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Introduction

The integral inequalities play a fundamental role in the theory of differential and integral equations.
There are a necessary tool in the study of various classes of equations. In the past few years,
many authors have established several linear integral inequalities, non linear integral inequalities,
integrodifferential inequalities and delay integral inequalities and presented some of its applications
to the qualitative study of differential equations, we refer the reader to literatures |4, 29| 34] 140].

With the development of science and technology, an important type of inequalities, such as the
Gronwall Bellman type inequality, the Gronwall type inequality, the Henry-Bihari type inequality,
the Henry-Gronwall type inequality, occupies a great place in the research works of the modelling
of engineering and science problems as well as the qualitative analysis of the solutions to differential
equations. Nowadays, after the development that have seen the fractional differential equations,
integral inequalities with weakly singular kernels has become greater [16], 28], 32 33], 48, [50]. Henry
[16] suggested a recent method to search solutions and to prove some results about linear integral
inequalities with a weakly singular kernel. Ye et al. in [48] have worked with a generalized
inequality to investigate the dependence of the solution for a fractional differential equation.

The inequalities are inadequate and it is necessary to seek some new integral inequalities,
delay integral inequalities, in the case of the functions with one and several variables for used as
tools to study the existence, uniqueness, stability, Ulam stability and continuous dependence of
the solution for some classes of partial differential equations, delay partial differential equations,
integral equations. Let us give the review of each chapter of the thesis.

In chapter (1| we present a number of classical facts in the domain of Gronwall inequalities and
some non-linear inequalities in one variable and in several variables, in the last section we present

some linear and non-linear fractional integral inequalities.

In the chapter [2 We will study the same non-linear integral inequalities for two-variable func-
tions, which are studied by [12] with the term delay.

in chapter 3| we establish some non-linear retarded integral inequalities for functions of n in-
dependent variables which can be used as handy tools in the theory of partial differential and
integral equations. These new inequalities represent a generalization of the results obtained in

[17]. Some applications of our results are also given.
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In the first section of chapter 4| we give some necessary concepts on the generalized fractional
and conformable fractional calculus. In the second section of chapter [ the main contribution,
using the method introduced by Zhu [50] novel weakly singular integral inequalities are established.

In the third section of of chapter [ we study the following inequalities type

u(t)ga(t)+b(t)/tf(s)u(s)das—l—/:f(t)W(/:k(s,T)(I)(u(T))daT) dos,
w(t) <a(t)+bt /f (s))das+/atf(t)W(/:k(s,T)@(u(T))daT)das.

Where a(.),b(.), f(.),W(.),®(.) and k(.,.) are given functions satisfied some conditions sup-
posed later. This section is based on Rui A. C. Ferreira and Delfim F. M. Torres [14], we generalised
the results in conformable fractional version integral inequalities with the help of the Katugampola
conformable fractional calculus. In the fourth section of of chapter 4] we give an appliction for
the second and third section to illustrate the usefulness of our results, such that we present the

existence, uniqueness and Ulam stability for the solution of the following problem

{ CDRXx(t) = f (8,2 (1)), (1)

z (0) = xo,

where CDf X is the Caputo derivatives with respect to x, S € (0,1) and the continuous function
f+J x R — R satisfying some conditions will be specified later for the second section, and we

gives a bound on the solution of the following integral equation

u(t)—k—i—/OA(t)F(s,u(s),/OSK(T,u(T))daT) dos, te[0.0]

for the third section.



Chapter 1

Classical Gronwall Inequalities
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This chapter is presenting a number of classical facts in the domain of Gronwall inequalities,
some non-linear inequalities in one variable and in several variables, in the last section we present
some linear and non-linear fractional integral inequalities.

1.1 Some Linear Gronwall Inequalities

In 1919, Gronwall in [I5] proved the following linear Gronwall’s inequality.

Theorem 1.1. Let u(t), a(t) and k(t) be real continuous functions defined in [a,b], a(t) > 0,
fort € [a,b]. Assume that

u(t) <alt) +/ k(s)u(s)ds, t € [a,b]. (1.1)

e u(t) <al(t)+ /:a(s) k (s) exp (/:k (1) dT) ds, t € [a,b]. (1.2)

Proof. Define the function

By multiplication with exp (— fj k(7) dT) , we obtain

2 (vew (—/:k;(f)dT)) <a(®)k(t)exp (—/atkmdf),

By integration on [a,t], one gets

y (1) exp (-/atk(f)df) S/ata(s)k(s)exp (—/:k(f)m) ds,

then y(t) < /:a(s) k (s) exp (/t"“ 7) dT) -
Since u(t) <a(t)+y(t),
we find

u(t) Ea(t)—i-/ata(s)k(s)exp (/:k(T)dT) ds.
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Corollary 1.1. If a is a constant in then become

u(t)gaexp(/:b(s)ds).

Giuliano, Kharlamov,Willet, and Beesack in [7] investigated the following integral inequalities

Theorem 1.2. Let u(t) and k(t) be continuous functions in [a,b], and let a (t) and b(t) be Rie-
mann integrable functions in [a,b], with k (t) and b(t) are non-negative in [a,b].
i) If
t
u(t) ga(t)+b(t)/ k(s)u(s)ds, t € [ab]. (1.3)

Then . .

u(t) <al(t)+ b(t)/ a(s)k(s)exp </ b(r) k(1) dT) ds, t € [a,b]. (1.4)
ii) If < is replaced by > in both and (1.4), the result remain valid.
iii) Both i) and ii) remain valid if fat is replaced by ftb and f; by [ throughout.

Theorem [1.2] can be generalized as follows

Corollary 1.2. [J] Let u(t) and k;(t) (i =1,2,...,n) be continuous functions in [a,b], and let
a(t) and b; (t) be Riemann integrable functions in [a,b], with k; (t) and b; (t) (i =1,2,...,n) be

non-negative in [a,b] . Assume that

u(t)ga(t)+Zbi(t)/ ki (s)u(s)ds, t € [a,b].

Then

n

u<t>ga(t)+b(t)/ a(s)> ki(s)exp </ b(ﬂZki(T)dT) ds, t € [a,b].

=1
1.2 Some non-linear integral inequalities in one variable

We present the definition of subadditive and submultiplicative functions:

Definition 1.1. A function f: R, — R, is said to be
i) subadditive if f(x+y) < f(x)+ f(y), for x,y € Ry.
i) submaltiplicative if f (zy) < f(x) f (y).

Pachpatte in [41] have presented the following integral inequalities
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Theorem 1.3. Let u(t), f(t),g(t) and h(t) be non-negative continuous functions defined on
Ry. Let w(u) be a continuous non-decreasing and submultiplicative function defined on Ry and

w(u) >0 onRy. If

u(t)§u0+g(t)/0 f(s)u(s)ds+/0 h(s)w (u(s))ds,

for all t € R, where uqg is a positive constant, then for 0 <t < t;, we have

w(t) <a(t)G [G (o) + /Oth(s)w(u (s))ds] |
e a(t) =14 g(t) /Otf (s) exp </Otg (1) £ () dT) ds, (1.5)
fort e Ry, and

" ds
G(T)—/TO m,?“>0,7’0>0,

and G~ is the inverse function of G, and t; € Ry is chosen so that
t
G (up) -I—/ h(s)w (u(s))ds € Don (G™),
0

for allt € Ry lying in the interval [0,t;] .
Pachpatte in [41] also proved the following new generalization of the past theorem.

Theorem 1.4. Let u(t), f(t),g(t) and h(t) be non-negative continuous functions defined on
R,. Let w(u) be a continuous non-decreasing and submultiplicative function defined on Ry and
w(u) >0 onRy. Let p(t) > 0,0 (t) > 0 be continuous and non-decreasing functions defined on
Ry, and ¢ (0) = 0. If

() gp<t>+g<t>/0tf<s>u<s>ds+¢(/Otms)w(u(s»ds),
for all t € Ry, then for 0 <t < t,,
w <a®)[p+o (£ [Fa)+ | h(s)w nas) )],

where a (t) is defined by and
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fort e Ry, and

" ds
F(r)—/r0 W,T>O,TO>O,

and F~! is the inverse function of F', and ty, € Ry is chosen so that -1
t

F(A(t)) +/ h(s)w(u(s))ds € Don (F'),
0

for allt € Ry lying in the interval [0, 5] .

Remark 1.1. Theorem become Theorem for p(t) is a constant and ¢ is the identity

function.

1.3 Some non-linear integral inequalities in Several Vari-

ables

During the past few years, the discovery and the application of the new generalizations of the
Gronwall-Bellman inequality in more than one independent variables have attracted the interest
of many authors. In [37], Pachpatte considered the finite difference inequality in two independent
variables. Integral inequalities of the Gollwitzer type in n independent variables are established
by Yang in [13] .

Throughout this section, we assume that I = ]a,b[ in any bounded open set in the dimen-
sional Euclidean space and that our integrals are on R" (n > 1), where a = (ay,as,...,a,),b =

(b1,bg,...,b,) € R. For © = (21, %2, ..., T,) ,t = (t1,ta, ..., t,) € I, we shall denote the integral

x 1 x2 Tn
/ :/ / / oty dty
a al a an

Furthermore, for x,t € R", we shall write t < x whenever t; < x;,7 =1,2,...,nand 0 < a < x < b,
for x € I and D = D{D,...D,,,where D; = 6%1_, fori =1,2,...,n Let C(I,R) denote the class
of continuous functions from I to R,. The following theorem deals with n-independent variables

versions of the inequalities established in Pachpatte [36]

Theorem 1.5. Let u(x), f(x),a(z) € C(I,Ry) and let K (x,t),D;K (z,t) be in C (I x I,R})
foralli=1,2,....n and c be a non-negative constant.
1) If

u(t) < c+/ f(s) {u (s) +/ k(s,7)u(r) dT:| ds, (1.6)

Forxz el anda <1 <s<b, then

u(x)gc{H/:f(t)exp (/atf(s)Jrk(b,s)ds) dt}. (1.7)
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I x s
u(t) <al(x) +/a f(s) {u (s) +/a k(s,7)u(r) dT:| ds, (1.8)
Forxz el anda <1 <s<b, then
u(x) <a(x)+e(x) [1+/axf(t)exp </atf(s)+k(b,s)ds> dt} ) (1.9)
Where N i
e () :/a £ (s) {a () +/a k(s,7)a(r) df} ds. (1.10)

Theorem 1.6. Let u (), f (z)a(x) and k (x,t) be as defined in Theorem|[1.5, Let ® (u(x)) be real-
valued, positive, continuous, strictly non-decreasing, subadditive, and submultiplicative function for
u(x) >0 andlet W (u(x)) be real-valued, positive, continuous,and non-decreasing function defined

for x € I. Assume that a (x) is positive continuous function and non-decreasing for x € I.
If
T T t
u@ <o)+ [ FOg@@ds [ fow (/ k(t,sm(u(s»ds) i,

Fora<s<t<axz<b, then fora <x < zx*,

ww <p @+ [row e (w<n>+/:k<b,s><b[Ms)/:f(rw] is) |t}

Where
50 =6 (G [ o),

:/ k(b s) @ (B (s)al(s))ds,

v
G(u):/u0 mdz, u > 0(up > 0),

T ds
\I/(a:):/mom, x> x9 > 0.

where G~ is the inverse function of G, and W is the inverse function of W™, x* is chosen so that

G (1) + [ ft(s)ds is in the domain of G™*, and

\I/(n)—k/atk:(b,s)(l){B(s)/:f(f)dr} ds,

is in the domain of W',

Remark 1.2. Theorem[I.G, become Theorem[1.5, for a is a constant, f =1 and g, W and ® are
the identity functions
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1.4 Some fractional integral inequalities

1.4.1 Some definitions

We introduce some important functions and some necessary concepts on the fractional calculus,

namely the Gamma function, the Riemann-Liouville integral and derivative, the Caputo derivative.

Definition 1.2. [20/ The Gamma function I' (.) is defined by the integral

+oo
[(z) = / e P dt,
0

which converges in the right half of the complex plane, that is, Re (z) > 0.

The Gamma function satisfies
I'(z+1)=2I'(2), Re(z) >0
and for any integer n > 0, we have
I'(n+1)=nl

Definition 1.3. [20/ The Riemann-Liouville fractional integral of order o > 0 of a function
f:(a,+00) = R is given by

15 f () = ﬁ / (t— )" f (s) ds

provided that the right side is pointwise defined on (a,+00).

Definition 1.4. [20] The Riemann-Liouville fractional derivative of order a > 0 of a function

f:(a,+00) = R is given by

provided that the right side is pointwise defined on (a,+00), where n = |[a] + 1, [a] denotes the

integer part of .

Definition 1.5. [20] Let « > 0 and n = [a] + 1, for a function f € AC" (|a,b],R) the Caputo
fractional deriwvative of order v of f is defined by

Dp.f) @) = 1D 1
1 v a1
= = ) () ds.
T ) s
where D = 4 denotes the classical derivative and AC™ [a,b] = {f € C" " [a,b], ™~V absolutely

continuous function}.
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Lemma 1.1. [20] Let « > 0, n = [a] + 1 and f : [a,b] — R be a given fonction. Assume that
D2, f and CDflﬂf exist. Then

n—1 (k) a
DS ()= DS (0= Y it — s (-0
k=0

Lemma 1.2. [20] Let « >0, n=[a] + 1. If f € L' [a,b] and f,_o € AC" [a,b], then the equality

. B = @)
(Ig+ Dgv ) (8) = £ () Z—F(a_j+l)(t a)*.

holds almost everywhere on |a,b]. In particular, if 0 < o < 1, then

(1202 (0 = £ (0 = et - !

where fn_o =I'7f and fi_o = I;IO‘ .

Let a > 0, then we have

(Ie€Dgef) (8) = f () =

1.4.2 Some Classical fractional integral inequalities

The following theorem given the generalized singular Gronwall inequality (see [48]).

Theorem 1.7. Suppose 5 >0, f (t) is a non-negative function locally integrable on [a,b), b < oo
and g (t) is a non-negative, non-decreasing continuous function defined on g (t) < M, t € [a,b),

and suppose u (t) is non-negative and locally integrable on [a,b) with

u(t)gf(t)—i-g(t)/o(t—s)ﬁ_lu(s)ds, t €la,b).

