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INTRODUCTION

The method of energy inequalities, known also las method of
functional analysis, has its origin in the worksfofA. Dezin [15]. It was then
applied and developed in many works such as : IP@rovsky [25] for the
resolution of the Cauchy problem related to equatiof hyperbolic type, O. A.
Ladysenskaja [23], ], K. Fridricks [16] and N. luikthuk [38, 39, 40, 41, 42,
43, 44, 45]. Afterwards the method has known imgardevelopments due to
J. Leray [24] and L. Garding [17]. It was also uded the resolution of
different problems in the domain of the theory lzérmo conduction [7, 9, 20]
and the physic of plasmas [32].

The present work is the object of an extensiothefmethod of energy
inequalities to a new class of problems with naraldoundary conditions and
integral conditions, it is also considered as amermsion of the results obtained
in [39].

The mixed problem with integral condition takesrenand more interest
as a result of the fundamental reason which is ldthsis of the physical
significance of the integral condition as an averag flux, a total energy, a
moment, etc... These are mathematical models enaednte the theory of
thermo conduction [7, 8, 19], in the memory matserif8l] and in the
semiconductors [1]. Such problems were studigd,is, 4, 5, 7, 8, 9, 10, 12, 20,
21, 22, 35, 4pfor parabolic equations, if26, 27, 28, 29, 37for the hyperbolic
equations and in [12, 13, 14] for mixed type equai

Description of the method
The method of energy inequalities is based on résearch of an
operatoMu known as multiplier. This last one depends orftimetion u, its



derivatives and some weight function. We are themdacted to take
integrations over the considered domain with a viewquippinge andF with
appropriate norms in order to show the existencéd aniqueness of the

solution, said strong, of the considered problemeathas been made into the
form

Lu=./, 1)
where L:E-F is the operator generated by the considered problens an
Banach space; a Hilbert spaceul]lE and. /TIF .

The method is presented into two aspects :

1% aspect
We demonstrate two sided a priori inequalities
|Lu|. <Clul. DuOD(L) (2)
lul. sc¢JLu|.  OuOD(L) (3)
WhereC andc are constants.
The uniqueness of the solution, said strong, ofciesidered problem
results from these two inequalities.
From the inequality (2) results that the operdtois continuous and
from the inequality (3) results that it has a coatius inverse and that the
imageR(L) of L is closed. The operataris then a linear homeomorphism from

E in the closed(L), which proves the uniqueness of the solutioneXistence
is ensured by the fact thB(L) is dense irF.

2" aspect
We demonstrate the energy inequality of the type

lul. =C|Lu|. CuOD(L), (4)

whereC is constant.



By passing to the limit, we extend the inequafy toD(L) . Since the
image R(L) of the operator , which plays an important role in this research, is

closed inF and such tha(L) = R(L), it is sufficient to show thaR(L) is dense

in F, this can be done using the regularly operatoisiwive choose according

to the nature of the considered problem.

In this work, we used the first aspect, and tlwulerly operators were

chosen with respect to the variabiatroduce in [42].

The method of energy inequalities shows the adwm® and
disadvantages.
Advantages

- It is efficient for many problems where certain rben of then is

cited above.

- Its theoretical aspect is strong and its develogn®rdone in an

abstract and elegant frame.

- The actuality of the problems treated by this métho
Disadvantages

A lot of difficulties are encountered during thesgh for

- The solution space.
- The multiplier.
- The regularly operator.

The elaboration of a technique which eliminatesséhdifficulties is not
yet available; this is due to the variety and ddtuaf the treated problems by
this method.

In fact the application of the method requirespacgl study for each

considered problem.



CHAPTER 1

DISSIPATIVE OPERATORS AND
REGULARLY DISSIPATIVE
OPERATORS



1. 1. DISSIPATIVE OPERATORS

Dissipative operators in Hilbert space
Let H be a Hilbert space, its inner product and nornh lbal denoted by
(.,.) and ||.||, respectively aAdan operator its domaiD(A) is assumed to be
dense irH.
Definition 1 Theoperator A is called a dissipative operator if
ReAu,u)<0 OuOD(A). (1.1)
Definition 2 The operator A is called an accretive operator(4A) is a
dissipative operator, i.e.
ReAu,u)>0 OulD(A). (1.2)
Definition 3 A dissipative operator which extends a dissipatiperator A is
called a dissipative extension of A.
Definition 4 An operator A is said to be maximal dissipativeitsf only
dissipative extension is A itself.
Accretive extensions and maximal accretive opesatare defined
similarly.
Proposition 1 An operator A with its domain dense is dissipaifi\and only if

[(A+Du|<|(A-u]  DCuOD(A). (1.3)

Proposition 2 Let A: D(AJJH - H be a linear operator with its domain
dense. Then the following three statements arevabpunt.

(a) A is dissipative operator.

(b) [(A-A)u|=ReAu| for all LID(A) and allA satisfyingReA>0.

(©) [(A-A)u|zA|u| for all LID(A) and allA>0.

Remark 1 If a dissipative operator A is closed, it followerh (b) that R(A4)

is closed subspace for allsatisfying Ré>0.



Theorem 1 [36] Any dissipative operator has a closed extensibine
minimum closed extension of a dissipative operagoagain a dissipative
operator. Hence, a maximal dissipative operataricsed.
Proposition 3 If A is a dissipative operator and R@A=H for some A
satisfyingRex>0, then A is maximal dissipative.
Theorem 2 [36] Every dissipative operator has a maximal dissipativ
extension.
Proposition 4 When A is a dissipative operator, then the follgvthree
conditions are equivalent

(a) A is a maximal dissipative operator.

(b) R(A-A)=H for all ALC satisfyingReA>0.

(c) R(AA)=H for samelllC satisfyingReA>0.
Theorem 3 [36] Let A be a densely-defined linear operator. A &Eximal
dissipative if and only if it is closed, its resait setp(A) contains the half

plane {1:Rel >0} and |(A-2)|<(Red)™ holds there.

Theorem4 [36] Let A: D(AJJH — H be a maximal dissipative operator with
its domain dense and lét* denote the operatafl —£A)™, then the following
three conditions are equivalent

1- ATOL(H).
2-|A]s1.

3- |iIT(1)A;1u=u OuOH.

Dissipative operators in Banach space

The collection of all continuous linear functioraggfined on the whole
of X (X is a real or a complex linear space) constitutepace conjugate %
which is denotec*.

The spac&* is a Banach space with the norm
|f|=supf(x)| fOX*uOX. (1.4)

Jul<z
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Definition 5 Let X be a normed space and X* its conjugate. Bue@fall 11X
which satisfy
W By =l =1, (15)

for every WX is denoted by Fu. The F is called a duality maggrom
X into X*.

A generalization of dissipative operators in Hilbepace to those in
Banach space is explained.

Let X be a complex Banach space andHetenote the duality mapping

in X. We have
jul®=[f]°=(uf) DuOX,fOFUOX*.  (1.6)

Definition 6 Let A be a linear operator in X. If for anylD(A) there exists
an fJFu satisfyingRe(Au, f)<0, A is called a dissipative operator. If —A is
dissipative, A is called an accretive operator.
Proposition 5 For any linear operator A, the following three canwhs are
equivalent

(a) A is dissipative operator.

