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0.1 Introduction

The research work presented here is divided into two (different) parts: one is concerned with
system theory in the finite dimensional setting. using matrix theory, i.e. the algebraic structure
and the other is with the infinite dimensional case using the analytic stucture. The other related
approach is the geometric one which is very much useful in the development of the subject see
e.g. (8], [9], [34] and [45].

One of the important motivation behind the research work concerning canonical form sys-
tem matrices (e.g. Smith form & companion form etc.) associated to different systems e.g.
systems of P.D.E.and, R.D.D.E. etc. is that the crucial role that may be played by these
canonical forms in unifying the research work in the theory of linear systems. They also play a
fundamental role in the study of structural properties of systems as controllablity, observability
and minimality.

In the first chapter, we present some preliminary results concerning the 1—D theory of linear
systems, starting with the important notions of controllability, observability, companion form
and Smith form over the ring of polynomials R{s| of one indeterminate. Then a system matrix
representation, using the symbolic calculus (e.g. Laplace transform) following Rosenbrock, for
ordinary, generalized (1 — D descriptor), and genral differential equations etc. is given and some
matrix transformations between them are presented. We conclude this chapter by providing
some canonical forms, under the introduced system matrix transformations, and controllability
and observability properties via system matrix representations.

In chapter 2, we extend some notions and results from the previous chapter to the 2 — D
case, such as companion form and Smith form over the ring R[s,z]. Following Frost and
Boudellioua, a characterization result on 2 — D companion forms is given. We also extend the
notion of system matrices to the 2 — D case, to modelise e.g. high order systems of partial
(descriptor) and retarded delay differential equations and 2— D discrete systems etc.see [11], [12],
[13]. Also the problem of relating these system matrices via matirx transformations as system
equivalence, system similarity, strict system equivalence and restiricted system equivalence is

discussed. Particularly, canonical forms of the matrices over R [s, z], which arise from 2 — D



discrete models given by Roesser [39], are obtained under a similarity transformation. And
the problem of obtaining canonical matrix forms of the above matrices is also considered, and
particulary, an extension of a result concerninig matrices of the form P(s, z) = s/ — A(z) and
which arise from retarded delay differential syétems is established. Also the very close relation
between 2 — D polynomial matrices and 2 — D state space notions such as controllability,
observability, realizability etc. is pointed out. For more results on 2 — D polynomial matrices
and 2 — D linear systems see [37], [38].

In chapter 3, we develop a 2— D discrete state space model for linear iterative circuits which
can be regarded as a generalization of the well known state space model for single dimensional
linear time discrete systems (for a comparison see [14]). This development will enclude the
definition, formulation of a linear iterative circuit and the derivation of some basic concepts as
the state transition matrix, modal controllability, modal observability etc.
we also note that by the end of this development a 2 — D unilateral linear iterative circuit
representaion is given.

The study of the iterative circuits is limited here to the linear case (i.e. each cell perform
a linear transformation), as this allows the use of linear transformation techniques wich con-
siderably facilitate the analysis, design, and implimentation of such circuits. Linear iterative
circuits may be used in applications such as encoding, decoding networks for linear codes, and
image processing. For some other results see e.g. [20], [21], and [22].

We also present in this chapter a canonical form under strict system equivalence and the
characterization result obtained in the previous chapter is extended here to the k' case. We
also note that some of the results obtained in this chapter for 2 — D systems can be extended
to the the N — D case. We also introduced the multidimensional Laplace transform to get
system matrices associated to high order partial differential equations, and the transformation
of restricted system equivalence between them is considered.

Finally, we end this chapter by the study of a realization problem of a non- proper 2 — D
transfer function.

In the last chapter (the second part of the thesis), we study an abstract ill-posed parabolic
problem known as the final value problem (F.V.P.) of the following type



u'(t) + Au(t) = 0, 0<t<T (1)

u(T) = f @
for some prescribed final value f in a Hilbert space H. A is a positive self-adjoint operator
such that 0 € p(A). Such problems are not well posed, that is, even if a unique solution exists
on [0,7] it need not depend continuously on the final value f. We note that this type of
problems has been considered by many authors, using different approaches. Such authors as
Lattes and Lions [31], Miller {32], and Showalter [42] have approximated (F.V.P.) by perturbing
the operator A.

We also note that, in [1], [10], and [41] a similar problem is treated in a different way. By
perturbing the final value condition, they approximate the problem (1), (2), with

uW(t)+Au(t) = 0,0<t<T, (3)
u(T)+au(0) = f (4)

A similar approach known as the method of auxilliary boundary conditions was given in [33].
Also, we have to mention that the non standard conditions of the form (4) for parabolic
equations have been considered in some recent papers [2], [3].

In this study, we perturb the final condition (2) to form an approximate non local problem
depending on a small parameter, with boundary condition containing a derivative of the same

order than the equation, as follows:

() +Au(t) = 0,0<t<T, (5)
u(T)—ou (0) = f. (6)

Following [10], this method is called quasi-boundary value method (Q.B.V.M.), and the
related approximate problem is called quasi-boundary value problem (Q.B.V.P.). We show that
the approximate problems are well posed and that their solutions u, converge in C* ([0, 7], H)
if and only if the original problem has a classical solution. We prove that this method gives a
better approximation than many other quasi reversibility type methods e.g. [1], [10] and [31].

Finally, we obtain several other results, including some explicit convergence rates.
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We end this thesis by giving a conclusion and references related to this research work.



Chapter 1

PRELIMINARY RESULTS (1-D
SYSTEM THEORY)

1.1 Introduction

In 1-D case, Rosenbrock [40] has given system matrix representations for different types of 1-D
systems e.g. 1-D ordinary differential systems, discrete and generalized differential systems,
etc. Some important notions in system theory such as, state transition matrix, controllability,
observability, state feedback, etc. were given in terms of these 1-D system matrices. In this
chapter, we first, present these different notions in the one dimensional case (1-D case), then
we try to give the analogous extensions of some of these notions to the multidimensional case,
in particular to the bidimensional case (2-D case), which has many interesting physical appli-
cations(e.g. in image processing, iterative circuits coding and decoding theories etc.). We also
present some results concerning the problem of bringing a class of system matrices to a canon-
ical form under some matrix transformations (e.g. system equivalence, system simialrity, strict
system equivalence and restricted system equivalence). For more results on 2-D polynomial

matrices and 2-D systems see [37], [38].



1.2 Controllability and Observability

1.2.1 Controllability

Let the following controlled linear system giveh by

g'(t) = Az(t) + Bu<t), (1.1)
y(t) = Cz(t) + Du(t)

where z(t) € R* u(t) € R™,y(t) € R" and A, B,C, and D are matrices of dimensions respec-
tively n x n, n x m, r x n and r x n , and they are respectively known as the dynamical matrix,

controllability matrix, observability matrix and transmition matrix.

Definition 1 The system (1.1) is said to be completely controllable ( c.c.) if and only if for
every to € R and every initial state z(ty) = zo and every final state xys, there exists a finite

time t; > to and a control u(t), fort € [to,t1] such that
z(t1) = x5

Remark 1 We can define in a similar way the complete controllability of the folloiwng time
varying system
T (t) = A(t)z(t) + B(t)u(?)
y(t) = C()z(t) + D(t)u(?)

where A(t), B(t), C(t) and D(t) are now time depending matrices of appropriate dimensions.

(1.2)

We now give the dual notion to controllability, the observability of a system.

1.2.2 Observability

Definition 2 The system (1.1) is said to be completely observable ( c.o0.) if and only if for an
arbitrary to € R and an initial state z(ty) = xo, there exists a finite time t; > to such that for
given control variable u(t), t € [to,t1] and output vector y(t), t € [to,t1], we can determinate

the state vector x(to).



In the following, we give two theorems which characterize the controllability and observ-

ability notions in algebraic terms.
Theorem 1 The system (1.1) is c.c. if and only if the block matriz (the controllability matriz)
U=[B,AB,A’B,--- ,A"'B]
has rank equals n [5], i.e.
rank [B,AB,A2B, - ,A"'B] =n (1.3)
Theorem 2 The system (1.1) is c.o. if and only if the block matriz (the observability matriz)
V="[C,CACA%--- ,CA™]
has rank equals n [5], i.e.
rank ® [C’, CA,CA?, ... ,CA”"I] =n (1.4)
The following theorem shows that the notion of observability is a dual notion to controllability.

Theorem 3 The system (1.1) is c.c. if and only if the dual system

g(t) = —tAz(t) + ‘'Cu(t)
y(t) = ‘Bz(t) ’

(1.5)

is c.o.[5].

1.3 Canonical Matrix Form Problem over Rs]

1.3.1 Companion Form over the Ring R[s]

We show here that a companion form matrix associated to a differential equation or differential

system can be obtained by two different approaches, one is algebraic and the other is geometric.
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First, let us be given the following ordinary differential equation (o0.d.e.) of order n with

constant coefficients
ZE) + ky2mV@E) 4 A k12 () + k2 (t) = u(t). (1.6)

Then (1.6) can be transformed [4] into the canonical form (companion form) system given

by

w = Cw+ du (L.7)
where d = [0,0,--- ,1]* and C is the n x n constant companion form matrix given by
0 1 0 e 0
0 0 1 - 0
(1.8)
0 0 0 e 1
—kn —kn1 —kna -0 —ki
We note that a system of the form
t = Az + Bu (1.9)

can be transformed by a non singular transformation w = Tz into the companion form system

(?7) if and only if it is completely controllable. For a proof of this result see [5].
Now, we give the following result which can be considered as a generalization of the above

result given in Barnett [4] to the case of an n'® order o.d.e. of variable coefficients.

Theorem 4 Let the following differential equation of order n with variable coefficients be given
2N+ k() 2"V + ok (8) 2(8) + R (8) 2(8) = B () u(t). (1.10)

Then (1.10) can be transformed into the canonical form

W =C () w+d(t)u(t) (1.11)

11



where C (t), is the companion form matriz associated with (1.10), and it is given by

[ 0 1 0 e 0 ]
0 0 1 0
C(t) = :
1
| =k () —ka-1(t) —kn2(t) —ki (t) |

and

d=[00 - 0 80|

We note that w = [z, 2.2 ,z("_l)]t, and the solution of (1.10) is by definition the
first component of w i.e. z, and not the whole vector w.

Proof. By using the following change of variables

,

wi(t) = z(t)
wy(t) = 20(t)

| wa(t) = 2= (¢)

we obtain
wt) = 0@ = ws (t) '
wy(t) = 200 = ws(t)
w1 (t) = Z"7V() = wn(t)
w,(t) = 2ZM@) = —k )2V () — ... = ka (t) 2 (t) + B(2)
| w (t) = —ki()wa(t)— ...~ ka (w1 (t) +B() |

Now, letting
w(t) = (w(t), wa(t), -, wa(t))".

Then, we get the required canonical system in companion form

w (t) = C(t)w(t) + d(t)u(t),

12



where C(t) is the n x n companion form matrix given by

[ 0 1 0 0 |
0 0 1 0
C(t)= : : : : (1.12)
0 0 0 1
| —kn(t) —kna(t) —knoa(f) —ka(t) |
and ) .
0
0
d(t) =
| B(1) ]
| |

Now, before we present the geometric approach, we first give the following definition con-
cerning the polynomial matrices in one indeterminate s i.e. matrices with entries in the ring

of polynomials R([s].

