République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supèrieur et de la Recherche Scientifique Université de Constantine -1-Faculté des Sciences Exactes Département de Mathématiques

N^o d'ordre:38/DS/2021 Série:05/Math/2021

THÈSE

Présentée pour l'obtention du diplôme de

Doctorat en Sciences

Thème

Systèmes dynamiques à temps discrets et applications en biologie: Etudes statistiques et résultats numériques

Option: Mathématiques appliquées

Par

Kamel Djeddi

Directeur de thèse: Professeur El hadj Zeraoulia

Devant le jury :

Mr Berkane Abdelhak Professeur Université de Constantine -1- Président

Mr Saoudi Khaled Professeur Université de Khenchela Examinateur

Mr Rebiai Belgacem Professeur Université de Tébessa Examinateur

Mr Hamaizia Tayeb M.C.A Université de Constantine -1- Examinateur

Année 2020/2021

Table des matières

Тε	able o	des matières	i
D	édica	ces	iv
R	emer	ciements	\mathbf{v}
\mathbf{Li}	ste d	es figures	vi
Li	ste d	les tableaux	viii
R	ésum	é (arabe)	ix
R	ésum	é	x
\mathbf{A}	bstra	let	xi
In	trod	uction	xii
1	Rap	opels et préliminaires	1
	1.1	Système dynamique discret	2
	1.2	Etude de la stabilité	3
	1.3	Nature des points fixes et cycles	6
	1.4	Courbes invariantes	8
	1.5	Exemples des systèmes chaotiques à temps discret \hdots	10
2	Les	systèmes dynamiques discrets en espaces topologiques	13
	2.1	Espaces topologiques et espaces métriques	15
	2.2	Fonctions dérivables	17
	2.3	Fonctions différentiables	17

	2.4	Les systèmes dynamiques discrets	18
	2.5	Continuité sur l'espaces topologiques et métriques	20
	2.6	Chaos au sens de Li et Yorke	21
	2.7	Chaos au sens de Devaney	22
	2.8	Exposant de Lyapunov	25
	2.9	Chaos au sens de Marotto	30
3	Moo	lélisation mathématique de la croissance tumorale	34
	3.1	Introduction	35
	3.2	Modélisation de la croissance tumorale	36
	3.3	Simulations numériques	38
4	Disc	crétisation et simulation numérique	41
	4.1	Introduction	42
	4.2	Méthode d'Euler explicite	42
	4.3	Méthode basée sur la série de Taylor	42
	4.4	Méthode de Runge-Kutta	43
	4.5	Discrétisation de modèle de la croissance tumorale avec la méthode d'Euler	
		explicite	45
	4.6	Discrétisation de modèle de la croissance tumorale avec la méthode basée	
		sur la série de Taylor	45
	4.7	Discrétisation de modèle de la croissance tumorale avec la méthode de	
		Runge-Kutta	46
	4.8	Simulations numériques	47
	4.9	Stabilitée des points fixes	50
	4.10	Une preuve du chaos dans le système $\hdots\hdot$	55
	4.11	Résultats numériques	56
5	Dyn	amique chaotique à temps discret	58
	5.1	Système de cancer à temps discret	59
	5.2	Stabilitée des points fixes	59
	5.3	Dynamique chaotique pour un système dynamique de cancer discret	65
	5.4	Quelques résultats numériques	68
6	Con	clusion	73

7	Bibliographie						
8	Annexes						
	8.1	Test de stabilité de jury	Ι				
	8.2	Tableaux annexes	II				

Dédicaces

Je dédie ce travail:

A mon père Mr Djeddi Mostafa

À ma mère

À mes soeurs et mes frères

À ma famme

À mes enfants: Abdemouaiz et Rawthat Errahmane et Hibat Errahmane

À tous mes amis et tous mes collègues sans exception.

Remerciements

• Je remercie **ALLAH** le tout puissant de m'avoir donné le courage et la volonté de mener à terme ce présent travail.

• Je tiens à adresser mes remerciements les plus chaleureux et ma profonde gratitude à mon directeur de thèse Monsieur **ZERAOULIA Elhadj**, professeur à l'Université de Larbi Tébessi à Tébessa pour m'avoir proposé ce sujet de recherche et d'avoir dirigé cette thèse. C'est grâce à sa grande disponibilité, ses conseils, ses orientations, et ses encouragements que j'ai pu mener à bien ce travail.

• Mes remerciements vont également à Monsieur **BERKANE Abdelhak**, professeur à l'Université de Constantine -1- pour avoir bien voulu me faire l'honneur d'accepter de présider le jury.

• De même je remercie Monsieur **SAOUDI Khaled**, professeur à l'Université de Khenchela et Monsieur **REBIAI Belgacem**, professeur à l'Université de Tébessa et Monsieur **HAMAIZIA Tayeb**, Maître de conférence à l'Université de Constantine -1- pour l'honneur qu'ils m'ont fait de bien vouloir accepter de faire partie du jury.

• Je remercie également tous ceux qui ont contribué de près ou de loin à L'élaboration de cette thèse. Je n'oublie pas de remercier toutes les personnes qui m'ont facilité la tâche et tous ceux que j'ai connus au département de mathématiques à Constantine et de département de mathématiques et informatique à Oum Elbouaghi.

• Bien entendu, il me serait impossible de terminer sans adresser une pensée chaleureuse à mes **parents** pour leur soutien et leurs encouragements pendant de longues années, sans qui je n'aurais pu arriver à ce niveau d'études.

Liste des figures

1.1	Classification des portraits de phases dans le plan $(\det A, \operatorname{Tr} A)$ Voir [31].	7
1.2	Courbes invariantes associée à un point fixe de type col x^* dans le cas $n = 2$.	8
1.3	Itérations de la fonction logistique.	11
1.4	(a) Attracteur de Hénon, (b) Attracteur de Lozi	12
1.5	Attracteur d'Ikeda pour $\mu = 0.9$ et $x_0 = y_0 = 0.1$	12
2.1	La fonction de doublement de l'angle	23
2.2	La fonction tente	24
2.3	Itérations du chat d'Arnold.	25
2.4	Diagramme d'un point snap-back (de retour) répulsif. Le point x^* est un snap-back répulsif.	30
3.1	Étapes de la carcinogenèse cellulaires	35
3.2	Les 7 caractéristiques d'une cellule cancéreuse, en comparaison à une cellule	
	normale	36
3.3	Attracteur de système de De Pillis et al avec $x_0 = 0.1, y_0 = 0.1, z_0 = 0.1$	
	et les valeus des paramètres donnée dans (3.3). \ldots \ldots \ldots \ldots \ldots	38
3.4	Séries temporelles du système de De Pillis et al avec $x_0 = 0.1, y_0 = 0.1,$	
	$z_0 = 0.1$ et les valeus des paramètres donnée dans (3.3)	39
3.5	Projections dans le plane $X - Y$ de l'attracteur par chacune des variables	
	x, y, z	39
3.6	Exponents de Lyapunov du système (3.2) avec $x_0 = 0.1, y_0 = 0.1, z_0 = 0.1$	
	et les valuers des paramètres donnée dans (3.3). \ldots \ldots \ldots \ldots	40
4.1	Attracteur du système (4.13).	48
4.2	Projections de l'attracteur.	48

Séries temporelles avec les valeurs des paramètres donnée dans (4.17) et	
$h = 0.1. \dots \dots \dots \dots \dots \dots \dots \dots \dots $	49
Séries temporelles avec les valeurs des paramètres donnée dans (4.17) et	
$h = 0.05. \dots \dots \dots \dots \dots \dots \dots \dots \dots $	49
Exposants de Lyapunov du système (4.13) avec les valeurs des paramètres	
données dans (3.3) et $h = 0.1$	56
Exposants de Lyapunov du système (4.13) avec les valeurs des paramètres	
données dans (3.3) et $h = 0.05$	56
Diagrammes de bifurcations du système (4.13) avec les valeurs des para-	
mètres données dans (3.3) et $h = 0.1$, sur les plans	57
Diagrammes de bifurcations du système (4.13) avec les valeurs des para-	
mètres données dans (3.3) et $h = 0.1$, sur les plans	57
L'attracteur étrange du système (5.30) avec les conditions initialles $r_{0} = 0$	
$u_0 = 0.1 z_0 = 0.1$	69
Projection de l'attracteur du système (5.30) dans le plan $u - z$	69
Réponses temporelles du système (5.30) avec les valeurs des paramètres	00
donnée dans (5.31) et $d_3 = 1.01$ où $x_0 = 0.001$, $u_0 = 0.6$, $z_0 = 0.08$,	71
Les exposants de Lyapunov du système (5.30) avec les valeurs des para-	
mètres donnée dans (5.31) et $d_3 = 1.001$ où $x_0 = 0, y_0 = -0.1, z_0 = 0.1,$	71
Les exposants de Lyapunov du système (5.30) avec les valeurs des para-	
mètres donnée dans (5.31) et $d_3 = 1.001$ où $x_0 = 0.1, y_0 = 0; z_0 = 0.1,$	72
Diagrammes de bifurcations du système (5.30) avec les valeurs des para-	
mètres donnée dans (5.32) et $x_0 = 0.15, y_0 = 0.2, z_0 = 0.08$	72
Diagramme de bifurcation du système (5.30) de l'espace (r_2, x, y) avec les	
valeurs des paramètres donnée dans 5.31 et $d_3 = 1.001$ où $x_0 = 0, y_0 = 0.1$,	
$z_0 = 0.1. \qquad \dots \qquad $	72
	Séries temporelles avec les valeurs des paramètres donnée dans (4.17) et $h = 0.1.$

Liste des tableaux

2.1	Propriétés des attracteurs par le signe des exposants de Lyapunov	29
8.1	Nouveaux cas et décès en le monde pour 36 cancers et tous les cancers	
	combinés en 2018 Voir [3]	II
8.2	Incidence, mortalité et prévalence par site de cancer en Algérie Voir (The	
	Global Cancer Observatory - All Rights Reserved - May, 2019).	III

ملخص

في هذا العمل، نهتم بدراسة الأنظمة الديناميكية ذات الوقت المنفصل. نقدم نتائج دراسة نظرية وعددية للأنظمة الفوضوية الديناميكية ذات الوقت المنفصل. نبدأ دراستنا برسم الجاذبات التي تم الحصول عليها بالطرق العددية، ونحلل استقرار النقاط الثابتة. يتكون هذا العمل من ثلاثة أجزاء رئيسية الجزء الأول نقدم دراسة لنظرية الفوضى للأنظمة الديناميكية العمل من العمل من ثلاثة أجزاء رئيسية الجزء الأول نقدم دراسة لنظرية الفوضى للأنظمة الديناميكية العمل من العمل من ثلاثة أجزاء رئيسية الجزء الأول نقدم دراسة لنظرية الفوضى للأنظمة الديناميكية العمل من ألاثية أجزاء رئيسية الجزء الأول نقدم دراسة لنظرية الفوضى للأنظمة الديناميكية العمل من ثلاثة أجزاء رئيسية الجزء الأول نقدم دراسة لنظرية الفوضى للأنظمة الديناميكية العوبولوجية المحددة بواسطة خرائصط منفصلة على سبيل المثال نظريسة أو Yorke في حالة البعد المناه البيد المثال نظريسة أو و Yorke في حالة البعد المثال من المثال نظريسة أو و Yorke في حالة البعد المناه المثال نظريسة أو و Park في الطوبولوجية المحددة بواسطة خرائصط منفصلة على سبيل المثال نظريسة أو و Yorke في حالة البعد المناه العارية الفوضية الديناميكية أو و Yorke المثال نظريسة أو و Park في الطوبولوجية المحددة بواسطة خرائص منفصلة على سبيل المثال نظريسة أو و Yorke في الطوبولوجية المان أو و Park في الطوبولوج الأناسية المناه المالة البعد المن المن أو و Parka المناسية والمحاكاة العددية لنمو الورم. نقسير منوذج الثاني و Park في الناسي المناه المناه المالية المالة ا مالة المالة المال

الكلمات المفتاحية : الأنظمة الديناميكية المنفصلة، الفوضى، نظرية Marotto، التقطيع، نموذج نمو الورم، الاستقرار، التشعب.

Résumé

Dans ce travail, nous nous intéressons à l'étude des systèmes dynamiques à temps discret. Nous présentons les résultats d'une étude théorique et numérique d'un système chaotique en temps discret. Nous commençons notre étude en traçant des attracteurs obtenus par des méthodes numériques. Nous étudions la stabilité des points fixes. Ce travail comporte trois parties principales. Dans la première partie nous donnons une étude de la théorie du chaos pour les systèmes dynamiques discrets en espaces topologiques, par exemple le théorème de Li et Yorke dans le cas de la dimension 1, et le théorème de Marotto dans le cas de la dimension n et le théorème de Devaney. La seconde partie concerne la modélisation mathématique et la simulation numérique de la croissance tumorale et nous proposons un modèle de De Pillis et Radunskaya. La troisième partie présente quelques méthodes utilisées pour la discrétisation des systèmes dynamiques, par exemple la méthode d'Euler, la méthode de Taylor et la méthode Runge-Kutta et nous étudions le modèle de De Pillis et Radunskaya en temps discret et avec la méthode de discrétisation d'Euler.

Mots clés : Systèmes dynamiques discrets, Chaos, Théorème de Marotto, Discrétisation, Modèle de croissance tumorale, Stabilité, Bifurcation.

Abstract

In this work, we are interested in the study of discrete-time dynamical systems. We are present the results of theoretical and numerical study of a discrete-time chaotic systems. We begin our study by plotting attractors obtained by numerical methods. We analyze the stability of fixed points. This work has three main parts. In the first part we five a study of the theory of chaos for topological dynamical systems defined by discrete maps for example the theorem of Li and Yorke in the case of dimension 1, and Marotto's theorem in the case of the dimension n and Devaney's theorem. The second part concerns the mathematical modeling and numerical simulation of tumor growth. We propose the model of De Pillis and Radunskaya. In the third part we present some methods used for discretization of dynamical systems, for example Euler method, Taylor method and Runge-Kutta method and we study the model of De Pillis and Radunskaya in discrete-time and with the method of discretization of Euler.

Keywords : Discretes dynamics systems, Chaos, Marotto theorem, Discretization, Tumor growth model, Stability, Bifurcation.

Introduction

La biologie et les mathématiques sont constituées par l'ensemble des méthodes et techniques mathématiques, numériques et informatiques qui permettent d'étudier et de modéliser les phénomènes et les processus biologiques.

L'impact des mathématiques sur la biologie s'est fait à plusieurs niveaux. Par exemple la biologie cellulaire pour laquelle certains concepts mathématiques ont permis des avancées spectaculaires.

Dans cette thèse, nous considérons la biologie des tumeurs, pour cela, nous nous sommes basés sur les travaux de (De Pillis et Radunskaya [5]) et (Itik Mehmet et Banks Stephen [19]), qui dérivent les principales caractéristiques des cellules cancéreuses. Un cancer, ou tumeur maligne, est un amas de cellules qui ont subi des mutations génétiques modifiant leur comportement.

Les modèles mathématiques sont définis sous forme des systèmes d'équations. Nous nous intéressons particulièrement dans cette thèse aux systèmes dynamiques discrets. Ces systèmes d'équations sont des cas particuliers des systèmes d'équations définis par des relations de récurrences.

Les systèmes à temps discret sont plus raisonnables que les systèmes à temps continu lorsque les populations ont des générations qui ne se recouvrent pas. De plus, l'utilisation de modèles à temps discret est plus efficace pour le calcul et les simulations numériques. par une étude [20], il est prouvé que le système à temps discret à des propriétés et des structures différentes par rapport au continu et ces résultats révèlent des comportements dynamiques beaucoup plus riches du système à temps discret par rapport au continu.

Cette thèse à pour objet l'étude des systèmes chaotiques discrets et nous concentrons notre étude sur un modèle de De Pillis et Radunskaya. Notre thèse comporte les chapitres suivants Dans le premier chapitre, nous rappelons les notions les plus importantes dans l'étude des systèmes dynamiques discrets, en faisant particulièrement attention à celles qui sont supposées être des composantes d'un comportement chaotique: Sensibilité aux conditions initiales, stabilité et la nature du point fixe, et plusieurs notions de chaos peuvent être être formulées en utilisant ces composantes. À la suite des exemples des systèmes dynamiques discrets avec des comportements chaotiques.

Le second chapitre donne un certain nombre de définitions de topologie et de calcul différentiel, qui seront nécessaires à la définition des systèmes chaotiques. Nous en profiterons pour rappeler l'approche topologique des systèmes dynamiques discrets, nous présentons quelques méthodes pour étudier le comportement chaotique d'un système dans le cas discret. Nous utilisons la théorème de Li et Yorke pour étudier les systèmes de dimension un, et le théorème de Devaney, la multiplicité des périodes, théorème de Marotto et une version modifiée du théorème de Marotto en suite nous présentons les méthodes d'exposant de Lyapunov pour calculer le taux de divergence entre l'évolution de trajectoires.

Dans le troisiéme chapitre, nous présentons une modélisation mathématique et des résultats numériques du modèle de croissance tumorale. Nous réalisons l'étude d'un modèle à trois équations, le modèle de De Pillis et Radunskaya, qui regroupe un grand nombre de caractéristiques que nous souhaitions prendre en compte telle que le micro-environnement tumoral et la modélisation des interactions cellulaires.

Dans le quatrième chapitre, nous présentons certaines méthodes utilisées pour la discrétisation les systèmes dynamiques continues, qui sont des méthodes approximatives basées sur la discrétisation du temps t, par exemples méthode d'Euler explicite, méthode basée sur la série de Taylor et méthode de Runge-Kutta. Nous appliquons ces méthodes au modèle de croissance tumorale à trois dimensions. À la fin du chapitre, nous démontrons que le nouveau système que nous avons obtenu en utilisant la méthode d'Euler possède un comportement chaotique en utilisant la version modifiée de théorème de Marotto, pour simplifier l'étude, nous présentons quelques résultats théoriques et numériques.

