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0.1 Introduction

The research work presented here is divided into two (different) parts: one is concerned with

system theory in the finite dimensional setting using matrix theory, i.e. the algebraic structure

and the other is with the infinite dimensional case using the analytic stucture. The other related

approach is the geometric one which is very much useful in the development of the subject see

e.g. [8], [9], [34] and [45].
One of the important motivation behind the research work concerning canonical form sys¬

tem matrices (e.g. Smith form & companion form etc.) associated to different systems e.g.

systems of P.D.E.and, R.D.D.E. etc. is that the crucial role that may be played by these

canonical forms in unifying the research work in the theory of linear systems. They also play a

fundamental role in the study of structural properties of systems as controllablity, observability

and minimality.

In the first chapter, we present some preliminary results concerning the1— D theory of linear

systems, starting with the important notions of controllability, observability, companion form

and Smith form over the ring of polynomials R[s] of one indeterminate. Then a system matrix

representation, using the symbolic calculus (e.g. Laplace transform) following Rosenbrock, for

ordinary, generalized (1— D descriptor), and genral differential equations etc. is given and some

matrix transformations between them are presented. We conclude this chapter by providing

some canonical forms, under the introduced system matrix transformations, and controllability

and observability properties via system matrix representations.

In chapter 2, we extend some notions and results from the previous chapter to the 2 — D

case, such as companion form and Smith form over the ring R[s, z\. Following Frost and

Boudellioua, a characterization result on 2 — D companion forms is given. We also extend the

notion of system matrices to the 2 - D case, to modelise e.g. high order systems of partial

(descriptor) and retarded delay differential equations and 2— D discrete systems etc.see [11], [12],
[13]. Also the problem of relating these system matrices via matirx transformations as system

equivalence, system similarity, strict system equivalence and restiricted system equivalence is

discussed. Particularly, canonical forms of the matrices over R[s, z], which arise from 2 — D
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discrete models given by Roesser [39], are obtained under a similarity transformation. And

the problem of obtaining canonical matrix forms of the above matrices is also considered, and

particulary, an extension of a result concerninig matrices of the form P(s, z) = si - A(z) and

which arise from retarded delay differential systems is established. Also the very close relation

between 2 — D polynomial matrices and 2 — D state space notions such as controllability,

observability, realizability etc. is pointed out. For more results on 2 — D polynomial matrices

and 2 — D linear systems see [37], [38].
In chapter 3, we develop a 2-D discrete state space model for linear iterative circuits which

can be regarded as a generalization of the well known state space model for single dimensional

linear time discrete systems (for a comparison see [14]). This development will enclude the

definition, formulation of a linear iterative circuit and the derivation of some basic concepts as

the state transition matrix, modal controllability, modal observability etc.

we also note that by the end of this development a 2 — D unilateral linear iterative circuit

representaion is given.

The study of the iterative circuits is limited here to the linear case (i.e. each cell perform

a linear transformation), as this allows the use of linear transformation techniques wich con¬

siderably facilitate the analysis, design, and implimentation of such circuits. Linear iterative

circuits may be used in applications such as encoding, decoding networks for linear codes, and

image processing. For some other results see e.g. [20], [21], and [22].
We also present in this chapter a canonical form under strict system equivalence and the

characterization result obtained in the previous chapter is extended here to the kth case. We

also note that some of the results obtained in this chapter for 2 — D systems can be extended

to the the N — D case. We also introduced the multidimensional Laplace transform to get

system matrices associated to high order partial differential equations, and the transformation

of restricted system equivalence between them is considered.

Finally, we end this chapter by the study of a realization problem of a non- proper 2 — D

transfer function.

In the last chapter (the second part of the thesis), we study an abstract ill-posed parabolic

problem known as the final value problem (F.V.P.) of the following type

5



u’(t) + Au{t) = 0, 0 < t < T

<T) = f

(1)

(2)

for some prescribed final value / in a Hilbert space H. A is a positive self-adjoint operator

such that 0 G p(A). Such problems are not well posed, that is, even if a unique solution exists

on [0, T] it need not depend continuously on the final value /. We note that this type of

problems has been considered by many authors, using different approaches. Such authors as

Lattes and Lions [31], Miller [32], and Showalter [42] have approximated (F.V.P.) by perturbing

the operator A.

We also note that, in [1], [10], and [41] a similar problem is treated in a different way. By

perturbing the final value condition, they approximate the problem (1), (2), with

(3)v! (t ) + Au (t) = 0, 0 < t < T,

u (T) + au (0) = /. (4)

A similar approach known as the method of auxilliary boundary conditions was given in [33].
Also, we have to mention that the non standard conditions of the form (4) for parabolic

equations have been considered in some recent papers [2], [3].
In this study, we perturb the final condition (2) to form an approximate non local problem

depending on a small parameter, with boundary condition containing a derivative of the same

order than the equation, as follows:

(5)u' (t ) + Au (f) = 0, 0 < t < T,

u (T) — au (0) = /. (6)

Following [10], this method is called quasi-boundary value method (Q.B.V.M.), and the

related approximate problem is called quasi-boundary value problem (Q.B.V.P.). We show that

the approximate problems are well posed and that their solutions ua converge in C'1 ([0, T], II)
if and only if the original problem has a classical solution. We prove that this method gives a

better approximation than many other quasi reversibility type methods e.g. [1], [10] and [31].
Finally, we obtain several other results, including some explicit convergence rates.
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We end this thesis by giving a conclusion and references related to this research work.
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Chapter 1

PRELIMINARY RESULTS (1-D
SYSTEM THEORY)

1.1 Introduction

In 1-D case, Rosenbrock [40] has given system matrix representations for different types of 1-D

systems e.g. 1-D ordinary differential systems, discrete and generalized differential systems,

etc. Some important notions in system theory such as, state transition matrix, controllability,

observability, state feedback, etc. were given in terms of these 1-D system matrices. In this

chapter, we first, present these different notions in the one dimensional case (1-D case), then

we try to give the analogous extensions of some of these notions to the multidimensional case,

in particular to the bidimensional case (2-D case), which has many interesting physical appli-

cations(e.g. in image processing, iterative circuits coding and decoding theories etc.). We also

present some results concerning the problem of bringing a class of system matrices to a canon¬

ical form under some matrix transformations (e.g. system equivalence, system simialrity, strict

system equivalence and restricted system equivalence). For more results on 2-D polynomial

matrices and 2-D systems see [37], [38].
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1.2 Controllability and Observability

1.2.1 Controllability

Let the following controlled linear system given by

!x'(t) — Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1.1)

where x(t) G Rn, u(t) G Rm,y(t) G Rr and A,B,C, and D are matrices of dimensions respec¬

tively nxn,nxm,rxn and rxn,and they axe respectively known as the dynamical matrix,

controllability matrix, observability matrix and transmition matrix.

Definition 1 The system (1.1) is said to be completely controllable ( c.c.) if and only if for

every t0 G R and every initial state x(to) = xo and every final state xj, there exists a finite

time ti > to and a control u(t), for t G [io,ti] such that

x{ti) = Xf

Remark 1 We can define in a similar way the complete controllability of the folloiwng time

varying system
x (t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

where A(t), B(t),C(t) and D(t) are now time depending matrices of appropriate dimensions.

(1.2)

We now give the dual notion to controllability, the observability of a system.

1.2.2 Observability

Definition 2 The system (1.1) is said to be completely observable ( c.o.) if and only if for an

arbitrary t0 G R and an initial state x(to) = XQ, there exists a finite time t\ > t0 such that for

given control variable u(t), t G [to,ÿi] and output vector y(t), t G [<o,ti]> we can determinate

the state vector x(t0).

9



In the following, we give two theorems which characterize the controllability and observ¬

ability notions in algebraic terms.

Theorem 1 The system (1.1) is c.c. if and only if the block matrix (the controllability matrix)

V = [B,AB,A2B ,'••• ,An~xB]

has rank equals n [5], i.e.

rank [.B, AB , A2B , • • • , An~lB\ = n (1.3)

Theorem 2 The system (1.1) is c.o. if and only if the block matrix (the observability matrix)

V = * [C,CA, CA2, • • • , CAn~l]

has rank equals n [5], i.e.

rank 1 [C, CA, CA2, • • • , CAn~x] = n (1.4)

The following theorem shows that the notion of observability is a dual notion to controllability.

Theorem 3 The system (1.1) is c.c. if and only if the dual system

x{t) = Ax(t ) + lCu{t)
y(t) = *J3x(t)

(1.5)

is c.o.[5].

1.3 Canonical Matrix Form Problem over R[s]

1.3.1 Companion Form over the Ring R[s]
We show here that a companion form matrix associated to a differential equation or differential

system can be obtained by two different approaches, one is algebraic and the other is geometric.

10



First, let us be given the following ordinary differential equation (o.d.e.) of order n with

constant coefficients

2<n)(t) + M'”-1’W + ... + + Kzlt) =«((). (1.6)

Then (1.6) can be transformed [4] into the canonical form (companion form) system given

by

w = Cw + du (1.7)

where d = [0, 0, • ■ • , 1]< and C is the n x n constant companion form matrix given by

0 1 0 0

0 0 1 0

(1.8):

0 0 0 1

— kn —kn-1 — fcn-2 —kl

We note that a system of the form

x = Ax + Bu (1.9)

can be transformed by a non singular transformation w = Tx into the companion form system

(??) if and only if it is completely controllable. For a proof of this result see [5].
Now, we give the following result which can be considered as a generalization of the above

result given in Barnett [4] to the case of an nth order o.d.e. of variable coefficients.

Theorem 4 Let the following differential equation of order n with variable coefficients be given

z(n)(t) + h (£) 2<n ’•(*) + ... + i»-i (() z'(t) + k„(() z(t) = 0(t)u (i) . (1.10)

Then (1.10) can be transformed into the canonical form

w' — C(t)w + d (t ) u (t ) (1.11)

11



where C (t), is the companion form matrix associated with ("1.10), and it is given by

0 1 0 0

0 0 1 0

C(t) = :

-kn(t) -fcn-l(i) -kn-2 (t) ■■■ -ki(t)

and

0d(t) = [ 0 0 •••

We note that w = [z, z',z and the solution of (1.10) is by definition the

first component of w i.e. z, and not the whole vector w.

Proof. By using the following change of variables

wi(t) = z(t)
w2(t) - 2(1)(t)

Wn(t) = z(n~V(t)

we obtain

w2{t)
(t)

v'n-iit) = 2(n_1)(<) =
wn (t) = ZW (t) = -fc1(t)*<»-1)(i)-...-fcB(t)«(t) + /J(*)

= -ki (t) wn(t) - ... - kn (t ) wi (t ) + (3(t)

wn(t)

«4 (t)

Now, letting

w(t) = (wi(t),w2(t), • • • , wn(t))1 .
Then, we get the required canonical system in companion form

w(t) = C(t)w(t) + d(t)u(t),

12



where C(t) is the n x n companion form matrix given by

0 1 0 0

0 0 1 0

C(t) = (1.12)

0 0 0 1

-kn(t) -fcn_i(t) -kn-2{t) ■■■ -ki{t)

and
0

0

d(t) =
:

m
■

Now, before we present the geometric approach, we first give the following definition con¬

cerning the polynomial matrices in one indeterminate s i.e. matrices with entries in the ring

of polynomials R[s].

Definition 3 A matrix M(s) with entries in the polynomial ring R[s] of one- indeterminate s

and with coefficients in R is called a polynomial matrix.The ring of such polynomial matrices

is denoted by M„(R[s]).

Let A : X —> X be an arbitrary endomorphism of a vector space of dimension n on a field

F, k( A) and m(A) are respectively its characteristic and minimal polynomials.