Then

0 Z%@—sfﬁ*ﬂs)ds, tlab).

U(t)Sf(t)+/

If f(t) =0 for allt € [a,b)we find u(t) =0 for all t € [a,b).
Proof. Let B¢ (t) = g (t) fot (t —s)" " ¢ (s)ds, t > 0 for locally integrable functions ¢. Then

u(t) < f(t)+ Bu(t)

Implies
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Let us prove that

BMu(t) < /0 W (t— )" u(s)ds (1.11)

And B"u (t) — 0 asn — oo for each t in 0 <t < T.
We know this relation ((1.11)) is true for n = 1. Assume that it is true for some n = k. If n = k+1,

then the induction hephotessis implies

B*lu (t) = B (B*u(t)) < g (1) /0 (t —s)*! ( /0 S % (s—7)" " u(r) d7> ds.

Since ¢ (t) is nondecreasing, it follows that

Bk:-i—lu (t) < (g (t))k+1/0 (t N S)ﬁfl (/05 (F (ﬁ)) (S _ T)kﬁ—l u(T) d7‘> ds.

this implies that

B*u(t) < (g (t))kH/O (/ —(II; éfg (t—s)""(s— 7')%71 ds) w(T)dr

t(g(t>r(5))k+1 _S(k+1)5—1u5 s
| e (5 ds

where the integral

t 1
/ (t—s)"(s—7)" ds = (t—r) / (1—2)"71 241,
T 0

= (t-7)" B kB, B)
DET k) |\, yens-
T ((k+1)p)

Y

is evaluated with the help of the substitution s = 7 + z (¢ — 7) and the definition of the beta
function see [42] The relation is proved.

Since B™u (T) < fo Mrﬁg — )" u(s)ds — 0 as n — +oo for t € [0,T), the Theorem is
proved. O

Corollary 1.3. Under the hypothesis of Theorem let f(t) be a non-decreasing function on
la,b). Then we have

w(t) < f() Es (9T (8)17),
where Eg (t) is the Mittag-Leffler function defined by Eg(t) => =, F(#"H) fort > 0.

The following new type of Gronwall-Bellman fractional integral inequality is proved by Wu,
Qiong in [43].
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Theorem 1.8. Suppose 0 < 8 < 1,and consider the interval I = [0,b) where b < co. Suppose f (t)
is a non-negative function, which is locally integrable on I and h(t) and g (t) are non-negative,
non-decreasing continuous function defined on I, with both bounded by a positive constant M. If

u (t) is non-negative, and locally integrable on I and satisfies

u(t)Sf(t)+h(t)/0tu(s)ds—|—g(t)/ot(t—S)ﬁ_lu(s)ds, tel

Then
u(t) < f(t)+zz {O{Lh”‘i t)g' (t)% /0 (t— ) f(s)ds|,  tel

Proof. Let ¢ be a locally integrable function and define an operator B on ¢ as follows

Bo(t) = B(1) /tB (s)ds + g (1) /t (t— )" u(s)ds, t > 0 (1.12)
0 0
From the inequality, [1.12] we obtain
u(t) <a(t)+ Bu(t).

This implies

u(t) < ”i B*a (t) + B"u(t). (1.13)
k=0

As a similar proof of Theorem [I.7] we find

Bu(t) < Y0 (1) 1) F(L“”) [ =9ttt ags)as

(lav+mn —1i
and B"u (t) — 0 as n —» oo for each ¢ in 0 < ¢ < T, thus we get the desired inequality. O

Remark 1.3. Theorem[1.8, become Theorem[1.7], for h=0 and 0 < 3 < 1.

Corollary 1.4. Suppose the conditions in Theorem are satisfied and furthermore, f(t) is

non-decreasing on 0 <t <T.

W) < OB (OT G e (5h0)1)

Proof. From the proof of Theorem [1.8

” (t) <a (t) + Z Z Cinbn_i (t) gi (t) % /0 (t _ 8)(ia*(i+lfn)) a (S) ds

— (i +n—1i
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Since a(t) is nondecreasing,

w—+n—1

npn—i i (I (o)) i iatn—i
2 G Ot Gatn—ivD

>

n=

wlt) < a0 YO 00 O s [ ags)ds

11
< a(t)+
1

1
< A BT @ e (1001).
e
This completes the proof. O
Medved, in [33] investigated the following fractional Integral Inequalities of Henry type

Definition 1.6. Let ¢ > 0, be a real number and 0 <'T' < oo, we say that a function w: R, — R

satisfies a condition (q), if
exp (—qt) [w (w)]* < R(t)w (exp (—qt)u?), forallu e Ry, t€[0,T). (1.14)

where R (t) is a continuous, non-negative function.

Example 1.1. If w(u) = v, m > 0 then e~ (w (u))? = ™V (e=%y?) for any q > 1, i.e.,
the condition is satisfied with R (t) = e(m=1at,

Theorem 1.9. Let f (t) be a non-decreasing, non-negative C*—function on [0,T), g (t) be a con-
tinuous, non-negative function on [0,T), w: Ry — R be a continuous, non-decreasing function,

w(0) =0, w(u) >0, on[0,T) and u (t) be a continuous, non-negative function on [0,T), with

U(t)éf(t)+/0 (t— 5" g(s)w(u(s)ds, te0.T),

where B > 0, Then the following assertions hold:
i) Suppose > 5 and w satisfies the condition with ¢ = 2. Then

D=

u(t) <exp () {Q[QRFO*) +a®]}?, te(0,Th),

2 - 1)

Q(r) = fq; %, ro > 0, Q7! is the inverse of O~ and Tt € Ry such that Q (2f (t)Q) +ag1(t) €

Dom (Q7Y) for all t € (0,T) .
i1) Let 5 € (0, %) , and w satisfies the condition (1.14) with ¢ = z + 2, where z = % Then

where

w(t) <exp () {Q7 Q27 (O + ()]}, te(0,T),
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where .
2 (0) =2 K2 [ R(s)g (5" ds.
0

ra- 2
KZ:—< &q),a: : ,q:Z+ .
1—aq z+1 z+1

Ty € Ry such that Q (2971 f (£)?) + g2 (t) € Dom (Q71) for all t € (0,Ty) .

(1.15)

Theorem 1.10. Suppose f (t), h (t) are non-negative, integrable functions on [0,T) and g (t),u (t)

are integrable, non-negative functions on [0,T) with

u(t) < f(t)+h(t)/0 (t—s)""g(s)u(s)ds, a.e.on [0,T) .

then the following assertions hold :

i) If p > % then

N|—=

u(t) <exp(t)®(t)2, a.e.on [0,T)
Where . )
(1) =2f ()" + 2Kh (t)’ / f(s)*g(s)” exp [K / h(r)g <r>2dr} ds,

(28— 1)

K=—"5

i) B = ﬁ for some z > 1 then

Q=

u(t) <exp(t)¥(t)s, a.e.on [0,T) ,

where
W (t) =271 f ()" + 277 K2h (1) /Otf (s)7g (s)"exp [2‘1_11(3 /:h (r)'yg (T)qdr} ds,

qg=2z+2, and K, is defined by .

1.5 Some applications

We present three examples of application to study respectively the boundless, uniqueness and

Ulam stability of the solution of the following fractional Cauchy problem

{ CDu(t) + Mu(t) = f(tu(t), te]=[0T], (1.16)

u (0) = uyp,

where ¢ D® is the Caputo fractional derivative of order o € (0,1) , and f : JxR — R is a continous

function. Next, we introduce the following assumptions
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H1) there exists ¢, € C (J,R,), such that

If(t,w)] < @(t)|u] +1(t) for allt € J, and all u € R.

H2) There exists Ly > 0, such that
|f (t,u1) — f(t,u2)| < Ly|uy — us| for allt € J and all uy, us € R.

Clearly that if H1) is satisfied. Then there exist at least one solution of ( [1.16) note u (t), such

that w (t) is a solution of the following integrel equation

t
W) = B (N = [ (69" B (A (= 9)") § (s,u(5) ds
0
We consider the following inequality
D% (t) + Au(t) — f (t,u(t))| <e, fore>0. (1.17)

Theorem 1.11. Suppose that H1) is satisfied. Then

*

001 < (ol + ™) Ba ),

where p* = sup;c;p (t), ¥* = sup,c; ¥ (t).

Proof. We have
u(t) = ugEq (=A%) — /0 (t —s)*! Eoo (=X (t—9)") f(s,u(s))ds,

From H1) and by the fact of E, (—At*) <1, E,, (—At*) < ﬁ, for any A > 0, and ¢t € J. we find

u(®)] = [uoEa (=At%)] +/Ot (t=5)""" |Eaa (<A (t =) |f (5,u(s))] ds

s|w+ﬁ5£@—ﬁ“w@w+ﬁgéu—w1mmwﬂw

1/J* 1% QO* ! a—1
]ud—i—mT +F(a)/0 (t—s)" " |u(s)|ds.

Using Corollary we get

001 < (ol + ) Ba ),
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Theorem 1.12. Suppose that H2) is satisfied. Then Eq. has a unique solution on J.

Proof. we suppose that u (t),us (t) are two solutions of Eq (1.1)). Then

lup (t) —ug ()| = /0 (t =) Ena (=Nt —8)") (f (s,u1 (8)) — f (8,us(s))) ds
L
['(a)

/0 (t — 3)(1_1 lug (8) — ug ()] ds.

Using Theorem [I.7, we obtain u; = us. O

Definition 1.7. Ejq. is Ulam-Hyers stable if there exists ¢ > 0, such that for every e > 0,
and for every solution v of there is a solution u of Fq. with

lu (t) — v (t)| < eEy (LstY)c, forall teJ

Remark 1.4. If v is a solution of then v is a solution of

€

v () — v (0) Ba (=) _/O (t= )" Eaa (A (t = 5)) f (5,0 (s)) ds| < WTQ~

Theorem 1.13. [18] Suppose that H2) is satisfied. Then,the solution of 15 Ulam-Hyers
stable.

Proof. Let v be a solution of ((1.17)) and u the unique solution of the following problem

{ CDY () + Au(t) = f(tu(t)), a € (0,1),te€ ],
u(0) =2 (0),

then
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From Remark we find

v (t) — u(t)]
v () = v (0) Ea(—/\t“)—/o (t= )" B (<A (E— 8)) f (s, (s)) ds

IN

IN

‘y () = v (0) B (—At*) — /0 (t=5)"" Eaa (=X (t = 5)") f (s,0(s5)) ds
+ /0 (t=5)"" Eaa (=A(t = 5)") f (s,0(s)) ds
_ /0 (t=5)""" Eaa (<A (= 5)") f (s,u(s)) ds

€ o ]- t a—1

< +F(a)/0 (= ) f (5,0 (5)) = f (5,0 ()] ds
€ o Lf t a—1

< TR 9T e ).

Using Corollary we get

€

00 ~u (0] < 5o

T°E, (Lst%).

Thus, Eq. (1.16) is Ulam-Hyers stable. O
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Dragomir and Kim ([12], Theorem 2.3) have presented the following type of integral inequalities

for functions with two variables without term of delay

u(z,y) < a(x,y)+f(m,y)H(/Ox/yood(s,t)W(u(s,t))dtds>
b (2, y) /jc(s,y)u(s,y) ds.

In this chapter we present some non-linear delay Integral Inequalities for two variable functions
with a term of delay, secondly we establish some further delay Integral inequalities. Finally,
applications to typical are presented to show the efficiency of the proposed approach. we present
three examples of application to study respectively the boundless, uniqueness and stability of
the solution for a problem of differential equations with delay. The preset results in press are a

generalisation of some inequalities proved in [12].

2.1 Certain Non-Linear Integral Inequalities with a term

of delay

We start by proving some lemmas, which we use in this chapter

Lemma 2.1. Let u(t), k(t), a(t) and b(t) be Riemann integrable functions on [0,00) with
u(t),k(t) and b(t) non-negative on [0,00), and o, € C([0,00),[0,00)) are non-decreasing
functions, with o (t) <t, f(t) >t fort >0,

1. If
u(t)§a(t)—|—b(t)/a()k(s)u(s)ds,forto§t, to,t € [0,00),
a(to)

then . .

u(t) <a b a(s)k(s)ex b(r)k(r)dr | ds, 0,00). 2.1

(1) <a(t)+ (t)/a%) (s) k (s) p</Q(s) (r) k (r) > t €10,00) (2.1)
2. If .

u(t)ga(t)—i-b(t)/ k(s)u(s)ds, fort e [0,00),
B(t)
then

0 B(s)
u(t) <al(t)+ b(t)/ a(s)k(s)exp (/ﬁ(t) b(r)k(r) dr) ds, t € [0,00). (2.2)
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then v (tp) = 0 and
u(t) <a(t)+b()v(t),

by integrating (2.3 and using (2.4)), we get

V() ala(®)k(a(t)a () +b(a@)k(a®)v(ab)a’(t),

we multiply the last inquality by the integrating factor exp (— fo?é(i?) b(r)k(r) dr), we get

It follows that

(2.4)

alt) ot)
% [v () exp (-/a b(r) ke (r) dr)] < a(a®)k(a®)d ¢ exp (-/a b(r) e (r) dr).

(to) (to)

By integrating the lasting inequality from ¢ to ¢, with the chang of variable we obtain

v () exp (- /a :))b(r)k(r) dr) < /a Z:t))a(s)k(s) exp (— / :to)b(r)k(r) dr) ds.

Thus

() < / Z: a(s)k (s) exp (— /a ;) b(r)k (r) dr) exp ( / z(;) b(r) k(1) dr) ds.

alt) alt)
v(t) < / a(s)k(s)exp (/ b(r)k(r) dr) ds.

(to)

1.e.

Since a(t) < 't, we get

alt) alt)
v(t) < / a(s)k(s)exp (/ b(r)k(r) dr) ds.

(to) (s)

Using the bound of v (¢) in w (t) < a(t)+b(t)v(t), we get the required inequality in (2.1)).

