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Abstract

In this thesis, some novel discrete formulations for stabilizing the mixed �nite element
method Q1-Q0 (bilinear velocity and constant pressure approximations) are introduced
and discussed for the generalized Stokes problem. These are based on stabilizing discon-
tinuous pressure approximations via local jump operators. The developing idea consists
in a reduction of terms in the local jump formulation, introduced earlier, in such a way
that stability and convergence properties are preserved.
Moreover, some iterative methods of conjugate gradient type are discussed and their al-
gorithms are presented. These are used for the iterative solution of the algebraic systems
of linear equations which arise from the spatial discretization of the continuous problem.
The computer implementation aspects and numerical evaluation of the stabilized discrete
formulations are also considered. For illustrating the numerical performance of the pro-
posed approaches and comparing the three versions of the local jump methods against
the global jump setting, some obtained results for two test generalized Stokes problems
are presented. Numerical tests con�rm the stability and accuracy characteristics of the
resulting approximations. Likewise, the numerical reliability of the discussed iterative
solvers is assessed.

Keywords : Stokes problem, Finite elements, Stabilization, Iterative methods



Résumé

Dans cette thèse, quelques nouvelles formulations discrètes pour stabiliser la méthode
des éléments �nis mixtes Q1-Q0 ( approximations de vitesse bilinéaire et pression con-
stante ) sont introduites et discutées pour le problème généralisé de Stokes. Elles sont
basées sur la stabilisation des approximations de pression discontinue à travers les opéra-
teurs du saut local. L'idée principale est de réduire les tèrmes dans la formulation du
saut local, introduits avant, tels que la stabilité et les propriétés de convergence soient
conservées.
De plus, quelques méthodes de type gradient conjugué sont discutées et leurs algorithmes
sont présentés. Celles-ci sont utilisées pour la résolution itérative des systèmes d'équations
linéaires obtenues de la discrétisation spaciale du problème continu. La mise en oeuvre
des calculs sur l'ordinateur et l'évaluation numérique des formulations discrètes stabil-
isées sont aussi considérées. Pour illustrer la performance numérique des approximations
proposées et comparer les trois versions des méthodes du saut local avec celle du saut
global, quelques résultats obtenus pour deux problêmes tests généralisés de Stokes sont
présentés. Les tests numériques con�rment la stabilité et l'exactitude des approximations
résultantes. De même, la �abilité numérique des méthodes itératives discutées est éstimée.

Mots clés: Problème de Stokes, Eléments �nis, Stabilisation, Méthodes itératives



-809.32677

P�l�
TlOfnm�� �yO�� {`� TK�An�¤ �§dq� �� ,T�¤rV±� £@¡ ¨�
TWlt�m�� Tyhtnm�� r}An`�� Tq§rV C�rqtF� ��� �� ­d§d���
.Tmm`m�� H�wtF TlkKm� (
�A��� X�S�� ¤ TyW��� Ty¶An� T�rs��)
zfq�� �®� �� �Wqtm�� X�S�� 	§rq� C�rqtF� Y�� dnts� ¨¡¤
T�AyO�� ¨�  ¤d��� {yf�� Yl� Tysy¶r�� ­rkf�� zk�r� .¨l�m��
Yl� _Af��� �t§ �y�� ,Aq�AF T�dqm�� ¨l�m�� zfql� TlOfnm��

.
CAqt�� P¶AO�¤ C�rqtF¯�
Xm� �� T§C�rkt�� �rW�� {`� TK�An� 
m� ,��Ð Y�� T�AR³A�
��� �� ��Ð ¤ Ah� T}A��� �Ay�EC�w��� |r�¤ ���rm�� �§Cdt��
Am� .Ahyl� �wO��� �� ¨t�� TyW��� �¯ A`m�� �m�� ©C�rkt�� ����
�Aby�rtl� © d`�� �yyqt�� ¤ r�wybmk�� Yl� �A�As��� @yfn� ��
¤ T�rtqm�� �Ab§rqtl� © d`�� º� ±� �yRwt� .­rqtsm�� TlOfnm��
{`� �§dq� �� ,�A`�� zfq�� �� ¨l�m�� zfql� T�®��� �yO�� T�CAq�
A¡@yfn� �� ¨t�� T§ d`�� ��CAbt�¯� d�¥� .Ahyl� �O�m�� �¶Atn��
Ahyl� �O�m�� �Ab§rqt�� T� ¤ �Ab� H�wts� CAbt�� ¨tlkK� Yl�
TyW��� �¯ A`m�� �m� ��� T§C�rkt�� �rW�� ­ºAf� r§dq� �� Am�

.AhtK�An� 
m� ¨t��

,Tyhtnm�� rOln`�� ,H�wtF �kK� Ty�Atfm�� �Amlk��
T§C�rkt�� �rW�� ,C�rqtF¯�

P�l�
TlOfnm�� �yO�� {`� TK�An�¤ �§dq� �� ,T�¤rV±� £@¡ ¨�
TWlt�m�� Tyhtnm�� r}An`�� Tq§rV C�rqtF� ��� �� ­d§d���
.Tmm`m�� H�wtF TlkKm� (
�A��� X�S�� ¤ TyW��� Ty¶An� T�rs��)
zfq�� �®� �� �Wqtm�� X�S�� 	§rq� C�rqtF� Y�� dnts� ¨¡¤
T�AyO�� ¨�  ¤d��� {yf�� Yl� Tysy¶r�� ­rkf�� zk�r� .¨l�m��
Yl� _Af��� �t§ �y�� ,Aq�AF T�dqm�� ¨l�m�� zfql� TlOfnm��

.
CAqt�� P¶AO�¤ C�rqtF¯�
Xm� �� T§C�rkt�� �rW�� {`� TK�An� 
m� ,��Ð Y�� T�AR³A�
��� �� ��Ð ¤ Ah� T}A��� �Ay�EC�w��� |r�¤ ���rm�� �§Cdt��
Am� .Ahyl� �wO��� �� ¨t�� TyW��� �¯ A`m�� �m�� ©C�rkt�� ����
�Aby�rtl� © d`�� �yyqt�� ¤ r�wybmk�� Yl� �A�As��� @yfn� ��
¤ T�rtqm�� �Ab§rqtl� © d`�� º� ±� �yRwt� .­rqtsm�� TlOfnm��
{`� �§dq� �� ,�A`�� zfq�� �� ¨l�m�� zfql� T�®��� �yO�� T�CAq�
A¡@yfn� �� ¨t�� T§ d`�� ��CAbt�¯� d�¥� .Ahyl� �O�m�� �¶Atn��
Ahyl� �O�m�� �Ab§rqt�� T� ¤ �Ab� H�wts� CAbt�� ¨tlkK� Yl�
TyW��� �¯ A`m�� �m� ��� T§C�rkt�� �rW�� ­ºAf� r§dq� �� Am�

.AhtK�An� 
m� ¨t��

,Tyhtnm�� rOln`�� ,H�wtF �kK� Ty�Atfm�� �Amlk��
T§C�rkt�� �rW�� ,C�rqtF¯�

P�l�
TlOfnm�� �yO�� {`� TK�An�¤ �§dq� �� ,T�¤rV±� £@¡ ¨�
TWlt�m�� Tyhtnm�� r}An`�� Tq§rV C�rqtF� ��� �� ­d§d���
.Tmm`m�� H�wtF TlkKm� (
�A��� X�S�� ¤ TyW��� Ty¶An� T�rs��)
zfq�� �®� �� �Wqtm�� X�S�� 	§rq� C�rqtF� Y�� dnts� ¨¡¤
T�AyO�� ¨�  ¤d��� {yf�� Yl� Tysy¶r�� ­rkf�� zk�r� .¨l�m��
Yl� _Af��� �t§ �y�� ,Aq�AF T�dqm�� ¨l�m�� zfql� TlOfnm��

.
CAqt�� P¶AO�¤ C�rqtF¯�
Xm� �� T§C�rkt�� �rW�� {`� TK�An� 
m� ,��Ð Y�� T�AR³A�
��� �� ��Ð ¤ Ah� T}A��� �Ay�EC�w��� |r�¤ ���rm�� �§Cdt��
Am� .Ahyl� �wO��� �� ¨t�� TyW��� �¯ A`m�� �m�� ©C�rkt�� ����
�Aby�rtl� © d`�� �yyqt�� ¤ r�wybmk�� Yl� �A�As��� @yfn� ��
¤ T�rtqm�� �Ab§rqtl� © d`�� º� ±� �yRwt� .­rqtsm�� TlOfnm��
{`� �§dq� �� ,�A`�� zfq�� �� ¨l�m�� zfql� T�®��� �yO�� T�CAq�
A¡@yfn� �� ¨t�� T§ d`�� ��CAbt�¯� d�¥� .Ahyl� �O�m�� �¶Atn��
Ahyl� �O�m�� �Ab§rqt�� T� ¤ �Ab� H�wts� CAbt�� ¨tlkK� Yl�
TyW��� �¯ A`m�� �m� ��� T§C�rkt�� �rW�� ­ºAf� r§dq� �� Am�

.AhtK�An� 
m� ¨t��

,Tyhtnm�� rOln`�� ,H�wtF �kK� Ty�Atfm�� �Amlk��
T§C�rkt�� �rW�� ,C�rqtF¯�

P�l�
TlOfnm�� �yO�� {`� TK�An�¤ �§dq� �� ,T�¤rV±� £@¡ ¨�
TWlt�m�� Tyhtnm�� r}An`�� Tq§rV C�rqtF� ��� �� ­d§d���
.Tmm`m�� H�wtF TlkKm� (
�A��� X�S�� ¤ TyW��� Ty¶An� T�rs��)
zfq�� �®� �� �Wqtm�� X�S�� 	§rq� C�rqtF� Y�� dnts� ¨¡¤
T�AyO�� ¨�  ¤d��� {yf�� Yl� Tysy¶r�� ­rkf�� zk�r� .¨l�m��
Yl� _Af��� �t§ �y�� ,Aq�AF T�dqm�� ¨l�m�� zfql� TlOfnm��

.
CAqt�� P¶AO�¤ C�rqtF¯�
Xm� �� T§C�rkt�� �rW�� {`� TK�An� 
m� ,��Ð Y�� T�AR³A�
��� �� ��Ð ¤ Ah� T}A��� �Ay�EC�w��� |r�¤ ���rm�� �§Cdt��
Am� .Ahyl� �wO��� �� ¨t�� TyW��� �¯ A`m�� �m�� ©C�rkt�� ����
�Aby�rtl� © d`�� �yyqt�� ¤ r�wybmk�� Yl� �A�As��� @yfn� ��
¤ T�rtqm�� �Ab§rqtl� © d`�� º� ±� �yRwt� .­rqtsm�� TlOfnm��
{`� �§dq� �� ,�A`�� zfq�� �� ¨l�m�� zfql� T�®��� �yO�� T�CAq�
A¡@yfn� �� ¨t�� T§ d`�� ��CAbt�¯� d�¥� .Ahyl� �O�m�� �¶Atn��
Ahyl� �O�m�� �Ab§rqt�� T� ¤ �Ab� H�wts� CAbt�� ¨tlkK� Yl�
TyW��� �¯ A`m�� �m� ��� T§C�rkt�� �rW�� ­ºAf� r§dq� �� Am�

.AhtK�An� 
m� ¨t��

,Tyhtnm�� rOln`�� ,H�wtF �kK� Ty�Atfm�� �Amlk��
T§C�rkt�� �rW�� ,C�rqtF¯�



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Introduction 1

1 Preliminaries 3
1.1 Functional spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Abstract mixed formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Approximation of mixed problems . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Some aspects from linear algebra . . . . . . . . . . . . . . . . . . . . . . . 8

2 The generalized Stokes problem and its approximation 10
2.1 The generalized Stokes equations . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Weak formulation of the generalized Stokes problem . . . . . . . . . . . . . 11
2.3 Approximation using mixed �nite elements . . . . . . . . . . . . . . . . . . 12

3 Local stabilizations of the Q1-Q0 mixed �nite element 15
3.1 Earlier jump stabilizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 New local jump schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Reduced local two-jump stabilizations . . . . . . . . . . . . . . . . 17
3.2.2 Reduced local one-jump stabilizations . . . . . . . . . . . . . . . . 21

3.3 Stability and convergence theory . . . . . . . . . . . . . . . . . . . . . . . 28

4 Iterative methods 37
4.1 System matrix properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 The conjugate gradient method . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 The minimum residual method . . . . . . . . . . . . . . . . . . . . 41

4.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Preconditioned MINRES method . . . . . . . . . . . . . . . . . . . 47
4.3.2 Cholesky factorization preconditioner . . . . . . . . . . . . . . . . . 48

5 Implementation and numerical results 49
5.1 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Problem with analytic solution . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Lid-driven cavity problem . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Compared performance of local 2-jump and 1-jump schemes . . . . . . . . 53

i



5.2.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Performance of iterative methods . . . . . . . . . . . . . . . . . . . . . . . 55

Conclusion 82

Bibliography 83

ii



List of Figures

2.1 Isoparametric transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 A 2x2 rectangular macro-element with four pressure jumps. . . . . . . . . 17
3.2 A 2x2 rectangular macro-element with two pressure jumps. . . . . . . . . . 18
3.3 Three cases for the inter-element boundary e0. . . . . . . . . . . . . . . . . 20
3.4 Four 2x2 rectangular macro-elements with one pressure jump. . . . . . . . 22
3.5 Macroelement isoparametric transformation . . . . . . . . . . . . . . . . . 31

5.1 Convergence history for β = 1 and α = 0. . . . . . . . . . . . . . . . . . . 56
5.2 Convergence history for β = 1 and α = 1. . . . . . . . . . . . . . . . . . . 57
5.3 Convergence history for β = 1 and α = 10. . . . . . . . . . . . . . . . . . . 58
5.4 Convergence history for β = 1 and α = 1000. . . . . . . . . . . . . . . . . . 59
5.5 Horizontal velocity pro�les for β = 0.1 when α grows. . . . . . . . . . . . . 60
5.6 Horizontal velocity pro�les for β = 1 when α grows. . . . . . . . . . . . . . 61
5.7 Horizontal velocity pro�les for β = 100 when α grows. . . . . . . . . . . . . 62
5.8 Pressure �eld for α = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.9 Pressure �eld for α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.10 Pressure �eld for α = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.11 Horizontal velocity �eld for α = 0. . . . . . . . . . . . . . . . . . . . . . . . 66
5.12 Horizontal velocity �eld for α = 1. . . . . . . . . . . . . . . . . . . . . . . . 67
5.13 Horizontal velocity �eld for α = 1000. . . . . . . . . . . . . . . . . . . . . . 68
5.14 Exponential distributed streamslices plot for α = 0. . . . . . . . . . . . . . 69
5.15 Exponential distributed streamslices plot for α = 1. . . . . . . . . . . . . . 70
5.16 Exponential distributed streamslices plot for α = 1000. . . . . . . . . . . . 71
5.17 Comparative horizontal velocity pro�les of the local 2-jump and 1-jump

schemes for α=100 and β=1. . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.18 Comparative pressure pro�les of the local 2-jump and 1-jump schemes for

