t)| dt,

ISE =

∫ tf

ti

e2θm(t)dt,

(3.92)

where ti = 0 s and tf = 10 s represent the initial and final times of the simulation,
respectively. While ISE and IAE metrics treat all tracking errors equally, ITAE places
significant emphasis on time. Errors that evolve slowly are heavily penalized in the ITAE

standard, while those occurring slightly earlier are disregarded.
The comparative analysis of the obtained results is presented in Tables 4.2 and 4.3. The

findings indicate that the proposed control approach utilizing the ultra-local model based
on the algebraic estimator exhibits a slight advantage over the derivative estimator-based
model. This suggests that the algebraic estimator may provide better performance in
terms of tracking accuracy and robustness.

Figure 3.11: Sinusoidal trajectory: Comparing conventional PD and derivative/algebraic esti-
mators with iPD
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Figure 3.12: Sinusoidal trajectory - Error tracking with traditional PD

Figure 3.13: Perturbed Bezier’s trajectory - The DC motor position tracking using traditional
PID considering Coulomb’s friction effects

Finally, a comparison is drawn between the proposed ultra-local model-based alge-
braic/derivative estimator approaches and a classical PID controller, which remains one
of the most commonly employed control strategies. In this comparison, a classical PD
controller is employed for tracking the sinusoidal trajectory, while a classical PID controller
is utilized for the perturbed Bezier’s trajectory. The PD/PID controllers are manually
tuned to achieve rapid closed-loop responses with minimal overshoots along the desired
trajectory.
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The results obtained from this comparison are illustrated in Figures 4.11 and 4.12. In
the transient region, it is observed that the iPD controllers track the reference trajectory
more rapidly compared to traditional PD controllers. This enhanced performance can
be attributed to the incorporation of the ẏr factor in the control law, as outlined in Eq.
(4.52). Furthermore, the proposed techniques demonstrate accurate and robust tracking
results, effectively mitigating disturbances caused by Coulomb friction, as evident in Figs.
4.9, 4.10, and 4.13.
At t = 0.25 s, the PID controller exhibits overshoot, which can be minimized by sacrificing
tracking speed. The comparison of performance metrics including ISE, IAE, and ITAE
criteria is summarized in Tables 2 and 3. Furthermore, the proposed approaches offer
superior tracking performance, particularly in scenarios with rapid trajectory changes or
external disturbances. The incorporation of advanced control laws, such as iPD and iPIDs,
allows for faster response times, reduced overshoot, and smoother trajectory tracking
compared to classical PID controllers. This translates to improved system efficiency,
stability, and overall operational performance.

3.5 Conclusion

This study investigated and implemented recent state observation techniques for the ultra-
local model used in the model-free control approach, employing two distinct methodologies:
an ultra-local model-based algebraic estimator and an ultra-local model-based derivative
estimator. The estimation process utilized Taylor’s expansion coefficients of arbitrary
order, with discrete implementation details presented through operational calculus and
finite impulse response (FIR) filters.

A comprehensive comparative analysis between algebraic and derivative estimators
was conducted, revealing significant insights into their performance in state observation.
Various tests were performed on a position trajectory control scheme for a DC motor
subjected to disturbances and uncertainties. The ultra-local model design demonstrated
independence from initial conditions, requiring only the measurement of the system’s input
and output values.

Key findings highlighted that the proposed design effectively reduced nonlinearities
and enhanced robustness against disturbances arising from Coulomb friction effects. Both
algebraic and derivative estimation processes were computed in real-time, ensuring quick
and accurate state observation.

The study’s outcomes were validated through numerical simulations, which compared
the recommended approaches with other control strategies. The simulations confirmed the
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feasibility and reliability of the ultra-local model, particularly emphasizing the superior
performance of the algebraic method. The robust tracking capability against disturbances
and uncertainties surpassed that of classical PID controllers.

Moreover, challenges such as high-frequency sampling and increased computational
effort associated with longer filter lengths were acknowledged. These challenges were
mitigated by leveraging powerful and cost-effective hardware solutions available in the
market.

In addition to demonstrating the efficiency of the closed-loop control estimators,
this research also provides valuable insights and simplifies several aspects of the digital
implementation of these modern controllers.

In conclusion, the integration of advanced algebraic and derivative estimators into
model-free control systems significantly enhanced the control performance of DC motor
position tracking. The study provides valuable insights into the practical application of
these estimators, paving the way for more resilient and efficient control strategies in DC
motor systems.
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Chapter 4

Algebraic and Derivative Estimation

4.1 Inroduction

In the field of system identification, accurate parameter estimation is crucial for interpret-
ing the dynamics of systems and establishing efficient control strategies. Conventional
approaches frequently depend on iterative numerical optimization procedures, which
can be computationally demanding and susceptible to noise. Algebraic estimating ap-
proaches present an attractive choice as they offer both rapidity and precision in parameter
estimation.

In 2004, algebraic estimation techniques were introduced which led to a significant
change in the field of system identification. Their approach, centered around polynomial
modeling, offered an original take on the subject. Instead of using iterative optimization
methods, these techniques approach the parameter identification problem as an algebraic
one, allowing for direct estimation of system coefficients using input-output data. This
method is especially beneficial for linear systems, as the connection between inputs and
outputs can be expressed through polynomial functions [70].

Mboup and Join extended the algebraic framework to compute individual estimators
for each coefficient in the polynomial model. Derivative estimation is a technique that
overcomes the difficulties associated with simultaneously estimating values, such as the issue
of calculating inverses of poorly conditioned matrices. These issues can lead to inaccurate
results, especially when there is interference. The proposed derivative estimation computes
the derivatives of a system by analyzing each coefficient separately. This approach
guarantees that the estimations obtained are robust and reliable [71].

Based on Mboup, Join, and Fliess’ approach, the following research has advanced
derivative estimation in the algebraic context. According to Mboup, Join, and Fliess [72],
sliding-window estimation methods adapt the estimation window size to system dynamics.
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This dynamic technique makes derivative estimate algorithms more resilient, especially
when system parameters change. Recent advances in machine learning and optimization
have integrated algebraic and data-driven methods to improve complex system parameter
identification accuracy and efficiency.

This chapter delves into innovative state observation methods within the scope of
model-free control. Specifically, it introduces derivative and algebraic estimators for
state observation to the ultra-local model implementation. The estimation process utilizes
Taylor’s expansion coefficients of any order, providing a framework for parameter estimation.
The proposed approach is discretely implemented using operational mathematical concepts
and FIR filters.

The study conducts a comparative analysis between derivative and algebraic estimators,
examining their performance in state observation. Tests are conducted on a DC motor’s
position trajectory control strategy under disturbances and uncertainty. The ultra-local
model employed in this study solely relies on system input and output measurements,
making it independent of initial conditions. Furthermore, the proposed design aims to
minimize nonlinearities and enhance Coulomb friction robustness, as demonstrated through
empirical analysis.