2. Dfine a function v (t) by

(2.5)
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then v (00) = 0 and
u(t) <a(t)+bt)v(t). (2.6)

By integrating (12.5) and using (2.6)), we get

and

(AYARNAV
[
S
TN —
™ ™

—~
= =
\_/\_/
s
—
= R
&~~~
~— T~
<
= T
\_/QN
—
< D
—
NG
|\_/
<
@Tb
—
= =
—~
= =
S—
> X
= =
~
N—
N—
X
—~
~
SN—

V()0 (B@) kB @) v () () = —a(B()k(B()F (1),

we multiply the last inquality by the integrating factor exp <— i) Bo(j) b(r)k(r) dr), we have
[ () + 0 (B (1) k(B(t)v(t)B (t)] exp (— /5:) b(r)k(r) d?“)
—a k "(t) ex —Oobrkrdr.
> —a@W GO e (- [ vk ir)
Thus

IS [ bk )| 2 ~a @)@ 5 e - / : b1k (r)dr).

®)

By integrating the lasting inequality from ¢ to co, with the chang of variable we obtain

v(t) < /ﬂ:a(s) k (s) exp (/ﬁ;b(r) k(r) dr) ds.

Since (3 (t) > t, we get

o B(s)
v(t) < /B(t) a(s)k(s)exp (/ﬁ(t) b(r)k(r) dr) ds,

Using the bound of v (¢) in u (t) < a(t) +b(t)v(t), we get the required inequality in (2.2). O

Lemma 2.2. Let u(z,y),a(z,y),b(x,y) be non-negative continuous functions defined for x,y €
Ry and a, 8 € C'([0,00),[0,00)) are non-decreasing functions.

1. Assume that a (x,y) is non-decreasing in x and non-increasing iny and o (t) <t, f(t) >t
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fort >0, and o (0) = 0. If

a(x) proo
u(x,y) <alz,y) +/ / b(s,t)u(s,t)dtds for all x,y € R,
0 B(y)

a(x) poo
u(z,y) <a(z,y)exp </0 /B( )b(s,t) dtds) : (2.7)

2. Assume that a (x,y) is non-increasing in each of the variables v,y € Ry and o (t) > t, B(t) >t
fort >0, and o (00) = f(00) = oo. If

then

u(x,y) <al(z,y) +/ / b(s,t)u(s,t)dtds for all x,y € R,
a(z) 7 B(y)

then

u(z,y) < a(z,y)exp ( /a :) /5 :) b(s,t) dtds) . (2.8)

Proof. Fix any XY € Ry. Then for 0 <z < X and Y <y we have

u(z,y) <v(v,y),

where

a(z) poo
v (z,y) :a(X,Y)+/ / b(s,t)u(s,t)dtds.
0 By)

Clearly, v (z,y) is non-decreasing in x and non-increasing in y and

v(0,y) =a(X,Y), (2.9)

gt = W) [ baw) e

(v)

< o/(x)v(x,y)/ b(a(x),t)dt.

B(y)

i.e.

—%U@j’y) o (z h a(x
S <YW [ ba@

By keeping y fixed in the above inequality, setting x = s and integrating from 0 to z, and the

change of variable, and using

a(z) poo
v(z,y) <a(X,Y)exp (/ / b(s,t) dtds) :
0 By)

By setting z = X and y = Y and using the fact that u (z,y) < v (z,y) we get the inequality in
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7).
2.Fix any X,Y. Then, for X <2 Y <y we have

u(z,y) <v(z,y),

where

v(x,y):a(X,Y)+/ / b(s,t)u(s,t)dtds.
az) J B(y)
Clearly, v (z,y) is non-increasing in each variable z, y € R, and

v (o0,y) =v(x,0)=a(X,Y), %v (x,00) = gyv (00,y) =0, (2.10)

and

oo v(ry) = o (@)8 () b(a(r),B () ula(@),s (@)
< o (2) B (y)b(a(z),B@)v(a(r),B(z)).

Since a(x) >z, 5 (y) > y and v (z,y) is non-increasing in each variable z, y € R, we have

0 [%v z,y)

( N
Ay v (z,x) ] =Tt gt

By keeping x fixed in above inequality, setting y = t integrating from y to co and using (2.10)),
and again by keeping y fixed, setting x = s, integrating from x to co in the resulting inequality
and using (2.10) with the change of variable we obtain

v(z,y) <a(X,Y)exp (/ / b(s,t) dtds) :
a(z) 7 B(y)

By setting z = X and y = Y and using the fact that u (z,y) < v (z,y) we get the inequality in
3. a

The following theorems deals some non-linear integral inequalities for two variable functions

with a term of delay, which are important in the qualitative theory of differential equations.

Theorem 2.1. Let u(x,y),a(z,y),b(x,y),c(x,y),d(z,y), [ (x,y) be real valued non-negative
continuous functions defined for x,y € Ry, and o, € C'([0,00),[0,00)) are non-decreasing
functions with o (z) < x, 5(y) >y on [0,00) and a(0) = 0. Let W (u (x,y)) be real valued, posi-
tive, continuous, strictly non-decreasing, subdditive, and submultiplicative function for u (z,y) >0
and let H (u (x,y)) be a real valued, continuous, positive, and non-decreasing function defined for

z,y € Ry. Assume that a(x,y) and f (z,y) are non-decreasing in x for x € R*. If
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a(z) poo
u(z,y) < a(z,y)+ f(z,y)H (/0 /ﬁ d(s,t) W (u (s,t))dtds)

(v)

a(z)
b(x, c(s,y)u(s,y)ds, 2.11
@) [ cpuiy (211)
for x,y € RT then
u(z,y)
< plzy)falzy)+

a(x) 00
f(z,y)H |G (G (A) + (/ / d(s,t) W (p(s,t) f(s,1)) dtds))] } , (2.12)

0 B(y)

for x,y € RT where

afx) o(z)
p(x,y) = 1+b($,y)/( )c(s,y)exp (/( ) b(r,y)c(r,y)dr) ds, (2.13)
A= /000 /Oood(s,t) W (p(s,y)al(s,y))dtds, (2.14)
G(T):/T:mTZTQ>O. (215)

Proof. Define a function z (x,y) by

a(z) poo
c(ary) = a(ey) + f(ay) H ( / /ﬁ RO <s,t>>dtds) | (2.16)
from (2.11) we get
o)
u(ey) < 2 (o) + (o) | cbauds (2.17)

Clearly, z (z,y) is a non-negative and continuous in z, setting y fixed in (2.17)) and using Lemma

2.1, we obtain
a(x) a(x)
u(x,y>Sz<x,y>+b<x,y>/ z(s,y>c<s,y>exp/ b(r,y) e (r.y) dr | ds.
a(zo) a(s)

Moreover, the non-decreasing of the function z (x,y) yields

u(r,y) < z(x,9)p(r,y), (2.18)
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where p (z,y) is defined by (2.13]). From (2.16) we find

u(z,y) <p(r,y)(a(r,y)+ f(2v,y) H(v(z,y))), (2.19)

where v (x,y) is defined by

a(z) poo
v(z,y) = /0 /ﬂ(y)d(s,t) W (u(s,t))dtds.

Using ([2.19) we obtain

/000 /ooo d (s, t) W (p(s,t)a(s,t))dtds

a(z) 00
—l—/o /B(y) d (s, t) W (p(s,t) f(s,t) W (H (v (s,t)))dtds, (2.20)

since W is subadutive and submultiplicative. Define r (z,y) as the right side of the last above

inequality, then

r(0,y) / / (s, t) W (p(s,y)a(s,y))dtds = A, (2.21)

v(z,y) <r(z,y),

r(x,y) is non-decreasing in z and non-increasing in y and

e (,y) = Oé'(fv)/:)d(a(x)at)W(p(Oé(w)’t)f(a(x),t))W(H(v(a(I)at)))dt

< O/(fv)/; d (o (z), )W (p(a(z),t) f(ale), ) W (H (r(z,1)))di

(v)

< W(H(r(z,9) o (z) /5< )d(Oé (@), )W (p(a(z),t) fla(z),t)di.  (2.22)

Dividing both sides of (2.22)) by W (H (r (z,y))) we obtain

2 (2,9) /
ey SO W [ e oW eam nraEme e

Using ([2.15)) and - we find
Gy (r(z,y)) < o (2) /: d(a(z) )W (p(a(z),) f(a(z), 1)) dt. (2.24)

(v)

Now setting x = o in ([2.24]) and the integrating with respect to o from 0 to z, and making the
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change of variable s = a (o) we obtain

G r(a,y))
G+ [ (/ﬁ a'<s)d<a<s>,t>w<p<a<s>,t>f<a<s>,t>>dt)ds

()

IN

a(z) poo
=G (r(0,y)) +/O /6( )d(s,t) W (p(s,t) f(s,t))dtds, (2.25)

the last inequality imply that
) a(z) poo
r(z,y) <G~ <G (r(0,9)) + (/0 /ﬁ( )d(s,t) W (p(s,t) f(s,t))dtds)) . (2.26)
y

In view of (2.19), (2.21) and (2.26) and by the fact of v (z,y) < r (z,y), we obtain the inequality
212). u

Next, we shall present some important remark and corollaries resulting from the above Theorem.
Remark 2.1. If a (z) =z and B (y) = y in theorem[2.1 we get theorem 2.3 in [1Z)].
Corollary 2.1. If W (z) = H (z) = z, and ry = 1 in Theorem[2.1] we get

7 (0,y) :/OOO/Oood(s,t)p(s,y)a(s,y)dtds:A,

and

u(z,y) < pley)falry)+

a(z) poo
Af (x,y) lexp (/o /ﬁ()d(s,t)p(s,t)f(s,t)dtds)]}.

Corollary 2.2. If W (z) = a? with0 <p < 1, H (s) = s, and ry = 0 in Theorem[2.1] we get

r(0,y) :/OOO/Oood(s,t)p(s,y)a(s,y)dtds:A,

and

u(z,y) < plry)fa(ry)+

, 1—p a(z) oo =
(1—p) f(z,y) <14_p+ (/0 /m )d(s,t)p(s,t)f(s,t)dtds))

By the same proof of Theorem 2.1, with using (2) of Lemma we obtain the following

theorem
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Theorem 2.2. Letu (.T, ?J) @ (:Ea y) ) b (ZL’, y) , € (]"7 y) ) d (.T, y) ) f (Z’, y) ) W (U (.CE, y)) and H (U (.CB, y))
be as defined in theorem and o, € C'(][0,00),[0,00)) be non-decreasing function with
a(x) >z, fy) >y on [0,00) and B (c0) = co. Assume that a(z,y),b(x,y), and f(x,y) are

non-increasing in r for x € R,. If

u(z,y) < a(x,y)+f(x,y)H(/a:)/B:)d(s,t)W(u(s,t))dtd5>

b (,y) / ¢(s,y)u(s,y) ds,
B(x)

for x,y € R, then

u(r,y) < pxy){alry)+

f(x,y) H {G‘l <G(A) + (/QZ) /ﬁ:)d(s,t)W(p(s,t)f(s,t))dtds))} }

for x,y € RT where

00 o)
px,y) =1 +b(:v,y)/ c(s,y)exp (/ b(r,y)c(r,y)dr) ds,

B(z) (s)

A:/O“’/O“’d(s,t)W<p(3,y>a<s,y))dtds,

" ds
G(r):/mmr2r0>0.

Theorem 2.3. Let u(z,y),a(x,y),b(z,y),c(z,y), f (z,y) be real valuer non-nagative continu-
ous functions defined for x,y € Ry and L : R — R be a continuous function and L (x,y,u) is

non-decreasing in u and satisfies the condition
0< L(:c,y,u) - L(SC,y,U) < M(x,y,v) (bil (u_v)7

for uw > v > 0, where M (z,y,v) is a real valued non-negative continuous function defined for
z,y,v € Ry, and o, 8 € C'([0,00),[0,00)) be non-decreasing function with (x) < x, B(y) >y
on [0,00). Assume that ¢ : R, — Ry be a continuous and strictly increasing function with
¢ (0) =0, ¢~ is the inverse function of ¢ and

¢~ (w) < 67 (w) o7 (v),
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foru,v € Ry. Assume that a (z,y), f (x,y) are non-decreasing in x. If

w(@y) < almy) +f(y)é (/ / stust))dtds)

()
+b (:E,y)/ c(s,y)u(s,y)ds, (2.27)
a(xo)

for z,y € Ry, then

u(z,y) <plr,y){a(r,y) + f(v,y) ¢le(z,y)

o)
X exp </ / M (s,t,p(s,t)a(s,t)) o (p(s,t)f(s,t))dtds)] }, (2.28)

for x,y € R, where

a(z) a(z)
plag) = 14b(y) [ clen ( | vewety) dr) ds, (2.20)
S) a(s)
a(z) poo
e(x,y) = / / L(s,t,p(s,t)a(s,t))dtds. (2.30)
0 B(y)
Proof. Define a function z (z,y) by
a(z) poo
z(z,y) =a(z,y)+ f(x,y) ¢ / / L(s,t,u(s,t))dtds |, (2.31)
0 B(y)
then from ([2.27)) we find
o)
u(z,y) < 2 (z,y) +b(w,y)/ c(s,y)u(s,y)ds. (2.32)
a(zo)

Clearly that, z (z,y) is a non-negative and continuous in z. Setting y fixed in (2.32)) and using (1)
of Lemma [2.1] to (2.32)), we get

a(x) afx)
u(z,y) < z(z,y)+ b(a:,y)/ 2 (s,y)c(s,y)exp (/ b(r,y)c(r,y) dr) ds.