α=100 and β=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.19 Residual reduction history for CG and MINRES algorithms with α = 0. . . 73
5.20 Residual reduction history for CG and MINRES algorithms with α = 1. . . 74
5.21 Residual reduction history for CG and MINRES algorithms with α = 1000. 75
5.22 Residual reduction history for JPCG and CFPCG algorithms with α = 0. . 76
5.23 Residual reduction history for JPCG and CFPCG algorithms with α = 1. . 77
5.24 Residual reduction history for JPCG and CFPCG algorithms with α = 1000. 78
5.25 Residual reduction history for JPMINRES and CFPMINRES algorithms

with α = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

iii



5.26 Residual reduction history for JPMINRES and CFPMINRES algorithms
with α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.27 Residual reduction history for JPMINRES and CFPMINRES algorithms
with α = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iv



List of Tables

5.1 Comparison of ‖u− uh‖0 results for β = 1 as α grows (Part 1). . . . . . . 50
5.2 Comparison of ‖u− uh‖0 results for β = 1 as α grows (Part 2). . . . . . . 51
5.3 Comparison of ‖u− uh‖1 results for β = 1 as α grows (Part 1). . . . . . . 51
5.4 Comparison of ‖u− uh‖1 results for β = 1 as α grows (Part 2). . . . . . . 51
5.5 Comparison of ‖p− ph‖0 results for β = 1 as α grows (Part 1). . . . . . . . 51
5.6 Comparison of ‖p− ph‖0 results for β = 1 as α grows (Part 2). . . . . . . . 52
5.7 Comparison behavior of ‖u− uh‖0 for β = 1 and α = 100. . . . . . . . . . 53
5.8 Comparison behavior of ‖u− uh‖1 for β = 1 and α = 100. . . . . . . . . . 54
5.9 Comparison behavior of ‖p− ph‖0 for β = 1 and α = 100. . . . . . . . . . . 54

v



Introduction

The mixed �nite element methods are widely used for the numerical solution of in-
compressible �ow problems. Many of them involve the use of approximations for the
unknown primitive variables (velocity and pressure) in the Galerkin methodology. How-
ever, it is widely known that the discrete velocity and pressure spaces cannot be chosen
independently of each other. There is a compatibility condition, commonly called the
Babuška-Brezzi stability condition, that needs to be satis�ed if the resulting mixed ap-
proximation is to be e�ective.
For simplicity, low-order mixed approximation methods are preferred. Nevertheless, many
of them are unstable in the standard Babuška-Brezzi sense. Among these, the mixed meth-
ods referred to as Q1-Q0, P1-P0, P1-P1 and Q1-Q1 are notorious. Hence, Boland and
Nicolaïdes [4] have shown that the mixed �nite element Q1-Q0 does not satisfy the sta-
bility condition. In addition, Sani et al. [28] and [29] have demonstrated that for certain
boundary conditions the method generates spurious pressure modes (called checkerboard
modes) resulting in numerical instabilities in the approximate pressure.

As a result of that, several researchers have been interested in overcoming the need of
satisfying the Babuška-Brezzi stability condition. The idea of such called stabilization was
initially proposed in the pioneering work of Brezzi and Pitkäranta [7]. Later, Hughes and
Franca [21] constructed a Stokes discrete formulation which ensures convergence of dis-
crete solutions for any mixed approximation. For a discontinuous pressure approximation,
the called universal stability can be achieved by the introduction of pressure jump terms
into the standard Galerkin discrete formulation. However, for achieving the universal
stability, these jump terms must control pressure jumps across all internal inter-element
edges. In the early 1990s, Silvester and Kechkar [31] suggested that a more robust way
of stabilizing a mixed method based on discontinuous pressure consists in restricting the
global jump operator of Hughes and Franca locally to a macro-element partitioning of
the solution domain. Furthermore, Kechkar and Silvester in [23] showed that the local
jump stabilization can restore optimal interpolation rates of convergence for the Q1-Q0
and P1-P0 methods. A key feature of the local jump stabilization is that a conventional
macro-element implementation is possible, so that the new stabilized discrete formulation
can be implemented into element-by-element iterative solution techniques. The stabilized
mixed Q1-Q0 and P1-P0 methods introduced by Silvester and Kechkar [31] and then an-
alyzed in [23] have been applied to Stokes equations in many applications (see [8], [18],[20]
and [24]) while stability with respect to aspect ratio has been restored in [1] using minimal
constraints on the pressure space.
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In this work, some modi�cations of the local jump stabilization technique, discussed
in [31] and [23], are proposed for the Q1-Q0 mixed element when used for the discretiza-
tion of the generalized Stokes problem. The latter is obtained through the introduction
of an additional term to the classical Stokes problem. It occurs in the re�ned numerical
modeling of most industrial incompressible �uid �ows (see [9], [15],[30]). The added term
can be taken as a Darcy term or may represent the time discretization of the evolution
term in the unsteady-state Stokes problem. The present techniques consist in reducing
the number of local jump terms in the discrete formulation to two jumps, and even to one
jump in each 2×2 macro-element. Furthermore, the local jump framework can be more
easily implemented into existing software codes. The well-posedness and convergence of
the two new stabilized discrete formulations are theoretically discussed, whereas the ro-
bustness properties are exhibited through some computational test problems.

Solving the generalized Stokes problem by means of the stabilized �nite element
method Q-Q0 leads us to deal with the arising large sparse linear systems. Although there
are e�ective direct methods (called sparse elimination methods) based on the Gaussian
elimination that exploit the sparsity of the coe�cient matrix and reduce computational
requirements, they work well only for moderate dimensions. For larger dimensions, they
are very expensive and require infeasible computational resources. To reduce these costs,
many people have switched to iterative methods. The developpement of these became a
rigorous branch of numerical analysis. It should be mentioned that basic iterative methods
do not converge for any linear system, or usually converge very slowly. By precondition-
ing, the convergence can be faster. A companion comparative discussion of the e�ciency
of some iterative solvers (in particular, Krylov subspace methods) is hence presented for
the discrete linear systems arising from the stabilization via the di�erent techniques.

The thesis is organized as follows. In the next chapter, some preliminaries that will
be used are recalled. In the second chapter, the generalized Stokes problem is presented
along with its weak formulation. Then, the standard Galerkin formulation is derived
and discussed. In the following chapter, the local jump stabilized formulation by the
way of the Q1-Q0 mixed method is reviewed and the new formulations (local two-jump
and one-jump) are introduced and analyzed. Discussion of some iterative solvers for
the discrete linear systems is addressed to in the fourth chapter. In the last chapter,
some implementation aspects of the proposed stabilization techniques are discussed in
such a way that stability and convergence are proved while numerical performance of the
new stabilization techniques is assessed on some test problems and compared to those
of the earlier (local and global) jump stabilization techniques. A comparative study of
the e�ciency of the iterative solvers is also discussed for the di�erent stabilized linear
systems. Finally, some concluding remarks are drawn.
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Chapter 1

Preliminaries

In this chapter, we give an overview of the relevant concepts that will be used next.
We introduce elementary notations and basic analysis theory that will be used throughout
the thesis

1.1 Functional spaces

Given a bounded domain Ω (⊂ R2), with a polygonal boundary ∂Ω, we denote by
L2(Ω) the Lebesgue space of functions that are square-integrable over Ω with respect to
the inner product:

(q, r)0,Ω =

∫
Ω

q r dΩ (1.1)

for all q, r ∈ L2 (Ω), and the corresponding norm

‖q‖0,Ω =
√

(q, q)0,Ω . (1.2)

Denote by L2
0(Ω), the subspace of functions in L2(Ω) with zero mean over Ω,

i.e.

L2
0(Ω) =

{
q ∈ L2(Ω) ;

∫
Ω

q dΩ = 0

}
. (1.3)

The Sobolev space of square-integrable functions with square−integrable �rst derivatives
is de�ned by

H1 (Ω) =

{
v ∈ L2(Ω) ;

∂ v

∂ x1

,
∂ v

∂ x2

∈ L2(Ω)

}
. (1.4)

The subspace of H1 (Ω) of functions that vanish on ∂Ω is given by

H1
0 (Ω) =

{
v ∈ H1 (Ω) ; v = 0 on ∂Ω

}
. (1.5)

The space H1 (Ω) is equiped with the inner product:

(v, w)1,Ω =

∫
Ω

v w dΩ +

∫
Ω

∇v · ∇w dΩ, (1.6)
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where

∇v · ∇w =
∂ v

∂ x1

∂ w

∂ x1

+
∂ v

∂ x2

∂ w

∂ x2

. (1.7)

The vector

∇v =


∂ v

∂ x1

∂ v

∂ x2

 (1.8)

is called the gradient of v, whereas the Laplacian of v, denoted by ∆v, is given by

∆v =
∂2 v

∂ x2
1

+
∂2 v

∂ x2
2

(1.9)

and the divergence of v is given by:

div v =
∂ v

∂ x1

+
∂ v

∂ x2

. (1.10)

The space H1 (Ω) can be equipped with the norm

‖v‖1,Ω =
√

(v, v)1,Ω =
√
‖v‖2

0,Ω + ‖∇v‖2
0,Ω . (1.11)

For vector two valued functions v = (v1, v2) and w = (w1, w2), the inner product can be
generalized as follows

(v,w)1,Ω = (v1, w1)1,Ω + (v2, w2)1,Ω , (1.12)

with the corresponding norm

‖v‖1,Ω =
√
‖v1‖2

1,Ω + ‖v2‖2
1,Ω . (1.13)

Likewise, we de�ne the gradient of the vector v = (v1, v2) by

∇v =


∂ v1

∂ x1

∂ v2

∂ x1

∂ v1

∂ x2

∂ v2

∂ x2

 . (1.14)

1.2 Abstract mixed formulation

Let Z and Q be two Hilbert spaces with corresponding norms ‖.‖Z and ‖.‖Q respec-
tively and denote their topological dual spaces by Z

′
and Q

′
. In addition, let

a(., .) : Z × Z → R (1.15)

and
b(., .) : Q× Z → R (1.16)
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be two bounded bilinear forms. i.e.

∃ Ca, Cb > 0 (�nite) such that


|a(u, v)| ≤ Ca‖u‖Z‖v‖Z ∀u, v ∈ Z

|b(q, v)| ≤ Cb‖q‖Q‖v‖Z ∀(q, v) ∈ Q× Z.
(1.17)

Now, consider the following problem:

Given l ∈ Z ′
, �nd (u, p) ∈ Z ×Q such that

a (u, v) + b (p, v) = l (v) ∀v ∈ Z

b (q, u) = 0 ∀q ∈ Q.

(1.18)

Moreover, let A : Z → Z
′
and B : Z → Q

′
be two continuous linear operators associated

with respect to a(., .) and b(., .), de�ned respectively by:
〈Au, v〉 = a(u, v) ∀v ∈ Z

〈Bv, q〉 = b(q, v) ∀q ∈ Q.
(1.19)

Similarly, let B
′
: Q→ Z

′
be the dual of the operator B:

〈B′
q, v〉 = 〈q, Bv〉 ∀v ∈ Z. (1.20)

The problem (1.18) can then be reformulated as follows:

Find (u, p) ∈ Z ×Q satisfying{
Au+B

′
p = l in Z

′

Bu = 0 in Q
′
.

(1.21)

By de�ning the null space of the operator B

M = KerB = {v ∈ Z; b(q, v) = 0 ∀q ∈ Q} , (1.22)

the associated problem to (1.18) which is restricted to M is then given by

Findu ∈M such that

a (u, v) = l (v) ∀v ∈M .
(1.23)

Note that if (u, p) ∈ Z × Q is a solution of (1.18), then u is a solution of (1.23). Now,
the question is: what are suitable conditions ensuring the converse? The following result
can give an answer.

Theorem 1.1. (Existence and uniqueness)
Assume that the following hypotheses are satis�ed.
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H1 (M-ellipticity of a)

There exists a constant c1 > 0 such that

a (v, v) ≥ c1‖v‖2
Z ∀v ∈M. (1.24)

H2 (LBB condition)

There exists a constant c2 > 0 such that

sup
0 6=v∈Z

b (q, v)

‖v‖Z
≥ c2‖q‖Q ∀ q ∈ Q. (1.25)

Then, the problem (1.23) has a unique solution u ∈ M and there exists a unique p ∈ Q
such that the pair (u, p) is the unique solution of problem (1.18).

Proof. (see [6] or [16])

It is also instructive to rewrite Problem (1.18) in the following equivalent form:

Given l ∈ Z ′
, �nd (u, p) ∈ Z ×Q such that

B ((u, p) ; (v, q)) = L (v, q) ∀ (v, q) ∈ Z ×Q,
(1.26)

where
B ((u, p) ; (v, q)) = a(u, v) + b(p, v) + b(q, u)

L (v, q) = l(v),
(1.27)

This problem is used essentially for the following theorem.

Theorem 1.2.
Let W1 and W2 be two Hilbert spaces with norms ‖.‖1 and ‖.‖2 respectively. Further, let
B (., .) be a bilinear form on W1 ×W2 such that

|B (z, t) | ≤ C1‖z‖1‖t‖2 ∀ (z, t) ∈ W1 ×W2,

sup
z∈W1

|B (z, t) |
‖z‖1

≥ C2‖t‖2 ∀t ∈ W2,

sup
t∈W2

|B (z, t) |
‖t‖2

≥ C3‖z‖1 ∀z ∈ W1,

with C1 < ∞ and C2 > 0, C3 > 0. Further, let L (.) be a linear functional on W2, i.e.
L ∈ W ′

2. Then, there exists exactly one element z0 ∈ W1 such that

B (z0, t) = L (t)
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for all t ∈ W2 and

‖z0‖1 ≤
‖L‖∞
C3

,

where

‖L‖∞ = sup
r∈W2

L(r)

‖r‖2

.

Proof. (see [2])

It should be mentioned that this theorem is very useful in the analysis of mixed �nite
element approximations of the continuous generalized Stokes problem.

1.3 Approximation of mixed problems

In this section, we focus on the approximation of the abstract mixed problems discussed
above. Keeping the same notations as in the previous section, let h denote a discretization
parameter tending to zero, and let Zh ⊂ Z and Qh ⊂ Q be two �nite dimensional
subspaces. The closed linear subspace Mh of the linear space Zh analogue to (1.22) is
de�ned by

Mh = {vh ∈ Zh; b(qh, vh) = 0 ∀qh ∈ Qh} . (1.28)

Obviously, Mh is nonempty since 0 ∈Mh. Further, it should be noted that in general, Mh

is not a subset ofM . Hence, even though the bilinear form b (., .) featured in (1.18) satis�es
the stability condition (1.25), it does not necessarily satisfy the discrete stability condition
with respect to Zh and Qh. This makes the construction of �nite space approximations
to mixed variational problems di�cult. The validity of a discrete stability condition
must, hence, be independently veri�ed for each particular choice of spaces Zh and Qh.
Now, following the Galerkin methodology the problem (1.18) can be approximated by the
following:

Find (uh, ph) ∈ Zh ×Qh such that
a (uh, vh) + b (ph, vh) = l (vh) ∀vh ∈ Zh

b (qh, uh) = 0 ∀qh ∈ Qh,

(1.29)

with the associated restricted discrete problem:

Find uh ∈Mh such that

a (uh, vh) = l (vh) ∀vh ∈Mh.
(1.30)

Since Mh 6⊆M in general, the problem (1.30) may be considered as an external approxi-
mation of (1.23). As it was seen above, the �rst component uh of any solution (uh, ph) of
(1.29) is also a solution of (1.30). For treating the converse, the following discrete version
of Theorem 1.1 is crucial.
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Theorem 1.3. (Existence and uniqueness)
Assume the following hypotheses.