We know from [30] that if A is cyclic (i.e. A;(A) = m(A)), then there exists a cyclic generator

y of X relatively to A (i.e. such that y, Ay, A2y, • • • , An~xy are linearly

independent).
Now, assume that A is a cyclic endomorphism of X with generator y and define the auxiliary

13



polynomials as follows:

m°(A) - m(A) = An - (ai + a2A + ■ • • + OnA"”1)
mÿ(A) = An 1 — (02 + 03A + • • • + an\n 2)

m(n-V( A) =
m<n)(A) =

A - an
1

from this we get

(1.13)AraW(A) — mSl + ajmÿ(A), i G {1, 2, • • • , n} ,

using the generator vector y and replacing A by A in (1.13) we obtain

AnSi\A)y = m(l + aim(n)(.4)î/, i E {1, 2, • • ■ , n} ,

Now, defining the vectors e, by

f mM{A)y, i e {1,2, -- ,n}
= <[O if i = 0

then 2i...,n}is a basis for X , and we have

= ej_i + a,en, i G {1, 2, • • • , n}

hence
Aei =
Ae2 = lei + 0e2 + • • • + Oen_i + <i2en

Oei + 0e2 • • • + Oe„_i + ojen

= Oei + • • • + len_2 + Oen_i 4- \en

Aen = Oei + • ■ • + 0en_2 + len_i + anen
Therefore, the companion form matrix associated with the endomorphism A in the basis

14



{e*}ie{l,2, n} is given by

0 1 0 0 0 0

0 0 1 0 0 0
C =

0 0 ••• 0 1

Ol «2 ......On-1 On

Now, we give a generalization of the previous result to the case of the ring of polynomials R[s].
Let X — (R[s])n be the free modulus of finite type over the ring R[s], then we give the

following theorem

Theorem 5 Let A(s) : (R[s])n — � (R[s])n be

and k(X(s)) be the characteristic polynomial of A(s), (i.e. k(X(s)) = det(X(s)I — >1(5)), X (s) 6

R[s]. Then

endomorphism over the R[s]-modu/us(R[s])n,on

(1.14)k(A(s)) = 0

Proof. Since R[s] is a commutative ring, then we can apply the Caley-Hamilton thoerem

to get (1.14). ■

An endomorphism A(s) : (R[s])n — > (R[s])n is said to be cyclic if its minimal polynomial

m(A(s) coincide with its characteristic polynomial k(A(s)) ( i.e. m(A(s)) = k(A(s)). Recall

that the minimal polynomial of A(s) is defined here to be the polynomial of least degree such

that

m(A(s )) = 0.

Now, using [30], there exists a cyclic generator y(s) of (R[s])n relatively to A(s) such that

y{s),A{s)y(s),••• ,An 1(s)y{s).

are linearly independent.

Now, define the vectors ej(s) by

ei(s) = mW{A(s))y(s), <€{1,2, ••ÿ!»}
e0(s) = 0

15



where raÿ(A(s)) are the auxiliary polynomials given by

m°(A(s)) = m(A(s)) = A(s)n - (ai(s) + a2(s)A(s) H-----hari(s)A'1 *(s))
m(1)(A(s)) = A(s)"_1- (a2(s) + a3A(s) 4-----h anA(s)n~2)

m(n-1)(A(5)) =
m(")(A(s)) =

Since for pi(s) e R[s], i = 1, 2, • • • , n

A(s) - an(s)

1

J2pi(s)ei(s) = 0 =ÿ J2pi(s)m(t)(A(s))y(s) = 0,
i=1 t=l

and this implies that

5>(»)H"-‘(s) -oi+1(s) - nwWXf.)-----MÿWW») = 0
i=l

which in turn implies that

p1{s)[An~1(s)y{s) + [-p!(s)an(5) +p2(s)]ÿ4n_2(s)y(s) + [-p2(s)a„(s) +p3(s)]x

An~3(s)y(s) + • • • + [~Pi(s)a3(s) - p2{s)a4(s)

[~Pi(s)a2(s) - p2(s)a3(s)

pn-i(s)]A(s)y(s)+

pn-i{s)an(s) + pn{s)]y(s) = 0.

Since y(s),A(s)y(s),A2(s)y(s), • • • , An_1(s)y(s) are linearly independent, then we have

Pi(s) = 0

~Pi{s)an{s) + p2{s) = 0

~P2{s)an(s) + p3{s) = 0

~Pi{s)a3{s) -p2(s)a4(s)-----Pn-i(s) = 0

-Pi(s)a2(s) - p2(s)a3(s)-----p„_i(s)a„(s) + pn{s) = 0

(1.15)

Hence from (1.15) we get

Pi(s) = p2(s) =p3{s) = •ÿ• = Pn(s) = 0.

16



So{e;(s)}
X = (R[s])n. Hence,

are linearly independent, which shows that they form a basis for the modulus*=1)2,— ,n

A(s)ej(s) = ej_i(s) + Oi(s)en(s), i = 1, 2, • • • , n.

And so the companion form associated with the endomorphism A(s) is given by

0 1 00

0 0 01

(1.16)C{s) = :

0 0 0 1

Oi(s) a2(s) a3(s) ••• an_i(s)

we note that the transformation used here to get the companion form (1.16) is given by

T(s) = [ei(s), e2(s), • • • ,e„(s)] (1.17) .

Smith Form over the Ring R[s]
Definition 4 Let P(s) be a polynomial matrix, over the polynomial ring R[s], of order nxm

and of rank r. Then, the Smith form matrix S(s) of P(s) is defined by

1.3.2

His) 0 ••• 0 0
... 0

: iris) 0 ••• :
o

(1.18)S{s) =
0

0 ••• 00

0 00 0

where ii(s), z2(s), • • • , zr(s) are the invariant polynomials of the matrix F(s) and which satisfies

the following properties:

• ifc(s) divides ifc_i(s), VA: = 2, r
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• **=(s) = éS)’ do(s) = L

Definition 5 Two polynomial matrices P(s) and Q(s) of orders m x q and nxp respectively,

over the ring of polynomials M.[s], are said to be equivalent if there exist two unimodular (i.e.with

non- zero constant determinants) polynomial matrices M(s) and N(s) of orders m x n and

px q respectively, such that

P{s) = M{s)Q{s)N(s).

We note that two matrices P(s) and Q(s) are equivalent if one is obtained from the other by a

sequence of elementary operations undertaken on the rows and columns of the other (i.e.P(s)

and Q(s) are products of elementary matrices).

Definition 6 Two polynomial matrices P(s) and Q(s) of the same order, over the ring of

polynomials K[s], are said to be similar if there exist a square unimodular (i.e.with non- zero

constant determinant) polynomial matrix M(s) such that

P(s) = M~\s)Q{s)M{s).

1.4 System Matrix Representation (1-D Case)

1.4.1 System Matrix Representation for O.D.E.

Let the following differential system

x = Ax +
y — Cx + D(u+ u + ■ ■ ■)

where x is the state vector, u, it'and y is the input vector (the control variable) and its deriva¬

tive and the output vector respectively. A, B,C, and D are matrices matrices of appropriate

dimensions

If we assume zeros initial conditions and take Laplace transform of (1.19) we get

Bu
(1.19)

f sx = Ax + Bü

1 V
(1.20)

= Cx + D{s)u
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Definition 7 The system matrix

sin- A \ B
(1.21)M (s) -

-c ; D(S)

introduced by Rosenbrock [40] in 1-D case, is known as the state space system matrix represen¬

tation of the differential system (1.19).

. In a similar way, we can obtain different types of system matrices over the ring of

polynomials R[s] in one variable s i.e. in the 1 — D case, for the following different types of

systems:
Ex' — Ax + Bu

y = Cx + Du

where A, B,C, D and E are matrices of appropriate dimensions with E is may be a singular

(1.22)

matrix.

Where, again by taking Laplace transform and assuming zeros initial conditions we obtain

the system matrix representation of (1.22)

sE - A ! B
(1.23)N(s) =

-C \ D(s )

and for the more general system e.g.

T{s)f = U(s)ü
ÿ = v(s)f + w{s)u

we have the following system matrix

T(s) : U(s)
(1.24)P(s) =

-V(s) W(s)
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1.4.2 System Matrix Transformations

Rosenbrock [40] has introduced the notions of system matrix representation and system matrix

transformation between such system matrices. Verghese and al [44] have studied and developed

the so called generalized (or descriptor) state space systems. For the 1-D case, these systems

(1.22) give rise to matrices over R[s] of the form

sE-A i B
(1.25)

-C ; o
where A, B and C are matrices of appropriate dimensions and E is an n x n matrix which may

be singular.

Matrices in (1.25) are extensions of matrices of the form

sln-A ; B
(1.26)

-C : 0

Definition 8 Let
Ti(s) : Ui(s)

Pi(s) = , i = 1,2,

-Vi(s) ; Wi (s) _
be two (r + m) x (r + /) polynomial system matrices over R [s]. We say that P\ (s) is strictly

system equivalent (s.s.e.) to P2 (s) if there exist (r + m) x (r + l) system matrices

M (s) : 0

Li (s) =
x(s) ; im

and

N(s) ! Y(s)
**(*) =

0 ; h
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such that

P1(s) = L1 (s)P2(s)L2(s),

where M (s) and N (s) are r x r square unimodular matrices and X, Y are matrices of orders

m x r and r x l respectively.

Remark 2 (1.25) is strictly system equivalent to (1.26) if E is regular.

Definition 9 Let
Ti{s) \ Ui{s)

Pi(s) = , * = 1,2,

-Vi(s) : Wi(s) _
be two (r + m) x (r + l ) polynomial system matrices over R [s] . We say that Pi (s) is restricted

system equivalent (r.s..e.) to P2 (s) if there exists (r + m) x (r + l ) system matrices

M(s) 0

h(s)=
0 : Im

and

N (s) ; o
L2(s) =

o : h
such that

Pi(s) = Li (S)P2(S)L2 (s),

where M (s ) and N (s) are rxr square unimodular matrices over the ring of polynomials R[s].

Remark 3 We note that if in the definition of the transformation of strict system equivalence

(s.s.e.) we replace X (s) and Y (s) by 0 (the null matrix) we get the transformation of restricted
system equivalence (r.s.e.). For some interesting results on strict (respectively, restricted )
system equivalence see [15].
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1.4.3 A Canonical Form Under System Matrix Transformation

We give in the following a canonical form of a polynomial matrix over the ring of polyno¬

mials R[s] of one indeterminate, known as Smith form, under the equivalence system matrix

transformation

Theorem 6 Every polynomial matrix P(s), over the ring R[s], of order n x m and rank r is

equivalent to its Smith form given in (1.18).

Proof. Since R[s] is a principal ideal domain, then a proof of the above theorem can be

obtained in a similar way as in [19] using the elementary operations on the polynomial matrix

P(s). And so for more details see [19]. ■

1.4.4 Controllability and Observability Properties via System Ma¬

trix Representations

Now, we give some purely algebraic criterias on the characterization of the controllability and

observability of the systems represented by some of the matrices given above.

Theorem 7 The system described by the system matrix M (s), given in (1.21) is completely

controllable if and only if the folowing matrix ( the controllability matrix):

C{A,B) = [.B , AB, ..., An~lB]

has rank n.

Similarly, by using the theorem of duality, we can get the following analogous characteri¬

zation result for complete observability.

Theorem 8 The system described by the system matrix M(s), given in (1.21) is completely

observable if and only if the following matrix ( the observability matrix):

O (C, A) = [C, C'A,..., CAn~l]T
has rank n.
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For a proof of the above two theorems see [4].

Remark 4 The above characterazition theorems can be generalized to systems described by

system matrices over the ring of polynomials R[s, z].