(o) (s)

Moreover, the non-decreasing of the function z (z,y) yields

u(z,y) < z(z,y)p(z,y), (2.33)
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where p (z,y) is defined by (2.29)). From (2.31) and ( [2.33)) we have

u(z,y) <plx,y)(a(z,y)+ f(2,y) ¢ (z,y)), (2.34)

where v (s,y) is defined by

a(z) poo
v(z,y) = / / L(s,t,u(s,t))dtds.
0 Bly)

The hypotheses on L and ¢, and ([2.34)) yields

v (z,9) s/ / L(s.t.p(s.) [a(s.0) + f (5.0) 6 (v (5. 1))
—Lstpst) (s,t)) + L(s,t,p(s,t)a(s,t)))dtds

/ / (5.4, p(s,1) a (5.1)) dtds

o(z)
+/O /B(y)M(S,t,p(S,t)a(S,t))gb (p(s,t) f(s,t) ¢ (v(s,t)))dtds

IN

a(z
e(x,y) +/ . )M (s,t,p(s,t)a(s,t) o (p(s,t) f(s,t))v(s,t)dtds, (2.35)

where e (z,y) is defined by (2.30)). Clearly that the function e (z,y) is non-negative, continuous

non-decreasing in & and non-increasing in y. Using (1) of Lemma we find

a(z) poo
v(s,y) < e(ﬂw)/ / M (s,t,p(s, ) a(s,t) 67" (p(s,t) f (s,1)) dtds. (2.36)
0 Bly)
In view of (2.34)) and ([2.36)) we conclude the inequality (12.28]). O

Corollary 2.3. If L (s,t,u(s,t)) = u(s,t) and ® (z) = x in Theorem [2.5 we get

e (z,7) / / o (s, 1) dids

M (z,y,v) =1

and

u(r,y) < p(r,y){a(z,y) +

a(z) roo
f(z,y) [e(:v,y)xexp (/0 /ﬂ()p(s,t)f(s,t)dtds)]}.

By the same proof of Theorem [2.3| with using (2) of Lemma we obtain the following
theorem
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Theorem 2.4. Let u(x,y),a(z,y),b(z,y),c(z,y), f(z,y),L,M,® and ® 'be as defined in
Theorem[2.5. and o, B € C' ([0,00),[0,00)) be non-decreasing function with o (z) > x, B (y) >y

n [0,00) and a(o00) = B(00) = oo. Assume that a(x,y), f (z,y) are non-increasing in x for

re Ry If
u(z,y) < a(z,y)+f(z,y)® (/ / stust))dtds)
#h@y) [ el

for B,z,y € Ry, then

u(z,y) < plzy){alr, )+f(56 y) @le(z,y)
X exp ( (s,t,p(s,t)a(s,t) D' (p(s,t) f(s,t)dtds) dtds)} }

(x) /By
for x,y € Ry where

0o a(z)
p(zy) =1 +b(x7y)/ c(s,y)exp (/ b(r,y)C(ny)dr> ds

o(z) (s)

e (z,y) (/ / (s,t,p(s,t) a (s, 1)) dtds (2.37)

Remark 2.2. If a(z) =z and B (y) =y in theorem[2.4] we get theorem 2.5 in [17]

2.2 Further delay inequalities

In this section we use the following class of function (see [7]).

Definition 2.1. A function g : [0,00) — [0,00) is said to belong to the class S if
(1) g (u) is positive, non-decreasing and continuous for u > 0,
(i) g (u) < g (%), u>0021.

Example 2.1. If g (u) = u™, 0 <m < 1, then %um < (%)m, for any u > 0,v > 1.

Theorem 2.5. Let u(z,y),a(x,y),b(x,y),c(z,y), f(x,y) be real valued non-negative continu-
ous function defined for v,y € Ry and let g € S. and o, B € C* ([0,00) ,[0,00)) be non-decreasing
function with o (x) < z, f(y) > y on [0,00) and a(0) = 0. Also let W (u(z,y)) be real val-
ued, positive, continuous, strictly non-decreasing subadditive and submultiplicative function for
u(z,y) >0 and let H (u(x,y)) be a real valued, continuous, positive, and non-decreasing function

defined for x,y € R,. Assume that a function m (x,y) is a non-decreasing in x and m (z,y) > 1,
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which is defined by
a(z) poo
miey)=atey) S @ ([ [ elnW s )dds | jorzy e R
0 B(y)

If
o)

wawSmmw+/ b(s,y) g (u(s.1)) ds, (2.38)

a(wo)

for z,y € Ry then

X

u(r,y) < F(z,y){a(z,y)+ f(z,y)

a(z) poo
H|G'(G(B c(s,t)W (F (s, s,t)) dtds , 2.39
((>fA AR <<wﬂt»t>” (2:39)
where
a(z)
F(z,y) =" (Q(l) +/ b(s,y) dS) : (2.40)
a(zo)
B:/OO /Ooc(s,t)W(F(s,t)a(s,t))dtds, (2.41)
“ o ds
Q(u):/log(s) u > uy >0, (2.42)

where Q71 is the inverse function of Q; G, G~ are defined in theorem Q1)+ foi(;;)) b(s,y)ds

is in the domain of Q=1 and

a(x) 00
G (B) +/0 /B( )b(s,t) W (F (s,t) f (s,t))dtds,

is in the domain of G™1 for x,y € R,

Proof. Clearly that, m (x,y) be a positive, continuous, non-decreasing.In view of (2.38)) it yields

a(zx)
u(@,y) <1+ / b(s,y)g (u (5,9) ) ds, (2.43)
m (z,y) a(zo) m (s,y)
since g € S. The inequality (2.43) may be treated as a one dimensionel Bihari inequality [5], for
any fixed y € R, it implies that

u(r,y) <m(z,y) F(z,y),

where F (z,y) is defined by (2.40). Now by the same proof of Theorem [2.1] we obtain the inequality
2.39). 0

Now, we can give the following remark and corollary that are obvious consequences of the
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above theorem.
Remark 2.3. If a(z) =z and B (y) =y in Theorem[2.1] we get Theorem 3.1 in [11)]

Corollary 2.4. If W (z) =H(z)=g(z) =a(x) =z, 20 =0, u=1 and b (z,y) =y in Theorem
(2.5 we get

,y) = exp (zy),

/ / exp (st) ¢ (s,t) a(s,t) dtds,

u(z,y) < exp(zy){a(r,y)+ Bf (z,y) x

a(x) 00
(exp/0 /ﬂ(y) exp (st)c(s,t) f(s,t) dtds) } :

Theorem 2.6. Let U(.%,y) & (Q?,y) ,b(.T,y) 70(:1:73/) ?f (SL’,y) 7W (U (‘rJy)) ’ and H(U (Q?,y)) be as
defined in Thearem and g € S, and a, 3 € C([0,00),[0,00)) be non-decreasing function with
a(z) >z, B(y) >y on[0,00) and o (00) = 0o. Assume that a function m (z,y) is non-increasing

in x and m(x,y) > 1,which is defined by

Wﬂaw=a®w%hH%wH(LZAZCQMWWM&ﬂMMQ,

forxz,y e Ry, If

and

[e.9]

uww§m®w+/UMMMW@wM& (2.44)

for z,y € Ry then

u(r,y) < F(v,y)la(r,y)+ f(z,y)

H[ ( //m) (5,6 (s,t)f(s,t))dtds)], (2.45)

[e.o]

for x,y € R, where

F(x,y)=Q" (Q(l)+/ b(s,y) ds>, (2.46)

o)
Where B is defined in , and ) s deﬁned mn , Q71 s the inverse function of Q; G,G™!
are defined in Theorem Q1)+ f (s,9)ds is in the domain of Q7' and

+/a:) /B:)b(s,t)W(F (5.8 f (s,)) dtds,

is in the domain of G™1, for z,y € R,.
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Proof. Clearly that, m (x,y) is a positive, continuous, non-decreasing in x. In view of it yields

u(z,y) §1+/ b(&y)g(U(s,y))d&

m (z,y) a m(s,y)
since g € S. The inequality (2.44)) may be treated as a onedimensional Bihari inequality [5] for
any fixed y,y € R, which implies that

u(r,y) < F(x,y)m(z,y),

where F (z,y) is defined by (2.46). Now, by the same proof of Theorem 2.2, we obtain the
inequality (2.45]). ]

Remark 2.4. If a(z) =z and B (y) = y in Theorem 2.1 we get Theorem 3.2 in [1Z)].

Theorem 2.7. Let u(z,y),a(z,y),b(z,y), f(x,y), L, M, ®,and ®~! be as defined in Theorem
and let g € S, and o, € C'([0,00),[0,00)) be non-decreasing function with o (x) < =,
B(y) >y on [0,00) and a(0) = 0. Assume that a function n(x,y) is non-decreasing in x and
n(z,y) > 1,which is defined by

a(x) 00
n(z,y)=a(z,y)+ f(z,y) P (/0 /,3( )L(s,t,u(s,t))dtds) forxz,y e R,.
y

If
a()

u(z,y) Sn(x,y)+/( )b(s,y)g(U(s,y))ds for z,y € Ry, (2.47)

then

u(z,y) < F(ﬂfy{axy +f(zy) Ple(z,y)

exp (/ / M (s,t,F (5,£) a(s,1)) & (F(s,t)f(s,t))dtds)]}. (2.48)

for x,y € Ry, where F is defined in , (x y) is defined in . Q is defined in (2.49),
Q1 is the inverse function of Q, and Q (1 f (s,y)ds is in the domam of Q71

Proof. Clearly that, n(z,y) is a positive, continuous, non-decreasing in z. In view of (2.47)) it

<1+ /a(x) b(s,y) g (“ (S’y)> ds, (2.49)

a(zo) n (87 y)
since g € S. The inequality (2.49) may be treated as a one-dimensional Bihari inequality [5] for

yields
u(z,y)
n(z,y)

any fixed y,y € R, it implies that

u(r,y) < F(z,y)n(r,y).
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New , by the same proof of Theorem , we obtain the inequality ([2.48)). O
Remark 2.5. If a(z) =z and B (y) = y in Theorem[2.1] we get Theorem 3.3 in [11]

Theorem 2.8. Let u(x,y),a(x,y),b(x,y), f(x,y), L, M,® and &' be as defined in Theorem
(2.9), and let g € S, and o, B € C*([0,00),[0,00)) be non-decreasing function with o (z) > w,
B (y) >y on[0,00). Assume that a functions n (x,y) is nonincreasing in x and n (z,y) > 1, which
18 defined by

n(z,y)=a(r,y)+ f(z,y)® /:/ﬁ:L(s,t,u(s,t))dtds),
a(x Y

e (
forx,y e Ry, If .
u(x,y>5n<x,y>+/ b(s,4) b (u (s, ) ds,
o(z)

for x,y € R, then

u(z,y) < F(z,y){a(z,y)+ f(2,y) Ple(z,y)
Xexp(/w)/ M (s,t,F (s,t) a(s, 1)) &~ (F(s,t)f(s,t))dtds)]},

for x,y € Ry, where F is defined in , e(x, y) is defined in , Q is defined in
Q! is the inverse function of Q, and Q (1 f (z,y)ds is the domam of QL. The pmof 0f
this theorem follow by an argument szmzlar to that i Theorem (-) with suitable changes. We

omit the details

Remark 2.6. If a (z) =z and B (y) =y in Theorem[2.1] we get Theorem 3.4 in [11]

2.3 Some Applications

Using [12] and [29] we study certain properties of solutions of the following terminal-value problem

for the partial differential equation
Uy (2,y) = & (2) B' (y) h(a (@), B(y) ula(z),B(y) +r(a(x),B8(y)), (2.50)

u(x,00) =000 (2),u(0,y) =7 (y),u(0,00) =k, (2.51)

where h : RZ xR - R, r: R2 - R, 0,7 : Ry — R are continuous functions and k is a real
constant.

We present three examples of application to study respectively the boundless, uniqueness and
stability of the solution of —.

Example 01: gives the bound of the solution of ,.

Assume that all functions of problem — are defined and continuous on their respective

domains of definitions,

|7 (2, y, w)| < d(z,y) W (Jul), (2.52)
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and

a(z)

<a(z,y)+b(x, y)/( )c(s,y)u(s,y)ds, (2.53)

o (T) + / / (s,t)dtds

where o (2),8(y),a(z,y),b(x,y),c(x,y) and W (u) are as defined in Theorem If w(z,y) is
a solution of ([2.50)-(2.51)), then

u(z,y) = 0x(x)+7(y) —k
- / / of (5) B (1) [l (o (5, B (1) (e () B (8))) 4+ (a(s) B (£))] dtds

a(z) poo
aoo(x)+7(y)—k—/o /ﬁ h (st (5,0)) + 1 (s, ) dids,

(v)

for z,y € Ry. From ({2.52)),(2.53]) we get
a(z)

a(z) poo
\u(x,y>\Sa<x,y>+/o /ﬂ()d(s,wwau(s,m)+b<m,y>/ c(s,y)uls,y)ds,  (254)

a(zo)

Now, a suitable application of Theorem with f(z,y) =1 and H (u) = u to (2.54) we get

a(z) poo
ju (z, )] smx,y){a(x,y)wl <G<A>+/O /ﬁ( )d<s,t>w<p<s,t>>dtds>},

for z,y € Ry, where p(z,y),G, and G™! are defined in theorem .

example 02: gives the uniqueness of the solution of ([2.50))-(2.51)).
Let u(x,y) and v (z,y) tow solutions of problem ({2.50)-( [2.51]). Such that

|h(z,y,u) —h(z,y,v)] <ed(x,y) W(u—v|) (0<e<l), (2.55)

where d (z,y) and W (u) are as defined in theorem Then

a(z) 00
= —/ / (h(s,t,u(s,t)) —h(s,t,v(s,t)))dtds,
0
for z,y € R, .From (2.55)) we get

a(z) poo
lu(z,y) — v (x,y)] ge/o /ﬁ( )d(s,t)W(]u(s,t)—v(s,t)|)dtd3. (2.56)
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Now, a suitable application of Theorem 2.1 with f (z,y) = €, H (u) = u, and a (z,y) = b (z,y) = 0
to ([2.56) we get

o)
lu(x,y) —v(z,y)] <eG! / / (s,t) W (e) dtds
B(y)

For € — 0 we obtain u (x,y) = v (z,y) .
example 03: gives the stability of the solution of (2.50))-(2.51)).
Let u(x,y) and v (z,y) tow solutions of (2.50) with the given initial boundary data

u(x,00) =000 () ,u(0,y) =7 (y),u(0,00) =k, (2.57)

v(z,00) =0, (x),v(0,y) =7 (y),v(0,00) =K. (2.58)

such that the condition (2.55|) is holds, and

|00 () =00 (2) + 7 (y) = 7 (y) =k + K|
a(x)
< ea(z,y)+b(z,y) /( ) c(s,y) (u(s,y) —v(s,y))ds, (0<e<1), (2.59)
where a (2), 8 (y),a(z,y),b(x,y),c(xz,y) and W (u) are as defined in Theorem and
a(0) = 0. Then
w(z,y) —v(zy) = (@) +7(y) =7 () —k+F

/ / (s,t,u(s,t)) —h(s,t,v(s,t)))dtds,
for z,y € R,. From , we get
a(z) poo
) vl € wlpre [ [ Ao uen —vey)
a(x)
by [ el (1) v (2.9) s (2.60)

a(zg)

Now, a suitable application of Theorem with f(z,y) = ¢, H(u) = u, to (2.60) yields the

required estimate, therefore

) ol <@ {aln +67 G+ [ [ w s}

for x,y € Ry, where p, G and G~! are as defined in Theorem . Then the solution of problem
(2.50) is stable.