H1 (Mh-ellipticity of a)

There exists a constant c∗1 > 0 such that

a (vh, vh) ≥ c∗1‖vh‖2
Z ∀vh ∈Mh. (1.31)

H2 (Discrete LBB condition)

There exists a constant c∗2 > 0 such that

sup
06=vh∈Zh

b (qh, vh)

‖vh‖Z
≥ c∗2‖qh‖Q ∀qh ∈ Qh. (1.32)

Then, the problem (1.30) has a unique solution uh ∈Mh and there exists a unique ph ∈ Qh

such that the pair (uh, ph) is the unique solution of problem (1.29). Moreover, there exists
a constant C dependent on c∗1 and c∗2 such that

‖u− uh‖Z + ‖p− ph‖Q ≤ C

(
inf
vh∈Zh

‖u− vh‖Z + inf
qh∈Qh

‖p− qh‖Q
)
. (1.33)

Proof. (see [16])

1.4 Some aspects from linear algebra

In this section, we assume that the reader is familiar with the basic notions of matrices
and their corresonding operations. Now, we denote by

〈v,w〉 = wTv, (1.34)

where wT is the transpose of w, the Euclidean inner product on Rn with the associated
norm:

‖v‖ =
√
〈v,v〉. (1.35)

De�nition 1.1.
A square matrix A is said to be :

� symmetric if
AT = A. (1.36)

� positive de�nite if
〈Av,v〉 > 0 ∀v 6= 0, (1.37)

� positive semi-de�nite if
〈Av,v〉 ≥ 0 ∀v ∈ Rn, (1.38)

� negative de�nite if
〈Av,v〉 < 0 ∀v 6= 0, (1.39)
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� negative semi-de�nite if
〈Av,v〉 ≤ 0 ∀v ∈ Rn, (1.40)

� inde�nite if it is neither positive semi-de�nite nor negative semi-de�nite.

If A is a symmetric positive de�nite matrix of order n, then the bilinear form given by

〈v,w〉A = wTAv (1.41)

de�nes an inner product on Rn with the associated norm:

‖v‖A =
√
〈v,v〉A. (1.42)

De�nition 1.2.
Symmetric matrices Y and Z are said to be congruent if Y = X Z XT for some non-
singular matrix X.

Theorem 1.4. ( Sylvester law of inertia)
Any congruent matrices have the same number of negative, zero and positive eigenvalues.

De�nition 1.3.
The condition number of a non singular matrix A is given by

κ(A) = ‖A‖‖A−1‖, (1.43)

where

‖A‖ = max
v 6=0

‖Av‖
‖v‖

.

If A is symmetric and positive de�nite then, ‖A‖ = λmax(A) and ‖A−1‖ =
1

λmin(A)
,

where λ denotes the eigenvalue of the matrix A. In this case, we have that

κ(A) =
λmax(A)

λmin(A)
. (1.44)
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Chapter 2

The generalized Stokes problem and its

approximation

Usually, it is not easy to get analytic solutions to the Stokes problems type, which
leads us to think of approximate solutions instead. To this end, numerical methods
can play an important role and hence, be strongly recommended. In this chapter, the
generalized Stokes equations are presented along with the weak formulation that is needed
to approximate the problem using the low-order mixed �nite elements method in the third
section.

2.1 The generalized Stokes equations

Let Ω be a bounded two-dimensional domain with a polygonal boundary ∂Ω. Consider
the incompressible generalized Stokes problem, also called the Brinkman model: Given a
body force f, �nd functions u = (u1, u2) and p de�ned in Ω such that

αu− µ∆u+∇p = f in Ω,
div u = 0 in Ω,

u = g on ∂Ω,
(2.1)

where u is the �uid velocity, p the pressure, µ > 0 the kinematic viscosity coe�cient, g is
a prescribed velocity on Γ = ∂Ω , and α a positive real number that may come from the
time discretization of the evolution term ∂u

∂t
in the unsteady-state Stokes equations (cf.

[9]). Typically, we have α >> 1.

Following the well-known monograph [16], there exists u0 ∈ H1(Ω) such that u0 = g
on Γ and div u0 = 0 in Ω. Therefore, setting U = u− u0 gives the problem:

Find functions U and p de�ned in Ω such that
αU− µ∆U+∇p = f− αu0 + µ∆u0 in Ω,

div U = 0 in Ω,
U = 0 on Γ.

(2.2)
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The problem can then be stated as follows.

Find functions u = (u1, u2) and p de�ned in Ω such that
αu− µ∆u+∇p = f in Ω,

div u = 0 in Ω,
u = 0 on Γ,

(2.3)

where u is used instead of U. Throughout the analysis, the homogeneous Dirichlet con-
dition in (2.3), called no-slip boundary condition, is considered here only for simplicity of
presentation. Other boundary conditions can also be taken as it will be the case below
in the numerical experiments. Using de�nitions (1.8), (1.9) and (1.10) given above, the
problem (2.3) is then equivalent to the follows:

Find functions u = (u1, u2) and p de�ned in Ω such that

αu1 − µ
(
∂2 u1
∂ x21

+ ∂2 u1
∂ x22

)
+ ∂ p

∂ x1
= f1 in Ω,

αu2 − µ
(
∂2 u2
∂ x21

+ ∂2 u2
∂ x22

)
+ ∂ p

∂ x2
= f2 in Ω,

∂ u1
∂ x1

+ ∂ u2
∂ x2

= 0 in Ω,

u1 = 0 and u2 = 0 on Γ,

(2.4)

where f = (f1, f2) .

2.2 Weak formulation of the generalized Stokes prob-

lem

First, let us consider the function spaces:

P = L2
0(Ω) and V = [H1

0 (Ω)]
2
, (2.5)

being the usual Lebesgue and Sobolev spaces, de�ned in (1.3) and (1.5) respectively. The
choice of the pressure function space in P is needed to ensure the uniqueness since it is
clear from (2.3) that the pressure can be determined only up to an additive constant.
Then, a weak formulation of the generalized Stokes problem (2.3) is given as follows:

Find (u, p) ∈ V× P such that:

α
∫

Ω
u · v dΩ + µ

∫
Ω
∇u · ∇v dΩ −

∫
Ω
p div v dΩ

=
∫

Ω
f · v dΩ ∀ v ∈ V,

−
∫

Ω
q div u dΩ = 0 ∀ q ∈ P.

(2.6)

Note that we have multiplied the second equation in (2.6) by minus one. The purpose of
this is to get a symmetric formulation which will greatly simplify the discussion. Further,
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we can take the right-hand side f in [L2(Ω)]
2, although this space is not the largest func-

tion space for the data f such that (2.6) makes sense.

De�ne the bilinear forms: for all (v,w) ∈ V×V and q ∈ P ,

a (v,w) = α
∫

Ω
v ·w dΩ + µ

∫
Ω
∇v · ∇w dΩ, (2.7)

b(q,w) = −
∫

Ω
q div w dΩ (2.8)

and the linear form
L (v) =

∫
Ω
f · v dΩ . (2.9)

The weak formulation (2.6) can then be written in the following form.

Find (u, p) ∈ V× P such that:

a(u,v) + b(p,v) = L(v) ∀ v ∈ V,

b(q,u) = 0 ∀ q ∈ P.

(2.10)

Following standard arguments from the classical theory (cf. [16]), it can be shown that
there is a unique solution (u, p) to the weak formulation (2.6) by applying Theorem 1.1
(cf. [13] for more details).

2.3 Approximation using mixed �nite elements

Denote by h (> 0) the mesh parameter. Adopting a conform mixed �nite element
method by using the �nite-dimensional subspaces Vh ⊂ V and Ph ⊂ P , the standard
Galerkin methodology yields the following approximate problem:

Find (uh, ph) ∈ Vh × Ph such that

α
∫

Ω
uh · vdΩ + µ

∫
Ω
∇uh · ∇v dΩ −

∫
Ω
ph div v dΩ

=
∫

Ω
f · v dΩ ∀v ∈ Vh,

(2.11)

−
∫

Ω
q div uh dΩ = 0 ∀ q ∈ Ph. (2.12)

The domain Ω is subdivided into convex quadrilaterals such that the resulting partitioning
τh is regular in the usual sense, i.e. for some positive constants σ > 1 and 0 < ε < 1 we
have

hK ≤ σ ρK and | cos θi,K | ≤ ε ∀K ∈ τh (2.13)

where hK is the diameter of the element K, ρK is the diameter of the inscribed circle of
K and θi,K (i = 1, 2, 3, 4) are the angles of K. The mesh parameter h is explicitly given
by

h = max
K ∈ τh

hK .
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Furthermore, the Q1-Q0 mixed method is the lowest order conforming quadrilateral ap-
proximation method and is characterized by the pair of �nite-dimensional spaces {Vh, Ph}
de�ned by

Vh =
{
v ∈ V ∩ C0(Ω) ; v|K ∈ [Q1(K)]2 ∀K ∈ τh

}
(2.14)

and

Ph = {q ∈ P ; q|K ∈ Q0(K) ∀K ∈ τh} (2.15)

where Q1(K) is the space of iso-parametrically transformed bilinear functions in each K
and Q0(K) is the space of constant functions in each K.

As it was pointed out above, it has been shown in [4] that the �nite element space
pair given by (2.14) and (2.15) does not satisfy the key discrete LBB stability condition:

∃ ω > 0 sup
06=v∈Vh

(q, divv)

|v|1
≥ ω‖q‖0 ∀q ∈ Ph. (2.16)

In this respect, in [28] and [29] it has also been demonstrated that the method develops
spurious pressure modes resulting in numerical instabilities in the approximate pressure
for certain boundary conditions. This suggests that for one or a few, but not all, q ∈ Ph
we have: ∫

Ω
q div v dΩ = 0 ∀v ∈ Vh. (2.17)

On the other hand, Boland and Nicolaïdes have also shown in [5] that in this case there is
a more important failure of (2.16). In particular, they established the existence of some
q ∈ Ph such that

C1 h ‖q‖0 ≤ sup
06=v∈Vh

(q, divv)

|v|1
≤ C2 h‖q‖0, (2.18)

which implies that ω = 0 in (2.16). Hence, on the contrary to the weak formulation (2.6),
the unique solution to the approximate problem (2.11), (2.12) is not garanteed since the
second hypothesis of Theorem 1.3 is not satis�ed.

However, it should also be worth noting that Q1-Q0 mixed approximation is stable
if some non-rectangular meshes are used (cf. [14]). Because of the complexity of these
latters and despite (2.17) and (2.18), the use of Q1-Q0 approximation on rectangular
meshes is motivated by its computational convenience. For simplicity of presentation,
the rectangular axis-parallel meshes of the domain Ω will be considered in the remainder.
The results can be easily extended to more general quadrilateral meshes using standard
isoparametric transformations (see Figure 2.1):



x(ξ, η) =
4∑
j=1

xjNj(ξ, η),

y(ξ, η) =
4∑
j=1

yjNj(ξ, η),

(2.19)
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where on the reference element K̂ = [−1.1]× [−1.1], the basis functions are given by



N1(ξ, η) = 1
4
(1− ξ) (1− η),

N2(ξ, η) = 1
4
(1 + ξ) (1− η),

N3(ξ, η) = 1
4
(1 + ξ) (1 + η),

N4(ξ, η) = 1
4
(1− ξ) (1 + η).

(2.20)

Figure 2.1: Isoparametric transformation.
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Chapter 3

Local stabilizations of the Q1-Q0 mixed

�nite element

In this chapter, some modi�cations of the local jump stabilization technique, are pro-
posed for the Q1-Q0 mixed element for the discretization of the generalized Stokes prob-
lem. The present techniques consist in reducing the number of local jump terms in the
discrete formulation to two jumps, and even to only one jump in each 2x2 macro-element.
Most of the materials presented in this chapter have been the object of a recently published
paper [10].

3.1 Earlier jump stabilizations

In order to overcome the major di�culty mentioned above, the discrete problem
(2.11), (2.12) can be stabilized by introducing into the equation (2.12) a bounded sym-
metric bilinear form Ch(., .) which is positive semi-de�nite over Ph×Ph. In so doing, this
induces the modi�ed discrete incompressibility constraint:

−
∫

Ω
q div uh dΩ − Ch(ph, q) = 0 ∀ q ∈ Ph. (3.1)

The motivation behind introducing the form Ch(., .) is the following result which provides
a su�cient condition for the well-posedness of the new discrete problem (2.11), (3.1).

Theorem 3.1.
Assume that the form Ch(., .) satis�es the condition:

For any pm ∈ Ph such that
∫

Ω
pmdiv v dΩ = 0 ∀v∈ Vh we have

Ch(pm, pm) = 0 =⇒ pm = 0 .
(3.2)

Then, the solution (uh, ph) of (2.11), (3.1) is uniquely determined in Vh × Ph.

Proof. (see [31])

One such way of stabilizing the Q1-Q0 mixed method was introduced in [21] through
the so-called global jump stabilization. It consists in introducing the bilinear form Ch(., .)
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in the discrete incompressibility equation such that:

Ch(ph, q) = β

Ne∑
e=1

h(e)

∫
Γ(e)

[|ph|]Γ(e) [|q|]Γ(e)ds. (3.3)

Here, [|.|]Γ(e) is the jump operator across Γ(e) and β(> 0) is a stabilizing parameter. The
summation runs over all interior inter-element edges {Γ(e); e = 1, 2, ..., Ne} with lengths
h(e). The modi�ed discrete incompressibility constraint (3.1) is then:

−
∫

Ω
q div uh dΩ− β

Ne∑
e=1

h(e)

∫
Γ(e)

[|ph|]Γ(e) [|q|]Γ(e)ds = 0 ∀q ∈ Ph. (3.4)

A general theoretical analysis of the global jump stabilized formulation is given in [21].
Later, it was demonstrated in [31] that the global jump stabilization can be e�ective in
practice. However, a careful choice of the parameter β is required to keep the accuracy
in the solution.