4.2 Derivative Estimation

The identification of the parameters of a constricted Taylor expansion of random order
is the basis of the derivative estimation approach. To accomplish this, it is necessary to
suppose that the output signal x̃(t) represents an analytic variable and may therefore be
represented using Taylor series that is truncated at t = 0.

x̃(t) ≈ x(t) =
n∑

j=0

x(j)(0)

j!
tj (4.1)

Identifying these coefficients requires math procedures in a domain similar to the Laplace
transform. After converting the expression again to the time domain, the estimation
filters are discretized into sliding-window finite impulse response filters for applications in
real-time.

A more comprehensive formulation for estimators of arbitrary order can be found
in the works [72, 73]. Throughout this thesis, we will offer a detailed explanation of
the development of these estimators, aiming to clarify the fundamental concepts of the
algebraic technique.
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4.2.1 1st Order estimation

This section presents the filtering and derivation of first-order estimation:

4.2.1.1 Filtering of first order estimation

Let’s delve into the initial estimation of the noisy output signal x̃(t) near t = 0:

x(t) = a0 + a1t (4.2)

The transformation to the Laplace form results in the operational form of Equation
(4.2) being expressed as follows:

X(s) =
a0
s

+
a1
s2

(4.3)

By factoring every component of the equation by s2, we obtain:

s2X(s) = sa0 + a1 (4.4)

This allows us to separate and eliminate a1 by multiplying both sides with the differen-
tiating operator d

ds
:

2sX(s) + s2
d

ds
X(s) = a0 (4.5)

To avoid time derivatives and filtering, the multiplication of both sides by 1
s3

is
performed. Each factor involving X(s) is integrated at least one time:

2
1

s2
X(s) +

1

s

d

ds
X(s) =

a0
s3

(4.6)

Transforming the right side of the expression back to the time domain:

d

sα
, α ≥ 1, d ∈ D←→ d

tα−1

(α− 1)!
(4.7)

By utilizing the Cauchy equation for iterated integration [74], we can derive an
expression in closed form to feed the multiplier 1

sα
dn

dsn
in just one integral. This is possible

because differentiation of X(s) according to s corresponds to factorization by −t in the
time domain, and left factorization X(s) by 1

sα
, α ≥ 1 corresponds to repeated integrals.

1

sα
dn

dsn
X(s)←→ (−1)n

(α− 1)!

∫ t

0

(t− τ)α−1τnx(τ)dτ (4.8)
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By applying the above relation, Equation (2.6) can be converted again into the time
domain:

2

∫ t

0

(t− τ)x(τ)dτ −
∫ t

0

τx(τ)dτ = a0
t2

2!
(4.9)

By restructuring the formula, we may identify the factor a0 as:

a0 =
2

t2

∫ t

0

(2t− 3τ)x(τ)dτ (4.10)

By replacing the function x(t) with x̃(t), Equation (4.10) shall be viewed as being a
first-order filtered estimation of the signal. This form of approximation is particularly
useful for estimating the signal over short time intervals when t > 0. Additional information
regarding the digital implementation of sliding-window estimators will be presented in the
following section.

4.2.1.2 Derivation of first-order estimation

Let’s analyze the first estimation of the output noisy signal x̃(t) at t = 0, as previously
described in s domain:

X(s) =
a0
s

+
a1
s2

(4.11)

Factoring in each side by s, we acquire:

sX(s) = a0 +
a1
s

(4.12)

This allows us to isolate a0, which can be removed by factoring with the differentiation
operation d

ds
:

X(s) + s
d

ds
X(s) = −a1

s2
(4.13)

Further factoring by 1
s2

aims to eradicate filtering and time derivativion, with each
element involving X(s) being integrated once:

X(s)

s2
+

1

s

d

ds
X(s) = −a1

s4
(4.14)

By utilizing the established principles of Cauchy formula and Laplace Transformation
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for repetitive integration, we derive:∫ t

0

(t− τ)x(τ)dτ −
∫ t

0

τx(τ)dτ = −a1
t3

3!
(4.15)

By restructuring the equation, we can find the first estimate of the derivative:

a1 = −
6

t3

∫ t

0

(t− 2τ)x(τ)dτ (4.16)

4.2.2 2nd Order estimation

This section presents the filtering and derivation of second-order estimation:

4.2.2.1 Filtering of second order estimation

Let us examine the second-order estimation of the noisy signal x̃(t) at t = 0:

x(t) = a0 + a1t+ a2
t2

2
(4.17)

Employing the Laplace Transform:

X(s) =
a0
s

+
a1
s2

+
a2
s3

(4.18)

Factoring by s3 to isolate a2 :

s3X(s) = s2a0 + sa1 + a2 (4.19)

Employing d
ds

to eliminate a2:

3s2X(s) + s3
d

ds
X(s) = 2sa0 + a1 (4.20)

Further application of d
ds

to eliminate a1:

6sX(s) + 6s2
d

ds
X(s) + s3

d2

ds2
X(s) = 2a0 (4.21)

Factoring by 1
s4

to eliminate filtering and time derivatives:

6
1

s3
X(s) + 6

1

s2
d

ds
X(s) +

1

s

d2

ds2
X(s) = 2a0

1

s4
(4.22)

Returning to time domain transformation:
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3

∫ t

0

(t− τ)2x(τ)dτ − 6

∫ t

0

(t− τ)x(τ)dτ +

∫ t

0

τ 2x(τ)dτ = 2a0
t3

3!
(4.23)

The second-order filter is acquired by arranging terms:

a0 =
3

t3

∫ t

0

(
3t2 − 12tτ + 10τ 2

)
x(τ)dτ (4.24)

4.2.2.2 Derivation of first-order estimation

Let’s explore the second-order estimation of the noisy signal x̃(t) which has already been
described in s domain:

X(s) =
a0
s

+
a1
s2

+
a2
s3

(4.25)

Factoring by s3 to isolate a2 :

s3X(s) = s2a0 + sa1 + a2 (4.26)

Utilizing differentiation with relative to s to exlude a2:

3s2X(s) + s3
d

ds
X(s) = 2sa0 + a1 (4.27)

Factoring by 1
s

to isolate a0:

3sX(s) + s2
d

ds
X(s) = 2a0 +

a1
s

(4.28)

Further differentiation relative to s, aiming to eliminate a0:

3X(s) + 5s
d

ds
X(s) + s2

d2

ds2
X(s) = −a1

1

s2
(4.29)

Factoring by 1
s3

:

3
1

s3
X(s) + 5

1

s2
d

ds
X(s) +

1

s

d2

ds2
X(s) = −a1

1

s5
(4.30)

Returning to time domain transformation:

3

2

∫ t

0

(t− τ)2x(τ)dτ − 5

∫ t

0

(t− τ)τx(τ)dτ +

∫ t

0

τ 2x(τ)dτ = −a1
t4

4!
(4.31)

By restructuring the equation, we can find the first estimate of the derivative a1:
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a1 = −
12

t4

∫ t

0

(
3t2 − 16tτ + 15τ 2

)
x(τ)dτ (4.32)

4.2.2.3 Derivation of second-order estimation

Let’s explore the second-order estimation of the noisy signal x̃(t) which has already been
described in s domain:

X(s) =
a0
s

+
a1
s2

+
a2
s3

(4.33)

Factoring by s2 to isolate a1 :

s2X(s) = sa0 + a1 +
a2
s

(4.34)

Applying the differential operator d
ds

to eliminate a1 gives:

2sX(s) + s2
d

ds
X(s) = a0 −

a2
s2

(4.35)

Further application of the differential operator d
ds

to eliminate a0 results in:

2X(s) + 4s
d

ds
X(s) + s2

d2

ds2
X(s) = 2a2

1

s3
(4.36)

Using 1
s3

as a scaling factor, we get:

2
1

s3
X(s) + 4

1

s2
d

ds
X(s) +

1

s

d2

ds2
X(s) = 2a2

1

s6
(4.37)

Returning to time domain transformation:∫ t

0

(t− τ)2x(τ)dτ − 4

∫ t

0

(t− τ)τx(τ)dτ +

∫ t

0

τ 2x(τ)dτ = 2a2
t5

5!
(4.38)

restructuring the equation provides the second-order derivative’s estimate:

a2 = ẍ(t) =
60

t5

∫ t

0

(
t2 − 6tτ + 6τ 2

)
x(τ)dτ (4.39)

After a series of mathematical operations, we’ve derived expressions for estimating
the second-order derivatives of a noisy signal x̃(t) around t = 0. By manipulating the
Laplace Transform representation in the operational domain and performing differential
operations, we obtained equations in terms of a0, a1, and a2, the coefficients of the signal
approximation. These equations were then transformed back to the time domain to obtain
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practical formulas for estimating the second-order derivative ẍ(t). These expressions
involve integrals of the signal x(t) over specific ranges, providing a method to estimate
the curvature of the signal at t = 0. These results can be particularly useful in signal
processing and system identification tasks that will be used in estimating the ultra-local
model.

4.2.3 Implementation of the Derivative Estimator in Discrete

Form

The estimators formulated in the preceding section target the estimation of the j-order
derivative of a given noisy signal x̃(t), which is represented by an n-order Taylor expansion
evaluated at t = 0:

x̃(t) ≃ x(t) =
n∑

j=0

x(j)(0)
tj

j!
(4.40)

The estimations hold true within a limited time frame ϵ. In a broader context, the
j-order derivative estimator, where every component associated with x(t) undergoes at
least one integration, is articulated as follows:

x(j)(t) ≃ x(j)(0) = aj =
k

q(t)

∫ t

0

P̃ (t, τ)x(τ)dτ, 0 < t < ϵ (4.41)

This method can be applied within a short time frame of fixed duration T :

aj =
k

q(T )

∫ T

0

Q̃(T, τ)x(τ)dτ =

∫ T

0

kQ̃(T, τ)

q(T )
x(τ)dτ =

∫ T

0

Q(T, τ)x(τ)dτ (4.42)

The equation presented provides an estimate for the parameter aj = x(j)(0), which is
accurate only at t = 0. It relies on a Taylor series expansion centered at t = 0. While this
estimate is exact for noise-free polynomial input signals, it gradually deviates for arbitrary
signals as time progresses. This deviation arises from assuming that a polynomial near
t can effectively approximate the input signal. It’s crucial to note that this estimator is
non-causal, meaning that to estimate the derivative at t = 0, function values x(t) for t > 0

are necessary. This necessity prompts an approach adjustment to create a causal estimator
at any given time t. Initially, let’s explore the Taylor expansion r(τ) centered at τ = 0

of a random signal r̃(τ). The coefficients of this expansionmay be established using the
estimators discussed afterward:
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r̃(τ) ≃ r(τ) =
n∑

j=0

aj
τ j

j!
⇒ aj =

∫ T

0

Q(T, τ)r(τ)dτ (4.43)

Taking into account the variable transformations, τ ≜ t− δ and x(δ) ≜ r(t− δ) :

x(δ) ≜ r(t− δ) =
n∑

j=0

aj
(t− δ)j

j!
(4.44)

The preceding equation is a Taylor expansion of r̃(τ) near δ = t, as well as a signal
transformation of the variable δ. It’s straightforward to demonstrate that:

x(j)(t) =
dj

dδj
(r(t− δ))

∣∣∣∣
δ=t

= (−1)jaj (4.45)

Rewriting the expression for aj with the changed variable :

aj =

∫ T

0

Q(T, τ)r(τ)dτ =

∫ T

0

Q(T, τ)x(t− τ)dτ (4.46)

The ultimate equation represents a causal estimator computed at a flexible time t,
employing a constant estimation window of duration T :

aj = x(j)(t) = (−1)j
∫ T

0

Q(T, τ)x(t− τ)dτ (4.47)

The digital realization of this estimator entails employing the trapezoidal integration
approach to construct a digital Finite Impulse Response (FIR) filter. This process involves
specifying T = TsN , where T denotes the duration of the estimation window, Ts signifies
a constant sampling interval and (N + 1) represents the total number of samples. By
leveraging this approach, the estimator can be seamlessly integrated into digital systems,
providing accurate derivative estimations within a defined time window:

aj = x(j)(t) ≃ (−1)j
N+1∑
k=1

αkQ (T, τk)x (t− τk) (4.48)

To minimize computational efficiency, the discretization of Q (T, τk) is precomputed.
Simultaneously, after the trapezoidal integration, we consider the coefficients αk:
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Q̂αk
(T, τk) =

[
α1Q (T, τ1) α2Q (T, τ2) . . . αN+1Q (T, τN+1)

]
τk = (k − 1)Ts

αk =
Ts

2
, k = 1 or k = N + 1

αk = Ts, k = 2, 3, . . . , N

(4.49)

The vector x̂ (t− τk), housing the latest N + 1 samples, is arranged vertically. With
each sample clock cycle, the entire vector undergoes a shift operation. This process involves
discarding the oldest value while incorporating the most recent value x(t) into the initial
position of the vector. By employing this mechanism, the vector continuously maintains
the most recent samples, facilitating efficient real-time processing of the input signal:

x̂ (t− τk) =


x(t)

x (t− Ts)
...

x (t− TsN)

 (4.50)

Ultimately, at each sample time, the product of Q̂αk
(T, τk) and x̂ (t− τk) yields a

real-time approximation of aj:

aj(t) = x(j)(t) ≃ (−1)j
N+1∑
k=1

αkQ (T, τk)x (t− τk) = (−1)jQ̂αk
(T, τk) x̂ (t− τk) (4.51)

Remark (1). A compromise between accuracy and immunity to noise:

• The choice of the estimation window T plays a crucial role in striking a balance
between immunity to noise and accuracy in derivative estimation.

