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INTRODUCTION

Inequalities have played a dominant role in the development of all branches of ma-
thematics, and they have a central place in the attention of many mathematicians. One
reason for much of the successful mathematical development in the theory of ordinary
and partial differential equations is the availability of some kinds of inequalities and
variational principles involving functions and their derivatives. Differential and integral
inequalities have become a major tool in the analysis of the differential and integral
equations that occur in nature or are constructed by people. A good deal of information
on this subject may be found in a number of monographs published during the last few
years.

Integral inequalities play a fundamental role in the study of qualitative properties of
differential and integral equations. They were introduced by Gronwall in 1919 [1], who
gave their applications in the study of some problems concerning ordinary differential
equation. The inequality of Gronwall was stated as follows.

Let u : [a, & + h] — R be a continuous function satisfying the inequality

t

0 <u(t) < / l[a + bu(s)]ds, fort € [a,a+ h],
where a and b are nonnegative constants, then
0 <wu(t) <ahe™ forte|a,a+h].

This result is the prototype for the study of many integral inequalities of Volterra type,
and also for obtaining explicit bounds of the unknown function. After the discovery of this
integral inequality, a number of mathematicians have shown their considerable interest
to generalize the original form of this inequality. Among the publications on this subject
during the period 1919-1975, the papers of Bellman [2], Bihari [3] and Beesack [4] is well
known and have found wide applications. Other names to be mentioned with the further

development of the theory of integral inequalities are : R.P. Agarwal, Azbelev, Bainov,
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DEO, Dhongade, Lakshmikantham, Leela and Pachpatte in [8, 6, 33]. Gronwall-Bellman
inequalities [1],[2] and their various generalizations can be used as tools in the study of
existence, uniqueness, boundedness, stability, and other qualitative properties of solutions
of differential equations, integral equations, and integrodifferential equations.

The integral inequalities of various types have been widely studied in most subjects
involving mathematical analysis. They are particularly useful for approximation theory
and numerical analysis in which estimates of approximation errors are involved. In recent
years, the application of integral inequalities has greatly expanded and they are now
used not only in mathematics but also in the areas of physics, technology and biological
sciences. The theory of differential and integral inequalities has gained increasing signi-
ficance in the last century as is apparent from the large number of publications on the
subject ( see [22]-[30]).

Many nonlinear dynamical systems are too complicated to be effectively analized. In
many situations, we are interested in knowing qualitative properties of solutions without
explicit knowledge of the solution process. Having knowledge of the existence of solutions
of the system, the integral inequalities with explicit estimates serve as an important tool
in their analysis. In fact, the integral inequalities with explicit estimates and fixed point
theorems are powerful tools in nonlinear analysis.

In the last few years, a number of nonlinear integral inequalities had been established
by many scholars, which are motivated by certain applications. For example, we refer the
reader to literatures [4, 5, 8], and the references given therein.

The aim of the present work is to give an exposition of the classical results about
integral inequalities with have appeared in the mathematical literature in recent years;
to establish new nonlinear integral inequalities and also many new nonlinear retarded
integral inequalities. The results given here can be used in the qualitative theory of various
classes of boundary value problems of partial differential equations, partial differential
equations with a delay, differential equations, integral equations and integrodifferential

equations.



The thesis consists of four chapters. Chapter 1 is devoted to presenting a number of
classical facts in the domain of Gronwall inequalities and some nonlinear inequalities in
the case of one variable, we collected a most of the these inequalities from [8] and [6].

The second chapter is devoted to establish some multidimensional Integral Inequalities
Similar To Gronwall Inequalities. Some bidimensional inequalities obtained in [10, 11] and
a new nonlinear integral inequalities for functions with n independent variables obtained
by Denche and Khellaf [17]. These results extend the Gronwall type inequalities obtained
by Pachpatte [12] and Oguntuase [16].

The third chapter is devoted to establish some integral inequalities in two independent
variables with delay [20] and [21], our results generalize the integral inequalities obtained
in [22, 23, 27, 29]. Three examples of applications are given to illustrate the usefulness

of our results in the fourth chapter.



Chapitre 1

Some Classical Integral Inequalities

In this chapter we present a number of classical linear and nonlinear integral in-
equalities of Gornwall type for functions of one variable. we collected the most of these
inequalities from [6] and [§].

1.1 Linear integral inequalities

1.1.1 Linear integral inequalities of Gronwall type

In a paper published in 1943, Bellman proved the following result [1].

Theorm 1.1 Let u(t) and b(t) be nonegative continuous functions for t > «, and let
t
u(t) <a +/ b(s)u(s)ds, t>a, (1.1)
where a > 0 is a constant. Then

ult) < aexp ( /a t b(s)ds) , t> a. (1.2)



Proof. Let a > 0. Then (1.1) implies the inequality

b(r)u(T)
a+ [7b(s)u(s)ds

< b(7), T> .

Integrating this inequality from « to ¢ yields

In [H/at b(s)u(s)ds] —Ina < /; b(s)ds.

Together with (1.1) this implies (1.2).
Let a = 0. Then u(t) < e+ [ b(s)u(s)ds for any ¢ > 0. Hence u(t) < aexp <foi b(s)ds)
and letting € — 0 we find u(¢) =0. =

Lemma 1.2 Let b(t) and f(t) be continuous functions for t > «, let v(t) be a differen-

tiable function for t > «, and suppose

@\
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~+~
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b(t)u(t) + (1), t>a,

=
L
IA

vo. (1.3)
Then, , fort > a,

o(t) < 1o, exp ( /a t b(s)ds) + /a " H(s) exp ( / tb(T)dT> ds. (1.4)

Proof. From (1.3) we have

) - sspieles [ oar) < sy ([ oar). sz

or



Integrating over s from « to t gives

mw—vmymp(L%@m{)g[jﬂ$@m<l%@yh>@,

since v(a) < vy, we obtain (1.4). m

Remark 1.3 Note that the right hand side of (1.4) coincides with the unique solution of
the equation

V() = b + f(1),  t>a, (L5)

for which
v(ar) = vy (1.6)

Equation (1.5) is called the comparison differential equation of the inequality (1.3). The
comparison initial value problem (1.5)-(1.6) is obtained by replacing in (1.3) < by = .

Remark 1.4 The result of lemma 1.2 remains valid if < is replaced by > in both (1.3)
and (1.4).

Remark 1.5 If the functions b(t) and f(t) are continuous for t < o and
V'(t) < b(t)u(t) + f(t), t <a,

then

U@EUMRW(A%@%)+Lv@hm<[wﬂﬁ>%. t<a

Moreover, this result remains valid if < is replaced by > .

Theorm 1.6 Let a(t), b(t) and u(t) be continuous functions in J = [a, 5] and let b(t) >
0, fort € J. Suppose



Then
u(t) < a(t) + /C: a(s)b(s)exp (/: b(T)dT) ds, teJ. (1.7)

Proof. Set v(t) = f; b(s)u(s)ds, then
u(t) < a(t) +v(t), (1.8)
and we have

V() = b(t)u(t) < b(t)u(t) +a(t)b(t), teJ,

From lemma 1.2 we obtain

ol(t) < /a " a(s)b(s)exp < / tb(T)dT) |

From the last inequality and (1.8) yields (1.7) =

Corollary 1.7 Let, under the conditions of theorem 1.6, if a(t) is nondecreasing in J.

Then t
u(t) < a(t)eap ( /a b(T)dT) L ted

Proof. (1.5) implies that

u(t) < a(t) + alt) /; b(s) exp (/t b(T)dT) ds = a(t) {1 _ /atdii <exp (/t b(T)dT)ﬂ |

then t
ult) < alt) exp ( /a b(s)ds) .



Corollary 1.8 Let b(t) and u(t) be continuous functions in J = [«, 8], let b(t) > 0, for

t € J, and suppose
t

u(t) <a +/ b(s)u(s)ds, teld,

where a s a constant. Then

u(t) < aexp ( /a t b(s)ds) , tel.

Remark 1.9 The conclusion of corollary 1.8 shows that in theorem 1.1 we may omit the

requirement that u(t) and a be nonegative.

Corollary 1.10 Let u(t) be a continuous function in J = [«, 5], and suppose

t

u(t) <a +/ bu(s)ds, teld,
where b > 0 and a are constants. Then
u(t) < a2, ted

The following assertion is related to work of Giuliano, Kharlamov, Willet, and Beesack

[4]-

Theorm 1.11 Let u(t) and k(t) be continuous functions in J = [a, 3], and let a(t) and

b(t) be Riemann integrable functions in J with k(t) and b(t) are nonnegative in J

i) If

t

u(t) < al(t) + b(t)/ k(s)u(s)ds, teJd, (1.9)

[0}

then

t

u(t) < a(t) + b(t) / a(s)k(s) exp ( / t k(f)b(f)df) ds, te (1.10)

Moreover, equality holds in (1.10) for a subinterval J, = |, 4] of J if equality holds in

10



(1.9) fort € J.
it) If 7 <7 is replaced by ” > in both (1.9) and (1.10), the result remain valid.
iii) Both i) and ii) remain valid if fi is replaced by ftﬁ and fst by [ throughout.

Corollary 1.12 Let u(t), a(t), b(t) and k(t) be continuous functions in J = [a, ], let
c(t,s) be a continuous function for a« < s <t < 3, let b(t) and k(t) be nonegative in J,

and suppose

u(t) < a(t) +/ [k(t)b(s)u(s) + c(t,s)]ds, te

a

Then fort € J,

t

u(t) < a(t)+/ c(t, s)ds

[0}

() /a () {a(s) + /a S c(t,T)dT} exp ( / t b(r)k:(r)dr) ds.

Corollary 1.13 Let u(t), a(t), b;(t) and k;(t) (i = 1,...,n) be continuous functions in

J = o, 8], let b;j(t) and k;(t) be nonegative in J, and suppose

u(t) < a(t) + Z k‘l(t)/ bi(s)u(s)ds, teJ

Then fort € J,

u(t) < a(t) + K(t)/ a(s) Zbi(s)exp </ K(7) Zbi(T)dT> ds,

where, K (t) = sup,_;__, ki(t).

1.1.2 Gronwall-Bellman linear inequalities

On the basis of various motivations, the Gronwall-Bellman inequality has been ex-
tended and used considerably in various contexts. This section gives some useful genera-

lizations and variants of the Gronwall-Bellman inequality in one variable.
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Gollwitzer [8] gave the following generalization of the Gronwall-Bellman inequality.

Theorm 1.14 Let u, f, g and h be nonnegative continuous functions defined on J =

[, 5], and

t

uw(t) < f(t) + g(t)/ h(s)u(s)ds, teJ.

«

Then
t

u(t) < (1) + g(t) / h(s)f(s) exp ( / th(r)g(7’)d7’> ds, tel

«

Proof. Define a function z(¢) by

an application of lemma 1.2 to the last inequality we get

A0 < [ 1)) e (/ t br)alr)ir) ds.

substituting the last inequality in u(t) < f(t) + g(t)z(t) we obtain the desired inequality.
[
Pachpatte in [9] employed the following variant of the inequality given in Theorem

14 in obtaining various generalizations of Bellman’s inequality.

Theorm 1.15 Let u, g and h be nonnegative continuous functions defined on J = [«, 3],

n(t) be a continuous, positive and nondecreasing function defined on J and
t

u(t) < n(t) + g(t)/ h(s)u(s)ds,  te€ J.

«

12



Then u(t) < n(t) {1 +g(t) [ h(s) exp ( /! h(T)g<T)dT) ds] . teld
A fairly general version of theorem 1.14 is given in the following result.

Theorm 1.16 Let u, p, q, f and g be nonnegative continuous functions defined on J =

[, 5], and

t

ult) < plt) + q(t) / F(s)uls) + g(s)ds,  te

«

Then
ult) < p0)+att) [ F6)pls) + ) ex ( / fmq(T)dT), te

Proof. Define a function z(¢) by

¢
A0 = [ () + (o)) s,
Now by following the proof of theorem 1.14, we get the desired inequality m

Remark 1.17 By setting q(t) = 1 in theorem 1.16 we arrive at the inequality given by
Chandirov in [6]. If we take g(t) = 0 in theorem 1.16 we get the inequality given in
theorem 1.14.

Gamidov proved the following inequalities and employed them to obtain bounds for

the solutions of certain boundary value problems.

Theorm 1.18 Let u, f, gi, h; (i = 1,2,...,n) be continuous functions defined on J =

[, B], let g; and h; be nonnegative in J, and
n t
u(t) < f(t) + Zgz(t)/ hi(s)u(s)ds,  teJ
i=1 a
Then fort € J,

u(t) < f(t) +g(t)/ f(s) Zhi(s) exp (/ 9(0) Zhi<0)d0) ds,

13



where g(t) = sup; {gi(t)} .