As it was discussed in [31], the global jump method could be simpli�ed by modifying
the discrete bilinear form (3.3) by using macro-elements. For this end, assume that the
elements in τh can be assembled into disjoint macro-elements (element paths) so that a
macro-element partitioning Mh is constructed. Moreover, the notion of the equivalence
macro-element classes which are topologically equivalent to a reference macro-element M̂
(cf. [31]) leads to the following macro-element internal regularity condition: there exists
a constant ω(M̂ ) > 0 such that

KM ≥ ωM̂ GM , (3.5)

where
GM = max

K⊂M
|K|, KM = min

K⊂M
|K|

and |K| represents the area of K. In addition, suppose that the common boundary of any
two neighboring macro-elements M1,M2 in Mh contains a node strictly in the interior
of this boundary (connectivity macro-element condition). Then, the bilinear stabilization
term can be given, instead of (3.3), by

Ch(ph, q) = β

NM∑
M=1

eM∑
i=1

h
(i)
M

∫
Γ
(i)
M

[|ph|]Γ(i)
M

[|q|]
Γ
(i)
M
ds, (3.6)

where the �rst summation is over all macro-elements, whereas the second summation runs
over all inter-element edges strictly within each macro-element (see Figure 3.1 for a 2x2
rectangular macro-element). This stabilization technique will be referred to as the local
jump stabilization.

Provided some usual smoothness and regularity assumptions on the solution (u, p),
the following optimal error estimates for the Stokes problem (α = 0) are theoretically
established in [23]:

‖u− uh‖1 + ‖p− ph‖0 ≤ Ch (|u|2 + |p|1) (3.7)
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Figure 3.1: A 2x2 rectangular macro-element with four pressure jumps.

‖u− uh‖0 ≤ Ch2 (|u|2 + |p|1) . (3.8)

The arguments developed in [31] suggest that the local jump stabilization can be preferred
to the global jump one because of its special features:

� (i) The implementation is more straightforward since the local stabilization matrix
obtained from (3.6) is block diagonal.

� (ii) The local mass conservation is preserved.

� (iii) The discrete velocity solution is less sensitive to the size of the stabilization
parameter β.

Clearly, the two pressure jump stabilization techniques can be extended to the general-
ized Stokes problem (2.3) to get the error estimates (3.7) and (3.8) with the constant C
depending on the parameter α as well.

In the remainder, for ensuring the connectivity macro-element condition mentioned
above we assume that a coarser meshMh is given and that the latter is re�ned by joining
the opposed element mid-edge points to get the grid τh. Next, two approaches for reduced
local jump formulations will be presented.

3.2 New local jump schemes

3.2.1 Reduced local two-jump stabilizations

With preserved consistency and without apparently losing stability and convergence
properties, the choice of (3.6) can be changed into a �rst reduced version by considering
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the pressure jumps only on one direction (horizontal or vertical) over inter-element edges
strictly within each macro-element (see Figure 3.2). The two new stabilized methods,

Figure 3.2: A 2x2 rectangular macro-element with two pressure jumps.

which will be referred to as the reduced local two-jump stabilizations, are given by the
bilinear form:

C
(2)
h (ph, q) =


β

NM∑
M=1

2∑
i=1

h
(i)
M

∫
Γ
(i)
M

[|ph|]Γ(i)
M

[|q|]
Γ
(i)
M
ds

or

β

NM∑
M=1

4∑
i=3

h
(i)
M

∫
Γ
(i)
M

[|ph|]Γ(i)
M

[|q|]
Γ
(i)
M
ds .

(3.9)

This leads to the following perturbed discrete incompressibility constraint:

−
∫

Ω
q div uh dΩ− C(2)

h (ph, q) = 0 ∀q ∈ Ph. (3.10)

The well posedness of the so-obtained discrete problem is given by the next result.

Theorem 3.2.
The reduced local two-jump formulation (2.11), (3.10) has a unique solution.

Proof.
The proof follows exactly, that is used for the Stokes problem using the local jump stabi-
lization technique (see [22]).
First, assume that the horizontal version (see Figure 3.2 (a)) is adopted. As it is clear
from Theorem 3.1, in order to establish the assertion of the theorem, it is su�cient to
prove the criterion (3.2) for the choice (3.9). We will proceed by contradiction. Namely,
for any non-constant pm ∈ Ph (in particular, non-zero since Ph ⊂ L2

0(Ω)) such that∫
Ω
pm div v dΩ = 0 ∀v ∈ Vh (3.11)
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we have

C
(2)
h (pm, pm) 6= 0. (3.12)

So, let pm ∈ Ph be a non-constant function with the property (3.11). From the de�nition
(2.15), there exist at least two adjoining elementsK1 , K2 ∈ τh such that pm|K1 6= pm|K2 .
Set e0 = K1 ∩K2 , a = pm|K1 and b = pm|K2 . This yields

a 6= b and [|pm|]e0 6= 0. (3.13)

Three cases can occur for the inter-element boundary e0, as depicted in Figure 3.3

� (1) There exists a macro-element M ∈ Mh such that K1, K2 ⊂ M and the edge e0 is in
the horizontal direction (Figure 3.3 (a)). Then,

C
(2)
h (pm, pm) ≥ βhe0

∫
e0

[|pm|]2e0ds > 0 (3.14)

in virtue of (3.13).

� (2) There exists a macro-element M ∈ Mh such that K1, K2 ⊂ M but on the contrary,
the edge e0 is in the vertical direction (Figure 3.3 (b)). Then, there exists a node P0 in
the interior of M and the corresponding basis function v0 ∈ Vh such that

supp v0 ⊂M and
∫

Σ

v0 · n ds 6= 0

where Σ = (K1 ∪K3) ∩ (K2 ∪K4) is the common doundary. Taking v = v0 in (3.11)
gives ∫

M

pm div v0 dΩ = 0.

It follows that

0 = a
∫
K1∪K3

div v0 dΩ + b
∫
K2∪K4

div v0 dΩ

= a
∫
∂(K1∪K3)

v0 · n1 ds + b
∫
∂(K2∪K4)

v0 · n2 ds

where ∂ (K1 ∪K3) is the boundary ofK1∪K3 with the outward normal n1, and ∂ (K2 ∪K4)
is the boundary of K2 ∪ K4 with the outward normal n2. On the other hand, since
supp v0 ⊂M , we have∫

∂(K1∪K3)

v0 · n1 ds = −
∫
∂(K2∪K4)

v0 · n2 ds.

Substituting the latter into the preceding equation yields a = b which is in contradiction
with (3.13). That means that this situation never happens.

� (3) There are two neighboring macro-elements M1,M2 ∈ Mh such that K1 ⊂ M1 and
K2 ⊂ M2 with e0 = K1 ∩ K2 ⊂ M1 ∩ M2 (Figure 3.3 ( c1) or (c2 )). Therefore,∫
M1∩M2

ds 6= 0.
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Figure 3.3: Three cases for the inter-element boundary e0.
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Again, there exist a node P0 in the common boundary of M1 and M2 and a basis function
v0 ∈ Vh satisfying :

supp v0 ⊂M1 ∪M2 and
∫
M1∩M2

v0 · n ds 6= 0.

pm must be constant in M1 and M2 respectively, since, otherwise, we have the previous
case.,
Of course, a = pm|M1 and b = pm|M2 . Taking v = v0 in (3.11) yields

0 =
∫
M1∪M2

pm div v0 dΩ

= a
∫
M1

div v0 dΩ + b
∫
M2

div v0 dΩ

= a
∫
∂M1

v0 · n1 ds + b
∫
∂M2

v0 · n2 ds,

where ∂Mi is the boundary of Mi and ni is the outward normal to ∂Mi (i = 1, 2). On the
other hand, since supp v0 ⊂M1 ∪M2, we have∫

∂Mi
v0 · ni ds = ±

∫
M1∩M2

v0 · n ds i = 1, 2,

where n denotes a direction normal toM1∩M2. The appropriate sign depends on whether
n is oriented from M1 to M2 , or conversely. Thus,

(a− b)
∫
M1∩M2

v0 · n ds = 0

which implies by the choice of v0 that a = b . This is also in contradiction with (3.13),
meaning that the third case never happens.

Therefore, pm must be constant. Moreover, pm is a zero function since it belongs to L2
0(Ω).

The analysis of the vertical version (Figure 3.2, (b)) is similar. Consequently, the bilinear
form (3.9) veri�es the hypothesis (3.2) of Theorem 3.1, so that the reduced local two-jump
formulation (2.11), (3.10) has a unique solution.

It is worthwhile to note that any non-vanishing pm ∈ Ph satisfying (3.11) is called a
pressure mode. Moreover, a pressure mode is said to be spurious if it is not constant.

3.2.2 Reduced local one-jump stabilizations

Using 2x2 macro-elements, the reduced local two-jump formulations can themselves be
simpli�ed to the so-called reduced local one-jump formulations given by the stabilization
bilinear form:

C
(1)
h (ph, q) = β

NM∑
M=1

hM

∫
ΓM

[|ph|]ΓM
[|q|]ΓM

ds, (3.15)

where ΓM can be one of the four inter-element boundaries interior to the M th macro-
element. That is, the number of jumps within each macro-element is only one. Likewise,
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Figure 3.4: Four 2x2 rectangular macro-elements with one pressure jump.

there is no jump over the macro-element boundaries (see Figure 3.4). This leads to the
following perturbed discrete incompressibility constraint:

−
∫

Ω
q div uh dΩ− C(1)

h (ph, q) = 0 ∀q ∈ Ph. (3.16)

The well-posedness of the so-obtained discrete problem is given by the following result.

Theorem 3.3.
The reduced local one-jump formulation (2.11), (3.16) has a unique solution (uh, ph) in
Vh × Ph.

First, it should be mentioned that the proof of this theorem cannot be directly estab-
lished by similar arguments to those used in the proof of Theorem 3.2 since (3.14) is not
assured for C(1)

h (pm, pm) .
Indeed, if the number of jumps within each macro-element is reduced to one, then the
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pressure jump could be considered only between the remaining elements K3 and K4 (Fig-
ure 3.4 (b)), where it is possible for pm|K3 and pm|K4 to be equal. In this case, C

(1)
h (pm, pm)

vanishes although pm|K1 6= pm|K2 because the pressure jump [|pm[]e0 de�ned in (3.13) does
not exist. In other words, the pressure values could be di�erent in two elements where no
pressure jump is considered. The latter could be considered just between the two other
elements having the same pressure value and then the pressure jump vanishes. This does
not ensure the strict positivity of C(1)

h (pm, pm).

There is another way for establishing the existence and uniqueness of the discrete solu-
tion using linear algebra arguments. To this end, let us postpone the proof of Theorem 3.3
and give some useful notations.

By introducing {Φj}nu

j=1 and {ψk}np

k=1 , the two sets of basis functions for the discrete
spaces Vh and Ph de�ned in (2.14) and (2.15) respectively, the discrete solutions uh and
ph can be expressed as follows:

uh =
nu∑
j=1

uj Φj, ph =

np∑
k=1

pk ψk. (3.17)

Now, by taking v = Φi and q = ψl ( i = 1, ..., nu and l = 1, ..., np ) in (2.11), (3.16), the
stabilized algebraic problem that corresponds to the reduced local one-jump formulation
(2.11), (3.16) becomes:

Find (U,P) ∈ Rnu × Rnp such that[
A BT

B −βC(1)

] [
U
P

]
=

[
F
0

]
,

(3.18)

where U and P are the unknown vectors of nu velocity nodal values and np pressure nodal
values respectively.

The matrix A = [aij] with entries:

aij = α
∫

Ω
Φi · Φj dΩ + µ

∫
Ω
∇Φi · ∇Φj dΩ (3.19)

is clearly symmetric and positive de�nite, and B = [bkj] is the so-called divergence matrix
with entries:

bkj = −
∫

Ω
ψk div Φj dΩ (3.20)

for i, j = 1, ..., nu and k = 1, ..., np .

Moreover, C(1) = [ckl] represents the stabilization matrix with entries:

ckl = −
NM∑
M=1

hM

∫
ΓM

[|ψk|]ΓM
[|ψl|]ΓM

ds (3.21)
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for k, l = 1, ..., np , whereas the right-hand side vector F of length nu is given by:

F = [fi] , fi =
∫

Ω
f · Φi dΩ (3.22)

Consequently, the unique solvability of (3.18) leads to that of the discrete formulation
(2.11), (3.16).

Proof. (of Theorem 3.3)
Following Elman, Silvester and Wathen [14], the unique solvability of the matrix sys-
tem (3.18) can be determined by studying the corresponding homogeneous system:

AU+BTP = 0

BU− βC(1)P = 0.
(3.23)

By pre-multiplying the �rst equation of (3.23) by UT and the second equation by PT

then substituting PTBU in the �rst equation gives

UTAU+ βPTC(1)P = 0. (3.24)

Thus, U = 0 since A is positive de�nite, C(1) is positive semi-de�nite and β > 0. This
implies the unique solvability with respect to the velocity.

Unique solvability with respect to the pressure is more delicate. Substituting U = 0
into (3.23) gives 

BTP = 0,

C(1)P = 0,
(3.25)

implying that any pressure solution of (3.23) is only unique up to the null space of the
matrices BT and C(1). Again, pre-multiplying the �rst equation of (3.25) by VT and the
second equation by PT produces the algebraic corresponding condition of Theorem 3.1:

VTBTP = 0 ∀ VT ∈ Rnu

PTC(1)P = 0.
(3.26)

Thus, in order to get an algebraic equivalent result to the criterion (3.2), it is su�cient
to show that any solution P of (3.25) must vanish. Moreover, the �rst equation of (3.23)
gives U = −A−1BTP. By substituting in the second equation of (3.23), we get

S(1)
β P = 0, (3.27)

where
S(1)
β = BA−1BT + βC(1). (3.28)
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The equation (3.27) represents the homogeneous system associated to

S(1)
β P = BA−1F, (3.29)

that the pressure solution P of (3.18) satis�es. The matrix S(1)
β is symmetric positive

semi-de�nite (a property which will be proved in the fourth chapter); it is called �stabi-
lized pressure Schur complement�. Therefore, it is su�cient to show that any solution P
of (3.27) must be constant. In particular, such P must be zero vector, i.e. the nullspace
of the Schur complement matrix should be reduced to the zero vector. In other words,
the eigenvectors corresponding to the eigenvalue λ = 0 of the matrix S(1)

β must have zero
components.

On the other hand, it is clear that a well-posed local discrete problem de�ned on
each single macro-element ensures well-posedness of the discrete problem on the whole
domain Ω since standard macro-element theory developed by Boland and Nicolaïdes [3],
and Stenberg [32] can then be used. To this end, the stabilized pressure matrix S(1)

β will be
considered locally. Consider the 2x2 rectangular macro-element illustrated in Figure 3.4
and set P = [pi]

4
i=1 . The local matrix A is the 2x2 diagonal matrix de�ned from (3.19)

with entries

a11 = a22 = d =
4α

9
hxhy +

4µ

3

(
hx
hy

+
hy
hx

)
. (3.30)

Construction of the local divergence matrix yields

BT = 1
2

 −hy hy hy −hy

−hx −hx hx hx

 , (3.31)

where hx and hy are element dimensions. Next, adopting, for instance, the stabilization
bilinear form (3.15) for the local one-jump case in Figure 3.4 (a), gives the local one-jump
stabilization matrix:

C(1) = h2
y


1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0

 . (3.32)

Computing the stabilized pressure matrix Sβ from (3.28) produces

S(1)
β = 1

4d



h2
x + h2

y + 4βdh2
y h2

x − h2
y − 4βdh2

y −h2
x − h2

y −h2
x + h2

y

h2
x − h2

y − 4βdh2
y h2

x + h2
y + 4βdh2

y −h2
x + h2

y −h2
x − h2

y

−h2
x − h2

y −h2
x + h2

y h2
x + h2

y h2
x − h2

y

−h2
x + h2

y −h2
x − h2

y h2
x − h2

y h2
x + h2

y


. (3.33)
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It can be seen that the eigenvalues of Sβ and their associated eigenvectors are
0,


1
1
1
1


︸ ︷︷ ︸
q1


,


h2
x

d
,


−1
−1

1
1


︸ ︷︷ ︸

q2


,



h2
y

2d

(
2dβ + 1−

√
4d2β2 + 1

)
,



1

−1

2dβ +
√

4d2β2 + 1

−2dβ −
√

4d2β2 + 1


︸ ︷︷ ︸

q3


,



h2
y

2d

(
2dβ + 1 +

√
4d2β2 + 1

)
,



1

−1

2dβ −
√

4d2β2 + 1

−2dβ +
√

4d2β2 + 1


︸ ︷︷ ︸

q4


.