Chapter 3

Some new non-linear Generalized
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And Applications
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Pachpatte in [35] has presented the following integral inequalities

uP (x,y) = k—i—/I:/ya(s,t)gl(u(s,t))dtds

a(z) B(y)
/ / (s,t) g2 (u(s,t)) dtds.
B(yo)

Khallaf and Smakdji [I1] have studied the following type of integral inequality

wP(z) < +Z/ u(t)dt

where © = (21, Z9, ..., Tn) , t = (t1,t2, ..., 1), ¥ = (29,29, ..., 22), and

aj1(z aj2 () oz]n(x

/ / / / by, §=1,2,.0m
o o :El oo x2 o (29)
Br1(@)  [Bra(z) 5kn(z)

/ dt = / / / ...dtl, k= 1,2,...,’)7,2
(=9) B Bra(9) Bren ()

In this chapter we establish some non-linear retarded integral inequalities for functions of n in-
dependent variables, which can be used as handy tools in the theory of partial differential and
integral equations. These new inequalities represent a generalization of the results obtained in

[17]. Some applications of our results are also given.

3.1 Some non-linear Generalized Integral Inequalities With

a term of Delay

Throughout, we define I; = [x;, X;) i = 1,2,...,nand A = [} x [y X ... x I, n € N, and n > 3. The

first-order partial derivative of a function Z (1, xs, ..., z,) for x; € R with respect to z; is denoted

as usual by D;Z (z1, %9, ..., 1,). For & = (11,9, ..., T,) , t = (t1,t2, ..., 1), 2° = (29,29, ...,20) , we

rrn
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shall denote:

o, (= aji1(21) aji2(z2) ajyn(Tn)
dtndtl, = 1,...,77’7,17
O‘Jl(l’ 0‘311 0‘]12 5'32 Q; o)

Jln(xn
ajy (z Qjol xl) ajy2(22) ajon(zn)
dtndtl, J2 = 1,...,777,2,
ajy (20) "‘121 3131 O‘J22 352 g (T,

a]n a]nl 371 OCJ'rLZ(‘Z,Q ajnn(xn)
aj,, (z0) « @ a; 0

Jnl Jn2 1'2 ]nn(xn)

with my, mg,....m, € {1,2,..}. For z,t € R”, we shall write ¢ < x whenever t; < x;, 1 =
1,2,...,n. We denote D = D1 D5...D,,, where D; = =, i =1,2,.

&jl (t) = (Cvjll (tl) ,Oéjlg (tg) s ...,Oéjln (tn)) fOI" j1 = 1 2 My,
&jz (t) = (O./j21 (tl) ,Oéj22 (tg) s ey O[j2n (tn)) fOI‘ jQ 1 2 ey Mo,

&jn (t) = (Oéjnl (tl) ,Oéjng (tg) g ey Oéjnn (tn>> s fOI' ]n = 1, 2, ey M.

We denote oy, (t) <tfor k=1,2,...,n, jp =1,2,...,my whenever a,,; (t;) <t;,, fori=1,2,...,n
The following theorems deals some versions of non-linear integral inequalities, for functions of
n independent variables with a term of delay

Theorem 3.1. let aj,,aj,,...,a;, € C(ARY), o, € C(1;,1;) be non-decreasing functions for

Je = 12, omy, k= 1,2,..,n, i = 1,2,...,n. with o, (x) < =, and w; € C(R,Ry) for j =
1,2,...,n, be a non-decreasing functions with w; (u) > 0 foruw > 0, p > ¢ > 0 and k > 0 be
constants. If u e C (A,R,), and

+...+Z[ () u' (5) wn (u(s)) ds, (3.1)
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for any x € A. Then

Jo=1

For z° <z < z' where ' = (x}, 2}, ..., 2}) and

ajl(m)
Ay (2) = / as, (s) ds,
ajl(xO)

an(a:)
Ay @) = [ a9

Qjy, ()
A, () = / a;, (s)ds.

ajp (2°)

" 1
G(r):/ ds r>ry>0.

0 Wy (sp Q> =+ Wy (sﬁ> + .t w, (sﬁ)

G~ denotes the inverse function of G, and real numbers x} € I; for any i =1,2, ...,

so that the quantity in the square brackets of 15 in the range of G.

Proof. Let k > 0, define r (x) as the right side of (3.1)), i.e

r(z) = k+Z/ aj, (s)u? (s)w; (u(s))ds

43

(3.2)

(3.3)

(3.4)

n. are chosen

(3.5)
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and

Dyr(z) =

IN

we have

Keeping x5, 3, ..

1 O‘]’12($2) ajln(zn)
Do) [ [ (g ) s %
(0%

ji=1 aji2(x9) 1 (29)
u? (ayy1 (1) 5 82, -y 8n) W1 (u (ajy1 (21) , S2, -, Sn)) ASpy...dS2
m2 , ajy2(22) Ajon (2n)
+Zozj21(x1)/ / aj, (g1 (21), S2, .., Sn) X
jo=1 O‘jQQ(xg) O‘jgn(z%)
u? (a1 (1) 5 82, -y Sn) Wa (U (jy1 (1), S24 -y Sp)) ASpy...dS2
i Ajp2(22) pn(Tn)
-+ ZO‘;’nl (91:1)/ / aj, (j,1 (1), 82, .., 8n) X
jn=1 ajn2(29) U (25,)
ul (aj1 (1), 82, oy Sn) Wy (U (01 (21), S2, .0y Sp)) dSp...dso
1 , O‘112(z2) ajln(xn)
Zajll (xl)/ / aj, (ajll (1’1),82,...78n) X
ji=1 ajy2(29) ajyn ()

q 1
o (a1 (z1), 82,0y Sp) W1 (rp (a1 (x1), S2, ..., sn)) dss...ds,,

L jy2(72) Ao (Tn)
+Zaj21 (331)/ / aj, (01 (1), 82,0, 80) X

jo=1 ajya(23) ac)

q 1
o (a1 (21), S2, ..., Sp) W2 (rp (a1 (21), S2, ..., sn)) dss...ds,,

Mn , ajn2($2) ajnn(mn)
+...+ Zajnl (wl)/ / aj, (1 (1), S2, ..y Sp) X
el @jn2(29) ajyn(29)

q 1
v (a1 (1), S2y .0y Sp) Wy, (TP (a1 (z1), 52, .0, sn)> dss...ds,

Dyyri (x aal jy2(2) @jyn(@n)
3 1 () < Za;11($1)/ / aj, (j1 (1), S2, .., Sn) X
P o

ji1=1 ajy2(9) in (@)

wy (r% (ajy1 (1), 82,0y sn)> dsy,...dss
2 aj22(372) O‘jgn(mn)

+ZO€;21 (m)/ / aj, (1 (1), S2, .0y Sp) X
jo=1 ajya(29) ajyn(29)

1
Woy (7’5 (a1 (1), S2, ..., sn)> ds,,...dsy

Mn ) ajp2(z2) Ajpn(Tn)
+...+ Zajnl (xl)/ / aj, (o1 (1), 82,y Sn) X
«

jn=1 @2 (29) jnn(29)

Wy, (7“% (a1 (1), 82, - sn)> dsy,...dss.

44

(3.6)

.,z fixed in (3.6, and integrating from z9 to ! with making the change of



CHAPTER 3. GENERALISED INTEGRAL INEQUALITIES WITH DELAY

variable we get

IN

™, (@)
p—q p p—q 1 1
rv (r) —k 7 + Z/ aj, (s)w; (rp (s)) ds
p—q p—q = a0
m2 an(x)
+ Z / aj, () wo <r% (s)) ds
ja=1@js (%)

1

+... 4 Z /~ aj, (s)wy <r5 (3)> ds,

it imply that

p j1:1 a.7‘1 (IO)
_ o &2 raj(@)
IR / aj, (8) wo (vﬁ (s)) ds
P T a0

v(z) <7 (),

45

(3.8)
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and

IN

IN

D, 7 (x)
wy (Friq (x)) + ..+ wy (Fﬁ (a:))
aji2(x2) jin(xn)
p—q Zﬁ L (1) faj;(mg) fajlln(x%) aj, (j1 (1), S2, .., Sn)
wy (?ﬁ (x)) + ..t wy (Tﬁ (m))
wy <vﬁ (1 (1), S2, ey sn)> ds,,...dsy

ajy2(z2) Ajon(Tn)
=t ij 1 a]21 (xl) f ;222(;55) f 2

X

a ajyn(2l) L2 (O‘jzl (1), 82, -, Sn)

w1 (Friq (m)) + .. 4w, (rﬁ (JZ))
Wy (Up%q (o, (1), 52,0y sn)> dsy...dss
5 T O (1) S ) O (s (1) 52,50

" (fﬁ (ac)) to ot wy, (rﬁ (x))

wy, (VP (aqj, (21), 2, ..., sn)> dsy...dss

X

_|_

X

+

wy (775 () + o+ wy (777 (1))
ajy2(22) g (Tn)
/ / A jy (ozjzl (wl),SQ,...,Sn) dSn...dSQ

io2(23) jon (29)
_ 1 o
et (07 (2)) Sy o ()
wy (Fﬁ ($)> + .+ w, (Fﬁ (:v))
jn2(z2) ¥jpn(Tn)
/ / aj, (a1 (z1), 82, ..., Sn) dSp...dsy

in2(29) Jnn(29)

+...+ X
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P—q o 2(x2) jyn(@n)
< Z o’y (71 / aj, (j1 (1), S2, ...y Sn) dSp...dso
ji=1 ("112(13) ajin(z9)
P—q jp2(x2) jon (Tn)
Z o,y (21 / aj, (1 (1), S2, ..y Sp) dSpy...dSo
Jo=1 0‘]‘22(503) Qjon(zf)
_ ajn2(r2) jpn(Tn)
+.. +—q Za / / aj, (a1 (21), S, ..., Sp) dSp...dss.
=1 jp2(29) A (29)

By the definition of G we observe that from the last inequality

oy 2(2) jin(Tn)
D, G(T(z)) < G Zaﬂl / / aj, (a1 (1), S2, ..y Sp) dSpy...dso

=1 ir2(29) iy (29)

—q ajy2(22) Ajon(@n)
+— Z am (G / aj, (jp1 (1), S2, oy Sn) dSp...dSo

ja=1 ajya(29) jan (29)

P =4 - 0n2@2) ()
—|——|——Za;n1 (l’l)/ Qj,, (Oéjnl (%1),82,...,5’”) dSn...dSQ.

p an(Zg) jnn(29)

Keeping o, 73, ..., T, fixed, and integrating from x? to 1 with making the change of variable we

get
G(F(.ﬁlﬁ)) < G( (xlax%'“axn))
a;, (z) a;
p—q - —dq i
LIS [, ds+—z/
P T Ja, ) jo=1 @y (20)
Mn a]nx
+.. +———§:/ aj, (s
Jn=1
then

P—q P—4 -
3 Ay, () + k) A, (2), (3.9)
from the last above inequality we show that
6(FF) S e

ZAQJQ +.. +—ZAW 2)| (3.10)

Jo=1 Jn=1

T(r) < G
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for 2° <z < z'. In view of 1’ 1) and (3.10) and by the fact v (z) = r'E (x), we conclud
the inequality (3.2)). By continuity, (3.2]) also holds for any & > 0. O

Next, we give remarks and corollaries, from the above Theorem.
Remark 3.1. If n =2 and wy = wq in Theorem we get theorem 2.2 in [177)].

Corollary 3.1. Let the function aj,,aj,,...,a;,, o (K = 1,2,..,n),i = 1,2, ...,n), (Jy =
1,2,...,mg), and the constants p,q and k be defined as in Theorem , and w; € C(R,Ry)
(j=1+1,...,n, 0<1<n) be a non-decreasing functions with w; (u) >0 for u >0 and

uP () < k:+Z/J1 aj, (s)u?(s)ds +

7j1=1 a]l ZO)
ma e, (@) m g, ()
Z / aj, (s)u? (s)ds+ ...+ Z/ aj, (s)ul (s)ds
a1V 8ja (2°) =1V a5, (x0)

mi41 &y, (@)
Z / jp 4 (8) uf (3> W1 (U (S)) ds+ ...+

. a. 0
Jig1=1" %41 (z

Tin o ra ()
> [ a0,

Jn=1"7 8 ()

for any x € A. Then

u(z) < {Gl G, (kp +—ZA131

J1=1
b—q —q
ZA2J2 +ot —ZAm ) +
J2=1 p Ji=1
_1

P—q = o

D Avsag () o B Z Au (@

Ji+1=1 Jn=1

For 2° < x < 2% where 2* = (22,23, ...,22) and Ayj, (x) where (jy = 1,2,....,my), (k=1,2,...,n)

are defined as in and

" 1
Gy (r)= / - - —ds r > 19> 0. (3.11)
o W41 (SH> + W42 <SH> + ...+ w, <Sﬂ>

Remark 3.2. Ifn =2 and | =1 in corollary[3.1 we get Theorem 2.1 in [17]

Corollary 3.2. Let the function aj,,a;,, ..., a;,, @, (Je = 1,2,...,my), (K =1,2,...,n),and (i =
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1,2, ...n), w; (j =1,2,...,n) and the constants p,q and k be defined as in Theorem and

Tn o ran (@)
et [ e ) (9w () ds
jn=1" % (2°)
for any x € A. Then
1
w(z) < GG (k) + =3 Ay, (0)+
pjl=1
1 1
=Y Agpy (@) = Y A, (2)
pj2:1 pjn:1
Forz® <z < a3, where 3 = (23,23, ...,23) , andAm (z), where (k=1,2,...n), (Jjy = 1,2, ..., my)

are defined as in and G 1s defined as in .