(b) [(A-A)u|=Redjul DuOD(A) and allA satisfyingReA>0.
© [(A-Au|=Au] DuOD(A) and allA>0.

Theorem5 [36] Let A be a closed dissipative operator. (AR)=X for some
A satisfyingReA>0, then the same is true for al satisfying ReA>0.
If, in addition, O(A) is dense, then

Re(Au, < 0 OudD(A), OfOFu. (1.7)
Theorem 6 [36] Let A be a closed operator with its domai(Abdense. Both A
and A* are dissipative if and only if the half-p&af1 / ReA>0) is contained in

A(A) and (A-1)7| < holds in the half-space.

1
ReA



1. 2. REGULARLY DISSIPATIVE OPERATORS

Let X be a complex Hilbert space, its inner product aadm will be
denoted by (.,.) and |.|, respectively.

Let V be another Hilbert space with inner product anamdenoted by
((.,.)) and ||.||, respectively.

We assume that is embedded iX as a dense subspace and thhas a
stronger topology thaK. Therefore, there exists ay such that

ulkMo|Jul] CudlVv.
Let a(u,V) be a quadratic form defined ahxV . That is, to eachi, V1V

there corresponds a complex numb@r,V) which is linear inu an anti linear

inv:
agruy, v)= a(w,v)+a(u, v),
a(ug¥ vo)= a(u,v)+a(u,v),
a(Au,v) = Aa(u, V),
a(u, Av) = Aa(u, V).
We assume that(u,V) is bounded, i.e., there exists a certain nunvber
such that

la(u,v)| <M|udv Ou,vOV. (1.8)
We further assume that there exists a positive mnidkand a real
numberk such that
Rea(u,v) > dJu|” —kJu|* CuOV. (1.9)
This inequality is called Garding's inequality.
In the particular casle=0, we obtain
Rea(u,u) >dJu|* OuOv. (1.10)
Usinga(u,V), an operatoA is defined as follows
GivenullV. If there exists an elemehbf X so thata(u,v)=(f,v)
for all vV, thenuD(A) and Au=f (1.112)

10



The quadratic forna(u,v), considered as a functional wfis continuous
in V-topology. If, in particular, it is also continuous topology ofV induced
by X, a(u,y) can be extended t§ as a continuous functional. Hence, by the
Riesz theorem, there exists an elenia@itX so that

(a,v=(f,vy OvOVv

In this case, we interpratilD(A) andAu=f.

In studying such operatdk, it is often convenient to extend it in the
following way.

The space of all continuous anti linear functicshefined onV andX are
denoted byw* andX*, respectively.

That is,V* andX* are the spaces of all continuous functidnath VV and
X, which satisfy

[(u+v) =1(u) +1(v),
|(Au) = Al'u).
for all u, vV andX, and for all complex respectively.

For any element oV* or X*, its norm is defined similarly to be a

continuous linear functional.

That is, the norm of as element d¥* andX* are given by
. =supl(v)| and |I|, =ﬁl‘iﬁl(f)|,

M<1
respectively.

Let I|V denote the restriction ofIX* toV, then
1, ] =0 < <[], (1.12)
hence|l|, OV *.
SinceV is dense irX, the correspondende- I| is one-to-one, so that
by identifying | with 1|, we may consideX*[V*. Since ||, |. <M,fl, by

(1.12),X* has a stronger topology thaf.

11



Furthermore, the embeddiMy X andX- V* are both continuous. We
can show thaV is dense iV* as follows.

If v(IV satisfies @,v)=0 for all u, it follows by takingu=v that v=0.
Accordingly, by the reflexivity ofV and a result of functional analysig,is
dense irv*, and, hencexX is also dense iW*.

For IOV* the valuel(v) of | atv is also denoted by,¢). The use of this
notation is convenient, because if, in particulaf,1X, it is seen from the
meaning ofX(IV* that the notation represents just the inner prodti€ andv
in X. We denote elements &f* by f, g and so on, and sometimés,v) by
(v,H). Whena(u,v) with ulV fixed is considered as a functional \gfit is an
element ofvV* by (1.8).

Therefore, using an elemeftV*, we can expresa(u,v)=(f,v). Sincef
so obtained is determined bywe write

Au=f.
That is, A is an operator defined by
a(u,v) = (Au,v) Ou,vOV. (2.13)

It is obvious thatA is an extension of the operatdrdefined by (1.11).

More precisely
D(A) ={uV: Aul X} (1.14)
Lemma 1 Let be H a Hilbert space, whose inner product aodm will be

denoted by(.,.) and |[|.||, respectively. Assume thduBj] is a quadratic form

defined onH xH and that there exist positive constants C andoh $hat
|B[u,v]| < C|ul M. (1.15)
Bluv]|2dul®  LuMIH . (1.16)
Under these conditions, if(FH*, i.e. if F is a continuous anti linear
functional on H, there exists an element u such tha
F(V)RB VOH.

Furthermore, u is uniquely determined by F.
12



Lemma 2 D(A) is dense in V. Therefore, it is also dense in X.
Definition 7 An operator A defined byl.11), using a quadratic form
satisfying(1.8) and (1.10) is called a regularly accretive operatolf. —A is
regularly accretive, A is called a regularly disatfve operator.
Definition 8 The quadratic form a*(u,v) defined k" (u,v) = a(v,u) is called
an adjoint quadratic form.
If a(u,V) satisfies (1.8), (1.9) or (1.10), so, correspagli, doesa*(u,v).
Let A be operator defined by
a(u,v) = (Au,v) Ou,vOV, (1.17)
and letA' and A’ be operators defined I&(u,v) in ways similar to (1.11) and
(1.17), respectively.
LetulIH. If there exists afilX such thag*(u,v)=(f,v) for all v(1V, then
[AD(A") andA'u=f. (1.18)
a*(u,V)=(A'uy) OunMIV. (1.19)
Lemma 3 Let A* be an adjoint of A when the latter is vievesdan operator in
X. Then A'=A*.
Theorem 7[36] A regularly accretive operator is maximal acevet
Theorem 8[36] Let a(u,v) be a quadratic form onxV satisfying(1.8) and
(1.9),and let A be the operator defined (iy11). The domain [A) is dense in
V and also in X, andMo(A+k). Also letA be the operator defined §§.17).
Then A+k is an isomorphism from V onto V*.
Let aX(u,V) be the adjoint of a(u,v) and A’ the operator dedirby(1.18).
Then the adjoint operator A* of A in X coincideshwh'. A+k is a regularly
accretive operator.
Both A and A are denoted simply bj. We also denoteA’ by A*.
Therefore, we have
a(u,v)= (Au,v), a*(u,v)=(A*u,v) OuMlV. (1.20)
This notation will not cause any confusion.
13



When & (u,v)= a(u,v) holds for alluM1V, the quadratic forna(u,V) is said to
by symmetric. In this case, by theorem 8, an operain X is self-adjoint. It is

evident that(u,V) is a real number for each 1V, Since, by (1.9), we have
(Au,u) = a(u,u) > -Ku*  OulD(A).