Remark 5 The above matrices (1-25), (1.26) will be extended in chapter 2 to the 2 — D case

i.e. to matrices over R[s, z] in two indeterminates s and z of an appropriate form.
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Chapter 2

EXTENSION OF SOME RESULTS

TO 2-D CASE

2.1 Introduction

We try in this chapter to present a generalization of some of the notions and results that are

given in the 1 — D system theory case of the previous chapter. We start by extending the

two important notions, in the theory of linear systems over the ring of polynomials in two

indeterminates R[s, z], concerning Smith form and Companion form matrices to the 2 — D

case. First, we give a 2 — D Companion form matrix associated with a 2 — D characteristic

polynomial.

2.2 Canonical Matrix Form Problem over R[s,z]

2.2.1 A Companion Form over the Ring R[s,z]
Let the following discrete system used in Gregor[23] and which was introduced by Roesser [39]
in modeling the bidimensional image processing:

(2.1)x' — Ax + Bu ,
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where
xh(i + l,j)

x X =

_ Xv(i,j)

where xh E M"1 , xv E M"2 are the horizontal and vertical states of the state vector x, u E Mp

is the input vector, and A and B are constant matrices in Mn!„(lR) and MÿK) respectively.

xv(ij + 1)

Definition 10 Let P be a square matrix of order n x n. We define the bidimensional charac¬

teristic matrix of P and the characteristic polynomial of P as follows:

A(s,z) = Aln-P
a(s,z ) = det(AIn-P),

where

A — slni © zln2,

with © denotes the direct sum.

Definition 11 The matrix P which can be written in the following form

Pn P\2
P21 P22

P =

where the matrices Pij E Mni,nj(M),i,j = 1,2, is known as the Companion matrix of the

2 — D characteristic polynomial a(s , z), and is characterized here by the fact that the rankPn
or rankPÿx is equal to 1. We note that the matrix P above can be choosen in arbitrary way

since the use of a non- singular transformation does not change the ranfcP12 or rankP21 . We

also note that the in the 2 — D case, the use of the previously given direct methods to construct
the Companion form matrix is usually complicated if

min(rankPi2,rankP2i) > 1.

And so in this case, the construction of the companion form matrix for an arbitrary polynomial

a(s,z) and so an arbitrary matrix A(s,z) can be obtained by using the elementary operations
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on the ring of polynomials R[s, z] and the augmented operator f defined by

f : Mn(RM)-Mn+1(RM)

such that
1 0

0 T(s,z)
For more details concerning this case see Galkowski [18].

f{T(s,z)) = , r(s,z)eM„(R[s,z])

Remark 6 For polynomial matrices P(s , z) over the ring R[s, z] which has the following form

P(s,z) = sln - A(z), (2.2)

the companion form associated to this matrix (2.2) can be obtained in a similar way as in the

1 — D case. And it has the form

P(s,z) = sln - C(z),

where C(z) is the companion matrix given by

00 1 0

(2.3)C(z) =
0 0 1

-a„(z) —an-i(z) ••• -ai(z)

2.2.2 A Companion Form for 2 — D Polynomials

Now, our aim is to give a 2— D canonical form matrix which is analogous to the l — D companion

form matrb: given above.
We consider the same 2 — D discrete system given above (by Roesser [39] for 2 — D image

processing). If inputs and outputs are neglected in the model equations, then the equations of

the system have the form

xh{i + l,j) = Axxh(i,j) + A2xu(i,j)
xu(i,j + 1) = A3xh(i,j) + AAxu(i,j)
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Now, let S ( resp.Z ) be an operator that has the effect of advacing the horizontal coordinate

( resp. the vertical coordinate) upon which it is operating. The effect of these operators on the

state vectors is
xh(i + l,j) = sxh(i,j)
xu{i,j + 1) = zxu (i,j)

Then, we have

(sIni-A1)xh(i,j)-A2xu(i,j) = 0

-A3xh(ij)+ (.zln2 - A4) xu (i,j ) = 0,

and so we have:
Slni ~ -ÿ1 —Ai
—A3

T(iJ) = 0,
zln2 A4

where
xh(i,j)
xu(i,j) _

The above equation represents a system of homogeneous equations in the elements of T (i,j).

For the system to have a non trivial solution for T (i,j), the transformation represented by the

matrix must be singular.

T(i,j)=

Definition 12 The matrix
wl — A = (s, z) I — A

slni — A\ —A2
-As zln2 A4

obtained above is said to be the two-dimensional characteristic matrix of the partitioned matrix

A, where
A\ A3
A3 A4

A =
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Our aim now, is to find a matrix A given as above where A\ is n\ x rij ,and A4 is n2 x n2, A2
is ni x n2 and A% is n2 x n1. Such that the determinant of the characteristic matrix

wl — A — (s,z) I — A

slni — Ai —A2
-A3 zln2 A4

is given by the following polynomial

d(s,z) = jr,Pj (*)*•*-*
j—0

i=0

where P0 (s) and Q0 (z) are monic polynomials and have degrees n\ and n2 respectively, also

Pj (s) , j = 1, n2 ( respectively, Q, (2) , i = 1, ni) have degrees less or equal to rq (respectively,

n2 ) and such that the matrix A is in a form which is similar to the 1 — D companion form .

Here we mean by A is in a 2 — D companion form the following :

Ai and A4 are in companion forms and moreover A2 is such that all the elements above the

diagonal of the over all matrix A are zero except for the elements on the superdiagonal which

are all equal to one.

In the following we present a companion form for 2 - D polynomials

Proposition 1 Let d(s,z) be a 2 — D polynomial given as above, then the 2 — D companion

matrix of d(s, z) is given by =
Cl c2
C3 c4

c=
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0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 1 0 0 0

P (0, ni) P (0, ni — 1)

/23 (1,1) /*3(1,2)

RA2,1) /*3(2,2)

P (0,1)
/*3(1, ni)

/*3 (2,n!)

1 0 0

0 1 0

0 0 0

0

/*3(n2- 1,1) /*3 (n2 — 1,2)

/*3 (n2, 1) /*3 (n2, 2)
/*3 (n2 — 1, nx) 0

/*3 (n2, ni) Q (0, n2) Q(0,n2-1) ... <2(0, 1)
0 1

(2.4)

Where Ci C4 are the ni x ni,n2 x n2 companion matrices of PQ(S) and Qo(z) respec¬

tively.!.e..

det( s/, i — Ci) = PQ (s) — snl + P (0, 1) snl_ 1 + P (0, 2) snl-2 H----+ P (0, ni) ,

and,

det ( zln2 - C4) = Qo (z) =zn2 + Q (0, 1) zn2“ 1 + g (0, 2) z"2" 2 + ■ • • + Q (0, n2) ,

where, C2 is ni x n2 matrix and has all its columns zero except for the first one which is given

by En] (the first column of In1), C3 is n2 x ni matrix and its elements Rz(i, j) are determinated

uniquely and recursively from the following formula:
t-i

Ra(i, j) = <2(0,i)P(0,ni - j + 1) - P(i,rii -j + 1) - Jÿ<2(0,z - k)R3{k,j)

where P(i,j ) and Q(i,j ) are defined by the following:
ni

Pi(s) ='ÿ2,P{i,j)snx~ 3 = 0, n2,

3—0

ni

QM = ’.I = 0, „2

(2.5)
fc=l

and

i=o
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Furthermore, if d(s, z) is separable ie. can be written as a product of two 1 — D polynomials,

then C3 is taken to be the null matrix. For the proof of this result see [6].
The matrices considered here are associated with partial differential equations or 2 — D

discrete systems. For some results concerning these matrices see [11, 12, 13].
Canonical forms of these matrices over R [s, z],and wich arise from 2 — D discrete models given

by [39] are obtained under a similarity transformation. And since canonical forms play a

fondamental role in the modern theory of linear systems, we present here a particular type of

canonical forms, for a comparision see [24], wich is known as companion matrix form. Finally,

using a result of [6, 16], we give a necessary and sufficient condition for a matrix A of the form

A\ A2
A3 A4

A=

to be equivalent to the 2 — D companion form.

Now, we give the following characterization theorem:

Theorem 9 A necessary and sufficient condition for a matrix

A\ A2
A3 A4

A =

as the one given above, to be equivalent to the companion form (2.4) is that its characteristic

matrix wl — A= (s,z) I — A is equivalent to the Smith form:

fni+n2— 1 9
S(s,z) =

det (wl — A)

Proof. Suppose that the matrix A is equivalent to the companion form, then it is clear

from the form of the matrix wl — C that this latter matrix is equivalent to the Smith form

S (s, z) given above. Hence wl — A is equivalent to the Smith form S (s, z), and so the necessity

condition is established.

To prove the sufficiency, we suppose that the matrix A is equivalent to the Smith form S (s, z),
then by the previous proposition there exists a companion form for the polynomial d (s, z) ie.

there exists a matrix C in the form (2.4) such that \wl — C\=d(s,z). And so we get wl — A
and wl — C are equivalent since they are both equivalent to tne 31111111 IUIU1- u

0
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Example 1 Let the 2 — D polynomial d (s, z) given by

d (5, z) = (s2 + 1) z2 + (s2 + 2s + 1) z + 3s2 + s + 2

= {z2 + 2 + 3) s2 + (2z + 1) s + z2 + z + 1

where the polynomials P0 (s) and Q0 (z) are given by

Po (s) — s2 + 1, Qo (z) — z2 + z + 3

and the polynomial coefficients Pi (s) and Qi (z) are given by
2

Pt(s) = £p(ij)s2-J,i= 1,2,
i=0

and
2

j=o

f/ie elements of the matrix C3 are calculated from the formula (2.5). And so we obtain the

elements Ci,i = 1,4 of the bloc matrix C which are given by

0 1 0 0
Ci = C2 =

1 0-1 0

0 10 -2
C3 = C4 =

-3 -12

And so the over all matrix C has the following companion form

0 1 . 0 0

1 0-1 0

C =
0 10 -2

2 1 -3 -1

Conclusion 1 A particular matrix form , known as 2 — D companion form is obtained for

2 — D discrete systems. Furtur research work can be carried out by using this canonical form

to link certain notions of2 — D system theory (e.g. controllability, observability, realizability

etc.), as for the case ofl — D linear systems.
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2.2.3 The Smith Form over the Ring R[s,z]
Some notions and results that have been given in the first chapter concerning Smith form on

the ring of polynomials R[s] of one indeterminate are generalized here to the bidimensional

case, i.e. over the ring of polynomials R[s, z] in two indeterminates s and z. So we begin

by giving the following definitions concerning the equivalence and similarity transformations

between polynomial matrices on the ring R[s, z].

Definition 13 A polynomial matrix of order n, over the ring R[.s, z] of polynomials in two
indeterminates s and z with coefficients in R, is defined as a matrix P(s, z) with entries in

R[s,z] i.e.
P(s,z) = [Pij(s,*)]” ..,Pij(s,z) e R[s,z].J=i ’ ‘

Definition 14 Two polynomial matrices Pi(s, z) and P2(s, z) of orders n x m and p x q re¬
spectively, are said to be equivalent if there exists two polynomial matrices M(s, z) and N(s, z)

of orders n x p and qx m respectively such that

Pi(s, z) = M(s,z)P2(s, z)N(s, z).

Definition 15 Two square polynomial matrices Pi(s, z) and P2(s, z) of the same order n, are

said to be similar if there exists a square unimodular polynomial matrix M (s, z) of order n such

that

Pi{s,z) = M(s,z)P2(s,z)M

Remark 7 In contrast to the one dimensional case, the ring of polynomials of two variables s

and z, R[s, z] is not a principal ideal domain [7].