Definition 3 A matriz M(s) with entries in the polynomial ring R[s] of one- indeterminate s

and with coefficients in R is called a polynomial matriz. The ring of such polynomial matrices

is denoted by M, (R[s]).

Let A: X — X be an arbitrary endomorphism of a vector space of dimension n on a field
F, k(\) and m(\) are respectively its characteristic and minimal polynomials.

We know from [30] that if A is cyclic (i.e. k(A) = m(A)), then there exists a cyclic generator
y of X relatively to A (i.e. such that y, Ay, A%y,--- , A" !y are linearly

independent).

Now, assume that A is a cyclic endomorphism of X with generator y and define the auxiliary

13



polynomials as follows:

mP(\) = m(A) = A" = (a1 +agh + -+ a, A"V
mO(\) = A (g4 agh 4 -+ ap A" T?)
m-D()\) = A —an
m™M(\) = 1
from this we get
AmP(N) = mEDA) +a;m()), i€ {L,2,---,n}, (1.13)

using the generator vector y and replacing A by A in (1.13) we obtain
Am@(A)y = mED(A)y +am™(A)y, i€{1,2,--,n},

Now, defining the vectors e; by

m(l)(A)y) 1€ {1a2, e ,TL}
0 if i=0

8]
-
|

)

then {ei}ie{l':,,.._’n}is a basis for X, and we have
Ae; = e;_1 +aje,, i€{1,2,---,n}

hence
Ael = 061 + 062 cee Oen,l + ae,

Ae, = le; + Oeg + - - - + Oep—y + aze,

Ae,_1 = 0e;+---+1lep_o+0e,1+ an-_16n

\ Ae, = 0e +---4+0e, o+ le,_1+anen

Therefore, the companion form matrix associated with the endomorphism A in the basis

14



{ei}ie{lg,...‘n} is given by

o 0 --- --- 0 1

ay Gy -+t Gpey Gn |

Now, we give a generalization of the previous result to the case of the ring of polynomials R[s].
Let X = (R[s])™ be the free modulus of finite type over the ring R[s], then we give the

following theorem

Theorem 5 Let A(s) : (R[s])® — (R[s])" be an endomorphism over the Ris]-modulus(R[s])",
and k(A(s)) be the characteristic polynomial of A(s), (i.e. k(A(s)) = det(A(s)I — A(s)), A(s) €
R[s]. Then

k(A(s)) =0 (1.14)

Proof. Since R[s| is a commutative ring, then we can apply the Caley-Hamilton thoerem

to get (1.14). m

An endomorphism A(s) : (R[s])” — (R[s])" is said to be cyclic if its minimal polynomial
m(A(s) coincide with its characteristic polynomial k(A(s)) ( i.e. m(A(s)) = k(A(s)). Recall
that the minimal polynomial of A(s) is defined here to be the polynomial of least degree such
that

m(A(s)) = 0.

Now, using [30], there exists a cyclic generator y(s) of (R[s])™ relatively to A(s) such that
y(s), A(s)y(s), -+, A" (s)y(s)-

are linearly independent.

Now, define the vectors e;(s) by

{ei(s) — mO(A(s)y(s), i€{L,2,---n}

)

eo(s) = 0

15



where m()(\(s)) are the auxiliary polynomials given by

mO(A(s)) = m(A(s)) = A(s)" — (a1(s) + az(s)A(s) + - - - + an(s)X"7'(5))
mONGE) = M~ (aals) + and(s) + o+ e (5) )
m*D(A(s)) = A(s) — an(s)

mM(A(s)) = 1

Since for p;(s) € R[s}],i=1,2,--- ,n

Zp, )ei(s) —O:Zp,(s (’) )y(s) =0,

and this implies that
zpz )[A™(s) — aipa(s) — asya(s)A(s) — -+ — an(s) A" (s)]y(s) = 0
which in turn implies that

p1(8)[A™ 1 (8)y(s) + [—pi(8)an(s) + p2(s)] A" 2(s)y(s) + [—p2(s)an(s) + ps(s)]x
A™3(s)y(s) + - - - + [—p1(s)as(s) — pa(s)as(s) — - - - — pn_1(s)]A(s)y(s)+
[—p1(s)az(s) — pa(s)as(s) — - -+ — pn-1(s)an(s) + pa(s)]y(s) = 0.

Since y(s), A(s)y(s), A%(s)y(s), - , A""1(s)y(s) are linearly independent, then we have

' pis) =
—p1(8)an(s) +pa(s) =0
\ —p2(8)an(s) +ps(s) =0 (1.15)
—p1(s)as(s) — pa(s)as(s) — -+ — pp-1(s) =0
| —pi(s)az(s) — pa(s)as(s) — -+ — pn-1(s)an(s) +pa(s) =0
Hence from (1.15) we get
p1(s) = pa(s) = p3(s) = -+ = pa(s) = 0.

16



Sofei(s)}i—1 ..., are linearly independent, which shows that they form a basis for the modulus

X = (R[s])". Hence,
A(s)ei(s) = ei—1(s) + ai(s)en(s), 1=1,2,--- n.

And so the companion form associated with the endomorphism A(s) is given by

0 1 0 - 0 |
0 0 1 0
C(s) = : : oL : X (1.16)
0 0 0 1
] a1(s) az(s) asz(s) -+ an-1(s) |

we note that the transformation used here to get the companion form (1.16) is given by

T(s) = [ei(s), ea(s), - ,en(s)] (1.17)

1.3.2 Smith Form over the Ring R[s]

Definition 4 Let P(s) be a polynomial matriz, over the polynomial ring R[s|, of order n x m

and of rank r. Then, the Smith form matriz S(s) of P(s) is defined by

() 0 - - 0 0
0 . c. e e 0
R 0o -
S(s) = o (#) 1, (1.18)
: . 0
0 : : 0 . 0
o 0 - -~ 0 O
where i;(s),i9(s), - - - ,ir(8) are the invariant polynomials of the matriz P(s) and which satisfies

the following properties:

o ir(s) divides ix_y(s), Vk = 2,1
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o ip(s) = 28 do(s) =1

T dk—1(s)?

Definition 5 Two polynomial matrices P(s) and Q(s) of orders m X q and n X p respectively,
over the ring of polynomials R|[s], are said to be equivalent if there exist two unimodular (i.e.with
non- zero constant determinants) polynomial matrices M(s) and N(s) of orders m x n and

p X q respectively, such that

We note that two matrices P(s) and Q(s) are equivalent if one is obtained from the other by a
sequence of elementary operations undertaken on the rows and columns of the other (i.e.P(s)

and Q(s) are products of elementary matrices).

Definition 6 Two polynomial matrices P(s) and Q(s) of the same order, over the ring of
polynomials R[s], are said to be similar if there exist a square unimodular (i.e.with non- zero

constant determinant) polynomial matriz M(s) such that

P(s) = M~ (s)Q(s)M(s).

1.4 System Matrix Representation (1-D Case)

1.4.1 System Matrix Representation for O.D.E.

Let the following differential system

"= A B
’ T R (1.19)

I

y = Cz + Du+u +---)

where z is the state vector, u, u'and y is the input vector (the control variable) and its deriva-
tive and the output vector respectively. A, B,C, and D are matrices matrices of appropriate
dimensions

If we assume zeros initial conditions and take Laplace transform of (1.19) we get
st = AT + DBu

. (1.20)

g = CzZ + D(s)u
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Definition 7 The system matriz

M(s)=1| ..... e | (1.21)

introduced by Rosenbrock [40] in 1-D case, is known as the state space system matriz represen-

tation of the differential system (1.19).

In a similar way, we can obtain different types of system matrices over the ring of
polynomials R[s] in one variable s i.e. in the 1 — D case, for the following different types of

systems:
Ex = Az + Bu

y = Cz + Du

(1.22)

where A, B,C, D and E are matrices of appropriate dimensions with E is may be a singular
matrix.
Where, again by taking Laplace transform and assuming zeros initial conditions we obtain

the system matrix representation of (1.22)

IO EN T o (1.23)

and for the more general system e.g.

T(s)¢ = U(s)u

we have the following system matrix

P(s)=| covenene. 2 (1.24)
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1.4.2 System Matrix Transformations

Rosenbrock [40] has introduced the notions of system matrix representation and system matrix
transformation between such system matrices. Verghese and al [44] have studied and developed
the so called generalized (or descriptor) state space systems. For the 1-D case, these systems
(1.22) give rise to matrices over R[s] of the form
sE—A : B
(1.25)
-C : 0
where A, B and C are matrices of appropriate dimensions and F is an n X n matrix which may
be singular.
Matrices in (1.25) are extensions of matrices of the form
s, —-A : B
: (1.26)

Definition 8 Let

~Vi(s) + Wil(s)
be two (r +m) x (r +1) polynomial system matrices over R[s]. We say that P, (s) is strictly

system equivalent (s.s.e.) to Py (s) if there exist (r +m) x (r + 1) system matrices

M(s) : 0
Li(s) = : ,
X (s) I,
and
N(s) : Y (s)
Ly(s) = :
0 I;



such that
Pi(s) = L1 (s) P (s) L2 (s),

where M (s) and N (s) are 7 x r square unimodular matrices and X, Y are matrices of orders

m X r and r X [ respectively.
Remark 2 (1.25) is strictly system equivalent to (1.26) if E is regular.

Definition 9 Let

—Vi(s) @ Wi(s)
be two (r +m) x (r + l) polynomial system matrices over R [s]. We say that P, (s) is restricted

system equivalent (1.s..e.) to P (s) if there exists (r +m) x (r + 1) system matrices

M(s) : 0
Ll (3) = [N “ e y
0 A
and
N (s) 0
LZ (8) - y
0 i
such that

Py (s) =Ly (s) P2 (s) La (),

where M (s) and N (s) are r x r square unimodular matrices over the ring of polynomials R[s].

Remark 3 We note that if in the definition of the transformation of strict system equivalence
(s.s.e.) we replace X (s) and Y (s) by 0 (the null matriz) we get the transformation of restricted
system equivalence (r.s.e.). For some interesting results on strict (respectively, restricted )

system equivalence see [15].
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1.4.3 A Canonical Form Under System Matrix Transformation

We give in the following a canonical form of a polynomial matrix over the ring of polyno-
mials R[s] of one indeterminate, known as Smith form, under the equivalence system matrix

transformation

Theorem 6 Every polynomial matriz P(s), over the ring R[s], of order n x m and rank r is

equivalent to its Smith form given in (1.18).

Proof. Since R[s] is a principal ideal domain, then a proof of the above theorem can be
obtained in a similar way as in [19] using the elementary operations on the polynomial matrix

P(s). And so for more details see [19]. =

1.4.4 Controllability and Observability Properties via System Ma-

trix Representations

Now, we give some purely algebraic criterias on the characterization of the controllability and

observability of the systems represented by some of the matrices given above.

Theorem 7 The system described by the system matriz M (s), given in (1.21) is completely

controllable if and only if the folowing matriz ( the controllability matriz):
C(A,B) = [B, AB, .., A™'B]
has rank n.

Similarly, by using the theorem of duality, we can get the following analogous characteri-

zation result for complete observability.

Theorem 8 The system described by the system matrix M (s), given in (1.21) is completely

observable if and only if the following matriz ( the observability matriz):
0(C,A) = [C, CA,..., cA™Y]"
has rank n.
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For a proof of the above two theorems see [4].