Theorem 9[36] If a(u,V) is a symmetric quadratic form satisfyi(t.8) and
(1.10), then A is positive definite and self-adjoint, B}V, and
a(u,v)= (A, A"), DOuMIV. (1.21)

Example Let beAzg where

D(A) ={udL,(Q)/u(0,t) =0} and Q = (01)x(0,T),

thenAis an accretive operator.

_rOu_ _l T ou
Proof. (Au,u)= J'—udxdt— juu|0dx—ju—dxdt
)t 0 "

Thus (Au,u)+(Au,u) = J1'|u|2‘T dx—Jl'|u|2‘0dx
0 0

1

2Re{Au,u) = [Ju(x, )| dx caru(0,x)=0, From where Re{Au,u)>0.

0

14



CHAPTER 2

MIXED PROBLEM WITH NON
LOCAL BOUNDARY
CONDITION FOR A HIGH ORDER
PARTIAL DIFFERENTIAL
EQUATION
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2.1 Introduction

In this chapter we study a problem for a high-oierential equation
with no classical boundary condition. The existearel uniqueness of the
strong solution in functional weighted Sobolev space proved. The proof is
based in two sided a priori estimates and the tlzat the range of operator

generalized by the considered problem is dense.

2.2 Position of the problem
Let o be a positive integer arfd be the sef0,T)x(01), we consider the
equation

aZau N a aZa—lu
ox*  x ox*?t

1’u=%+(—1)”( j: F(t,%). 2.1)

To equation(2.1) we attach the initial condition
lu =u(0,Xx) = #(X) xO (0D, (2.2)
the boundary conditions

d'u(tl)

S =0 for Osisa-1 tOET), (2.3)
X
al;(ti’o)zo for O<i<a-2 tO@OT) (2.4)
X
and integral condition
j:u(t,f)dfzo for t0(0,T), (2.5)

Were ¢ is a known function which satisfy the compatilyildonditions
given in(2.3), (2.4)and(2.5).

Remark that the boundary value problems with irslsgconditions are
mainly motivated by the work of SamarsfdR]. Regular case of this problem

for second order equations is studied1f]] The problem where the equation

2a+1

of mixed type contains an operator of the faai(t) Y is treated iN12], the

x> ot
operator of the formi(a(t,x)@j anda a(t,x)a Y1 is treated in[22]
0X 0X ox“? 07x

16



and [13]. Similar problems for second order parabolic equeti are
investigated by the potential method [al]. Two-point boundary value
problems for parabolic equations, with an integrahdition, are investigated
using the energy inequalities method[# 5, 6, 8, 14, 42Jand the Fourier
method[18]. Three-point boundary value problem with an integ@ndition
for parabolic equations with the Bessel operatstuslied in11].
2.3 Preliminaries

In this work, we prove the existence and the uemgss of a solution of
problem (2.1)-(2.k For this, we consider the problem (2.1)-(2.5)asolution
of the operator equation

Lu= .7,

whereL=(«,l). The operatolL is acting fromE to F, whereE is the Banach

space consisting of functionsOL,(Q), satisfying(2.3), (2.4)and (2.5), with
finite norm

[7 aa 2
il =], % APy ny }dx 26

and F is the Hilbert space of vector-valued functions=(f,¢) obtained by

dxdt J'

a 2
dxdt+ supJ' {—

O<t<T

completing the spack, (Q) xW;* (01) with the following norm

: — 2 _ 2 2 1, a”_¢2
=1 97 = [ e [ {ax

+|¢|2}dx (2.7)

Using the energy inequalities method proposgdah we establish two-
sided a priori estimates. Then we prove that theraipr L is a linear
homeomorphism between the sp&candF.

Lemma 4 For any function GE, we have

exp(—cT)j:x2|u(r,x)|2dx< j |¢| dx+ j j dxdt (2.8)

with the constant c satisfyieg 1.

17



Proof. Integrating by pait)l Igexp(—ct)xzu%dtdx and using elementary

inequalities yield$2.8). m

Theorem 10 The following a priori estimate

Lyl < dlul, (2.9)
holds for any functionJE, where c is constant.

Proof. Using equatiorf2.1) andinitial condition @¢.2) we obtain

2 a a 2
[ £ Faxdts 2| w2OU [ 97 [, 07Uyt (2.10)
5 o lot] |ox?{ ox”
2 2
1 ,[0%u 1 ,107U
X dx < sup| X dx 2.11
'[0 ox“ OStS'FI? '[0 ox“ ( )
and

jlx2|lu|2dx< su le2|u|2dx (2.12)

0 - P 0 ’

O<t<T

Combining the inequalitie®.10), (2.11)and(2.12) we obtain(2.9) for ulE. m

Theorem 11 For any function &WE, we have the inequality
|ul; =]yl (2.13)

3+ 2a

where the constart = ————.
inf(3,e")

Proof. Let
1
Jg=[ gt &)dé
and
Mu = x2%+ax\]%.
ot ot

18



We consider the quadratic form

T el —
Rej0 J'O ZuMudxdt, (2.14)

which is obtained by multiplying2.1) byMu.
We have

2a 2a-1 . e
ZUMuU = 6_u+( 1) 07u, aod” u x2@+ax\]% .
ot ox**  x ox* ot ot

Integrating by report t@, we obtain

J. ZUuM wix = J'xzauaudx+j0au J—d x+ (-1 J'Ox a(

ot

09 ( 0% ), 0u
+(-D)° Iaax ( I~ JJEd (2.15)

We have
ou du
Io 2altJ altJ _I

Integrating by parts the terms of the second menobée.15 and by taking

into account of the boundary conditions, we obtain

[ L J@dx——aj (J@jJa—”d
ox

ogt ot ot )" o
J—xJ jJa“ 9 J— dx
ot ot ox| ot

[P J—d = jJ@J@d afl 1% 9 j0u g
0 ot ot “ox ot

_aj‘ d - J@ a—ud

ot = ot
From where
Rej ax@Ja—” (2.16)

19



—1
0% ( 0%u)ou 0t ( 0% ) du
1 —dx=(-1 —
=° j ( ox” jat =Y L?x"‘l(xax”jxat}0
a0 0°u) o ( _au
+ ( 1) J-O axa_l(x axa ]&[XEJC‘X
197t ou 197 (9°u)_d%u
—_ a+l a+l
( ) .[axal( axaj dX (1) _[axal aXaJXaxath
9" (_9°u)au 1972 (9°u)d%u
=(-1* X — | +(-D* X dx
=CD {a“( ox° jat} D joaxa-ZL 6x"j6x6t
a-2 a-2 a 27
+(_1)a+1 0 - g+2J’ 10 _ Xa u 2 XG u dx
ox“? 0 gx“” ox? Jox| oxot

b (10972 (8% 0%u v 0972 ( 97 8%u
= (2] Ve (x v ) o Y[ (x v ) - 0%

0°2( 9°u)_ d°u
+ (=D X X dx
=3 IO oxa2| ax”] oxot

a+2 aa 2 62 442 1 60—2 ( aau a3a
=(-1) Iax“k ax”jaxdtdx -1 OXOX”ZLXOX”Jaxzath

-1 —
972 (a°u)a%u 1972 (9°u) d°u

=(-1)%*2 X +(-1)*32 X dx
D 2{6%"3( ax“jaxat}0 3 joaxﬂk ax”]axzat
a-3 a 3= a-3 a 3