Proof. We observe that

t
«

u(t) < f(t) +g(t)/ (Z hi(s)> u(s)ds, teJ

Now an application of theorem 1.14 gives the required inequality. m

1.1.3 Volterra type integral inequalities

Integral inequalities which satisfies a Volterra integral inequality have wide applica-
tions in the theory of differential and integral equations. In this section we consider some
Volterra type integral inequalities involving an unknown function of a single variable.

Chu and Metcalf [6] proved the following linear generalization of the Gronwall-Bellman

inequality (with a kernel).

Theorm 1.19 Let u(t) and a(t) be continuous functions in J = [a, (], let k(s,t) be a
nonnegative continuous function in the triangle A = {(t,s) e R* : a < s <t < 3}, and

suppose
t

u(t) < a(t) + / k(t s)u(s)ds,  te .

«

Then

14



i1) The solution v(t) is unique and can be obtained as the sum of a Neumann series :

v(t) = vo(t) + ... +vu(t) + ...y

where vo(t) = a(t),v,(t) = / k(t,s)v,_1(s)ds,n =1,2, ...

The following theorem presents slight variants of the inequality given by Norbury and

Stuart [31] which are sometimes applicable more conveniently.

Theorm 1.20 /8] Let u(t) be a continuous function in J = [«, 5] and k(t,s) be nonde-

creasing function in t for each s € J.

oL t
u(t) < c+/ k(t,s)u(s)ds, te€J, (1.11)

where ¢ > 0 s a constant. Then

u(t) < cexp </atk:(t,s)ds> Cted (1.12)

(i1) Let a(t) be a positive continuous and nondecreasing function for t € J. If
¢

u(t) < a(t) +/ k(t,s)u(s)ds,  t € J, (1.13)

«

then

t
u(t) < a(t)exp </ k:(t,s)ds) , te (1.14)
Proof. (i) Fix any 7', « < T < (3. Then, for a« <t < T < 3, we have
t
u(t) < c—l—/ k(T,s)u(s)ds, teJ. (1.15)

Define a function z(t) by the fight side of (1.15), then z(«) = ¢, u(t) < z(t) for a« <t <
T < [ and
Z(t) = k(T t)u(t) < k(T,t)z(t), a<t<T.

15



By setting ¢ = s in the last inequality and integrating it with respect to s from « to t we

get

+(t) < cexp (/; BT, s)ds> |

Since T is arbitrary, with 7 replaced by ¢ and u(t) < z(t) we get the inequality (1.12).

(ii) Since a(t) is a positive continuous and nondecreasing function for ¢ € .J, from

(1.13) we observe that

%Sl—i—/atk(t,s)wds, teld

Now an application of the inequality given in (i) yields the desired result (1.14). m

Remark 1.21 Note that the inequality given in part (i) was obtained by Norbury and

Stuart [31] under the assumptions of the existence and nonnegativity of 2k(t, s).

Pachpatte in [8] proved the following inequality, which in turn is a further generali-

zation of Norbury and Stuart’s inequality [31].

Theorm 1.22 Let u,p,q,r and f be nonnegative continuous functions defined on J =

[, B]. Let k(t,s) and its partial derivative 2k(t,s) be nonnegative continuous functions

fora<s<t<p, and

Then

where

t

u(t) < p(t) + q(t) / k(t,s) [F(s)u(s) + f(s)]ds, te ..

«

u(t) < p(t) + q(t) /tB (o) exp (/:A(T) dT) do, te,

[0}

t

A(t) = k(t, t)r(t)q(t) +/ %k’(t, s)r(s)q(s)ds, te€ J,

Lo

B(t) = k(t, 1) [r(t)p(t) + f(1)] +/ ook (t, ) [r(s)p(s) + f(s)l ds, t € J.

ot

[0

16
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(1.19)



Remark 1.23 Note that the special version of the above inequality with r(t) = 1 and
f(t) = 0 was obtained by Movlyankulov and Filatov [32].

1.2 Nonlinear integral inequalities in one variable

One of the most useful methods available for studying a nonlinear system of ordinary
differential equations, which is typical among investigations on this subject, is the use of
nonlinear integral inequalities which provide explicit bounds on the unknown functions
in the case of one or more than one variable. This section considers various nonlinear
integral inequalities in the case of one variable discovered in the literature.

In the past few years many authors have obtained various generalizations and exten-
sions of Gronwall-Bellman-Bihari inequalities [8]-[17]. In this section some generalizations
of this inequalities containing combinations of the inequalities by taking a sum of two
integrals will be given, one containing the unknown function of one variable in a linear

form and the other in a non-linear form.
In what follow we need the following definition :

Definition 1.24 A function f : R, — R, is said to be
i) subadditive if f(x+y) < f(z)+ f(y),z,y € Ry;
it) submultiplicative if f (xy) < f(z)f(y),z,y € Ry.

Pachpatte [9] proved the following integral inequalities.

Theorm 1.25 Let u, f, g and h be nonnegative continuous functions defined on R*. Let
w(u) be a continuous nondecreasing and submultiplicative function defined on R™ and

w(u) >0 on (0,00). If

t t

u(t) < wg+ g(t)/f(s)u(s)ds + /h(s)w (u(s))ds, (1.20)

0 0
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for allt € RT, where ug is a positive constant, then for 0 <t < ty,

t

u(t) < a()G | G (ug) + / h(s)w (a(s)) ds | |

0

where
t t

a(t) =1+ g(t) / £(s) exp / 4(0)(0)do | ds,

fort e R* and

r

d
G(T)Z/WZ)’ r>0,r9>0,

T0

and G~ is the inverse function of G, and t; € R* is chosen so that

G (ug) + /h(s)w (a(s))ds € Dom (G™),

0

for allt € RT lying in the interval 0 < t < t;.

Proof. Define a function z(¢) by

t

2(t) = up + /h(s)w (u(s))ds,

0
then (1.20) can be restated as

t

u(t) < =(t) + g(t) / £(s)u(s)ds.

0

(1.21)

(1.22)

(1.23)

(1.24)

Since z(t) is positive monotonic nondecreasing on R™, by applying theorem 3.14 we have

u(t) < a(t)z(t),

18
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where a(t) is defined by (1.22). From (1.24) and (1.25) we have

Z(t) = h(tyw(u(t))
< h(t)w (alt)=(t))
< h(w (a(t)) w (=(1)) (1.26)
From (1.23) and (1.26) we have
d A
%G(z(t)) = w0 < h(t)w (a(t)) . (1.27)
By taking ¢ = s in (1.27) and integrating it from 0 to ¢, we obtain
G (2(1) < G (ug) + / h(s)w (a(s)) ds. (1.28)

0

The desired bound in (1.21) follows from (1.25) and (1.28). The subinterval 0 < ¢ < ¢; is
obvious m
Pachpatte [9] also gave the following theorem, which can be used in more general

situations.

Theorm 1.26 Let u, f, g and h be nonnegative continuous functions defined on R*. Let
w(u) be a continuous nondecreasing subadditive and submultiplicative function defined on
R and w(u) > 0 on (0,00). Let p(t) > 0,¢(t) > 0 be continuous and nondecreasing
functions defined on R™ and ¢(0) = 0. If

ult) < p(t) + g(1) /f(S)u(s)ds+¢ /h<s>w<u<s>>ds | (1.29)

19



for allt € RT, then for 0 <t < t,,

u(t) < a(t) [p(t) + ¢ (Fl [F (A(t)) + /h(s)w (a(s)) ds] )] : (1.30)

where a(t) is defined by (1.22) and

Alt) = / h(s)w (a(s)p(s)) ds,

0

r

ds
F(r)= /m, r > 0,19 >0, (1.31)

o

where F~1 is the inverse of I, and ty € R* is chosen so that

F(A(t)) + /h(s)w (a(s))ds € Dom (F~'),

0

for allt € RT lying in the interval 0 < t < ts.

Theorm 1.27 [9] Let u, f,g and h be nonnegative continuous functions defined on R*.
Let w(t,u) be a nonnegative continuous monotonic nondecreasing function in u > 0, for

each fixed t € RT. Let p and ¢ be as defined in Theorem 25. If

ult) < p(t) + g(1) / F(s)u(s)ds + ¢ ( / B(s)w (s, u(s)) ds) ,

0

for allt € R", then
u(t) < a(t)[p(t) + o (r(t))], teR",

where a(t) is defined by (1.22) and r(t) is the maximal solution of

r'(t) = h(t)w (t,a(t)) [p(t) + ¢ (r(2))], 7(0) =0,

20



existing on R™.

Constantin [7] has given the following inequality, which can be used in certain appli-

cations.

Theorm 1.28 Suppose

(i) u,k, g, h1,ha : RT — (0,00) and continuous,

(ii) k,g € C* (RT,RT),

(111) H(u) is a nonnegative monotonic nondecreasing and continuous function for
u > 0 with H(0) = 0.

If

u(t) < g(t) + k‘(t)/hl(s)u(s)ds + k’(t)/hz(s)H (u(s))ds, (1.32)

fort € RY, then

-I—max{ j }—I—max {0 "C;((j))H ds} (1.33)

fort € [0,t'], where

ds
G(T) = /TI{(S)7 r> O,TO > 0, (134)
ro

and t' is defined so that the existence condition of the right-hand part of the inequality
(1.83) should be assured.
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Chapitre 2

Multidimensional Integral
Inequalities Similar To Gronwall

Inequalities

This chapter gives some nonlinear multidimensional integral inequalities recently dis-
covered in the literature. These inequalities can be used as ready and powerful tools in
the study of various problems in the theory of certain partial differential, integral and

integro-differential equations.

2.1 Bidimensional integral inequalities

2.1.1 Some linear inequalities in two independent variables

This subsection presents some linear inequalities given by Pachpatte which can be
used in the study of qualitative properties of the solutions of certain integro-differential
and integral equations.

Pachpatte [11] established the following inequality.
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Theorm 2.1 Let u(x,y), f(x,y) and g(z,y) be nonnegative continuous functions defined
for x,y € RT. If

waw) < al+b+ [ [0 s 2.1)

s t
+/ / g(a,n)U(U,n)dnda) dtds,
0 0

for x,y € RT, where a(x) > 0,b(y) > 0 are continuous functions for x,y € RT, having

derivatives such that o' (x) > 0,0 (y) > 0 for z,y € RT, then

u(z,y) < a(zr)+b(y) + /Om /Oy f(s,t)E(s,t)

X exp </Os /Ot [f(o,n) +g(o,n)] dnda) dtds. (2.2)
for x,y € R™, where
Bla) = EEL U0+ s

Proof. Define a function z(x,y) by the right-hand side of (2.1). Then 2(0,y) =
a(0) +b(y), 2(x,0) = a(x) + b(0), u(z,y) < z(z,y) and

zy(T,y) = flz,y) <U(I7y)+/OI/Oyg(o,n)u(o,n)dnda)
< flz,y) <Z(x,y)+/0m /Oyg(dm)Z(U,n)dnda)' (2.4)

Define a function v(z,y) by
z oy
vay) =)+ [ [ oo ms(omdnds. (2.5
o Jo

Then v(0,y) = a(0) + b(y),v(x,0) = a(x) + b(0), z4y(z,y) < f(z,y)v(z,y), 2(x,y) <
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v(z,y) and

Ve (T,Y) = 2y(7,9) + g(2,9)2(7, )
Lf(z,y) + g(z,y)] 2(2, )

Lf(z,y) + g(z,y)]v(z, ),

IN

IN

then
Uy (:L“, y)

o(z.9) < f(z,y) +9(z,9).

Since v(z,y) > 0,v,(x,y) > 0,v,(z,y) > 0, then the last inequality can be restated as

Uz (7, y)vy (2, y)
v2(z,y)

ny(xv y)
v(z,y)

< [f(z,y) + g(z,y)] +

or

0 (vx(«%’,y)

95 \o(.v) ) < f(z,y) +g9(z,y).

Now keeping x fixed in the last inequality, set y = ¢ and integrate with respect to ¢ from

0 to y to obtain the estimate

v(z,y)  ve(z,0) v i )
o(z,y)  o(,0) S/O [f (,t) + g(x, 1)] dt.

Keeping y fixed in the last inequality, set + = s and integrate with respect to s from 0

to x to obtain the estimate

Inv(z,y) —Inv(0,y) — Inwv(z,0) + Inwv(0,0) < /OI /Oy [f(s,t) + g(s,t)] dtds,

then

o(z,y) < Bz, y) exp ( /0 ' /0 " (s, 1) + (5, )] dtds) | (2.6)
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Using (2.6) in (2.4) we have

e < fep e ([ [0 oeolaas). @)

From (2.7) it follows that

) < aw) b+ [ ' | 0
X exp ( /0 S /0 o) + g( )] dnda> dtds.

From u(x,y) < z(x,y) we get the required inequality in (2.2) m

Remark 2.2 In the special case when a(x) + b(y) =k, for x,y € R*, where k > 0 is a

constant, then the bound obtained in the theorem 2.1 reduces to

u(z,y) <k {1 [ [ e ( | o) + g(o.m) dnda) dtds} .