Remark 4 The above characterazition theorems can be generalized to systems described by

system matrices over the Ting of polynomials R|s, z].

Remark 5 The above matrices (1.25), (1.26) will be extended in chapter 2 to the 2 — D case

i.e. to matrices over R([s, 2] in two indeterminates s and z of an appropriate form.
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Chapter 2

EXTENSION OF SOME RESULTS
TO 2-D CASE

2.1 Introduction

We try in this chapter to present a generalization of some of the notions and results that are
given in the 1 — D system theory case of the previous chapter. We start by extending the
two important notions, in the theory of linear systems over the ring of polynomials in two
indeterminates R|s, 2], concerning Smith form and Companion form matrices to the 2 — D
case. First, we give a 2 — D Companion form matrix associated with a 2 — D characteristic

polynomial.

2.2 Canonical Matrix Form Problem over R/s,z]

2.2.1 A Companion Form over the Ring R[s,z]

Let the following discrete system used in Gregor[23] and which was introduced by Roesser [39]

in modeling the bidimensional image processing:

¥ = Az + Bu, (2.1)
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where
21, 5) i+ 1,7)

(1, J) | z°(i,5 +1)
where z" € R™ | z¥ € R™ are the horizontal and vertical states of the state vector z, u € R?

is the input vector, and A and B are constant matrices in M, ,(R) and M, ,(R) respectively.

Definition 10 Let P be a square matriz of order n x n. We define the bidimensional charac-

teristic matriz of P and the characteristic polynomial of P as follows:

A(s,z) = AI,—P
a(s,z) = det(Al, — P),

where

A =sl, &zl,,

with @ denotes the direct sum.

Definition 11 The matrix P which can be written in the following form

p = Pll Pl2 ’

P21 P22

where the matrices P;j; € Mp, n;(R),i,j = 1,2, is known as the Companion matriz of the
2 — D characteristic polynomial a(s, z), and is characterized here by the fact that the rank Py,
or rankPy; is equal to 1. We note that the matriz P above can be choosen in arbitrary way
since the use of a non- singular transformation does not change the rankPyz or rankP,;. We
also note that the in the 2 — D case, the use of the previously given direct methods to construct

the Companion form matriz is usually complicated if
min(rankPya, rankPy;) > 1.

And so in this case, the construction of the companion form matriz for an arbitrary polynomial

a(s, z) and so an arbitrary matriz A(s,z) can be obtained by using the elementary operations
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on the ring of polynomials R[s, z] and the augmented operator f defined by
[ Min(R[s, z]) = M, ,(R[s, 2])

such that

f(T(s,2)) = ! 0 ,  T(s,z) € Mp(R[s, 2])
0 T(s,z2)

For more details concerning this case see Galkowski [18].
Remark 6 For polynomial matrices P(s,z) over the ring R[s, z] which has the following form

P(s,z) = s, — A(z), (2.2)

the companion form associated to this matriz (2.2) can be obtained in a similar way as in the

1 — D case. And it has the form
P(s,2) = sl, — C(2),

where C(z) is the companion matriz given by

[ o 1 0o 0 |
C(z) = . (2.3)
0 0 1
I —a,(2) —an_1(2) -+ —a1(2) ]

2.2.2 A Companion Form for 2 — D Polynomials

Now, our aim is to give a 2— D canonical form matrix which is analogous to the 1—D companion
form matrix given above.

We consider the same 2 — D discrete system given above (by Roesser [39] for 2 — D image
processing). If inputs and outputs are neglected in the model equations, then the equations of

the system have the form

h(i4+1,5) = Azt (i,7) + Az* (3, 5)
¢ (i,j+1) = Asz"(4,7) + Aaz* (4, §)
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Now, let S ( resp.Z ) be an operator that has the effect of advacing the horizontal coordinate
( resp. the vertical coordinate) upon which it is operating. The effect of these operators on the
state vectors is

h(i+1,5) = sz (4,)

i +1) = z2*(,j)

Then, we have

(SInl - Al) xh (Z,_]) - AQIu (7”.7) = 0

—Ath (’L,]) + (ZIna - A4) " (Z’]) = 0’

and so we have:

sl,, — A —A
o T (i,j) = 0,
—A3 ZInz—-Az;
where
. z" (4, )
T (i,5) = o
(4, 5)

The above equation represents a system of homogeneous equations in the elements of T (3, j).
For the system to have a non trivial solution for T (3, j), the transformation represented by the

matrix must be singular.

Definition 12 The matriz
wl—A=(s,2)[ - A

shy, — Ay —A
- —Ajz zIn, — Ay
obtained above is said to be the two-dimensional characteristic matrix of the partitioned matrix
A, where
A A A,
As Ay
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Our aim now, is to find a matrix A given as above where A; is n; X n; ,and A4 is ny X ny, A,

is ny X ny and Az is ny X ny. Such that the determinant of the characteristic matrix
wl—-A=(s,2)I - A

SInl - Al —Az
—A3 Z[n2 - A4
is given by the following polynomial

ng
d(s,z) = Y Pi(s) 2™
§=0

Z Qi (Z) g™~ i
1=0

where Py (s) and Qo (2) are monic polynomials and have degrees n; and n, respectively. also

P;(s) , j = 1,ny ( respectively, Q; (z) ,i = 1,n1) have degrees less or equal to n; (respectively,
ny ) and such that the matrix A is in a form which is similar to the 1 — D companion form .
Here we mean by A is in a 2 — D companion form the following :

Ay and A4 are in companion forms and moreover A, is such that all the elements above the
diagonal of the over all matrix A are zero except for the elements on the superdiagonal which
are all equal to one.

In the following we present a companion form for 2 — D polynomials

Proposition 1 Let d (s, z) be a 2 — D polynomial given as above, then the 2 — D companion

matriz of d (s, z) is given by =
C1 C2
03 04
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0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 1 0 0 0
| POn)  POm-1 .. PO 1 0 0
| R Rs(1,2) .. Rs(Lmy) 0 1 0
Ry (2,1) Rs(2,2) .. Rs(2,m) 0 0 0
. : . 0
R3(n2—1,1) R3(ne—1,2) ... Rz(ng—1,m) 0 0 1

Rs (n2,1) R3(n2,2) ... Rs(ng,m) Q(0,n2) Q(0,my—1) Q(0,1) |

(2.4)

Where C; Cyare the n; X nj,ny X np companion matrices of Py (s) and Qo (z) respec-
tively.i.e..
det(sl,; — Cy) = Py(s) =s™ + P(0,1)s™~ 1+ P(0,2)s™~2+ ... + P(0,ny),

and,
det (2l —Cy) = Qo (2) = 22+ Q(0,1) 2" +¢(0,2) 2" 2 +--- + Q(0,n2),

where, C, is n; X ny, matrix and has all its columns zero except for the first one which is given
by E,(the first column of I,,;), C3 is ny X ny matrix and its elements Rj3(3, j) are determinated

uniquely and recursively from the following formula:
i—1

Rs(i, j) = Q(0,i)P(0,n1 — j +1) — P(i,ny — j+ 1) = Y Q(0,i — k)Ra(k, j) (2:5)
k=1

where P(i, j) and Q(i, j) are defined by the following:

ni
P(s)=Y_P(i,j) s 7,i=0,ny,
Jj=0

and

Qi(2) =) Q4,5)s™ i =0,m,
=0
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Furthermore, if d(s, z) is separable ie. can be written as a product of two 1 — D polynomials,
then Cj is taken to be the null matrix. For the proof of this result see [6].

The matrices considered here are associated with partial differential equations or 2 — D
discrete systems. For some results concerning these matrices see [11, 12, 13].
Canonical forms of these matrices over R [s, z|,and wich arise from 2 — D discrete models given
by [39] are obtained under a similarity transformation. And since canonical forms play a
fondamental role in the modern theory of lineér systems, we present here a particular type of
canonical forms, for a comparision see (24}, wich is known as companion matrix form. Finally,

using a result of [6, 16], we give a necessary and sufficient condition for a matrix A of the form

A A
As A4

A=

to be equivalent to the 2 — D companion form.

Now, we give the following characterization theorem:

Theorem 9 A necessary and sufficient condition for a matriz

A Ay
As Ay

A=

as the one given above, to be equivalent to the companion form (2.4) is that its characteristic

matrizc wl — A= (s,2) I — A is equivalent to the Smith form:

S(s,z) = Ttna=r 0
0 det (wI — A)

Proof. Suppose that the matrix A is equivalent to the companion form, then it is clear
from the form of the matrix wI — C that this latter matrix is equivalent to the Smith form
S (s, z) given above. Hence wl — A is equivalent to the Smith form S (s, z), and so the necessity
condition is established.

To prove the sufficiency, we suppose that the matrix A is equivalent to the Smith form S (s, z),
then by the previous proposition there exists a companion form for the polynomial d (s, z) ie.
there exists a matrix C in the form (2.4) such that |wl — C|=d (s, z). And so we get wl — A

tie ouen I0rl.

and wl — C are equivalent since they are both equivalent to ]
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Example 1 Let the 2 — D polynomial d (s, z) given by
d(s,z) =(s*+1)22+(s2+25+1)2+ 32 +5+2
=(2?+243)s>+(22+1)s+22+2+1

where the polynomials Py (s) and Qo (2) are given by
Py(s)=s2+1,Qo(2) =22 +2+3

and the polynomial coefficients P; (s) and Q; (z) are given by

2

P(s)=) _ P(i,j)s*7,i=12

=0

and )
Qi(2) =) Qi,j) 7, i=T2
j=0

And the elements of the matriz C3 are calculated from the formula (2.5). And so we obtain the

elements C;,i = 1,4 of the bloc matriz C which are given by

0 1 00
Cl = s CZ =
-1 0 10
0 -2 0 1
C3 = s 04 =
2 1 -3 -1
And so the over all matriz C has the following companion form
[0 1 00
-1 0 1 0
C=] coiiiiiiiiis 7 it
0 -2 0 1
2 1 -3 -1

Conclusion 1 A particular matriz form , known as 2 — D companion form is obtained for
2 — D discrete systems. Furtur research work can be carried out by using this canonical form
to link certain notions of 2 — D system theory (e.g. controllability, observability, realizability

etc.), as for the case of 1 — D linear systems.
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2.2.3 The Smith Form over the Ring R[s,z]

Some notions and results that have been given in the first chapter concerning Smith form on
the ring of polynomials R[s] of one indeterminate are generalized here to the bidimensional
case, i.e. over the ring of polynomials R[s, z] in two indeterminates s and z. So we begin
by giving the following definitions concerning the equivalence and similarity transformations

between polynomial matrices on the ring R[s, z].

Definition 13 A polynomial matriz of order n, over the ring R[s, z] of polynomials in two
indeterminates s and z with coefficients in R, is defined as a matriz P(s, z) with entries in
R[s, 2] i.e.

P(s,2) =[Pi;(s,2)] iy - -» Pij(s,2) € R[s, 2].

§j=17

Definition 14 Two polynomial matrices Py(s, z) and Pa(s,z) of orders n x m and p X q re-
spectively, are said to be equivalent if there exists two polynomial matrices M (s, z) and N(s, z)

of orders n x p and ¢x m respectively such that
Py(s,2) = M(s, z)Pa(s, 2)N(s, 2).