• Lower T values offer advantages such as faster filter response and improved local
signal modeling.

• Conversely, larger values of T enhance noise immunity and provide better high-
frequency filtering properties.

Remark (2). Impact of window Size on filter response

• Smaller T values contribute to a more agile filter response, allowing it to adapt
quickly to rapid changes in the input signal.
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• This agility is particularly advantageous in scenarios where capturing transient signal
features or responding promptly to signal variations is essential.

Remark (3). Enhanced noise immunity with larger window sizes:

• Larger T values are beneficial for improving noise immunity, as they enable the filter
to effectively suppress high-frequency noise components.

• By encompassing a broader time window, the filter can integrate information from a
more extended temporal range, thereby enhancing its ability to distinguish between
signal and noise.

Remark (4). Numerical precision and sampling frequency

• In addition to window size, numerical precision is a critical concern in derivative
estimation algorithms.

• Increasing the sampling frequency is an alternative approach to enhance precision,
but it may be limited by hardware constraints, particularly if the system is already
operating at maximum frequency.

4.3 Ultra-local model estimation

In systems where the system output y is impacted by the system input u, governed by a
non-linear yet essentially smooth function S, the relationship between these variables is
encapsulated in a differentiation equation, as articulated in Equation (4.52) :

S
(
t, u, u̇, . . . , u(m), y, ẏ, . . . , y(n)

)
= 0 (4.52)

Here, the equation captures the relationship between time t, input signal u, its deriva-
tives up to mth order, output signal y, and its derivatives to the nth order. This formulation
provides a comprehensive view of how the system dynamics evolve over time in response
to input stimuli [71].

When there exists an index i within the range (0, n) for which ∂S
∂y(i)

≠ 0, the absolute
function theorem offers a local simplification, revealing the relationship:

y(i) = S
(
t, u, u̇, ..., u(m), y, ẏ, ..., y(i−1), y(i+1), ..., y(n)

)
(4.53)

This equation unravels the ith derivative of the output y as a function of input and
output derivatives, providing valuable insights into the intricate dynamics governing the
system’s behavior.
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Fliess’s model-free control methodology [75] suggests using an ultra-local model instead
of complex nonlinear models, as shown in Equation (4.53). Equation (4.54) demonstrates
an ultra-local representation that simplifies system behavior:

y(v)(t) = F (t) + βu(t) (4.54)

To optimize transient performance, y(ν) represents the νth-order derivative of the
system output. On the other hand, F summarizes the unmodeled dynamics of the system,
including unknown perturbations, and is constantly updated in real time using algebraic
or derivative-based approaches. The non-physical coefficient β is carefully chosen to match
y(ν) and βu in terms of magnitude and sign, enhancing closed-loop performance through
iterative experimentation.

This simplified representation is an effective approximation of system dynamics over
short time intervals, providing a practical basis for control synthesis and eliminating the
need for complex nonlinear modeling, consequently streamlining gain tuning processes.

In the closed-loop system, Equation (4.54) incorporates an intelligent PID controller,
with F (t) expressed as:

F (t) = y(v)(t)− βu(t) (4.55)

The system control input is formulated as:

u = −F − y
(v)
d + uC

β
(4.56)

Here, y(v)d symbolizes the vth derivative of the output desired trajectory, while uC represents
the causal feedback control input.

Incorporating these equations yields a comprehensive expression for system behavior,
ensuring effective tracking and convergence towards the reference trajectory, as delineated
in Equations (4.57), (4.58), and (4.59).

y(v) = F + β

(
−F − y

(v)
d + uc

β

)
= y

(v)
d − uc (4.57)

Afterwards,
y(v) − y

(v)
d + uc = 0 (4.58)

e(v) + uc = 0 (4.59)

Here, e(v) represents the vth derivative error of the tracking error (e = y − yd). The
control signal uc is selected to ensure asymptotic tracking, where the output approaches
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the desired trajectory as expressed by Equation (4.60),

lim
t→+∞

e(t) = 0 (4.60)

4.3.1 Intelligent PIDs (iPIDs)

The distinction between the intelligent and conventional controllers is inspired by the work
of D’Andréa Novel [76]. The PID control, i.e., u, can be computed based on the error e.
Let’s reformulate the control signal in Equation (4.56) using a conventional PID controller:

u = −
F − ÿd +KP e+KI

∫
e+KDė

β
(4.61)

Here, we set v = 2 in Equation (4.54). By substituting Equation (4.54) into Equation
(4.61), we define the intelligent proportional-integral-derivative controller (iPID) as:

This equation omits F , thereby removing uncertainties and unmodeled plant dynamics.
Equation (4.61) meets tracking requirements through the careful adjustment of gains
KP , KI , KD, resulting in a stable linear differential equation with constant real coefficients.

Introducing various combinations of controller gains in a proportional-integral-derivative
(PID) controller design can result in different types of controllers with unique control
characteristics.

• When KP ̸= 0, KI = 0, KD = 0, it results in an intelligent Proportional (iP) con-
troller.

• When KP ̸= 0, KI = 0, KD ̸= 0, it leads to an intelligent Proportional-Derivative
(iPD) controller.

• When KP ̸= 0, KI ̸= 0, KD ̸= 0, it forms an intelligent Proportional-Integral-Derivative
(iPID) controller.

Each of these configurations provides distinct control characteristics that are tailored
to meet specific system requirements.

4.3.2 Online estimation of the ultra-local model through algebraic

estimation

The process of identifying the parameter F which is the basis of the ultra-local model entails
employing algebraic estimation techniques, a methodology outlined by [77]. Alternatively,
numerical differentiation, which involves estimating derivatives, serves as another viable
approach outlined in Section 4.2.1.
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Let’s investigate the implications of Equation (4.54) based on classical operational
calculus principles. Here, we replace the parameter F with Fapprox(Alg)

, an approximation
assumed to be constant over the interval [t, t+ T ]. To calculate Fapprox(Alg)

, we follow the
previous systematic approach.