(3.34)

This shows that for all β > 0 there is only one zero eigenvalue and its corresponding
eigenvectors are constant pressures as it is required. Moreover, the fact that p with zero
mean overM leads to p = 0 , which ensures the unique solvability of the discrete pressure.
Similar arguments can be used to establish the same result for the three other one-jump
cases in Figure 3.4.

It is important to note that the local stabilization matrices analogous to (3.32) that
correspond to these reduced local one-jump stabilizations are respectively:

h2
y


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

 , h2
x


1 0 −1 0
0 0 0 0
−1 0 1 0

0 0 0 0

 , h2
x


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 . (3.35)
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Remark 3.1.
Keeping in mind the local numbering of Figure 3.4, the local stabilization matrix corre-
sponding to the local jump stabilization term (3.6) is of the form:



h2
x + h2

y −h2
y −h2

x 0

−h2
y h2

x + h2
y 0 −h2

x

−h2
x 0 h2

x + h2
y −h2

y

0 −h2
x −h2

y h2
x + h2

y


, (3.36)

whereas that of the reduced local two-jump stabilization term (3.9) is given by:

h2
y


1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1

 or h2
x


1 0 −1 0
0 1 0 −1
−1 0 1 0

0 −1 0 1

 , (3.37)

depending on the horizontal or vertical choice.

Remark 3.2.
The choice of the stabilization parameter β requires a balance between stability and ac-
curacy. For stability, β should not be too small since the spurious pressure mode has
to be removed. On the other hand, to keep accuracy, β should not be large because the
right-hand side of (3.29) is a linear combination of the three eigenvectors q2, q3 and q4.
Further, since the solution P is de�ned by multiplying each of these components by the
inverse of the associated eigenvalues, the eigenvector q4 will not �gure in the solution (see
Elman, Silvester and Wathen [14]).

Remark 3.3.
It should be mentioned that the idea of reducing the number of interior jumps in macro-
elements can be naturally extended to three-dimensional Q1-Q0 brick elements.

Now, the convergence of the approximate solutions (uh, ph) towards the exact solution
when the mesh parameter h decreases can be discussed in the following section, since
having proved the existence and uniqueness of (uh, ph) gives no idea about this signi�cant
topic.
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3.3 Stability and convergence theory

In this section, the stability framework of Babuška [2] is used and then error estimates
in the natural norms will be derived. First, let B(., .) be the generalized bilinear form

B ((u, p) ; (v, q)) = α (u,v) + µ (∇u,∇v)− (p, div v)− (q, div u) (3.38)

and L(., .) be the linear functional

L (v, q) = (f,v) (3.39)

where (., .) denotes the usual L2-inner product de�ned by (1.1). Thus, the problem (2.6)
can be equivalently stated as:

Find (u, p) ∈ V×P such that :

B ((u, p) ; (v, q)) = L (v, q) ∀ (v, q) ∈ V× P .
(3.40)

Next, by de�ning
Bh ((uh, ph) ; (v, q)) = α (uh,v) + µ (∇uh,∇v)− (ph, div v)

− (q, div uh)

Lh (v, q) = (f,v) ∀ (v, q) ∈ Vh × Ph,

(3.41)

and by introducing the bilinear form

C
(t)
h (r, q) =


C

(2)
h (r, q) for the local 2-jump

C
(1)
h (r, q) for the local 1-jump

∀r, q ∈ Ph,
(3.42)

where C(2)
h (., .) and C

(1)
h (., .) are de�ned in (3.9) and (3.15) respectively, the reduced

locally stabilized formulations (2.11), (3.10) and (2.11), (3.16) become:

Find (uh, ph) ∈ Vh ×Ph such that :

B
(t)
h ((uh, ph) ; (v, q)) = Lh (v, q) ∀ (v, q) ∈ Vh × Ph

(3.43)

where

B
(t)
h ((uh, ph) ; (v, q)) = Bh ((uh, ph) ; (v, q))− β C(t)

h (ph, q) . (3.44)
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We also need to introduce some subspaces of the discrete pressure space Ph. Set:

Rh =



{
q ∈ Ph; [|q|]

Γ
(1)
M

= [|q|]
Γ
(2)
M

= 0 ∀M ∈Mh

}
for the 2j-H scheme

{
q ∈ Ph; [|q|]

Γ
(3)
M

= [|q|]
Γ
(4)
M

= 0 ∀M ∈Mh

}
for the 2j-V scheme

{
q ∈ Ph; [|q|]

Γ
(1)
M

= 0 ∀M ∈Mh

}
for the 1j-H1 scheme

{
q ∈ Ph; [|q|]

Γ
(2)
M

= 0 ∀M ∈Mh

}
for the 1j-H2 scheme

{
q ∈ Ph; [|q|]

Γ
(3)
M

= 0 ∀M ∈Mh

}
for the 1j-V1 scheme

{
q ∈ Ph; [|q|]

Γ
(4)
M

= 0 ∀M ∈Mh

}
for the 1j-V2 scheme.

(3.45)

Now, let C(t)
M (., .) be the restriction of C(t)

h (., .) to a macro-element M given by

C
(t)
M (r, q) =


C

(2)
M (r, q)

or ∀r, q ∈ Ph
C

(1)
M (r, q)

(3.46)

Here, C(2)
M (., .) and C(1)

M (., .) are the restrictions to a macro-element M of C(2)
h (., .) and

C
(1)
h (., .) respectively, i.e.

C
(2)
M (r, q) =



2∑
i=1

h
(i)
M

∫
Γ
(i)
M

[|r|]
Γ
(i)
M

[|q|]
Γ
(i)
M
ds

or
4∑
i=3

h
(i)
M

∫
Γ
(i)
M

[|r|]
Γ
(i)
M

[|q|]
Γ
(i)
M
ds

(3.47)

and

C
(1)
M (r, q) = β hM

∫
ΓM

[|r|]ΓM
[|q|]ΓM

ds. (3.48)

For t = 1, 2, we obviously have

C
(t)
h (r, q) =

NM∑
M=1

C
(t)
M (r, q) ∀r, q ∈ Ph. (3.49)

Moreover, the restricted pressure spaces for a macro-element M are given by
P0,M = {q ∈ L2

0 (M) ; q|K is constant ∀K ⊂M}

RM = L2
0 (M) ∩Rh,

(3.50)
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accordingly to (3.45).

The stability of the local (two-jump or one-jump) stabilized formulations (3.43) can be
analyzed by establishing three interesting lemmas. The �rst one gives the macro-element
positivity of the stabilization bilinear form C

(t)
h (., .) .

Lemma 3.1.
Let ζM̂ be a class of macro-elements. Then, there exists γM̂ > 0 such that

C
(t)
M (q, q) ≥ γM̂‖q‖

2
0,M ∀q ∈ P0,M \RM (3.51)

for t = 1, 2.

Proof.
Let M ∈ ζ

M̂
and q ∈ P0,M \RM . From the de�nition (3.47) or (3.48) of C(t)

M , we note that

C
(t)
M (q, q) = 0 if and only if q ∈ RM . Hence, the constant γM de�ned through

γM = inf
q∈ P0,M \RM

‖q‖0.M = 1

C
(t)
M (q, q)

is positive. By virtue of a scaling argument (cf. [32]), the regularity assumptions (2.13)
guarantee the existence of a constant γM̂ such that

γM ≥ γM̂ > 0 ∀M ∈ ζ
M̂

which is equivalent to (3.51). Indeed, let M ∈ ζ
M̂
. We denote by {(x̂i, ŷi)}9

i=1 the vertices

of the reference quadrilaterals in M̂ . The macroelement M is hence uniquely de�ned by
its vertices {(xi, yi) = F (x̂i, ŷi)}9

i=1 where F is an isoparametric transformation de�ned as
in (2.19) (see Figure 3.5).
Using the �rst inequality in (2.13) leads to the existence of a certain positive constant ν
such that

h2
e ≥ νkM

for all interelement boundary e, strictly in the interior of M . Now, using (3.5) gives the
desired inequality (3.51) (see [22], Lemma 3.1.).

Next, let us assume that there is a �xed set of classes ζM̂i
, i = 1, 2, ..., n (n ≥ 1) such

that every macro-element M belongs to one of the equivalence classes. De�ne Λh to be
the orthogonal L2-projection from Ph onto its subspace Rh de�ned locally by∫

M

(q − Λh q) r dx = 0 ∀q ∈ Ph,∀r ∈ Rh,∀M ∈Mh. (3.52)

As a direct consequence of the last lemma is the following global positivity of the form
C

(t)
h
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Figure 3.5: Macroelement isoparametric transformation

Lemma 3.2.
There exists α1 > 0 independent of h such that

C
(t)
h (q, q) ≥ α1‖ (I − Λh) q‖2

0 ∀q ∈ Ph, (3.53)

for t = 1, 2.

Proof.
Let M ∈ ζM̂i

. We have

C
(t)
M (q, q) = C

(t)
M ((I − Λh) q, (I − Λh) q) ∀q ∈ Ph, (3.54)

because the jump [|Λhq|] vanishes within M since Λhq ∈ Rh. Moreover,

((I − Λh) q, r) = 0 ∀r ∈ Rh, (3.55)

since (I − Λh) q is orthogonal to Rh.
By taking r = 1M , it follows that (I − Λh) q|M ∈ P0,M\RM . Hence, by virtue of Lemma 3.1
and using (3.51), we get

C
(t)
M (q, q) ≥ γM̂i

‖ (I − Λh) q‖2
0,M .

Then, the global inequality (3.53) holds for

α1 = min
{
γM̂i

; i = 1, 2, ..., n
}

which is clearly independent of h.

The third lemma is a global stability result for the discrete pressure space Ph.
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Lemma 3.3.
There exists a positive constant α2 independent of h such that for every q ∈ Ph there is a
gh ∈ Vh satisfying

(Λhq, div gh ) = ‖Λhq‖2
0 and ‖gh‖1 ≤ α2 ‖Λhq‖0. (3.56)

Proof.
Let q ∈ Ph be arbitrary. Since Λhq ∈ Rh ⊂ L2

0 (Ω) there exist C1 ≥ 0 and g ∈ V such
that (cf. [16])

div g = Λhq and ‖g‖1 ≤ C1‖Λhq‖0

We can now combine some ideas from [11] and [12] with the macro-element methodology
of [32] in order to construct an operator Ih : V −→ Vh such that

(div Ihg, r) = (divg, r) ∀r ∈ Ph and ‖Ihg‖1 ≤ C2‖g‖1.

It remains to take gh = Ihg and α2 = C1C2.

Now, we are in a position to state the following main inf-sup result which also con�rms
the well-posedness of the discrete formulation (3.43).

Theorem 3.4.
There exists a constant γ > 0 independent of the mesh parameter h such that

sup
(w,r)∈Vh×Ph

B
(t)
h ((v, q) ; (w, r))

‖w‖1‖r‖0

≥ γ (‖v‖1 + ‖q‖0) ∀ (v, q) ∈ Vh × Ph. (3.57)

Proof.
Let (v, q) ∈ Vh × Ph and α1 be as in (3.53). Set r = −q, w = v − δ gh where δ is a
positive constant to be determined below. From (3.53) and (3.56), it follows that

B
(t)
h ((v, q) ; (w, r)) = α (v,v)− δα (v,gh) + µ (∇v,∇v)− δµ (∇v,∇gh)

+δ (q, div gh) + β C
(t)
h (q, q)

= α‖v‖2
0 + µ‖∇v‖2

0 − δα (v,gh)− δµ (∇v,∇gh)

+δ (Λhq, div gh)− δ ((Λh − I) q, div gh) + βC
(t)
h (q, q)

≥ α‖v‖2
0 + µ‖∇v‖2

0 − δ α α2‖v‖0 ‖Λhq‖0 − δµα2‖∇v‖0 ‖Λhq‖0

+δ ‖Λhq‖2
0 − δ α2‖ (Λh − I) q‖0 ‖Λhq‖0 + β α1‖ (Λh − I) q‖2

0

≥ α‖v‖2
0 + µ‖∇v‖2

0 −
α

2
(‖v‖2

0 + δ2 α2
2‖Λhq‖2

0) + δ ‖Λhq‖2
0

−µ
2

(‖∇v‖2
0 + δ2 α2

2‖Λhq‖2
0) + β α1‖ (Λh − I) q‖2

0

−β α1

2

(
‖ (Λh − I) q‖2

0 +

(
δ α2

β α1

)2

‖Λhq‖2
0

)
.
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By choosing δ =
1

α2
2

(
1

β α1

+ α + µ

)−1

, we get

B
(t)
h ((v, q) ; (w, r)) ≥ α

2
‖v‖2

0 +
µ

2
‖∇v‖2

0 +
βα1

2
‖ (Λh − I) q‖2

0 +
δ

2
‖Λhq‖2

0,

which implies that

B
(t)
h ((v, q) ; (w, r)) ≥ k1 (‖v‖0 + ‖q‖0)2 , (3.58)

where k1 = 1
4

min {α, µ, βα1, δ} .
On the other hand, we have

‖w‖1 + ‖r‖0 = ‖v− δ gh‖1 + ‖q‖0

≤ ‖v‖1 + δ‖gh‖1 + ‖q‖0

≤ ‖v‖1 + δα2‖Λhq‖0 + ‖q‖0

Hence,

‖w‖1 + ‖r‖0 ≤ k2 (‖v‖1 + ‖q‖0) , (3.59)

where k2 = 1 + δα2.

Finally, combining (3.58) and (3.59) establishes the desired inequality (3.57) with γ =
k1

k2

.

Next, let us state two important and required interpolation results (cf. [16]).

Lemma 3.4.
If v ∈ (H2 (Ω) ∩H1

0 (Ω))
2
, then there exists ṽ ∈ Vh such that

‖v− ṽ‖1 ≤ C1h|v|2, (3.60)

where C1 is a constant indepentent of h.