Definition 15 Two square polynomial matrices Py(s,z) and Py(s, 2) of the same order n, are
said to be similar if there exists a square unimodular polynomial matriz M(s, z) of order n such
that

Pi(s,z) = M(s, 2)Py(s, 2) M (s, 2).

Remark 7 In contrast to the one dimensional case, the ring of polynomials of two variables s

and z, R[s, 2] is not a principal ideal domain [7].

In 1-D case a Smith form of a matrix M (s) over R [s] can always be defined and it is
equivalent to its Smith form. For the 2-D case a Smith form of a polynomial matrix M (s, z)
over the ring R [s, 2] of polynomials of two indeterminates can also always be defined. However,
this Smith form is not, in general, equivalent to M (s, z), as it can be shown later on in this
work. Now, we assume, in all of the forthcoming definitions, that R is an integral domain (that

is, R is a unitary commutative ring which has no zeros divisors).
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Definition 16 We say that R is a greatest common divisor domain (g.c.d.d) if any two ele-

ments in R possess a greatest common divisor (g.c.d).

Definition 17 R is called a Bezout domain (B.d) if any finitely generated ideal of R is prin-

cipal.
Definition 18 R is called a Smith domain (S.d) if the following hold:

1. Ris a B.d.

2. For any non-zeros coprime a, b, ¢ € R there exists s, € R such that sa and sb + tc are

coprime.
Now, we recall the following result.

Theorem 10 Let R be a ring such that : every two elements of R have a greatest commun di-
visor. Then, a necessary condition for a matriz M in the ring of rectangular matrices Mpxm(R)

over the ming R to be equivalent to its Smith form is that R must be a principal ideal domain

[29].

Remark 8 We note that, in contrast to the 1 — D case, the ring of polynomials in two indeter-
minates R[s, 2] is not a principal ideal domain, and so as a result of the above theorem we do
not have an equivalence transformation between a polynomial matriz over R[s, z] and its Smith

form.

Now, we extend the definition (1.18) of the Smith form matrix to the ring of polynomials
in two variables s and z, R[s, 2| as follows:

Let T (s, 2) be a polynomial matrix of order p x g, over R s, z], we define the Smith form

S (s,z) of T (s, 2) by:
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S(s,z) = { or, (2.6)
F (s, 2)
;o Wf p>g
\ 0
where,
F (s,2) = diag{i1 (s,2),12(8,2),..,im (8, 2)}, with m = min (p, q),

and the elements i (s,2),k=1,2,--- ,m. are known as the invariant polynomials over R s, z]
of the polynomial matrix T (s, z), and they are given by

, fﬂﬂ,kzl,l...,r

i (s, 2) = k-1(0:2) , (2.7)

......... 0-ovvvvee k=r+1,7r+2,...,m
where r is the rank of T (s, z), and dy (s, z) = 1, and the determinantal divisor di (s, 2) is the
greatest common divisor of all the k** order minors of T (s, z) . We note that all 4 (s, 2) in (2.7)
which are not identically zeros, are monic over R [s, z], and they satisfy the following divisibility
property:

i1(8,2) fia(s,2) [ --rovv- [ir (8, 2) (2.8)

Theorem 11 If R is a g.c.d.d then a necessary condition for a matriz M € R>™ (I +m > 2)
to be equivalent to its Smith form S 1is that R is a B.d.

For a proof of this theorem see [26]

Remark 9 We can define a Smith form S (s, z) (2.6) for any matriz M (s, z) € R[s, 2|, since,
R [s, 2] is a g.c.d.d., but not a B.d since the finitely generated ideals in R [s, 2] are not necessarily
principals ( e.g. the ideal generated by s and z). And so as R[s, 2] is not a B.d, then a matriz
M (s, z) over Rs, 2] is, in general, not always equivalent to its Smith form. To overcome this

difficulty, we use instead of R [s, z] the ring R (z) [s] or R (s) [2], and for this vision of R[s, 2],
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we can establish an equivalance of 1 — D matriz with a Smith form over R (z) [s] or R(s)[2].
However, this approach can give a Smith form of a matriz with entries which contain rational
elements. But [29] suggested the ideas of renormalising the resulting transformations to get
Smith forms by transformation over R (2) [s] or R (s)[2]. And one problem which arises from

this approach s that the resulting Smith form is not necessarily unique.

Because of the important role that is played by canonical forms in many research areas
especially in control theory (e.g. Smith form), so our aim is to establish necessary and sufficient
conditions for a matrix M (s, z) to be equivalent to its Smith form. We try here to generalize
a result given in [6]. For some other results on these canonical forms see, [13] and [16].

Now, in the following, we give a theorem which can be considered as an extension of a
characterization result [6] for a polynomial matrix over R][s, z] to be equivalent to its Smith

form.

Theorem 12 Let P(s, z) be a square matrixz of order n over the ring of polynomials R]s, 2|
such that
P(s,z) = sl, — A(z).

Then, P(s, z) is equivalent to the Smith form

In—S 0 0
0  in_ofs, 2 0 0
S(s,2) = 2(,2) , (2.9
0 0 in_l(s, Z) 0
0 0 0 in(8, 2) ]

if and only if the polynomial matriz A(z) over the ring R[z] is similar over the ring R(2] to the

companion matriz C(z) of the following form

Clz)=| 0 Cuz) 0 |, (2.10)
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where the matrices C;(z), 1 = 1,2,3 are polynomial square matrices of order n; in companion

form over the ring R[z] and such that their characteristic polynomials are given by

det(sl,, — C1(2)) = in-2(s,2)
det(sl,, — C2(2)) = in-1(s,2) ,
det(slp, — C3(2)) = (s, 2)

Proof. To prove the necessity, we assume that T'(s,2) = sI, — A(z) is equivalent over

R (s, z] to S (s, 2) in (2.9). By elementary raws and columns operations on S (s, z) ,we get

In, -1 0 0 0 0 0
0 gna(s,z) O 0 0 0
S(s,z) = 0 0 Tnas 0 0 0 (2.11)
0 0 0 gna(s,2) O 0
0 0 0 0 Iy O
i 0 0 0 0 0 qn (5, 2) i

and so T (s, z) is equivalent to the Smith form S (s, z) in (2.11) (since elementary raws and
columns operations on a matrix preseve equivalence). And since the matrix S (s,2) given in

(2.11) is clearly equivalent to the block matrix

sl,, — Cy (2) 0 0
sl, —C(z) = 0 sl,, — Ca(2) 0
0 0 slh, — C3(2)
where C; (z), are n; x n;, i = 1, 3 square matrices in companion form respectively, such that
det (sI,, — C1(2)) = qn_2 (s, 2), det(sl,, — C2(2)) = gn-1(8,2), and det (sIn, — C3(2)) =
gn (8,2). Hence, the matrix T (s,z) = s, — A(z) is equivalent to sI, — C(z), and since a
transformation of equivalence between such matrices (resulting from r.d.d. systems) can be

replaced by a similarity transformation, then A (2) is also similar to
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which ends the proof of necessity.
Now, we have to prove the sufficiency. Since A (z2) is similar to the matrix C (2) given in
(2.10), then sI,, — A (2) is also similar to sI,, —C (z) and because this last matrix is in companion

form and is equivalent to its Smith form

I, 3 0 0 0
S(s.2) 0  gual(s,2) 0 0
8,z) =
0 0 dn—-1 (57 Z) 0
0 0 0 qn (s, 2)

Then so it is sI,, — A(z). This ends the proof of the theorem. m

Remark 10 Since the block matriz [sI,—C(z) E,] has no zeros, where C(z) is the companion
matriz given in (2.3), so the matriz P(s, 2) = sI, — C(2) is equivalent to the same Smith form

as the matriz P(s, z) = sl, — A(z).

Conclusion 2 In this previous work, we tried to present some types of canonical forms for
matrices over the ring of polynomials R (s, z] (e.g. Smith form), and we generalized a result
concerning necessary and sufficient conditions for a matriz over R[s, z] to be equivalent to a
given Smith form. However, the work on canonical forms needs more investigation, especially,

in the case of matrices of multivariate polynomials.

In the following example we will just show how the rows and columns operations are applied

on S (s, z).

Example 2 For n =6, let S (s, z) be the matriz of the form

I3 0 0 0

0 8,2 0 0
S(s,2) = a4 (s, 2) ’

0 0 gs (8, 2) 0

0 0 0 gs(s2)
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which is the same as the matriz

1 00 0 0 0 ]

010 0 0 0

0 01 0 0 0
S(s,z) =

0 0 0 g4(s,2) 0 0

000 0 gs(s,2) 0

000 0 0 ge(s,2)

Note that the degrees of q4 (8,2), gs5(s,2) and gg (s, 2) in s is 1. Now if we change line 2 with

4 and then column 4 with 2 in the above matriz we get

(1 0 00 o 0
0 g4(s,2) 0 O 0 0
0 0 1 0 0 0
Si(s,2) = ,
0 0 01 0 0
0 0 0 0 gs5(s,2) 0
0 0 00 0 g(s2)

and if we then change line 4 with 5 and column 4 with 5 we obtain

(1 0o o 0o o0 o0
0 q4(s,2) O 0 0 0
0 0 1 0 0 0
Se (8,2) =
0 0 0 gs(s,z) O 0
0 0 0 0 1 0
0 0 0 0 0 gs2)

We note here that, In,—1 = [1] ; In,-1= [1] ; Ing-1= [1] -
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2.3 System Matrix Representation (2-D Case)

2.3.1 System Matrix Representation for P.D.E.

We know from 1-D case, that the systems of the form (1.19), (1.22), and for more general systems

[40], give rise to matrices (1.21), (1.23) and (1.24) respectively over R[s] of the following form:

sl, — A
M(s)=] -ccvnrn..
i -C
[ sE—A
NGE)=| . .oonnnn.
] -C
and
T (s)
P(s)=1| -.....
—V(s)

W (s)

where A, B, C, D(s), T (s),U(s), V(s),and W (s) arenxn,nxl,mxn, mxlIl,rxr,rxl,

m X r, m X | matrices respectively, and F is an n X n square matrix may by singular.