Setting v = 1 in Equation (4.54), we initiate the process by performing a Laplace
transformation:

sY (s)− y(0) =
Fapprox(Alg)

s
+ βU(s) (4.62)

Next, we proceed to differentiate Equation (4.62) with respect to s to exclude y(0):

Y (s)− s
d

ds
Y (s) = −s−2Fapprox(Alg)

+ β
d

ds
U(s) (4.63)

To further refine our analysis, we factor Equation (4.63) by 1
s2

, aiming to integrate
every coefficient once. This action efficiently filters and removes time derivatives, resulting
in a low-pass filter that effectively reduces noise:

1

s2
Y (s) +

1

s

d

ds
Y (s) = − 1

s−4
Fapprox (Alg) + β

1

s3
d

ds
U(s) (4.64)

After careful observation, we discover that differentiating Y (s) in the operational
domain corresponds to factorization by (−tà in the time domain. Furthermore, the left
factorization of Y (s) by 1

sα
, α ≥ 1 is consistent with looping integrals. To obtain a

closed-form equation, we employ the Cauchy formula for occurring again integration of
the operator 1

sα
dn

dsn
, which results in only one integral:

1

sα
dn

dsn
Y (s)←→ (−1)n

(α− 1)!

∫ t

0

(t− τ)α−1τny(τ)dτ (4.65)

Finally, after a series of mathematical manipulations, we derive the approximated time
domain equation (4.64) as:

Fapprox(Alg) =
−6
t3

∫ t

0

(t− 2τ)y(τ)dτ − 6β

t3

∫ t

0

τ(t− τ)u(τ)dτ (4.66)

These sequential steps outline a systematic approach to estimating the parameter
Fapprox(Alg)

using algebraic techniques, allowing for effective analysis and control of dynamic
systems.
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4.3.3 Online estimation of the ultra-local model through derivative

estimation

The alternative method to F parameter estimation in Equation (4.54) involves identifying
it through the derivative estimation of the noisy output signal y(v) in Equation (4.55).

Recall that Equation (4.55) represents the expression for F (t), where F is computed as
the difference between the v-th derivative of the output signal y and the control input u.

Choosing v = 1 yields:

F (t) = ẏ(t)− βu(t) (4.67)

As discussed in Section 4.2.1.2, the first-order derivative estimation can be obtained
through:

ẏ = a1 = −
6

t3

∫ t

0

(t− 2τ)y(τ)dτ (4.68)

Thus, the function representing dynamics Fapprox(Der)
can be determined in real-time

using the first-order derivative estimator, as shown in Equation (4.68):

Fapprox(Der)
= ẏ − βu(t) = − 6

t3

∫ t

0

((t− 2τ)y(τ)− βu(t))dτ (4.69)

Remark. It’s worth noting that if the designer opts to work with a second-order derivative,
the ultra model can be estimated following a similar procedure as detailed in Section
4.2.2.3.

4.3.4 Discrete implementation of the ultra-local model through

Derivative estimation

The procedures outlined in Eqs (4.66) and (4.69) for estimating the function F will be
translated into digital implementations employing an FIR filter given in Section 4.2.3. For
alternative implementations utilizing ALIEN filters, refer to [78].

Consider ỹ(t) from Equation (4.67), approximated for ϵ with j = 1 in Equation (4.41):

ẏ ≃ ẏ(0) = a1 =
k

q(t)

∫ t

0

Q̃(t, τ)y(τ)dτ ; 0 < t < ϵ (4.70)

For a short time fixed-length window T :
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ẏ = a1 =
k

q(T )

∫ T

0

Q̃(T, τ)y(τ)dτ =

∫ T

0

kQ̃(T, τ)

q(T )
y(τ)dτ =

∫ T

0

Q(T, τ)x(τ)dτ (4.71)

The description estimates ẏ = a1 at t = 0.

1. Suppose Taylor expansion y(τ) close to τ = 0 for ỹ(τ) :

ỹ(τ) ≃ y(τ) =
n∑

j=0

a1τ ⇒ a1 =

∫ T

0

Q(T, τ)y(τ)dτ (4.72)

2. By transforming variables τ ≜ t− θ and y(θ) ≜ x(t− θ):

y(θ) ≜ x(t− θ) =
n∑

j=0

a1(t− θ) (4.73)

Consider this as a Taylor expansion x̃(τ) for θ = t with an inverse signal for the
parameter θ:

ẏ(t) =
d

dθ
(x(t− θ))

∣∣∣∣
θ=t

= (−1)a1 (4.74)

3. Again by transforming variables a1:

a1 =

∫ T

0

Q(T, τ)x(τ)dτ =

∫ T

0

Q(T, τ)y(t− τ)dτ (4.75)

Thus,

ẏ(t) = a1 = (−1)
∫ T

0

Q(T, τ)y(t− τ)dτ (4.76)

Applying Equation (4.48) results in :

ẏ(t) = a1 ≃ (−1)
N+1∑
k=1

αkQ (T, τk) y (t− τk) (4.77)

The representation of Q (T, τk) in discrete form is theoretically estimated to decrease
computational expenses, incorporating coefficients (αk) obtained through trapezoidal
integration in Eqs (4.49) and (4.50).

Finally, the real-time update estimation of ẏ is provided by:
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ẏ(t) = a1(t) ≃ (−1)
N+1∑
k=1

αkQ (T, τk) y (t− τk) = (−1)Q̂αk
(T, τk) ŷ (t− τk) (4.78)

Ultimately, following the estimation of ẏ and referencing equation (4.69), the previous
control input is employed to observe the present parameter F , which can be resolved using
this expression:

F̂k(DER)
= ẏk − βuk−1 (4.79)

4.3.5 Discrete implementation of the ultra-local model through

Algebraic estimation

Returning to the estimation method of F as shown in (4.66), An FIR filter is obviously
appropriate for digital implementations. We enhanced the previous technique and incorpo-
rated the constrained fixed-length window T in a reverse integration approach to enable a
viable online implementation of the estimator discussed in section 4.3.4.

The current instance, F is viewed as an independent temporal constant, which is
unaffected by the signal during reverse integration. Following additional variable manipu-
lations, equation (4.80) emerges as the definitive formulation for the algebraic estimator of
F(Alg).

Changing a few factors, the representation of F in (4.66) becomes the following:

F =
−6
T 3

∫ T

0

(t− 2τ)y(t− τ)dτ − 6β

T 3

∫ T

0

τ(T − τ)u(t− τ)dτ (4.80)

A good variable selection entails storing the obtained discrete filter coefficients in a
vector while accounting for trapezoidal integration coefficients. order to stay out of an
algebraic loop, we use the prior value of FAlg to estimate the present control input. As a
result, the determination of FAlg remains constant, posing no additional challenge in this
approach, despite the approximation being made within a short sliding window T .