Le cinquième chapitre est consacré à l'étude du comportement chaotique d'un modèle de croissance tumorale de dimensions trois à temps discret. Nous étudions la stabilitée des points fixes du système et nous appliquons la version modifiée de théorème de Marotto, et à la fin de ce chapitre nous allons présenter quels que résultats numériques de ce système.

Enfin, on termine par une conclusion générale ainsi que quelques perspectives.

Chapitre 1

Rappels et préliminaires

Sommaire

1.1	\mathbf{Syst}	ème dynamique discret 2	
1.2	Etuc	le de la stabilité	
	1.2.1	Stabilité du point fixe	
	1.2.2	Méthode de linéarisation	
	1.2.3	Méthode de Lyapunov	
	1.2.4	Stabilité des points périodiques	
1.3	Natı	re des points fixes et cycles	
1.4	Cou	rbes invariantes	
	1.4.1	Ensemble attractant et attracteur	
	1.4.2	Chaos	
1.5	Exer	nples des systèmes chaotiques à temps discret $\ldots \ldots 10$	
	1.5.1	Récurrence logistique	
	1.5.2	Récurrence de Hénon	
	1.5.3	Récurrence de Lozi	
	1.5.4	Récurrence d'Ikeda	

1.1 Système dynamique discret

On définit un système dynamique à temps discret avec la relation de réccurence donnée comme suivante:

$$x(k+1) = F(x(k)),$$
(1.1)

où F une application de $D \times \mathbb{N}$ dans $D, (x_k, k) \in (D, \mathbb{N})$ et $D \subset \mathbb{R}^n$ satisfaite:

$$F^{0}(x) = x, \ F^{1}(x) = F(x), \ F^{2}(x) = F(F(x)), ..., \ F^{k}(x) = F(F^{k-1}(x)),$$

 et

$$x_0, x_1 = F(x_0), x_2 = F^2(x_0), ..., x_k = F^k(x_0).$$

Définition 1.1.1

On appelle orbite positive de x par le système (1.1) l'ensemble $O_+ \subset D$ définie par:

$$O_+ = \{ F^k(x), k \in \mathbb{N} \}.$$

• On appelle orbite négative de x par le système (1.1) l'ensemble $O_{-} \subset D$ définie par:

$$O_{-} = \{F^{-k}(x), k \in \mathbb{N}\}.$$

• On appelle orbite de x par le système (1.1) l'ensemble $O \subset D$ définie par:

$$O = \{ F^k(x), k \in \mathbb{Z} \}.$$

et F une application bijective.

Définition 1.1.2 On dit que $x^* \in D$ est un point fixe de F si:

$$F(x^*) = x^*.$$

Définition 1.1.3 On dit que x^* est un **point périodique** s'il existe $n \ge 1$, tel que $F^n(x^*) = x^*$. La période d'un point périodique x^* est le plus petit entier $n \ge 1$ tel que:

$$F^n(x^*) = x^*,$$

l'ensemble $\{x_0, x_1, ..., x_{p-1}\}$ forme une **orbite périodique d'ordre** p ou un cycle d'ordre p, si:

$$F(x_i) = x_{i+1}$$
 pour $i = 0, 1, 2, ..., p-1$ et $F(x_{p-1}) = x_0$.

Autrement dit, chaque point d'une orbite périodique d'ordre p est un point fixe pour F^p : $F^p(x_i) = x_i \text{ pour } i = 0, 1, 2, ..., p - 1$ et n'est pas un point fixe pour F^k si k < p.

1.2 Etude de la stabilité

L'étude du comportement d'un système dynamique à temps discret correspond à l'annalyse de stabilité des points fixes et des points périodiques.

Théorème 1.2.1 (Brouwer) Soit F une application continue de $\overline{B^n}$ dans lui-même où $\overline{B^n} = \{x \in \mathbb{R}^n \nearrow ||x|| \le 1\}$, alors l'équation F(x) = x admet une solution dans $\overline{B^n}$ c'està-dire F admet un point fixe.

Théorème 1.2.2 (Contraction de Banach) Soit F une application continue de $\overline{B^n}$ dans lui-même, on suppose que:

$$||F(x_1) - F(x_2)|| < \lambda ||x_1 - x_2||,$$

pour tout vecteur $x_{i,j} \in \overline{B^n}$ et un certain $\lambda \in (0,1)$. Alors il existe un point fixe unique $x^* \in \overline{B^n}$. De plus on a:

$$\lim_{n \to \infty} F^n(x) = x^*, \quad \forall x \in \overline{B^2}.$$

1.2.1 Stabilité du point fixe

Soient E un ensemble et $A \subset E$,

- On dit que A est invariant par F si F(A) = A.
- On dit que A est un attractif (ou attracteur) si A compact fermé et invariant par F; et s'il existe un voisinage V de A tel que pour x₀ ∈ V, l'orbite de x₀ est une suite qui converge vers A. Le voisinage V est appelé le bassin d'attraction de A et on a:

$$A = \bigcap_{k=1}^{\infty} F^k(V).$$

- On dit que A est instable (ou répulsif) s'il existe un voisinage V de A tel que pour tout x₀ ∈ V, l'orbite de x₀ s'éloigne de A (ou de manière équivalente: si A est un attracteur pour F⁻¹).
- On dit que A est un **attracteur étrange** si l'orbite de x est dense dans $A, \forall x \in A$ et A est sensible aux conditions initiales.
- L'attracteur le plus simple est le point fixe, il peut être attractif ou répulsif.

Définition 1.2.1 Le sytème dynamique (1.1) est dit **stable au sens de Lyapunov** par rapport au point fixe x^* si suffisament proches du point fixe pour des conditions initiales $x(k_0)$, et nous écrivons:

$$\forall \varepsilon > 0, \exists \delta > 0 : \|x(k_0) - x^*\| < \delta \Rightarrow \|F(k, k_0, x(k_0)) - x^*\| < \varepsilon, \forall k > k_0$$

En dimension un, $F : \mathbb{R} \to \mathbb{R}$ c'est la pente $m = F'(x^*)$ de la tangente au point fixe x^* qui détermine le type de point fixe.

Définition 1.2.2 Le point fixe x^* est attractif si:

$$\forall k_0 \in \mathbb{N}; \exists \delta_0(k_0), \quad tel \ que \ \|x(k_0) - x^*\| < \delta_0(k_0) \Rightarrow \lim_{k \to +\infty} F(k, k_0, x(k_0)) = x^*,$$

lorsque $\delta_0(k_0) = +\infty$; on dit que le point fixe x^* est globalement attractif.

Définition 1.2.3 Le point fixe x^* est dit asymptotiquement (respectivement globalement asymptotiquement) stable lorsqu'il est à la fois stable au sen de Lyapunov et attractif (respectivement globalement asymptotiquement).

1.2.2 Méthode de linéarisation

Soit le système dynamique non linéaire

$$x(k+1) = F(x(k)),$$

$$x(k_0) = x(0), \text{ Condition initiale.}$$
(1.2)

Le système (1.2) admet, au voisinage de $x^* = 0$, un développement limité de la forme:

$$x(k+1) = Ax(k) + r(||x||),$$
(1.3)

où A une matrice constante et:

$$\lim_{x \to 0} \frac{r(\|x\|)}{\|x\|} = 0.$$
(1.4)

Le système linéaire décrit par:

$$x(k+1) = Ax(k).$$
 (1.5)

1.2.3 Méthode de Lyapunov

Méthode indirecte de Lyapunov

La méthode indirecte, aussi appelée première méthode de Lyapunov, consiste á linéairiser le système (1.5) autour d'un point fixe x^* et á tester la stabilité du système.

Théorème 1.2.3 Soient λ_i , i = 0, 1, ..., n, les valeur propres de la matrice A définie dans (1.3).

On dit que le point fixe x^* du système (1.2) est:

- 1. Asymptotiquement stable si $\forall i \in \{0, 1, ..., n\}$, on a $\|\lambda_i\| < 1$.
- 2. Instable (ou répulsif) si la matrice A admet au moins une valeur propre de module strictement supérieur à l'unité. $\exists i \in \{0, 1, ..., n\}$, tel que $\|\lambda_i\| > 1$.
- 3. On ne peut pas conclure la stabilté locale du point fixe si certaines valeurs propres de la matrice A sont sur le cercle du rayon de l'unité et les autres à l'intérieur.

Méthode directe de Lyapunov

Dans la méthode directe de Lyapunov, on cherche une fonction scalaire (de type énergétique), que admet une différence négative. Cette fonction est appelée fonction de Lyapunov.

Définition 1.2.4 Une fonction de Lyapunov est une fonction scalaire $V : \mathbb{R}^n \to \mathbb{R}^+$, continue en x_k , tel que:

- 1. V(0) = 0,
- 2. $V(x_k) > 0, \forall x_k \neq 0,$
- 3. $V(x_k) \to +\infty \ si \ x_k \to +\infty$.

Théorème 1.2.4 Le principe de la deuxiéme méthode de Lyapunov consiste à remplacer l'étude de convergence de x_k vers $x^* = 0$, c'est-à-dire le point fixe $x^* = 0$ est asymptotiquement stable s'il existe une fonction de Lyapunov $V : \mathbb{R}^n \to \mathbb{R}^+$, telle que:

$$\Delta V(x_{k+1}, x_k) = V(x_{k+1}) - V(x_k) < 0, \quad \forall x_k \neq 0.$$
(1.6)

Remarque 1.2.1 Si le point fixe $x^* \neq 0$, on s'y ramène par un changement de variable du type $x'_k = x_k - x^*$.

1.2.4 Stabilité des points périodiques

Comme les points périodiques sont des points fixes de F^p , alors:

Théorème 1.2.5 Soit x le point périodique d'un cycle d'ordre p: Si les valeurs propres de la matrice $DF^p(x)$ sont des modules strictement inférieurs à l'unité, le cycle est stable; si la matrice $DF^p(x)$ admet au moins une valeur propre de module strictement supérieur à l'unité, le cycle est instable.

En dimension un, $F : \mathbb{R} \to \mathbb{R}$, est $m_p = F^p(x^*)$ alors:

Théorème 1.2.6 Pour $F : \mathbb{R} \to \mathbb{R}$ le cycle $\{x_0, x_1, ..., x_{p-1}\}$:

- 1. Stable (ou attractif) si: $|m_p| < 1$.
- 2. Instable (ou répulsif) si: $|m_p| > 1$.
- 3. Indiférent si: $|m_p| = 1$.
- 4. Super stable (ou super attractif) si: $|m_p| = 0$.

 m_p s'appelle le multiplicateur de F du cycle $\{x_0, x_1, ..., x_{p-1}\}$ et $m_p = \prod_{i=0}^{i=p-1} F'(x_i),$ où $F' = \frac{dF}{dx}.$

1.3 Nature des points fixes et cycles

Pour caractériser la nature des points fixes et les cycles nous supposons que:

a) Si la dimension de système (1.1) est égal à un, le multiplicateur d'un point fixe x^* est $m = F'(x^*)$ où $F' = \frac{dF}{dx}$ et le multiplicateur d'un cycle d'ordre $p, \{x_0, x_1, ..., x_{p-1}\}$ est $m_p = \prod_{i=0}^{i=p-1} F'(x_i)$.

Un point fixe ou un cycle est dit stable (ou attractif) si |m| < 1 ($|m_p| < 1$ respectivement), et instable (ou répulsif) si |m| > 1 ($|m_p| > 1$ respectivement).

b) Si la dimension de système (1.1) supérieur un, les multiplicateurs d'un point fixe x^* ou d'un cycle d'ordre p sont les valeurs propres de la matrice Jacobienne de $F(x^*)$ ou de $F^p(x_i)$.

Lorsque la dimension de système (1.2) est égal à deux, il existe deux valeurs propres λ_1 et λ_2 alors la nature de point fixe ou cycle donnée comme suivante:

1) Col: Si λ_1 et λ_2 sont réels: $|\lambda_1| < 1$ et $|\lambda_2| > 1$.

Un col est un point instable:

a- de type 1 si $\lambda_1 > 0$ et $\lambda_2 > 0$,

b- de type 2 si $\lambda_1 \lambda_2 < 0$,

c- de type 3 si $\lambda_1 < 0$ et $\lambda_2 < 0$.

2) Noeud: Si λ_1 et λ_2 sont réels

a- stable si $|\lambda_i| < 1, i = 1, 2,$

b- instable si $|\lambda_i| > 1, i = 1, 2.$

3) Foyer: Si λ_1 et λ_2 sont complexes conjuguées et $r = |\lambda_i|, i = 1, 2,$

a- stable si r < 1,

b- instable si r > 1.

FIGURE 1.1 – Classification des portraits de phases dans le plan $(\det A, \operatorname{Tr} A)$. Voir [31].

Lorsque la dimension de système (1.2) est égal à trois, alors existe trois multiplicateurs m_i (i = 1, 2, 3) sont les valeurs propres d'un point fixe ou d'un cycle.

1) Col: Si m_i , i = 1, 2, 3 sont réels

a- de type 1 si $|m_i| < 1$, i = 1, 2 et $|m_3| > 1$,

b- de type 2 si $|m_i| > 1$, i = 1, 2 et $|m_3| < 1$.

2) Col-foyer: Si m₁ et m₂ sont complexes conjuguées, et m₃ est réel
a- de type 1 si |m_i| < 1, i = 1, 2 et |m₃| > 1,

b- de type 2 si $|m_i| > 1$, i = 1, 2 et $|m_3| < 1$.

3) Noeud: Si m_i , i = 1, 2, 3 sont réels

a- stable si $|m_i| < 1, i = 1, 2, 3,$

b- instable si $|m_i| > 1$, i = 1, 2, 3.

4) Noeud-foyer : Si m_1 et m_2 sont complexes conjuguées, et m_3 est réel

a- stable si $|m_i| < 1, i = 1, 2, 3,$

b- instable si $|m_i| > 1$, i = 1, 2, 3.

1.4 Courbes invariantes

Définition 1.4.1 Une courbe Q(x) = C, C étant une constante réelle, est invariante par F définie par (1.1), si Q satisfait l'équation suivante:

$$Q(F(x)) = Q(x), \tag{1.7}$$

dans le cas d'un point fixe (ou d'un cycle d'ordre k) de type col, on note W_s les branches de la courbe associées au multiplicateur de module inférieur à 1 et W_u les branches de la courbe associées au multiplicateur de module supérieur à 1 Voir la Figure 1.2.

Plus généralement, un ensemble A de \mathbb{R}^n est invariant par la transformation T si seulement si T(A) = A.

FIGURE 1.2 – Courbes invariantes associée à un point fixe de type col x^* dans le cas n = 2.

1.4.1 Ensemble attractant et attracteur

Définition 1.4.2 un ensemble fermé invariant A est attractant s'il existe un voisinage U de A tel que $T(U) \subset U$ et $T^p(x) \to A$, quand $p \to \infty$, pour tout $x \in U$.

Définition 1.4.3 Un attracteur est un ensemble attractant topologiquement transitif, si seulement si quels que soient les ouverts $U, V \subset A$, il existe un entier positif k tel que $T^k(U) \cap V \neq \emptyset$.

1.4.2 Chaos

Actuellement il n'y a pas de définition générale du terme "chaos". On rappelle une définition intéressante, proposée par Devaney [6] pour les systèmes à temps discret.

Définition 1.4.4 Soient (X, δ) un espace métrique compact et $F : X \to X$, une application. Le système à temps discret donné comme suit:

$$x_{k+1} = F(x_k) \tag{1.8}$$

est dit chaotique s'il vérifier les trois conditions suivantes:

 Le système (1.8) est sensible aux conditions initiales ? c'est-à-dire il existe un nombre réel ε > 0 tel que, pour tout x₀ ∈ X et pour tout β > 0, il existe un point y₀ ∈ X et un entier k > 0, vérifiant:

$$\delta(x_0, y_0) < \beta \Rightarrow \delta(x_k, y_k) > \epsilon.$$
(1.9)

- 2. L'applicaion F dans (1.8) est topologiquement transitive s'il existe $x_k \in X$ tel que l'orbite $\{F^p(x_k) : p \in \mathbb{N}\}$ est dense dans X. F^p représente la p-ième composition de l'application F.
- 3. L'ensemble des orbites périodiques $\{x_0 \in X; \exists k > 0, x_k = x_0\}$ est dense dans X.

On dit que le chaos est stable lorsqu'il y a existence d'un attracteur étrange, dû à la présence d'une infinité de solutions périodiques stables et on dit que le chaos est instable lorsqu'il y a existence d'un transitoire étrange du à la présence d'une infinité de solutions périodiques instables, on parle alors de répulseur chaotique, un tel ensemble peut être assoié à l'existence d'un attracteur à l'infini ou à l'existence d'une frontière floue les bassins de deux attracteurs.

Nous proposons la définition suivante:

Définition 1.4.5 Un attracteur, dont les points génèrent des suites itérées qui vérifient la propriété de sensibilité aux conditions initiales, est dit chaotique.

1.5 Exemples des systèmes chaotiques à temps discret

1.5.1 Récurrence logistique

Une récurrence logistique est un exemple simple de suite dont la récurrence n'est pas linéaire, utilisée par le biologiste Robert May en 1976 [30], décrit l'évolution de population d'une espèce. Souvent citée comme exemple de la complexité qui peut résulter d'une simple relation non-linéaire.

La récurrence logistique donnée comme suivante:

$$x_{k+1} = f_{\mu}(x_k) = \mu x_k (1 - x_k), \qquad (1.10)$$

où $x \in]0, 1[$ représente la population à l'année k et μ est une constante de l'intervalle [0, 4] représente un facteur de croissance de la population.