The above system matrices given in (1.21), (1.23) and (1.24) are obtained using the symbolic

calculus(e.g. Laplace transform). And the great interest in these system matrices is due to the

fact that they are very much useful in control theory, since the very important notions such

as controllability, observability, stability and feed back etc. can be described in terms of these

matrices [21, 22], and [25], [27]. Moreover, these system matrices contain all the mathematical

information about the system which is needed to describe its properties and behaviour. The

extension of the above system matrices to the 2-D case to represent e.g. systems of partial and

retarded delay differential equations etc. is given. Also the problem of relating these system

matrices via matirx transformations as system equivalence, system similarity, strict system

equivalence and restiricted system equivalence is discussed. And the problem of obtaining

canonical forms of the above matrices is considered.
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The above system matrix representaions are extended to the 2-D case as follows:

[ sl, — A, —A, : By ]
M (s, z) = ~AsT A Ba i (2.12)
-G ~Cy 0
and ] ]
[ sE; — Ay —A, i By ]
Nio=| B A By (2.13)
-G —Cy 0

where A;, B;j, Cy, i = 1,4; j, k = 1,2 are matrices of appropriate dimensions, and E;, | = 1,2
are square matrices may be singular. We note that the above system matrices in (2.12), (2.13)
are obtained in connection with 2-D discrete equations [21, 22], and 2-D generalized (descriptor)
systems which can be regarded as a generalization of the 1 — D descriptor systems given in [40)],
respectively. And the following system matrices are obtained in connection with retaded delay

differential systems, partial differential systems, and genral differatial systems:
sl, —A(z) : B(s,z2)
—C(s,2) : 0

and

T(s,z) & Uf(s,2)
G(s,2) = o , (2.15)
-V (s,2) : 0
where the above matrices in (2.14), (2.15) A(z), B (s,2), C(s,2), T (s,2), U(s,2), =V (s, 2)

are of appropriate dimensions. For more results on these system matices see, [13]. In the
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following, we give some of the systems that can give rise to the above system matrices in the
2 — D case:

Let the system of retarded delay differential equations given by

2 (t) — Yi, A (t—ih) = 37, Bju(t — jh)

(2.16)
y(t) = 3%=; Cix (t — kh)

where z (t) is an n—column state vector, u (t) is an m—column control vector, and y (t) is a
p—column out put vector, h is a positif constant and A;, B; Cx, 1 <1<, 1<j<s,1<k<
g, are n X n, n X m, and p X n constant matrices respectively. By taking Laplace transform of
(2.16) and assuming zeros initial conditons we get the following system matrix

A(s,z) B(z

M (s,2) = (5:2) B(z) (2.17)

—C(z) O

with A (s, z) = sI,,— A(z), where s and z stand for differential and delay operators respectively.

Also a matrix of the form (2.17) may arise in connection with a partial differential system

of the form . .
& = YAGX+Y BigFu(t)
=0 §=0 (2.18)
Y = Y G
=0

In this case X (t,7),u(t,7) and Y (¢, 7) will be vector functions of ¢ which will usually be time,
and 7 which will usually be spacial variable.

As in the case of system matrices over R [s], the matrix
M, = [sI, — A(z) B(z)]
describes the controllability properties of the system (2.17) whereas the matrix

sl, — A(z2)
—C (2)

describes the observability properties of the system (2.17). A state system matrix of the form

(2.12) may arise from a 2 — D discrete system of the form
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XMi+1,75) = AX"(i,5) + A X" (4, 5) + Bru(3, j)

XU(,j+1) = A3X"(i,5) + AuX" (5,5) + Bau(3, j) (2.19)

Y (i, 5) = CiX"(5,5) + CoX¥ (3,5),
This model is due to [21, 22}, in which the local state X is divided into a horizontal state vector
X" (i,5) and a vertical state vector XV (4,) which are propagated respectively horizontally
and vertically by first order difference equations, u (i,j) is the input vector, Y (z,7) is the
output vector,and A;, As, Az, A4, B1, By, Ciand C, are real constant matrices of appropriate
dimensions.
. If we take the (s, z) transform (the two dimensional Laplace transform) of (2.19) and taking
zeros boundary conditions on X" (0, 5), and X" (i,0), we get the system matrix (2.16). The
controllability ( resp. observability.) properties of (2.19) are described by the system matrix

SI" - Al "A2 Bl

respectively, by the system matrix

i . T
sl, — A, —A,
—A3 ZIm - A4
-4 : —Cy |

2.3.2 System Matrix Transformations

Definition 19 Two system matrices of the form (2.13) are said to be restricted system equiv-

alent (r.s.e.) if they are related by the transformation of the type

M1 0 0 SE] — A1 —Ag Bl
0 M2 0 —A3 ZE2 - A4 B2 y
0 O I, -G =G 0




Ny 0O P00 sE,— A, —A, N :
0 Ny 0 ~A;  2zE,—- A, ! B,

x ? = 3 2 2 (2.20)
0 0 : I -C ~C, :0

where My, My, N1 and N2 are matrices of appropriate dimensions.

1. The transformation in (2.20) is a special case of strict -system equivalence (s.s.e.).

2. If E; and E; in (2.20) are singular, then p(s, 2) is restricted system equivalent (r.s.e.) to
a system matrix p' (s, z) of the form (2.12). We note that this type of matrix arises in the

state space model used by Givon-Roesser [21] in describing 2-D discrete systems.

This restricted system matrix equivalence transformation preserves the px! rational transfer

function matrix given by

SE1 — A1 —A2 Bl

G(s,2)=|C C
[ ' 2 :l —A3 ZE2 - A4 B2

Now, we present a special type of equivalence transformation. ie. a similarity transforma-
tion between system matrices of the form (2.12) given above
Let P(s, z) and P(s,z) be two block polynomial matrices of the form (2.12), then there

exists a transformation of similarity between these two matrices of the following form :

H1 0 0 SIn — Al “A2 Bl
0 H2 0 —A3 ZIm - A4 32 y
0 0 I, -Ch —Cy 0 |
Hl_l 0 0 T SIn - A1 —Zz El
0 H;! 0 —As 2L, — Ay B,
X =
0 0 I -C -C, 0




Remark 11 The above transformation preserves the T. F. M., and the order n + m of the

system.

2.3.3 A Canonical Form Under a System Matrix Transformation

Now, we give the conditions under which a canonical form is obtained using a transformation

of restricted system equivalence (r.s.e.).
Theorem 13 Let p(s, z) a p X | matriz in state space form (2.13) such that
|sEy — A;] # 0 and |zE3 — Ag| #0.

Then p(s, z) is r.s.e. to a canonical system matriz of the form

[ sl.—-4, 0 . Ay -Ap . By |
0 In.—sJi | —Ay —Agy : By
—Az —Aj, Dozl - Ay 0 By,
(2.21)
— A3 — Ay, : 0 Imt—2Jy By
| —Ci, —Ciy D —Ch —Cyy L0 |

where Ay, A; are r X T and t X t matrices respectively (r =deg |sE; — A;| , t =deg |zE; — Ay,

Ji and J, are in jordan cnonical form).

Remark 12 If the matrices
M1=[3E1—A1 Bl]y
and
My = [ 2By — Ay By ]
have full rank, Vs, z € C?, then the matrices Ay, Ay, Bis and Boyg in (2.21) can be choosen to be
in canonical forms.
to obtain these canonical forms and the proof of the previous theorem see Gantmacher [19]. For

further results on canonical forms see also [15] and [16].
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2.3.4 Controllability and Observability Properties via System Ma-

trix Representations

There exists a very close relation between 1 — D ( resp.2 — D ) polynomial matrices and 1 — D

( resp.2 — D ) state space notions such as controllability, observability, and realizability, etc.,
see [40].

We note that, as in the case of system matrices over R [s], the matrix
M, =[sl,—A(z) B(z)
describes the controllability properties of the system (2.17), whereas the matrix

s, — A(z)
~C(2)

describes the observability properties of the system (2.17). We also can describe the controlla-

bility and observability properties of the system (2.19) using the associated system matrices

and _ -
SIn - Al —A2
—A3 ZIm — A4
-C —Ch
respectively.

Now, we try to get a companion form matrix representation for the matrix A(s,z) =

sl, — A(z) using a controllability property.

Theorem 14 Suppose that the system is R"[z] controllable i.e. the following rank condition is
satisfied
rank [ B(z) A(2)B(z) --- A™'(2)B(z) ] =n,Vz €C,
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then the matrix
A(s,z) = sI, — A(z) over R|s, z] can be transformed by an equivalence transformation into

the canonical form (companion form)

A(s,2) =sl, — C(z)

where C'(2) is the companion matrix ovre R [z] given by

[ 0 1 0 0 ]
0 0 1 0
C(z) = 0 0 o --- 0
1

| 02(2) Gnoi(2) - o ai(2)

whre ay (z) are the cefficients in the characteristic polynomial of A (2) i.e.
oI = A(2)] = Y, i (2) "%, ao () = 1

Proof. using a characterization result given in [6], and that the fact

[ shh-A@)] i E. ]
has no zeros, we get that the matrix A (s, z) = sI, — C (2), is equivalent to the Smith form

I, 0
0 |sI,—A(2)]

and since, |sI, — C (z)| = |sI, — A (2)|, then A (s, z) = s, — A (z) is equivalent over R{s, 2] to
A(s,z2) =3I, —C(z).m

Conclusion 3 In this chapter, we tried to present some types of canonical forms for matrices
over the ring of polynomials R [s, 2] (e.g. Smith form), and to generalize a result concerning
necessary and sufficient conditions for a matriz over R|s, z] to be equivalent to a given Smith
form. However, the work on canonical forms needs more investigation, especially, in the case

of matrices of multivariate polynomials.
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Chapter 3

APPLICATION TO A PHYSICAL
PROBLEM (ITERATIVE CIRCUITS)

3.1 Introduction

In this chapter we apply some of the results obtained previously to the study and development
of a 2-D discrete state space model for linear iterative circuits which can be regarded as a
generalization of the well known state space model for single dimensional linear time discrete
systems (for a comparison see [14]). This development will enclude the definition, formulation
of a linear iterative circuit and the derivation of some basic concepts such as the state transition
matrix, modal controllability, modal observability etc.
You find in figure (1) bellow a 2-D unilateral linear iterative circuit representaion.

The study of the iterative circuits is limited here to the linear case (i.e. each cell perform
a linear transformation), as this allows the use of linear transformation techniques wich con-
siderably facilitate the analysis, design, and implimentation of such circuits. Linear iterative
circuits may be used in applications such as encoding, decoding networks for linear codes, and

image processing. For some results related to this see e.g. [20], [21], and [22].
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3.2 Application to Iterative Circuits

3.2.1 Definition and Formulation of a Linear Iterative Circuit

1. Let U(Y, X", X") denote the linear vector space of all primary inputs ( respectively,
primary outputs, horizantal states, and vertical states) over a finite field F. And f (

respectively, g ) denote the linear transformation for the output total secondary state
f:XPx X'xU—- X"x XV
(respectively, for the primary output g),
g: X"x X" xU—-Y

The six tuple T' = (U, Y, X" X, f, g) is called a 2-D linear iterative circcuit.

2. The state space equations, representing a 2-D linear iterative state space model, are

formulated as follows :

Xh(z + 11.]) = Ath(?’v.?) + AQXU(?,,]) + BlU(Z,J)
Xv(la]+1) :A3Xh(2a.7)+A4XU(’L:J)+B2U(Z’]) (3 1)
XM,
vej-c| X
\ X*(i,5)
And a system matrix representation is given by
r .
SIn —Al -—Ag Bl
— I,—A B
Az Z 4 2 (3.2)
—Cl -—Cz 0 ]

Remark 13 Physically, combinational circuits composed of identical cells that are intercon-

nected in the form of a regqular pattern are called iterative circuits. See figure (1) given bellow.
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3.2.2 The General Response Formula and the Transition Matrix
Let E and F' be the advance operators defined by
X"i+1,7) = EX"(3,3), and XV(i,j + 1) = FX"(i, §)

we want to find a closed-form expression for the secondary output Y (¢, j) in terms of the inputs

to the circuit.
Proposition 2 for all i,j > 0, we have
Y(,5)=[C  Cd] X(3,5) +D UG,j)
where
X", 5)
X°(i,7)

X(,4) =

is the total secondary state into the (i, )™ cell.