Lemma 3.5.
If q ∈ H1 (Ω) ∩ L2

0 (Ω) , then there exists q̃ ∈ Rh such that

‖q − q̃‖1 ≤ C2h|q|1, (3.61)

where C2 is a constant indepentent of h.

The convergence of the proposed stabilization schemes is given by the optimal error
estimates shown in the following theorem.

Theorem 3.5.
Suppose that the solution of (3.40) satis�es u ∈ (H2 (Ω))

2
and p ∈ H1 (Ω) . Then, there

exists a constant C independent of h such that

‖u− uh‖1 + ‖p− ph‖0 ≤ Ch (|u|2 + |p|1) , (3.62)

where (uh, ph) is the solution of (3.43).
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Proof.
Applying Lemma 3.4 and Lemma 3.5 with v = u and q = p respectively, there exist
ũ ∈ Vh and p̃ ∈ Rh such that (3.60) and (3.61) hold. Then,

B
(t)
h ((uh − ũ, ph − p̃) ; (v, q)) = B

(t)
h ((uh, ph) ; (v, q))−B(t)

h ((ũ, p̃) ; (v, q))

= B
(t)
h ((uh, ph) ; (v, q))−B ((ũ, p̃) ; (v, q)) ,

(3.63)

since p̃ ∈ Rh so that C(t)
h (p̃, q) = 0. Moreover, we have

B
(t)
h ((uh, ph) ; (v, q)) = Lh (v, q) = B ((u, p) ; (v, q)) (3.64)

because Lh (v, q) = L (v, q) for all (v, q) ∈ Vh × Ph. Next, (3.63)) yields

B
(t)
h ((uh − ũ, ph − p̃) ; (v, q)) = B ((u− ũ, p− p̃) ; (v, q))

≤ α‖u− ũ‖1‖v‖1 + µ‖u− ũ‖1‖v‖1

+‖u− ũ‖1‖q‖0 + ‖p− p̃‖0‖v‖1

≤ C3 (‖u− ũ‖1 + ‖p− p̃‖0) (‖v‖1 + ‖q‖0)

for all (v, q) ∈ Vh × Ph , where C3 = max {α, µ, 1}. Thus,

sup
(v,q)∈Vh×Ph

B ((u− ũ, p− p̃) ; (v, q))

‖v‖1 + ‖q‖0

≤ C3 (‖u− ũ‖1 + ‖p− p̃‖0) (3.65)

so that (3.64) yields

sup
(v,q)∈Vh×Ph

B
(t)
h ((uh − ũ, ph − p̃) ; (v, q))

‖v‖1 + ‖q‖0

≤ C3 (‖u− ũ‖1 + ‖p− p̃‖0) . (3.66)

From (3.57), it follows that

‖uh − ũ‖1 + ‖ph − p̃‖0 ≤
C3

γ
(‖u− ũ‖1 + ‖p− p̃‖0) .

Therefore,

‖u− uh‖1 + ‖p− ph‖0 ≤
(

1 +
C3

γ

)
(‖u− ũ‖1 + ‖p− p̃‖0) .

Consequently, applying (3.60) and (3.61) gives the desired inequality (3.62), where the

constant C is given by C = max {C1, C2}
(

1 + C3

γ

)
.
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Remark 3.4.
For the Stokes problem, the previous results hold by taking α = 0 in the proof.

Remark 3.5.
It is instructive to note that substituting for the value of γ given in the proof of
Theorem 3.4, the constant C takes the form

C = max {C1, C2}


1 + 4 max {α, µ, 1}

1 +
1

α2

(
α + µ+

1

βα1

)


min

α, µ, βα1,
1

α2
2

(
α + µ+

1

βα1

)



.(3.67)

This shows, to some extent, that the convergence can be in�uenced by the values of α and
µ. If α is very large and/or µ is too small then this can compromise the approximation
accuracy especially for practical values of h .

Remark 3.6.
According to the inequality (3.62), the convergence of the discrete solution (u h, ph) given
by (3.43) to (u, p) is then guaranteed since

lim
h→0

(‖u− uh‖1 + ‖p− ph‖0) = 0.

In Theorem 3.5, it is shown that ‖u − uh‖1 = O(h), so that the velocity L2-norm,
i.e.‖u−uh‖0, is at least of the same order. To derive an optimal L2-estimate, we need to
use the corresponding regularity condition:

‖u‖2 + ‖p‖1 ≤ ε‖f‖0, (3.68)

with ε > 0 for all f ∈ [L2(Ω)]2.

Corollary 3.1.
There exists a certain constant θ (> 0), independent of h, such that

‖u− uh‖0 ≤ θh2 (|u|2 + |p|1) . (3.69)

Proof.
Following [22], let (z, r) be the solution of the dual problem

αz− µ∆z+∇r = u− uh in Ω,
div z = 0 in Ω,

(3.70)

satisfying the condition (3.68). Thus,

‖z‖2 + ‖r‖1 ≤ ε‖u− uh‖0, (3.71)

35



By considering z̃ and r̃ the interpolants of z and r in Vh and Rh respectively (see
Lemma 3.4 and Lemma 3.5) and by taking u− uh as a test function in (3.70), we get

B ( (u− uh, r − rh) ; (z− z̃, r − r̃)) = ‖u− uh‖2
0 , (3.72)

using the Galerkin orthogonality property.

On the other hand, we have

B ( (u− uh, p− ph) ; (z− z̃, r − r̃)) ≤ (α + µ) ‖u− uh‖1 ‖z− z̃‖1

+‖p− ph‖0‖z− z̃‖1

+‖u− uh‖1‖r − r̃‖1.

Using (3.60) and (3.61), we get

B ( (u− uh, p− ph) ; (z− z̃, r − r̃)) ≤ (α + µ)C1 h |z|2‖u− uh‖1

+C1 h |z|2‖p− ph‖0

+C2 h |r|1‖u− uh‖1,

Therefore,

B ( (u− uh, p− ph) ; (z− z̃, r − r̃)) ≤ (α + µ)C1 h |z|2‖u− uh‖1

+C1 h |z|2‖p− ph‖0

+C2 h |r|1‖u− uh‖1,

+h|r|1‖p− ph‖0

≤ Ch‖u− uh‖0 (‖u− uh‖1 + ‖p− ph‖0) ,

using (3.71) where C > 0 is some constant independent of h. Now, it is su�cient to
combine this later inequality with (3.72) to get

‖u− uh‖0 ≤ Ch (‖u− uh‖1 + ‖p− ph‖0) . (3.73)

Using (3.62), the inequality (3.69) follows.
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Chapter 4

Iterative methods

The numerical solution of the generalized Stokes problem discretized via the low-
order mixed �nite element method Q1-Q0 leads to large and sparse systems of algebraic
linear equations. The sparsity is an important feature for iterative methods since the
storage requirements depend mainly on the nonzero entries of the corresponding matrix.
To achieve reasonable convergence rates, the solution stability of Stokes-type problems
is required. In this chapter, we discuss some iterative solvers for the discretized systems
arising from the di�erent versions of pressure jump stabilization techniques presented
previously. Before proceeding, we start with some important features of matrices arising
from the discretization discussed above. This will greatly justify the choice of di�erent
iterative solvers.

4.1 System matrix properties

As it was mentioned in the third chapter (�3.2.2 ), the stabilized algebraic problem
that corresponds to the stabilized discrete weak formulation of the generalized Stokes
problem is as follows:

Find (U, P ) ∈ Rnu × Rnp such that[
A BT

B −βC

] [
U
P

]
=

[
F
0

]
,

(4.1)

where U and P are the unknown vectors of nu velocity nodal values and np pressure nodal
values respectively.
The matrices A, B and the right-hand side F are given, respectively, in (3.19), (3.20)
and (3.22). Recall that the stabilization matrix C is an assembly of local stabilization
matrices given for the local jump, local 2-jump or local 1-jump versions in (3.36), (3.37),
(3.32) and (3.35) respectively.
The linear system (4.1) is of the form

Kx = b, (4.2)

where

K =

[
A BT

B −βC

]
, (4.3)
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x =

[
U
P

]
(4.4)

and

b =

[
F
0

]
. (4.5)

Then, the following properties hold.

Proposition 4.1.
The stabilized Schur-complement matrix Sβ = BA−1BT + βC is symmetric and positive
de�nite.

Proof.
First, Sβ is symmetric since A−1 and C are symmetric. Now, let q ∈ Rnp . We have

〈Sβ q,q〉 = 〈
(
B A−1BT + β C

)
q,q〉

= 〈A−1BTq,BTq〉+ β 〈Cq,q〉
(4.6)

It is clear that 〈Sβ q,q〉 > 0 for all q 6= 0.
Indeed,

〈Sβ q,q〉 = 0 ⇒ 〈 A−1BTq,BTq〉 = 0 and 〈Cq,q〉 = 0 (4.7)

because A−1 is symmetric and positive de�nite since A is so, C is semi-positive de�nite
and β > 0. Therefore,

BTq = 0 and 〈Cq,q〉 = 0. (4.8)

It is then, su�cient to apply Theorem 3.1 in its algebraic form to get q = 0.

We remind that this property has been applied in the proof of Theorem 3.3. The next
property concerns the global matrix K de�ned in (4.3).

Proposition 4.2.
The matrix K given in (4.3) is symmetric and inde�nite.

Proof.
By construction, K is clearly symmetric. Concerning its inde�niteness, we follow [14] by
de�ning the matrix

G =

[
A 0
0 −Sβ,

]
. (4.9)

The matrices K and G are then congruent (see De�nition 1.2 ) since the matrix K can
be written as

K =

[
I 0
BA−1 I

] [
A 0
0 −Sβ,

] [
I A−1BT

0 I

]
. (4.10)

By applying the Sylvester law of inertia, the matrices K and G have the same number of
positive, zero and negative eigenvalues.
On the other hand, for all (v,q) ∈ Rnu × Rnp , we have

(v,q)T G (v,q) = vT Av − qT Sβ q. (4.11)

This means that G has positive and negative eigenvalues since A and Sβ are positive
de�nite with −Sβ being negative de�nite.
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4.2 Iterative solvers

The aim of this section is extending the application of the so called Krylov subspace
methods to the systems of linear equations arising from the mixed Q1-Q0 discretization
of the stabilized discrete generalized Stokes problem.

As it was seen in the previous section, the associated coe�cient matrix is symmetric
but inde�nite. This leads us to think about the MINimum RESidual method (MINRES),
since this later is used for solving any symmetric system.

However, although the Conjugate Gradient method (CG) converges for the symmetric
and positive de�nite (SPD) matrices, it will be seen in the next chapter that it could also
be e�ective for jump stabilized discrete systems. More details are given below.

4.2.1 The conjugate gradient method

The sparsity of any coe�cient matrix, say M, makes the product matrix-vector not
expensive. If there is for instance m nonzero entries in a row of the matrix M that is
of order n, then the product of M with any vector v requires only mn multiplies and
additions. Another product matrix-vector M (Mv) is also cheap. The same occurs for
M (Mv) ,M

(
M2 v

)
, . . . ,Mi v and so on. This makes any linear combination of these

later vectors easy to compute and hence leads to the subspace spanned by them, called
Krylov subspace and denoted by Ki(M,v). If x(0) denotes the starting iterate solution of
an algebraic system

Mx = f (4.12)

and r(0) = f−M x(0) is the initial residual vector, then the Krylov subspace methods are
based on calculating the iterate solution in the subspace Ki(M, r(0)).

One of the best known and simple Krylov subspace methods is the so-called Conjugate
Gradient method (CG), which was originally proposed by Hestenes and Stiefel in 1952
(see [19]). If the matrix M is symmetric and positive de�nite and x(i) denotes the ith

iterate solution then, the CG method consists in minimizing ‖e(i)‖M, the M − norm of
the corresponding error vector e(i) = x− x(i).
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Algorithm 4.1. CONJUGATE GRADIENT METHOD

Choose x(0), compute r(0) = f−M x(0), set p(0) = r(0).

For i = 0, 1, 2, . . . , until convergence, do

ζ(i) = 〈r(i), r(i)〉
〈Mp(i), p(i)〉

x(i+1) = x(i) + ζ(i) p(i)

r(i+1) = r(i) − ζ(i) M p(i)

( Test of convergence )

%(i) = 〈r(i+1),r(i+1)〉
〈r(i),r(i)〉

p(i+1) = r(i+1) + %(i) p(i)

Enddo

From Algorithm 4.1, a breakdown of the method can happen at a division by zero.
This can happen when we have, for instance, a zero denominater in the value of %(i).
In this case, there is no problem since r(i) = 0 implies x(i) = x and there is no sense to
continue. This breakdown is called lucky breakdown. However, if 〈 Mp(i), p(i)〉 = 0, then
p(i) = 0 since M is SPD. This implies that r(i+1) = r(i) and also x(i+1) = x(i), which leads
to an in�nite loop.

Non realistic solutions can be obtained for certain problems with insu�cient accuracy.
This fact renders the choice of adequate stopping criterion very important.

4.2.2 Stopping criterion

If we denote by κ( M) the condition number (see De�nition 1.3) of the SPD matrix
M and by e(i) = x−x(i) the error vector in the ith iteration, then the following (classical)
convergence result is obtained.

Proposition 4.3.
After i steps of the conjugate gradient method, the iteration error e(i) = u− u(i) satis�es
the bound:

‖e(i)‖M
‖e(0)‖M

≤
√
κ(M)

‖r(i)‖
‖r(0)‖

. (4.13)
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Proof.
Since

‖r(0)‖2 = ‖Me(0)‖2 = 〈Me(0),Me(0)〉

≤ ‖M‖ 〈Me(0), e(0)〉

= ‖M‖ ‖e(0)‖2
M,

(4.14)

we get
1

‖e(0)‖2
M

≤ ‖M‖ 1

‖r(0)‖2
. (4.15)

On the other hand, we have

‖e(i)‖2
M = 〈Me(i), e(i)〉 = 〈Me(i),M−1Me(i)〉

≤ ‖M−1‖ 〈Me(i),Me(i)〉

= ‖M−1‖ ‖Me(i)‖2,

so that
‖e(i)‖2

M ≤ ‖M−1‖ ‖r(i)‖2. (4.16)

Finally, combining (4.15) and (4.16) and using De�nition 1.3 give the estimate (4.13).

Remark 4.1.
The Euclidean error norm clearly decreases when the residual norm decreases. Moreover,
the right side of (4.13) can be useful since it does not require the exact solution to be
known.

Remark 4.2.
It should be mentioned that in practice, since we have in general no information about the
solution. Usually, we take a zero vector as the starting solution. In this case, the stopping
criterion concerning the residual norms in (4.13) can be taken as:

‖r(i)‖
‖f‖

≤ ε, (4.17)

where ε (> 0) is a certain precision. Another good stopping criterion that can be taken is
the di�erence between two succesive iterate solutions, i.e.

‖u(i) − u(i−1)‖ ≤ ε. (4.18)

4.2.3 The minimum residual method

If the matrixM is not positive de�nite then theM-norm ‖.‖M has no sense and hencce,
‖e(i)‖M cannot be calculated. Fortunately, an alternative Krylov subspace method called
the MINRES can be applied to any symmetric system. This iterative method was derived
by Paige and Saunders in 1975 (see [26]). It consists in minimizing the Euclidean norm
of the residual vector in each step. This leads us to apply the MINRES to solve the
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system (4.2) since the corresponding stabilized matrix (4.3) is symmetric and inde�nite
(see Proposition 4.2).