Remark 2.3 In the special case when a(x)+b(y) =k,g =0 for x,y € R, where k >0
is a constant, then the bound obtained in the inequality (2.2) reduces to famous result of

Gronwall-Bellman (1.1) in the case of two independent variables
A useful generalization of theorem 2.1 is given in the following theorem.

Theorm 2.4 [8] Let u(z,y), f(z,y), 9(z,y) and c(z,y) be nonnegative continuous func-

tions defined for x,y € RY, and let c¢(x,y) be nondecreasing in each variable x,y € R*.

If

w(z,y) < clx,y) + /Om /Oyf(s,t) (u(s,t) + /0 /Otg(a,n)u(a,n)dnd(T) dtds,

for z,y € R™, then

u(z,y) < c(x,y)H(z,y),
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for x,y € R™, where

e =1+ [ [ seoes ([ ] o) + (o) o ) duds.

for x,y € RT.

The proof of theorem 2.4 follows by the same argument as in the proof of theorem

2.1.

Theorm 2.5 [8] Let u(z,y), f(x,y), 9(z,y), h(z,y) and p(z,y) be nonnegative continuous

functions defined for x,y € RT and ug be nonnegative constant.

(a1) If

u(z,y) < wup+ /01‘ /Oy [f(s,t)u(s,t) + p(s,t)] dtds

+/0$ /Oyf(s,t) (/O /Otg(a,n)U(U,n)dndo) dtds,

for z,y € R™, then

u(z,y) < <u0+// stdtds) H(z,y),

for xz,y € R™, where H(x,y) is defined in theorem. .

(az) If
u(, < uo—l—/o/ofst stdtds—l—//f
x(/s/t u(o,n) + p(o, n)}dncw) dtds,

for z,y € R™, then

u(w, y) < <u0+//fst(// andnda)dtds>H( v),
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for z,y € R™, where H(x,y) is defined in theorem. .
(as) If

u(z,y) < uo+/Ox/0yh(s,t)u(s,t)dtds+/ox /Oyf(s,t)
« (u(s,t) + /0 S /O (e nyulo,m) + ploun) dnda> dids,

for z,y € R™, then

u(z,y) < ugexp (/U /Oyh(s,t)dtds) H(z,y),

for xz,y € R™, where H(x,y) is defined in theorem. .
(as) If

w(wy) < hix,y) +pley) / ' / " F(s.1) (uls ) + pls. 1)

X ( /0 S /O tg(d,n)u(a,n)dnda) dtds,

for z,y € R, then
uz,y) < hiey) +ple.y)M(z,y) {1 w [ s optsn
<o ([ f o) + (o )] o, Wi ) dvds.

for x,y € R™, where

M) = [ [ s (h(m) s [ tg(am)h(ff,n)dndO) dtds
forz,y € RT.

Proof. (see [8]) m

For other generalizations of linear inequalities in two independent variables of this
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form please consult the references [8, 6, 14].

2.1.2 Wendroff inequalities

The fundamental role played by Wendroft’s inequality and its generalizations and
variants in the development of the theory of partial differential and integral equations is
well known. In this section we present some basic nonlinear generalizations of Wendroff’s
inequality established by Bondge and Pachpatte [10] and some new variants, which can
be used as tools in the study of certain partial differential and integral equations.

First we present the basic inequality due to Wendroff given in Beckenbach and Bellman
[5] and some of its variants which can be used in certain applications. The main result

due to Wendroff [5] is embodied in the following theorem.
Theorm 2.6 Let u(x,y),c(x,y) be nonnegative continuous functions defined for x,y €

R*. If

T Y

u(z,y) < alx)+bly) + //c(s,t)u(s,t)dtds,

0
for x,y € RT, where a(x),b(y) are positive continuous functions for x,y € RY, having

derivatives such that a'(x) > 0,b'(y) > 0 for x,y € RT, then

u(z,y) < E(z,y)exp ]/yc(s,t)dtds ,
for x,y € R*, where
E(x,y) = la(x) + 0(0)] [a(0) + b(y)] [a(0) + b(0)],
for z,y € R*.

Proof. (See [8, Chapter 4]) m
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Bondge and Pachpatte [10] proved the following useful nonlinear generalization of

Wendroft’s inequality for functions in two independent variables.

Theorm 2.7 Let u(x,y) and p(x,y) be nonnegative continuous functions defined for
x,y € R*. Let g(u) be a continuously differentiable function defined for u > 0, g(u) > 0
foru >0 and ¢'(u) >0 foru > 0. If

u(z,y) < alx)+by) + //p(s,t)g (u(s,t))dtds, (2.8)

for x,y € Rt where a(x) > 0,b(y) > 0,a’(x) > 0,'(x) > 0 are continuous functions

defined for x,y € RT, then for 0 <z < x1,0 <y <y,

[e=]

vew) = 07 {Q w0 +360+ [ 2 D

—I—//p(s,t)dtds ) (2.9)

T

ds
Q(r) = /@,r > 0,79 >0, (2.10)

0

where

Q7! is the inverse function of Q and x1,y; are chosen so that

x

Q(a(0)+b(y))+/g(ag)l(j)b(o))ds+//p(s,t)dtdse Dom (271,

for all x,y lying in the subintervals 0 < x < 21,0 <y < 1y; of RT.

Proof. We note that since g/(u) > 0 on R, the function g(u) is monotonically

increasing on (0,00). Define a function z(z,y) by the fight-hand side of (2.8), then
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2(z,0) = a(x) + b(0), 2(0,y) = a(0) + b(y), and

zZoy(,y) = p(2,y)g(u(z,y)). (2.11)

Using u(x,y) < z(z, < y) in (2.11) and the fact that z(z,y) > 0, we observe that

Zay (7, Y) "
) 2.12)

From (2.12) and by using the facts that z,(z,y) > 0, z,(z,y) > 0,2(z,y) > 0,7 (2(z,y)) >

0, for x,y € R™, we observe that

2 (%, 9)g' (2(2, y)) 2y (2, y)

() = p(z,y) + e |
€. L
9y <9(Z(x,y))) < p(z,y).

Keeping = fixed in the last inequality, we set y = t; then, integrating with respect to ¢
from 0 to y and using the fact that z(z,0) = a(x) + b(0), we have

a@y) _ d) —_— / " pl, t)dt. (2.13)

From (2.10) and (2.13) we observe that

0  ze(w,y) a'(x) Y .
a3 00 = s < S e e

Keeping y fixed in (2.14), set © = s; then, integrating with respect to s from 0 to = and
using the fact that z(0,y) = a(0) + b(y), we have

Q (2(z,y)) < Q(a(0) +b(y)) + / zg(a(g)/(i)b(o))dﬁ /O ' /O yp(s,t)dtds. (2.15)

0

Now substituting the bound on z(z,y) from (2.15) in u(z,y) < z(z,y), we obtain the
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desired bound in (2.9). The subintervals for x and y are obvious ®

Remark 2.8 From the proof of theorem 2.7, it is easy to observe that, in addition to

(2.9), we can conclude that

u(z,y) < Q7 {Q(a(m)+b(0))+/g(a(g)/(j_)b(0))ds

=]

—I—//p(s,t)dtds , (2.16)

where the expression in the square bracket on the right-hand side of (2.16) belongs to the

domain of Q1.
Bondge and Pachpatte [11] gave the following generalization of Wendroff’s inequality

Theorm 2.9 Let u(z,y),a(z,y),b(z,y) and c(z,y) be nonnegative continuous functions
defined for x,y € RT. Let g(u), h(u) be continuously differentiable function defined for
u>0,9(u) > 0,h(u) >0 foru>0 and g'(u) > 0,h'(u) > 0 for u > 0, and let g(u) be

subadditive and submultiplicative for u > 0. If

w(@,y) < a(z,y) + bz, y)h //c(s,t)g(u(s,t))dtds | (2.17)

for z,y € R, then for 0 <z < 29,0 < y < ys,

u(z,y) < a(z,y) +b(z,y)h | G |G (A(z,y)) + //c(s, t)g (b(s,t))dtds| |, (2.18)
where ey
Az, y) = //c(s,t)g (a(s,t))dtds, (2.19)
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r

ds
G(r) = /m,r > 0,79 >0, (2.20)

T0

G~ is the inverse function of G and x4, are chosen so that
()
G(A(z,y)) + //C(s, t)g (b(s,t)) dtds € Dom (G™'),
00

for all x,y lying in the subinterval 0 < x < 29,0 <y < yy of RT.

Proof. From the hypotheses on g and h, we note that the functions g and h are

monotonically increasing on (0, 0c0). Define a function z(z,y) by

2, y) = / / e(5,8)g (u(s, 1)) dids, (2.21)

From (2.21) and using the fact that u(z,y) < a(z,y) + b(x, y)h(z(z,y)) from (2.17) and

the hypotheses on g we have

T Y

2(z,y) < A(z,y) + //c(s,t)g (b(s,t)) g (h(z(s,t)))dtds, (2.22)

for x,y € R, where A(z,y) is defined by (2.21). Now fix a, 5 € R such that 0 < z <
a,0 <y < f; then from (2.22) we observe that

2(z,y) < Ao, B) + //c(s,t)g (b(s,t)) g (h(z(s,t))) dtds, (2.23)

for 0 <z < «,0 <y < . Define a function v(x, y) by the right-hand side of (2.23) ; then
v(z,0) =v(0,y) = A(e, ), 2(z,y) < v(z,y) and

Ve = c(z,y)g (b(z,y)) g (h(z(z,y)))
< c(x,9)g (b(z,y)) g (h(v(z,y))) (2.24)
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Now first assume that A(a, 5) > 0; then from (2.24) we observe that

O wlry) }
dy (g(h(v(gj’y)))) < c(z,y)g (b(x,9)) - (2.25)

By keeping z fixed in (2.25), setting y = ¢, and then integrating with respect to t from 0

to 8 we have

B
M) —i—/o c(x,t)g (b(x,t)) dt. (2.26)

From (2.20) and (2.26) we observe that

B
aax (v(z,B)) < aﬁ ((:v70))+/0 c(x,t)g (b(x,t)) dt. (2.27)

Now keeping y fixed in (2.27), setting = s, and then integrating with resoect to s from

0 to a we get

a B
G(v(x,ﬁ))gG(v(:c,O))—i—/O /0 o(s,1)g (b(s, 1)) dtds, (2.28)

since z(a, f) < v(a,B) and a, € RT are arbitrary from (2.28) we have

oy) < G [ (z,7)) // (5.8)g (b(s, 1)) dtds, (2.29)

for 0 < z < 25,0 < y < yo. The desired bound in (2.18) follows by using (2.29) in
u(z,y) < a(z,y) + b(z,y)h(z(z, y)).

If A(«, 8) in (2.23) is nonnegative, we carry out the above procedure with A(«, 3) + ¢
instead of A(«, ), where € > 0 is an arbitrary small constant, and subsequently pass to
the limit as ¢ — 0 to obtain (2.18) m

The following theorem provides another useful generalization of Wendroft’s inequality.

Theorm 2.10 /8] Let u(x,y),c(z,y) and p(x,y) be nonnegative continuous functions
defined for x,y € RT. Let g(u), ¢’ (u),a(x),d (x),b(y) and b'(y) be as in theorem and g(u)

33



be submultiplicative on R*. If

u(z,y) < a(x)+b(y) + /OJC /Oy c(s,t)u(s, t)dtds
+/Ox /pr(sﬁg (uls, 1)) dtds,

for x,y € R, then for 0 <z < 23,0 <y < ys,

u(z,y) < q(x,y){Ql [Q( /Og +b )ds

+ /0 ' pr(s,t) )) dtds }
g(z,y) = exp < /0 ' /O ' c(s,t)dtds> :

and Q,Q1 are defined in theorem 29 and xs,ys are chosen so that

where

Q(a(0) +b(y)) + /Ow p (a(j)l(j_)b(o))ds + /0m /pr(s,t)g (q(s,t)) dtds € Dom (Q71),

for all z,y lying in the subinterval 0 < x < x3,0 <y <wys of RT.

2.2 Integral inequalities with several independents
variables

Throughout this section, we assume that I = [a,b] is any bounded open set in the
dimensional euclidean space R" and that our integrals are on R™(n > 1), where a =
(a1, a2, ..., a,),b = (b1, bo, ..., b,) € RL. For & = (x1,22,...,2,) = (21,2'), where 2! =
(2, ...,x,) € I, we shall denote

JE s =[5 [ dspedsy = [T [5 dsds,.

Furthermore, for x,t € R", we shall write ¢ < x whenever t; < z;,i = 1,2,...,n

34



and 0 < a <z <b forxel,and D = D\Ds...D,,, where D; = a2{01“ 1=1,2,...,n.

Let C(I,R,) denote the class of continuous functions from I to R;. If £ C R"™ and

f: E — R, we say that f(z) is a nondecreasing function in F if z,y € E and z < y
imply f(z) < f(y).

2.2.1 linear inequalities in n independent variables

In this subsection we give some linear inequalities in n independent variables collected

from [6].