()™ 0 _ Xa u « 62u +(_1)”+3jla _3 xﬂ 0 « 62u dx
ox” ox” ) oxot | 0 gx” ox” Jox| ox“ot

a-3 a 3, a-3 a 3,
=(-)°2[ 9 (xa uj ou dx+(—1)0'+3j.l 0 (xa uj ou

0ax“ 2| " ox? | ax%at oo o Jaxar
o 603 aa 646
" axa*“( "ox j ot

= ()3 0 | a"“] PU g (o[ 0 a”“]x LTI

09x7° LX ox” 09x 7 kx ox“

20



Reasoning by recurrence, we obtain

9 pd d%u aa—la !
(37 [x2 ( jad = (- a- 1){( ajﬂ}

— —_ 1
10U 0%u 4 0%y 0%u

+(-D)*(a -1| x dx+ (=D x X

D™ ).[0 ox? ox“ ot D { ox“ ax"‘lat} .

Cneat 07U d( 08U
+( 1) joxax—a&(xaxa jdx

°u 9%u 1 0%u 9%u
= (=D (a -1 x dx+ (=D | x ——dx
D™ )J-O ox? ox“ ot D I ox? ox“ ot

aau aa+1 y
ox“ ax”at

=(—1)2”ajolxa—;‘ﬂom(—1)2”j:><2a “3(6 “de

+( 1)2aJ'

ox? ox“ ot ox® ot | ox*

From where
a° 1 9%u 9%u 1,07 d (8%
—dx=a| x———dx+| x* — dx 2.17
(=" .[0 ( j IO ox* ox“ ot J-O ox” at(ax"j ( )
—T1
1 07 ou 0“7 (97U, du
D a J—dx=(-Dqa X J—
( )IO ax( xj ot =Y {ax”’l( ax”j at}0

a-1 a -
+(-D"™"a 19 — xM 9 J@ dx
0 gx“? ox? Jox| ot

a“ u 0°2( 9°u)au
- la+2 a+3 X dX
=D ( j } 7l x| axajaxat
0°°( _9°u) 8°u
— la+3 U u + a+4d X dX
=D ( j oxot } D I 0% ax”jaxzat

— 1 —
07 (a7 d°u 1977 (8% 9*u

=(-)""a X +(-)"a X dx
= [ax""1 ( ox“ j axzatl ) J.O ax 4 " axe J ox°ot

Reasoning by recurrence, we obtain

Oa a-1

- (_1)a+2 aa (

QO
2|c|

(w3}
9|c|

I\J
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87 (8°u), du o [0 7T ew @ 0%u 07U
I dx= gu9g U\ (-1 244
- j a x"( ox” ] ot =1 a{xax” ax”'latl +(-1) aJ-O ox" ox"It

1 9% 0%u
- IX—GT X
0 ox% ox“ ot

From where
Rej ZuMudx = j 6u dx+ —j‘ Zg 3%(3 gjdx
X X
+Rejlxza uofotu dx. (2.18)
0 9x? ot| ox°

Integrating by parts the third term of (2.18)
Hzaua( jdxdt_[auz }
ox? ot 0

:raﬂa(r,x) 207U X f a”u(o X) 2 07U0.%)

rpoud Uldxdt
0 gx“ at ax

o gx“* ox” ox“
07U 20 audxdt
0Jogx® ot ox”
from where
IJ- ,07U 0 dxdt J-la u(rx) 20 u(rx)d
ox“” 6t 250 gx“? ox“
ra"u(o X) 26"’u(0 x)d
2k ox“ ox“

Replacing in (2.18), we obtain

Ref/ [} 2unrioe=[ [l s 9| f2 e LU0 DU,
_lraaa(o, X) 20°u(, X)dx—lfxz 97u(0, %) Zd
20 ox“ ox“ 2% ox“
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au

LDl axa 2] L% ot
Ila”’u(rx) 26”u(rx)d 1I 6¢
ox“? 2% |ogx“
= jo jo ?;dxdt+ j j‘ dxdt
|o° 1p 0%
R e

By using the proprieties of the modules and of¢ir@equality, we obtain

Rejorj.ol z’uMIdxs”OrE ZuM ux|

<[]0 eul IMuldxdt
<[], b
<[,

au au
X2 —+axJ—
ot ot

dxdt

|4’u|x dxdt+ aj'j Lz’u||x|J—dxdt

o

< % [ (e )dxdt

a ou
+ jo jo (X2 |2uff+|3 = )dxdt

[1+ajjj x? |2ufdxdtr = .H'x ‘Zu

dxdt

—2
U axdt

From where

—2
@ dxdt
ot

(B e o 0
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dxdt 6“ dxdt+< dect
26 LS axatz [ [x
1alocu@ 9, 1p 0%
+§j;x2—gxz X dx_EJ-OlXZW d
We obtain
2
1“’)” leuPdxdt+ = j
»107u(T, x)
—” dxdt+ j T (2.19)
We have
sz “u(r, x)| dx - j 2|¢| dx+ cj J' X e‘°t|u| dxdt< Zj J' x2e™ gfdxdt.

From the relation

N2
g-124 >
ot

we obtain

From where
—J'Orj x’e Ct|u| dxdt- jsz ot
Ixz “u(r, x)| dx- J' 2|¢| dx+ (c- 1)I j x%e Ct|u| dxdt
[ e

Ixz “u(r, x)| dx- J' 2|¢| dx+ (c- 1)I j x%e Ct|u| dxdt

e

ou “ldxdt< —2] ' rxze‘ct u@dxdt, cis constant
ot 0Jo ot

dxdt< 0

dxdt< 0

24



For c>1, using lemma 4 we obtain

1 —ClI 2 —Cl
J'Oxze Ju(z, x)| dx<j X*|g| dx+J' j xe ™ — dxdt
From where
—2
e 1, 2 1 o2 1t o _OU
?J'Ox u(r,x)| dx< gj'ox || dx+§j0 jox ey dxdt. (2.20)
From the equation (2.1) we have
107 ( 0%
__( 4 X OX° ( GX”J
0e (_9°u)’
y-Qyeo L u
( ) ax (Xax"J
o’ Xa”u <X |.4u+—| <23 LufP+2x% = o dxdt
ax7\ ox? ot
From where
1107 2 2
5 L[ Ve (x jdde [ j | 2ufPdxdt+= j j dxdt (2.21)

Adding inequalities (2.19), (2.20) and (2.21) membih member we obtain

o3 2

e cT

+= I |0 U(T X)| dx+ 2 5 j:x2|u(r,x)|2dx.