In 1-D case a Smith form of a matrix M (s) over R [s] can always be defined and it is

equivalent to its Smith form. For the 2-D case a Smith form of a polynomial matrix M (s, z)

over the ring R [,s, z\ of polynomials of two indeterminates can also always be defined. However,

this Smith form is not, in general, equivalent to M(s,z), as it can be shown later on in this

work. Now, we assume, in all of the forthcoming definitions, that 5R is an integral domain (that

is, 9? is a unitary commutative ring which has no zeros divisors).
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Definition 16 We say that 3ft is a greatest common divisor domain (g.c.d.d) if any two ele¬

ments in possess a greatest common divisor (g.c.d).

Definition 17 3? is called a Bezout domain (B.d) if any finitely generated ideal of 5? is prin¬

cipal.

Definition 18 3? is called a Smith domain (S.d) if the following hold:

1. 3Î is a B.d.

2. For any non-zeros coprime a, b, c G 3i there exists s,t G 3i such that sa and sb + tc are

coprime.

Now, we recall the following result.

Theorem 10 Let R be a ring such that : every two elements of R have a greatest commun di¬

visor. Then, a necessary condition for a matrix M in the ring of rectangular matrices Mnxm(R)

over the ring R to be equivalent to its Smith form is that R must be a principal ideal domain

Remark 8 We note that, in contrast to the 1 - D case, the ring of polynomials in two indeter-

minates R[s, z] is not a principal ideal domain, and so as a result of the above theorem we do

not have an equivalence transformation between a polynomial matrix over R[s, z] and its Smith

form.

Now, we extend the definition (1.18) of the Smith form matrix to the ring of polynomials

in two variables s and z, R[s, z] as follows:

Let T (s , z) be a polynomial matrix of order p x q, over R [s, z], we define the Smith form

S (s, z) of T (s, z) by:
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[F(S,Z) 0 ] ; if P<Q,

F(s,z)] if P = Q,S (s, z ) = (2.6)or,

F (s, z)
if p > q

o
where,

F (s, z) = diag {*i (S, Z) , i2 (s, z) , . . . , im (s, z)} , with m = min ( p, g) ,

and the elements ik (s, z) , k = 1, 2, • • ■ , m. are known as the invariant polynomials over R [s, z\
of the polynomial matrix T (s, z), and they are given by

........., k = r + l,r + 2, . . . ,m

where r is the rank of T (s, z), and do (s, z) = 1, and the determinantal divisor dk (s, z) is the

greatest common divisor of all the kth order minors of T (s, z) . We note that all ik (s, z) in (2.7)
which are not identically zeros, are monic over R [s, z], and they satisfy the following divisibility

property:

(2.7)ik (s, z) =
0

(2.8)h (s,z) /i2 (s,z )/ fir (S, Z)

Theorem 11 If is a g.c.d.d then a necessary condition for a matrix M e 9?<xm (l + m> 2)
to be equivalent to its Smith form S is that 3? is a B.d.

For a proof of this theorem see [26]

Remark 9 We can define a Smith form S (s, z) (2.6) for any matrix M (s, z) €R [s, z] , since,

R [s, z] is a g.c.d.d., but not a B.d since the finitely generated ideals in R [s, z] are not necessarily

principals ( e.g. the ideal generated by s and z). And so as R[s, z] is not a B.d, then a matrix

M (s, z) over R [s, z] is, in general, not always equivalent to its Smith form. To overcome this

difficulty, we use instead of R [5, z] the ring R (z) [s] or R (s) [z] , and for this vision o/R [s, z] ,
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we can establish an equivalance of 1 — D matrix with a Smith form over R (2) [s] or R (s) [z] .

However, this approach can give a Smith form of a matrix with entries which contain rational

elements. But [29] suggested the ideas of renormalising the resulting transformations to get

Smith forms by transformation over R (2) [s] or R (s) [2] . And one problem which arises from

this approach is that the resulting Smith form is not necessarily unique.

Because of the important role that is played by canonical forms in many research areas

especially in control theory (e.g. Smith form), so our aim is to establish necessary and sufficient

conditions for a matrix M (s, 2) to be equivalent to its Smith form. We try here to generalize

a result given in [6]. For some other results on these canonical forms see, [13] and [16].
Now, in the following, we give a theorem which can be considered as an extension of a

characterization result [6] for a polynomial matrix over R[s, 2] to be equivalent to its Smith

form.

Theorem 12 Let P(s, z) be a square matrix of order n over the ring of polynomials R[s, 2]

such that

P{s,z) = sln ~ A(z).

Then, P(s,z) is equivalent to the Smith form

0In-3 0

0 zn_2(s,z)
0

0 0
(2.9)S(8,z)=

0 in-i{s,z) 0

0 *n(s, Z)

if and only if the polynomial matrix A(z) over the ring R[2] is similar over the ring R[2] to the

companion matrix C(z) of the following form

0

0 0

Ci{z) 0 0

0 C2{z) 0

0 0 C3(z)

(2.10)C(z)=
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where the matrices Ci(z), i — 1, 2, 3 are polynomial square matrices of order ni in companion

form over the ring R[z] and such that their characteristic polynomials are given by

det(s/ni — C\(z)) = i„_2(s,z)
det(s/„2 — C2{z)) = in-i(s,z) ,
det(s/„3 — C$(z)) = in{s,z)

Proof. To prove the necessity, we assume that T (s, z) = sln — A (z) is equivalent over

R [s, z] to S (s, z) in (2.9). By elementary raws and columns operations on S (s, z) ,we get

Ini-l 0

0 qn-2 (a, z) 0

0 0 0 0

0 00

4I2-1 0

0 g„_ i (s, z) 0

0 In3-1 0

0 qn (8 , z)

00 0 0
S(s,z) = (2.11)

00 0

0 0 0

0 0 0 0

and so T(s,z ) is equivalent to the Smith form S(s,z) in (2.11) (since elementary raws and

columns operations on a matrix preseve equivalence). And since the matrix S (s,z) given in

(2.11) is clearly equivalent to the block matrix

slni -Ci (z) 00

Sin — C (z) = sIn2-C2(z) 00

sIn3-Cs(z)

where Ci (z) , are n* x n*, i = 1, 3 square matrices in companion form respectively, such that

det (slni -Ci (z)) = qn—2 (s, z), det (sln2 -C2 (2)) = qn-1 (s, z), and det (sln3 - C3 (z)) =
qn (s, z). Hence, the matrix T(s,z) = s/„- A (z) is equivalent to sln -C(z), and since a

transformation of equivalence between such matrices (resulting from r.d.d. systems) can be

replaced by a similarity transformation, then A (z) is also similar to

0 0

Ci (z) 0 0

0 C2 (z) 0

0 0 C3 (z)

C(z)=
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which ends the proof of necessity.

Now, we have to prove the sufficiency. Since A ( z) is similar to the matrix C {z) given in

(2.10), then sIn—A(z) is also similar to sIn—C (z) and because this last matrix is in companion

form and is equivalent to its Smith form

In-3 0

0 Qn—2 (s, z)
0 0

0 0
S(s,z) =

Qn—l z) 0

0 qn (s, z)
0 0

0 0

Then so it is sln — A (z). This ends the proof of the theorem. ■

Remark 10 Since the block matrix [sIn—C(z) En\ has no zeros, where C(z) is the companion

matrix given in (2.3), so the matrix P(s, z) = sln — C(z ) is equivalent to the same Smith form

as the matrix P(s, z) = sln — A(z).

Conclusion 2 In this previous work, we tried to present some types of canonical forms for

matrices over the ring of polynomials R [5, z] (e.g. Smith form), and we generalized a result

concerning necessary and sufficient conditions for a matrix over R [s, z] to be equivalent to a

given Smith form. However, the work on canonical forms needs more investigation, especially,

in the case of matrices of multivariate polynomials.

In the following example we will just show how the rows and columns operations are applied

on S (s, z) .

Example 2 For n = 6, let S (s, z) be the matrix of the form

h 0 0 0

0 ç4 (s, z) 0

0 0 q5 (s, z) 0

0 (s, z)

0
S (s, z) -

0 0
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which is the same as the matrix

10 0 0

0 10 0

0 0 1 0

0 0 0 <j4 (s, z) 0

0 0 0 0 95 (s, z) 0

0 % (a, z)

0 0

0 0

0 0
S(s,z)=

0

0 0 0 0

Note that the degrees of 94 (s, z) , q5 (s, z) and q$ (s, z) in s is 1. Now if we change line 2 with

4 and then column 4 with 2 in the above matrix we get

01 0 0 0 0

0 94 (s, z) 0 0 0

0 0 10 0

0 0 0 1 0

0 0 0 0 95 (s, z) 0

0 0 0 0 0 96 (s, z)

0

0
Si (s,z ) =

0

and if we then change line 4 with 5 and column 4 with 5 we obtain

1 0 0 0 0 0

0 q4(s,z) 0 0 0 0

0 0 1 0 0 0

0 0 0 95 (s, z) 0 0

0 0 0 0 1 0

0 0 0 0 0 96 (s, z)

S-2 (s,z) =

We note here that, 1 = [1] ; /n2-1 = [1] ; In3-1 = [1] •
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2.3 System Matrix Representation (2-D Case)

2.3.1 System Matrix Representation for P.D.E.

We know from 1-D case, that the systems of the form (1.19), (1.22), and for more general systems

[40], give rise to matrices (1.21), (1.23) and (1.24) respectively over R[s] of the following form:

sln- A \ B
M (s) =

-c : D(S)

sE- A B
N (s) =

-c ; D(S)
and

T(s) i U(s)
P(s) =

-v(s) ; w(s)
where A, B, C, D (s), T (s), U (s), V (s), and W (s) are n x n, n x l, m x n, m x l, r x r, r x l,

m x r, m x l matrices respectively, and E is an n x n square matrix may by singular.

The above system matrices given in (1.21), (1.23) and (1.24) are obtained using the symbolic

calculus(e.g. Laplace transform). And the great interest in these system matrices is due to the

fact that they are very much useful in control theory, since the very important notions such

as controllability, observability, stability and feed back etc. can be described in terms of these

matrices [21, 22], and [25], [27]. Moreover, these system matrices contain all the mathematical

information about the system which is needed to describe its properties and behaviour. The

extension of the above system matrices to the 2-D case to represent e.g. systems of partial and

retarded delay differential equations etc. is given. Also the problem of relating these system

matrices via matirx transformations as system equivalence, system similarity, strict system

equivalence and restiricted system equivalence is discussed. And the problem of obtaining

canonical forms of the above matrices is considered.
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The above system matrix representaions are extended to the 2-D case as follows:

sln — A\ —A2 : Bi
zlm A4 . B2-A3M (5, = (2.12)

-Cx -C2 : 0

and

: Bi
zE2 — A4 : B2

SEI — A\ —A2
—A3 (2.13)N(s,z)=

; 0-c2-Cx
where A*, Bj, Ck, z = 1,4; j, k = 1,2 are matrices of appropriate dimensions, and Eh l = 1,2

are square matrices may be singular. We note that the above system matrices in (2.12), (2.13)

are obtained in connection with 2-D discrete equations [21, 22], and 2-D generalized (descriptor)

systems which can be regarded as a generalization of the 1 — D descriptor systems given in [40],
respectively. And the following system matrices are obtained in connection with retaded delay

differential systems, partial differential systems, and genral differatial systems:

sln ~ A (2) : B (s, z)
(2.14)R (s, z) -

—C (s, z) 0

and

T(s,z) i U(s,z)
(2.15)G(s,z) =

—V (s,z) : 0

where the above matrices in (2.14), (2.15) A(z), B(s,z), C(s,z), T(s,z), U (s,z), —V (s,z )

are of appropriate dimensions. For more results on these system matices see, [13]. In the
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following, we give some of the systems that can give rise to the above system matrices in the

2 — D case:

Let the system of retarded delay differential equations given by

x (*) - £i=i Ax (t - ih) = £J=1 BjU (t - jh)
y (0 = ELi ckx (t - kh)

(2.16)

where x(t) is an n— column state vector, u(t) is an m— column control vector, and y(t) is a

p— column out put vector, h is a positif constant and Ai, Bj Ck, l<i<r,l<j<s,l<k<

q, are n x n, n x m, and pxn constant matrices respectively. By taking Laplace transform of

(2.16) and assuming zeros initial conditons we get the following system matrix

A(s,z) B(z)
~C (z) 0

(2.17)M(s,z) =

with A ( s, z) = sln — A(z), where s and z stand for differential and delay operators respectively.