Corollary 3.3. Let the function aj,,aj,,...,a;,, @i (Jp = 1,2,....mg), (k=1,2,...,n) and (i =
1,2, ...,n),. and the constants p,q and k be defined as in Theorem , and w; € C(R,Ry)
(j=1+1,...n), where 0 <1 < n, be a non-decreasing functions with w; (u) > 0, for u > 0, and

uP () < k—i—Z/ a aj, (s)uP~" (s)ds

=175 (@)

m2 gy () il aj, (z)
+ Z / aj, (s)uP™' (s)ds + ... + Z/ a;, (s)uP~" (s)ds

ja=1 @y (2°) ji=17 a5, ()
ML edy (@ -

+ ) %+1 ) uP™ (8) wit (u(s)) ds
Jig1=1 aﬂz+1(‘”
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for any x € A. Then

u(z) < Gi'|G

(kp + = Z Alh

]1 1
- E Agj, () + o+ = § Ay, (2 )
Jz 1 ]l 1
mp4+1 Mp
- E : Al+1jl+1 + St E :Aan
Jz+1 1 Jn 1

Fora® <z < a* wherea* = (21,23, ...,x}) , and Ay, (z), where (j, = 1,2, ...,my), (k =1,2,...,n),

are defined as in and G is defined as in (M
Remark 3.3. I[fn=2 andl =1 in comllary we get corollary 2.1 in [17].
Corollary 3.4. Let the function aj,,aj,, ..., a;,, i, (Jp = 1,2,...,my), (k =1,2,...,n) and (i =

1,2, ....,n), and the constants p,q and k be defined an in theorem , and

uP () < k—i—Z/ . aj, (s)uP~" (s)ds

j1=1 ajy (z
m2 gy () il aj, (z)
+ Z / aj, (8)ul™ (s)ds + ... + Z/ a;, (s)uP~" (s)ds
ja=1 Y @y (20) =1V 8, (0)
il O‘Jl+1 i ajy, (z)
+ Z / a]l+1 s)uP (s)ds + ... + Z / aj, (s)uP (s)ds,
i1 =1 gy (@°) jn=1" @ (z°)

foranyx e A. and 0 <1 <n. Then

u(x) < (kp + - ZAlh

Jl 1
_E:A%z + o= E Ay, (z )
J1 =1 Jl 1
n—I[—1
mi4+1
X |exp g A, () + .. —l— E Ay, (z)
]l+1 1 ]n—]-

For z° <z < 2°, where z° = (29,25, ...,23) | and Aj (v1, 29, ..., x,) (k= 1,2,...,n), are defined

) n
as in (3.9).

Corollary 3.5. Let the function aj,, aj,, ..., a;,, @i (Jp = 1,2,...,my), (k =1,2,...,n) and (i =
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1,2, ....,n), and the constants p,q and k be defined an in theorem , and

uP () < k—i—Z/ . aj, (s)u? (s)ds
Otjl

m2 - rag, (z) &, (x)
+ Z / aj, (s)uP (s)ds + ... + Z / aj, (s)uP (s)ds,

ja=1" @y () jn=1" @ (2°)
foranyx € A. and 0 <1 <n. Then

u(a;)gk% [exp( ZAln o ZA"M :r;)] :

j1=1 ]n—l
For 2° <z < a8 where 2% = (29,25, ...,28) , and A, (k=1,2,...,n), are defined as in .

Remark 3.4. for special cases to the functions of some inequalities of chapter[4 we find some

inequalities of chapter[d for n = 1.

3.2 Some Apllications

we present three results of application to study respectively the boundless, uniqueness and stability

of the solution of the following initial boundary value problem. We denote

u (I — h; (I)) = u (xl - h%z (3131) y L2 — h%z (332) yeens Lp — h?z (.T}n)) )
U (xl — hin”. (1), 29 — hfnﬂ- (2) ).y Ty — Py (J;n)) ,

where 1 = 1,2, ..., n. Consider the initial boundary value problem
With the given initial boundary conditions

w (2, 29, ..., ,) = 1 (22,73, ..., ) ,

w(wy, 29, .., 0,) = o (21,3, ..., Ty

(3.13)
u (21, Toy .y 20) = (X1, T3, ooy Tn1)
u (a:l, ...,:1;?1, ...,x%, ...,x?k, ,xn) =0, for 1 <143 <9 <, .., <1 <. (3.14)

where p is a constant, F' € C' (A, R™tmettmn R)
c; € CH( L x Iy x .. x Iy X Iy X oo X 1y, R, h% € C1 (I, R) are non-increasing functions,
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—hl g () >0, 2 = B (2) € CH (1, 1), (h;kk) (2:) <1, by (27) = 0, and

) 1
M, = ‘
BT (Ri) (22)

for 1 <i,k<n,1<jp<myg, x; €1
Our first result gives the bound on the solution of the problem (3.12))-(3.14)).

?

Theorem 3.2. Suppose that

|F(I U1y ey um117u127" um227" Ulpy ooy umnn)|

1 1
< Z ah |uJ11|p + Z aj2 |uj22|p tot Z a]z |u]ll|p !

J1=1 J2=1 Ji=1
mi+1
+ Z ajz+1 |ujz+1l+1‘ +..+ Z a]n |ujnn v, (3.15)
Ji+1=1 Jn=1
lc1 (9, 3, ooy Tp) + Co (T1, X3, ooy T) + oo + Cp (21, X3, oy X)) | < K, (3.16)

where aj, (z), a5, (x),...,a;, (x), and k are defined as in theorem 3.1 If u(x) is any solution of

G- (FTd). then
u(z)| < (kf”r Zz‘hgl

J1=1
DIEEEES et
J2 1 Jz 1
n—I{—1
mi41
x |exp Z Ay () 4 o = ZAW x) . (3.17)
Jl+1 1 J1 1

where

N

nin (T) = /~ a;, (s)ds, (3.18)
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and

@y (2) = ay, ((BL1) 7 (@), (B20) 7 (@2) s oo (820) 7 (2) ) Ty M,
@ () = ag, ((BL2) 7 (1), (822) 7 (@2) s oo (820) ™ (2) ) Ty M,
(3.19)

G (@) = a5, (8,) 7 (@) (B2,) 7 (@) oo (B) ™ () Ty M3

Where (85,4) () = x5 — W (2:) and B, () = (B (1) 5 B (t2) 5 os B (tn))
fork=1,2...n, j,=1,2,....mg, and i =1,2,....n

Proof. 1t is ease to observe that every solution wu (z) of (3.12)-(3.14) satisfies that equivalent

integral equation

uP (z) = (T2, T3y ooy ) + C2 (X1, X3, ooy Tp) + oo+ € (1, X3, ooty Ty ) +

/x/ / (s,u(s = hi(s)),uls —ha(s)),.;u(s = hn(s)))ds. (3.20)

Appling (3.15)), (3.16) to (3.20) and changing the variables we obtain

lu(z)]” < k+2/ @, (s) [u(s)]P " ds

n= 1 Jll(x

m2 5;’22( ) (@ _
> cMHMWHw%+Z/ @ ) ()" ds

Jj2=1 ’Bj22( 0) 71=1 ]ll(mo
iy 5 ]n
Jl+1l+1 Jin
+ > / a],( )| (s)[7 ds + .. +Z/ a]n s) [u (s)P ds.(3.21)
]l+1 1 ﬁ]l+1l+l(z ) Jn =1 Jn]n(z

An application of corollary [3.4] to (3.21)) yields (3.17)). O

Our second result gives the uniqueness of the solution of the problem (3.12])-(i3.14]).
Theorem 3.3. Let M’ e ﬁjkk,aﬂ,am, ey Qg T Oy ey GG (1=1,2,.m), (7 =1,2,...,n),

(k=1,2,...,n), and (]k =1,2,...,my), be as in Theorem (3.3). Suppose that the function F in
satisfies the condition

|F ('I? ULy ooy Umq 1y UL25 +ovy Ump2y ooy Ulpy +oey umnn)

—F<Q7 Ully ooey U’m11)U12;" U’m227" vln)"‘avmnn>|

IA
]
5

0 (@) [ugin — vl —1—2%2 ) [z — vjpal”
Ji=1 J2=1
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Then the problem (3.19)- has at most one solution on A.

Proof. Let u (z) and v (x) be tow solutions of (3.12))-(3.14]), then we have

/ / / (s,u(s—hy(s1)),u(s—ha(s2)),....,u(s—h,(sn)))
(s —hy(s1)),v(s—ho(s2)), ..., v(s— hpn(sy)))ds. (3.23)

From (3.22),(3.23)) making the changing of variables we get

[ () — Z/ @57 (5) | () — o7 (5)] ds

ji=17 @ (%)

+.. +Z/ a5, (s) [uP (s) — oP (s)] ds.

In =1Y %n (1'
An application of Corollary 3.5 to the function |u? (z) — vP (x)]% show that
o () =2 ()] <0,

for any x € A. hance u () = v (z). O
Our third result gives the stability of the solution of the problem ({3.12)-(3.14)).

Theorem 3.4. Let M;kk, Békk,ajl,ajz, e @ T Ty @G (1=1,2,.m), (1 =1,2,...,n),
(k=1,2,..,n), and (jr = 1,2,...,my), be as in Theorem and let u(x) and v (x) be the
solutions of with the given initial boundary data

u (29, 29, .oy Tn) = 1 (T2, 3, .., )

u (21,29, . Tn) = 2 (T1, T3, 0, Tp)

(3.24)
u (21, Toy oy 0) = ¢ (X1, T3, ooy Tp1)
and
v ('r(l)7 T2, 7xn) dl <x27 x3, 73777,) )
U(:Elaxga y & )_dQ Xy, X3, 73771)7
(3.25)

v (xy, T, ...,:L‘?L) =d, (1,23, ..., Tn_1),
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where ¢j,d; € C* (I x Iy X ... X I;_1 X Ijp1 X ... X I,,R) . Suppose that the fonction F satisfies

the condition , and

|Cl <x27 I3, ... xn) - dl (‘7:273737 "'7‘7:11) +
co (1,23, oy Tp) — do (21, X3, .., Ty) + ..t (3.26)

Cn (To, T3, 1) — dpy (T2, X3, ooy Tp1)| < €P.

Where € 1s an arbitrary positive number. Then

[uP () — P (z)| < € [exp ( Z Ay (x Z Agj, () + ... + 11) Zn: Anj, (x))] . (3.27)

Jji=1 Jz 1 Jn=1

for x € A, where Ayj, (x), Agj, (2), ..., Ay, () are defined as in .

Proof. we have u (z) and v () be solutions of (3.12),(3.24]) and (3.12)),(3.25)) respectively. then we

have

uP (z) =P () = ¢ (22, 23,...,2,) — dy (T2, T3, ..., x,) +
o (g, x3, ..., Ty) — do (xg,xg,...,xn)—i—...—i—
/ / / w(s =B (51)) 21 (5 — B () ot (5 — B ()
—F (s,v(s—hy(s1)),v(s—=h(s)),...,v(s—h,(s)))]ds, (3.28)

for z € A. From (3.22)), (3.26) and ({3.28]), making change of variables we get

aj, (z)

|uP (z) — P (z)] < ep+2/ aj, (s)|uP (s) —vP (s)|ds

aj, (z9)

+...+Z[ @ () [P (s) = " (5)] ds.

An application of corollary to the function |uf (x) — P (ZE)|% we obtain 1) Hence u?

dependents continuously on ¢y, ¢s, ..., ¢,. O

Remark 3.5. Ifn =2 andl =1 in Theorem[3.3, Theorem[3.5 and Theorem[3.] we get Theorem
3.1, Theorem 3.2 and Theorem 3.3 respectively in [17].
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The literature on Gronwall type integral inequalities and their applications is vast; see [5, 24]
and the references given therein. Usually, the integrals concerning this type inequalities have
regular or continuous kernels, but some problems of theory and practicality require us to solve
integral inequalities with singular kernels. For example, D. Henry [16] used this type integral
inequalities to prove a global existence and an exponential decay result for a parabolic Cauchy
problem.

In the first section of this chapter we give some necessary concepts of the generalized fractional
and conformable fractional calculus. In the second section the main contribution using the method
introduced by Zhu [50], novel weakly singular integral inequalities are established. In the third

section, we study the following inequalities type

U(t)Sa(t)+b(t)/tf(s)u(8)das+/atf(t)W(/:k(s,f)@(uv))daf) dos,
w(t) <a(t)+bt /f (s))daer/atf(t)W(/ask(s,T)fb(u(T))daT)das.

Where a(.),b(.),f(.),W(.),®(.) and k(.,.) are given functions satisfied some conditions sup-
posed later. This section is based on Rui A. C. Ferreira and Delfim F. M. Torres [14], we generalized
the results in conformable fractional version integral inequalities with the help of the Katugam-
pola conformable fractional calculus. In the fourth section, we give an application for the second
and third section to illustrate the usefulness of our results, such that we present the existence,

uniqueness and Ulam stability for the solution of the following problem

{ CDyXa (t) = f(tx (1)), (4.1)

z (0) = o,

where CDf X is the Caputo derivatives with respect to x, 5 € (0,1) and the continuous function

f:J xR — R, for the second section. And we gives a bound on the solution of the following

integral equation

u(t):k:—i-/OA(t)F(s,u(s),/OSK(T,U(T))daT> dus, te 0,0,

for the third section.