Proof. is obvious from the equations of the model. m

Definition 20 Let
Al A,

A3 A4
where A;, i = 1,4, are matrices of appropriate dimensions, and A is then the transformation
matriz for the secondary state. We define the transition matriz of a 2 — D unilateral iterative

h

circuit as the (i,7)"* power of A as follows:

A = 0, for i<0 orj<0, A" =1, and

AT = AMOATRT 4 A AWITL for (4,5) > (0,0).
where
AV = AL Az and A% = o0
0 0 Az As
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Theorem 15 For all i,j > 0, we have

J
X(Z,J) = ZAi,,j—k
k=0

+Z(O,0)§(r,k)§(i‘j) Ai-r—L.J-k

For a proof see [21].
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, l l .
U(i, j) X(i,j)
\
SN X(i,)) X(i+1,j)
\‘
YG.j)
X(1.j+1)
' = P> ___...—’

Fig. (1) a 2-D unilateral hnear iieraitve circuit.
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3.2.3 Modal Controllabilty and Modal Observability

The notions of controllability and observability introduced by Roesser in [39] and which look
like as natural generalizations of the 1-D case are in fact just local, they are not closely related
to the notions of minimality, they do not yield a canonical decomposition of the state space,
and they are not compatible with the introduced class of similarity transformations to reduce

the model. So we need to reformulate these notions to get compatible results.

Remark 14 In the 1-D case we note that a system which is represented by a state space system

matriz of the form

...... P (3.3)
-C 0
is controllable if and only if sI — A, B are left coprime, and is observable if and only if

C, sI — A are right coprime.

Remark 15 A generalization of this approach to the 2-D case for systems described by system

matrices of the form given in (8.2) can be obtained if we adopt the following definition.

Definition 21 A system described by (3.2) is said to be modally controllable (respectively
modally observable) if

, B are left coprime.

( respectively, C, | ...... o , are right coprime).

For more results on modal controllability and modal observability, see Kung et all {35] and

[29].
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3.2.4 A Canonical Form Under Strict System Equivalence

In the following theorem we give a more general transformation of strict system equivalence
(s.s.e.) which yields a canonical form of the system matrix (3.2). For other results on canonical

forms see Boudellioua [6], Frost and Boudellioua [15], [16] and [17].

Theorem 16 Let p(s,z) be a (n+m+1) x (n+m+ 1) system matriz in the state space form
(8.2), having no input decoupling zeros and a transfer function with numerator depending on s

only. Then, p(s, z) is s.s.e. to a canonical form system matriz of the following form:

sl, —F —A, 0
—Z3 ZIm - F4 Em
2_9(83 Z) = . (34)
i —~Ci —C, 0

where Fy Fy are respectively, n x n and m x m companion matrices, and Ay =1[E, 0].
The elements of Fy, Fy and Az are uniquely determined by the characteristic polynomial of the

block matriz

Al A,
As Ay

Proof. since both p(s, z) and P(s, z) have no input decoupling zeros, it follows that they

are s.s.e. to the polynomial system matrices
_ _ - -

In+m~1 0 : 0 In+m——1 0 0
0 d 1 0 d |
, and
0 -n(s) : O 0 -n(s,z) : 0 ]

respectively. And by a suitable choice of Fj, Fy, and A3 we can make d = d [6].
Now, we have to show that n(s) = n(s, 2)

Let g(s, z) be the transfer function corresponding to 5(s, z) i.e.

-1
_ — — SIn - F1 '—ZQ 0
g(s,2) =[C1 Cy) _
—A3 ZIm - F4 Em
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and using shur's formula and some operations on matrices with

Ay = [E, 0], and A; = [t ty -

we get the following

§(s, Z) = [_él 62]

and so

sn~1

p(s)
p(s)z —thn

p(s)z™ ! — v 2™ — -
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where, p(s) = |sI, — F; | and §(s,2) = 2] — F — Q with the matrix Q equals

tl’l)l 1
tovy . s
and v =
tm_wl Sn_2
tmt1 ] s1 ]

Let C = [511 Cip - éln] and C, = [_Cm Cog - —C’—gm],
n(s) = e,8"+ e,_18" 1 +---eg, and p(s) = s” + a;8" ! + ---a,. Then 7(s,z) can be made

equal to n(s) by letting

Cii=¢€i_1 —enan_iy1 ,Coai=e€, and Cp; =0, i=1,n andj=2,m.

It follows that p(s, z) and p(s, z) are s.s.e. =

3.2.5 FExtension to the k* Case of the Previous Characterization

Result

Now, we give a result concerning matrices in the state space form A (s, z) = sI,, — A(z) and

which can be considered as an extension of a result given in [12].

Theorem 17 The matriz A (s, z) = sl,, — A(z) is equivalent to the Smith form

[ In~k 0 0 re 0 ]
0 dn—(k—l) (8, Z) 0 s 0
S(s,z)=1] 0 0 dn_(e-2)(8,2) - 0 , ke N* (3.5
| O 0 dn (s, 2)
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iff the matriz A (2) is simialr over R [z] to the block companion matriz

where C; (z) are n; X n; (z = TTE) companion matrices having characteristic polynomials

Ci(z)
0

0 0
C: (2) 0

0 Cs(2)

0

Ck (Z)

An—(k—i) (S, 2), (z = i,_l;) i.e|sl, — C(2)| = dn—(k-i) (S, 2), where n; (z = I,—k) are given by the

degrees in s of dn_(x—i) (8, 2), (z = T,—E)

Proof. To show the necessity, we suppose that A (s, z) = slI, — A(z) is equivalent over

R|[s, z] to S (s,2) in (3.5). Then by elementary rows and columns operations on S (s, z), we get

S (s, z) equivalent to

Sk (S, z) =

0
0

0

0 0

0 0
Lyi O

0 dn(k-2)

0 0

0 0

0
0
0
0
Ing-1
0 0 I,
0 0

o o o o

0
dn

J

(3.7)

where d,_(x—;) denotes dn_k—i)(s,2),1 < 4 < k. Since these operations on a matrix preserve

equivalence, then A (s, 2) is equivalent to S (s, 2) in (3.7). And since the matrix Sk (s, 2) in

(3.7) is clearly equivalent to the block companion matrix

sh, —C(z) =

0

[ sl —Ci(2) 0

sln, — Ca(2)
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where C; (2), are n; X n; (z = ﬁ) are square matrices in companion form respectively, such
that

det (S]m' — Ci (Z)) = dn—(k—i) (S,Z) y 1= l,k (k Z 2) .

Hence, the matix A (s, z) = slI,, — A(z) is equivalent to sI, — C (z), and since this equivalence
transformation (between these system matrices) can be replaced by a similarity transformation,

then A (z) is similar to

[ C(z) 0 0 |
C(2) = 0 02:(2) 0 (3.9)
0 0 - G

this ends the proof of necessity.
The proof of sufficiency: if we assume that A (2) is similar to C (z) in (3.9), then sI, — A(2)
is also similar to sI, — C'(2) in (3.8), and since this last matrix is in companion form and is

equivalent to its Smith form

Ik 0 0
0 dp_x_nis,z) --- 0
S (s, 2) = ' (k ?)( ) . |
0 0 dn(s,z)d

then, so it is sI,, — A (z), which ends the proof of the theorem.

Example 3 Now, as an illustrative example, for n = 2k, k € N*, let S (s, z) be the matriz of

the form } ]
Lok 0 0
0 dop——1(8,2) --- 0
Se,2)=| ¢ _‘)( ) _ . . (3.10)
0 0 s dox (8, 2)

By (k — 1) operations on the rows (respectively columns) of the matriz S (s, z) in (3.10), we
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obtain

(1 0 o o o0 0 0 0 |
0 dyey 0 O O 0 0 0
o o 1 0 0 0 0 0
0 0 0 dygy O 0 0 0
o 0o o0 o0 1 0 0 0
0 0 0 0 0 - dgys 0 0
o 0 0 0 0-- 0 1 0
0 0 0 0 0. 0 0 dy|

where dyi_; denote dag—; (s,2), i =0,k — 1, and in the above case we have

Iyoy=[1) 5 Tnp-r = (1] 5 ... Ine1 = [1]. ie. I, (i =1,k) are all matrices of one
element equals 1.
We note that the above resut is a generalization of a previous result given in [12] for the

caseof k=3. m

Remark 16 In the above work, a companion form for a matriz of the form A(s,z2) = s, —
A (z), which arises in the study of e.g. retarded delay differential equations was presented, and
a characterization result concerning these matrices was extended to a more general case (the
K"case). A similar study can be investigated for more general matrices A (s, z) arising from

singular retarded delay differential equations.

Conclusion 4 In this chapter, the state space equations representing a 2-D discrete state space
model describing a linear iterative circuit have been given. Some basic concepts such as, state
space transition matriz, modal controllability, and modal observablity are derived. Also a 2-D
system matriz represenrting this model is given and a canonical form under a more general
transformation of strict system equivalence (s.s.e.) is obtained. For further research work on
this model, we can consider the extension of the above results to polynomial rings of more then
two varibles s and z e.g. to the N — D case. We also note that the problem related to the

notions of modal controllability and modal observabilty needs to be more investigated.

58



3.3 A Canonical Form Under the Multidimensional
Laplace Transform

Definition 22 We define the multidz'mensiondl Laplace transform by

/ / (t1,to, -+  tm)e St 9202 =mbmgp gty ... dt,,  (3.11)

= 81)827 ) S‘m)

£m [Y (1]

where s, = ay + 16, € C, (k=1,m), Y(t) € S, where S denotes a certain class of functions
for which the integral in (3.11) exists.

3.3.1 System Matrices Assosciated to High Order Partial Differen-

tial Equations

In the following we try to show over an example how the use of the multidimensional Laplace
transfof 2D GIVE Iise TO SyStem IMatrices Of tne IOrm In (3) anove.
The following example shows how the use of Laplace transform given in (3.11) (m = 2) on
the following partial differential equation (p.d.e) yields a matrix of the form given in (2.12).
Consider the wave equation
0? 0?
7 7 =U(ty,t2), 0<t3 <oo, 0<ty<oo (3.12)

with the boundary conditions

Y(0,t) = a(ts) ; £L2a(te)] = d(s2)
Y(t1,0) =b(t1) ; £La2[b(t1)] = b(s1)
S—X lu=0=c(t2) ; Lale(t2)] =&

| lumo=d(t) 5 £3[d(t)] = d(s1)

’

(3.13)
=¢ 82)

since
[0%Y

£2 -5?2_] = S%Y(S], 32) - 81Y(0, 32) - Y21 (O, 82)
L 1

and
[0%Y

£2 _—Et—%—

:l = SgY(Sl, 82) — 82Y(81,0) - Y;Z(Sl, 0)

59



Then by taking Laplace transform of both sides in (3.12), replacing the above two equalities
and using (3.13) we get

1 &(s9) — d(s1) + s16(s — syb(s
Y (s1,82) = 5= Uls1, 82) + Clsa) — d{ 1)32 _‘S§ 2) = sabls) (3.14)
1 2 1 2

Now we have to give a realization of the transfer function ;5{? in order to obtain a state space
1 2
representation in the form (2.12). To this end, we follow the 2-step realization procedure given

by Zak [46]:

The first level realization of g(s, z) = ;gl—sg has the form

Alsy) =  Bls)=| |, Cl=]10], Dis2)=0

which yields
g(s,2) = C(s2) [s1] — A(sz)]_1 B(sg) + D(s5)

where A(s;), B(s2), C(s2) and D(s;) can be regarded as 1-D non proper, in general, trans-
fer matrices in themselves. So by realizing each of them following the 2-level realization
procedure we get
A(sy) = Cfsoln, — A% 7 B{ +Cf [s2J% — 1) Bf + D4,
B(sy) = CPBlsyl,, — AP] ' BB+ CP [s,J% — 1) BE + D®,
C(ss) = C[salne — AS] ™ BE +CF [50J¢ — 1) BS + DC,
D(sy) = CP[saln, — AP] ™' BP 4+ CP [sJ° —1)7' BP + DP,

and since

then

We can choose

00
0 00

G = 100’B?= o0

10



and

DA _ 01
0 0
This yields
-1 s, O 0 0
0 1 0 00 01
A(sg) = = 0 -1 s 00|+
s2 0 -1 00 00

And so a state representation is given by

(L o][s x DA ¢ || xt DB
A 2 = A T X2 + U
0 J X B 0
%2 L BT (3.15)
- Xl
y =[p° i o]

with E; = I, and E; = J# (Jordan form).
Note that the system matrix associated to the system in (3.15) has the same form as the matrix

given in (2.12). If we now assume that the initial conditions have the form

s |- (3.16)

Then the 2-D Laplace transform relating Y'(s;, s2) and U(s;, s2) with the initial conditions
(3.16), caculated from (3.15), has the form given in (3.14). (note that the order of this realization
is 5).
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3.3.2 Restricted System Equivalence Transformation (For System

Matrices Assosciated to High Order Partial Differential Equa-

tions)

Definition 23 Two system matrices of the form (2.13) are said to be restricted system equiv-

alent if they are related by the transformation of the type

M, 0
0 M,
0 0
Ny 0
0 N
0 O

0 SE] - Al —Ag
0 —As zEy — Ay
I, —C —Cy
—1 i ! ’ '
0 A, 2E,— A,
I | _c, -

where My, My, N; and Ny are matrices of appropriate dimensions.

B,
B,

(3.17)

1. The transformation in (2.20) is a special case of strict -system equivalence (s.s.e.).

2. If E; and FE; in (2.20) are singular, then p(s, 2) is restricted system equivalent (r.s.e.) to
a system matrix p (s, z) of the form

p(s,2) =

SIn - Al
_A3

| -G

__A2
ZIm - A4

—C,

By
B,

0

(3.18)

We note that this type of matrix arises in the state space model used by Givon-Roesser
[21] in describing 2-D discrete systems.
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function matrix given by

SEl — Al —A2 Bl

G(s,2) = [ Ci G J
—'Ag ZE2 — A4 B2

Now, we give the conditions under which a canonical form is obtained using a transfor-

mation of restricted system equivalence (r.s.e.).
Theorem 18 Let p(s,z) a p x | matriz in state space form (2.13) such that
|SE1 — A1| 7é 0 and IZEz - A4| ‘7‘£ 0.

Then, p(s, z) is r.s.e. to a canonical system matriz of the form

[ s,—A, 0 . Ay -Aw ! By
0 Lo, —s]; | —Agy ~Ayy ! By
— A3 — Az, Dozl — Ay 0 By,
(3.19)
—As; —Asy : 0 Imi—2Js © By
| —Cu ~Cyf : —Cy —Cay Po0

where Ay, Ay are 7 X 1 and t X t matrices respectively (r =deg |sEy — Ai1| , t =deg |2E; — A4,

J1 and Jy are in jordan cnonical form).

Remark 17 If the matrices [ sE, — Ay By ] and [ 2Ey,— Ay B, ] have full rank, ¥(s, z) €
C?, then the matrices Ay, Ay, By, and By, in (3.19) can be choosen to be in canonical forms.
To obtain these canonical forms and the proof of the previous theorem see Gantmacher [19].

For further results on canonical forms see also [15] and [16].

3.3.3 The Realization Problem of a Non-Proper 2-D Transfer Func-
tion

For a proper rational transfer function in two indeterminates there are available algorithms

which provide low orders minimal realizations. For the 2-D non proper transfer functions, sev-

63



eral authors such as, Kung and al [29] and [35], Sontag [43] have suggested canonical realizations
for a special class of 2-D transfer functions (e.g. with separable denominator, etc.).

Recently, Boudellioua [6] solved this problem for a non-proper transfer function which has a
denominator depends only on one variable. Here we gave the solution of the realization problem

of a non-proper 2 — D transfer function in the form

(s, 2)
9(s, 2) = i(s.2) (3.20)
for which
n(s, z) = r(s, 2)d(s, z) + n(s),
where

d(s,z) = ko(8)z™ + k1(8)2™ 4 -+ + kpn(8)
(ko(s) is monic and deg ko(s) = n, deg k;(s) <n, j=1,2,---,m), and
n(s) = eps" + 15"+ +eo
are factor coprime, and
r(8,2) = 1g41(8)27 +1g(8)2% 4 - - - + 71(3)

where
141

ri(s) = S wygs L, i=1,2,-- g +1
j=1
and | = deg, r(s, 2).
Now, since g(s, z) can be written in the form
g(s,z) = g1(s,2) + r(s, 2)
where

n(s)
91(s,2) = d(s, z)

The realization of g;(s, z) was given by Boudellioua [6] and it has the form

SIn - Fl —7{2 0

A In—Fy | En
B FmT i (3.21)




where F; and F) are respectively n x n and m x m companion matrices and A; = [ E, 0 J,

the elements of F; , F; and Ajs are uniquely determined by the 2-D characteristic polynomial
A; A,

A3 Ay
For the realization of r(s, z) (which is a polynomial of the ring R[s][z] ) we can use Jordan

of

block matrices, and so it can be verified that a realization of r(s, 2) is given by

where, W = (w;;), 1 <i<q+1, 1<j<I+1

I — sy 0 Ei
—w I, — 2J 0
Yo fam e (3.22)
0 _Et 0

Combining the realizations in (3.21) and (3.22) we obtain a realization of g(s, z) which is given

by the system matrix

SIn - F1
—A;

......

—A,
ZIm - F4
0

0

0 : 0

0 E..

0 Ei1
Iq+1 - ZJ2 0
~E! : 0

(3.23)

where Fy, Fy, A, A3, C4, and C, are the matrices obtained in the realization of the 2-D proper

transfer function go(s, 2).

Now, by elementary row and column operations on the system matrix (3.23) we get the system

matrix

......

......

0 : 0

0 Ei

0 E,.
Iq+1 — ZJ2 0
_E! 0

(3.24)



which is in the required canonical form (3.19).
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Chapter 4

A CONTROL WITH THE INITIAL
VALUE OF AN ILL-POSED
PROBLEM ( INFINITE
DIMENSIONAL CASE)

4.1 Introduction
We consider the following final value problem (F.V.P.)
v/ (t) + Au(t) = 0, 0<t<T (4.1)

w(T) = f (4.2)

for some prescribed final value f in a Hilbert space H. A is a positive self-adjoint operator
such that 0 € p(A). Such problems are not well posed, that is, even if a unique solution exists
on [0,T] it need not depend continuously on the final value f. We note that this type of
problems has been considered by many authors, using different approaches. Such authors as
Lattes and Lions [31], Miller [32], and Showalter [42] have approximated (F.V.P.) by perturbing
the operator A.
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In [1], [10], and [41] a similar problem is treated in a different way. By perturbing the final
value condition, they approximate the problem (4.1), (4.2), with

v (t)+Au(t) = 0,0<t<T,
u(T)4+ou(0) = f (4.3)

A similar approach known as the method of auxiliary boundary conditions was given in [33].
Also, we have to mention that the non standard conditions of the form (4.3) for parabolic
equations have been considered in some recent papers [2], [3].

In this work, we perturb the final condition (4.2) to form an approximate non local problem
depending on a small parameter, with boundary condition containing a derivative of the same

order than the equation, as follows:
v (t)+Au(t) =0, 0<t<T,

u(T) — au' (0) = f. (4.4)

Following [10], this method is called quasi-boundary value method, and the related ap-
proximate problem is called quasi-boundary value problem (Q.B.V.P.). We show that the
approximate problems are well posed and that their solutions u, converge in C* ([0, 7], H) if
and only if the original problem has a classical solution. We prove that this method gives a
better approximation than many other quasi reversibility type methods e.g. [1], [10] and (31].

Finally, we obtain several other results, including some explicit convergence rates.

4.2 Preliminary Notions

This section is devoted to definitions of some of the basic concepts related to linear operators
in Hilbert spaces, mainly spectral resolution and spectral representation for a self-adjoint
unbounded operator on a Hilbert space H and includes a brief account of some fundamental

properties and results concerning them.
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4.2.1 Spectral Resolution

Definition 24 A spectral resolution {Ex} on a Hilbert space H is a fuction
E:R — B(H)
having the following properties:
1. E()) is an orthogonal projection for every A € R,
2. E()\) < E(p) for A < p (monotonicity),
3. Ed+¢€) — E(X) for all A € R, as ¢ — 0% (right continuity),
4. E(A) > 0as A —» —oo, and E(A\) — I as A — +oo0.

In the following, we give some fundamental properties concerning the spectral resolution

{Ex}:
® EuE)‘ = EA, lfp, 2 )\,
e If TA= AT, for T € B(H), then, TE) = E\T, and E\A = AE},

° E§=E,\.

4.2.2 Spectral Decomposition for an Unbounded Operator

Definition 25 Let A be a self-adjoint unbounded operator on a Hilbert space H. The following

+00
A= / ME},

is known as the spectral decomposition of A relatively to the spectral resolution {E\} .

representation of A

We note that there exists a unique spectral resolution {Ey} for which the operator A is

represented in the above form. We also have the following spectral decompositions:

Af = /_+°° ME,\f, Vf € D(A),
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where the domain of the operator A is given by
D(A) ={f € H: ||Af]| < oo},

and

+o00
nAﬂV=/" Xed| B, f12

o0

We also have

+oo
(Af,9) =/_ M(Exf,g), Vf,g € H.

oo

4.3 An Abstract Ill-Posed Parabolic Problem

4.3.1 The Resolution and Bound Estimates of the Approximate
Problem
Definition 26 A function u : [0,T] — H is called a classical solution of the (F.V.P.) problem

(4.1),(4.2) (respectively Q.B.V.P. (4.1),(4.4)) if w € C([0,T],H), u(t) € D(A) for every
t € [0,T] and satisfies the equation (4.1) and the final condition(4.2) ( respectively the boundary

condition(4.4)).

Now, let {Ex} >0 be a spectral resolution (spectral measure)associated to the operator A

in the Hilbert space H, then for all f € H, we can write

f= /0 " 4B, f (4.5)

If the problem (F.V.P.) (4.1), (4.2) (respectively (Q.B.V.P.) (4.1), (4.4)) admits a solution u

(respectively u,), then this solution can be represented by

u(t) = / AT-Y4E, f, (4.6)
0
respectively,
oo e—At
o(t) = ——dE\f. 4.7
wlt) = [ rdB (@7
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Theorem 19 For all f € H, the functions u, given by (4.7) are classical solutions to the
(Q.B.V.P.) (4.1), (4.4) and we have the following estimate

T

W”f“a Vi € [07 T]’ (48)

lua(®)]| <
where a < eT'.

Proof. If we assume that the functions u, given in (4.7) are defined for all ¢ € [0, T'], then,

it is easy to show that u, € C([0,T], H) and

©  _ye-M
(1) = /0 NS (4.9)
Since
o0 Ae—At
Aug (t) = /0 B, (4.10)
then,

o’} 2 _-2)t
Aua ()| = / (——*—e———duEAfw

al + eAT)?