Before proceeding further, we brie�y present another Krylov subspaces method which
can be considered as a link between the CG and the MINRES. This is commonly called the
Lanczos method. The latter consists in calculating an orthonormal basis for the Krylov
subspaces Ki(M, r(0)).

By taking v(0) = 0 and v(1) a vector such that ‖v(1)‖ = 1, the basis vectors can be
obtained via the following recurrence:

γj+1v
(j+1) = Mv(j) − δj v(j) − γj v(j−1) ∀ 1 ≤ j ≤ i (4.19)

where δj = 〈Mv(j),v(j)〉 (δj > 0 if M is positive de�nite), whereas γj+1 is such that
‖v(j+1)‖ = 1 of not prescribed sign.
The equations (4.19) lead to the following relation:

MVi = ViTi + γi+1

[
0, · · · ,0,v(i+1)

]
(4.20)

where
Vi =

[
v(1),v(2), · · · ,v(i)

]
(4.21)

denotes the matrix containing the vector v(j) in its jth column, and Ti is the symmetric
tridiagonal matrix given by:

Ti = tridiag [γj, δj, γj+1] (4.22)

for all j = 1, 2, · · · , i. Pre-multiplying (4.20) by the transpose ofVi produces the following
interresting property:

VT
i MVi = Ti. (4.23)

This equation ensures the positive de�niteness of the matrix Ti when the matrixM is so.
Since the CG iterate x(i) is the unique vector in x(0) +Ki(M, r(0)) with residual orthogonal
to Ki(M, r(0)) then, x(i) can be also recovered from the Lanczos vectors (see [14], �2.4 for
details). In other words,

x(i) = x(0) +ViY
(i) (4.24)

where

Y(i) =
(
y

(i)
1 , y

(i)
2 , · · · , y(i)

i

)T
(4.25)

is a vector of dimension i such that the following orthogonality condition is satis�ed

VT
i r

(i) = 0. (4.26)

Due to (4.20), the residual r(i) satis�es the following:

r(i) = r(0) −MViY
(i) = Vi

(
‖r(0)‖ e1 −TiY

(i)
)
− γi+1 y

(i)
i v

(i+1) (4.27)
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where e1 = (1, 0, · · · , 0)T is the unit vector of dimension i. Orthogonality (4.26) is imposed
by choosing Y(i) in (4.27) satisfying

TiY
(i) = ‖r(0)‖ e1. (4.28)

By solving the system (4.28), the residual in (4.27) satis�es

r(i) = −γi+1 y
(i)
i v

(i+1) with ‖r(i)‖ = |γi+1 y
(i)
i v

(i+1)|. (4.29)

Due to what was mentioned above, the system (4.28) may not be solved if the matrix M
is not positive de�nite (according to (4.23)) and the iterate solution in (4.24) can not be
calculated.

The MINRES method circumvents this di�culty by minimizing the Euclidean norm of
the residual using the least squares solution to (4.27). This leads to Algorithm 4.2 given
below (cf. [14], [26] or [27]).
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Algorithm 4.2. MINRES METHOD

Set v(0) = 0, w(0) = 0, w(1) = 0

Choose x(0), compute v(1) = f−M x(0), set γ(1) = ‖v(1)‖

Set η = γ(1) , s(0) = s(1) = 0 , c(0) = c(1) = 1

For i = 1 until convergence do

v(i) =
1

γ(i)
v(i)

δ(i) = 〈Mv(i) , v(i)〉

v(i+1) = Mv(i) − δ(i) v(i) − γ(i) v(i−1) (Lanczos process)

γ(i+1) = ‖v(i+1)‖

α0 = c(i) δ(i) − c(i−1) s(i) γ(i)

α1 =

√
α2

0 + (γ(i+1))
2

α2 = δ(i) s(i) + c(i−1)c(i)γ(i)

α3 = s(i−1)γ(i)

c(i+1) =
α0

α1

, s(i+1) =
γ(i+1)

α1

w(i+1) =
1

α1

(
v(i) − α3w

(i−1) − α2w
(i)
)

x(i) = x(i−1) + η c(i+1)w(i+1)

η = −s(i+1)η

( Test of convergence )
Enddo

As can be seen, the residual reduction pro�le of the MINRES method is determined
by α(0). If the latter vanishes, then no progress is made since c(i+1) depends on it. Thus,
we get x(i) = x(i−1).
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4.3 Preconditioning

In practice, although the above iterative methods converge, they could require lots
of executing time to achieve a su�ciently accurate solution, especially, for large systems.
Hence, in order to accelerate these iterative solvers, some a priori preconditioning would
be required. The preconditioning technique consists in reducing the number of iterations
as well as the executing time that are required to achieve an accurate solution. It limits
the growing under the mesh re�nement. The preconditioning is a good technique when
the dimension of the discrete system increases. It is based on solving an alternative system
in such a way that the corresponding matrix is to be as closer as possible to the identity.
Both of the new system and the original one must have the same solution.

To solve (4.12), some symmetric and positive de�nite matrix Q has to be found as
closer as possible to M such that (4.12) is equivalent to

Q−1 Mx = Q−1 f. (4.30)

It is clear that the inverse matrix Q−1 should not be calculated unless it is a diagonal
matrix. It is only used in theory. Since Q is symmetric and positive de�nite, Q-inner
product 〈., .〉Q can have a sense and the new (preconditioned) matrix Q−1 M is symmetric
for it. Indeed, for any two vectors u and v we have

〈Q−1 Mu,v〉Q = 〈Mu,v〉 = 〈u,Mv〉 (M being symmetric).

= 〈u,QQ−1Mv〉 = 〈u,Q−1Mv〉Q.
(4.31)

Hence, the Q-inner product can be used in Algorithm 4.1 instead of the usual Euclidean
inner product (see [27] for more details).

Denoting the preconditioned residual vector by z(i)
(
= Q−1 f−

(
Q−1 M

)
x(i) = Q−1 r(i)

)
gives:

� 〈z(i), z(i)〉Q = 〈Qz(i), z(i)〉 = 〈r(i), z(i)〉

� 〈Q−1 Mp(i), p(i)〉Q = 〈QQ−1 Mp(i), p(i)〉 = 〈Mp(i), p(i)〉

Hence, applying the Conjugate Gradient to the preconditioned system (4.30) leads to the
following algorithm:
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Algorithm 4.3. PRECONDITIONED CG METHOD

Choose x(0), compute r(0) = f−M x(0), solve Q z(0) = r(0), set p(0) = z(0)

For i = 0, 1, 2, . . . , until convergence, do

ζ(i) =
〈z(i), r(i)〉
〈Mp(i), p(i)〉

x(i+1) = x(i) + ζ(i) p(i)

r(i+1) = r(i) − ζ(i) M p(i)

( Test of convergence )

Solve Q z(i+1) = r(i+1)

%(i) =
〈z(i+1), r(i+1)〉
〈z(i), r(i)〉

p(i+1) = z(i+1) + %(i) p(i)

Enddo

Taking Q = I is not a good choice since it means no preconditioning. On the other
hand, Q = M would be the ideal one since the solution x will be obtained in only one
iteration. Indeed, choosing Q = M in Algorithm 4.3 would give

z(0) = M−1r(0) = M−1
(
f−Mx(0)

)
= x− x(0) = e(0). (4.32)

Therefore,

ζ(0) =
〈z(0), r(0)〉
〈Mp(0), p(0)〉

=
〈e(0), r(0)〉
〈Mz(0), z(0)〉

= 1, (4.33)

since z(0) = e(0) and Me(0) = r(0). Consequently, we get

x(1) = x(0) + ζ(0)p(0) = x(0) + p(0)

= x(0) + z(0) = x(0) + e(0)

= x.

(4.34)

However, this is very expensive. The preconditioning matrix would be strictly between
I and M.
If Q = diag(M), then we obtain what is called Jacobi preconditioner. This was suc-
cessfully applied by Kechkar in [22] for the Stokes problem with the local pressure jump
stabilization. We should point out that for the reduced local one-jump scheems, zero
diagonal coe�cients are replaced by βh2

x or βh
2
y accordingly to (3.32), (3.35).
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4.3.1 Preconditioned MINRES method

By applying the preconditioning technique, the preconditioned version of Algorithm 4.2
takes the following form (see [14]):

Algorithm 4.4. PRECONDITIONED MINRES METHOD

Set v(0) = 0, w(0) = 0, w(1) = 0

Choose x(0), compute v(1) = f−M x(0)

Solve Q z(1) = v(1), set γ(1) =
√
〈z(1), v(1)〉

Set η = γ(1) , s(0) = s(1) = 0 , c(0) = c(1) = 1

For i = 1 until convergence do

z(i) =
z(i)

γ(i)
, δ(i) = 〈Mz(i) , z(i)〉

v(i+1) = Mz(i) − δ(i)

γ(i)
v(i) − γ(i)

γ(i−1)
v(i−1),

Solve Qz(i+1) = v(i+1), γ(i+1) =
√
〈z(i+1), v(i+1)〉

α(0) = c(i) δ(i) − c(i−1) s(i) γ(i), α(1) =

√
(α(0))

2
+ (γ(i+1))

2

α(2) = δ(i) s(i) + c(i−1)c(i)γ(i), α(3) = s(i−1)γ(i)

c(i+1) =
α(0)

α(1)
s(i+1) =

γ(i+1)

α(1)

w(i+1) =
1

α(1)

(
z(i) − α(3)w(i−1) − α(2)w(i)

)
x(i) = x(i−1) + η c(i+1)w(i+1)

η = −s(i+1)η

( Test of convergence )
Enddo
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4.3.2 Cholesky factorization preconditioner

The Cholesky factorization preconditioning is one of the most applied iterative solvers.
It is based on calculating a lower triangular matrix, say L, that is the exact Cholesky
factor of M. The Cholesky factorization can be obtained using the following algorithm
(see [17], [27], [14] for more details).

Algorithm 4.5. CHOLESKY FACTORIZATION

For i = 1 until n do

m = min {k ; mik 6= 0}

for j = m, . . . , until i− 1 do

if mij 6= 0 then

lij = mij −
1

ljj

(
j−1∑
k=m

lik ljk

)

endif

enddo

lii =

√√√√mii −
i−1∑
k=m

lik lik

Enddo

Application of Algorithm 4.3 and Algorithm 4.4 with the preconditioner Q = LLT

yields the corresponding algorithms for the Cholesky factorization preconditioned Conju-
gate Gradient and the Cholesky factorization preconditioned MINimum RESidual de-
noted respectively by (CFPCG) and (CFPMINRES).
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Chapter 5

Implementation and numerical results

In this chapter, numerical performances of the stabilization techniques and the pro-
posed iterative solvers are assessed using test problems. Many of the numerical results
presented here are published in [10].

5.1 Numerical tests

The reduced local jump stabilization procedures are evaluated and compared with the
global and local jump methods. We consider two computational test problems speci�cally
chosen to illustrate the di�erent features of the new methods. First, for problem discretiza-
tion, the domain Ω is uniformly subdivided (h = hx = hy) into square elements generating
the sequence of grids GR0, GR1,...,GR8 with respective sizes h = 2−i (i = 1, ..., 9).
Many �xed values of the stabilization parameter β were considered. However, we present
only the representative case β = 1. The values β = 0.1, β = 1 and β = 100 are considered
for the horizontal velocity pro�les of the lid-driven cavity problem.

It is worth to mention that more investigation is still underway to determine any op-
timal value of β. In all present numerical tests, the kinematic viscosity coe�cient µ was
set to be 1, whereas the parameter α was considered to be 10n, n ∈ {0, 1, 2, 3}.
In addition, the reported results will concern the global and local jump schemes together
with the the di�erent reduced local jump schemes. All computations and �gure gener-
ations concerning the stabilization techniques were performed in Matlab on a Intel(R)
Core(TM) i5 PC @ 2.53MHz. For the iterative solvers, �gure generations were achieved
on a Intel(R) Core(TM) i3 CPU M 380 @ 2.53GHz.

5.1.1 Problem with analytic solution

This �rst problem is considered as a study of convergence rates and comparison of the
di�erent versions of the methods in terms of accuracy. The problem is that of an enclosed
�ow in the unit square Ω = [0, 1]× [0, 1] where the velocity vector and pressure solution
�elds are given by :
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u (x, y) =

 x2

(
x

3
− 1

2

)
xy (1− x)

 , p (x, y) = x2 − 1

3
, (5.1)

which clearly satis�es the constraint:∫
Ω

p (x, y) dΩ = 0.

The body force f is then chosen to satisfy (2.3). The values of u on the boundary of Ω
are constrained to those given above. To remove the constant pressure mode from the
numerical solution, an element pressure was imposed (cf [28]).

The results displayed in Figures 5.1−5.4, show that for all considered values of α, the
rates of convergence behave as predicted by the theory, i.e. O(h) order of convergence for
‖u − uh‖1 and ‖p − ph‖0 and O(h2) order for ‖u − uh‖0. This occurs for all stabilized
schemes exept the global jump one for which we notice no monotonic decrease for the
pressure errors. On the other hand, due to the constant C given by (3.67), some of these
rates might begin to deteriorate as α takes values above 1000.

Furthermore, in order to show the sensitivity of L2 andH1 velocity errors, and L2 pres-
sure errors to the choice of the parameter α, the results are depicted in Tables 5.1−5.6 for
the �nest mesh grid with uniform size h−9 and the stabilization parameter β = 1. As may
be seen, the error magnitudes are not so a�ected by the increase of α. It is important
to mention that the local 2-jump and 1-jump perform remarkably well. The velocity
results of the 1-jump scheme are even better than those of the other local jump methods.
When analysing for other considered values of β, not reported here, we also noticed the
sensitivity of the global jump scheme with respect to the values of β, con�rming what
was claimed above. This fact will be more illustrated next.

α Global jump Local jump Local 2j - H Local 2j - V

0 4.688920×10−6 1.603484×10−6 1.641443×10−6 1.449774×10−6

1 4.687322×10−6 1.603166×10−6 1.641484×10−6 1.449673×10−6

10 4.672607×10−6 1.603220×10−6 1.639725×10−6 1.448819×10−6

100 4.606065×10−6 1.594786×10−6 1.633302×10−6 1.441866×10−6

1000 4.512608×10−6 1.576241×10−6 1.615563×10−6 1.423313×10−6

Table 5.1: Comparison of ‖u− uh‖0 results for β = 1 as α grows (Part 1).
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α Local 1j - H1 Local 1j - H2 Local 1j - V1 Local 1j - V2

0 1.45901 ×10−6 1.563506×10−6 1.459032×10−6 1.563592×10−6

1 1.458824×10−6 1.563629×10−6 1.458766×10−6 1.563618×10−6

10 1.458598×10−6 1.562656×10−6 1.457984×10−6 1.563014×10−6

100 1.450404×10−6 1.556499×10−6 1.450797×10−6 1.555817×10−6

1000 1.432451×10−6 1.538922×10−6 1.432673×10−6 1.538605×10−6

Table 5.2: Comparison of ‖u− uh‖0 results for β = 1 as α grows (Part 2).