Des exemples d'évolution de ce système sont données aux Figures 1.3.

1.5.2 Récurrence de Hénon

La récurrence de Hénon [17] est un système dynamique discret de dimension 2 dont la représentation d'état est la suivante:

$$\begin{cases} x_{k+1} = 1 - ax_k^2 + y_k \\ y_{k+1} = bx_k \end{cases}$$
(1.11)

pour les valeurs a = 1.4 et b = 0.3 et son bassin d'attraction. Voir [17].

1.5.3 Récurrence de Lozi

Dans le but de simplifier l'attracteur de Hénon, René Lozi [27], propose le système suivant:

$$\begin{cases} x_{k+1} = 1 - a|x_k| + y_k \\ y_{k+1} = bx_k. \end{cases}$$
(1.12)

L'attracteur de Lozi présentée pour a = 0.7, b = 0.5 et $x_0 = y_0 = 0$.

FIGURE 1.3 – Itérations de la fonction logistique.

1.5.4 Récurrence d'Ikeda

L'attracteur d'Ikeda est un système dynamique à temps discret, caractérisé par la relation de récurrence:

$$z_{k+1} = A + B \exp^{iP/(|z_k|^2 + 1) + C}$$
(1.13)

Il a été proposé en 1979 par le physicien japonais Kensuke Ikeda. Voir [18] pour décrire la propagation de la lumière à travers une cavité optique non linéaire.

La relation de récurrence est souvent utilisée sous la forme suivante:

$$\begin{cases} x_{k+1} = 1 + \mu(x_k \cos(\theta_k) - y_k \sin(\theta_k)) \\ y_{k+1} = \mu(x_k \sin(\theta_k) + y_k \cos(\theta_k)) \end{cases}$$
(1.14)

où $\mu \in \mathbb{R}$ est un paramètre et $\theta_k = 0.4 - \frac{6}{1+x_k^2+y_k^2}$.

Lorsque $\mu \geq 0.6,$ le système a un comportement chaotique.

FIGURE 1.4 – (a) Attracteur de Hénon, (b) Attracteur de Lozi.

FIGURE 1.5 – Attracteur d'Ikeda pour $\mu = 0.9$ et $x_0 = y_0 = 0.1$.

Chapitre 2

Les systèmes dynamiques discrets en espaces topologiques

Sommaire

2.1	Espa	aces topologiques et espaces métriques	15
	2.1.1	Notions	15
	2.1.2	Espaces normés	16
2.2	Fond	$tions dérivables \ldots \ldots$	17
	2.2.1	Fonctions réelles dérivables	17
	2.2.2	Le théorème des accroissements finis \hdots	17
	2.2.3	Formule de Taylor	17
2.3	Fond	ctions différentiables	17
	2.3.1	Différentiabilité	17
	2.3.2	Matrice Jacobienne	18
2.4	Les	systèmes dynamiques discrets	18
	2.4.1	Conjugaison topologique	19
	2.4.2	Voisinage d'un point	19
2.5	Con	tinuité sur l'espaces topologiques et métriques $\ldots \ldots$	20
	2.5.1	Le cas des espaces topologiques	20
	2.5.2	Le cas des espaces métriques	20
2.6	Cha	os au sens de Li et Yorke	21
	2.6.1	Théorème de Li et Yorke	21
2.7	Cha	os au sens de Devaney	22

	2.7.1	Théorème de Devaney	22
	2.7.2	Exemples de systèmes chaotiques au sens de Devaney	23
2.8	\mathbf{Exp}	osant de Lyapunov	25
	2.8.1	Exposant de Lyapunov pour un système de dimension égale a un	25
	2.8.2	Exposants de Lyapunov pour un système de dimension supé-	
		rieure strictement à un	27
	2.8.3	Méthode de Wolf	27
	2.8.4	Dimension de Kaplan-Yorke (ou de Lyapunov)	29
2.9	Cha	os au sens de Marotto	30
	2.9.1	Théorème de Marotto 1978	31
	2.9.2	Une version modifiée du théorème de Marotto	32

2.1 Espaces topologiques et espaces métriques

2.1.1 Notions

Définition 2.1.1 Soient X un ensemble et τ une famille de parties de X, On dit que le couple (X, τ) , est un **espace topologique** si vérifiant:

- (1) $\emptyset \in \tau, X \in \tau$,
- (2) Une intersection finie d'éléments $t_1, t_2, ..., t_n \in \tau$ appartient à τ , c'est-à-dire
 - $t_1 \cap t_2 \cap \ldots \cap t_n \in \tau.$
- (3) Une reunion quelconque d'éléments

 $t_1, t_2, ..., t_n \in \tau$ appartient à τ , c'est-à-dire $t_1 \cup t_2 \cup ... \cup t_n \in \tau$.

On appelle τ la topologie sur X.

Définition 2.1.2 on définit la **distance** sur X est une application $(x, y) \mapsto d(x, y)$ de $X \times X$ dans \mathbb{R}^+ où $X \neq \emptyset$. telle que:

- (1) d(x,y) = 0 si seulement si x = y,
- (2) $d(x,y) = d(y,x), \quad \forall x, y \in X,$
- (3) $d(x,y) \le d(x,z) + d(z,y), \quad \forall x,y,z \in X.$

Exemple 2.1.1 Si $X = \mathbb{R}^n$ alors, on définit la distance Euclidienne comme suite:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2},$$

où $x, y \in \mathbb{R}^n$.

Définition 2.1.3 Le couple (X, d), où d est une distance définit sur X, on appelle espace *métrique*.

Définition 2.1.4 Soit l'espace métrique (X, d). Pour $x \in X$ et r > 0, on définit: a) $B(x, r) = \{y \in X ; d(y, x) < r\}$, est une **boule ouverte** où x une centre et r le rayon. b) $\overline{B}(x, r) = \{y \in X ; d(y, x) \le r\}$, est une **boule fermée** où x une centre et r le rayon.

Définition 2.1.5 Soit l'espace métrique (X, d), on appelle U une partie non-vide de X est un ouvert si $\forall x \in U, \exists r > 0$ tel que $B(x, r) \subset U$.

Proposition 2.1.1 Soit (X, d) un espace métrique.

- 1. Une intersection finite des parties d'ouverts ($\cap U_i \in X, i = 1, 2, ..., n$), est une partie ouverte.
- 2. Une reunion quelconque des parties d'ouverts ($\cup U_i \in X, i = 1, 2, ...$), est une partie ouverte.

Définition 2.1.6 Soit l'espace métrique (X, d), on définit la **topologie métrique** de l'espace (X, d) comme suite:

$$\mathcal{T} = \{ U \subset X ; U \text{ est un ouvert} \}.$$

Alors, en remarque que l'espace métrique est un cas particulier d'un espace topologique.

Définition 2.1.7 Soit l'espace topologique (X, τ) . On dit que X est un espace de **Hausdorff**, ou séparé, si trouver deux parties ouverts $U, V \in \tau$, tels que $x \in U, y \in V, x \neq y$ et $U \cap V = \emptyset$.

2.1.2 Espaces normés

Définition 2.1.8 Soit E un espace vectoriel réel. Une **norme** sur E est une application $x \mapsto ||x||$ de E dans $\mathbb{R}^+ = [0, \infty]$ telle que:

- (1) ||x|| = 0 si seulement si x = 0,
- (2) $\|\lambda x\| = |\lambda| \|x\|, \quad \forall \ \lambda \in \mathbb{R}, \forall \ x \in E,$
- (3) $||x + y|| \le ||x|| + ||y||, \quad \forall x, y \in E.$

Exemple 2.1.2 On dit que la norme euclidienne la formule suivante:

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2},$$

 $o\dot{u} x = (x_1, \dots, x_n) \in \mathbb{R}^n.$

Définition 2.1.9 Un espace normé est un couple (E, || ||), où || || est une norme sur E.

Proposition 2.1.2 Un espace normé (E, || ||) est un espace métrique pour la métrique $d(x, y) = ||x - y||, \forall x, y \in X.$

2.2 Fonctions dérivables

2.2.1 Fonctions réelles dérivables

Notation

On note $f'(x_0)$ ou $\frac{df}{dx}(x_0)$ la dérivée de f en x_0 .

Définition 2.2.1 (continument dérivable) Une fonction réelle f définit sur un ouvert U de \mathbb{R} est dite **de classe** C^1 ou continument dérivable si elle est dérivable sur U et si sa dérivée f' est continue de U dans \mathbb{R} .

2.2.2 Le théorème des accroissements finis

Théorème 2.2.1 (Théorème des accroissemnts finis) Soit f une fonction réelle continue sur l'intervalle réel [a, b], dérivable en tout point de]a, b[. Alors il existe un point cde l'intervalle ouvert]a, b[tel que:

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

2.2.3 Formule de Taylor

Théorème 2.2.2 (Taylor) Soient U un ouvert de \mathbb{R} et f une fonction de classe C^n sur U. Si a et b sont deux points de U, on a l'égalité:

$$\|f(b) - \sum_{j=0}^{n-1} \frac{(b-a)^j}{j!} f^{(j)}(a)\| \leq \frac{|b-a|^n}{n!} \sup_{x \in [a,b]} \|f^{(n)}(x)\|.$$

Théorème 2.2.3 (Formule de Taylor-Young) Si U est un ouvert de \mathbb{R} et f une fonction de classe C^n sur U dans un espace de Banach E, on a pour $a \in U$:

$$f(x) = \sum_{j=0}^{n} \frac{(x-a)^{j}}{j!} f^{j}(a) + (x-a)^{n} \varepsilon_{n}(x),$$

où ε_n est une fonction qui tend vers 0 quand x tend vers a.

2.3 Fonctions différentiables

2.3.1 Différentiabilité

Définition 2.3.1 Soient E et F deux espaces de Banach. U un ouvert de E et f une fonction de U dans F. On dit que f est **différentiable** en un point a de U s'il existe une

application linéaire continue $T \in L(E, F)$ telle que:

$$f(x) - f(a) - T(x - a) = o(x - a),$$

quand x tend vers a.

Proposition 2.3.1 Si f est différentiable en a, alors y = f(x) est continue.

Définition 2.3.2 Si la fonction f est différentiable en a, on appelle **différentielle** de fau point a l'unique application linéaire $T \in L(E, F)$ telle que:

$$f(x) - f(a) - T(x - a) = o(x - a).$$

2.3.2 Matrice Jacobienne

Théorème 2.3.1 Si U est un ouvert de \mathbb{R}^n et f une application de U dans \mathbb{R}^p , différentiable en $x_0 \in U$, et si $(f_1, f_2, ..., f_p)$ sont les fonctions coordonnées de f, la matrice Jacobienne de f en x_0 s'écrit:

$$J_f(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \\ \vdots & \vdots & \vdots & \vdots \\ \\ \frac{\partial f_p}{\partial x_1} & \frac{\partial f_p}{\partial x_2} & \cdots & \frac{\partial f_p}{\partial x_n} \end{pmatrix}$$

Théorème 2.3.2 Soient U un ouvert de \mathbb{R}^n , V un ouvert de \mathbb{R}^p , f une application de U dans \mathbb{R}^p et g une application de V dans \mathbb{R}^q . Si $f(U) \subset V$, si f est différentiable en x_0 et g en $y_0 = f(x_0)$, on a:

$$J_{g\circ f} = J_g(y_0).J_f(x_0).$$

2.4 Les systèmes dynamiques discrets

Soit $f : X \to X$ une application d'un espace topologique ou métrique X dans luimême. On considère la suite des itérées définies par la relation de récurrence:

$$\begin{cases} \forall n \in \mathbb{N}, x_{n+1} = f(x_n) \\ x_0 \in X. \end{cases}$$

Le comportement de ces itérées dépend de la fonction f, et de l'espace sur lequel on itère.

Définition 2.4.1 Un système dynamique discret est un couple (X, f) formé par:

- un espace topologique non vide (X, τ) , appelé espace des phases,
- une fonction continue $f: X \to X$, appelée fonction successeur.

2.4.1 Conjugaison topologique

Définition 2.4.2 (Conjugaison topologique) Soit $r \ge 0$. Deux applications dans C^r et $f : X_1 \to X_1$ et $g : X_2 \to X_2$ sont topologiquement conjuguées lorsqu'il existe un homéomorphisme $h : X_1 \to X_2$ tel que $f = h^{-1} \circ g \circ h$.

Lorsque h est un C^m difféomorphisme $(m \leq r)$, on parle de *conjugaison lisse*. Parfois, on peut seulement trouver $h : X_1 \to X_2$ continue surjective telle que $h \circ f = g \circ h$. On parle alors de *semi-conjugaison*.

Théorème 2.4.1 Si f une application chaotique et que g est topologiquement conjuguée à f, alors g est chaotique. Voir [6].

Exemple 2.4.1 Soient X_1 et X_2 deux ensemble compacts, définis respectivement par $X_1 = [0,1]$ et $X_2 = [-1,1]$, et soient les applications $f : X_1 \to X_1$, $g : X_2 \to X_2$ et $h : X_1 \to X_2$, définie par:

$$f(x_k) = 4x_k(1 - x_k)$$

$$g(x_k) = 2x_k^2 - 1$$

$$h(x_k) = 0.5(1 - x_k).$$

(2.1)

Les applications f et g sont topologiquement conjuguées à travers h car $foh(x_k) = hog(x_k) = 1 - x_k^2$. Nous avons prouvé f est chaotique dans l'exemple 1.5.1, donc, en utilisant le Théorème 2.4.1, nous concluons que g est chaotique.

2.4.2 Voisinage d'un point

Définition 2.4.3 On dit que voisinage de $x \in X$ où (X, τ) un espace topologique, toute ensemble $V \subset X$ qui contient un ouvert U qui contient x c'est-à-dire $x \in U \subset V$. Un voisinage ouvert de $x \in X$ est un ouvert qui contient x. On note V_x la famille des voisinages de x.

2.5 Continuité sur l'espaces topologiques et métriques

2.5.1 Le cas des espaces topologiques

Définition 2.5.1 Soient (X_1, τ_1) , (X_2, τ_2) deux espaces topologiques et $f : X_1 \to X_2$ une application. Soit $a \in X_1$ et $b \in X_2$. On dit que f tends vers b si x tend vers a, écrit $\lim_{x\to a} f(x) = b$, si pour tout voisinage V de b il existe un voisinage U de a tel que $f(U) \subset V$.

Proposition 2.5.1 Soient (X_1, d_1) , (X_2, d_2) deux espaces métriques et $f : X_1 \to X_2$ une application. Soit $a \in X_1$ et $b \in X_2$. Alors f tends vers b si x tend vers a si et seulement si pour tout $\epsilon > 0$ il existe $\delta > 0$ tel que $\forall x \in X_1 : d_1(x, a) < \delta$ implique $d_2(f(x), b) < \epsilon$.

On note que l'enoncé « $\forall x \in X_1 : d_1(x, a) < \delta$ implique $d_2(f(x), b) < \epsilon$ est équivalent à $f(B_{d_1}(a, \delta)) \subset B_{d_2}(b, \epsilon).$

Définition 2.5.2 Soient (X_1, τ_1) , (X_2, τ_2) deux espaces topologiques et $f : X_1 \to X_2$ une application. On dit que f est continue en $a \in X_1$ si f tends vers f(a) si x tend vers a.

On dit que f est continue sur A si f est continue en tout point de A. On dit que f est continue si f est continue sur X.

La composition de deux fonctions continues est continue.

2.5.2 Le cas des espaces métriques

Définition 2.5.3 Soient (X_1, d_1) , (X_2, d_2) deux espaces métriques, $a \in X_1$ et $f: X_1 \to X_2$. On dit que l'application f est continue en a si:

$$\forall \epsilon > 0, \exists \alpha > 0, \forall x \in X_1, d_1(x, a) \le \alpha \Rightarrow d_2(f(x), f(a)) \le \epsilon.$$

Proposition 2.5.2 Soit $f : (X_1, d_1) \to (X_2, d_2)$ une application entre deux espaces métriques.

Alors f est continue en $a \in X_1$ si et seulement si pour toute suite x_n convergent vers a, la suite $f(x_n)$ converge vers f(a).

2.6 Chaos au sens de Li et Yorke

La première définition mathématique du chaos est donnée en 1975 par les mathématiciens Li et Yorke. Voir [24] est donnée avec une application définie à temps discret de dimension un comme suit:

$$x_{k+1} = f(x_k), \quad x \in \mathbb{R}, \quad k = 0, 1, 2, ...,$$

$$(2.2)$$

où f une application de $\mathbb R$ dans $\mathbb R$

2.6.1 Théorème de Li et Yorke

Soit $I \subset \mathbb{R}$ et $f : I \to I$, une application continue. On suppose qu'il existe un point $a \in I$ tel que:

$$b = f(a), c = f^{2}(a), d = f^{3}(a),$$

 $d \le a < b < c,$

ou

$$d \ge a > b > c.$$

Alors

- 1) Pour chaque k = 1, 2, ..., il y à un point périodique de période k,
- 2) L'ensemble S ⊂ I ne contient pas de points périodiques qui satisfassent les conditions suivantes:
 - i) Pour chaque $p, q \in S$ avec $p \neq q$,

$$\limsup_{k \to \infty} |f^k(p) - f^k(q)| > 0,$$

 et

$$\liminf_{k \to \infty} |f^k(p) - f^k(q)| = 0.$$

ii) Pour chaque $p \in S$ et un point périodique $q \in I$ avec $p \neq q$,

$$\limsup_{k \to \infty} |f^k(p) - f^k(q)| > 0.$$

Le cas de la dimension égale à un, le système dynamique (2.2) qui satisfait les conditions ci-dessus est dit chaotique au sens de Li et Yorke.