4.1 Some necessary concepts of the generalized fractional

and conformable fractional calculus

4.1.1 Some definitions

Let us introduce some preliminaries on fractional calculus (see [I} 2], 3]).
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Definition 4.1. Given 3 > 0 and x € C'[ay, as] such that x'(t) > 0 for every t € [ay,as]. The
X-Riemann— Liouville fractional integral of order B of a function g € L'[ay, as] is defined by
1 X
IPXg (x :—/ Y (1) (x (@) = x ()7 g (¢)dt.
g (x) NEOA () (x (@) =x ()" g (t)
Definition 4.2. Given 0 < 8 < 1 and x € C'ay,as] such that x'(t) > 0 for every t € [ay,as).

The x-Riemann—Liouville fractional derivative of order 8 of a function g is defined by

1 d

_ r1-Bx

DBx —
a9 (7) X' (z)dz ™

g(z).

Definition 4.3. Given 0 < 8 < 1 and x € C'ay,as] such that x'(t) > 0 for every t € [ay,as).
The x-Caputo fractional derivative of order 3 of a function g is defined by

“Dirg(w) = Dy (g9(x) — g(a)).

Remark 4.1. For certain special cases ofCDfl’X, we get the Caputo-Hadamard derivative [9], the
Caputo derivative [20, [44)] and the Caputo-Erdélyi-Kober derivative [{7].

Lemma 4.1. For n > 0, we have

P (x (1) - x (@) = ﬁ / Y (1) O (@) = x ()7 (x () = x ()" dt
F(Tl+1) n+
Th+AsD) (x () — x (ar))"".

4.1.2 Katugampola conformable fractional integrals and derivatives

Katugampola conformable derivatives for o € (0,1] and t € [0, 00) given by

NG
D (f) (t) = lim , (4.2)

e—0 €

provided the limits exist (for detail see, [19]). If f is fully dierentiable at ¢; then

o o 1—adf
D (f) () = % (1), (4.3)

If the limit in (4.2]) exists and is finit then A function f is a—differentiable at a point ¢ > 0.

Theorem 4.1. [19]/Let o € (0,1] and f, g be a— differentiable at a point t > 0. then
1. D*(af 4+ bg) = aD* (f) +bD*(g), for all a,b € R,

2. D*(X), for all constant functions f(t) = X,

8. D*(fg) = fD*(g) +gD*(f),

4. D° (§> _ fD“(g)g—nga(f)’
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5. D (t") =nt"“ for alln € R,
6. D*(fog)=f"(g(t)D*(g)(t) for [ is differentiable at g (t).

29

Definition 4.4. [19](conformable fractional integral). Let o € (0,1] and 0 < a < b. A function

f i la,b] = R is a-fractional integrale on [a,b] if the integral

[ 1@ = [ sesas

exists and is finite. All a-fractional integrable on |a,b] is indicated by L. ([a,b]).
Remark 4.2. [19]
t
(D0 = 1) = [ 150 ds

where the integral is the usual Riemann improper integral, and o € (0,1].

4.2 Some new fractional integral inequalities with respect

to another function

In this section, we present a new version of non-linear integral inequalities of fractional type with

respect to another function

Theorem 4.2. [§] Let $ € (0,1), 0 < T < oo, x € CY0,T) such that x'(t) > 0 for every

t€0,7), a,v e C([0,T),Ry), andu € C([0,T),Ry) with

Then s
u(t) < (A(t)+/0tg(s)A(s) efig(f)dfds) .

If a is non-decreasing on [0,T), thus

u(t) < (At)eh 9<8>d5)6 |

In the case when a (t) =0 for every t € [0,T), we find

u(t) =0,
where A (1) =25 Las (1), .
G(t)=Z (D ()T (A2)) 7 (x(t) = x(0)F X' (t)vd (), and 0 <6 < B < 1.

(4.4)

(4.5)
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Proof. Based on inequality (4.4, Lemma and Holder inequality, we get

u®) € a)+ == [ X0 =X @) v () uls)ds
FE) Jy
< 0+ [ 006D 00— X () (e ls) X (0)
< (3 (5))° (c(3) = X ) (s) u 5) ds
t 1 1-6
< a0+ i ([ [0 o - x ey oo - o) as)
¢ i 5
([ [ - x o e v ou)] )
t 55 55 1-6
< a0+ i ([ VO 0016 H ao - x0) ] as)

<([ () — x (00 ¥ ()03 (5) b (s) ds)é

o iy (1 (F5)r (555))

x (/ (x (s) = x (0) 5 ¥ () 0¥ () u? (s) d)

IN

In the fact of (z1 + x2)? < 2P71 (2l 4 2b) for all (z1,29) € R2 and p > 1, we get

o () ()

o
~<
—+
&
o
—-
=
a3
S
—~
I
Sl
—~
~
~—
—~
~
I
—~ o
|
L
s
=
—~
~
~—

Using Lemma 2.2 in [50], we get inequality . The rest of the proof is obviously. H

Theorem 4.3. Let 3 > 0,0 < T < oo, x € CH0,T) such that X'(t) > 0 for every t € [0,T),
a,b,v e C([0,T),Ry) andu € C([0,T), Ry) such that

w <a)+ g [ X OO0 X&) e uls)ds (46)
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Then 1
(fo $) AP (s)ds)”
w(t) < al(t)+ B(t) - [1_5@]% , (4.7)
with € (t) = exp (— LG (s)B (s) ds) A(t)=a(t)
B(t) = ﬁ& ) —x (0", G(t) =X ()P (t), and p,q € (1,00) with % +5>1
and é + % =1.
Proof. Choosing ¢,p € (1,00) with 5+ % > 1 and % + % = 1. Using Cauchy-Schwartz inequality,
we obtain
w) < a0+ 2 [ X O0O X6 e ds
a ﬂ t’s —s(ﬁ_l)qsi
< a0+ gy ([ VO 00 = (e as)
([N wEuers)

IA
S
=
+

By taking A () = a(t), B(t) = —0— (x (t) — x (0))’ "7, and G (t) = x' (t)v” (). We

get
1
t P
+ B(t) (/ g(s)up(s)ds) :
0
Using Lemma 2.3 in [50] we get inequality (4.7)). O

Theorem 4.4. Let 3 > 0,0 < T < oo, x € C0,T) such that x'(t) > 0 for every t € [0,T),
a,b,v e C([0,T),Ry) andu € C([0,T), Ry) such that

u(t) <a(t)+ %/0 X () (x (8) = x ()" 0 (s) u(s) ds. (4.8)
Then 1
< (A (t)+ B (t)/o G(s) A(s)exp (/ G(r)B(T) dT) ds) ’ : (4.9)

p
where A (t) = 2P~ 1aP (t),B(t) = 2P~! (¢ ) — v (0 5‘““3;) :
0 =27 (0.5 =2 (2 ()~ x (0)

G(t)=x (t)vP(t) and p,q € (0,00) withé—kﬂ > 1 and%%—é: 1.



CHAPTER 4. SOME NEW FRACTIONAL INTEGRAL INEQUALITIES 62

Proof. From the above Theorem 4.3 we have

u(t) < MO+§%L£%@MX@—X@W%W@MM@@

o(t) (e (8) — x (0)° 1+

IA
S
=
+

Then

-1 b(¢) B—1+1 ’
uf (1) < 2F af (t t) —x (0 a
v <()+<FWMMB—D+D B )
X/o X' (8) vP (s) uP (s) ds).

Let w(t) = uP (t), A(t) = 22 Ya? (1), B(t) = 2¢1 <$ (x () — X(@))ﬁHé) , and
G (t) = x'(t)vP(t). We have

Q=

w (t) SA(t)—l—B(t)/Otg(s)w(s)ds.

From Martyniuk and al. [31], we obtain inequality (4.9). O

Theorem 4.5. Given 8 € (0,1), 0 < T < oo, x € C'0,T) such that x'(t) > 0 for every
t €[0,T), a(t) be a non-negative, non-decreasing C*-function on [0,T), v,u € C([0,T), R;) and

w : [0,00) — [0,00) be a non-decreasing, continuous function with

ww5a®+f%1£xwﬂﬂw—x@ﬁ*w@wwwnwwemﬂw (4.10)
Then t 5
u(t) < (Q_l (Q (A1) —l—/o G(s) ds)) , t€[0,T), (4.11)
where 0 <d < <1, A(t) = %6 (t),
G(t) =2 (C(E)T () © @f?xm& ﬁ&mﬁu (t) =wi (&),

to > 0, Q7 is the inverse function on such that Q (A (t)) + fo s)ds € Dom (Q7) for all
t€0,T1], and for Ty € (0,T).
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Proof. From (4.10) and Holder inequality we get

u(t) < a(t)+—/0x’(S)(X(t)—X(S))B_lv(S)w(U(S))dS

< a(t)+ T/o (X ()7 (x (8) = x ()" (x () = x (0) 7
0

)
X (8) = x (0))"" v () w (u(s)) ds

i (500 (555))

IN
IS
=
+

Then

By taking g (¢)

G(t) = 3 (D (EDT ()T () =x0)F ¥ ()0} (0, we find

Consider V (t) be the right-hand side of above inequality. Therefore,

g ) [u(V(@)) <1,

and
Vi) AMAGOue) _ AW
V(1) sV ) S nCa@) 90
COW (1) < LA +G ).

By integrating both sides of last inequality from 0 to ¢, we get

QV (1)) < QA ) + / G (s)ds,

and since €2 is an increasing function we get

gt <V )< <Q(A(t))+/0tg(s)ds>.

63
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This achieves the proof. O

4.3 Some new conformable fractional integral inequalities

In this section, we present a new version of non-linear integral inequalities of conformable fractional

type. We start by proving the following lemma, which we use in this section

Lemma 4.2. suppose that X (.) € C'([a,b],R) is a non-decreasing function with a < \(t) <
t, for all t € [a,b]. asumme that u(.),a(.),b(.) € C([a,b],R{) and let (t,s) — f(t,s) €
C ([a,b] x [a, A (b)]RY) be non-decreasing in t for every s fized. If

AD)
u®) Sa b [ FEuls)ds

then

Proof. The result is obvious for t = a. Let ¢y be an arbitrary number in (a,b] and detine the

function z (.) as
A(t)
= / f (to,s)u(s)dys, tE€ [a,to.
Then u (t) < a(t)+b(t)z (t) for all t € [a, o], and z(.) is non-decreasing. Hence
2 () = [lto, A(0)u(A (@)X ()N (1)

I (o, A (£) [a (A (6) + (A () 2 A X ()X (8)
F (o, X&) [a (A (1) +b (A () 2 O] AT ()X (2) -

IN

(A(
(A(

IA

The last inequality can be rearranged as

/

2(t) = [ (o A@)B((6) 2 () A ()N (1) < f (to, A1) a (A (D) AN (1) (4.12)

Multiplying both sides of inequality (4.12) by exp (— faA(t) b(s) f (to,s) das> , we get

A(t) !
[Z (t) exp <—/ b(s) f (to,s) da,s)]

At) /
< exp <—/ b(s) f (to,s) da8> flto, X)) a (A (@) AT (E) X (1)
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Integrating from a to t and noting that z (a) = 0, we obtain

21 < exp ( / " ) £ (o) das> | / Cexp (- / ) £ (to.m) da7>

t At) /

= / exp (A b(r) f (to,7) daT> f b, A(8))a (X () X7 (s) X (s)ds
AY) (L)

_ / exp ( / b(r) f (to,7) da7> £ (to, ) a(s) dus.

Since u (t) < a(t)+b(t) 2 (t), we have for t = ¢, that

A(to) Ato)
u (o) ga(t0)+b(t0)/ exp (/ b(7) f (to, ) W) £ (to, ) a(s) dos.

The intended conclusion follows from the arbitrariness of . O
Remark 4.3. If f(t,s) = f(s) we get ([45] Theoreme 2.3).
Remark 4.4. If a=1,b(t) =1, A(t) =t and f (t,s) = f (s) we get([I1] Lemma 1.1).

Theorem 4.6. Suppose that A (.), 3 (.) € C' ([a,b] ,R) are non-decreasing functions with X (t) , 3 (t) €

[a, t] for allt € [a,b] . Assumme thatu(.),a(.),b(.) € C([a,b],RY), (¢, s) = f (L, s) € C([a,b] x [a, A (b)],
is non-decreasing in t for every s fized, g(.,.) € C ([a,b] x [a, B ()], R), and (s,7) — k(s,T) €

C ([a, B (b)] x la, B (b)] ,Rf{) is non-decreasing in s for every T fized. Let W (.),®(.) € C (RE{, ]Ra“)

be non-decreasing functions,® (.) submultiplicative with ® () > 0 for x > 1. define

* ds
“@= | sy 120

B(7)
n (7) = max {a(T) ,/ g(7,0) doﬂ} , T € [a,max{\(b),B(b)},

s A(T) A(T)
p(s) =/ k(s,7)® (n(7)+b(7)/ exp (/g b(@)f(r,@)dﬁ) f(ﬂﬁ)ﬁ(f)da§> doT.

If for t € |a, b
A(t)

B(t) 5
u(t) <a(t)+0b(t) ft,s)u(s)dys +/ g(t,s) W (/ k(s,7)® (u(r)) daT) dos, (4.13)

a

then there exists t. € (a, [ (b)] such that p(t) € Dom (G™') for allt € [a,t.],G7'(.) the inverse
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function of G (.), and

A(t) A(t)
u(t) < q(t)+ b(t)/ exp (/ b(r) f(t,T) dﬂ) f(t,s)q(s)das,

where

B(t)
d=a(t)+ [ gt W (G (0 (s)) dos.