α Global jump Local jump Local 2j - H Local 2j - V

0 7.574209×10−4 1.088619×10−3 1.128951×10−3 8.425941×10−4

1 7.574209×10−4 1.088624×10−3 1.128951×10−3 8.425942×10−4

10 7.574196×10−4 1.088699×10−3 1.128949×10−3 8.425938×10−4

100 7.574232×10−4 1.088581×10−3 1.128925×10−3 8.425937×10−4

1000 7.574430×10−4 1.088217×10−3 1.128567×10−3 8.426288×10−4

Table 5.3: Comparison of ‖u− uh‖1 results for β = 1 as α grows (Part 1).

α Local 1j - H1 Local 1j - H2 Local 1j - V1 Local 1j - V2

0 8.450192×10−4 1.049292×10−3 8.450228×10−4 1.049291×10−3

1 8.450232×10−4 1.049293×10−3 8.450183×10−4 1.049291×10−3

10 8.450231×10−4 1.049293×10−3 8.450195×10−4 1.049291×10−3

100 8.450112×10−4 1.049626×10−3 8.450167×10−4 1.049291×10−3

1000 8.450382×10−4 1.049308×10−3 8.450544×10−4 1.049306×10−3

Table 5.4: Comparison of ‖u− uh‖1 results for β = 1 as α grows (Part 2).

α Global jump Local jump Local 2j - H Local 2j - V

0 2.527735×10−4 3.932066×10−4 6.625991×10−4 6.675800×10−4

1 2.527683×10−4 3.932277×10−4 6.626018×10−4 6.675835×10−4

10 2.527273×10−4 3.936559×10−4 6.626364×10−4 6.676437×10−4

100 2.524362×10−4 3.936708×10−4 6.631283×10−4 6.682224×10−4

1000 2.496844×10−4 3.974746×10−4 6.672416×10−4 6.736131×10−4

Table 5.5: Comparison of ‖p− ph‖0 results for β = 1 as α grows (Part 1).
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α Local 1j - H1 Local 1j - H2 Local 1j - V1 Local 1j - V2

0 6.799543×10−4 1.806382×10−3 6.762094×10−4 1.810183×10−4

1 6.800084×10−4 1.806391×10−3 6.762154×10−4 1.810192×10−4

10 6.800528×10−4 1.806437×10−3 6.762573×10−4 1.810237×10−4

100 6.805634×10−4 1.808212×10−3 6.768359×10−4 1.810903×10−4

1000 6.861392×10−4 1.813417×10−3 6.824065×10−4 1.817224×10−4

Table 5.6: Comparison of ‖p− ph‖0 results for β = 1 as α grows (Part 2).

5.1.2 Lid-driven cavity problem

The generalized Stokes problem (2.1) with f = 0 is to be solved in the unit square
[0, 1]× [0, 1] with the imposed non-leaky boundary conditions:

u (0, y) = u (1, y) = u (x, 0) = 0 for 0 ≤ x, y ≤ 1

u (x, 1) = [1 0]T for 0 < x < 1.
(5.2)

In order to assess the performance of the local jump stabilization techniques and com-
pare them with the local jump and global jump methods, the mesh GR5 with uniform size
h = 2−6 is used. Owing to the fact that the lid-driven cavity problem does not possess
an analytic solution, it is generally impossible to calculate the exact accuracy and hence
the convergence rates for the discrete solutions. Fortunately, there are features that can
be exhibited to give an idea of how the computed solutions behave.

First, the convergence of the velocity can be assessed by plotting the pro�les of the hor-
izontal velocity u1 along the centerline (x = 0.5) . The obtained pro�les are illustrated in
Figures 5.5−5.7. As can be seen from these �gures, the local 2-jump and 1-jump schemes
perform well and reproduce pro�les which are almost indistinguishable with those of the
local jump. However, as can be seen, the global jump technique can yield very inaccurate
velocity solutions when the stabilization parameter β is varied. This demonstrates once
more that stabilization via local jump schemes are far less sensitive to the choice of β.

Elevations for the pressure �eld and the horizontal velocity u1 are displayed in Fig-
ures 5.8−5.13. Computed solutions are comparable to the ones reported in [25].
However, it should be noted that the 1-jump method does behave as satisfactorily for the
pressure. Furthermore, there are no pressure oscillations in all presented cases.
In addition, the velocity streamslices, exhibited in Figures 5.14−5.16, indicate that for
small values of α, the �ow is essentially a Stokes-like �ow with small counter rotating re-
circulations appearing at the bottom two corners which is in agrement with some similar
results found in [14] and [25]. Likewise, we observe that high values of α may lead to
some oscillations as expected.
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5.2 Compared performance of local 2-jump and 1-jump

schemes

First of all, it is worthy to admit the di�culty of deciding a priori which of the proposed
schemes would perform better than the orthers for a particular problem (geometry and
material parameters). This can meanly come from the adopted uni�ed theory. It seems
reasonable to reckon that the constants α1, α2, C1 and C2 appearing in the structure of the
convergence constant C (see (3.62) and (3.67)) play a crucial role in the behaviour of the
adopted discrete scheme. Now, from the computational side, the undertaken numerical
experiments allow us to draw some guidelines with respect to the appropriate number,
position and direction of involved pressure jumps in the particular scheme. First, consider
separately the two benchmark problems.

5.2.1 Problem 1

In this case, the L2 and H1 velocity and L2 pressure errors are exhibited in Ta-
bles 5.7−5.9 for the particular choice α = 100 and β = 1. We observe that the 2-jump
schemes behave almost similarly in terms of error magnitudes. However for the 1-jump
schemes, the velocity and pressure errors present discrepancies. The errors are quite com-
parable for the velocity while for the pressure, they are more twice larger for 1-jump
H2 and 1-jump V2. Nevertheless, both velocity and pressure errors seem to decrease
according to the expected convergence rates for all schemes.

1/h 2j-H 2j-V 1j-H1 1j-H2 1j-V1 1j-V2

2 0.038518 0.028126 0.038127 0.047173 0.031932 0.051568
4 0.012144 0.009830 0.011726 0.014879 0.011678 0.014975
8 0.003977 0.003219 0.003554 0.004283 0.003564 0.042401
16 0.001202 0.000978 0.001017 0.001177 0.001020 0.001170
32 0.000335 0.000277 0.000282 0.000318 0.000283 0.000320
64 0.000090 0.000076 0.000077 0.000085 0.000077 0.000085
128 0.000024 0.000020 0.000021 0.000023 0.000021 0.000023
256 0.000006 0.000005 0.000005 0.000006 0.000005 0.000006
512 0.000002 0.000001 0.000001 0.000002 0.000001 0.000002

Table 5.7: Comparison behavior of ‖u− uh‖0 for β = 1 and α = 100.
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1/h 2j-H 2j-V 1j-H1 1j-H2 1j-V1 1j-V2

2 0.205548 0.210018 0.203715 0.246556 0.202647 0.247435
4 0.113239 0.108184 0.105926 0.131609 0.105901 0.131623
8 0.064075 0.053867 0.054042 0.066948 0.053715 0.066809
16 0.034615 0.026905 0.027059 0.033569 0.026980 0.033522
32 0.017823 0.013469 0.013523 0.016788 0.013511 0.016780
64 0.008994 0.006739 0.006760 0.008394 0.006759 0.008393
128 0.004510 0.003370 0.003380 0.004197 0.003380 0.004197
256 0.002257 0.001685 0.001690 0.002099 0.001690 0.002099
512 0.001129 0.000843 0.000845 0.001050 0.000845 0.001049

Table 5.8: Comparison behavior of ‖u− uh‖1 for β = 1 and α = 100.

1/h 2j- H 2j-V 1j-H1 1j-H2 1j-V1 1j-V2

2 0.839352 0.586335 1.064232 2.209492 1.064232 2.209492
4 0.209152 0.264863 0.37204 0 0.652436 0.371610 0.652866
8 0.055210 0.086260 0.106325 0.181878 0.097789 0.190435
16 0.021657 0.029595 0.033910 0.066582 0.030738 0.069760
32 0.010297 0.012029 0.013135 0.029839 0.012237 0.030737
64 0.005851 0.006132 0.005544 0.014191 0.005308 0.015426
128 0.002612 0.002700 0.002796 0.007217 0.002736 0.007277
256 0.001318 0.001340 0.001372 0.003610 0.001357 0.003626
512 0.000663 0.000668 0.000681 0.001808 0.000677 0.001810

Table 5.9: Comparison behavior of ‖p− ph‖0 for β = 1 and α = 100.

5.2.2 Problem 2

For this problem with non-smooth solution, the proposed schemes are again compared
using the grid GR5 with the parameters α = 100 and β = 1. The pro�les of the horizontal
discrete velocity u1 along the centerline (x = 0.5) are plotted against that of the local
jump technique as depicted in Figure 5.17. Likewise, the discrete pressure pro�les on the
highest computed pressure level (y∗) of the cavity are displayed in Figure 5.18. Note that
in every situation, the pro�les of the local jump scheme are used as references. All the
pro�les of the discrete velocity seem to coincide. As for the discrete presure, the behavior
of both local 2-jump schemes appears to be similar, whereas the local 1-jump schemes
appear to be more a�ected by the choice of the jump. Some discrepancies occur especially
in the close neighborhood of top corners where the considered problem is known to have
singularity. Here, the same point is made regarding to the 2-jump schemes.
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5.3 Performance of iterative methods

In this section, our interest is focused on the computational behavior of some iterative
solvers among those described in the preceeding chapter when applied to the discrete
matrix systems generated by the stabilized pressure jump schemes studied in this thesis.
In particular, we consider the convergence performance of the CG and MINRES methods
as well as that of their preconditioned counterparts according to the Jacobi technique
and the Cholesky factorization. The model problem is again that of the lid-driven cavity
discretized by the GR4 mesh with uniform size h = 2−5. It is important to note that only
half of the solution domain was modelled because of the known symmetry of the problem.
This gives a total of 1634 degrees of freedom. For all cases, the tolerance of convergence
was a reduction of 10−8 in the Euclidian norm of residuals.

The obtained convergence plots are given in Figures 5.19-5.27. First, these �gures
clearly show that all considered iterative solvers converge satisfactorily for all discussed
schemes with di�erent values of the parameter α. Secondly, as it was expected, the precon-
ditioned techniques behave better in all situations. Finally, the MINRES method in both
unpreconditioned and preconditioned forms needs less iterations and exhibits smoother
convergence curves than the corresponding CG method form does. It is also important to
note that the Cholesky preconditioning produces by far better results than does the Jacobi
preconditioning. Nevertheless, on a behavior/cost scale, the CG algorithms are certainly
superior since the computation e�orts are not as bulk as for the MINRES algorithms.
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Figure 5.1: Convergence history for β = 1 and α = 0.
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Figure 5.2: Convergence history for β = 1 and α = 1.
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Figure 5.3: Convergence history for β = 1 and α = 10.
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Figure 5.4: Convergence history for β = 1 and α = 1000.
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Figure 5.5: Horizontal velocity pro�les for β = 0.1 when α grows.
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Figure 5.6: Horizontal velocity pro�les for β = 1 when α grows.
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Figure 5.7: Horizontal velocity pro�les for β = 100 when α grows.
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Figure 5.8: Pressure �eld for α = 0.
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Figure 5.9: Pressure �eld for α = 1.
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Figure 5.10: Pressure �eld for α = 1000.
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Figure 5.11: Horizontal velocity �eld for α = 0.
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Figure 5.12: Horizontal velocity �eld for α = 1.
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Figure 5.13: Horizontal velocity �eld for α = 1000.
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Figure 5.14: Exponential distributed streamslices plot for α = 0.
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Figure 5.15: Exponential distributed streamslices plot for α = 1.

70



0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
Local 2-jump - V

0 0.2 0.4 0.6 0.8 1 1.2

x

0

0.2

0.4

0.6

0.8

1

1.2

y

Local 2-jump - H

0 0.2 0.4 0.6 0.8 1 1.2

x

0

0.2

0.4

0.6

0.8

1

1.2

y

Local jump

0 0.2 0.4 0.6 0.8 1 1.2

x

0

0.2

0.4

0.6

0.8

1

1.2

y

Global jump

0 0.2 0.4 0.6 0.8 1 1.2

x

0

0.2

0.4

0.6

0.8

1

1.2

y

Local 1-jump - H1

0 0.2 0.4 0.6 0.8 1 1.2

x

0

0.2

0.4

0.6

0.8

1

1.2

y

Local 1-jump - H2

0 0.2 0.4 0.6 0.8 1 1.2

x

0

0.2

0.4

0.6

0.8

1

1.2

y

Local 1-jump - V1

0 0.2 0.4 0.6 0.8 1 1.2

x

0

0.2

0.4

0.6

0.8

1

1.2

y

Local 1-jump - V2

Figure 5.16: Exponential distributed streamslices plot for α = 1000.
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Figure 5.17: Comparative horizontal velocity pro�les of the local 2-jump and 1-jump
schemes for α=100 and β=1.
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Figure 5.19: Residual reduction history for CG and MINRES algorithms with α = 0.
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Figure 5.20: Residual reduction history for CG and MINRES algorithms with α = 1.
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Figure 5.21: Residual reduction history for CG and MINRES algorithms with α = 1000.
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Figure 5.22: Residual reduction history for JPCG and CFPCG algorithms with α = 0.
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Figure 5.23: Residual reduction history for JPCG and CFPCG algorithms with α = 1.
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Figure 5.24: Residual reduction history for JPCG and CFPCG algorithms with α = 1000.
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Figure 5.25: Residual reduction history for JPMINRES and CFPMINRES algorithms
with α = 0.
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Figure 5.26: Residual reduction history for JPMINRES and CFPMINRES algorithms
with α = 1.
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Figure 5.27: Residual reduction history for JPMINRES and CFPMINRES algorithms
with α = 1000.
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Conclusion

In this work, the local jump stabilization method introduced in [23] and [31] has
been �rst extended to the generalized Stokes problem and then reduced computationally
attractive methods have been introduced, analyzed and tested on benchmark problems.
Although the proposed schemes seem not very competitive for extremely large values of
the parameter α, they can constitute good alternatives for moderately large values of this
parameter. It is expected that their combined with adaptive grids could be a lot better.
Furthermore, there is an obvious generalization to the equivalent three-dimensional case.
On the other hand, the algebraic systems resulting from these discretizing procedures
seem to be satisfactorily solved by some iterative solvers of conjugate gradient type with
a superiority of the preconditioned forms.
As future work, it would be nice to continue the development of the present stabilization
techniques so as to merge the procedures within existing �uid �ow packages. Research
remains also to be done in further extending their applicability to the Oseen and to the
fully nonlinear Navier-Stokes equations. Likewise, future attention deserves to be given
to the development of fast iterative solvers which exploit the structure of discrete systems
generated by the presently studied numerical stabilizing schemes.
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