Le théorème peut être généralisé par supposition que $f : \mathbb{R} \to \mathbb{R}$, et que $f(I) \subset I$. De plus, la fonction f doit satisfaire:

$$f(I) \cap I \neq \emptyset, \tag{2.3}$$

afin qu'il contienne les points a, b, c et d.

2.7 Chaos au sens de Devaney

Soit f^m une fonction définie dans S vers S où $S \subset X$, (X espace topologique) satisfaite:

$$f^m = f(f^{m-1}), m = 1, 2, ...,$$
 (2.4)

 et

$$f^0 = \text{Identité}$$

On appelé un point $x^* \in S$ périodique d'une période m s'il satisfait:

$$x^* = f^m(x^*), \text{ mais } x^* \neq f^k(x^*), \text{ pour } 1 < k \le m,$$
 (2.5)

si m = 1, alors le point x^* est appelé un point fixe de f.

2.7.1 Théorème de Devaney

On dit que l'application $f: S \to S$ est de comportement chaotique si

 i) L'application f est sensible aux conditions initiales, c'est-à-dire ∀x ∈ S et au voisinage de x dans S, il existe un δ > 0 tel que:

$$|f^m(x) - f^m(y)| > \delta,$$
 (2.6)

pour $y \in S$ et pour $m \ge 0$.

ii) L'application f est topologiquement transitive, c'est-à-dire pour toute paire de sousensembles ouverts $U, V \subset S$, il existe un nombre entier m > 0 tel que:

$$f^m(U) \cap V \neq \emptyset. \tag{2.7}$$

iii) Les points périodiques de l'application f sont denses dans S.
2.7.2 Exemples de systèmes chaotiques au sens de Devaney

Notation 1 L'opération mod (modulo) est une relation binaire qui associe à deux valeurs naturels le reste de la division euclidienne du premier par le second, le reste de la division de a par $n \ (n \neq 0)$ est noté a mod n.

Exemple 2.7.1 .(*Le doublement de l'angle*). L'itérations de doublement de l'angle est donnée avec l'opération modulo. Voir [6], comme suivante:

$$f: [0, 1[\to [0, 1[$$
$$x \mapsto 2x \pmod{1}).$$

Le comportement de l'application de doublement de l'angle est chaotique au sens de Devaney.

Les Figures de l'application doublement de l'angle, et des exemples d'itérations d'application, sont données dans la Figure 2.1.

FIGURE 2.1 – La fonction de doublement de l'angle.

Exemple 2.7.2 .(*Application tente*). L'application tente. Voir [6] est définie sur [0,1] par:

$$T(x) = \begin{cases} 2x, & si \ x \in [0, \frac{1}{2}] \\ 2(1-x), & si \ x \in [\frac{1}{2}, 1]. \end{cases}$$

Le système dynamique de l'application tente est un système chaotique au sens de Devaney.

La courbe de l'application tente, et des exemples d'itérations du système dynamique associé, sont données dans la Figure 2.2.

FIGURE 2.2 – La fonction tente.

Exemple 2.7.3 .(Le chat d'Arnold (1968)). L'application de chat d'Arnold (arnold utilisait le mot cat comme abréviation de automorphismes continus du tore). Voir [1] est définie sur $[0, 1]^2$ par:

$$\begin{cases} x_{k+1} = (x_k + y_k) \mod 1\\ y_{k+1} = (x_k + 2y_k) \mod 1. \end{cases}$$
(2.8)

Il est possible de montre que (2.8) est de comportement chaotique au sens de Devaney. Voir la Figure 2.3.

(a) 100 itérations pour $(x_0, y_0) = (0.1, 0.2)$. (b) 1000

(b) 10000 itérations pour $(x_0, y_0) = (0.1, 0.2)$.

FIGURE 2.3 – Itérations du chat d'Arnold.

2.8 Exposant de Lyapunov

Nous allons traiter tout d'abord le calcul des exposants de Lyapunov pour un système de dimension un, puis pour un système de dimension supérieure strictement à un.

2.8.1 Exposant de Lyapunov pour un système de dimension égale a un

Soit un système dynamique de dimension égal un. Voir [22, 28] donné par une application discrète $f : \mathbb{R} \to \mathbb{R}$ telle que

$$x_{k+1} = f(x_k), k = 0, 1, 2, \dots$$
(2.9)

Soit x_0 une condition initiale, un accroissement δx_0 , (avec $\delta x_0 \to 0$) afin d'obtenir une seconde initiale proche x'_0 telle que:

$$x_0' = x_0 + \delta x_0.$$

On utilise les deux premiers termes d'un développement en séries de Taylor on a;

$$f(x'_0) = f(x_0 + \delta x_0) = f(x_0) + f'(x_0) \cdot \delta x_0.$$
(2.10)

En remplaçant dans (2.10) on obtient

$$\delta x_1 = f'(x_0) \cdot \delta x_0$$
 tel que $\delta x_1 = x'_1 - x_1,$ (2.11)

où $x_1 = f(x_0)$ et $x'_1 = f(x'_0)$. Nous prenons à nouveau l'image par f des deux membres de (2.11) on obtient

$$f(x_1') = f[f(x_0 + \delta x_0)] = f[f(x_0)] + f'[f(x_0)] \cdot \delta x_0, \qquad (2.12)$$

 donc

$$f(x_1') = f^2(x_0) + f'[f(x_0)] \cdot \delta x_0, \qquad (2.13)$$

donc le premier itéré de f sur x'_1 , il vient

$$f(x_1') = f(x_1) + f'(x_1).\delta x_1.$$
(2.14)

En introduisant (2.10) dans (2.14), nous obtenons l'équation suivante:

$$f(x_1') = f(x_1) + f'(x_1) \cdot f'(x_0) \cdot \delta x_0.$$
(2.15)

On suppose ainsi

$$\delta x_2 = f'(x_1) \cdot f'(x_0) \cdot \delta x_0, \qquad (2.16)$$

alors l'équation (2.15) est équivalent l'équation suivante

$$f(x_1') = f(x_1) + \delta x_2. \tag{2.17}$$

Nous généralisons l'équation (2.16) à une étape d'itération quelconque k en écrivant

$$\delta x_k = \left(\prod_{m=0}^{m=k-1} f'(x_m)\right) . \delta x_0.$$
(2.18)

En supposant $|\delta x_k| \approx (\gamma)^k |\delta x_0|$, l'évolution est obtenue par un taux effectif γ par pas d'itération, qui est donné par l'équation (2.18) avec l'équation (2.19).

$$\lim_{k \to +\infty} \left(\left| \frac{\delta x_k}{\delta x_0} \right| \right)^{\frac{1}{k}} = \lim_{k \to +\infty} \left(\prod_{m=0}^{m=k-1} |f'(x_m)| \right)^{\frac{1}{k}}.$$
 (2.19)

Après logarithme de l'équation (2.19), nous obtenons l'exposant de de Lyapunov,

$$\lambda = \log(\gamma) = \lim_{k \to +\infty} \frac{1}{k} \sum_{i=0}^{m=k-1} \log(|f'(x_i)|),$$
(2.20)

Pour $\lambda \leq 0$ la trajectoire de l'évolution du système peut tendre vers un point fixe, avoir un comportement périodique (ou quasi-périodique).

Pour $\lambda > 0$ le système est chaotique.

Pour $\lambda \to \infty$ le système devient aléatoire.

2.8.2 Exposants de Lyapunov pour un système de dimension supérieure strictement à un

Soit le système dynamique de dimension n défini par:

$$\begin{cases} x_{k+1} = F(x_k), & k = 0, 1, 2, \dots \\ x_0 & \text{est la condition initiale,} \end{cases}$$
(2.21)

où F une application de \mathbb{R}^n dans \mathbb{R}^n . Pour le calcul des exposants de Lyapunov. Voir [22], la méthode est la suivante. On remarque la trajectoire du point initial x_0 et celui de un point très proche, $x_0 + \varepsilon_0$ (x_0 et $x_0 + \varepsilon_0$ sont des vecteurs d'espace d'état). L'évolution du système est décrite par l'application F. D'abord, la distance entre les deux points est déterminée par la norme de ε_0 . Après itération, la distance entre les deux points de trajectoires est donnée comme suivante:

$$\|\varepsilon_1\| = \|F(x_0 + \varepsilon_0) - F(x_0)\| = \|J(x_0)\varepsilon_0\|, \qquad (2.22)$$

où $J(x_0)$ est la matrice jacobienne de F évaluée en x_0 .

Aprés généraliser l'équation (2.22) une étape d'itération quelconque k, nous écrivons

$$\|\varepsilon_{k}\| \approx \|J(x_{k-1})J(x_{k-2})...J(x_{0})\varepsilon_{0}\| \\\approx \|\prod_{i=0}^{i=k-1} J(x_{i})\|.\|\varepsilon_{0}\|,$$
(2.23)

où $\prod_{i=0}^{i=k-1} J(x_i) = J(x_{k-1})J(x_{k-2})...J(x_0).$

On définit alors les n exposants de Lyapunov avec la limite suivante:

$$\lambda = \lim_{k \to +\infty} \lim_{\varepsilon_0 \to 0} \frac{1}{k} \log \left(\frac{\|\varepsilon_k\|}{\|\varepsilon_0\|} \right) = \lim_{k \to +\infty} \lim_{\varepsilon_0 \to 0} \sum_{i=1}^{i=k} \frac{1}{k} \log \left(\frac{\|\varepsilon_i\|}{\|\varepsilon_{i-1}\|} \right).$$
(2.24)

Puisque l'application F n'est pas connue, la procédure de calculer les exposants de Lyapunov sera composé à estimer les matrices jacobiennes à partir des données. Ce n'est pas possible pour des problèmes d'instabilité numérique et une autre procédure doit être appliquée. Wolf et al. [1985] ainsi que Eckmann et Ruelle [1985] ont présentés des algorithmes performants pour les séries temporelles.

2.8.3 Méthode de Wolf

Soit un système dynamique discret de dimension n. Voir [38] défini par (2.21).

On définit la suite de vecteurs:

$$v_i(k+1) = J(k)v_i(k), \quad k = 0, 1, 2, ..., n.$$
 (2.25)

où J(k) est la Jacobienne de F au point x_k .

Alors après n itération le système (2.25) devient:

$$v_i(k+1) = J(k)J(k-1)...J(0)v_i(0), \quad k = 0, 1, 2, ..., n$$
(2.26)

dans le système (2.25), la longueur du premier axe principal augmente comme $\exp(\lambda_1 k)$, la zone définie par les deux premiers axes principaux augmente comme $\exp((\lambda_1 + \lambda_2)k)$, le volume défini par les trois premiers axes principaux augmente comme $\exp((\lambda_1 + \lambda_2 + \lambda_3)k)$... ect, et immédiatement:

$$\lambda_i \approx \lim_{N \to +\infty} \frac{1}{N} \log \left(\frac{\|v_1\|}{\|v_0\|} \cdot \frac{\|v_2\|}{\|v_1\|} \dots \frac{\|v_N\|}{\|v_{N-1}\|} \right).$$
(2.27)

Pour k = 0, les vecteurs v_i , i = 1, 2, ..., n sont définis par:

$$v_1 = (1, 0, 0, 0, ..., 0)$$

 $v_2 = (0, 1, 0, 0, ..., 0)$
 \vdots
 $v_n = (0, 0, 1, 0, ..., 0).$

Pour éviter la divergence, à chaque itération les vecteurs $v_i(k), v_2(k), ..., v_n(k)$ seront orthonormés par le procédé de Gram-Schmidt. Voir [38].

Alors, le i-ème approximation de l'exposant de Lyapunov est défini en application du taux de croissance du i-ème axe principal v_i par la formule:

$$\lambda_i \approx \lim_{N \to +\infty} \frac{1}{N} \log \frac{\|v_N\|}{\|v_0\|}, \quad \text{où} \quad i = 1, 2, ..., n.$$
 (2.28)

En conséquence, ils peuvent, en temps fini, être supèrieurs en valeur absolue à leur valeur en temps infini qui est utilisée habituellement et qui est obtenu avec la méthode de Alan Wolf. Voir [38].

Remarque 2.8.1 Pour un système non chaotique, les exposants de Lyapunov sont tous inférieurs ou égaux à zéro et leur somme est négative. Un attracteur étrange possèdera toujours au moins trois exposants de Lyapunov, existe au moins un exposant positif.

Etat	Attracteur	Dimension	Exposants de Lyapunov
Point fixe	Point	0	$\lambda_n \le \dots \le \lambda_1 < 0$
	courbe		
Périodique	fermée	1	$\lambda_1 = 0, \lambda_n \le \dots \le \lambda_2 < 0$
Période d'ordre 2	tore	2	$\lambda_1 = \lambda_2 = 0$
			$\lambda_n \le \dots \le \lambda_3 < 0$
Période d'ordre K	K-Tore	K	$\lambda_1 = \ldots = \lambda_K = 0$
I enoue a orare M			$\lambda_n \leq \ldots \leq \lambda_{K+1} < 0$
Chaotique		Non entier	$\lambda_1 > 0, \sum_{i=1}^{i=n} \lambda_i < 0$
Hyper chaotique		Non entier	$\lambda_1 > 0, \lambda_2 > 0, \sum_{i=1}^{i=n} \lambda_i < 0$

TABLEAU 2.1 – Propriétés des attracteurs par le signe des exposants de Lyapunov.

2.8.4 Dimension de Kaplan-Yorke (ou de Lyapunov)

La dimension de Lyapunov est au maximum égale au dimension de système, alors que pour les systèmes de dimension infinie la dimension de Lyapunov tend vers de grandes valeurs. Plus la dimension sera grande, plus la complexité du chaos sera élevée. Voir [21].

Supposons $S_j = \sum_{i=1}^j \lambda_i$, et on classant les exposants de Lyapunov $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$. Soit S_p la somme des exposants de Lyapunov où p < n, alors il est évident que pour un attracteur "étrange", et il existe un entier p = j pour S_j est positive et un entier j + 1pour S_{j+1} est négative. L'entier j est défini par les conditions:

$$S_j = \sum_{i=1}^j \lambda_i \ge 0 \text{ et } S_{j+1} = \sum_{i=1}^{j+1} \lambda_i < 0.$$
 (2.29)

La dimension de Kaplan-Yorke (ou dimension de Lyapunov) D_{KL} est définie par:

$$D_{KL} = j + \frac{S_j}{|\lambda_{j+1}|} = j + \frac{\sum_{i=1}^j \lambda_i}{|\lambda_{j+1}|}.$$
(2.30)

Remarque 2.8.2 Si la somme S_j ne devient pas négatif à partir du λ_i , la dynamique est divergente dans l'espace d'état choisi et D_{KL} est égal à la dimension d'espace donné, Voir [14].

2.9 Chaos au sens de Marotto

Considérons le système dynamique discret de dimension égale à n défini par:

$$x_{k+1} = F(x_k), k = 0, 1, 2, \dots,$$
(2.31)

où $x_k \in \mathbb{R}^n$ et $F : \mathbb{R}^n \to \mathbb{R}^n$ une application continue. Soit B(x, r) la boule ouverte de \mathbb{R}^n de centre x et de rayon r et $\overline{B}(x, r)$ est la boule fermée. Ensuite, si F est différentiable en $B(x^*, r)$.

Notation: Nous présentons d'abord la notion de snap-back répulsif. Un snap-back répulsif est un point fixe autour duquel se trouve une région telle que toute trajectoire commençant à l'intérieur (même arbitrairement proche du point fixe), s'éloigne d'abord du point fixe (c'est-à-dire qu'elle est repoussée par lui), mais après avoir quitté la région saute sur le point fixe.

FIGURE 2.4 – Diagramme d'un point snap-back (de retour) répulsif. Le point x^* est un snap-back répulsif.

Marotto a affirmé que dans ce qui les suivantes:

Définition 2.9.1

(A) Soit F une application différentiable sur B(x*, r). Le point x* ∈ ℝⁿ est un expansion du point fixe de F sur B(x*, r), si F(x*) = x* et toutes les valeurs propres de DF(y) sont supérieures à 1 en norme ∀y ∈ B(x*, r). (B) Supposons que x* est un expansion du point fixe de F sur B(x*, r) pour un certain r > 0. Alors, on dit que x* est snap-back répulsif de F s'il existe un point x₀ ∈ B(x*, r) avec x₀ ≠ x*, tel que F^m(x₀) = x* et le déterminant |DF^m(x₀)| ≠ 0 pour un entier m > 0.

2.9.1 Théorème de Marotto 1978

Théorème 2.9.1 Si F possède un point snap-back répulsif, alors, le système (2.31) est chaotique. Voir [29]. Autrement dit, il existe

- (i) Un entier positif N, tel que pour chaque entier p ≥ N, F admet un point périodique de période p.
- (ii) Il existe un ensemble brouillé de F, à savoir un ensemble indénombrable S ne contenant aucun point périodique de F, tel que
 - (a) $F(S) \subset S$.
 - (b) Pour chaque $x, y \in S$ avec $x \neq y$,

$$\lim_{k \to +\infty} \|F^k(x) - F^k(y)\| > 0.$$

(c) Pour chaque $x \in S$ et n'importe quel point périodique y de F,

$$\lim_{k \to +\infty} \sup \|F^k(x) - F^k(y)\| > 0.$$

(iii) Il existe un sous-ensemble indénombrable S_0 , de S tel que pour chaque $x, y \in S_0$,

$$\lim_{k \to +\infty} \sup \|F^k(x) - F^k(y)\| = 0.$$

Dans le cas unidimensionnel, l'existence d'un snap-back répulsif dans F est équivalente à l'existence d'un point périodique de période 3 de F^n pour un certain entier positif n, comme indiqué dans la Remarque 3.1 de la référence de Marotto [29].