Theorm 2.11 Let a,b € R",a < b. Let u(x), f(z) be nonnegative continuous functions

for z € [a,b] satisfying the inequality
u(z) <k +/f(s)u(s)ds, (2.30)

where k > 0 1s a constant. Then

u(x) < kexp /f(s)ds : (2.31)
Proof. (2.30) implies
u(z) <k —I—/ /f(sl, sHu(sy, sV ds' | ds; = v(xy, 2t). (2.32)

ai
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For fixed x! € [a',b'] the function w(x;) = v(z1, z') satisfies the relations

w(ay) =

k
w'(zy) = /f(xl,sl)u(xl,sl)dsl

< /ﬂmsmwwum (2.33)

1

since v(z1,z') is nondecreasing in [a,b] and u(zy,s') < v(zy,st) < v(zy, 2t) = w(z).

lemma 1.2 and (2.33) imply

1

.Z‘l
w(zy) < kexp / /f(sl,sl)ds1 dsi |,
1

a1

which together (2.32) implies (2.31). =

Corollary 2.12 If k(x) is a nondecreasing function in [a,b] C R"™ and

u(z) < k(z)+ /f(s)u(s)ds,

then

ulw) < K(ayexp | [ f(s)ds
The following three theorems can be similarly proved.

Theorm 2.13 Let a,b € R",a < b. Let u(x), f(z) be nonnegative continuous functions

for z € [a,b] satisfying the inequality

M@§k+/f@wﬁﬁ,
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where k > 0 is a constant. Then

b
u(z) < kexp /f(s)ds

Remark 2.14 The result in theorem 2.13 is the generalization of Gronwall-Bellman

theorem 1.1 in the case of n variables.

Theorm 2.15 Let a,b € R",a < b. Let u(x), f(z) be nonnegative continuous functions

for x € [a,b] satisfying the inequality
u(z) < u(r) + /Tf(S)u(S)ds,
where a < x <17 <b. Then
u(r) = ufa)exp | — jf(S)dS

Theorm 2.16 Let a,b € R", a <b. Let u(z), f(x) and k(s,T) be nonnegative continuous

functions for a < 17 < s < b satisfying the inequality

u(z) < k’+/ f(s)u(s) —i—/k(s,T)u(T)dT ds,
where k > 0 is a constant. Then
u(z) < kexp / f(s) —|—/k:(s,7')d7' ds

Theorm 2.17 Let a,b € R",a < b. Let u(x), k(x), f(x) and g(x) be nonnegative conti-
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nuous functions for x € [a,b]. Then the inequality

+/f(s) [u(s) —i—/g(r)u(r)dT] ds, (2.34)
implies
u(z) < k(z) + /k(s)f(s) exp (/ [f(7) + g(7)] dT) ds. (2.35)

S

Proof. We set r(s) = u(s) + [ g(7)u(r)dr. Then (2.34) takes the form

) + / F(5)r(s)ds. (2.36)
Taking into account that u(s) < r(s) we obtain
r(z) =u(r)+ /g s)ds < k(z /f s)ds +/ (s)r(s)ds.

Consequently, corollary 2.12 implies

r(z) < k(z) exp ( / () + g(r)] dT) ,

a

for x € [a, b], which together with (2.36) implies (2.35). m

Corollary 2.18 If k(x) is nondecreasing in |a,b], (2.35) implies

k(x) [1+/f(s)exp (/ [f(7)+ g(7)] dT) dsi| ,

for x € [a,b].
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2.2.2 New non linear inequalities with n independents variables

Denche and Khellaf [17] established some nonlinear integral inequalities for functions
with n independent variables. These results extend the Gronwall type inequalities obtai-
ned by Pachpatte [12] and Oguntuase [16]. This result can be applied to the nonlinear
hyperbolic partial integrodifferential equation in n-independent variables.

The following theorem deals with n-independent variables versions of the inequalities

established by Pachpatte [12, Theorem 2.3].

Theorm 2.19 Let u(x), f(z),a(x) be in C(I,Ry) and let K(x,t), D;k(x,t) be in C(I X

I,Ry) foralli=1,2,...,n, and let ¢ be a nonnegative constant.

1) 1 z S
u(z) < e+ / £(s) [u@ + / (s, mmdf} s, (2.37)
forzel anda<t<s<b, then
u(z) < c [1 + / "R exp ( / [F(5) + k(b 5)] ds) dt] | (2.38)
) 1 w 5
u(z) < alx) + / £(s) [u(s) + / (s, T)u(f)m} s, (2.39)
forzel anda<t<s<b, then
() < a(z) + e(2) [1 + / "R exp ( / [£(5) + (b, 9)] ds) dt] , (2.40)
where
e(z) = / " f(s) [a(s) + / k(s T)a(f)df} ds. (2.41)

Proof. (1) The inequality (2.37) implies the estimate

w(z) <o+ / " F(s) [u(s>+ / Sk(b,f)u(r)df] ds.
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We define the function

z2(z) =c+ /; f(s) {u(s) + /ask(b, T)u(T)dT:| ds.

Then z(ay, T3, ...7,) = ¢,u(x) < z(z) and

Dz(z) = f(x) {u(m)—l— / mk(b,s)u(s)ds},

IN

(@) [z(x) + / ’ k(b,s)z(s)ds] .

Define the function

then v(ay, xa,..x,) = 2z(a1,xq,..7,) = ¢, Dz(z) < f(x)v(x) and z(z) < v(z), and we
have

Dv(x) = Dz(z) + k(b,x)z(z) < (f(x) + k(b, x)) v(x). (2.42)

Clearly v(x) is positive for all x € I, hence the inequality (2.42) implies the estimate

U(?%(I) < f(2) + k(b,2),
that s
v(z)Dv(x) < f(2) + k(b.x) + Dnv(x)Dng...Dn_lv(x)7
v*(x) v*(x)
hence

D, (Dng.;Z,;_lv(x)

Integrating with respect to x,, from a, to x,, we have

) < f(x) + k(b, ).

DyDs...D, o
1-72 ( ) 1/U(a7) S / [f(x17$27...7xn717tn) +k(b7 $17$27"‘7‘/En*17tn)] dtn,
v\ an
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thus

v(x)D1Ds...Dy_qv(x)
v? ()

Tn
S/ [f(z1, %2, ooy Tpe1, tn) + k(b w1, T2y o, T 1, £)]

Dn_l’U(fL')DlDQ...Dn_QU(ZL‘)
+ 3 .
v (x)

That 1s,

DyDs...D,,_ n
Dn_1< 1Dy = QU(I)) g/ [f (21, gy ooy Tt 1) + kb, 21, To,y ..., T, )] din,
V(T an

Integrating with respect to x,_1 from a,_1 to x,_1, we have

D D n Tn—1
St 2,0 / / xlu"wxn—Qatn—l)tn)+k(b7x17" Tp— 27tn 17 )] dt dtn 1

Continuing this process, we obtain

D
1U / / Jfl,tg,...,tn)+k(b,$1,t2,...,tn)] dtndtg

Integrating with respect to x1 from a; to x1, we have

o) :
< [0+ kool

log
v(ay, T, ...

that is

v(z) < cexp (/j [f(t) + k(b,t)] dt) : (2.43)

Substituting (2.43) into Dz(z) < f(z)v(x), we obtain

D2(x) < ef (z) exp ( / L) + kb, )] dt) , (2.44)

integrating (2.44) with respect to x, component from a, to x,, then with respect to

Tp_1 from a,_1 to x,_1, and continuing until finally from a; to xy, and noting that
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z(ay, g, ...2,) = ¢, we have

2(2) < e {1 + /axf(t) exp (/t £(s) + k(b 5)] ds) dt} |

This completes the proof of the first part.
(2) We define a function z(z) by

z(z) = /w f(s) [u(s) + /s k(s,T)u(T)dT] ds. (2.45)
Then from (2.39), u(z) < a(x) 4+ z(z) and using this in (2.45), we get

@) < [ 16 a6+ [ K latr) + ] ar as,
e(x) + /: f(s) [2(3) + /: k(S,T)Z(T)dT] ds, (2.46)

IN

where e(x) is defined by (2.41). Clearly e(x) is positive, continuous and nondecreasing

for all x € I. From (2.46) it is easy to observe that

egg < 1+/azf(s) {%+/jk(s,r)%ﬂ ds.

N

Now, by applying the inequality in part 1, we have

o(a) < e(x) [1 + / " F(t) exp < / CF(5) + Kb, 5)] ds> dt} | (2.47)

The desired inequality in (2.40) follows from (2.47) and the fact that u(zx) < a(x)+ z(x).

u
In the following theorem we need the following lemma (see [18])

Lemma 2.20 Let u(z) and b(z) be nonnegative continuous functions, defined for x € I,

and let g € S. Assume that a(x) is positive, continuous function, nondecreasing in each
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of the variables v € I. Suppose that

u(z) <c+ /x b(t)g (u(t)) dt, (2.48)

holds for all x € I with x > a, then

u(z) < G [G(c) + /j b(t)dt} : (2.49)

for allz € I such that G(c)+ [ b(t)dt € Dom (G™), where G(u) = [ 25 u > 0,ug > 0.

ug g(s)’

Theorm 2.21 Let u(x), f(x),a(z) and k(z,t) be as defined in theorem 2.19 and g(u) be
as in lemma 2.20. Let ®(u(z)) be real-valued, positive, continuous, strictly non-decreasing,
subadditive and submultiplicative function for u(z) > 0 and let W(u(x)) be real-valued,
positive, continuous and non-decreasing function defined for x € I. Assume that a(x) is

positive continuous function and nondecreasing for x € 1. If

v +/;f(t)g (u(t))dtJr/;f(t)W (/atk(t, s)¢<u(s)>ds) dt,  (2.50)

fora<s<t<ux<b, then fora <z < x*,

we) < o) {ata)+ [ W v i)
Lanpafme). e

where
Bx) = G (G(l) + / f(s)ds) , (2.52)
77—/ k(b, s)® (6(s)a(s)) ds, (2.53)
“ods
G(u) = /uo @,u > 0,uy > 0, (2.54)
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U(x) = /w: #S(S))w > x> 0. (2.55)

Here G™1 is the inverse function of G, and U™! is the inverse function of ¥, x* is chosen
so that G(1) + [ f(s)ds € Dom (G™'), and ¥(n) + fat k(b, s)® [B(s) [T f(r)dr] ds €
Dom (¥71).
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Chapitre 3

Generalization Of Some New

Retarded Integral Inequalities

In this chapter, we give some linear integral inequalities from the article of Pachpatte
[6] and we establish some new delay non-linear integral inequalities in two independent
variables [20, 21], which generalize some integral inequalities with delay obtained by Ma-
Picaric [22] and Ferreira-Torres [23], which can be used as handy tools in the study of
certain partial differential equations and integral equations with delay. An application is
given to illustrate the usefulness of our results in the last chapter.

Throughout this chapter, R denotes the set of real numbers, R, = [0, +00). C*(A, B)
denotes the class of all i times continuously differentiable functions defined on a set A
with range in the set B (i = 1,2,...) and C°(4, B) = C(A, B).The partial derivative of a
function z(x,y), z,y € R with respect to x and y are denoted by D;z(z,y) and Dyz(x,y)

respectively.

3.1 Linear retarded integral inequalities

In this section we present some explicit bounds for linear retarded integral inequalities,

established by Pachpatte in [15].
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Let I = [to,T), J1 = [x9, X), Jo = [y0,Y") are the given subsets of R, A = J; X Js.

Theorm 3.1 Let u(t),a(t) € C(I,R.),b(t,s) € C(I* ,Ry) forty < s <t < T and
a(t) € CY(I,1) be nondecreasing with a(t) <t on I and k > 0 be a constant. If

a(t) s
u(t) < k+ /a(to) {a(s)u(s) + /Q(to) b(s,a)u(a)da} ds, (3.1)
fort eI, then
u(t) < kexp (A(t)), (3.2)
fort e I, where o
A(t) = /(t ) [a(s) + /(t )b(s,a)da} : (3.3)

Proof. From the hypotheses, we observe that o/(t) > 0 for t € I.let k > 0 and define
a function z(t¢) by the right hand side of (3.1). Then z(t) > 0, z(to) = k,u(t) < z(t) and

i )
Z(t) = a(a(t))u(a(t))+/ b(a(t),a)u(a)da] o (t)

a(to)

[ a(t)
< a(a(t)z(a(t)) + /(t | b(a(t),a)z(a)do] a'(t). (3.4)
From (3.4) it is easy to observe that
Zl(t) a(t) .
SO [a(a(t)) + /a . b(a(t),a)da] o(8). (3.5)

Integrating (3.5) from ¢q to t,¢ € I and by making the change of variables yields

z(t) < kexp (A(t)), (3-6)

for t € I. Using (3.6) in u(t) < z(t) we get the inequality in (3.2). If £ > 0, we carry out
the above procedure with k£ + € instead of k, where € > 0 is an arbitrary small constant,

and subsequently pass to limit as € — 0 to obtain (3.2). =
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Remark 3.2 For b =0, (3.1) reduce to Gronwall-Bellman inequality (1.1) with delay.