4.4 Algebraic Derivative Estimation for Position Con-

trol of a DC Motor

DC motors, despite their higher operating costs, are widely employed in industry sectors
for their remarkable capacity for speed control [79]. Studies on DC motor position control
have led to various techniques, adaptable across a wide range to track different load inputs.
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Previous research has covered diverse applications such as motion control of disks [80],
overhead crane control [81], liquid pumps [82], wheeled mobile manipulators [83], and
positioning tables [84], considering Coulomb frictions and unmodeled dynamics. Recently,
interest has grown in control techniques leveraging DC motors’ high precision and speed.
Time response is crucial for efficiency, especially as electromechanical applications shrink.
Various control techniques, including integration of discrete-time algorithms [85], sliding
mode control [86], classical control with adaptive approaches [87, 88], and adaptive control
using bacterial foraging algorithms [89] has been investigated. Researchers have studied
disturbance observer-based control [90] and optimization strategies using LQG controllers
[91].

This section introduces a model-free control technique for DC motor position tracking,
utilizing an ultra-local approach along with the simultaneous use of derivative and algebraic
estimators. The methodology relies on FIR filters for effective implementation. Additionally,
a straightforward and efficient tuning algorithm for the ultralocal model parameter is
presented, along with a comparative study.

4.4.1 DC motor modeling

The linear model utilized to describe the behavior of the DC motor encompasses consider-
ations for Coulomb friction effects and unstable disturbance input, as discussed in [92].
The underlying dynamic equation for this model, which is based on Newton’s second law,
is as follows:

kV = J
¨̂
θm + v

˙̂
θm + Γ̂c(

˙̂
θm) (4.81)

The coefficients are as follows:

• v: Signifies the viscous friction coefficient in N ·m · s.

• V : Represents the input voltage supplied to the DC motor system as a control input
signal.

• J : Denotes the inertia of the motor’s gear in units of kg ·m2.

• k: Stands for the electromechanical factor, measured in N ·m/V.

• Γ̂c: Represents the torque resulting from unknown friction affecting the motor’s
dynamics.

The non-linear component of friction, perceived as a disturbance, is described by the
following equation:
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Table 4.1: DC motor characteristics

Variable Value
k (N ·m/V) 0.21
J (kg·m2) 6.87× 10−5

v (N ·m · s) 1.041× 10−3

n 50

Γ̂c = Γ̂Coulsign(
˙̂
θm) (4.82)

Γ̂Coul represents the static friction value exceeding the rotational velocity required to
initiate rotation around the vertical axis. The terms ¨̂

θm, ˙̂
θm, and ˙̂

θm denote the angular
acceleration (rad/s2), angular velocity (rad/s), and angular position (rad) of the motor,
respectively. Parameter n denotes the motor gear reduction factor. Therefore, θm = θ̂m/n,
where θm refers to the motor’s gear position and θ̂m denotes the motor shaft’s position.
Additionally, Γc = Γ̂c/n, where Γc represents the motor gear’s Coulomb friction torque.

The simulated DC motor model is the RH-8D-6006-E036AL-SP(N) [88], capable of
rotating its shaft within the vertical axis in both left and right directions. Table 4.1
contains the parameter description.

4.4.2 Problem formulation

Given the complexities of the DC motor dynamics described by equation (4.81), it’s
imperative to have a reference path θ

(
mt) that exhibits sufficient smoothness to facilitate

trajectory tracking. It’s important to consider input signal variations (V ) and output
noise (θm(t)). In addition, the system is subject to unknown nonlinear effects caused by
model parameter uncertainties or Coulomb friction. Despite these challenges, the feedback
controller’s main goal is to achieve precise asymptotic tracking of θ∗m(t) using the system
output θm(t).

4.4.3 Model-free Control Design

This section delineates the feedback control technique employed to achieve position tracking
for the DC motor. The efficacy of model-free control laws hinges notably on the parameters
β and iPID/iPD gains. Consequently, to enhance performance, a tuning methodology is
expounded upon in sections 4.4.3.1 and 4.4.3.2 for β and iPD/iPID gains, respectively.
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uc    Plant:
DC Motor

Figure 4.1: MFC scheme

4.4.3.1 iPID/iPD gains tuning procedures

In the upcoming simulations, both iPD and iPID controllers are utilized, assuming a
constant value of v = 1 in equation (4.54):

F (t) = ẏ(t)− βu(t) (4.83)

The closed-loop system incorporates an intelligent PID (i-PID) controller, as illustrated
in Fig. ??. It operates according to the equation:

u =
−F + yd −KI

∫
e−KP e−KDė

β
(4.84)

Here, yd denotes the reference trajectory, e = yd − y represents the error tracking, and
KP , KI , KD are the conventional PID tuning gains.

For the iPD controller, the choice of KP = λ2, KI = 0, and KD = 2λ, λ ∈ R+ ensures
the closed loop’s stability, characterized by two real negative poles at −λ:

ë+ λ2e+ 2λė = 0 (4.85)

On the other hand, the iPID controller is characterized by KP = 3λ2, KI = λ3, and
KD = 3λ, λ ∈ R+, resulting in three real negative poles within a stable closed loop at −λ:

ë+ λ3

∫
e+ 3λ2e+ 3λė = 0 (4.86)
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4.4.3.2 Tunning procedure of β

According to (4.84), the dynamics of the present output signal can be showed as follows:

ẏ = F̃ (t) + β̃(t)u (4.87)

in which β̃(t) and F̃ (t) denote two unspecified time-varying functions. As a result, we
can rewrite this equation to demonstrate the dependency on an additional term:

F = F̃ (t) + (β̃(t)− β)u (4.88)

u = −

(
F̂ − ẏd

β

)
−Q(e) (4.89)

Q(e) denotes the tracking error correction.
Integrating (4.86) into (4.89) and setting Q(e) to 0, thus focusing solely on the feed-

forward equation of the control signal, yields:

ẏ =
β̃(t)

β
ẏd +

(
F̃ (t)− β̃(t)

β
F̂

)
(4.90)

The sensitivity of F̂ measurement to specific dynamics underscores the criticality of
selecting β to closely match the actual system gain and minimize changes in F .
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Figure 4.2: parameter’s tuning procedure β

As the parameter β tends towards infinity, the control input u outlined in equation
(4.89) approaches Q(e). In this limiting scenario, the controller configuration simplifies
to resemble that of a conventional PID controller, where the control action is primarily
dictated by the error term.