3+2a

jj Mu|2dxdt+ j |¢| dx +_I

Raising the left-hand side, we obtain

3+Za QEZ

ot

[ % ? |auPdxdt+ j |¢| dx+= jo dx

- 8.[0 I:XZ

1 27Ut X>| e & [ fute, 0] o

ax
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3+2a

e 2[ ]2

J'J' l2ufdxdt+= J' 2|¢| dx+ = j

supJ' 2|u| dx.

0<T<T 0<r<T

2
+= supj %;3% dx+
From where

2(3+2a) j x? J2ufdxdt+ [ x| dx+4j

dx 3II

a 2
asup [0 UE0 ;(i;'X)
X

O<r<T

dx+e™’ supJ' X2 |u(r, x)| dx.

0<7<T

While posing

2
M2 =I1.7112 = [ | dxats [ ] s [
Q

dx+—supj 2|u| dx.

0<7<T

Jul -f

0<7<T

‘ dxdt+ supj‘

We obtain

3+ 2a

<C [Lu y C= .
desC Ik C= 2

This ends the proof of the theorem.
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2.4 Solvability of the problem

From estimates (2.9) and (2.13), it follows thHa# pperatot:E - F is
continuous and its range is closed-inTo prove the solvability of (2.1)-(2.5),
it is sufficient to show thaR(L) is dense inF. The proof is based on the

following lemma.

Lemma 5 Let Do(L)={ulID(L) / lu=0}. If for uDy(L) andsomew such that
a1l (Q), we have
jsz Zuadxdt=0, (2.22)

thenw=0.

Proof. The equality (2.22) can be written as follows

x @wdxdt J' X ( jwdxdt (2.23)
ox7{ ox“
For a(x,!) given, we introduce the function
aw(f t)
v(xt) = x'lj df+x'1jﬂdf

then we havqfxlv(x,t)dx: 0 andX’ar xv+axJv=Nv. Then from equality (2.23)

we have

j@Nvdxdt_( 1| aa( 0"u jxvdxdt
Q ot Qx| ox“

o 07 (8%
+a(-1) anX ( v ijdxdt (2.24)

Integrating by parts the second member of the hgind side of (2.24), we get
j Nvdxdt = j Auvdxdt. (2.25)

Where

mu= (-2 2o S,

0X 0X
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When we introduce the smoothing operatdfsand (J ;1)5, with respect
to [42] then these operators provide the solutiotihe problems

dg, (t)
dt

9., =0,

£ +g.(t) =9(t), (2.26)
And

O
. dg, (t)

TR g, (t) = g(t), (2.27)

- . =0
The solution have the following properties: tnrl,(0,T), the functions

g, = (J;l)g and g;= (ng)Dg are in W;(0,T) such thatg,(t)_, =0 and
O -1 0 T 2
gg(t)‘t:T =0. Moreover, (J7*) commutes Wltha’ S0 IO lg.-g| dt - 0 and

k

2
g7 -g dt - 0,fore -0,

Replacing in (2.25) by the smoothed functicﬂmj)u, using the relation

AJ-'=J'A, and using properties of the smoothing operaterget

ov;
fon] %

jdxdt= [, Auv dxdt. (2.28)

Passing to the limit, (2.28) is satisfied for falhctions satisfying the
conditions (2.2)-(2.5) such that

9 [0 g 1 @), %YL, () for 0<i<a.
ox' | ox“ ox'

The left-hand side of (2.28) is a continuous lmeactional ofu. Hence

the functionv_ has the derivatives

d'v? ) (a“vf

£ OL(Q), — OL,(Q),i=0a,
ox' 2(8) ox' ax"j 2(8)
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and the following conditions are satisfied

_a'y,
ox' ‘ X

x=0

=0, i=0a-1. (2.29)

x=1

In additionv_ satisfies the integral condition (2.5).

Puttingu = J';vf(x, r)dr in (2.25), and using (2.27), we obtain

— du V7
—j v, Nudxdt = j Au— dxdt- gj' Au—=dxdt. (2.30)
Q Q ot Q ot
Integrating by parts each term in the right-hami sif (2,30), we have
Re| Audxdt> 0, (2,31)
Q ot

o

Now, using (2.31) and (2.32) in (2.30) we have

0/

dxdt (2.32)

RejQ vENwixdt< 0,

then ReijN_vdxdts 0 ase approaches zero.

Smcej v|dxdt 0, we conclude that=0, hencew=0, what finishes the

proof of the lemmam

Theorem 12 The range R(L) of the operator L coincides with F.

Proof. SinceF is a Hilbert space, we hav®{L)=F if and only if the following
implication is satisfied:

9°lu %9
X" 9x“

jx 4ufdxdt+j ( +Iu ¢jdx 0, (2.33)

for arbitraryu/E and. 7 =(f,¢) LF , implies thaf and¢ are zero.
Puttingu/ZD(Lo) in (2.33), we obtain
J'sz Z ufdxdt=0.
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Using lemma 5 we obtain th&t0.

Consequently, we have

J'lx{aalu ad&ﬂu@jdxzo : (2.34)

0 ox? ox“

The range of the trace operatas everywhere dense in a Hilbert space
with norm

LAl

0x

[Jj xz[ : 2+|¢|2}dxr,

thereforeg =0, and the present proof is completmd.
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CHAPTER 3

MIXED PROBLEM WITH NON
LOCAL BOUNDARY
CONDITION FOR A HIGH ORDER
PARTIAL DIFFERENTIAL
EQUATION OF MIXED TYPE



3.1 Introduction

In this chapter we study a mixed problem for ahkogder differential
equation of mixed type with no classical boundamdition. The existence and
uniqueness of the strong solution in functional ghted Sobolev space are
proved. The proof is based in two sided a priotinestes and the fact that the

range of operator generalized by the considerebl@mois dense.

3.2 Position of the problem
Let o be a positive integer ar®d be the sef0,T)x(01) we consider the

equation

2 a a+l
.4u=a—g+(—1)"}a U
ot ox“ ot

o J= f(t,X). (3.1)

To equation(3.1) we attach the initial condition

lu=u(0,Xx) =¢@(x) x(0)), (3.2)
u=200 —yy  x0(0d), (3.3)
the boundary conditions
%m for 0<i<a-1 tO(@OT), (3.4)
%m for O<i<a-2 tOOT), (3.5)

and integral condition
[ut.ode=0  for tO@OT), (3.6)

were ¢ and Y are two known functions which satisfy the compatibility

conditions given ir{3.4), (3.5)and(3.6).
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3.3 Preliminaries
In this work, we prove the existence and the uemgss of a solution of
problem (3.1)-(3.p For this, we consider the problem (3.1)-(3.5)asolution
of the operator equation
Lu= .7,
where L=(<,l,q), the operatoi is acting fromE to F, whereE is the Banach
space consisting of functionsOL,(Q), satisfying(3.3), (3.4)and (3.5), with

finite norm
3 a aa+lu
"|| j dxd j‘___(xax”6£J dxdt+ supj {

ost<T
and F is the Hilbert space of vector-valued functiots=(f,¢,¢) obtained by

2
a+1
u

X7 ot

at +|u| }dx(3 7)

completing the spack, (Q) xW,;“** (01) with the following norm

IANE=](F a7 = [, %7 f (€0 dxat+ [ x {

|(//| ++y| }dx (3.8)

Using the energy inequalities method proposgddh we establish two-
sided a priori estimates. Then we prove that theraipr L is a linear
homeomorphism between the sp&candF.