Theorm 3.3 Let u(z,y),a(z,y) € C (AN, RL),b(z,y,s,t) € C(A%Ry), forzg < s <
r< X,y <t <y<VYoaleC (Nh),By) € C'(J,J2) be nondecreasing with
alz) <z on Ji,B(y) <y onJy and k > 0 be a constant. If

u(x,y)§k+/ / [ (s,t)u(s,t) / / b(s,t,o,n)u(o,n)dndo| dtds,
B(yo) (z0) J B(yo)

for (z,y) € A\, then
u(z,y) < kexp (A(z,y)),

for (xz,y) € A\, where

o(z)  rBY)
A(z,y) :/ / [ s,t) / / b(s,t,o,n)dndo | dtds,
a(zo) Y B(yo) (zo) Y B(yo)

for (z,y) € A.

3.2 New non linear retarded integral inequalities in
two independent variables

In [22], Ma and Picaric (2008) have established the following useful nonlinear retarded
Volterra-Fredholm integral inequalities under suitable conditions.

If u(z,y) satisfies

a(z) B(y)
u(z,y) < k+ / /01(8,75) f(s,t)w / /UQTE u(r,&))dédr | dtds
o(z0)B(yo) B(yo)
a(M)B(N)
+/ /al(s,t) f(s, t)w / /02 7, 6w (u(r, €)) dédr | dtds,
a(z0)B(yo) o(20)B(yo)
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then

a(M)B(N)
u(z,y) < G'{G|H™! / /01(875 f(s,t) / /agfgdgdf dtds
e(z0)B(yo) a(z0)B(yo)
a(z) Bly)
+//01(5t f(s,t) //angdng dtds
a(z0)B(yo) a(zo)B

In [23], Ferreira and Torres (2009) have discussed the following useful nonlinear re-
tarded integral inequality.
If u(t) satisfies

a(t)
¢(u(t)) < c(t) +/0 (2, s)n (u(s)) wluls)) + g(t, s)n (u(s))] ds,

u(t) < ¢! {G—l (\Il—l + /Oa(t) f(s,t)ds] ) } :

Motivated by the results mentioned above we establish a general two independent

then, we have

variables retarded version which can be used as a tool to study the boundedness of
solutions of differential and integral equations.

Let I = [0, M], Is = [0, N] are the given subsets of R, and A = I} x I5.

Lemma 3.4 Let u(x,y), f(z,y),0(z,y) € C(A,R}) and a(z,y) € C(A,Ry) be nonde-
creasing with respect to (x,y) € A, let « € CY(I,1,),8 € CY(Iy, I,) be nondecreasing
with a(z) < x on I, B(y) <y on Is. Further let ¥,w € C(Ry,R,) be nondecreasing
functions with {¢,w} (u) > 0 for u > 0, and ulffoow(“) = +o0. If u(x,y) satisfies

az)  rB(y)
Y (u(z,y)) < alz,y)+ /0 /0 o(s,t)f(s,t)w (u(s,t))dtds (3.7)
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for (z,y) € A, then

alz) rB(y)
u@w)§¢1{GlG@W%w%+/ / d&ﬂﬂ&ﬂﬁ%] (3.8)
0 0
for 0 <z <20 <y <y, where

v ds +oo
G(U)—/UO m,v2v0>0, G(—FOO)—/UO m—+0® (39)

and (z1,11) € A is chosen so that <G (a(z,y)) + foa(x) foﬁ(y) o1(s,t) f(s, t)dtds) € Dom (G™1).

Proof. First we assume that a (z,y) > 0. Fixing an arbitrary (zo,yo) € A, we define

a positive and nondecreasing function z(z,y) by

alz)  rB(Y)
zuww=mmy@+/“ /‘ o (5,1 (5, ) (u(s, ) dids
0 0
for 0 <z <o <u1,0<y<yy <y, then 2(0,y) = z(z,0) = a(xo, yo) and
u(z,y) < o (2(z,1)) (3.10)

and then we have

z(x B)
0 gx,y) — O/(IL’)/O o(a(z), t) f(alz), t)w (u(a(z),t)) dt

A
Q
=
s
c\
o)
5
2
2
&
=
—
—
2
S
}/
=
&
—~
<=
N
o
2
8
-
N—
N—
SN—"
Y
~

or
0z(z,y)

iR < o'(2) / Y o al@). 0 f (ale). ).
w W™ (2(,y) 0

Keeping y fixed, setting x = s, integrating the last inequality with respect to s from 0 to
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x, and making the change of variable s = a(z) we get

a(z)  rB(y)
G(e(r,y) < G((0.9) + / / o(s, 1) f (5, t)dtds

a(z)  rBy)
< G(a(xo,yo))—i-/o /0 o(s,t)f(s,t)dtds.

Since (7, o) € A is chosen arbitrary,

2(z,y) < G

a(z) rBY)
G (a(x,y)) +/0 /0 a(s,t)f(s,t)dtds] :

So from the last inequality and (3.10) we obtain (3.8). If a(z,y) = 0, we carry out the

above procedure with € > 0 instead of a(z,y) and subsequently let ¢ — 0. =

Theorm 3.5 Let u,a, f,a and 8 be as in lemma 3.4. Let o1(x,y),09(z,y) € C(A,R).
Further ¢,w,n € C(Ry,Ry) be nondecreasing functions with {¢,w,n} (u) > 0 for u > 0,
and liril (u) = 400.

(A1) If u(z,y) satisfies

a(z)  rB(y)
b(u(n,y) < aley)+ / / o1(5,1) [ (5. £)w (u(s. 1))
—1—/5 oo(7, t)w (U(T,t))dT} dtds (3.11)

for (z,y) € A, then
a(z)  rB(y)
ue) <636 () [ [ a0 s (3.12)
0 0
for 0 <z <x,0 <y <y, where G is defined by (3.9) and
a(z) rBy) s
p(z,y) = G (a(z,y)) +/ / o1(s,t) (/ JQ(T,t)dT) dtds (3.13)
0 0 0

and (x1,y1) € A is chosen so that <p(m, y) + foa(x) fO’B(y) o1(s,t) f(s, t)dtds) € Dom (G™1).
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(A2) If u(x,y) satisfies

a(z)  rB(y)
b (ulz,y) < alz.y)+ / / o1 (5. 1) [ (5, Do (s, £)) 7 (s, )
+/S oo(T, t)w (u(T,t))dT:| dtds (3.14)

for (z,y) € A, then

u(z,y) <! {G—l (F— p(z,y)) / / f(s,t) dtds])} (3.15)

for 0 <z <m,0 <y <y, where G and p are as in (A;), and

v ds
F(v) = /vo TG LU > >0, F(400) = 400 (3.16)
and (x1,y1) € A is chosen so that [F (p(z,y)) + fo fo (s,t)dtds| € Dom (F71).

(A3) If u(z,y)satisfies

a(z)  rB(y)
b (ulz,y) < alz.y)+ / / o1 (5.1) [ (5, o (i, £)) 7 (s, )
—i—/os oo(T, t)w (u(T,t))n(u(T,t))dT] dtds (3.17)

for (z,y) € A, then

a(z)  rBy)
u(x,y) < ! {G—l <F—1 po(z,y) +/0 /0 o1 (s, t)f(s,t)dtds] ) } (3.18)

for0 <x <z, 0<y <y where

o(z)  rBY) s
po(z,y) = a(x,y)) / / (s,t) (/ oo(T t)d7'> dtds

and (z1,y1) € A is chosen so that [pO(ZL‘, y)+ [ (@) f’B(y) (s t)dtds} € Dom (F1).
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Proof. (A;) By the same steps of the proof of lemma 3.4 we can obtain (3.12), with
suitable changes.
(Ag) Assume that a(x,y) > 0. Fixing an arbitrary (zo,v0) € A, we define a positive

and nondecreasing function z(x,y) by

a(z)  rB(y)
2z,y) = alze )+ / / o1 (5. 1) [ (5, D)o (i, £)) 7 (s, )
+/08 oo(T, t)w (u(r,t)) dT‘| dtds

for 0 <z <zp<uzy,0<y <y <y, then 2(0,y) = z(z,0) = a(zo,yo) and

u(w,y) <Y~ (2(2,y)) (3.19)

z(x B(y)
0 (ax,y) _ a'($)/0 o1(a(z),t) [fla(z), t)w (ula(z), ) n (u(a(z),t))

IA
Q\
®
o\_,
)
S
Q
S
2
&=
-
N—
=
2
=
=
€
—~
<
iy
_
>
—~
&
=
=
3
—~
=
L
~
—~
L
K
:_/
=
=

+

0

a(z)
/ oo(T, t)w (1/)_1 (z(T, t))) dT] dt

IA
Q\
S
&
—~
<
—
2
e
—~
8
~
™
—~~
S
=
X

then
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Keeping y fixed, setting © = s integrating the last inequality with respect to s from 0 to

x, and making the change of variable s = a(z) we get

a(z)  rB(y)
G(e(r,y) < G((0.9) + / / ou(5.0) [F(s, ) (7 (2(5,1)))

oo(T,t dT} dtds

a(z) rBy)
alzo,40)) + / S(.8) [ 0 (67 (2(5.1)

0 0

IN

oo(T, 1) dT} dtds.

Since (zg,yo) € A is chosen arbitrarily, the last inequality can be rewritten as

a(z) rB~y)
G (2(2,9)) < pla.y) + / / or(s. 0 (5.6 (671 ((,1))) dtds. (3.20)

Since p(z,y) is a nondecreasing function, an application of lemma 3.4 to (3.20) gives us

2(z,y) <G7! (Fl p(z,y)) / x)/ (s t)dtds]) . (3.21)

From (3.19) and (3.21) we obtain the desired inequality (3.15).

Now we take the case a(x,y) = 0 for some (z,y) € A. Let a.(z,y) = a(z,y) + ¢,
for all (z,y) € A, where € > 0 is arbitrary, then a.(z,y) > 0 and a.(z,y) € C(A,R;)
be nondecreasing with respect to (z,y) € A. We carry out the above procedure with

ac.(z,y) > 0 instead of a(z,y), and we get

a(z)  rB~y)
u(z,y) <ot {G_l (F_l F (pe(z,y)) +/0 /o Ul(S,t)f(s,t)dtdS] ) }

where
a(z)  rB(y) s
e y) = G (ac(z,y)) + / / o1 (5,4) ( / 0—2(T,t)dr) dids.
0 0 0

Letting € — 0T, we obtain (3.15).
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(A3) Assume that a(x,y) > 0. Fixing an arbitrary (zo,y0) € A, we define a positive

and nondecreasing function z(x,y) by

a(z) rBwY)
z2(x,y) = a(wo,yo) +/0 /0 o1(s,t) [f(s,t)w (u(s,t))n (u(s,t))
+ /OS oo(7,t)w (u(7,t)) n (u(T,t)) dT:| dtds

for 0 < <zg<ux1,0<y <1y <y, then 2(0,y) = z(x,0) = a(xo, yo), and
u(z,y) <7 (2(z,y)) (3.22)

By the same steps as the proof of (As), we obtain

a(z)  rB(y)
dry) < G {G<a<xo,yo>> n / / ou(s.8) [Fs. 0 (67 (2(5.8))
+ /05 oa(r,t)n (V' (2(7,1))) dT‘| dtds} :

We define a nonnegative and nondecreasing function v(zx,y) by

a(z)  rB(y)
vz.y) = Gl(alzomn))+ / / a5 1) [[f (s, (67 (2, 2)))]
+ /08 oo(7,t)n (wfl (z(T, t))) Cl7':| dtds

then v(0,y) = v(z,0) = G (a(xq, yo)),

2(z,y) < G u(a,y)] (3.23)
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and then

ov(z,y)
ox

IA
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ey
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=

or

o)
+ / oo(T, t)dT] dt.
0

Fixing y and integrating the last inequality with respect to s = = from 0 to x and using

a change of variables yield the inequality

F(v(z,y)) < F(v(0,y)) + /Oa(i) /Oﬁ(y) o1(s,t) [f(s,t) + /OS O'Q(T,t)d’T:| dtds

or

owy) < F {F(G (alan o)) + | - / ™ o) [ (s.)
+ /0 s Ug(T,t)dT:| dtds}. (3.24)

From (3.22) - (3.24), and since (xg,yo) € A is chosen arbitrarily, we obtain the desired
inequality (3.18). If a(z,y) = 0, we carry out the above procedure with ¢ > 0 instead of

a(x,y) and subsequently let ¢ — 0. m

Remark 3.6 If we take os(x,y) = 0, then theorem 3.5 (A1) reduces to lemma 3.4.
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Corollary 3.7 Let the functions u, f,o1,02,a,a and [ be as in theorem 3.5. Further

q >p >0 are constants.
(B1) If u(x,y) satisfies

a(z)  rB(y)
P(z,y) < alzy) + / / o1 (5,1) [ (s, uP (s, 1)