Conversely, when β approaches zero from the positive side (β → 0+), the control
signal u predominantly relies on the estimated value F̂ . Consequently, tuning β becomes
a straightforward process by setting Q(e) to zero and observing the system’s response
to different β values. Initially, selecting a sufficiently high β results in an approximate
suppression of the control signal, effectively rendering it close to zero. Subsequently,
decreasing the value of β gradually elevates the average control signal until it reaches a
level where the condition of the reference closed-loop (ẏ = ẏd) is satisfied. This iterative
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process allows for the fine-tuning of β to achieve the desired performance of the control
system. For a visual representation and better understanding, refer to Figure 4.2, which
illustrates the stepwise procedure for tuning the parameter β.

4.4.4 Simulations results

Numerical simulations are undertaken to validate the effectiveness of the deployed control
strategy in achieving rapid convergence of the tracking error to a confined region near
zero. Additionally, the simulations aimed to assess the control law’s ability the control
effort low and ensure smooth transient responses, even in the presence of inaccuracies in
the expert input, such as perturbations stemming from Coulomb friction effects or noisy
measurements affecting the system.

The controller gains are selected by positioning poles of the closed-loop appropriately
along the real negative axis. Throughout this search, the poles were positioned at p = −100
rad/s, along with the PD and PID gains KP , KI , KD were calculated using the expressions
outlined in (4.85) and (4.86).

Two different trajectories demonstrate the effectiveness of the model-free control method
via the ultra-local model based on derivative/algebraic estimators:

1. Sinusoidal Position Tracking: This trajectory follows a sinusoidal pattern defined
by θ∗m = A sin(ωt) +B, where A = π/12 (rad) represents the amplitude, B = π/36

(rad) represents the bias, and ω = 1 (rad/s) represents the frequency.

2. Nominal Trajectory: This trajectory is defined by an eighth-order Bezier polynomial,
smoothly using interpolation from 0 to 1 throughout the period of time [ti, tf ]. It
can be expressed as:

θ∗m(t) = θ∗m(ti) + (θ∗m(tf )− θ∗m(ti))φ (τ, tf , ti) (4.91)

where τ = (t− ti) / (tf − ti).

The study made use of a 10kHz sampling frequency. Equations (4.66) and (4.69) used
a fixed sampling time of Ts = 10−4s, an estimation window of T = 0.2s, as well as a
total of N = 2000 samples both the derivative and algebraic estimation techniques for F

These parameters were chosen to ensure accurate estimation of the system dynamics while
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Figure 4.3: Sinusoidal trajectory - Position tracking employing derivatives and algebraic
estimators based on the ultra-local model

balancing computational efficiency.

In the forthcoming section, (Der) designates the approximation of parameter F via
angular velocity in Equation (4.54), while (Alg) represents the algebraic approximation of
F in Equation (4.69). The measured output, denoted as (y), the reference input yd, and
the control signal (u) are symbolized by (θm(t)), (θ∗m(t)), and (V ), respectively.

The output’s first-order derivative ẏ, utilized in Equation (4.66), undergoes estimation
using a derivative estimator, evaluated with a theoretical derivator, as illustrated in Fig.
4.4. Various β values were employed for each estimation approach to ensure a desirable
response, guided by Fig. 4.3.

The tuning procedure outlined in the preceding section was executed to use the control
law for ultra-local model-based estimators. This method commences by setting the
proportional gain KP to null. Subsequently, a reference trajectory is introduced when the
plant is stationary, and open-loop system responses are observed across different β values.
Starting with βAlg = 1000 and βDer = 1000, their values are systematically decreased until
the control signal tends to oscillate, eventually reaching βAlg = 1 and βDer = 45. Following
this, the proportional gain KP is adjusted to ensure a reasonable tracking error. Finally,
βAlg and βDer are established at 3 and 100, respectively. This precise process ensures
robust and efficient control law application.
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Figure 4.4: An estimate of the angular velocity derived from a sinusoidal trajectory ˆ̇y = ( ˆ̇θm(t))

Figure 4.5: An estimate of the unmodeled dynamics for a sinusoidal trajectory

Figure 4.2 presents the numerical results obtained from the demonstrated controllers,
showcasing their effectiveness in maintaining the desired sinusoidal output position despite
the presence of various sources of uncertainties. At t = 0.01 s, the online update procedure
for both the function F and the angular velocity begins, as depicted in Figs. 4.4 and
4.5, respectively. Simultaneously, the voltage control effort signal, portrayed in Figs. 4.6
and 4.7, is actively utilized to counteract perturbations stemming from Coulomb friction
effects, ensuring precise trajectory tracking and system stability.
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Figure 4.6: Sinusoidal trajectory - Control signal input using algebraic estimator and iPD

Figure 4.7: Sinusoidal trajectory - Control signal input using derivative estimator and iPD
controllers

Figure 4.8 illustrates the error in position tracking employing the pair-stated controllers
derived from the derivative and algebraic estimators. Through feedback control, the
angular position of the DC motor is finely adjusted, minimizing state errors within a short
timeframe while compensating for errors in model parameters.
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Table 4.2: Sinusoidal trajectory - The efficiency of the control methods according to the ITAE,
ISE, and IAE criteria

Control technique ISE IAE ITAE
iPD + Derivative Estimator 0.12× 10−2 0.03 0.03
iPD + Algebraic Estimator 0.48× 10−3 0.01 0.002

Classical PD 0.4× 10−2 0.19 0.96

Figure 4.8: Sinusoidal trajectory - Error tracking with algebraic/derivative estimators and iPD

Figure 4.9: Perturbed Bezier’s trajectory - The DC motor’ position tracking using iPID with
algebraic estimator and considering Coulomb’s friction effects
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Table 4.3: Perturbed Bezier’s trajectory - The efficiency of the control methods according to
the ITAE, ISE, and IAE criteria

Control technique ISE IAE ITAE
iPD + Derivative Estimator 0.41×10−2 0.09 0.21
iPD + Algebraic Estimator 0.1×10−2 0.08 0.19

Classical PID 0.86×10−2 0.26 0.47

Figure 4.10: Perturbed Bezier’s trajectory - Position tracking of the DC motor using iPID with
derivative estimator and considering Coulomb’s friction effects

The investigation findings demonstrate remarkable efficiency in model-free control
tracking, particularly enhanced when incorporating an integral component. In comparison,
the derivative scheme yielded a noisier control signal, rendering the system less robust.
While expanding the estimation window can enhance filtering features, it introduces a
delay that may potentially destabilize the closed-loop system.

Figures 4.9 and 4.10 present cases where an eighth-order Bezier’s polynomial input
disturbance signal is applied, generating significant deformations in the input signal. This
setup allows for the evaluation of the controller’s smoothing effectiveness in cases utilizing
derivative and algebraic estimators.