Also a matrix of the form (2.17) may arise in connection with a partial differential system

of the form

i=0 j=o (2.18)
y = £cfc0,

fc=0

In this case X (t, r) , u (t , r) and Y (t , r) will be vector functions of t which will usually be time,

and T which will usually be spacial variable.

As in the case of system matrices over R [s], the matrix

Mc = [sln-A(z) B(z)\

describes the controllability properties of the system (2.17) whereas the matrix

sln ~ A(z)
—C (z)

M0 =

describes the observability properties of the system (2.17). A state system matrix of the form

(2.12) may arise from a 2 — D discrete system of the form
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xh(i+ l,j) = AlXh(i,j)+ A2Xv(i,j) + B1u(i,j)
Xv(i,j + 1) = A3Xh(iJ)+ A4Xv(i,j)+ B2u(iJ)

= C1Xh(iJ)+C2X'’(i,j),

This model is due to [21, 22], in which the local state X is divided into a horizontal state vector

Xh(i,j) and a vertical state vector Xv(i,j) which are propagated respectively horizontally

and vertically by first order difference equations, u(i,j) is the input vector, Y (i,j) is the

output vector,and Ai, A2, A3, A4, Bi,B2, Ciand C2 are real constant matrices of appropriate

dimensions.

. If we take the (s, z) transform (the two dimensional Laplace transform) of (2.19) and taking

zeros boundary conditions on Xh(0,j), and Xv (i,0), we get the system matrix (2.16). The

controllability ( resp. observability.) properties of (2.19) are described by the system matrix

(2.19)

Y(iJ)

■ B!Sin - M A2

zlm — A4 : B2~A3
respectively, by the system matrix

sl„- Ai : —A2
: zlm - A4—A3

-C2-Cl

2.3.2 System Matrix Transformations

Definition 19 Two system matrices of the form (2.13) are said to be restricted system equiv¬

alent (r.s.e.) if they are related by the transformation of the type

—A2 : B\
ZE2 — A4 : B2

SEI — AiMi 0

0 M2 : 0

0

— ■�3
X

o o : ip -c2 o-Ci
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sE[ - A\ -A'2 ; B[
-A'3 ZE2-A'4 : B'2

NI 0

o iv2 : o
o

(2.20)x

-Cl -Cl0 0 h 0

where My, M2, Nyt and N2 are matrices of appropriate dimensions.

1. The transformation in (2.20) is a special case of strict -system equivalence (s.s.e.).

2. If Ei and E2 in (2.20) are singular, then p(s, z) is restricted system equivalent (r.s.e.) to

a system matrix p (s, z) of the form (2.12). We note that this type of matrix arises in the

state space model used by Givon-Roesser [21] in describing 2-D discrete systems.

This restricted system matrix equivalence transformation preserves the pxl rational transfer

function matrix given by

sE\ — Ay

—A3 ZE2 — A4 B2

Now, we present a special type of equivalence transformation, ie. a similarity transforma¬

tion between system matrices of the form (2.12) given above

Let P(s,z) and P(s,z) be two block polynomial matrices of the form (2.12), then there

exists a transformation of similarity between these two matrices of the following form :

—A2 By
G(s,z)= [Cy C2]

■ By

zlm — A4 : B2
Hy OiO
0 H2 : 0

—A2Sin ~ Ay

— A3
X

0 : JP
Hfl 0 i 0

0 Hf1 : 0

-Cl -c2 00 :

— A2 : By

zlm — A4 : B2
Sin ~ Ay

-A3
X

—C2~Cy0 : h 00
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Remark 11 The above transformation preserves the T. F. M., and the order n+ m of the

system.

2.3.3 A Canonical Form Under a System Matrix Transformation

Now, we give the conditions under which a canonical form is obtained using a transformation

of restricted system equivalence (r.s.e.).

Theorem 13 Let p(s, z) a px l matrix in state space form (2.13) such that

\sEi — Ai\ 0 and \ zE2 — Aÿ\ 0.

Then p(s,z) is r.s.e. to a canonical system matrix of the form

—A2I —A22
0 In-r — sJi ■ —A23 —A24

—A31 — A$2 : zlt — A4 0

sir - Ax : Bu0

Bif
■ B2S

(2.21)

—ÿ33 -Â34 : B2fIm—t zJ20

-c2s -C2f 0-Cif

where AI,A2 are r x r and txt matrices respectively (r =deg \sEi — Ai\ , t =deg \zE2 — A41,

Ji and J2 are in jordan cnonical form).

-Cu

Remark 12 If the matrices

Mi = [ — Ai Bi j ,

and

M2 = ZE2 — A4 B2 ]
have full rank, Vs, 2 G C2, then the matrices Ai, A4, Bu and B2s in (2.21) can be choosen to be

in canonical forms.

to obtain these canonical forms and the proof of the previous theorem see Gantmacher [19]. For

further results on canonical forms see also [15] and [16].
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2.3.4 Controllability and Observability Properties via System Ma¬

trix Representations

There exists a very close relation between 1 — D ( resp.2 — D ) polynomial matrices and 1 — D

( resp.2 — D ) state space notions such as controllability, observability, and realizability, etc.,

see [40].
We note that, as in the case of system matrices over R [s], the matrix

Mc=[sln-A(z) B(z)\

describes the controllability properties of the system (2.17), whereas the matrix

sin ~ A(z)
~C(z)

describes the observability properties of the system (2.17). We also can describe the controlla¬

bility and observability properties of the system (2.19) using the associated system matrices

:Sin-M —A2

zlm — A4 : B2-As
and

—A2sin - Ai
• zlm A4-A3

-C2-Ci
respectively.

Now, we try to get a companion form matrix representation for the matrix A (s, z) —

sln ~ A(z) using a controllability property.

Theorem 14 Suppose that the system is Rn[2] controllable i.e. the following rank condition is

satisfied

rankÿB{z) A{z)B{z) ■■■ A""1 (z) B (z) ] = n,Vz €C,
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then the matrix

A (s, z) = sln — A (z) over R [s, z] can be transformed by an equivalence transformation into

the canonical form (companion form)

A (s , z) = sIn-C (z )

where C (z) is the companion matrix ovre R [z] given by

0 0 ••• 01

0 0 1 0
C(z) = 0 ••• 00 0

1:

an(z) an-i(z) ......ai(z)

whre ak (z) are the cefficients in the characteristic polynomial of A{z) i.e.

I sin- A (*)| = £fc=1 -ak (z) sn~k, a0 (2) = 1

Proof, using a characterization result given in [6], and that the fact

[\sIn-A{z)\ i En]
has no zeros, we get that the matrix A (s, z) = sln — C (2), is equivalent to the Smith form

In—\
0 \sIn-A(z)\

and since, |s/n — C (z)\ = \sln — A(z)\, then A (s, z) = sln — A(z) is equivalent over R [s, z] to

A{s,z) = sln — C (z). m

0
S(s,z) =

Conclusion 3 In this chapter, we tried to present some types of canonical forms for matrices

over the ring of polynomials IR [s, z] (e.g. Smith form), and to generalize a result concerning

necessary and sufficient conditions for a matrix over R [s, z] to be equivalent to a given Smith

form. However, the work on canonical forms needs more investigation, especially, in the case

of matrices of multivariate polynomials.
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Chapter 3

APPLICATION TO A PHYSICAL

PROBLEM (ITERATIVE CIRCUITS)

3.1 Introduction

In this chapter we apply some of the results obtained previously to the study and development

of a 2-D discrete state space model for linear iterative circuits which can be regarded as a

generalization of the well known state space model for single dimensional linear time discrete

systems (for a comparison see [14]). This development will enclude the definition, formulation

of a linear iterative circuit and the derivation of some basic concepts such as the state transition

matrix, modal controllability, modal observability etc.

You find in figure (1) bellow a 2-D unilateral linear iterative circuit representaion.

The study of the iterative circuits is limited here to the linear case (i.e. each cell perform

a linear transformation), as this allows the use of linear transformation techniques wich con¬

siderably facilitate the analysis, design, and implimentation of such circuits. Linear iterative

circuits may be used in applications such as encoding, decoding networks for linear codes, and

image processing. For some results related to this see e.g. [20], [21], and [22].
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3.2 Application to Iterative Circuits

3.2.1 Definition and Formulation of a Linear Iterative Circuit

1. Let U(Y,Xh,Xv) denote the linear vector space of all primary inputs ( respectively,

primary outputs, horizantal states, and vertical states) over a finite field F. And / (
respectively, g ) denote the linear transformation for the output total secondary state

/ : Xh x Xv x U — Xh x Xv

(respectively, for the primary output g),

g:XhxXv xU-+Y

The six tuple T = (U,Y, Xh, X,/, g) is called a 2-D linear iterative circcuit.

2. The state space equations, representing a 2-D linear iterative state space model, are

formulated as follows :

Xh(i + 1,j)= A\Xh(i,j) + A2Xv(i,j)+ B1U(iJ)
Xv(i,j + 1) = A3Xh(i,j) + A4Xv(i,j) + B2U(i,j)

(3.1)

Y(i,j) = C

And a system matrix representation is given by

— A2 : B\—A\sln
zlm A4 : B2—A3 (3.2)

-C2 !-Ci 0

Remark 13 Physically, combinational circuits composed of identical cells that are intercon¬

nected in the form of a regular pattern are called iterative circuits. See figure ( 1 ) given bellow.
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3.2.2 The General Response Formula and the Transition Matrix

Let E and F be the advance operators defined by

Xh(i + l,j)= EXh(i,j), and Xv(i,j + 1) = FXv{i,j)

we want to find a closed-form expression for the secondary output Y(i,j) in terms of the inputs

to the circuit.

Proposition 2 for all i,j > 0, we have

Y(i,j)= [C1 C2} X(i,j)+ D U(i,j)

where

X(i,j) -
is the total secondary state into the (i,j)th cell.

Proof, is obvious from the equations of the model. ■

Definition 20 Let
A1 A2
A3 A\

A =

where Ai, i = 1,4, are matrices of appropriate dimensions, and A is then the transformation

matrix for the secondary state. We define the transition matrix of a 2 — D unilateral iterative

circuit as the {i,j)th power of A as follows:

A0,0 = I, andAh’j = 0, for i < 0 or j < 0,

A*"* = AlflAi-1”i + A0'1Ai"i~l for (i,j) > (0, 0) .

where
A1 A2 m 0 0

, and A0'1 =
A3 Aÿ

A1,0 =
0 0
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Theorem 15 For all i,j > 0, we have

i

= £>' Xh{0,k) 0
+ Y,Ai~r"j

Xv(r,0)0 r=0fc=0

oBi -Jt-il„j— fc U(r,k)•fE(0,0)<(r,fc)<(t,j)
0

For a proof see [21].
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♦ i1 i11J >>

U(i,j) X(i,j)

X(i+1 J)X(iJ)

Y(iJ)
X(i,j+1)

>

I!

Fig. (I) a 2-D unilateral linear iieiaiive circuit.
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3.2.3 Modal Controllabilty and Modal Observability

The notions of controllability and observability introduced by Roesser in [39] and which look

like as natural generalizations of the 1-D case are in fact just local, they are not closely related

to the notions of minimality, they do not yield a canonical decomposition of the state space,

and they are not compatible with the introduced class of similarity transformations to reduce

the model. So we need to reformulate these notions to get compatible results.