+/ Ug(T,t)up(T,t)dT] dtds
0

for (z,y) € A, then

N——

u(z,y) < (alz, )} exp (}9 / " / " et) 1.0+ [ oatrtyar] auis
(Bs) If u(z,y) satisfies

. q a(z)  rB(y) )
way) < aley)+ / / 015, 1) [ (5, D) (s, )

+/ Jz(T,t)up(T,t)dT] dtds
0

for (z,y) € A, then

1

a(z)  rBy) a-r
u(z,y) < {p(w,y) —i—/o /0 al(s,t)f(s,t)dtds}

where
(0@ BW) s
o) = alo) 4 [ [ o) ([ oatrioyir ) anas
0 0 0
Proof. (B;) In theorem 3.5 (A;), by letting ¥ (u) = w (u) = u?, we obtain

ds B ”@ v

e[ s AT

and hence

G~ (v) = vy exp(v), v > v > 0.
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From equation (3.13), we obtain the inequality (3.26).
(B2) In theorem 3.5 (A;), by letting ¥ (u) = u?, w(u) = u? we have

v ds Y ds q ap -p
Gv:/—: —p:—(vq—vq),vzv>0
( ) V0 W(?/J_I(S)) Vo Sa q—7p 0 0

and 1

we obtain the inequality (3.28). m

Theorm 3.8 Let u, f,01,09,a,, 3,10, w and n be as in theorem 3.5. If u(x,y) satisfies

a(z)  rB(y)
b(ulz,y) < alz.y)+ / / o1 (5. 171 (u (s, 1))
[f(s,t)w (u(s,t)) +/08 ag(T,t)dT] dtds (3.29)

for (z,y) € A, then

a(x)  B)
Fl(pl(x7y))+/0 /0 Ul(sat)f(87t>dtd‘9]>} (3.30)

for 0 < < 29,0 <y < yo, where

v ds +oo ds
Gi(v) = /UO —77 (w_l(s)) L0 > g > 0,G1(400) = /DO —?7 (1/1_1(5)) = +00 (3.31)
v ds
Fi(v) = /UO NGED) , 0 > vy > 0, F(400) = +00 (3.32)

a(z) rBY) 5
p(z,y) = Gi(a(z,y)) +/ / o1(s,t) </ O'Q(T,t)dT) dtds (3.33)
0 0 0
and (x2,y2) € A is chosen so that [Fl (p1 (z,9)) + foa(z) foﬁ(y) o1(s,t)f(s, t)dtds} € Dom (F{').

Proof. Suppose that a(z,y) > 0. Fixing an arbitrary (zo,y9) € A, we define a positive
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and nondecreasing function z(z,y) by

a(z)  rB(y)
2(@y) = alze )+ / / oa (5. 17 (s (5, £)) [ (5. Do (s, )
+/S O'Q(T,t)dT:| dtds

for 0 <@ <y <22,0 <y <yy <y, then 2(0,y) = 2(x,0) = a(zo, o),

(e, ) <47 (:(,9) (3.34)
and
oz B(y)
ZE < o) [ alata).on 67 Glat@). )] [Fa(), e (07 ((at) 1)
—l—/a(x) ag(T,t)dT] dt
B(y)
< @ e @8] [ a0 [faw).tw (57 (o))
—l—/a(x) Ug(T,t)dT] dt
then
9z(z,y) By)
Oz < d(x o1(a(x),t a(z),w (V1 (z(a(z),t
T S Y@ [ @0 e ne (07 GHaw,0)

a(z)
—i—/ ag(T,t)dT] dt.
0

Keeping y fixed, setting x = s and integrating the last inequality with respect to s from
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0 to x and making the change of variable, we obtain

a(z)  rB(y)
a@@m>scmamm+A A o1(s.1) [F(s, 0w (&7 (2(5.1)))
—i—/s O'Q(T,t)dT:| dtds

then

a(z) rBy)
Giz(@a)) < Gilatanm)+ [ [ ar(st) [fs. 0 (07! (1)
+/5 02(7',t)d7'} dtds.

Since (g, yo) € A is chosen arbitrary, the last inequality can be restated as

az) rBY)
G1 (2 (z,9)) < p1(z,y) + /0 /0 o1(s, 1) f(s,t)w (V7 (2(s,1))) dtds (3.35)

It is easy to observe that p; (x,y) is positive and nondecreasing function for all (z,y) € A,

then an application of lemma 3.4 to (3.35) yields the inequality

z(z,y) < Gy (Ffl

a(z)  rB(y)
Fy(p1 (z,y)) + /0 /0 o1(s,t) f(s, t)dtds]) . (3.36)

From (3.36) and (3.34) we get the desired inequality (3.30).
If a(z,y) = 0, we carry out the above procedure with ¢ > 0 instead of a(x,y) and

subsequently let ¢ — 0. m

Theorm 3.9 Let u, f,01,02,a,a, 3,1 and w be as in theorem 3.5, and p > 0 a constant.

If u(z,y) satisfies

Y (u(z,y) < alz,y) +/Oa(fv) /Oﬂ(y) o1(s, t)uP (s,t) x
[f(s,t)w (u(s, 1)) + /0 S az(f,t)dT} dtds (3.37)
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for (z,y) € A, then

a(@)  rBy)
u(z,y) <ot {Gll <F11 Fy (p1 (z,y)) +/0 /0 oi(s, t)f(s,t)dtds]) } (3.38)

for 0 < & < 12,0 <y < yo, where

v ds too ds
Gl(v):/vo W,UZUO >0,G1(+OO):/UO W:+OO (339)

and Fy,p1 are as in theorem 3.8 and (x2,y2) € A is chosen so that

oz) rBY)
Fy (p1(x,y)) —i—/o /o o1(s,t) f(s, t)dtds] € Dom (F{').

Proof. An application of theorem 3.8, with 1 (u) = u? yields the desired inequality
(3.38). m

Remark 3.10 When p =1, a(z,y) = b(x) + c(y),01(s,t) f(s,t) = h(s,t), and
o1(s,t) ( [y o2(7,t)dT) = g(s,t), then inequality established in theorem 3.8 generalizes
[24, Theorem 1].

Corollary 3.11 Let u, f,01,09,a,a, 3 and w be as in theorem 3.5 and ¢ > p > 0 be
constants. If u(zx,y) satisfies

(2)
wi(z,y) < alx,y) —|— — / o1(s, t)uP (s,t) x

[f(s t)w +/0 oo(T,1) dT} dtds (3.40)

for (x,y) € A, then

u(a:,y) S {Fll

1

a(z)  B() i
Fl(pl(xay))_'_/o /0 ‘71(37t)f(37t>dtd‘9]} (3.41)
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for0 <z <y, 0 <y <y, where

pi(z,y) = [alz,y)] 7 + /0 " /0 Y o1(s,t) ( /0 s GQ(T,t)dT) dtds

and Fy 1s defined in theorem 3.8.

Remark 3.12 Setting a(z,y) = b(x) + c(y),01(s,t) f(s,t) = h(s,t), and
o1(s,t) (f; o2(7,t)dr) = g(s,t) in corollary 3.11 we obtain [25, Theorem 1].

Remark 3.13 Settinga(x,y) = c71,01(s,t)f(s,t) = h(t), and o4 (s, t) (fs o2(7,t)dr) =

g(t) and keeping y fixed in corollary 3.11, we obtain [26, Theorem 2.1].

3.3 Further generalizations

In this section, we establish new nonlinear retarded integral inequalities of Gronwall-
Bellman type [21]. These inequalities generalize some famous inequalities and can be
used as handy tools to study the qualitative properties of solutions of some nonlinear
partial differential and integral equations. The purpose of this section is to extend certain
results which proved by Wang [30] and Abdeldaim [29]. Some applications are also given
to illustrate the usefulness of our results in the last chapter.

Let I) = [z, M|, I5 = [yo, N] are the given subsets of R, and A = I} x .

Theorm 3.14 Let u(x,y), f(z,y) € C(A,R}), and c(z,y) € C(A,R%) be nondecreasing
with respect to (x,y) € A, let « € CH(I1, I), B € C'(Is, I3) be nondecreasing with a(x) <

x on I, Bly) < y on Iy. Further ¢, € C(R,,R,)be nondecreasing functions with

61



{, 0} (u) >0 for u> 0, and lim (u) = +oo. If u(x,y) satisfies

U——+00

v (u(z,y) < c(z,y) (/ mo)/yo f(s,t)p t))dtds>2

alz)  rB(y)
/' £, ) (u(s, 1) [ (u(s. )

yo)
T,O u(T,0))dodr| dtds, .
+/m MJH )i (utr. o) dodr | (342
for (x,y) € A, then
u(w,y) <Y H{FTF (c(2,y) + Ale,y) + Bla,y)l}, (3.43)

forxg < x < x1,y0 <y < y1, where

al@) BW) 2
Ax,y) = / f(s,t)dtds |
a(zo) 7 B(yo)

a(z)  rB~y)
B(z,y) / f(s,t) {14—/ f(r,0) dUdT:| dtds,
(z0)  B(yo)

B(yo)
+oo ds
[ sy ez ot = [ ot m e G4

and (r1,y1) € A is chosen so that

F(r)=

a(z) rB(y) 2
/ f(s,t)dtds
(wo0)  B(yo)

/ / (s,t) {1 +/ f(r,o) dO‘dT:| dtds € Dom (F~')
(zo0)  B(yo) (zo)  B(yo)

Proof. Fixing an arbitrary (X,Y) € A, we define a positive and nondecreasing
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function z(z,y) by

o) = e(X.Y)+ ( [ ) /ﬁ Bjjf(s ) (u(s, t>)dtds>2
/%)/ " 1) i (u(s, )
+/Q(zo) /ﬁ(yo)f 7.0) o (u T,U))dadT] dtds.

for Zo SxSX leuyo Syéygyh thenz(x07y> :Z<x7y0) :C<X7Y> and

u(z,y) <v(z(z,y)), (3.45)

then we have

9z a(z)  rB~y) . ) B(y) .
= o< 2( / B /ﬁ L Tt <z<s,t>>)dtd8)a<x> [ Fal).0p (67 (Clata).0) d
B(y)
+d/(z) fla(@), t)e (¥ (z(a(z), 1)) [¢ (0 (2(a(z),1)))

5(?/0)

/ ) f 7.0)p (v (2(7,0))) dO’dT] dt

a(z)  rBY)
< @ (v (2(a 2 / f(s,t)dtds | o/( / fla(z), t)dt
B(yo) B(yo)
B(y) t
+a/(x) 1+/ f 7,0)dodr
(yo) (wo) 7 B(y
or
0s(az) P /a(z) /my) o) ’
—" < = f(s,t)dtds
©? (Vv (2(x,p))) 0z \ Jawo) J8w0)
B(y) a(z)
+a(x) fla(x),t) 1+/ [ (r,0)dodr| dt.
B(yo) a(zo) 7 B(yo)

Keeping y fixed, setting x = s integrating the last inequality with respect to s from xg
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to x, making the change of variable s = a(x) we get

B(y) 2
F(z(z,y)) < Fle </ / f(s,t)dtds)

a(z) rBy)
/ f(s,t) [1 +/ f(r,o) dO’dT:| dtds,
B(yo) (zo) v/ B(yo)

Since (X,Y) € A is chosen arbitrary, then

a(x) B(y) 2
2(xyy) < F71 </ / (s,1) dtds)
B(yo)
a(z) rBy) s ¢
+/ / f(s,t) [1 +/ f(r,o) dadr} dtds] . (3.46)
a(zo) 7 B(yo) a(zo) J B(yo)

From (3.45) and (3.46) we obtain the desired inequality (3.43). m

Remark 3.15 If ¢ (u) = u and c¢(x,y) = ug > 0 is a constant, xo = 0 and for y fized,
then theorem 3.14 reduces Theorem 1 in [27].

In the case 9 (u) = u, we obtain the following corollary.