1 oo 1
< L / B = S FI2,
a” Jo

a
and this shows that u, (t) € D (A) and so u, € C([0,T], D (A)). From (4.9) and (4.10) we see
that function u, given in (4.7) is a classical solution to the (Q.B.V.P.) problem (4.1), (4.4).

lua@)? < / °°

Now, using (4.7) we have

s eI .

if we put
h(A) = (aA+eT) ", for A > 0,

suph(A) =h (111—(@) , (4.12)

then,

A>0 T
and this yields

O < | /“dumn?

0
r 12

= | =y | M
al) ]




This shows that the integral defining u,(t) exists for all ¢ € [0,7] and we have the desired

estimate. m

Remark 18 One advantage of this method of reqularization is that the order of the error,

introduced by small changes in the final value f, is less than the order given in [10].

4.3.2 Some Convergence Results

Now, we give the following convergence result

Theorem 20 For every f € H, ||ua(T) — f|| tends to zero as a tends to zero. That is us(T)

converges to f in H.
Proof. Let € > 0, choose n > 0 for which

> 3
[ e <,
n

From (4.7), we have

[o’s) 2A2
(T — 2:/ AN B,
) =12 = [ B |
then, )
n A €
2 2 24z
lualT) = I < a / P oY)

so by choosing o such that
n -1
o <e (2/ /\262)‘T||E,\f||2) ,
0
we obtain the proof of the theorem. m

Theorem 21 For every f € H, the (FVP) problem (4.1), (4.2) has a classical solution u given
by (4.6), if and only if the sequence (u, (0)),., converge in H. Furthermore, we then have that
uq (t) converges to u(t) as a tends to zero in C'([0,T], H).
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Proof. If we assume that the (F.V.P.) problem (4.1), (4.2) has a classical solution u, then
we have

0 - O = [ wm—j%f_;)qndmnz

00 a2 /\4 62’\T

n
@ [ NeBTdBP + [l
0 " a )

n
< & / NPT By fI? + 2,
0

INA

so by choosing a such that o? < ¢ (2 fj X'e*Td||E\f H2)_1 , we obtain
llua (0) — ' (0)|I* <e,

this shows that ||ul,(0) — «/(0)|| tends to zero as a tends to zero. Since

: = 1 ’
i) =@ < [ 3 (g - e ABP

= Jlua(0) — v/ (0)|I%,

then ||u/,(t) — u/(t)|| tends to zero as o tends to zero uniformly in t, for every t € [0,T].
Now, we show that ||us(t) — u(t)|| tends to zero as a tends to zero uniformly in t, for every

t € [0,T]. To this end, let ¢t € [0,T], and since

00 02)\262/\T
) —u@®)|F < / —————d||E\f]|?
ual®) = w@F S | S dIB

= [lua(0) — u(0)II*.

So, it is sufficient to show that u, (0) converges to u (0) as a tends to zero. To this end, we

compute
fa0) ~uO)F < o [T XHTaBS+ [ B TalE I
n
< o /0'7 /\264)\Td“E)\f”2+‘/00 /\262'\Td“E,\f“2,
n
for n quite large, and since u(0) € D (A), then we have
Jua(0) = wO)F < o? [ NPT B fI +
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and so by choosing a such that a? < (2 [ e Td||E, f ||2)_1 we get
[4a(0) — u(0)||* <.

Thus u,(0) converges to u(0) as a tends to zéro, which in turn gives that u,(t) converges to
u(t) as a tends to zero, uniformly in t, for every ¢t € [0,7]. Combining all these convergence
results, we conclude that u,(t) converges to u(t) in C*([0, T}, H).

Now, assume that (uj, (0)),., converges in H. Since

00 e—At
ua(t) = / —— dE\f,
0

al+ e

is a classical solution to the (Q.B.V.P.) problem (4.1), (4.4), then we have
, © e M
0= [ B,

0

u a\ +e T

hence

oo A?
a1 = [ B

e——/\T)

Now, using the dominated convergence theorem we get
(e o]
i, )2 = [~ X aBSI,
o 0
and so it is easy to see that the function u(t) defined by
(o ]
u(t) = / MT-VdE, f,
0

is a classical solution to the (F.V.P.) problem (4.1), (4.2). This ends the proof of the theorem.

4.3.3 A Comparison of the Error Estimates

Theorem 22 If the function u given by (4.6) is a classical solution of the (F.V.P.) problem
(4.1), (4.1), and v, is a solution of the (Q.B.V.P.) problem (4.1), (4.4) for f = fs, such that
Ilf — fsll <9, then we have

lu(0) — uS(0)|| < ¢ (1 +In g)“ , (4.13)
where ¢ =T (1 + ||Au(0) ||).
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Proof. Suppose that the function u given by (4.6) is a classical solution to the (F.V.P.)
problem (4.1), (4.2), and let’s denote by u¢ a solution of the (Q.B.V.P.) problem (4.1), (4.4)
for f = fs, such that

If = fsll < 6.

Then, v (t) is given by

oo —At
5 [
= ——dF t T 4.14
ua(t) /.5 Cl)\+6_)‘Td /\féa vVt € [07 ]1 ( )

where f5 = [° dE,fs. From (4.6) and (4.14), we have
[u(0) — u (0)| < Ay + A,

where A; = ||[u(0) — ua(0)]|, and Ay = |lus(0) — u4(0)||. Using (4.12), we get

1

1 < (l_qt—flzv’n_—_(z)j (/0 )\262'\TdHE,\f“2> i )

and
< Té
2= (1 +1In %) ’
then,
< Tl AuO)||
4.15
1S 1+ lng ’ ( )
and
e (4.16)

< ———.
= a (1 +In %)
From (4.15) and (4.16), we obtain

T||Au(0)|| T6

“ua(o) —Uu ( )“2 (1+ln£) a(1+ln£)’

then, for the choice a = §, we get

T (1 + || Au(0)]])
(1 +1In %S)

1ua(0) = a(0)|* <

This ends the proof of the theorem. m
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Remark 19 From (4.13), for T > e~! we get

o) -0 < (1n)

Proposition 3 Under the hypothesis of the above theorem, if we denote by US the solution of
the approzimate (F.V.P.) problem (4.1), (4.2) for f = fs, using the quasireversibility method
[31], we obtain the following estimate

winy

[u(0) — UXO)] < e (mg)‘ |

Proof. A proof can be given in a similar way as in [33]. =

4.3.4 Some Explicit Convergence Rates

Theorem 23 If there exists an e €]0,2[ so that

/ e || dEx I,

0

converges, then ||ua(T) — f|| converges to zero as a tends to zero with order afe™2.

Proof. Let ¢ €]0,2[ such that [~ A°e*T||dE\ f||*converges, and let 3 €]0,2[. For a fix
5

A > 0, and if we define a function gy (a) = ﬁn—)g Then we can show that
ax (a) S ()Y (a()) ) Va > 07 (417)

where ag = %’_——;—)TX Furthermore, from (4.7), we have

lua(T) — fI? = 0> f " Ngy () dBrf. (4.18)

Hence from (4.17) and (4.18) we obtain

B poo
) = 1P < @27 (525 ) [T st g,
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If we choose f = (2 — €), we have
2 22N [ e
o) =112 < o (%) [T xeTdm e
0

«
= (o[ xeraimare).
0

lua(T) = fII* < ccate™,

hence

with c. = 4 [° X d||E\f[|*>. =

Now, we give the following corollary.

Corollary 1 If there exists an € > 0 so that
| g g, (419)
0

and

/ A TG B, 2, (4.20)
0

converge, then u, converges to u as o tends to zero in C'([0,T), H) with order of convergence

afe 2.

Proof. If we assume that (4.19) is satisfied, then

JARREE T

0
converges, and so the function u(t) given by (4.6) is a classical solution of the (F.V.P.) problem

(4.1), (4.2). Now, using the following inequalities
) 00 2/\4 22T 0
1 (0) - Q)2 = / ——)— dIEsf]
< ————PTd||E\f|?
< 0 [T e Tl
< o [T Nigy (@) Pl B

/3
a*? <—ﬁ ﬁ) T NB-BTg| By £, (4.21)
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where ¢, = 4 [;° N+ E, f|12, and setting 8 = 2 — ¢, in (4.21), we obtain
I(0) = w(O)]* < eca®e ™,
where ¢, = 4 [° \EFDe+22Tq|| B, £12. And since

lua(2) = W (@)1 < [lua(0) — w/(0)]1%,

then u/,(t) converges to /(t) uniformly in t, for all ¢ € [0, T],with order of convergnece afe~2.

Now, if we assume that (4.20) is satisfied, then

ua(0) — u(0) 2 = a>~# / " Nga(a)e?Td| B fIP,

and proceding in a similar way as in the proof of the previous theorem, we get

B poo
a0 - wOP < o (525 [ o e (1.22)

again, by setting 8 = 2 — ¢ in (4.22), we obtain
[[4a(0) — uw(0)||* < clofe™?,

where, ¢, =4 [ A e+ G| E, f||2. Now, using the inequality

llua(t) = w(®)II* < llua(0) — u(0)|I%,

we see that u,(t) converges to u(t) uniformly in ¢, for all ¢ € [0, T],with order of convergnece
afe~2. Combining all these convergence results, we see that u, converges to u as o tends to

zero in C1(]0, T}, H), with order of convergence afe™2. m

4.3.5 Conclusion

We note that one advantage of this method of regularization is that the order of the error,
introduced by small changes in the final value f, is less than the order given in [10]. And we
also conclude that the regularization method used here gives a better approximation than many
other quasi reversibility type methods e.g. [1], [10], and [31]. We also recommend for future
research work the use of this approach to treat other problems described by more general types

of partial differential equations.
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Résumé

Le présent travail est composé de deux parties :

La premiere partie est consacrée a I’étude de certaines classes de
matrices, sur ’anneau des polyndmes a deux variables #s,z], associées en
particulier aux différents systémes linéaires différentiels. En suite les
résultas obtenus sont appliqués a 1’é¢tude d’un probléme modélisé par un
systeme d’équations bidimensionnel (2-D) .

Dans la deuxiéme partie on étudie un probléme de contrdle par la
condition initiale d’un probléme parabolique abstrait mal posé a
coeflicient opératoriel auto-adjoint non borné.

Abstract

The present work is composed of two parts:

The first part is devoted to the study of some classes of matrices, over
the ring of polynomials in two variables #[s,z], associated in particular with
different differential linear systems. Then, the obtained results are applied
to the study of a problem described by a bidimensional (2-D) system of
equations.

In the second part we study a control probem by the initial condition
of an ill-posed abstract parabolic problem with an unbounded self-adjoint
operatorial coefficient.
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Résumé

Le présent travail est composé de deux parties :

La premiere partic est consacrée a P’étude de certaines classes de
matrices, sur ’anneau des polyndmes a deux varniables #s:]. associées en
particulier aux différents systémes linéaires différentiels. En suite les résultas
obienus sont appliqués a P'élude d’un probléme modéhsé par un systéme
d’équations bidimensionnel (2-D) .

Dans la deuxiéme partie on étudie un probléeme de controle par la
condition initiale d’un probléme parabolique abstrait mal posé a coefficient
opératoriel auto-adjoint non borné.