Le théorème de Marotto est le meilleur pour prédire et analyse de chaos discret dans les systèmes dynaniques multidimensionnels à ce jour, il existe une erreur dans un condition du théorème de Marotto original (Marotto 1978) donné dans la référence [26].

Le théorème de Marotto (1978) est a été corrigée récemment et une version modifiée de ce théorème important est donné par Shi et Chen (2004b). Voir [34], comme suivante:

2.9.2 Une version modifiée du théorème de Marotto

Théorème 2.9.2 Voir [34].

Soit l'application $F : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ et $x^* \in \mathbb{R}^n$ un point fixe, on suppose que:

- (i) F(.) est continûment différentiable au voisinage de x* sur la boule B(x*, r), avec le rayon r > 0, telle que toutes les valeurs propres de la matrice Jacobienne DF(x*) sont strictement supérieures à 1 en valeurs absolues, ce qui implique qu'il existe une constante positive r, telle que F est un expansion sur B(x*, r)) avec la norme ||.||, et
- (ii) x* est un snap-back répulsif dans F avec F^m(x₀) = x* pour un certain x₀ ∈ B(x*, r) où x₀ ≠ x*, et un certain entier positif m. De plus, F est continûment différentiable dans certains voisinages de x₀, x₁, ..., x_{m-1}, respectivement, et le déterminant |DF(x_j)| ≠ 0 pour 0 ≤ j ≤ m − 1, où x_j = F(x_{j-1}), 0 ≤ j ≤ m − 1.
- Si les conditions (i) et (ii) sont satisfaites alors l'application F est chaotique.

À partir les Théorèmes 2.9.1 et 2.9.2 ci-dessus, nous pouvons facilement conclure que le résultat du Théorème de Marotto (Théorème 2.9.1) est valable si toutes les hypothèses du Théorème 2.9.2 sont satisfaites. Il peut être considéré comme une nouvelle version modifiée du théorème de Marotto, qui se résume comme suivante:

Théorème 2.9.3 (Une version modifiée du théorème de Marotto. Voir [34])

Soit l'application $F : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ avec un point fixe $x^* \in \mathbb{R}^n$. Si les hypothèses (i) et (ii) dans le théorème 2.9.2 sont satisfaites, alors le résultat dans le Théorème 2.9.1 est valable, c'est-à-dire que le système (2.31) est chaotique dans le sens suivant:

- (i) Un entier positif N, tel que pour chaque entier p ≥ N, F admet un point périodique de période p.
- (ii) Il existe un ensemble brouillé de F, à savoir un ensemble indénombrable S ne contenant aucun point périodique de F, tel que
 - (a) $F(S) \subset S$.
 - (b) Pour chaque $x, y \in S$ avec $x \neq y$,

$$\lim_{k \to +\infty} \|F^k(x) - F^k(y)\| > 0.$$

(c) Pour chaque $x \in S$ et n'importe quel point périodique y de F,

$$\lim_{k \to +\infty} \sup \|F^k(x) - F^k(y)\| > 0.$$

(iii) Il existe un sous-ensemble indénombrable S_0 , de S tel que pour chaque $x, y \in S_0$,

$$\lim_{k \to +\infty} \sup \|F^k(x) - F^k(y)\| = 0.$$

Chapitre 3

Modélisation mathématique de la croissance tumorale

Sommaire

3.1 Introduction	
3.2 Modélisation de la croissance tumorale	
3.2.1 Modèle de croissance de De Pillis et Radunskaya $\ .\ .\ .\ .$	36
3.3 Simulations numériques	

3.1 Introduction

Le cancer est un groupe de maladies causées par une prolifération cellulaire anormale que nous appelons tumeurs.. Avec plus d'une centaine de différentes formes connues des cancers pouvant affecter tous les organes humains, le cancer est provoqué par la transformation de cellules normales qui deviennent anormales et prolifèrent de manière excessive. Ces cellules anormales finissent parfois par former une masse qu'on appelle tumeur maligne. Les cellules cancéreuses ont tendance à envahir les tissus voisins et à s'éloigner de la tumeur d'origine. Ensuite, ils migrent à travers les vaisseaux sanguins et les vaisseaux lymphatiques pour aller former une autre tumeur que nous appelons métastase.

Après à de nombreuses expériences menées, nous sommes compris aujourd'hui la carcinogenèse comme un processus multi-étapes. Existe quatre étapes de la cancérogenèse sont initiation, promotion, conversion et progression. Voir la Figure. 3.1.

FIGURE 3.1 – Étapes de la carcinogenèse cellulaires.

Un cancer, est un groupe de cellules qui subissent des mutations génétiques modifiant leur comportement. Ainsi, selon les auteurs, il y a 7 caractéristiques déterminantes qui différencient les cellules cancéreuses des cellules normales (saines). Voir la Figure 3.2, les caractéristiques sont l'évasion aux mécanismes d'apoptose, l'autostimulation de signaux de croissance, l'invasion des tissus et la formation de métastases, le potentiel de réplication infini, l'échappement à la surveillance et à l'action du système immunitaire, l'insensibilité aux signaux d'anti-croissance et enfin l'induction du processus d'angiogénèse ou la formation de nouveaux vaisseaux sanguins dans la tumeur.

FIGURE 3.2 - Les 7 caractéristiques d'une cellule cancéreuse, en comparaison à une cellule normale.

3.2 Modélisation de la croissance tumorale

3.2.1 Modèle de croissance de De Pillis et Radunskaya

Au début des années 2000, De Pillis et Radunskaya. Voir [5]. ont développé un modèle encore plus évolué que celui de Stepanova et al [20], qui prend en compte les interactions entre les cellules normales, tumorales et immunitaires. Ce modèle est générique dans le sens où il n'est pas spécifique à un type de cancer est compose de trois équations différentielles ordinaires et prend la forme:

$$\begin{pmatrix}
\dot{N} = \rho_2 N (1 - b_2 N) - c_4 N T, \\
\dot{T} = \rho_1 T (1 - b_1 T) - c_2 T I - c_3 T N, \\
\dot{I} = \left(\frac{\rho I T}{\alpha + T}\right) - c_1 I T - d_1 I + s,
\end{cases}$$
(3.1)

avec N la population des cellules normales (ou hôtes); T la population de cellules tumorales, I la population de cellules immunitaires. La croissance des cellules saines et tumorales est modélisée par une application logistique donnée de la forme $\rho_i X(1-b_i X)$ où ρ_i désignent les taux de croissance (i = 1 associé à la tumeur, et i = 2 aux cellules normales)), X à la population cellulaire considérée; b_i (i = 1, 2) sont les capacités biotiques des populations ¹ et c_i , (i = 1, 2, 3, 4) les taux de destruction des différentes cellules. La présence de cellules tumorales stimule la réponse immunitaire, représentée par l'expression de croissance pour les cellules immunitaires $\left(\frac{\rho IT}{\alpha+T}\right)$, où ρ et α sont des constantes positives. À cette prolifération est retranchée une part provenant de la mortalité naturelle des cellules immunitaires, comme indiqué par la forme d_1I . Les cellules saines nor males et tumorales sont en compétition pour trois ressources sont nutriments, oxygène et l'espace: Ces interactions sont modélisées par les expressions c_4NT et c_3TN . Les interactions entre les cellules immunitaires et tumorales sont modélisées par les termes c_2TI et c_1IT . Ces deux expressions reflètent l'augmentation de la mortalité des cellules tumorales due à la réponse immunitaire et à l'inactivation des cellules immunitaires effectrices due à l'immunosuppression. L'expression s est donnée comme la source des cellules immunitaires externes au système et est modélisée par un influx constant en cellules immunitaires.

Pour simplifier l'étude de ce système (3.1). Nous réduisons le nombre de paramètres en introduisant ce changement de variables:

$$x = b_1 T, y = b_2 N, z = \frac{I}{\alpha} \quad \text{et} \quad \tau = \rho_1 t \quad (\text{changement le temps}),$$
$$a_{12} = \frac{c_2}{b_2 \rho_1}, r_2 = \frac{\rho_1}{\rho_2}, a_{21} = \frac{c_4}{b_1 \rho_1}, r_3 = \frac{\rho}{\rho_1},$$
$$k_3 = \alpha b_1, a_{31} = \frac{c_1}{b_1 \rho_1}, a_{13} = \frac{\alpha c_3}{\rho_1} \quad \text{et} \quad d_3 = \frac{d_1}{\rho_1}.$$

ce qui conduit au système d'équations suivant:

$$\begin{cases} \dot{x} = x(1-x) - a_{12}xy - a_{13}xz, \\ \dot{y} = r_2y(1-y) - a_{21}xy, \\ \dot{z} = r_3\left(\frac{xz}{x+k_3}\right) - a_{31}xz - d_3z. \end{cases}$$
(3.2)

où x représente la population normalisée de cellules tumorales, et y la population normalisée de cellules normales (hôtes), et z la population normalisée de cellules immunitaires.

^{1.} La capacité biotique désigne la valeur maximale qu'une population peut atteindre dans un environnement donné.

Notation 2

- $-r_2$ le taux de croissance des cellules normales (hôtes),
- $-r_3$ le taux de croissance des cellules immunitaires effectrices,
- $-a_{12}$ le taux de mortalité des cellules tumorales par les cellules hôtes,
- $-a_{21}$ le taux de mortalité des cellules hôtes par les cellules tumorales,
- a_{13} le taux de mortalité des cellules tumorales dû aux cellules immunitaires effectrices,
- $-a_{31}$ le taux d'inhibition des cellules immunitaires effectrices par les cellules tumorales,
- $-d_3$ le taux de mortalité naturelle des cellules immunitaires effectrices.

3.3 Simulations numériques

Dans cette partie, nous sommes intéressés à étudier le modèle (4.13) en utilisant les conditions initiales $x_0 = 0.1, y_0 = 0.1, z_0 = 0.1$, et les valeurs des paramètres suivantes:

$$r_2 = 0.6, r_3 = 4.5, a_{12} = 1, a_{21} = 1.5, a_{13} = 2.5, a_{31} = 0.2, k_3 = 1$$
 et $d_3 = 0.5.$ (3.3)

FIGURE 3.3 – Attracteur de système de De Pillis et al avec $x_0 = 0.1, y_0 = 0.1, z_0 = 0.1$ et les valeus des paramètres donnée dans (3.3).

Les exposants de Lyapunov du système (3.2) sont $\lambda_1 = 0.021909, \lambda_2 = -0.00085097$ et $\lambda_3 = -0.54025$.

FIGURE 3.4 – Séries temporelles du système de De Pillis et al avec $x_0 = 0.1, y_0 = 0.1, z_0 = 0.1$ et les valeus des paramètres donnée dans (3.3).

FIGURE 3.5 – Projections dans le plane X - Y de l'attracteur par chacune des variables x, y, z.

FIGURE 3.6 – Exponents de Lyapunov du système (3.2) avec $x_0 = 0.1, y_0 = 0.1, z_0 = 0.1$ et les valuers des paramètres donnée dans (3.3).

Chapitre 4

Discrétisation et simulation numérique

Sommaire

4.1	Introduction	42
4.2	Méthode d'Euler explicite	42
4.3	Méthode basée sur la série de Taylor	42
4.4	Méthode de Runge-Kutta	43
4.5	Discrétisation de modèle de la croissance tumorale avec la	
	méthode d'Euler explicite	45
4.6	Discrétisation de modèle de la croissance tumorale avec la	
	méthode basée sur la série de Taylor	45
4.7	Discrétisation de modèle de la croissance tumorale avec la	
	méthode de Runge-Kutta	46
4.8	Simulations numériques	47
4.9	Stabilitée des points fixes	50
4.10	Une preuve du chaos dans le système	55
4.11	Résultats numériques	56
	4.11.1 Exposant de Lyapunov du système	56

4.1 Introduction

Les méthodes employées pour la discrétisation les systèmes dynamiques continues sont des méthodes approximatives basées sur la discrétisation du temps t.

Considérons le système dynamique suivant:

$$\begin{cases} \dot{X}(t) = F(t, X(t)) \quad \forall t \in [t_0, T] \\ X(t_0) = X_0, \quad \text{condition initiale,} \end{cases}$$
(4.1)

où F est une fonction définie sur une partie de \mathbb{R}^n et X(t) une vecteur de \mathbb{R}^n .

4.2 Méthode d'Euler explicite

La méthode d'Euler [16, 39] est une méthode numérique qui permet de résoudre de façon approximative des systèmes dynamiques avec condition initiale. Les conditions initiales. Il est facile à comprendre et à programmer [2].

Fixons h > 0 et on approxime la solution X du système (4.1) par une fonction affine sur chacun des intervalles $[t_k, t_{k+1}]$ en N sous intervalles de même longueur h où $t_k = t_0 + kh$ et $0 \le k \le N$. De façon, si on écrit:

$$X(t_{k+1}) - X(t_k) = \int_{t_k}^{t_{k+1}} \dot{X}(t) dt = \int_{t_k}^{t_{k+1}} F(t, X(t)) dt \approx hF(t_k, X(t_k)).$$

En remplaçant $X(t_k)$ par une approximation X_k .

La méthode d'Euler explicite [25, 15] consiste donc à définir la suite X_k par la relation de récurrence:

$$\begin{cases} X_{k+1} = X_k + hF(t_k, X_k) \text{ pour tout } 0 \le k \le N - 1, \\ X_0, \text{ condition initiale,} \end{cases}$$
(4.2)

4.3 Méthode basée sur la série de Taylor

Cette méthode numérique est basée sur la série de Taylor [2]. Fixons $h > 0, m \ge 1$ et on approxime la solution X du système (4.1) par une fonction affine sur chacun des intervalles $[t_k, t_{k+1}]$ en N sous intervalles de même longueur h où $t_k = t_0 + kh$ et $0 \le k \le N$. Le développement de la série de Taylor de $X(t_k)$ jusqu'à l'ordre m autour du point t_k s'écrit

$$X(t_{k+1}) = X(t_k) + \sum_{i=1}^{m} \frac{1}{i!} \cdot h^i \cdot X^{(i)}(t_k) + O(h^{m+1}).$$
(4.3)

On a vu que les dérivées $X^{(i)}(t_k)$ satisfont

$$X^{(i)}(t_k) = F^{(i-1)}(t_k, X(t_k)).$$

Le développement de Taylor (4.3). peut donc s'écrire

$$X(t_{k+1}) = X(t_k) + \sum_{i=1}^{m} \frac{1}{i!} \cdot h^i \cdot F^{(i-1)}(t_k, X(t_k)) + O(h^{m+1}),$$
(4.4)

où $O(h^{m+1}) \to 0$ si $h \to 0$

En remplaçant $X(t_k)$ par une approximation X_k et en supprimant le reste en $O(h^{m+1})$, la méthode de Taylor consiste donc à définir la suite X_k par la relation de récurrence

$$X_{k+1} = X_k + \sum_{i=1}^m \frac{1}{i!} \cdot h^i \cdot X_k^{(i)} + O(h^{m+1}),$$
(4.5)

- 1. Pour m = 1, on retrouve la méthode d'Euler $X_{k+1} = X_k + hF(t_k, X_k)$.
- 2. Pour m = 2, on a obtient une nouvelle méthode

$$X_{k+1} = X_k + hF(t_k, X_k) + \frac{h^2}{2} \left(\frac{\delta F}{\delta t}(t_k, X_k) + \sum_{j=1}^n \frac{\delta F}{\delta X_j}(t_k, X_k)F(t_k, X_k) \right).$$
(4.6)

4.4 Méthode de Runge-Kutta

La méthode de Runge-Kutta est une méthode numérique [40] qui permet de résoudre de façon approximative des systèmes dynamiques avec les conditions initiales.