Proof. Let

From (4.13) we get
A®)
w(t) < 2 () +b(#) / F(t5)u(s) das. (4.14)

Applying Lemma to (4.14)), we obtain

A(t) A(t)
u(t) < z(t)+ b(t)/ exp (/ b(r)f(t,T) da7> f(t,s)z(s)dys. (4.15)

In order to istimate z (t), we define the function v (.) by

therefore z (t) = a (z) + ff(t) g (t,0) W (v(0))d.b, and

s A(7) A(T)
/ k(s,7)® (z (1) + b(T)/ exp (/g b(0) f(r,0) doﬁ) f(1,8) 2 (&) da§> d,T

< /susm)@[nm<1+w<v<r>>>

IN

v (s)

A(r) A(r)
+b (T)/ exp (/5 b(0) f (7,0) da9> S (80 (§) dag (14w (v (T)))] doT

IN

/Smsn)@[nm
A7) A(T)
o) [ e ( /5 b(0) f (.0) dcﬂ) G dafs] & (14w (o (r) dur

Let a < t, < B(t) be a number such that p(t) € Dom (G™!) for all t € [a,t,]. Definre r(.) on
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la, so] , where a < sg < t, is an arbitrary fixed number, by
1) = [ Kon) e

A(T) A(T)
+b (T)/ exp (/E b(0) f (7,9) da9) fT.&)n(€) da£] (1 +w(v(r)))dat.

P (s) = k(s0,5)®[n(s) _
A(s) A(s)

() / exp ( /5 b(0) f (7.6) da9> £ (5,6)0 () dot | ® (11 w (v (5))) s

k (s0,8) ® [ (s) '

A(s) A(s) 1
+b(s) / exp(/5 b<e>f<r,e>dae)f(s,@n(s)das O (1+w(r(s) s>

IN

That is

< k(s0,5) @ [n(s)
A(s) A(s) )
) [ e ([ 001 (60)d8) £, dut| 5
a 3
by integrating the last inequality from a to s and using G (r (a)) = 0, we get

S TI<S> S
/acb<1+w<r<s>>>ds < /a“s”’”q’["“)

A(T) A(T)
+b (T)/ exp (/g b(0) f (7,0) da9> f(T8n (&) da§] T dr,

therefore
Gr(s) < [ knreh)
A(T) A(T)
b (r) / exp / b(6)  (r.0)dab | [ (7€)1 (€) duf | dur.
a 3
The choice of ¢, permits us to write r (sg) < G~ (p(s0)). Since g is arbitrary, we conclude that

r(s) <G H(p(s)), s€lat. (4.16)

To complete the proof, we observe that for a < sy < t, the inequality 8 (A (s)) < t. holds. Hence,

we can insert inequality (4.16]) into inequality (4.15]). O
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We present the definition of class H functions

Definition 4.5. A functions g(.) € C (RE{,RE{) 15 said to belong to the class H if

(1)  — g (z) is non-decreasing for x > 0 and positive for x > 0;

(2) There exists a continuous function W (.) on RY with g (ax) <V (a) g (z) for a >0, z > 0.
Example 4.1. If g (z) = 2™, for m > 0 then g(az) < ¥(a)g(x) for any a > 0, x > 0. then the
function g is the class H, for ¢y =g

Lemma 4.3. Suppose that X (.) € C' ([a,b] ,R") is a non-decreasing function with a < \(t) <t
for all t € [a,b]. Assume that u(.),a(.) € C ([a,b],R]) with a(.) apositive and non-decreasing
function, and (t,s) — f (t,s) € C ([a,b] x [a; A (b)], R} ) non-decreasing in t for every s fived. If
g(.) € H and

At)
t —i—/ f(t,s)g(u(s))das, (4.17)
Then there ezists a function U (.) and a number t. € (a,b] that depends on VU (.) such that
At)

+/ f(t,s) %daa’ € Dom (G7'), telat], (4.18)

and
A(t)
w(t) <a(t)G (G 1) +/ f(t.s) %d@) Ctelat),

where

Td
G(w):/ FZ)’ x> 0,29 > 0.

and, as usual, G (.) represents the inverse function of G (.).

Proof. Since a (.) is positive and non-decreasing and g (.) € H, we obtain from (4.17) that

u(t) MO f(t,s) g (u(s)) MO V(a(s) (uls)
- Sl—I—/a ) das§1+/a f(t,s) ol g(a )das

a(s

for some function ¥ (.) as in the Definition [4.5] Let us now choose a number a < ¢, < b such that
(4.18) holds, and define function z (.) by

—1+/ f (to, s) \Ij a<<8))g<u<8))das, t € [a;to]

Where ty € (a,t,] is an arbitrary fixed number. Then, with z (t) = %, we have

V(a(A ()
a(A(t)

j
< 7@ " g G o) e ),

() = flto,A(t)) gz (MA@ (BN (1)
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because z (t) < z(t) and z (t) is non-decreasing. Sinse z (t) is positive, we can divide both sides

of the last inequality by ¢ (z (¢t)) and, after integrating both sides on [a, t], we get

A) a(s
G <G+ [ fny Md

Hence,

A(to) als
2 (k) < G <G(1)+/ f (to, )‘I’C(l(( D a5>.

Since x (tg) = agt g < z(tp) and t, is arbitrary, the result follows for all ¢ € (a,t.]. The case when

t = a is obvious. O

Theorem 4.7. Let functionswu (.), f(.),g9(), W (), ®(.),A(.),8(.),p(.), and G(.) be as in The-
orem[4.0, and a(.) be as in lemmal{.3 If h(.) € H,

T ds
Q(I):\/m}m, ..'E>0,l'0>0,

and

/ +/a/\(t)f(t,s)h(u(s))das—i—/aﬁ(t)g(t,s)W(/ask(s,T)q)(u(T))dar) dys,

then there exists a function W (.) and a number t, € (a, B (t)] depending on V (.) such that, for all
t € la,t],

/ f(t ()>)ds€D0m(Q 1),
p(t) € Dom (G71),
and
B(t)
u(t) < |a(t) +/ g(t,s) W (G (p(s))) daS] q(t),
where

Proof. Define function z (.) by

z(t):a(t)—l—/aﬁ(t)g(t,s)W(/:k(s,r)q)(u(r))da7> dus, t€lab].

Clearly z(.) is a positive and non-decreasing function. Hence, we can apply Lemma to the

A(t)
+/ f(t,s)h(u(s))dys,

inequality
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to obtain

At) a(s
w(t) < 2 () Q! <Q(1)+/ £(t,s) %das), telatl,

for some function V¥ (.) and some number t, € (a,b]. An estimation of z(¢) can be obtained

following the same procedure as in the proof of Theorem [4.6] After that, we obtain

B(t)
z(t) <a(t)+ / g(t,s)W (G_1 (p (s))) dos, t€[a,t],

where G (.) and p(.) are defined as in Theorem [4.6] O

4.4 Some Applications

We present two examples of application to study the existence and uniqueness and Ulam stability
of the solution of Eq. (4.1)).

Let 0 < T < co. We consider the following assumptions:
(H,) f € C([0,T] x R, R) and there exist [,k € (C'[0,T], R;) such that

lf(t,x)| <1(t)|z|+Ek(t), Vte]0,T], Ve eR. (4.19)
(H3) There exists h € C'([0,7],R) with
[f () = f Gyl <h(t) |z —yl, VEel0,T],Vr,y eR.

The following theorem study the existence and uniqueness of the solution of Eq. (4.1).

Theorem 4.8. Suppose that (Hy) is satisfied. Then there exist at least one solution for Eq. .
Furthermore, if (Hs) is satisfied. Therefore Eq. has a unique solution on [0,T7].

Proof. Let consider the operator H : C' ([0, T],R) — C ([0,T],R) given by

(Hz) (t) = w0 + ﬁ / ¥ (5) (¢ (8) = x ()P~ f (5.2 (5)) ds.

According to condition (4.19)) and the continuity f, it is clear that H is continuous and completely

continuous. It remains to show that the set
F={xeC(0,T],R), = (\H) (z), for A € (0,1)}

is bounded, taking
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1
S

A =24 (Jaul + B 00 = 0 (v @k (0s))

G() = 5= (C(E)T ()T (v - x(0) T X 01 (1)
where 0 < § < 8 < 1. Let x € F, then for A € (0,1) and t € [0,T], we have

o () = A (x + i [ O 60 =X OV (s 6) ds) |
So

IN
B
o
+
O\w
><\
=
=
~
|
>
S
s
L
S
B
&
o
»
+

[\
B
=
+
/—\
7
S | N—
=<
—~
N
|
>
=
S
s
VR
O\H~
X\
—
=
=
©
Q.
wn
~~
>
+

Using Theorem [£.2] we obtain

2 (1)) < (A(t)—i—/OTg(s)A(s)exp (/fgmdf) ds>5,

for all ¢ € [0,7]. From Schaefer fixed point theorem we deduce that the operator H has at least
one fixed point in C ([0, 7], R) which is the solution Eq. (4.1)).
If (H,) is satisfied, we suppose that x; (t), xs (t) are two solutions of Eq (4.1]). Then

71 (1) — 22 ()] = ’ﬁ/g X (5) (x (8) = x ()77 (f (5,21 (5) = f (5,22 (5))) ds
< 1 YOO =3 @ T R e () = (9] ds
Using Theorem , we obtain x; = Zs. O

We consider the following inequality
‘CDS;Xy t)—f(t,yt)| <e fort €[0,7] and € > 0. (4.20)

Definition 4.6. Eq. is x— Ulam-Hyers stable if there exists ¢ > 0, such that for every e > 0,
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and for every solution y of there is a solution x of Fy. with
o () =y (B)] < ce (x (1) = x (0))”,

Remark 4.5. If y is a solution of then y is a solution of

y (1) — y (0) - ﬁ / ¥ (5) (x () = X ()" £ (5, (s)) ds

()= x(0).

= rg+1)

The following theorem study the y—Ulam stability of the solution of Eq. (4.1).

Theorem 4.9. Suppose that (Hs) is satisfied. Then, Eq. 15 x— Ulam-Hyers stable.

Proof. Let y be a solution of (4.20) and z the unique solution of the following problem

{ DG (t) = f(tx(t), Be(0,1),te0,T],
£(0)=y/(0),

then

ly (t) — = (1)

< O30 - 155 [ VO0O -G o)

< ]ym —y(0) - ﬁ / () 0 8) = x () F s,y (s)) ds
+ﬁ / ¥ (5) (x (1) = X ()" f (5,5 (s)) ds
ﬁ / ¥ (5) (x () = X (5))°7" (5,2 (5)) ds

IN

IN
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Using theorem [1.2] we get

(0 =0 <27 (557 00 - x ) (e ([ "gs) d))

14 1-6 B=4 1
where G.(t) = 22 (T (E5)T (1) © (x(0) = x O) T X' (04F (),
and 0 < 0 < § < 1, the proof is complete. n

Example 4.2. Let consider the following problem

(4.21)

Dz Py () = tarctanz (t) + sint, t € [0,2],
x(0) = xo.

Let
f(t,z(t)) = tarctanx (t) + sint.

Forall z,y e R and t € [O, %], we have

|f (t,x) — f(t,y)] < tlarctanz — arctany|

< tlz—y.

Hence, the assumptions (Hs) is satisfied. It follows from Theorem that the Eq. (4.21)) has a
unique solution on [0, ﬂ
In the second application we present an examples of application to gives a bound on the

solution of the following retarded integral equation:

A(¢) s
u(t) =k —I—/ F (s,u (s) ,/ K (1,u(T)) daT) dos, te€][0,b], (4.22)
0 0
where k > 0,0 > 0,\(.) € C*([0,b],R) is a non-decreasing function with 0 < A\ (¢) < ¢, u(.) €

C([0,b] ,R), F € C([0,b] x R x R,R) and K € C([0,b] x R,R). The following theorem gives a

bound on the solution of integral equation (|4.22]).

Theorem 4.10. Assume that functions F (.,.,.) and K (.,.) in satisfy
(K (8, u)] <k (8) @ (Jul), (4.23)
|[E (8w, 0)| < tlul + ol (4.24)

with k (.) and ® () defined as in Theorem [4.6, If u(.) is a solution of ({{.29), then

A(t)
(1)) < g () +t / exp (t (0 () — 8)) ¢ () das, 1€ [0,0.],
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for some t. € (0, A ()] such that
p(t) € Dom (G7'), te0,t],

Here
()
() =k + / G (p(s)) dus,
0

v ds
= _— >
G () /0 si+s) =0

v = (ke s [ oo (Lot w - ) dacl o,

n(r)= max{k, )\T(T)} ., T€e[0,A(b)],
with G=1 (.) representing the inverse function of G (.).

Proof. Let u (.) be a solution of equation (4.22)). In view of (4.23)) and (4.24]), we get

(8] < k+/0m (t|u(s)| +/Osk(7)q>(|u(7)\)da7) dos.

An application of Theorem [4.6| with a (t) = k, A(t) = 5(t), f(t,s) =t, b(t) = g(t,s) = 1, and

W (u) = u, gives the desired conclution:

A()
u@l<a+t [ ew (g (A% (1) - sa>) a(5) ds.



Conclusion

This thesis is devoted to some integral inequalities and applications for certain classes of partial
differential equations. The important notion in this thesis is the study some non-linear integral
inequalities for two-variable and n independent variables functions, finally some new fractional
integral inequalities with singular kernels and using this type integral inequalities to prove the
existence, uniqueness and Ulam stability for the solution of fractional Cauchy problem with respect
to another function. This studies can be extend to more integral inequalities involving other types

of Gronwall inequalities.
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Abstract

The aim of the present work is to give an exposition of the classical results about integral inequal-
ities appeared in the mathematical researchs in recent years, and to establish some new integral
inequalities, integrals inequalities for functions of several independent variables with a term of
delay and also some new fractional integral inequalities.

Moreover we give some applications to certain classes of partial and fractional differential equations

to illustrate the truth of our results.
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Résumé

Le but de ce travail est de donner une exposition des résultats classiques de certaines inégalités
intégrales apparues dans la recherché mathématique dans ces dernieres années, et d’ établir
quelques nouvelles inégalités intégrales, inégalités intégrales pour des fonctions de plusieurs vari-
ables indépendantes avec un terme de retard et aussi des nouvelles inégalités intégrales fraction-
naires.

De plus nous donnons quelque applications a certaines classes des equations aux dérivées partielles

et fractionnaires pour illustrer fiabilité de nos résultats.
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