Corollary 3.16 Let u(x,y), f(x,y),c(x,y), o, 5 and ¢ be as in theorem 3.14. If u(x,y)

satisfies

wlzy) < c(y) (/)/y (5.1)p t))dtds>2

a(z)  rB(y)
+/ F(s. ) (uls, 1)) [ (u(s, 1))
a(zo) Y B(yo)

+ [ o) etutr.o) dor| duds, (347)
z0) v B(yo
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for (z,y) € A, then

2
a(z)  rB(y)

u(z,y) < G / f(s,t)dtds
(zo) JB(yo)

/ (o0) / 500 f(s,1) {H / s o f(r,0) dodTl dtds} (3.48)

forzog < x < x1,y0 <y < y1, where

" ds oo ds
Gr:/—,rZT >O,G+oo:/ = +00, 3.49
N A R =y (349

and (x1,y1) € A is chosen so that

a(z) rB(y) o(z)  rBY)
/ f(s,t)dtds / f(s,t)x
B(yo) (zo) JB(yo)
s t
X [1 +/ f(r,0) dO‘dT:| dtds € Dom (G™').
xo Yo)

Theorm 3.17 Let u(x,y), f(x,y),c(x,y), o, B, ¢ and ¢ be as in theorem 3.14. Further
¢y € C(Ry, Ry)be nondecreasing function with oy(u) > 0 for u > 0. If u(x,y) satisfies

v (u(z,y) < c(z,y) (/ C’:O)/yo f(s,t)e t))dtds>2

a(z)  rB(y)
/ £(s, )01 (u(s,1)) [y (u(s. 1)

yo)

—l—/ f(r,0)p (u(r,0)) dO‘dT:| dtds, (3.50)
zo0) 7 B(yo)

for (x,y) € A, then
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(1) In case v (u) < ¢, (u),

By 2
u(z,y) < @7 {Fll [ )+ (/(mo » f s t)dtds)
/x / st [1+/$ )/B f(r,0) dadw«fb] dtds”,(:sm)

for g < x < x1,y0 <y < y1, where

" ds oo ds
Fl(T’):/TO W,T2T0>O,F1(+OO) :/TO 2—:+OO, (352)
(i7) In case @, (u) < ¢ (u), we obtain (3.43).

Theorm 3.18 Letu(x,y), f(z,y),c(z,y),a, B, p and ) be as in theorem 3.14. Let g(x,y), h(z,y) €
C(A,Ry). If u(x,y) satisfies

¥ (uz,y) < cloy +</)/ (s, ) t))dtds>2
/ " / i:) u(s, 1)) [ (u(s, 1))
+ /a y /ﬁ (yo)h(T,a)go(u(T,U))dadT] dtds, (3.53)
for (z,y) € A, then
u(z,y) < wl{Fll )+ </($0) /ﬁ(yo) s t)dtds>2
N /a T(; /ﬁ N {1 / N /ﬁ k(o dadT] dtds] } (3.54)
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forzg < x <wy1,y0 <y < y1, and (x1,y1) € A is chosen so that
a(x) B(y) a(z) B(y)
/ f(s,t)dtds / /
B(yo) (z0) Y B(yo)
s t
X [1 +/ / h(r,0) dO‘dT:| dtds € Dom (F7').
a(zo) Y B(yo)

Corollary 3.19 Let u(z,y), f(z,y),c(z,y),« and 5 be as in theorem 3.14, p > 0 is a
constant. If u(x,y) satisfies

a(e)  B() ?
uP(z,y) < c(x,y) / f(s, t)uP(s,t)dtds

B(yo)

/ f(s tyuP (s, t) [uP(s,t)

(o) 6(240)

+/ f(r,0) Up(T,O’)deT:| dtds,
(wo Y0)

for (z,y) € A, then

u(z,y)

( a(@) BW) 2
/ f(s,t)dtds
(z0) Y B(yo)
a(z)  rBy) s t P
—/ f(s,1) [1 +/ f(r,o) dO’dT:| dtds} :
a(zo) v B(yo) a(xo) 7 B(yo)

forxg < x < w1,y <y < y1, where (x1,y1) € A is chosen so that

a@) B() 2 el AW st 1
/ f(s,t)dtds +/ f(s,t) [1 +/ f(r,0) dO‘dT:| dtds < ——.
a(zo) J B(yo) alzo) J B(yo) a(z0) JBlyo) c(z,y)

Corollary 3.20 Let u(x,y), f(x,y),c(x,y), o, and B be as in theorem 3.14, p > 2q > 0

[un
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are constants. If u(x,y) satisfies

a(z) B) 2
Playy) < cloy)+ / £(s., £y (s, t)dtds
oz(xo

B(yo)
+/

a(zo) 7 B(yo)

x)/ (s,t)ul(s,t) [ul(s,t)

f(r,o)ul(r, a)dadr] dtds,

for (z,y) € A, then

v p—2q [ (4@ W) 2
u(ey) < 4 (e(n) 5+ / f(s. t)dtds
p x0) Y0)

1

_og (o) BW) =
q/ f(s,t) [1 +/ f(r,o) dUdT:| dtds :
(zo) JB(yo) (zo) / B(yo)

Remark 3.21 Ifp=q+1, c(z,y) = up > 0 is a constant, o = 0,a(x) = x and for y

fized, then corollary 3.20 reduces Theorem 3.4 in [29)].

Theorm 3.22 Let u(x,y), f(x,y),c(x,y),9(x,y),h(z,y),a, 5,p and ¢ be as in theorem
3.18, d(z,y) € C(A,Ry). If u(z,y) satisfies

v (u(z,y) < c(z,y) (/ mo)/yo f(s,t)e t))dtds>2
/ L s i)

—|‘ h ;,t QO , d; dtds, 3{)5
Jor1 (./L',y) c A, then

a(z) By) 2
u(z,y) < R Ot ) (A(z,y)) +2 (/ f(s,t)dtds) , (3.56)
(wo

B(yo)
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where

Al(x,y) = (z,y)) /IO)/yO s,t) { s tH/a(mo)h(T’t) dT:| dtds,  (3.57)

" ds oo ds
@(T) - [0 mﬂ” > 19> 0, (I)(‘I—OO) = /TO m = 400, (358)
" ds oo ds
00 = | a2 e = [ gy 2759)

forzg <x <z1,y0 <y <1, and (x1,y1) € A is chosen so that

(Q (A(z,y)) + (/ /ﬁ(y)) (s,1) dtds) ) € Dom (271).

Proof. Fixing an arbitrary (X,Y) € A, we define a positive and nondecreasing

function z(z,y) by

oz) B) 2
day) = c(X.Y)+ ( /ﬂ £, 1) (uls, t>>dtds>

(wo) v B(yo)

/)/) 5,1) [ (5,) @ (u(s, )

/a(mo) h(,) e (u(r,t) dr} dtds,

for To SLESX leuyo SySYSyhthenZ(x[%y) :Z<x7y0) :C<X7Y) and

u(z,y) <9~ (2(2,y)), (3.60)
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then we have
Oz a(z) rBY) By)
a0 <2 (/ . fls, )@ (071 (2(s,1))) dtdS) o' (x) fla@), ) (07 (2(alx), 1)) dt +

B(y)
o/ (2) /ﬁ g(a(a). ) [d (a(x), 1) o (7 (=(alz), 1)) + / Wt (0 (2(7.1)) dT] dt

(o) o(zo)
a(z)  rB(y)

< o (2(ala), { ( / o sene <<s,t>>>dtds>x

B(y) (y) a(z)
o) [ fla(z),dt +o'(2) / g(a(z), ) [d<a<x>,t>+ / h<r,a>ch] dt},

B(yo) B(yo) a(zo)

82((;;?/) a(z)  rB(y) . . i , B(y) Ads

e (/( [ 100 (07 ) s)a(az) /B(yo) f(a(@).t)

By) ()
+a'(x)/ﬁ gla(x),t) [d (a(z),t) +/ h(7,t) dT] dt.

(yo) a(xzo)

Since f;((x?) / ;(51)) f(s,t)p (" (2(s,1))) dtds is a nonegative and nondecreasing function
with respect to (z,y) € A, then we get

9z(z,y) a(X) B(y)
Oz (s, s s|d(x alx
2 (w ! ( ( </(ffo / B(yo) t ( ( ’t))) i ) ( ) B(yo) f( ( )7t)dt

a(zx)

+ol(z) /li(y(’) g(a(x),t) [d (a(z),t) + /Q(mo) h(r,t) dT] dt,

for xg < < X < x,y0 <y <Y < y;. Keeping y fixed, setting x = s integrating the

last inequality with respect to s from z to x, making the change of variable s = «a(x)
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we get
S

a(z)  rB(y)
3 (:(a,y) < @(c(X,Y>>+/( )/ﬁ( ol [d<s,t>+/( |

a(z)  rBy) a(X)  rBY)
+2/ / f(s,t)dtds / / fls, )0 (W7 (2(s,1))) dtds | .
a(zo) B(yo) a(zo) ' B(yo)

Since (X,Y) € A is chosen arbitrary, then

h(r,t) dT:| dtds

a(zx)

B(y)
& (2(r,9)) < A(w,y) + k (2,1) ( / /B S0 (57 (0,1) dtds),

(wo)

where k (z,y) = 2 f;((;;)) / [f((yi)) f(s,t)dtds is a nonegative and nondecreasing function with

respect to (z,y) € A, then we get

o(z) rBY)

O (2(z,y) <AX,)Y)+E(X,Y) (/ f(s,t)p (¢—1 (z(s,t))) dtds) )

(w0) 7 B(yo)
Define a positive and nondecreasing function v (z,y) by

B(y)

a(z)
v(@,y) = AX,Y) 4k (X,Y) (/( g (5, )0 (7 (2(5, 1)) dtds),

(o)

for vg <2 < X <z1,9 <y <Y <y, then v (zg,y) = A(X,Y) and

2a,y) <O (v (2y)). (3.61)
and
v B(y) .
5, S FXY)d(2) B(y)f(a(w),t)w (v (7" (v (a(2),1)))) dt
B(y)
< w7 (@7 (v(alx), B(y))) k (X, Y) () s )f(a(flf),t)dt,
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or
v

Ox o (z alx .
PG g S el ) [, flatti

Keeping y fixed, setting x = s integrating the last inequality with respect to s from xg

to z, making the change of variable s = a(z) we get

Qv (z,y) < QAX,Y)) +k XY/ )/ (s, t)dtds.

Since (X,Y) € A is chosen arbitrary, then we get

2
a(z) B(y
v(z,y) Q| Q(A(x,y)) + 2 (/ / (s,1) dtds) : (3.62)

From (3.60) - (3.62) we obtain (3.56). The proof is complete. m

Remark 3.23 If f(z,y) = 0 for all (x,y) € A and zq = 0, then theorem 8.22 reduces
Theorem 2.2 in [20].

Theorm 3.24 Let u(x,y), f(x,y),c(z,y), o, 5, ¢ and 1) be as in theorem 3.14. If u(x,y)

satisfies

b)) < clny) (/( ; fst) ((s,t))dtds)

/wo)/ (s,1)) [u (s, 1) @ (u(s, 1))

+/ 7o) yo)f (T’g)u<7-70-)§0(u(7',0'))d0'd7':| dtds,  (3.63)

for (x,y) € A, then

u(z,y) < ¢ {F[H T (H(B(z,y))

a(z)  rBy) s t
+/ / f(s,t) [1 +/ / f(r, o) dO’dT} dtds , (3.64)
a(zo) v B(yo) a(zo) v B(yo)
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for zg < x < 1,90 <y < y1, where F is defined by (3.44) and

a(@) B) 2
B(z,y) = F(c(z,y) + ( / f(s,t)dtds> , (3.65)
alwo) J8u0)
Hiy— [ — B ses0, B = [ T s (366
o 0 (F7H(s) o YT (FTL(s))

and (z1,y1) € A is chosen so that

B(y)

a(z) s t
H (B (z,y)) —I—/ f(s, ) [1 +/ f(r,o) dadT} dtds € Dom (H™") .
(zo0) v B(yo) (o) v B(yo)

Proof. Fixing an arbitrary (X,Y) € A, and define a positive and nondecreasing
function z(z,y) by

a(e) B() ?
2(z,y) = c¢(X,Y)+ (/( ; )f(s,t)cp(u(s,t))dtds)

a(z)  rB(y)
/ £(5, )0 (u(s, ) [ (5, 1) @ (u(s, 1))

(z0) ﬂ(yo

+/ f(ryo)u(r,o)e(u(r,0)) dUdT:| dtds,
a(zo) Y B(yo)

for o <o < X <1,y <y <Y <y, then z (79, y) = 2 (,50) = ¢(X,Y) and

u(z,y) <S¢ (2 (2,y), (3.67)
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then we have

B(y)
(/ /‘ F(s,t)p <,w»ﬁmﬁa%w Fa(@). e (7 (2(alz), 1) dr
(o) B(yo)
B(y)
+a(x )/5( )f(@(w),t)w(wl (2(a(),1))) [ (z(a(x), 1) ¢ (v (2(a(2),1)))
/ | / f(r,o) ,0)) @ (wfl (Z(T,U))) dadT] dt
a(z)  rB(~y)
§gp(¢ (z(« {2(/( ﬁ()fstdtds)a / fla(x),t)dt
B(y)
o (x a(z), T,0) dodr | dt ¢ ,
+()mwﬂ<>ﬂ[ me [ i ) ]t}

or

o o [ @ oW :
Oz < = . t)dtd
S02 (wfl (Z(.CE', y))) = Ir (/oé(xo) /ﬁ(yo) f(S ) S)

B(y)
+ﬂmwé( Fla(@), 1) [ ((a(), 1))

o) t
+/ f(ro)y™ (Z(T,J))d()'d’i'] dt.
a(z0)  B(yo)