On cherche à résoudre de système (4.1). Introduisons q points intermédiaires dans chaque intervalle $[t_k, t_{k+1}]$ notés $t_{k,1}, t_{k,2}, ..., t_{k,q}$. On se donne $c_1, c_2, ..., c_q$ réels dans l'intervalle [0, 1] et on pose $t_{k,i} = t_k + c_i h$ pour i = 1, 2, ..., q et h > 0. Sur l'intervalle $[t_k, t_{k+1}]$ on a $X_{k+1} = X_k + \int_{t_k}^{t_{k+1}} F(s, X(s)) ds$, soit encore $X_{k+1} = X_k + \int_{0}^{1} hF(t_k + rh, X(t_k + rh)) dr.$ (4.7) En utilisant la formule de quadrature pour discrétiser l'intégrale apparaissant dans (4.7), on obtient:

$$X_{k+1} = X_k + h \sum_{i=1}^{i=q} b_i F(t_k + c_i h, X(t_k + c_i h)), \qquad (4.8)$$

où b_i , i = 1, 2, ..., q. L'intégration numérique sur l'intervalle [0, 1] est appeller une formule de quadrature où

$$\sum_{i=1}^{n=q} b_i = 1.$$

En intégrant le système (4.1) sur l'intervalle $[t_k, t_{k,i}]$, on obtient,

$$X_{k,i} = X_k + \int_{0}^{c_i} hF(t_k + rh, X(t_k + rh))dr.$$
(4.9)

En utilisant la formule de quadrature pour discrétiser l'intégrale apparaissant dans (4.9), on obtient:

$$X_{k,i} = X_k + h \sum_{j=1}^{j=q} a_{ij} F(t_k + c_j h, X(t_k + c_j h)), \qquad (4.10)$$

où $\sum_{j=1}^{j=q} a_{ij} = c_i$. En remplaçant $X(t_k)$ par une approximation X_k , donc la forme générale des méthodes de Runge-Kutta à q-étages est donnée par:

$$\begin{cases} \alpha_i = F(t_k + c_i h, X_k + h \sum_{j=1}^{j=q} a_{ij} \alpha_j), i = 1, 2, ..., q \\ X_{k+1} = X_k + h \sum_{i=1}^{i=q} \alpha_i. \end{cases}$$
(4.11)

Exemple 4.4.1 (Méthodes de Runge-Kutta d'ordre 2) La méthodes de Runge-Kutta d'ordre 2 peut être obtenue par l'utilisation des étapes suivante:

$$\begin{aligned}
\alpha_1 &= F(t_k, X_k), \quad c_1 = 0, a_{11} = 0, a_{12} = 0, \\
\alpha_2 &= F(t_{k+1}, X_k + h\alpha_1), \quad c_2 = 1, a_{21} = 1, a_{22} = 0, \\
X_{k+1} &= X_k + \frac{h}{2}(\alpha_1 + \alpha_2), \quad b_1 = b_2 = \frac{1}{2}.
\end{aligned}$$
(4.12)

4.5 Discrétisation de modèle de la croissance tumorale avec la méthode d'Euler explicite

Nous appliquant la méthode d'Euler explicite (4.2) pour approximé le modèle de la croissance tumorale donné dans (3.2). D'abord, nous supposons que,

$$\begin{cases} \dot{x}(t) = \frac{x(t+h) - x(t)}{h} \\ \dot{y}(t) = \frac{y(t+h) - y(t)}{h} \\ \dot{z}(t) = \frac{z(t+h) - z(t)}{h}, \end{cases}$$

alors le système de cancer (3.2) devient comme suivant:

$$x_{k+1} = (x_k(1 - x_k) - a_{12}x_ky_k - a_{13}x_kz_k) .h + x_k,$$

$$y_{k+1} = r_2y_kh(1 - y_k) - a_{21}x_ky_kh + y_k,$$

$$z_{k+1} = \left(r_3\left(\frac{x_kz_k}{x_k + k_3}\right) - a_{31}x_kz_k - d_3z_k\right) .h + z_k.$$
(4.13)

4.6 Discrétisation de modèle de la croissance tumorale avec la méthode basée sur la série de Taylor

Nous appliquant la méthode basée sur la série de Taylor (4.6) pour approximé le modèle de la croissance tumorale donné dans (3.2). D'abord, nous supposons que

$$\begin{cases} x(t+h) = x(t) + \sum_{m+1}^{\infty} \frac{1}{m!} h^m . x^{(m)} \\ y(t+h) = y(t) + \sum_{m+1}^{\infty} \frac{1}{m!} h^m . y^{(m)} \\ z(t+h) = z(t) + \sum_{m+1}^{\infty} \frac{1}{m!} h^m . z^{(m)}. \end{cases}$$
(4.14)

La méthode basée sur la série Taylor est exécutée pour m = 2. Dans cette situation, les équations discrètes du cancer (3.2) avec la méthode basée sur la série Taylor sont obtenues comme suit:

$$\begin{cases} x_{k+1} = x_k + h.\dot{x}_k + \frac{1}{2}.h^2.\ddot{x}_k \\ y_{k+1} = y_k + h.\dot{y}_k + \frac{1}{2}.h^2.\ddot{y}_k \\ z_{k+1} = z_k + h.\dot{z}_k + \frac{1}{2}.h^2.\ddot{z}_k, \end{cases}$$
(4.15)

où

$$\begin{cases} \dot{x}_{k} = x_{k}(1 - x_{k}) - a_{12}x_{k}y_{k} - a_{13}x_{k}z_{k} \\ \dot{y}_{k} = r_{2}y_{k}(1 - y_{k}) - a_{21}x_{k}y_{k} \\ \dot{z}_{k} = r_{3}\left(\frac{x_{k}z_{k}}{x_{k} + k_{3}}\right) - a_{31}x_{k}z_{k} - d_{3}z_{k}, \end{cases}$$

$$(4.16)$$

 et

$$\begin{aligned} \ddot{x}_{k} &= \left(x_{k}\left(1-x_{k}\right)-a_{12}x_{k}y_{k}-a_{13}x_{k}z_{k}\right)\left(1-x_{k}\right)-x_{k}\left(x_{k}\left(1-x_{k}\right)-a_{12}x_{k}y_{k}-a_{13}x_{k}z_{k}\right)\\ &-a_{12}\left(x_{k}\left(1-x_{k}\right)-a_{12}x_{k}y_{k}-a_{13}x_{k}z_{k}\right)y_{k}-a_{12}x_{k}\left(r_{2}y_{k}\left(1-y_{k}\right)-a_{21}x_{k}y_{k}\right)\\ &-a_{13}\left(x_{k}\left(1-x_{k}\right)-a_{12}x_{k}y_{k}-a_{13}x_{k}z_{k}\right)z_{k}-a_{13}x_{k}\left(\frac{r_{3}x_{k}z_{k}}{x_{k}+k_{3}}-a_{31}x_{k}z_{k}-d_{3}z_{k}\right),\end{aligned}$$

$$\ddot{y}_{k} = (x_{k})^{2} y_{k} a_{21}^{2} + x_{k} (y_{k})^{2} a_{12} a_{21} + 3 x_{k} (y_{k})^{2} a_{21} r_{2} + x_{k} y_{k} z_{k} a_{13} a_{21} + 2 (y_{k})^{3} r_{2}^{2} + (x_{k})^{2} y_{k} a_{21} - 2 x_{k} y_{k} a_{21} r_{2} - 3 (y_{k})^{2} r_{2}^{2} - a_{21} x_{k} y_{k} + y_{k} r_{2}^{2},$$

$$\ddot{z}_{k} = \frac{r_{3}\left(x_{k}\left(1-x_{k}\right)-a_{12}x_{k}y_{k}-a_{13}x_{k}\right)z_{k}\right)z_{k}}{x_{k}+k_{3}} + \frac{r_{3}x_{k}}{x_{k}+k_{3}}\left(\frac{r_{3}x_{k}z_{k}}{x_{k}+k_{3}}-a_{31}x_{k}z_{k}-d_{3}z_{k}\right)}{-\frac{r_{3}x_{k}z_{k}\left(x_{k}\left(1-x_{k}\right)-a_{12}x_{k}y_{k}-a_{13}x_{k}z_{k}\right)}{\left(x_{k}+k_{3}\right)^{2}}-a_{31}\left(x_{k}\left(1-x_{k}\right)-a_{12}x_{k}y_{k}-a_{13}x_{k}z_{k}\right)z_{k}}-a_{31}x_{k}\left(\frac{r_{3}x_{k}z_{k}}{x_{k}+k_{3}}-a_{31}x_{k}z_{k}-d_{3}z_{k}\right)-d_{3}\left(\frac{r_{3}x_{k}z_{k}}{x_{k}+k_{3}}-a_{31}x_{k}z_{k}-d_{3}z_{k}\right).$$

4.7 Discrétisation de modèle de la croissance tumorale avec la méthode de Runge-Kutta

Nous appliquant la méthode de Runge-Kutta (4.12) pour approximé le modèle de la croissance tumorale donné dans (3.2).

D'abord, nous supposons que

$$\dot{X} = F(X(t), t)$$

$$\alpha_1 = h.F(X(t_0), t_0)$$

$$X_1(t_0 + \frac{h}{2}) = X(t_0) + \alpha_1 \cdot \frac{h}{2}$$

$$\alpha_2 = F(X_1(t_0 + \frac{h}{2}), t_0 + \frac{h}{2})$$

$$X(t_0 + h) = X(t_0) + \alpha_2 \cdot h.$$

La méthode de Runge-Kutta d'ordre 2 est exécutée pour h. Dans cette situation, les équations discrètes du cancer (3.2) avec la méthode de Runge-Kutta d'ordre 2 sont obtenues comme suit:

$$\alpha_{1x} = h.x_k. \left[(1 - x_k) - a_{12}y_k - a_{13}z_k \right]$$

$$\alpha_{2x} = h.(x_k + \frac{\alpha_{1x}}{2}). \left[(1 - (x_k + \frac{\alpha_{1x}}{2})) - a_{12}y_k - a_{13}z_k \right]$$

$$x_{k+1} = x_k + \frac{(\alpha_{1x} + \alpha_{2x})}{2},$$

 et

$$\begin{aligned} \alpha_{1y} &= h.y_k. \left[r_2(1 - y_k) - a_{21}x_k \right] \\ \alpha_{2y} &= h.(y_k + \frac{\alpha_{1y}}{2}). \left[r_2(1 - (y_k + \frac{\alpha_{1x}}{2})) - a_{21}x_k \right] \\ y_{k+1} &= y_k + \frac{(\alpha_{1y} + \alpha_{2y})}{2}, \\ \alpha_{1z} &= h.z_k. \left[r_3 \left(\frac{x_k}{x_k + \alpha_3} \right) - a_{31}x_k - d_3 \right] \\ \alpha_{2z} &= h.(z_k + \frac{\alpha_{1z}}{2}). \left[r_3 \left(\frac{x_k}{x_k + \alpha_3} \right) - a_{31}x_k - d_3 \right] \\ z_{k+1} &= z_k + \frac{(\alpha_{1z} + \alpha_{2z})}{2}. \end{aligned}$$

4.8Simulations numériques

Dans cette partie, nous sommes intéressés à étudier le modèle (4.13) en utilisant les conditions initiales $x_0 = 0.1, y_0 = 0.1, z_0 = 0.1$, et les valeurs des paramètres suivantes: $r_2 = 0.6, r_3 = 4.5, a_{12} = 1, a_{21} = 1.5, a_{13} = 2.5, a_{31} = 0.2, k_3 = 1$ et $d_3 = 0.5.$ (4.17)

FIGURE 4.1 – Attracteur du système 4.13.

(b) Cellules immunitaires effect rices: $X=y\,.$ (c) Cellules tumorales: $X=z\,.$

FIGURE 4.2 – Projections de l'attracteur.

FIGURE 4.3 – Séries temporelles avec les valeurs des paramètres donnée dans (4.17) et h = 0.1.

FIGURE 4.4 – Séries temporelles avec les valeurs des paramètres donnée dans (4.17) et h = 0.05.

4.9 Stabilitée des points fixes

Dans cette partie nous étudions la stabilitée des points fixes du système (4.13). On dit que $u = (x^*, y^*, z^*)$ est le point fixe du système (4.13), s'il satisfait l'équations suivantes:

$$\begin{cases} x = (x(1-x) - a_{12}xy - a_{13}xz) . h + x, \\ y = (r_2y(1-y) - a_{21}xy) . h + y, \\ z = \left(r_3\left(\frac{xz}{x+k_3}\right) - a_{31}xz - d_3z\right) . h + z. \end{cases}$$

$$(4.18)$$

En utilisant cette dernière expression dans le système (4.13), on obtient:

$$\begin{cases} x = 0, \\ x = 1 - a_{12}y - a_{13}z. \end{cases}$$
(4.19)

$$\begin{cases} y = 0, \\ y = \frac{1}{r_2} - \frac{a_{21}}{r_2}x. \end{cases}$$
(4.20)

$$\begin{cases} z = 0, \\ x^2 + \left(k_3 + \frac{d_3 - r_3}{a_{31}}\right)x + \frac{k_3 d_3}{a_{31}} = 0 \end{cases}$$
(4.21)

Les solutions d'équations (4.19), (4.20) et (4.21) est données six points fixes comme suivants:

$$u_{1} = (0, 0, 0), u_{2} = (0, 1, 0), u_{3} = (1, 0, 0), u_{4} = (x^{*}, 0, z^{*}), u_{5} = \left(\frac{r_{2}(a_{12}-1)}{a_{12}a_{21}-r_{2}}, \frac{a_{12}-r_{2}}{a_{12}a_{21}-r_{2}}, 0\right), u_{6} = (x^{*}, y^{*}, z^{*}).$$

$$(4.22)$$

Dans ce chapitre, nous étudions h dans l'intervalle [0.01, 0.1].

(1) Le premier point fixe est trivial et donné comme $u_1 = (0, 0, 0)$. Nous obtenons alors l'équation caractéristique

$$|J(u_1) - \lambda I| = 0 \tag{4.23}$$

où $J(u_1)$ la matrice Jacobienne (5.7) associée à u_1 , est définie comme suit

$$J(u_1) = \begin{pmatrix} h+1 & 0 & 0 \\ 0 & hr_2 + 1 & 0 \\ 0 & 0 & -hd_3 + 1 \end{pmatrix}$$
(4.24)

Nous pouvons maintenant résoudre l'équation (4.23) qui permet d'obtenir les valeurs propres suivantes, le polynôme caractéristique du système (4.13) associé à u_1 ,

$$\lambda_1 = h + 1, \lambda_2 = hr_2 + 1$$
 et $\lambda_3 = -hd_3 + 1$ (4.25)

où h, r_2 et d_3 trois paramètres positives et les valeurs propres $|\lambda_i| > 1$ (i = 1, 2).

Proposition 4.9.1

- Si $hd_3 > 2$, alors la valeur propre $|\lambda_3| > 1$, donc le point fixe u_1 est un noeud instable.
- Si $hd_3 < 2$, alors la valeur propre $|\lambda_3| < 1$, donc le point fixe u_1 est un col.

(2) Le deuxième point fixe est obtenu comme $u_2 = (0, 1, 0)$, Nous obtenons alors l'équation caractéristique suivante

$$|J(u_2) - \lambda I| = 0, (4.26)$$

où $J(u_2)$ la matrice Jacobienne associée à u_2 , est définie comme suivante:

$$J(u_2) = \begin{pmatrix} (-a_{12}+1)h+1 & 0 & 0\\ -a_{21}h & -r_2h+1 & 0\\ 0 & 0 & -d_3h+1 \end{pmatrix}.$$
 (4.27)

D'après l'équation (4.26), les valeurs propres du système (4.13) associée à u_2 sont de la forme

$$\lambda_1 = 1 - r_2 h$$
, $\lambda_2 = 1 + (-a_{12} + 1) h$ et $\lambda_3 = 1 - d_3 h$.

En fait, en biologie r_2, d_3 sont plus petits que h^{-1} , alors $|\lambda_1| < 1$ et $|\lambda_3| < 1$. La stabilité de ce point fixe dépend de la valeur du paramètre a_{12} .

Proposition 4.9.2

- Si $a_{12} < 1$ alors $\lambda_2 > 1$, donc ce point fixe a deux valeurs propres stables et une valeur propre instable. Par conséquent, nous avons un col à ce point fixe.
- Si $a_{12} > 1$ alors $\lambda_2 < 1$, donc ce point fixe a trois valeurs propres stables. Par conséquent, nous avons un noeud à ce point fixe.
- Si $a_{12} = 1$ alors $\lambda_2 = 1$, l'étude théorique ne donne aucune information sur la stabilité de u_2 . Dans nos simulations numériques, nous avons obtenu des résultats très différents en modifiant la valeur du paramètre a_{12} parce qu'elle affecte aussi certains autres points fixes. En particulier, nous avons observé que la dynamique chaotique commence près de $a_{12} = 1$. La sélection de $a_{12} < 1$ donne un comportement dynamique différent tel que la convergence vers une spirale stable. Cependant, dans cette étude, nous nous concentrerons sur le paramètre a_{12} où nous observons l'attracteur chaotique.

(3) Le troisième point fixe est $u_3 = (1, 0, 0)$, la matrice jacobienne évaluée à u_2 est donnée par,

$$J(u_3) = \begin{pmatrix} -h+1 & -a_{12}h & -a_{13}h \\ 0 & (r_2 - a_{21})h + 1 & 0 \\ 0 & 0 & \left(\frac{r_3}{1 + k_3} - a_{31} - d_3\right)h + 1 \end{pmatrix}.$$
 (4.28)

Les valeurs propres de la matrice jacobienne (4.28) à ce point fixe sont obtenues comme suivants,

$$\lambda_1 = -h + 1, \ \lambda_2 = (r_2 - a_{21})h + 1 \text{ et } \lambda_3 = \left(\frac{r_3}{1 + k_3} - a_{31} - d_3\right)h + 1.$$

Nous obtenons λ_1 est stable puisque $|\lambda_1| < 1$, et λ_2 , λ_3 sont stables avec les paramètres sélectionnés.

(4) Le quatrième point fixe est $u_4 = (x^*, 0, z^*)$. La matrice Jacobienne évaluée à u_4 est donnée par:

$$J(u_4) = \begin{pmatrix} L_{11} & L_{12} & L_{13} \\ 0 & L_{22} & 0 \\ L_{31} & 0 & L_{33}, \end{pmatrix}$$
(4.29)

où

$$L_{11} = (1 - a_{13}z^* - 2x^*)h + 1, \quad L_{12} = -a_{12}x^*h, \quad L_{13} = -a_{13}x^*h,$$

$$L_{22} = (r_2 - a_{21}x^*)h + 1, \quad L_{31} = \left(\frac{r_3z^*}{x^* + k_3} - \frac{r_3x^*z^*}{(x^* + k_3)^2} - a_{31}z^*\right)h,$$

$$L_{33} = \left(\frac{r_3x^*}{x^* + k_3} - a_{31}x^* - d_3\right)h + 1.$$

Les valeurs propres de la matrice Jacobienne (4.29) à ce point fixe sont

$$\lambda_1 = L_{22} = (r_2 - a_{21}x^*)h + 1 \tag{4.30}$$

$$\lambda_{2,3} = \frac{1}{2} \left[(L_{11} + L_{33}) \mp \sqrt{(L_{11} - L_{33})^2 + 4L_{31}L_{13}} \right]$$
(4.31)

(i) Si $(L_{11} - L_{33})^2 + 4L_{31}L_{13} > 0$ nous avons trois valeurs propres réelles.

(ii) Si $(L_{11} - L_{33})^2 + 4L_{31}L_{13} < 0$ à ce point fixe, nous avons une valeur propre réelle et deux valeurs propres complexes sont stables avec les ensembles de paramètres sélectionnés.