Theorem 13 The following a priori estimate

|ul; <l (3.9)

holds for any functioal]E, where c is constant

Proof. Using equatiorg3.1) andinitial condition §8.2) we obtain

2 a a+ 2
j x| 2u P dxdtszj x2|02“| +Ia J7u
o lat?] |oxe T ax“at

Q

}dxdt (3.10)

2

dx, (3.11)

+1u

ox“ ot

2[07qu
ox“

jox

dx supj

Ost<T
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and j 2|qq dx< supj

Ost<T

2
—t‘ dx (3.12)

dx+ c”|u| e dxdt— j j e‘“u ou dxdt

We have ”e ua dxdt—‘|'hu|2 ot

2Reﬁje‘“u dxdtj j|u(x r)| e dx— j|¢| dx+c”e°t|u| dxdt
00

By using thes-inequality fore=1 at the first member, we obtain

2R{He “u— dxdtj < ﬁe‘°‘|u|2dxdt+ﬁe
00 00 00

By substitution, we obtain

dxdt

ﬂu(x r)| Ctdx+c”e°t|u| dxdt+ < ﬁ Ct|u| dxdt+ﬁe’Ct p dxdt+j|¢| dx
00

For &1, we have j e |u(x,7)|"dx < jje dxdt+ j 9" dx (3.13)
00

While multiplying by ¥ and integrating and combining the inequalif@40),
(3.11) (3.12)and(3.13),we obtain(3.9)for uE. m

Theorem 14 For any function &WE, we have the inequality

|ule < Clul. . (3.14)
where the constant = M
inf(3,e™")
! 0%u 9°u
Proof. Let Jg:jxg(t'f)df and Mu= XZaTJraXJF'

We consider the quadratic form Rejorjol ZuMudxdt,
which is obtained by multiplyingd.1) by Mu. We have
_ a a+l 27, 2
z’uMu-au()Ea 6u x265+axJag.
X 0x“ ax"at ot ot
Integrating by report t@, we obtain
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2

o [ a”ﬂujaza

_ 2 2
jl ZUuM de:jlxza—ga de+j 10° g .
0 0" ot? ot 09t ot oxe| " ox“ot ) ot
+(-1)° J' a( 0°"u Jazﬁdx (3.15)
ax ax"at ot? '
We have
— 2
1 ,0%u0%u , 1 ,l0%u
J’OX at_zatz dX—IOX ? dx.

Integrating by parts the terms of the second mernobég8.15 and by taking

into account of the boundary conditions, we obtain

2 27 2 2
J'la—gax o"u dx —aJ' x— a_;; Ja gdx
0 ot ot? ox{ ot ot

2 2. 2 2.
e R LA PRy

o’ ot 0" a2 ax| ot
_ 0%u . 9%u 0%u a9 ,d%u
-ajoJazJa dx +aj0362anJ o7 O

2 2
=aj" gudx aJJatu %zdx
From where
Rj ou, 62 (3.16)
a2 '

L 97 (970t 0°% (07w 9%u|
-7\ x X = X
7], x| ax”atjat = { ox? -1( ax”atj atz}0
aa—l aa+lu a aZG
e — d
D Ioax”-l(xax“atJax(xatzj §

199" 1 aa+1u aza 1 aa—l ( aa+1u aza
=(-D* dx+ (=D X X dx
=D jax”1 ax”atjat2 2 joaxa-lk ax”atJ oot

—1 —
60—2 aa+lu aZu 1 aa—Z ( aa+lu aSu
=(-* X + (=D X dx
3 {ax“-z( ax“atj atz} 3 joaxHL ax”atjamtz
a-2 a+l 3 1 a-2 a+l 3
(1) aa_z Xa au « 0 u2 +(_1)a+zjlaa_2 Xa au 0 « 0 u2 dx
OX ox“ot ) oxot o 00X ox“0t Jox| oxot
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aaz aa+1u 63 aaz aa+l asa

- a+2 d a+2 dX
=D Iax”2 ax"atjaxﬁtz +D jax“k X7t jaxat2

1 an—Z aa+lu a4a

+(=1)7*2 X X dx

D J-Oax""2 ax"’atj ox*ot?

aa—z ( aa+1u asa 1 aa—z aa+1 64_
= (=22 X dx+ (-D*?| x
77 x| ax”atjaxat2 S X2 ax”atjaxzat2
_ _
aa—S aa+1u aSu 1 60—3 ( aa+1u a4u
=(-)? X +(-)™°2 X dx
=D z{axﬂ( ax”atj(mz} D Ioa><"-f"k ax”atjaxzat2
60—3 aa+1 64 aa -3 ( aa+1 a 64[I
+(-1)*2 a3 X dx
D Lx"'?’( 6x"atj M } 7] Y ax”atJax[ axzatzj
a-3 a+l 4 a-3 a+l 4.
197°( 9 uj d*u dx+(—1)“+3jla (.a uj 9“u

=(-1)"*2 X X
5 joa><"'3L ax“at ) axZot? 0.9x“3| " oxot ) ox?ot?

aa 3 ( aa+l 656
+ a+3 X X
3 I 0 X7 ax"atj ox’ot?

pranl 93 ( 37y a4a e (L 93 ( 7y aSG
=(- X X+ (-1 X X dx
D jo oxa3 " ax?ot ) axot? D jo oxa2 " ox7at ) axat?

Reasoning by recurrence, we obtain

107 (_9"u\a%u ) 9°%u) 47U
-7 x X dx=(-2)*(a-1)|| x
( )IO x| ax”atj ot’ O™ )K ax”at]ax”-zatzl

aa+lu aa+1a ~ aa+lu aa+1a 1
+(-D% (@ -D)[ x X+ (=1 x X
(D™ )L 0x“?0t ox*ot? D [ ox“ot ax”‘latz}

+(—1)2"jlxaa+lui NCATRN
0 9x%0t ox| ox“ot
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a+1u aa+1_

Ox“?0t ox**ot?

a+1u aa+1 o
ot axr oz (D j

e 1 aa+lu aa+2
+D onax”atxax"at2 X

= (-1)* (@ -1 x ~

a+l a+ly, a+l a+l
N A TR LaT, dx+(—1)2"J'lx26 ui(a ujdx

=(-D)%al x
D jo ox?0t ox?ot? 0x“ot ot | ox“ot

From where

K a+2 a+l a+l), a+l, a+2
0 92 udx:aj'lxa u a_lUZdX+J‘1X23 uadf(a u2 ix (317)
OX 6X ot? ) ot? 0 9x70t ax“ ot 0 9x“ot ot ox“ot

1 aa ( aa+l 62 aa—l aa+1u aZG 1
-0 a X dx=(-1 X J
7, x| ax”at] o PV LXH( ax“atJ atz}0

a-1 a+l 2
+(-D)""a 10 — xa ujo Ja ;J dx
0 gx“ ox“ot Jox| ot

ge2 1 aa—l ( aa+lu aZG
=(- a X dx
D IO axa| “ox“ot ) ot?