Remark 14 In the 1-D case we note that a system which is represented by a state space system

matrix of the form
si -A ! B

(3.3)

-C 0

is controllable if and only if si — A, B are left coprime, and is observable if and only if

C, si — A are right coprime.

Remark 15 A generalization of this approach to the 2-D case for systems described by system

matrices of the form given in (3.2) can be obtained if we adopt the following definition.

Definition 21 A system described by (3.2) is said to be modally controllable (respectively

modally observable) if

sln - At : 0

, B are left coprime.

• Zlm A40

sin - M : 0
, are right coprime).( respectively, C,

• zlm A40

For more results on modal controllability and modal observability, see Kung et all [35] and

[29].
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3.2.4 A Canonical Form Under Strict System Equivalence

In the following theorem we give a more general transformation of strict system equivalence

(s.s.e.) which yields a canonical form of the system matrix (3.2). For other results on canonical

forms see Boudellioua [6], Frost and Boudellioua [15], [16] and [17].

Theorem 16 Let p(s, z) be a (n + m+ 1) x (n + m + 1) system matrix in the state space form

(3.2), having no input decoupling zeros and a transfer function with numerator depending on s

only. Then, p(s, z) is s.s.e. to a canonical form system matrix of the following form:

— A2 : 0

—A3 zlm — F4 : Em
sin -F1

(3.4)p(s, z) = :

-Cl -C2 : 0

where FitF2 are respectively, n x n and mx m companion matrices, and A2 = [En 0].
The elements of Fÿ F4I and A3 are uniquely determined by the characteristic polynomial of the

block matrix
A1 A2
A3 A4

A =

Proof, since both p(s, z) and p(s, z) have no input decoupling zeros, it follows that they

are s.s.e. to the polynomial system matrices

0In+m— 1 0In+m— l 0 0
d 10d 10

, and

0 -n(s,z) i 0

make d = d [6].

0 — n(s) : 0

respectively. And by a suitable choice of Fi, F4, and A3 we can

Now, we have to show that n(s) = n(s, z)
Let g(s, z) be the transfer function corresponding to p(s, z) i.e.

-1

Sln ~ Fi
-A3 Zlm - F4

0
g(s, z) = [Cl C2]

Em
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and using shurs formula and some operations on matrices with

A2 = [En 0], and A3 = [h t2 ■■■

we get the following

1

s

sn-1 1
g{s.z)ÿ[Cl C2] X P{s)q{s,zYp(s)

p(s)z - txvi

p(s)zm t\V\Zm 2 ----tm-lVl

and so
1

s

sn-l
g(s, z) = [C\ Ci]

Pis)
p(s)z - hvx

-2p{s)zm~1- tlVlZm ----tm-1ÿ1
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where, p(s) = |s/n — Fj | and q(s , z) = zl — F — Q with the matrix Q equals

t\vx
tlVi

1

s

and v =
:

sn-2
sn-l

tm— ]Vl

Let C\ = pu C12 ••• Cin] and C2 = [C21 <ÿ22 ••• Cÿ2m] >

n(s) = ensn+ en_isn_1 + • • • eo, and p(s) = sn + ais71-1 + ■■■an. Then n(s, z) can be made
equal to n(s) by letting

Cu - ei-i - enan_i+i , C21 = en and C2j = 0, i = 1, n and j = 2, m .

It follows that p(s, z) and p(s, z) are s.s.e. ■

3.2.5 Extension to the k</l Case of the Previous Characterization

Result

Now, we give a result concerning matrices in the state space form A (s, z) = sln — A (z) and

which can be considered as an extension of a result given in [12].

Theorem 17 The matrix A (s, z) = sln — A (z) is equivalent to the Smith form

In—k
0 dn-(fc-l) (s, z)

00 0

00

, keN* (3.5)S(s,z) = dn-(k-2) (S, Z)0 0 0
: :

• • • dn (s, z)0 0
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iff the matrix A ( z ) is simialr over R [z] to the block companion matrix

Ci{z) 0 0

0 C2(z) 0

0 0 C3(z) ••• 0

0

0

(3.6)C(z) =
:

Ck{z)0 0

where Ci (z) are n, x rii (i = 1, k) companion matrices having characteristic polynomials

dn-(k-i) (s, z) , (i = 1, k) i.e.\sln - C (z)\ = dnÿk-i) (s, z), where nt (;i = 1, k) are given by the

degrees in s of dn-(k-i) (s, z) ,(i = 1, k )

Proof. To show the necessity, we suppose that A (s , z) = sln - A (z) is equivalent over

R [5, z] to S (s, z) in (3.5). Then by elementary rows and columns operations on S (s, z), we get

S (s, z) equivalent to

0 0Ini-\ 0

0 dn-(fc-1) 0

0 4I2-1 0

0 dn_(fc_2)

00

0 00

0 00

0 00 0 (3.7)Sk (s, z) =
In3 — 1 ’

:

0 0 7nfc— ! 0

0 0 dn
0 0 00

0 0 00

where dn_(fc_i) denotes dn-(k-i) (s,z) ,1 < i < k. Since these operations on a matrix preserve

equivalence, then A (s, z) is equivalent to Sk (s, z) in (3.7). And since the matrix Sk (s, z) in

(3.7) is clearly equivalent to the block companion matrix

s!ni-C1(z) 00

s/n2-C2(z) ••• 00 (3.8)Sin — C (z) —
■ ■ ■ Slnk ~ Ck (z)0 0
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where Ci (z), are n, xn; (i = 1, k) are square matrices in companion form respectively, such

that

det (slni - Ci (z)) = rfn_(fc_i) (s, z) , i = l,k (k > 2).

Hence, the matix (s, z) = sln — A (z) is equivalent to sln — C (z), and since this equivalence

transformation (between these system matrices) can be replaced by a similarity transformation,

then A (z) is similar to

Ci(z) 0 •••

0 C2{z) 0

0

(3.9)C(z) =

0 • • • Ck (z)0

this ends the proof of necessity.

The proof of sufficiency: if we assume that A (z) is similar to C (z) in (3.9), then sln — A (z)

is also similar to sln — C (z) in (3.8), and since this last matrix is in companion form and is

equivalent to its Smith form

0In—k
0 dn-(k-1) z) ‘ ‘ 9

0

S (s,z) =
:

■ ■ ‘ dn (s, z)0 0

then, so it is sln — A (z), which ends the proof of the theorem.

Example 3 Now, as an illustrative example, for n = 2k, k G N*, let S (s, z) be the matrix of

the form
0hk-k

0 d2k-(k-i) (s, z)

0

0
(3.10)S (s,z) =

■ ■ • d2k (s, z)

By ( k — 1) operations on the rows (respectively columns) of the matrix S (s, z) in (3.10), we

00
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obtain
1 0 0 0 0

0 d2k-{k-i) 0

0 0 1 0 0

o d2k-(k~2) 0

0 0 1

0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 d2k-i 0 0

0 1 00 0 0 0 0

0 0 d2k
where d2k-i denote d2k-i (s, z) , i = 0, k — 1, and in the above case we have

0 0 0 0 0

Ini-1 = [1] ! In2-i = [1] ; • • ■ ; I,ik-i = [1] . i.e. Ini (i = 1, Ac) are all matrices of one

element equals 1.

We note that the above resut is a generalization of a previous result given in [12] for the

case of k = 3. ■

Remark 16 In the above work, a companion form for a matrix of the form A (s , z) = sln —
A(z), which arises in the study of e.g. retarded delay differential equations was presented, and

a characterization result concerning these matrices was extended to a more general case (the
lêhcase). A similar study can be investigated for more general matrices A (s, z) arising from

singular retarded delay differential equations.

Conclusion 4 In this chapter, the state space equations representing a 2-D discrete state space

model describing a linear iterative circuit have been given. Some basic concepts such as, state
space transition matrix, modal controllability, and modal observablity are derived. Also a 2-D
system matrix represenrting this model is given and a canonical form under a more general

transformation of strict system equivalence (s.s.e.) is obtained. For further research work on

this model, we can consider the extension of the above results to polynomial rings of more then

two varibles s and z e.g. to the N — D case. We also note that the problem related to the

notions of modal controllability and modal observabilty needs to be more investigated.
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3.3 A Canonical Form Under the Multidimensional

Laplace Transform

Definition 22 We define the multidimensional Laplace transform by
roc roc

= / ••• / Y(ti,t2,--- ,tm)e
Jo Jo

-Sltl-S2«2----Smtm (3.11)dtidt2 * * * dfcin

= Y(sits2,--- ,8m),

where s* = a* + iPk £ C, {k — l,m), Y(t) G S, where S denotes a certain class of functions

for which the integral in (3.11) exists.

3.3.1 System Matrices Assosciated to High Order Partial Differen¬

tial Equations

In the following we try to show over an example how the use of the multidimensional Laplace

transferÿ can §lve nse to system matrices oi tne iorm m {ô ) aoove.

The following example shows how the use of Laplace transform given in (3.11) (m = 2) on

the following partial differential equation (p.d.e) yields a matrix of the form given in (2.12).

Consider the wave equation

ff 2 d2
(3.12)

d% 0 < ti < oo, 0<t2<oo

with the boundary conditions

Y(0,t2)= a(t2) ; £2[a(t2)] = h(s2)
Y(tx,0) =b(ti) ; [ÿ(*i)] =

gk-o=cte) ; £2 [c(t2)] = c(s2)
|i2=o= d(ti) ; £2 [d(fi)] = d(si)

(3.13)

since

£2[ÿ]= a?y(s!,52) - SlY(0,s2) - rfl(0, s2)

£ 2 1-ÿ2- =siy(s1,52)-52y(s1,0)-yt2(si,0).
and
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Then by taking Laplace transform of both sides in (3.12), replacing the above two equalities

and using (3.13) we get

c(s2) - d(si) + siô(s2) - s2b(si)1 (3-14)U(s\, s2) + -Y(SUS2) = 4-4
Now we have to give a realization of the transfer function

S1~S2
in order to obtain a state space

representation in the form (2.12). To this end, we follow the 2-step realization procedure given
ai~s2

by Zak [46]:

The first level realization of g(s, z) = has the form

0 1 1
, C(s2) = [ 1 0 I , D(S2) = 0

0 L JA(S2) = , B(S2) =4 0

which yields

g(s, z) = C(s2) [SlI - A(s2)]~1 B(S2) + D(s2)

where A(s2), B(s2), C(s2) and D(s2) can be regarded as 1-D non proper, in general, trans¬

fer matrices in themselves. So by realizing each of them following the 2-level realization

procedure we get

A(S2) = C?[s2IrlA-At]-,Bt+C?[s2JA-I}-1B£ + DA,

B(s2) = Cf [s2Ine - Af]~' Bf +Cf[s2JB-l]~‘Bf + DB,
C(s2) = Cf + [s2Jc-iy'BZ + Dc,
D(S2) - C?[s2InD-A?}-'B?+C?[s2JD-iy'B%+ DD,

and since
0 1

s2 0
eR2*2MA(s2) =

then

A(S2) = C} [s2 JA- /] 1 B$ + Da.
We can choose

0 0
0 0 0 B? = 0 0
-10 0

1 0
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and
0 1DA =
0 0

This yields

0 0-1 s2 0

0 -1 s2
0 1 0 0 0 0 1

J4(.S2) — 0 0 +
s2 0 -10 0 0 0

0 0-1 1 0

And so a state representation is given by

DBDA C$
BA h

X1st X1
s2 X2

h 0

0 JA
u+

X2 0
(3.15)

X1
= [DC ; o ]Y

X2

with Ei = /2 and E2 = JA (Jordan form).
Note that the system matrix associated to the system in (3.15) has the same form as the matrix

given in (2.12). If we now assume that the initial conditions have the form

â(s2)

b(s2)
(3.16)-c(si)

-d(si)
0

Then the 2-D Laplace transform relating F(SI,S2) and C/(si, s2) with the initial conditions

(3.16), caculated from (3.15), has the form given in (3.14). (note that the order of this realization

is 5).
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3.3.2 Restricted System Equivalence Transformation (For System

Matrices Assosciated to High Order Partial Differential Equa¬

tions)

Definition 23 Two system matrices of the form (2.13) are said to be restricted system equiv¬

alent if they are related by the transformation of the type

—A2 : Bi
zE2 — A4 : B2

MI 0

0 M2 0

sE\ — A\0

-A* x

0 0 : Ip -Ci -C2 0

sEÿ-A'i -A2 \ B[
-A'3 ZE'2 - A'4 l B'

Ni 0

o N2 ; o
o

(3.17)x

-Ci —C20 0 \ h 0

where Mi, M2, iVÿ and N2 are matrices of appropriate dimensions.