Additionally, the performance evaluation of the control methodologies has been con-
ducted based on integral time absolute tracking error (ITAE), integral absolute tracking
error (IAE), and integral squared tracking error (ISE). These metrics are defined as
follows:
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ITAE =

∫ tf

ti

t |eθm(t)| dt,

IAE =

∫ tf

ti

|eθm(t)| dt,

ISE =

∫ tf

ti

e2θm(t)dt,

(4.92)

where ti = 0 s and tf = 10 s represent the initial and final times of the simulation,
respectively. While ISE and IAE metrics treat all tracking errors equally, ITAE places
significant emphasis on time. Errors that evolve slowly are heavily penalized in the ITAE

standard, while those occurring slightly earlier are disregarded.
The comparative analysis of the obtained results is presented in Tables 4.2 and 4.3. The

findings indicate that the proposed control approach utilizing the ultra-local model based
on the algebraic estimator exhibits a slight advantage over the derivative estimator-based
model. This suggests that the algebraic estimator may provide better performance in
terms of tracking accuracy and robustness.

Figure 4.11: Sinusoidal trajectory: Comparing conventional PD and derivative/algebraic esti-
mators with iPD
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Figure 4.12: Sinusoidal trajectory - Error tracking with traditional PD

Figure 4.13: Perturbed Bezier’s trajectory - The DC motor position tracking using traditional
PID considering Coulomb’s friction effects

Finally, a comparison is drawn between the proposed ultra-local model-based alge-
braic/derivative estimator approaches and a classical PID controller, which remains one
of the most commonly employed control strategies. In this comparison, a classical PD
controller is employed for tracking the sinusoidal trajectory, while a classical PID controller
is utilized for the perturbed Bezier’s trajectory. The PD/PID controllers are manually
tuned to achieve rapid closed-loop responses with minimal overshoots along the desired
trajectory.
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The results obtained from this comparison are illustrated in Figures 4.11 and 4.12. In
the transient region, it is observed that the iPD controllers track the reference trajectory
more rapidly compared to traditional PD controllers. This enhanced performance can
be attributed to the incorporation of the ẏr factor in the control law, as outlined in Eq.
(4.52). Furthermore, the proposed techniques demonstrate accurate and robust tracking
results, effectively mitigating disturbances caused by Coulomb friction, as evident in Figs.
4.9, 4.10, and 4.13.
At t = 0.25 s, the PID controller exhibits overshoot, which can be minimized by sacrificing
tracking speed. The comparison of performance metrics including ISE, IAE, and ITAE
criteria is summarized in Tables 2 and 3. Furthermore, the proposed approaches offer
superior tracking performance, particularly in scenarios with rapid trajectory changes or
external disturbances. The incorporation of advanced control laws, such as iPD and iPIDs,
allows for faster response times, reduced overshoot, and smoother trajectory tracking
compared to classical PID controllers. This translates to improved system efficiency,
stability, and overall operational performance.

4.5 Conclusion

This study investigated and implemented recent state observation techniques for the ultra-
local model used in the model-free control approach, employing two distinct methodologies:
an ultra-local model-based algebraic estimator and an ultra-local model-based derivative
estimator. The estimation process utilized Taylor’s expansion coefficients of arbitrary
order, with discrete implementation details presented through operational calculus and
finite impulse response (FIR) filters.

A comprehensive comparative analysis between algebraic and derivative estimators
was conducted, revealing significant insights into their performance in state observation.
Various tests were performed on a position trajectory control scheme for a DC motor
subjected to disturbances and uncertainties. The ultra-local model design demonstrated
independence from initial conditions, requiring only the measurement of the system’s input
and output values.

Key findings highlighted that the proposed design effectively reduced nonlinearities
and enhanced robustness against disturbances arising from Coulomb friction effects. Both
algebraic and derivative estimation processes were computed in real-time, ensuring quick
and accurate state observation.

The study’s outcomes were validated through numerical simulations, which compared
the recommended approaches with other control strategies. The simulations confirmed the
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feasibility and reliability of the ultra-local model, particularly emphasizing the superior
performance of the algebraic method. The robust tracking capability against disturbances
and uncertainties surpassed that of classical PID controllers.

Moreover, challenges such as high-frequency sampling and increased computational
effort associated with longer filter lengths were acknowledged. These challenges were
mitigated by leveraging powerful and cost-effective hardware solutions available in the
market.

In addition to demonstrating the efficiency of the closed-loop control estimators,
this research also provides valuable insights and simplifies several aspects of the digital
implementation of these modern controllers.

In conclusion, the integration of advanced algebraic and derivative estimators into
model-free control systems significantly enhanced the control performance of DC motor
position tracking. The study provides valuable insights into the practical application of
these estimators, paving the way for more resilient and efficient control strategies in DC
motor systems.
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General Conclusion

The conclusion of this research journey reveals the profound impact of incorporating
algebraic and derivative estimators into model-free control systems, particularly in terms
of improving state observation and control strategy for DC motor position tracking and
variable-speed wind turbine systems. Through strict comparison analysis and simulation
experiments, the critical importance of robust state observation in enhancing control
system resilience has been revealed.

In the domain of DC motor position tracking, the utilization of the ultra-local model
coupled with algebraic and derivative estimators has yielded promising results, showcasing
superior performance, especially with the algebraic method. Notably, robust tracking
against Coulomb friction disturbances and uncertainties has surpassed conventional PID
controllers, underscoring the efficacy of leveraging algebraic principles for fast and accurate
estimation.

Further to variable-speed wind turbine systems, investigation into model-free controllers
has revealed exceptional tracking performance, with the algebraic estimator emerging
as an attractive alternative to traditional state observers. This not only eliminates the
need for model-based observers but also ensures strong closed-loop performance that
outperforms classical control techniques, especially when used with the FAST simulator.
The practicality and simplicity of model-free control make it a compelling solution for
regulating wind turbine systems, particularly in situations where obtaining an accurate
dynamical model is difficult.

Moreover, the integration of flatness-based model-free control within wind turbine
systems has demonstrated its efficacy across diverse operational scenarios, showcasing
exceptional capabilities in optimizing wind energy capture and finely regulating power
generation across varying speeds. This approach significantly contributes to enhancing
system robustness, ensuring reliable performance even in the face of uncertainties and
disturbances.

Finally, the combination of model-free techniques with algebraic and flatness control
principles represents an important development in control system design, establishing up an
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exciting prospect for improving overall control effectiveness and robustness in engineering
applications, particularly wind energy systems. As this research journey comes to an end,
it opens the way for further exploration and advancement, setting the edge of control
engineering toward greater efficiency, reliability, and sustainability in engineering systems.
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up an exciting prospect for improving overall control effectiveness and robustness in
engineering applications, particularly wind energy systems. As this research journey comes
to an end, it opens the way for further exploration and advancement, setting the edge of
control engineering toward greater efficiency, reliability, and sustainability in engineering
systems.
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