Pour les paramètres données précédemment, nous obtenons l'équation caractéristique comme suivante

$$P(\lambda) = \lambda^3 + E_2 \lambda^2 + E_1 \lambda + E_0 \tag{4.32}$$

où

$$E_0 = -L_{33}L_{22}L_{11} + L_{31}L_{13}L_{22}$$
$$E_1 = L_{11}L_{22} + L_{11}L_{33} - L_{13}L_{31} + L_{33}L_{22}$$
$$E_2 = -L_{33} - L_{22} - L_{11}$$

Maintenant, nous allons établir le teste de stabilitée de Jury (8.1), alors, le point fixe u_4 est asymptotique stable si satisfait les conditions suivantes:

Teste de stabilité avec les conditions de Jury assosié au u_4

Pour l'équation (4.32) u_4 est asymptotiquement stable si satisfait les conditions suivantes:

$$P(1) > 0, P(-1) < 0, |E_0| < E_n, |B_0| > |B_{n-1}|$$

où
$$B_k = \begin{vmatrix} E_0 & E_{n-k} \\ E_n & E_k \end{vmatrix}$$
, avec
 $P(1) = 1 + E_2 + E_1 + E_0$, $P(-1) = -1 + E_2 - E_1 + E_0$

Proposition 4.9.3 Le point fixe u_4 est asymptotiquement stable si satisfait les conditions suivantes:

 $|E_0| < 1, |E_0 + 1| > |E_1| \ et |E_0 - 1||E_0 + E_1 + 1| > |E_0E_1 - E_2|.$

(5) Le cinquième point fixe est $u_5 = \left(\frac{r_2(a_{12}-1)}{a_{12}a_{21}-r_2}, \frac{a_{12}-r_2}{a_{12}a_{21}-r_2}, 0\right)$

où $a_{12}a_{21} - r_2 \neq 0$. Nous obtenons alors l'équation caractéristique

$$|J(u_5) - \lambda I| = 0 \tag{4.33}$$

où $J(u_5)$ la matrice Jacobienne associée à u_5 , est définie comme suit

$$J(u_5) = \frac{1}{q} \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & 0 \\ 0 & 0 & M_{33} \end{pmatrix}$$
(4.34)

où $q = a_{12}a_{21} - r_2$ et

$$M_{11} = -h a_{12}^{2} - r_{2}ha_{12} + 2r_{2}h + 2q, \quad M_{12} = -a_{12}r_{2}(a_{12} - 1)h,$$

$$M_{13} = -a_{13}r_{2}(a_{12} - 1)h, \quad M_{21} = -a_{21}(a_{12} - r_{2})h,$$

$$M_{22} = -h a_{12}a_{21}r_{2} + h q r_{2} - 2r_{2}h a_{12} + r_{2}h a_{21} + q,$$

$$M_{33} = \left(\frac{r_{3}r_{2}q(a_{12} - 1)}{r_{2}(a_{12} - 1) + q k_{3}} - a_{31}r_{2}(a_{12} - 1) - d_{3}q\right)h + q.$$

Par conséquent d'après l'expression (4.33), on obtient alors, la polynôme caractéristique suivante

$$P^*(\lambda) = \lambda^3 + B_2\lambda^2 + B_1\lambda + B_0 = 0.$$

où

$$B_{0} = -\frac{M_{33} (M_{22}M_{11} - M_{21}M_{12})}{q^{3}},$$

$$B_{1} = \frac{M_{22}M_{11} + M_{33}M_{11} - M_{21}M_{12} + M_{33}M_{22}}{q^{2}},$$

$$B_{2} = -\frac{M_{33} + M_{22} + M_{11}}{q}.$$

Les valeurs propres de la matrice jacobienne (4.34) à ce point fixe sont

$$\lambda_1 = \frac{M_{33}}{q}$$

 et

$$\lambda_{2,3} = \frac{1}{2q} \left(M_{22} + M_{11} \mp \sqrt{M_{11}^2 - 2M_{22}M_{11} + 4M_{21}M_{12} + M_{22}^2} \right)$$

(6) Le sixième point fixe est non trivial $u_6 = (x^*, y^*, z^*)$. La matrice Jacobienne du système (4.13) à u_6 est donnée par

$$J(u_6) = \begin{pmatrix} N_{11} & N_{12} & N_{13} \\ N_{21} & N_{22} & 0 \\ N_{31} & 0 & N_{33} \end{pmatrix}$$
(4.35)

où

$$N_{11} = (-a_{12}y^* - a_{13}z^* - 2x^* + 1)h + 1, \quad N_{12} = -a_{12}x^*h,$$

$$N_{13} = -a_{13}x^*h, N_{21} = -a_{21}y^*h, \quad N_{22} = -2y^*hr_2 - x^*ha_{21} + hr_2 + 1$$

$$N_{31} = z^* \left(a_{31} \left(x^*\right)^2 + 2a_{31}x^*k_3 + a_{31}k_3^2 - r_3k_3\right)h(x^* + k_3)^2,$$

$$N_{33} = \left(\frac{r_3x^*}{x^* + k_3} - a_{31}x^* - d_3\right)h + 1,$$

et l'équation caractéristique de la matrice Jacobienne (4.35) est donné comme suivant,

$$P^{*}(\lambda) = \lambda^{3} + E_{2}\lambda^{2} + E_{1}\lambda + E_{0} = 0.$$
(4.36)

où les coefficients E_0 , E_1 et E_2 sont associées aux les paramétres utilisée dans le système (4.13). Maintenant, nous allons établir le teste de stabilitée de Jury (8.1), alors, le point fixe u_5 est asymptotique stable si satisfait les conditions suivantes:

Teste de stabilité avec les conditions de Jury assosié au u_2

Pour l'équation (4.36) u_2 est asymptotiquement si stable satisfait les conditions suivantes:

$$P^*(1) > 0, P^*(-1) < 0, |E_0| < E_n, |F_0| > |F_{n-1}|,$$

où
$$F_k = \begin{vmatrix} E_0 & E_{n-k} \\ E_n & E_k \end{vmatrix}$$
, avec
 $P^*(1) = 1 + E_2 + E_1 + E_0, \quad P^*(-1) = -1 + E_2 - E_1 + E_0.$

Proposition 4.9.4 Le point fixe u_5 est asymptotiquement stable si satisfait les conditions suivantes:

$$|E_0| < 1, |E_0 + 1| > |E_1| et |E_0 - 1||E_0 + E_1 + 1| > |E_0E_1 - E_2|.$$

4.10 Une preuve du chaos dans le système

Nous allons montrer que le système (4.13) est chaotique au sens de Marotto est possible avec deux étapes suivantes:

Étape 1: La première étape consiste à montrer que la condition (i) du Théorème 2.9.2 est satisfaite, soit $u_2 = (0, 1, 0)$ le point fixe du système (4.13).

Le point fixe u_2 du système (4.13), s'écrit comme $u_2 = F(u_2)$ où F est une application associée au système (4.13), et définie sur \mathbb{R}^3 dans \mathbb{R}^3 .

L'application F précédente est continûment diférentiable au voisinage de u_2 sur la boule $B(u_2, r)$, avec le rayon r > 0. D'où la définition 2.3.1.

La matrice Jacobienne évaluée au point fixe u_2 est donnée par (4.27), et (4.27) admet les valeurs propres $\lambda_1 = 0.94$, $\lambda_2 = 1$ et $\lambda_3 = 0.95$.

Étape 2. La deuxième étape consiste à montrer que la condition (ii) du Théorème 2.9.2 est satisfaite.

D'après, la Définition 2.9.2, nous devons trouver un point $w \in \overline{B}_r(u_2)$, tel que $w \neq u_2$, $F^N(w) = u_2$, et det $(DF^N(w)) \neq 0$, pour un certain entier positif N,

$$\begin{cases} (x(1-x) - a_{12}xy - a_{13}xz) .h + x = x_1 \\ (r_2y(1-y) - a_{21}xy) .h + y = y_1 \\ \left(\frac{r_3xz}{x+k_3} - a_{31}xz - d_3z\right) .h + z = z_1, \end{cases}$$

$$\begin{cases} (x_1(1-x_1) - a_{12}x_1y_1 - a_{13}x_1z_1) .h + x = 0 \\ (r_2y_1(1-y_1) - a_{21}x_1y_1) .h + y = 1 \\ \left(\frac{r_3x_1z_1}{x_1+k_3} - a_{31}x_1z_1 - d_3z_1\right) .h + z = 0. \end{cases}$$
(4.37)

Enfin, le système (4.13) est satisfaire aux conditions du Théorème 2.9.2 avec les paramètres sont donnés et h = 0, 1. Le point fixe u_2 admet deux valeurs propres stables et une instable. Donc, nous avons un col à ce point fixe et il existe un point w = (-1.1903, 0.7563, 2.2828)solution de (4.37) et (4.38), satisfait que $F^2(w) = u_2$ et det $(F(u)) = -6, 6158 \neq 0$, det $(F^2(w)) = 27,9025 \neq 0$. Ainsi, u_2 est un point snap-back répulsif.

4.11 Résultats numériques

L'analyse de stabilité du système (4.13) et l'application le Théorème 2.9.2 conduit à ces courbes (bifurcations, attracteus), et d'exposants de Lyapunov [20] où les paramètres sont fixés comme suit:

4.11.1 Exposant de Lyapunov du système

Les exposants Lyapunov du système (4.13) avec les paramètres donnés et h = 0.05 sont donnés comme suivant:

$$\lambda_1 = 0.97478, \quad \lambda_2 = -1.0238 \text{ et } \lambda_3 = -5.5697.$$

Donc apartir le Tableau 2.1 le système (4.13) est chaotique.

FIGURE 4.5 – Exposants de Lyapunov du système (4.13) avec les valeurs des paramètres données dans (3.3) et h = 0.1

FIGURE 4.6 – Exposants de Lyapunov du système (4.13) avec les valeurs des paramètres données dans (3.3) et h = 0.05

FIGURE 4.8 – Diagrammes de bifurcations du système (4.13) avec les valeurs des paramètres données dans (3.3) et h = 0.1, sur les plans.

FIGURE 4.7 – Diagrammes de bifurcations du système (4.13) avec les valeurs des paramètres données dans (3.3) et h = 0.1, sur les plans.

Chapitre 5

Dynamique chaotique à temps discret

Sommaire

5.1	Système de cancer à temps discret	59
5.2	Stabilitée des points fixes	59
5.3	Dynamique chaotique pour un système dynamique de cancer	
	discret \ldots	65
5.4	Quelques résultats numériques	68
5.1 Système de cancer à temps discret

Considérons le système suivant:

J

$$x_{n+1} = x_n(1 - x_n) - a_{12}x_ny_n - a_{13}x_nz_n,$$

$$y_{n+1} = r_2y_n(1 - y_n) - a_{21}x_ny_n,$$

$$z_{n+1} = r_3\left(\frac{x_nz_n}{x_n + k_3}\right) - a_{31}x_nz_n - d_3z_n,$$

(5.1)

où $x, y, z \in \mathbb{R}$ et $r_2, r_3, a_{12}, a_{21}, a_{13}, a_{31}, k_3$ et d_3 sont des constantes positives.

5.2 Stabilitée des points fixes

Dans cette partie nous étudions la stabilitée des points fixes du système (5.1). On dit que $v = (x^*, y^*, z^*)$ est le point fixe du système (5.1), s'il satisfait l'équations suivantes:

$$\begin{cases} x = x(1-x) - a_{12}xy - a_{13}xz, \\ y = r_2y(1-y) - a_{21}xy, \\ z = r_3\left(\frac{xz}{x+k_3}\right) - a_{31}xz - d_3z. \end{cases}$$
(5.2)

En utilisant cette dernière expression, on obtient

$$\begin{cases} x = 0, \\ x = -a_{12}y - a_{13}z. \end{cases}$$
(5.3)

$$\begin{cases} y = 0, \\ y = \frac{r_2 - 1}{r_2} - \frac{a_{21}}{r_2} x. \end{cases}$$
(5.4)

$$\begin{cases} z = 0, \\ x^2 + \left(k_3 + \frac{d_3 - r_3 + 1}{a_{31}}\right)x + \frac{k_3}{a_{31}} = 0. \end{cases}$$
(5.5)

Les solutions d'équations (5.3), (5.4) et (5.5) sont données cinq points fixes de (5.1) comme suivants:

$$v_{1} = (0, 0, 0), v_{2} = \left(0, \frac{r_{2} - 1}{r_{2}}, 0\right),$$

$$v_{3} = \left(\frac{a_{12}(r_{2} - 1)}{a_{12}a_{21} - r_{2}}, \frac{1 - r_{2}}{a_{12}a_{21} - r_{2}}, 0\right),$$

$$v_{4} = (-a_{13}z^{*}, 0, z^{*}), v_{5} = (x^{*}, y^{*}, z^{*}).$$

(5.6)

Nous étudions la stabilité globale du points fixes du système (5.1), c'est à dire de $v = (x^*, y^*, z^*)$.

Pour étudé la stabilité des points fixes, nous calculons la matrice Jacobienne du système (5.1)

$$J(v) = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & 0 \\ S_{31} & 0 & S_{33} \end{pmatrix}$$
(5.7)

où

$$S_{11} = -a_{12}y - a_{13}z - 2x + 1,$$

$$S_{12} = -a_{12}x, \quad S_{21} = -a_{21}y,$$

$$S_{13} = -a_{13}x, \\ S_{22} = r_2(1 - 2y) - a_{21}x,$$

$$S_{31} = \frac{r_3x}{x + k_3} - \frac{r_3xz}{(x + k_3)^2} - a_{31}x,$$

$$S_{33} = \frac{r_3x}{x + k_3} - a_{31}x - d_3.$$

(1) Le point fixe $v_1 = (0, 0, 0)$ est trivial. Nous obtenons alors l'équation caractéristique suivante

$$|J(v_1) - \lambda I| = 0 \tag{5.8}$$

où $J(v_1)$ la matrice Jacobienne (5.7) associée à v_1 , est définie comme suit

$$J(v_1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r_2 & 0 \\ 0 & 0 & -d_3 \end{pmatrix}$$
(5.9)

Nous pouvons maintenant résoudre l'équation (5.8) qui permet d'obtenir le polynôme caractéristique du système (5.1) associé à v_1

$$\lambda^3 - (1 + r_2 - d_3)\,\lambda^2 + r_2 d_3 = 0. \tag{5.10}$$

Les racines de l'équation (5.10) sont de la forme $\lambda_1 = 1$, $\lambda_2 = r_2$ et $\lambda_3 = -d_3$ où r_2 et d_3 deux paramètres positives.

Proposition 5.2.1

 Si r₂ < 1 et d₃ < 1, alors les valeurs propres |λ_i| < 1 où i = 2,3 donc le point fixe v₁ est noeud. Si r₂ > 1 et d₃ < 1 ou l'inverse, alors les valeurs propres (|λ₂| > 1 et |λ₃| < 1) ou l'inverse donc le point fixe v₁ c'est-à-dire col.

(2) Le point fixe $v_2 = \left(0, \frac{r_2 - 1}{r_2}, 0\right)$ où $r_2 \neq 0$ et $r_2 \neq 1$. Nous obtenons alors l'équation caractéristique suivante

$$|J(v_2) - \lambda I| = 0, (5.11)$$

où $J(v_2)$ la matrice Jacobienne (5.7) associée à v_2 , est définie comme suit

$$J(v_2) = \begin{pmatrix} -a_{12} \left(\frac{r_2 - 1}{r_2}\right) + 1 & 0 & 0\\ -a_{21} \left(\frac{r_2 - 1}{r_2}\right) & 2 - r_2 & 0\\ 0 & 0 & -d_3 \end{pmatrix}$$
(5.12)

où $r_2 \neq 0$ et $r_2 \neq 1$. D'après l'équation (5.11), les valeurs propres du système (5.1) associée à v_2 sont de la forme

$$\lambda_1 = 1 - a_{12} \left(\frac{r_2 - 1}{r_2} \right), \lambda_2 = 2 - r_2 \text{ et } \lambda_3 = -d_3.$$

Lemme 5.2.1 Dans l'étude de la stabilité des points fixes du système (5.1), il est important d'avoir des informations sur la stabilité de v_2 par rapport au système (5.1). Il y a deux cas possible

- 1. Supposents que $1 < r_2 < 3$, $d_3 < 1$ et $0 \le a_{12} < \frac{2r_2}{r_2 1}$, alors, le point fixe v_2 est asymptotiquement stable.
- 2. Le point fixe v_2 est stable, si l'une des conditions suivantes est remplie:
 - (a) $0 < r_2 < 1$ et $a_{12} > 0$,
 - (b) $d_3 > 1$,

(c)
$$r_2 > 1$$
 et $a_{12} > \frac{2r_2}{r_2 - 1}$.

(3) Le point fixe $v_3 = \left(\frac{a_{12}(r_2-1)}{a_{12}a_{21}-r_2}, \frac{1-r_2}{a_{12}a_{21}-r_2}, 0\right)$ où $a_{12}a_{21}-r_2 \neq 0$ et $r_2 \neq 1$.

Remarque 5.2.1

Si $r_2 = 1$ alors, $v_3 = v_1$, et si $a_{12}a_{21} - r_2 = 0$ alors, $v_3 = v_2$.