Keeping y fixed, setting x = s integrating the last inequality with respect to s from xg

to x, making the change of variable s = a(x) we get

F(x(a,y) < Fle (/’@/’ stﬁ%)

a(z)  rB(y)
/ f(s,t) [ z(s,1)) / / f(r,0) ,0))dodr | dtds.
(zo) ' B(yo) (zo) J B(yo)
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Since (X,Y) € A is chosen arbitrary, then

F(z(z,y)) < B(z,y)

o(z) rBY) s t
/ f(s,t) [ (2(s,1)) +/ f(r,o)w™! (Z(T,U))d0d7:| dtds.
a(zo) J B(yo)

B(yo)

Since B (z,y) is nondecreasing, we define a positive and nondecreasing function v(zx,y)

a(z)  rB(y)
v(x, B(X,Y)+ / f(s,t) | [ (s,t)) / | f(r,o)y™ (2 (T,O‘))dO’dT:| dtds,
(o) J B(yo)

B(yo)

for o <2 < X < 1,50 <y <Y <y, then v (zo,y) = v (2,90) = B(X,Y) and

z(z,y) < F7H (v (2,y)), (3.68)
then we have
v B(y)
9 S o'(x) fla(@),t) [~ (F7 (v (), 1))
ﬁ(yo)
/ ) f r.0) Y (F (v(r,0))) dO’dT] dt
ﬁ(y)
< Y7 (FT (v(a(z), B(y))) o (z) 1+/ f T,0) dO’dT] dt,
5(1/0) (wo)
g_z o (x B(y) 7,0)dodr
T ) =" ! e ) Doy T AT

Keeping y fixed, setting x = s integrating the last inequality with respect to s from xg

to z, making the change of variable s = a(z) we get

a(z)  rBy) s t
Hw(x,y) <H(B(X,)Y))+ /( f(s,t) [1 +/ . )f(T,U) dUdT:| dtds.
xo zo Yo

B(yo)
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Since (X,Y) € A is chosen arbitrary, then

o(z)  rBY)
v(z,y) <H | H(B(2,9)) / f(s,t) [1—1—/ f(r, U)dUdT:| dtds
(zo0)  B(yo) (z0) ¥ B(yo)
(3.69)
From (3.67) - (3.69) we obtain the desired inequality (3.64). m
Sometimes we need to study these inequalities with a continuous function p(z,y) €

C(A, Ry) instead of nondecreasing function ¢ (x,y), so we get the followig theorem.

Theorm 3.25 Let u(x,y), f(x,y), o, B, and ¢ be as in theorem 3.14, and suppose that
o~ is a subadditive function. Let p(z,y) € C(A, R%). If u(z,y) satisfies

a(z)  rB(y) alz)  rB(y)
b (u(n,y) < ploy) (/ £, 1) (u(s, dtds) / f(s.1) %

(wo) VB (yo B(vo)

{(p (u(s,t)) + /( v )f(T,O')gO(U(T,U))dUdT] dtds, (3.70)

for (xz,y) € A, then

o(z) rBY)

f(s t)dtds) )

(3.71)
forzog < x < z1,y0 <y < 11, where & and Q are defined by (3.58) and (3.59) resp, and

u(z,y) <Y S pr,y) + 7 Q7 Q(E (z,y) +2</

B(yo)

a(z)  rB(y)
E(z,y) = D(x,y) +2/ f(s,t)dtds. / / (s,t)p (v (p(s,t))) dids
(zo) Y B(yo) (zo) Y B(vo)
a(z)  rB(y)
/ f(s,t) [1 —|—/ f(r,0) dO‘dT:| dtds, (3.72)
(zo) /' B(yo) a(zo) J B(yo)
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Dz (/ : £(s (p(s. 1 >>)dtds>2
r /:::f o

+ / N /ﬁ o) (6 i) dadT} dids,  (3.73)

+

and (z1,y1) € A is chosen so that

( (2, y) +2</x0)/y0fstdtds))eDom(Q .
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Chapitre 4

Applications

The applications of integral inequalities are crucial in the discussion of the existence,
uniqueness, continuation, boundedness, oscillation, stability and other qualitative pro-
perties of solutions of differential equations, integral equations and integro differential
equations. In this chapter we present some applications on the results obtained in chap-

ters 1, 2 and 3 to illustrate the usefulness of our results.

4.1 Application 1

In this section, we present some immediate applications of the inequality (3.7) in

theorem 3.1 to study the uniqueness of solutions of the integrodifferential equation

V() = F (t, 2 (t— h(t)), /t: F(t 0.3 (0 — h(o))) da) | (41)

with the given initial condition

[E(to) = Xy, (42)

where f € C(I?xR,R),F € C(I xR%R), z; is a real constant and h € C (I,I) be
nondecreasing with ¢t — h(t) > 0,h/(t) < 1, h(ty) = 0.
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Theorm 4.1 Suppose that the functions f, F in (4.1) satisfy the conditions

|f(t787$) _f(t757y)| < b(tv S)|J}—y|, (43)

|E(t,2,7) = F(ty,g)] < al®)|z—yl+ |7 -7, (4.4)

where a(t), b(t, s) are defined as in theorem 3.1 and let M = IItIaIXTI,(t). Then the problem
€

(P)-(Po) has at most one solution on I.

Proof. let z(t) and Z(t) be two solutions of (4.1)-(4.2) on I, then we have

o)~ 7(1) = / {P(sots=16). [ Feoato=nemao)
_F (s,m ~ h(s)), /t f(s,0,% (0 — h(0)) da> } ds.  (45)

Using (4.3), (4.4) in (4.5) and making the change of variables we have

t—h(t)
(1) —z(t)| < / [Ma (s + h(n))|z(s) —Z(s)]

to

# [ 30+ )+ () a(o) ~ (o) do| s

for t,n, 7 € I. A suitable application of the inequality (3.7) given in theorem 3.1 yields
|z(t) — Z(t)| < 0. Therefore z(t) = Z(t),i.e., there is at most one solution of (4.1)-(4.2).

4.2 Application 2

In this section, we present an application of our results obtained in chapter 3 to the
qualitative analysis of solutions to the retarded integro differential equations. We study

the boundedness of the solutions of the initial boundary value problem for partial delay
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integro differential equations of the form
D1D22q<l’7y) =A (xayaz(x_hl(x)7y_h2(y))’/ B(S,y,Z(S—h1(8)7y)) dS) (46)
0

z2(z,0) = a1(z), 2(0,y) = a2(y), a1(0) = a2(0) =0

for (z,y) € A, where 2,0 € C(A,R,),A € C(A x R*  R),B € C(A X R,R) and
hy € C* (I, Ry) ,hy € C' (I3, R,) are nondecreasing functions such that hy(x) < x on
I, ha(y) <y on I, and b (z) < 1, hy(y) < 1.

Theorm 4.2 Assume that the functions b, A, B in (4.6) satisfy the conditions

a1 (2) + az(y)| < a(z,y) (4.7)
|A(s,t,z,u)] < ——01(s,8) [f(s, 1) [2]" + |u]] (4.8)
|B(7,t,2)| < oo(7,t) |2 (4.9)

where a(z,y),o01(s,1), f(s,t), and oo(T,t) are as in theorem 3.5, ¢ > p > 0 are constants.

If z(z,y) satisfies (4.6), then

1

a(z) rBy) — a—p
|z<x,y>|s{p<x,y>+M1M2 / / o‘l<s,t>f<s,t>dtds} (4.10)

where
p(z,y) = (a(r,y) ©
a(x) pBy) s
—{—M1M2/ / o1(s,t) <M1/ Ug(T,t)dT) dtds
0 0 0
and
1
M, = Mar—— My = Mar—F—
LT A T W () 27 e 1= By (y)

and 01(7,€) = o1 (v + (), €+ ha(t)) , 02 (1, &) = 02 (1, & + ha(t)),
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FOr€) = f (7 + hu(s), € + ha(1)).

Proof. If z(z,y) is any solution of (4.6), then
2(z,y) = ai(z) + az(y)

/ / <s t,z (s — hi(s),t — h2(t)),/OSB(T,t,Z(7—_ hl(T),t))dT) dtds. (4.11)

Using the conditions (4.7)-(4.9) in (4.11) we obtain
IwwﬁSMWH%}K%%@MWMM%MMF@WV
+/ oo(7,t) |2(, )" dT] dtds. (4.12)
0

Now making a change of variables on the right side of (4.12), s — hi(s) =,t — ho(t) =
&, x—hi(z) = alx) for z € I,y — ho(y) = 5(y) for y € I, we obtain the inequality

_ o) B _
\mmvs«ww%fmmA A mmﬁM@mmW
’Y —
+MA@W®WMW4M% (4.13)

We can rewrite the inequality (4.13) as follows
a()
sl < o)+ 2 [ [ e [k Gor

+M1/ oy (1,t) |2(T, )| dT:| dtds. (4.14)

As an application of corollary 3.7 (Bs) to (4.14) with u(x,y) = |2(x,y)| we obtain the
desired inequality (4.10). m

Corollary 4.3 If z(z,y) satisfies the equation

D1 Dy2P(z,y) = A (x, Y,z (x — hi(z),y — ha(y)) ,/Ox B (s,y,2(s — hi(s),v)) ds) (4.15)
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2(2,0) = ai(z), 2(0,y) = a2(y), a1(0) = a2(0) =0

and we suppose that the conditions (4.7)-(4.9) are satisfied, then we have the inequality

a(z)  rB(y) _
el < o) +amn [ amw@mmwv

M, / o2 (7,1) [2(r, )P dT} dtds (4.16)
0

then we obtain

s 1 a(@) Bl _
mwnsm@mmmgmml A m@whm>

+M, /0 s oo, t)dT:| dtds) (4.17)

where o1, f, 09, My and My are as in theorem 4.2.

Proof. By an application of corollary 3.7 (Bj) to (4.16) we obtain the desired inequa-
lity (4.17) m

4.3 Application 3

We shall in this section illustrate how the results in Section 3 of chapter 3 can be
applied to study the boundedness of the solutions of certain Volterra equation. Consider

the following integral equation in two independent variables.

22 (x,y) = hP(z) + ¢(y) —l—p/x /y F (s,t,z(a(s), B(t)) dtds, (4.18)

Wherep > 2, F € C(AXIR,IR), h € C(I},IR), g € C(ly,IR)and o € C* (I}, IR,),[3 €
C*' (I, IR, ) are nondecreasing functions such that «(z) < z on I, B(y) < y on I, with
al <1 and pr < 1.

Our first result deals with the boundedness of solutions.
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Theorm 4.4 Consider the problem (4.18). If

|F(z,y,0)] < b(x,y) |v]", (4.19)
and
1
[77() + " (Y)] < 5 (4.20)
where b € C(A,IR,), then all solutions z(x,y) of (4.18) satisfy
|2(z,y)| < {exp(C(x,9)) + Az, y)} 7, (4.21)
where
Az, y) =2 / / (s,t)dtds |
(zo)  B(yo)
L
C(z,y) =log — +/ / (s,t)dtds,
4 Jao) Jowo)
and
B(z,y) =b(a"'(2), 57 (y)) (4.22)

In particular, if B is bounded on A |, then every solution z(xz,y) of (4.18) is bounded
on A.

Proof. By (4.20) and (4.18), we obtain

1 Yy
|z(z, )" < i F(s,t,z(a(s), dtds

/ / (s,t,z(a(s), B(t)) dtds| .

(4.23)

Hence by (4.19) we have

o)l < V /yjb(s,t) 12 (als), B dtd5r+

"b(s, 1) |z (als), B dids|.
(4.24)
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by a change of variables o = «(s), 7 = (t), in (4.24) we have

a(z) 6(y 2
el < 3+ / 7)) |2 (0, 7P dodr
(zo) Y B(yo)
a(z) 5(y)
/ / () |2 (o, )] dodr,
B(vo)
o(x) a(x) 5(1/
< —I— / B(o,7) |z (0,7) ]dedT / / (o,7) |2 (o, 7)" dodr,
0) (w0)  B(yo)

B~

a(z

where B define in (4.22). An application of theorem 3.22 (¢(u) = ¥ (u) = wP, d(s,t) =
f(s,1),9(s,t) =1, h(s,t) = 0 and c(z,y) = 1) to the function |z(z,y)| now gives the

assertion immediately. m

Remark 4.5 Our results in this work (Chapter 3) can be also applied to study the uni-
queness, and continuous dependence of the solutions of certain initial boundary value

problems for hyperbolic partial differential equations given in 4.18.

Remark 4.6 We can replace the condition (4.20) by

WP (z) + g7(y)| <

Y

D

we obtain a similar estimation above.

Finally, we give an open problem here : how to get the estimates of the solutions of
(4.18) when a/ < 1 and f/ < 1 are replaced by unknown functions. and when we replace

the equation (4.18) by

z%(w, y) = hP(x) + g%(y) _|_p/x /y F (s,t,z(a(s), 5(t)) dtds

where ¢ > 0 under some suitable conditions on F'(s,t, z(a(s), 5(t)) .
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