[ qa-2 a+l 27! a-2 a+l 27,
- ()2 d : N ag +(—1)”*3afa _Z(Xa ulo’u
Lox 2| " ox7at ) ot? | 09x" 2|~ ox“ot ) axat
[ ya-3 a+l 3= P! a-3 a+l 4
- () 0 : (0 0 u2 +(_1)a+4ala _3(Xa a2 dx
Lax72 " ox7at ) oxdt? | 09x"2( " ax“dt ) ax?ot
o avaea 9a? 7ty 046 . Cvass 1 aa—4( 9y asa
=D a{ax”’"‘(xax”atjaxzatzl+( Y ajoax““‘kxax“atJaﬂatzdx

Reasoning by recurrence, we obtain

7 (9. 0%u o o= oeu T NN L Ly
J dx=(-1)"a| x +(-1)""a
- )j ax“ | ax”atj ot? -1 {ax"atax”‘latz}0 -1 j
B .rl' aa+lu aa+la
=-al| x
0 9gx70t ox“tot?

From where
_ a+l a+l;,
Rej'1 JuMudx:rxz —j dx Rj 26 uodforu dx
0 0 ox“at ot | ox“at
a+l a+l;
+Refx2a uofomu )y (3.18)
0 gx“0t at| ox“ot
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Integrating by parts the third term of (3.18)

a+l a+ly, a+ 1 a+ly, a+l
jrxza Uia dedtzj'la Uza jra Ua a udth
07  gx“dt ot | ox“ot Oax"at ox“ot | 0 9x“ ot ot ax"at

_ ra“la(r, X) 2 07" u(7, X) e jlaaﬂa(o, X) .z 97*1u(0, X) i
o gx“ot ox“ ot 0 gx7ot ox“ ot

a+l; 0/1
- j 107U 2 0107 U it
Oax"at at| ax“ot

From where
a atly a+l|, a+l
Rej fxz o uojo v dxdtzljla u@,x) .. 07U, x)
ox“ ot ot{ ox“ot 2o xeat PV
a+l, a+l
_1po"u©0,x) .00 X)
2% oxot Xt

Replacing in (3.18), we obtain

dxdt+ j j ‘

1 207 u(0,X) 2 07*1u(0, X) . jlxz

a+l, a+l
6 u(z, x) X20 u(r, x)d

d dt
2 o ox“ot ox“ot

Rej'j ZuMudx= J'J.

a+l 2
0°7u(0,x) dx

T2 axeat X7t 20" [ oxvot
N azu 2 2
[ 2
=] [ = dxdt+ 6t2 dxdt
a+l, . a+l a,;,|?
120" u(7,X) 2 0 U(T’X)dx—éj'lxza—w dx
27  9x%ot ox“ ot 27  9x°
j j d dt+ — j j ‘ d dt
2|07"u(7, %) x) 1,107 ?
+= I sz— dx
ox“ot 2 0 |ox“

By using the proprieties of the modules and of¢ireequality, we obtain

Rejorjol ZuMulx< LTE l2u| [Mudxdt
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20U, 9°u|

<[]0 heulx ot t2‘dxdt
< jorj.ol l2u| x? ?;E dxdt+ ajorjol Iz’u||xl‘J%dedt
—H x(elz’u|+— )d xdt
+% [ j: (€2 X2 u )dxdt
<[ S | o e o] ol 2 S
a p azﬁ|2
"o [ ]} o dxdt.
From where
(£1+a£2j.[ j x* |eu| dxdt+—.“' 6t2 97U xdt
+2€ H g “| dxdt= [ [ % CETW —H‘ et
+lrxz—6‘“lu(r,x)2 —lj‘lxzaa_wzdx.
27 0x“ ot 2790 | 9x“
While taking ¢, =&, =1, we obtain
2
[1+aj.[.[ 2 l2ufdxdt+ = I
—H dxdt 2~[0 % dx. (3.19)
We have
J'leze‘Ct _aug; X) 2dx—.[:x2|t,l/|2dx+ c.[or.[:xze Ctg ‘ dxdt< ZJ‘ I x2e™ gt?} dxdt.
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From where

c 6u ¢ 6 U 6
J'jxe ta dxdt- jj'xe ta dxdt< Zj'jxe ua Yaixdt,
c Is constant.
sz e (r X) dx j 2|¢/| dx+ (c— 1)” x2e™® ‘dxdt
2
jsz ‘Ct dxdt< 0
J'lxze 5 (r X) dx J' |l//| dx+(c— l)J' j x’e™ au dxdt
0
2
—jrfxze‘cta—;J dxdt< 0.
0 Jo ot
For c>1, using lemma 4 we obtain
2
j x%e ‘Ct—t(r,x) dx<J' 2y dx+J' j x%e a0 U dxdt
from where
—cT 2
68 [[x o dx_—j x| dx+ —”xz -°‘a “ dxdt. (3.20)
From the equation (3.1) we have
a a+l
2u ___( NEL ( W
xox®\ ox“ot
aa aa+1u
v _) 3 ax (de"dt
o (xaaﬂ“J _x2|1’u+—| <2¢| 2uP+ 2x2|0Y ',
ox™\ ox7ot o2 |
from where
o7 2
= j j v ( axaatj dxdts = j j x2 | Luffdxdt+= j j dxdt (3.21)

40



Adding inequalities (3.19), (3.20) and (3.21) membih member we obtain

(3+20’jjj 2 leufdxdt+ = IX2|1//|2dx+%J‘01 j j

"dt

+1rx2 0""u(r,x) 2dx+ irxz ou de.
27 ox“ ot 8 o
Raising the left-hand side, we obtain
2 2
3+2a (T g 31 ,l0%u
(22200 [ o3 ol axn L [0 e 3 [l o
+1rX2 07 u(r, X) ? +£I1X2 ou de
2 ox“ot 8 w
2
3+2a (Tt 1p 2 1 L0 3¢t ,l0%U
(222 o e [ o S LXZW axs [ [0
+ sup dx —‘ dx.
2 0<r<T %0 ax"at 8 0<7<T
From where
2(3+2a)j x? |2ufPdxdtr [ x j 2l dx+4j dx>3j j
6‘”1u(r,x)
—— = d
easupl[ K50 axee sup ([T r 0 o
While posing
2 0
M@ DIz =11 711z = [ x°| | dxdt [l dxr [
Q
a+1 |2
— d
Ml = ] o | oo sl o
we obtain
_ sud3+2a 4)

ulle <C|IL u , C=
ke <CIIL ull =

This ends the proof of the theorem.
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3.4 Solvability of the problem

From estimates (3.9) and (3.13), it follows tHas bperatoL.E - F is
continuous and its range is closed=inTo prove the solvability of (3.1)-(3.5),
it is sufficient to show thaR(L) is dense inF. The proof is based on the

following lemma.