1. The transformation in (2.20) is a special case of strict -system equivalence (s.s.e.).

2. If Ei and E2 in (2.20) are singular, then p(s, z) is restricted system equivalent (r.s.e.) to

a system matrix p(s, z) of the form

: Bi
zljn — A4 : B2

Sin ~ Ai —A2
—A3p(s,z) = (3.18)

-C2-Cl 0

We note that this type of matrix arises in the state space model used by Givon-Roesser

[21] in describing 2-D discrete systems.

3. This restricted system equivalence transformation preserves the p x / rational transfer
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function matrix given by

sE\ — A\ —A2
ZE2 — A4

Now, we give the conditions under which a canonical form is obtained using a transfor¬

mation of restricted system equivalence (r.s.e.).

B1G(s,z)= [ C2 ]
B2A3

Theorem 18 Let p(s,z) apx l matrix in state space form (2.13) such that

\sEi — I 7ÿ 0 and \zE2 — A*| 0.

Then, p(s , z) is r.s.e. to a canonical system matrix of the form

—A2I — A22
0 In—r ~ sj\ : —A2$ —A24

—A31 Aÿ2 : zlt — A4 0

sir - Ax ■ Bxs
'ÿ Bxf
'ÿ B2S

0

(3.19)

—ÿ33 -ÿ34 Im—t zJ2 B2f0

-C2s -C2f 0-Cif

where A\, A2 are r x r and t x t matrices respectively (r =deg |s£i — A\\ , t =deg \zE2 — A4\,

J\ and J2 are in jordan cnonical form).

~Cxs

Ax Bx ] and ZE2 - A4 B2 ] have full rank, V(s, z) 6Remark 17 If the matrices sE
C2, then the matrices Ax, A4, B\s and B2s in (3.19) can be choosen to be in canonical forms.

To obtain these canonical forms and the proof of the previous theorem see Gantmacher [19].
For further results on canonical forms see also [15] and [16].

1 —

3.3.3 The Realization Problem of a Non-Proper 2-D TVansfer Func¬

tion

For a proper rational transfer function in two indeterminates there are available algorithms

which provide low orders minimal realizations. For the 2-D non proper transfer functions, sev-
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eral authors such as, Kung and al [29] and [35], Sontag [43] have suggested canonical realizations

for a special class of 2-D transfer functions (e.g. with separable denominator, etc.).

Recently, Boudellioua [6] solved this problem for a non-proper transfer function which has a

denominator depends only on one variable. Here we gave the solution of the realization problem

of a non-proper 2 — D transfer function in the form
n(s,z) (3.20)9(s, z) = d(s,z)

for which

n(s, z) = r(s, z)d(s, z) + n(s),

where

d(s, z) = k0(s)zm + ki(s)zm 1 H-----1- fcm(s)

(/c0(s) is monic and deg k0(s) = n, deg kj(s) < n, j = 1, 2, • • • , m), and

n(s) = ensn + e„_isn_1 -I-----f e0

are factor coprime, and

r(s,z) = rq+l(s)zq + rq(s)zq 1 + --- + r1(s)

where
i+1

ri(s) = 3+1, i = 1,2,--* ,g + l
3=1

and l = degs r(s, z).
Now, since g(s,z) can be written in the form

g(s,z ) = gi{s,z)+ r(s,z)

where
n(s)9i(s,z) = d(s, z)

The realization of gi(s, z) was given by Boudellioua [6] and it has the form

-A2 : 0

—A3 zlm — F4 : Em
Sin ~ Fi

(3.21)

—Ci — C2 : 0
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where F\ and F2 are respectively n x n and rax m companion matrices and A2 — En 0 j ,
the elements of F\ , F2 and A3 are uniquely determined by the 2-D characteristic polynomial

A\ A2of
A3 A4

For the realization of r(s, z) (which is a polynomial of the ring F[s][z] ) we can use Jordan

block matrices, and so it can be verified that a realization of r(s, z) is given by

: Ei+1

-w Ig+i - zJ2 : 0
h+1 — sJi 0

(3.22)

-E[
where, w = (w,j) , 1 < i < q+1, 1 < j < H- 1.

Combining the realizations in (3.21) and (3.22) we obtain a realization of g(s, z) which is given

by the system matrix

00

-A2 00sin - F1
-Â3

0

Emzlm F1 0 0

: Ei+i
Iq+l ~~ zJ"2 'ÿ 0

Il+1 — sJi 00 0 (3.23)
0 0 —w

—Ci —C2 ~E[ 00

where F\, F4, A2, C\, and C2 are the matrices obtained in the realization of the 2-D proper

transfer function go(s, z).
Now, by elementary row and column operations on the system matrix (3.23) we get the system

matrix
-À2 00Sin ~ Fi 0 :

: Ei+10I1+1 — sJi 00

-Â3 Emzlm F4 00 (3.24)
Iq+1- zJ2 : 000 —w

-Ci -C2 ~E\ 00
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which is in the required canonical form (3.19).
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Chapter 4

A CONTROL WITH THE INITIAL

VALUE OF AN ILL-POSED

PROBLEM ( INFINITE

DIMENSIONAL CASE)

4.1 Introduction

We consider the following final value problem (F.V.P.)

(4.1)u'(t) + Au(t) = 0, 0 < t < T

(4.2)U(T) = f

for some prescribed final value / in a Hilbert space H. A is a positive self-adjoint operator

such that 0 € p{A). Such problems are not well posed, that is, even if a unique solution exists

on [0, T] it need not depend continuously on the final value /. We note that this type of

problems has been considered by many authors, using different approaches. Such authors as

Lattes and Lions [31], Miller [32], and Showalter [42] have approximated (F.V.P.) by perturbing

the operator A.
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In [1], [10], and [41] a similar problem is treated in a different way. By perturbing the final
value condition, they approximate the problem (4.1), (4.2), with

v! (t) + Au(t) = 0, 0 <t <T,

u (T ) + au (0) = /. (4.3)

A similar approach known as the method of auxiliary boundary conditions was given in [33].
Also, we have to mention that the non standard conditions of the form (4.3) for parabolic

equations have been considered in some recent papers [2], [3].
In this work, we perturb the final condition (4.2) to form an approximate non local problem

depending on a small parameter, with boundary condition containing a derivative of the same

order than the equation, as follows:

u' (t) + Au (t) = 0, 0 < t < T,

u (T) - au' (0) = /. (4.4)

Following [10], this method is called quasi-boundary value method, and the related ap¬

proximate problem is called quasi-boundary value problem (Q.B.V.P.). We show that the

approximate problems are well posed and that their solutions ua converge in Cl ([0, T], H) if

and only if the original problem has a classical solution. We prove that this method gives a

better approximation than many other quasi reversibility type methods e.g. [1], [10] and [31].

Finally, we obtain several other results, including some explicit convergence rates.

4.2 Preliminary Notions

This section is devoted to definitions of some of the basic concepts related to linear operators

in Hilbert spaces, mainly spectral resolution and spectral representation for a self-adjoint

unbounded operator on a Hilbert space H and includes a brief account of some fundamental

properties and results concerning them.
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4.2.1 Spectral Resolution

Definition 24 A spectral resolution {E\} on a Hilbert space H is a faction

E : R -* B(H)

having the following properties:

1. E( A) is an orthogonal projection for every A € M,

2. E( A) < E(p) for A < p (monotonicity),

3. E( A + e) — ► E( A) for all A €R, as e — > 0+ (right continuity),

4. E( A) -> 0 A — > — oo, and E{\) — * / as A — » +oo.

In the following, we give some fundamental properties concerning the spectral resolution

{Ex}-

• EÿEx = Ex, if n ≥ A,

• If TA = AT, for T € B{H), then, TEX = EXT, and EXA = AEX,

• El = Ex.

4.2.2 Spectral Decomposition for an Unbounded Operator

Definition 25 Let A be a self-adjoint unbounded operator on a Hilbert space H. The following

representation of A
f+OO

A=
J — OO

is known as the spectral decomposition of A relatively to the spectral resolution {£*}.

XdEx,

We note that there exists a unique spectral resolution {Ex} for which the operator A is

represented in the above form. We also have the following spectral decompositions:

r+oo
Af =

J — oo
XdExf, V/ G D(A),
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where the domain of the operator A is given by

D(A) = {feH:\\Af\\<oo},

and
f+OO

M/ll2 = J A2rf||£A/||2.

r+oo
(Af,g)= / Ad(Exf,g), Vf, g G H.

J —oo

4.3 An Abstract 111-Posed Parabolic Problem

We also have

4.3.1 The Resolution and Bound Estimates of the Approximate

Problem

Definition 26 A function u : [0, T]
(4-1),(4-2) (respectively Q.B.V.P. (4.1),(4.4)) if u G Cl{[0,T\,H), u(t) G D (A) for every

t G [0, T] and satisfies the equation (4-1) and the final condition(4-2) ( respectively the boundary

condition(4-4))-

H is called a classical solution of the (F.V.P.) problem

Now, let {E\}x>0 be a spectral resolution (spectral measure)associated to the operator A

in the Hilbert space H, then for all / G H, we can write

= f°° dE\f
Jo

(4.5)/

If the problem (F.V.P.) (4.1), (4.2) (respectively (Q.B.V.P.) (4.1), (4.4)) admits a solution u

(respectively ua), then this solution can be represented by

POO

u(t) = / ex{T~l)dExf ,
Jo

POO

ua{t) = Jo

(4.6)

respectively,
e~\t (4.7)dExf.

a\+ e XT
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Theorem 19 For all f E H, the functions ua given by (4-V are classical solutions to the

(Q.B.V.P.) (4-l)> (4-4) and we have the following estimate
T ii/n, v«€[o,n (4.8)IKWII < “(1+ ln«)

where a < eT.

Proof. If we assume that the functions ua given in (4.7) are defined for all t E [Q, T\, then,

it is easy to show that ua E CÿQO, T], H) and

—Xe~xtPOO

u'Q(t) =
Jo

(4.9)dExf.
aX + e~XT

Since
Xe~xt-r (4.10)Aua (t) fdE\f,ocX + e~x

then,
X2e~2XtwAua(t)\? = rJo

idWExfW2(a:A + e~XT)

and this shows that ua (t ) € D (A) and so ua E C([0,T\, D (A)). Prom (4.9) and (4.10)

that function uQ given in (4.7) is a classical solution to the (Q.B.V.P.) problem (4.1), (4.4).