Lemma 6 Let Do(L)={ulID(L) / lu=0 A qu=0}. If for u/DyL) and somew
such thatai 1L,(Q), we have

jsz Zuadxdt=0, (3.22)

thenw=0.

Proof. The equality (3.22) is can be written as follows

j X —cwlxdt jwdxdt, (3.23)

ox“ ( ox“ot
for afx,1) given, we introduce the function

Gw(f t)
v(x,t) = x“j df+x'1jﬂdf

Then we haveJ'lv(x,t)dx:O and X’ax x®+axJv=Nv. Then from equality

(3.23) we have

j—Nvd xdt=(-1)" [ o (xaaﬂ“}&dxdt

ox?\ ox“7ot
cal-17 [ 22 x27Y | svaxat. (3.24)
a Ll ox” ax"at X '

Integrating by parts the second member of the 4tgimd side of (3.24), we get

j —Nvdxdt— j A—vdxdt (3.25)
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where

Au = (-1) 9

o [ 20
ox” ax° )’

a a+l
A (g 9 (Xza “j.

ot ox” ox“ot

Then

Using properties of the smoothing operatdf$ and (J;l)D that we introduced
into chapter 2, replacing in (3.26)by the smoothed functio(ﬂj)u and using

the relationAJ* = J*A, we get

= ou (a jd xdt=|_ A—dexdt (3.26)
o gt | ot

Passing to the limit, (3.26) is satisfied for falhctions satisfying the
conditions (3.2)- (3.5) such that

ai aa+1 a|+1
— Q), ——0OL,(Q) for0<i<a.
o’ (GX”GJ () g )

The left hand of (3.26) is a continuous linear tiomal of % Hence

the functionv;’ has the derivatives

i,0 a
Ne (), a kY DL(Q) i=0a,
ox' ax

and the following conditions are satisfied

0'v’
ox'

_a'y,
ox'

=0, i=0a-1, (3.27)

x=0 x=1

in additionv_ satisfies the integral condition (3.5).

Puttingu :j;jorvf(x,/y)dqdr in (3.25), and using (2.27), we obtain

0u 0°u ef. Aa“ "fd d. (3.28)

—J' Vv, Ndedt—J' A——d dt—-¢
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Integrating by parts each term in the right-hami sif (3.30), we have

du d2u
Rejﬂ Ao dxdt= 0, (3.29)
_D a,,U0 2
Reg -¢ A@aidxdt =£I xZai dxdt. (3.30)
o’ ot ot o™ | gx7

Now, using (3.29) and (3.30) in (3.28) we have
ReijEN_vdxdts 0,

then ReijN_vdxdts 0 as& approaches zero.

Since | X’ dxdt=0, we conclude that=0, hencew =0, what finishes the

proof of the lemmam
Theorem 15 The range R(L) of the operator L coincides with F.
Proof. SinceF is a Hilbert space, we ha®{L)=F if and only if the following

implication is satisfied:

[x* L utdxdt+ Ex{m o, quy + Iuﬁjdx: 0

ox? ox“

jlx2 0"lu 0 Y vl +lug [dx=0 (3.31)
o | ox* ox”

for arbitraryu/E and. / =(f,¢,¢) LF , implies that and¢ are zero.
Puttingu/ZD(Lo) in (3.31), we obtain
jsz Z ufdxdt=0.

Using lemma 6 we obtain thit0. Consequently, we have

rxz 0"lu 9 w+|u@+lu¢ dx=0- (3.32)
o | ox* ox*
The range of the trace operatas everywhere dense in a Hilbert space
0y
0X

[ﬂx{ / +|w|2+|¢|2}dx]

thereforeg=0, /=0, and the present proof is completad.
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Résumé

Le présent travail est I'objet d'une extensiotad@éthode des inégalités
énergétiqgues a de nouveaux problemes mixtes pauatiégs aux dérivées
partielles et équations aux dérivées partielleg/pe mixte avec conditions aux
bords non classiques de type intégral. Ces proldesmnt les modeéles
mathématiques rencontrés en théorie de la condutiermique, mémoire des
matériaux, semi-conducteurs et en électrochimie.etc

La méthode utilisée est la méthode des inégaditesgétiques qui est
basée sur la recherche d'un opérabtduy dit multiplicateur, qui dépend de la
fonction u, ses dérivées et d'une certaine fonction poids. Dmagnené par la
suite a effectuer des intégrations sur le domaimsidéré en vu de dotEret F
de normes adéquates afin de pouvoir montrer lenigt et l'unicité de la
solution, dite forte, du probléme considéré apeasir mis sous la forme

Lu=.~,
ou L:E - F est l'opérateur engendré par le probleme consi&éeéf un espace
de Banachk est un espace de Hilbeut,)E et. /TIF.

On démontre deux inégalités a priori:

|, sclul,  Duobw),

ol sdudd,  ouooQ),

ou C etc sont des constantes

L'unicité de la solution du probleme considéré Itésdle ces deux
inégalités. Son existence est assurée par ledaiR@) est dense darts chose
faisable moyennant des opérateurs de régularisatieri'on choisira suivant la
nature de probleme.

Il convient de noter que I'absence d'une théome&gde a nécessité une
étude spéciale pour chaque probléme considéré.



Abstract

The present work is the object of an extensiothefmethod of energy
inequalities to new mixed problems for high-ord#fedential equations and
high-order differential of mixed type with non ct&sal boundary conditions of
integral type. These problems are mathematical feodecountered in the
theory of thermo conduction, memory materials, semductors and the
electrochemistry ect...

The mixed problems with integral conditions takesre and more
interest as a result of the fundamental reasonwiBithe basis of the physical
significance of the integral condition as an averag flux, a total energy, a
moment, etc...

The existence and uniqueness of the strong sofutionfunctional
weighted Sobolev space are proved. The used méshthe energy equalities
method which is based on the research of an opdvat&known as multiplier.
This last one depends on the functionits derivatives and some weight
function. We are then conducted to take integrationer the considered
domain with a view to equipping andF with appropriate norms in order to
show the existence and uniqueness of the solufidheoconsidered problem
once it has been made into the form

Lu=.~,
where L:E-F is the operator generated by the considered problens an
Banach spacé; a Hilbert spaceul]E and. /TIF .
We demonstrate two sided a priori inequalities
|, sclul.  DuoDW),

jul. <, ouoDQ),

whereC andc are constants.

The uniqueness of the solution, said strong, ofcthresidered problems
results from these two inequalities. Its existeiscensured by the fact th&(L)
Is dense irF, which can be proved by the regularly operatorspeding to the
nature of the considered problem.

It is convenient to note that the absence of a rgéribeory made it
necessarily to investigate each problem separately.