Now, using (4.7) we have

11

we see

KWH2 < [ 1
■d\\Exf\\2, (4.11)

(aX + e-XT)2
if we put

h(X) = (oA + e XT) 1 , for A > 0,

then,

(4.12)suph(A) = h
\>o

and this yields
2 rwJo

TIM*)I|2 < «(!+ ln(D)
2

T ll/ll2-a(H-ln®)
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This shows that the integral defining ua(t) exists for all t G [0, T] and we have the desired

estimate. ■

Remark 18 One advantage of this method of regularization is that the order of the error,
introduced by small changes in the final value f , is less than the order given in [10].

4.3.2 Some Convergence Results

Now, we give the following convergence result

Theorem 20 For every f € H, ||ua(T) — /|| tends to zero as a tends to zero. That is ua(T)

converges to f in H.

Proof. Let e > 0, choose rj > 0 for which

]°°d\\Exf ||2 <|.
Prom (4.7), we have

a2A2POO

MT)-/r= /JO

\K(T)- f\\2 < a2

d\\E,f\\2,
(aA + e~XT)2

then,
A2 ld\\Exf ||2 + |,(aA + e_AT)2

so by choosing a such that

(2 f\2e™\\Exffy' ,a2 < e

we obtain the proof of the theorem. ■

Theorem 21 For every f G H, the (FVP) problem (4-1), (4-2) has a classical solution u given

by (4-6), if and only if the sequence (u'a (O))a>0 converge in H. Furthermore, we then have that

ua (t ) converges to u(t) as a tends to zero in C'1([0,T\,H).
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Proof. If we assume that the (F.V.P.) problem (4.1), (4.2) has a classical solution u, then

we have
00 a2A4e2AT

(aA + e-XTfll<(o) - «'(o)ll2 = f
Jo IMEA/II2

< o2 P X'eÿdWEifW2 + [
Jo Jr)

£AVÿ||£:A/IP +|.

00 Q2A4e2AT
rf||ÿ/||2

a2A2
< a2

so by choosing a such that a2 < e (2 A4e4ATd||£a/||2) 1 , we obtain

IK(o)-«'(o)||2 <e,

this shows that ||u'Q(0) - i/(0)|| tends to zero as a tends to zero. Since

eAT)2d||£A/lP1K(0-ÿ(*)lla < c*A + e~XT
= IK(o)-u'(o)||2,

then ||uÿ(t) - u'(i)|| tends to zero as a tends to zero uniformly in t, for every t €[0, T].
Now, we show that ||ua(t) — u(t)|| tends to zero as a tends to zero uniformly in t, for every

t G [0,T\. To this end, let t G [0, T] , and since
00 a2A2e2AT|K(t)-u(t)||2 < f

Jo
d\\Exf\\2

(aA + e~XT)2
= IM0)-«(0)||2.

So, it is sufficient to show that uQ (0) converges to u (0) as a tends to zero. To this end, we

compute

|K(0)-u(0)|p < a2 T \2e,XTd\\EJf + [°° eaTd\\Exf\\2
Jo jv

≤ a2 [\2emd\\Exfr+ fVeÿlEA/ll2,
Jo Jr)

for 77 quite large, and since u( 0) G D (A), then we have

■u(0)||2 < a2 J \2eiXTd\\E\f\\2 + -,IK(0) -
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and so by choosing a such that a2 < (2 \2e4XTd\\E\f\\2) 1 we get

||««(0) - w(0)||2 < e.

Thus itQ(0) converges to u(0) as a tends to zéro, which in turn gives that ua(t) converges to

u(t) as a tends to zero, uniformly in t, for every t G [0, T], Combining all these convergence

results, we conclude that ua(t) converges to u(t) in G71([0, T], H).
Now, assume that (u'a (0))Q>0 converges in H. Since

e-At-rua(t) dE\f,
aA + e~XT

is a classical solution to the (Q.B.V.P.) problem (4.1), (4.4), then we have
poo

<(t)= Jo

r°°IK (o) II2 = /Jo

—\e~xt fdE\f ,aA + e~x
hence

A2 d\\Exff.
(aA + e~XT )2

Now, using the dominated convergence theorem we get
poo

pm<(0)||2 = J*, \2e2XTd\\Exf\\2,

and so it is easy to see that the function u(t) defined by
/•oo

u(t) = / eÿ-VdExf,
Jo

is a classical solution to the (F.V.P.) problem (4.1), (4.2). This ends the proof of the theorem.

■

4.3.3 A Comparison of the Error Estimates

Theorem 22 If the function u given by (4-6) is a classical solution of the (F.V.P.) problem

(4-1), (4-1), andusa is a solution of the (Q.B.V.P.) problem (4-1), (4-4) for f ~ fs, such that

11/ — /A|| < S, then we have

IW0)-ul(0)||<c(l + lnI) ‘ (4.13)

where c = T( 1 + ||Aifc(0) ||).
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Proof. Suppose that the function u given by (4.6) is a classical solution to the (F.V.P.)

problem (4.1), (4.2), and let’s denote by usa a solution of the (Q.B.V.P.) problem (4.1), (4.4)

for / « fs, such that

11/ - fs\\ <*.

Then, usa (t ) is given by

e-Atroo

«4W- /Jo

where fs = /0°° dE\fs- Prom (4.6) and (4.14), we have

dEJ0, Vt G [0, T\ , (4.14)
aX + e~XT

ll«(0)-«1(0)11 < A, + A2,

where A, = ||u(0) — ua(0)||, and A2 = ||ua(0) - «£(0)11- Using (4.12), we get

(jf* XhÿdWExff'j * ,TAi < (!+ ln0)
and

TS
A2 < «(i + inj)’

then,
rpu(o)H (4.15)Ai< 1+ ln a ’

and

T6 (4.16)
o(l + lnI)'

From (4.15) and (4.16), we obtain

IMO) <(0)||2 < I) + a (! + in I) ’
TÔ

then, for the choice a = S, we get

r(i + pu(o)||)IK(0)-<4(0)||2< (l + 'nî) '

This ends the proof of the theorem. ■
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Remark 19 From (4-13), for T > e 1 we get

MO)-<4(0)11 <c (ini)

Proposition 3 Under the hypothesis of the above theorem, if we denote by Usa the solution of

the approximate (F.V.P.) problem (4-1), (4-%) for f ~ fs, using the quasireversibility method

[31], we obtain the following estimate

MO) - Elj(0)|| < c, (ini)
Proof. A proof can be given in a similar way as in [33]. ■

4.3.4 Some Explicit Convergence Rates

Theorem 23 If there exists an e €]0, 2[ so that
roo/ XeeeXT\\dExf\\2 ,

Jo
converges, then \\ua(T) — f\\ converges to zero as a tends to zero with order a£e 2.

Proof. Let e e]0, 2[ such that /0°° AVAT||d.E>/||Converges, and let /3 e]0,2[. For a fix

. Then we can show thatoftA > 0, and if we define a function g\ (a) = (aA4-e_XT)

9\ (a) < Ç\ (ao) , Va > 0, (4.17)

where a0 = p-fi* • Furthermore, from (4.7), we have

roo
ll“«(r)- /||2 = o?~e / \2gi(a)dExf.

Jo
(4.18)

Hence from (4.17) and (4.18) we obtain

f\\2 ≤ c?-« f\ÿ-ÿi\\E,!\\2.IIu*(T) -
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If we choose /3 = (2 — e), we have

IKPWII2 < “'(?) J”
d\\Exf\\2) ,= ('[ \eéXT

hence

IKCO - /II2 ≤ Cerfe 2>
with ce = 4 /0°° XEeeXTd\\Exf\\2. ■

Now, we give the following corollary.

Corollary 1 If there exists an e > 0 so that

J Afc+2lc‘!+2)AT(i||EA/||'J,

r X‘eÿd\\Exff,
Jo

(4.19)

and

(4.20)

converge, then ua converges to u as a tends to zero in (ÿ([O,T], H) with order of convergence

aes~2.

Proof. If we assume that (4.19) is satisfied, then

H \2e2XTd\\Exf\\2,
Jo

converges, and so the function u(t) given by (4.6) is a classical solution of the (F.V.P.) problem

(4.1), (4.2). Now, using the following inequalities

°° a2X4e2XT
(aA + e~XT)2K(o)-«'(o)||2 = t

Jo
dUEJU2

oPpoo/ A‘
Jo

roo/ \4gx(a)e2XTd\\Exf\\2
Jo

(rrpï r xÿ0ei,~f)XTdmfr’

e™d\\Exf\f< (a\+ e~XT)2
< a2-*

s „2-/3< Q (4.21)
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where ce = 4/0°° Xÿe+£ÿeÿ+2ÿXTd\\E\f\\2, and setting (3 = 2 — e, in (4.21), we obtain

IK(0)- u'(0)||2 < cEa£e~2,

where cE = 4 /0°° A(e+2)e(£+2)ATd||JE,A/||2. And since

IK(<) - “'Ml2 < IK(0) - w'(0)i|2,

then u'a(t) converges to u'(t) uniformly in t, for all t €[0, T] ,with order of convergnece aee 2.
Now, if we assume that (4.20) is satisfied, then

foo
K(0) - u(0)||2 = a2-* / \2gx(a)e2XTd\\Exf\\2,

Jo
and proceding in a similar way as in the proof of the previous theorem, we get

u(0)||2 < o?-» J~ (4.22)||uQ(0) -

again, by setting = 2 — e in (4.22), we obtain

l|Uft(0) — u(0)||2 < C'QE£-2,

where, c'e = 4 J0°° Xeeÿe+2ÿXTd\\E\f\\2. Now, using the inequality

IM*)-»«ll2<IM0)-u(0)||2,

we see that ua(t) converges to u(t) uniformly in t, for all t G [0,T] ,with order of convergnece

a£e~2. Combining all these convergence results, we see that ua converges to u as a tends to

zero in C1([0, T], H), with order of convergence ae£~2. m

4.3.5 Conclusion

We note that one advantage of this method of regularization is that the order of the error,

introduced by small changes in the final value /, is less than the order given in [10]. And we

also conclude that the regularization method used here gives a better approximation than many

other quasi reversibility type methods e.g. [1], [10], and [31]. We also recommend for future

research work the use of this approach to treat other problems described by more general types

of partial differential equations.
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Résumé

Le présent travail est composé de deux parties :
La première partie est consacrée à l’étude de certaines classes de

matrices, sur l’anneau des polynômes à deux variables <R[S,Z], associées en
particulier aux différents systèmes linéaires différentiels. En suite les
résultas obtenus sont appliqués à l’étude d’un problème modélisé par un
système d’équations bidimensionnel (2-D) .

Dans la deuxième partie on étudie un problème de contrôle par la
condition initiale d’un problème parabolique abstrait mal posé à
coefficient opératoriel auto-adjoint non borné.

Abstract
The present work is composed of two parts:
The first part is devoted to the study of some classes of matrices, over

the ring of polynomials in two variables w{s,z], associated in particular with
different differential linear systems. Then, the obtained results are applied
to the study of a problem described by a bidimensional (2-D) system of
equations.

In the second part we study a control probem by the initial condition
of an ill-posed abstract parabolic problem with an unbounded self-adjoint
operatorial coefficient.

!

* (jXojulS t tlQ U IjlA

wli dlJE Ai <-Àlua AJUüI (JjVl
Ami jJ Ifrjlc- (Jjueaa> di Aj-qLî. Aâàÿa 5H[ÿ,z]

2-D jll Ajjljj AL-V \ AÎLUU»
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Résumé
Le présent travail est composé de deux parties :
La première partie est consacrée à l’étude de certaines classes de

matrices, sur l’anneau des polynômes à deux variables associées en
particulier aux différents systèmes linéaires différentiels. En suite les résultas
obtenus sont appliqués à l’étude d’un problème modélisé par un système
d’équations bidimensionnel (2-D) .

Dans la deuxième partie on étudie un problème de contrôle par la
condition initiale u’un problème parabolique abstrait mal posé à coefficient
opératoriel auto-adjoint non borné.