Alors, nous obtenons les valeurs propres de la matrice Jacobienne (5.7) du système (5.1) associée à v_3 comme suit:

$$\lambda_{1} = a_{12}(r_{2} - 1) \left(\frac{r_{3}}{a_{12}a_{21}k_{3} + a_{12}r_{2} - k_{3}r_{2} - a_{12}} - \frac{a_{31}}{a_{12}a_{21} - r_{2}} \right)$$
$$\lambda_{2} = \frac{1}{2} \left(\frac{2a_{12}a_{21} - a_{12}r_{2} + r_{2}^{2} + a_{12} - 3r_{2} - \sqrt{\Delta}}{a_{12}a_{21} - r_{2}} \right)$$
$$\lambda_{3} = \frac{1}{2} \left(\frac{2a_{12}a_{21} - a_{12}r_{2} + r_{2}^{2} + a_{12} - 3r_{2} + \sqrt{\Delta}}{a_{12}a_{21} - r_{2}} \right)$$

où

$$\Delta = (r_2 - 1)^2 \left(r_2^2 + 2a_{12} + a_{12}^2 - 4a_{21}a_{12}^2 \right)$$

Proposition 5.2.2 (i) Si $r_2^2 + 2a_{12} + a_{12}^2 > 4a_{21}a_{12}^2$ alors, la matrice $J(v_3)$ est admet trois valeurs propres réelles s'il vérifie $|\lambda_i| < 1$, i = 1, 2 et $|\lambda_3| > 1$ ou si $|\lambda_i| > 1$, i = 1, 2 et $|\lambda_3| < 1$, alors, ce point fixe est un col, donc instable.

(ii) Si r₂² + 2a₁₂ + a₁₂² < 4a₂₁a₁₂² alors, la matrice J(v₃) est admet deux valeurs propres complexes conjuguées et une valeur propre réelle. si |m_i| < 1, i = 1, 2 et |m₃| > 1 ou si |m_i| > 1, i = 1, 2 et |m₃| < 1, ce point fixe est un col-foyer.

(4) Le point fixe $v_4 = (-a_{13}z^*, 0, z^*)$, où $z^* \neq 0$. Nous obtenons alors l'équation caractéristique suivante:

$$|J(v_4) - \lambda I| = 0 \tag{5.13}$$

où $J(v_4)$ la matrice Jacobienne (5.7) associée à v_4 , est définie comme suivante:

$$J(v_4) = \begin{pmatrix} L_{11} & L_{12} & L_{13} \\ 0 & L_{22} & 0 \\ L_{31} & 0 & L_{33}, \end{pmatrix}$$

où

$$L_{11} = a_{13}z^* + 1, L_{12} = a_{21}a_{13}z^*, \quad L_{13} = a_{13}^2z^*$$

$$L_{22} = a_{21}a_{13}z^* + r_2$$
$$L_{31} = \frac{r_3 z^*}{-a_{13} z^* + k_3} + \frac{r_3 a_{13} z^{*2}}{(-a_{13} z^* + k_3)^2} - a_{13} z^*$$
$$L_{33} = \frac{r_3 a_{13} z^*}{a_{13} z^* - k_3} + a_{31} a_{13} z^* - d_3$$

D'après l'équation (5.13), les valeurs propres du système (5.1) associée à v_4 sont de la forme

$$\lambda_1 = L_{22} = a_{21}a_{13}z^* + r_2 \tag{5.14}$$

$$\lambda_2 = \frac{1}{2} \left[(L_{11} + L_{33}) - \sqrt{(L_{11} - L_{33})^2 + 4L_{31}L_{13}} \right]$$
(5.15)

$$\lambda_3 = \frac{1}{2} \left[(L_{11} + L_{33}) + \sqrt{(L_{11} - L_{33})^2 + 4L_{31}L_{13}} \right]$$
(5.16)

- (i) Si $(L_{11} L_{33})^2 + 4L_{31}L_{13} > 0$ alors, la matrice $J(v_4)$ est admet trois valeurs propres réelles.
- (ii) Si $(L_{11} L_{33})^2 + 4L_{31}L_{13} < 0$ alors, la matrice $J(v_4)$ est admet deux valeurs propres complexes conjuguées et une valeur propre réelle.

Alors, nous obtenons l'équation caractéristique (5.13) comme suivante:

$$P(\lambda) = \lambda^3 + A_2\lambda^2 + A_1\lambda + A_0 \tag{5.17}$$

où

$$A_{0} = -L_{33}L_{22}L_{11} + L_{31}L_{13}L_{22}$$
$$A_{1} = L_{11}L_{22} + L_{11}L_{33} - L_{13}L_{31} + L_{33}L_{22}$$
$$A_{2} = -L_{33} - L_{22} - L_{11}$$

Maintenant, nous allons établir le teste de stabilitée de Jury (8.1), alors, le point fixe v_4 est asymptotique stable si satisfait les conditions suivantes:

Teste de stabilité avec les conditions de Jury assosié au v_4

Pour l'équation (5.17), v_4 est asymptotiquement stable si satisfait les conditions suivantes:

$$P(1) > 0, P(-1) < 0, |A_0| < A_n, \text{ et } |B_0| > |B_{n-1}|,$$

où $B_k = \begin{vmatrix} A_0 & A_{n-k} \\ A_n & A_k \end{vmatrix}$, avec $P(1) = 1 + A_2 + A_1 + A_0,$ $P(-1) = -1 + A_2 - A_1 + A_0.$ **Proposition 5.2.3** Le point fixe v_4 est asymptotiquement stable si satisfait les conditions suivantes:

 $|A_0| < 1, |A_0 + 1| > |A_1| \ et \ |A_0 - 1| |A_0 + A_1 + 1| > |A_0A_1 - A_2|.$

(5) Le point fixe $v_5 = (x^*, y^*, z^*)$ est non-trivial. Nous obtenons alors l'équation caractéristique suivante,

$$|J(v_5) - \lambda . I| = 0, \tag{5.18}$$

où $J(v_5)$ la matrice Jacobienne associée à v_5 , est définie comme suivante:

$$J(v_5) = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & 0 \\ S_{31} & 0 & S_{33} \end{pmatrix}$$
(5.19)

où

$$S_{11} = -a_{12}y^* - a_{13}z^* - 2x^* + 1,$$

$$S_{12} = -a_{12}x^*, \quad S_{21} = -a_{21}y^*$$

$$S_{13} = -a_{13}x^*, \\ S_{22} = r_2(1 - 2y^*) - a_{21}x^*$$

$$S_{31} = \frac{r_3x^*}{x^* + k_3} - \frac{r_3x^*z^*}{(x^* + k_3)^2} - a_{31}x^*$$

$$S_{33} = \frac{r_3x^*}{x^* + k_3} - a_{31}x^* - d_3$$

Par conséquent d'après l'expression (5.18), on obtient alors, la polynôme caractéristique suivante:

$$P^{*}(\lambda) = \lambda^{3} + C_{2}\lambda^{2} + C_{1}\lambda + C_{0} = 0$$
(5.20)

où les coefficients C_0 , C_1 et C_2 sont associées aux les paramétres utilisée dans le système (5.1).

Maintenant, nous allons établir le teste de stabilitée de Jury (8.1), alors, le point fixe v_5 est asymptotiquement stable si satisfait les conditions suivantes:

Teste de stabilité avec les conditions de Jury assosié au v_2

Pour l'équation (5.20) v_2 est asymptotiquement stable si satisfait les conditions suivantes:

$$P^*(1) > 0, P^*(-1) < 0, |C_0| < C_n, \text{ et}|D_0| > |D_{n-1}|,$$
où $D_k = \begin{vmatrix} C_0 & C_{n-k} \\ C_n & C_k \end{vmatrix}$

avec

$$P^*(1) = 1 + C_2 + C_1 + C_0,$$

$$P^*(-1) = -1 + C_2 - C_1 + C_0.$$

Proposition 5.2.4 Le point fixe v_5 est asymptotiquement stable si satisfait les conditions suivantes:

 $|C_0| < 1, \quad |C_0 + 1| > |C_1| \quad et \quad |C_0 - 1| |C_0 + C_1 + 1| > |C_0 C_1 - C_2|.$

5.3 Dynamique chaotique pour un système dynamique de cancer discret

Théorème 5.3.1 Considérons les conditions suivantes

1)
$$d_3 > 1$$
, $0 < r_2 < 1$, $r_2 \neq a_{12}$ et $a_{12} \neq \frac{r_2}{r_2 - 1}$,
2) $d_3 > 1$, $r_2 > 3$, $a_{12} > \frac{2r_2}{r_2 - 1}$ et $r_2 \neq a_{12}$.
(5.21)

Si l'une des conditions (5.21) est satisfaite alors le système (5.1) est chaotique au sens de Marotto. Voir la Définition 2.9.2.

Preuve. Nous allons montrer que le système (5.1) est chaotique au sens de Marotto avec deux étapes suivantes:

Etape 1: La première étape consiste à montrer que la condition (i) du Théorème 2.9.2 est satisfaite. Soit $v_2 = \left(0, 1 - \frac{1}{r_2}, 0\right)$, la deuxiéme point fixe du système (5.1) donnée dans (5.6).

Par conséquent, $v_2 = y^* \cdot e_2$ où $y^* = 1 - \frac{1}{r_2}$ et $e_2 = (0, 1, 0)$. Le point fixe v_2 du système (5.1), s'écrit comme $v_2 = F(v_2)$ où F est une application

Le point fixe v_2 du système (5.1), s'écrit comme $v_2 = F(v_2)$ où F est une application associée le système (5.1), et définie de \mathbb{R}^3 dans \mathbb{R}^3 .

L'application F est continûment différentiable au voisinage de v_2 sur la boule $B(v_2, r)$, avec le rayon r > 0. Voir la définition 2.3.1.

La matrice Jacobienne associé
é $v_2 \mbox{ est}$ la suivante

$$D(F(v_2)) = \begin{pmatrix} -a_{12}y^* + 1 & 0 & 0\\ -a_{21}y^* & r_2(1-2y^*) & 0\\ 0 & 0 & -d_3 \end{pmatrix}$$

Afin de déterminer la matrice Jacobienne, les valeurs propres, λ_i (i = 1, 2, 3) sont données par

$$\lambda_1 = 1 - \frac{a_{12}(r_2 - 1)}{r_2}, \lambda_2 = 2 - r_2 \text{ et } \lambda_3 = -d_3.$$
 (5.22)

Lemme 5.3.1 Soient les conditions suivantes:

C1/ $d_3 > 1, \ 0 < r_2 < 1 \ et \ a_{12} > 0,$ C2/ $d_3 > 1, \ r_2 > 3 \ et \ a_{12} > \frac{2r_2}{r_2 - 1}.$ Si C1 ou C2 est satisfaite alors $|\lambda_i| > 1, (i = 1, 2, 3)$ où λ_i sont données dans (5.22). voir la Théorème 2.9.2. (i).

Remarque 5.3.1 1. Si $a_{12} = r_2$ et $0 < r_2 < 1$ alors, $\lambda_1 = -r_2$ et $|\lambda_1| < 1$,

2. Si $a_{12} = \frac{2r_2}{r_2 - 1}$ alors, $\lambda_1 = 0$. Nous allons montrer maintenant qu'il existe s > 1 telle que

$$||F(u) - F(v)|| > s||u - v||,$$

où $u, v \in \overline{B}(v_2, r)$ et $\|.\|$ la norme euclidienne. Voir 2.1.2.

Soient u et v deux points distincts de la boule $\overline{B}(v_2, r)$. Voir la Définition 2.1.4, et u et v sont suffisamment proches du point fixe v_2 .

Par conséquent d'après l'expression de la Définition 2.3.1, on a

$$F(u) - F(v) = DF(v)(u - v) + \alpha,$$

où $\|\alpha\|/\|u-v\|$, tend vers zéro quand $\|u-v\|$, tend vers zéro.

Par conséquent à partir d'un simple calcul. Voir la Définition 2.1.2, on a l'égalité,

$$||F(v) - F(v_2)|| = ||DF(v_2)(v_4) + \alpha||, \qquad (5.23)$$

 $o \hat{u}$

$$\|DF(v_2)\| = s = \sqrt{\frac{\left(a_{12}r_2 - a_{12} - r_2\right)^2}{r_2^2} + \frac{a_{12}^2\left(r_2 - 1\right)^2}{r_2^2} + \left(-r_2 + 2\right)^2 + d_3^2} > 1.$$
(5.24)

Ainsi, la condition (i) du Théorème 2.9.2 est satisfaite.

Étape 2: La deuxième étape consiste à montrer que la condition (ii) du Théorème 2.9.2 est satisfaite.

Nous allons montrer que le point fixe v_4 est snap-back répulsif de l'application F, nous devons trouver un point $u \in \overline{B}_r(v_2)$, tel que $u \neq v_2$, $F^M(u) = v_2$, et det $[DF^M(u)] \neq 0$, pour un certain entier positif M.

D'autre part, on a d'après la Définition 2.9.1. (B)

$$\begin{cases} x(1-x) - a_{12}xy - a_{13}xz = x_1 \\ r_2y(1-y) - a_{21}xy = y_1 \\ \frac{r_3xz}{x+k_3} - a_{31}xz - d_3z = z_1, \end{cases}$$
(5.25)

et

$$\begin{cases} x_1(1-x_1) - a_{12}x_1y_1 - a_{13}x_1z_1 = x^* \\ r_2y_1(1-y_1) - a_{21}x_1y_1 = y^* \\ \frac{r_3x_1z_1}{x_1+k_3} - a_{31}x_1z_1 - d_3z_1 = z^*. \end{cases}$$
(5.26)

On établit aisément si x = 0 que la solution trivial de deux systèmes d'équations (5.25) et (5.26) est $(x, y, z) = (0, \frac{1}{r_2}, 0).$

Maintenant, nous allons calculons les autres solutions non trivial. Après deux itérations du système (5.1) s'il existe des solutions différentes de v_4 , en utilisant l'équations (5.25) et (5.26) donc:

• Si
$$x = x^{-} = \frac{-a_{31}k_3 - \sqrt{a_{31}k_3r_3}}{a_{31}}$$
, nous avons trois solutions donnée par:
 $(x^{-}, y^{-}, z^{-}), (x^{-}, y^{+}, z^{+})$ et $\left(x^{-}, \frac{1}{2}, \frac{2 - 2x^{-} - a_{12}}{2a_{13}}\right)$ (5.27)

оù

$$y^{-} = \frac{r_{2} - \sqrt{\Delta_{1}}}{2r_{2}}, \quad y^{+} = \frac{r_{2} + \sqrt{\Delta_{1}}}{2r_{2}}, \quad z^{-} = \frac{1 - x^{-} - a_{12}y^{-}}{a_{13}}, \quad z^{+} = \frac{1 - x^{-} - a_{12}y^{+}}{a_{13}},$$

et

$$\Delta_1 = r_2^2 + 4(1 - a_{12}x^-)r_2 - 4.$$

• Si $x = x^+ = \frac{-a_{31}k_3 + \sqrt{a_{31}k_3r_3}}{a_{31}}$, nous avons trois solutions donnée par:

$$(x^+, y^{\prime-}, z^{\prime-}), (x^+, y^{\prime+}, z^{\prime+}) \quad et \quad \left(x^+, \frac{1}{2}, \frac{2 - 2x^+ - a_{12}}{2a_{13}}\right),$$
 (5.28)

 $o \dot{u}$

$$y'^{-} = \frac{r_2 - \sqrt{\Delta_2}}{2r_2}, \quad y'^{+} = \frac{r_2 + \sqrt{\Delta_2}}{2r_2}, \\ z'^{-} = \frac{1 - x^{+} - a_{12}y'^{-}}{a_{13}}, \quad z'^{+} = \frac{1 - x^{+} - a_{12}y^{+}}{a_{13}},$$

et

$$\Delta_2 = r_2^2 + 4(1 - a_{12}x^+)r_2 - 4.$$

Pour effectuer la Thèorème 2.9.2, nous utilisons la solution $u = (0, \frac{1}{r_2}, 0)$, où $u \neq v_4$ et $F^2(u) = v_4$,

La matrice Jacobienne associée $DF^2(u)$ est la suivante:

$$DF^{2}(u) = \begin{pmatrix} \frac{a_{12}^{2}r_{2} - a_{12}r_{2}^{2} - a_{12}^{2} + r_{2}^{2}}{r_{2}^{2}} & 0 & 0\\ \frac{a_{21}\left(a_{12}r_{2} - a_{12} - r_{2}\right)}{r_{2}^{2}} & -\left(r_{2} - 2\right)^{2} & 0\\ 0 & 0 & d_{3}^{2} \end{pmatrix}.$$

Considérons le déterminant de $DF^2(u)$

$$\det[DF^{2}(u)] = -\frac{\left(a_{12}^{2}r_{2} - a_{12}r_{2}^{2} - a_{12}^{2} + r_{2}^{2}\right)\left(r_{2} - 2\right)^{2}d_{3}^{2}}{r_{2}^{2}} \neq 0.$$

Après simplification nous remarquons que $DF^2(u)$ est différent de zéro, alors v_4 est snap-back répulsif de F.

Ainsi, la condition (ii) du Théorème 2.9.2 est satisfaite.

On conclut donc que le système (5.1) est chaotique au sens de Marotto.

Les valeurs de ces paramètres sont utiles et seront utilisées pour les simulations numériques.

5.4 Quelques résultats numériques

L'analyse de stabilité du système (5.1) et l'application le Théorème 2.9.2 conduit à ces courbes (bifurcations, attracteus), et d'exposants de Lyapunov [20] où les paramètres sont fixés comme suit:

$$a_{12} = 3.5, a_{13} = 2.5, a_{21} = 1.15, a_{31} = 0.2, d_3 = 1.001, k_3 = 3.9, r_2 = 3.79$$
 et $r_3 = 0.5.$
(5.29)

En utilisant les paramètres fixés (5.29), le système (5.1) s'écrit de la façon suivante:

$$\begin{cases} x_{n+1} = x_n(1-x_n) - 3.5x_ny_n - 2.5x_nz_n, \\ y_{n+1} = 3.79y_n(1-y_n) - 1.15x_ny_n, \\ z_{n+1} = 0.5\left(\frac{x_nz_n}{x_n+3.9}\right) - 0.2x_nz_n - 1.001z_n. \end{cases}$$
(5.30)

L'application F associée au système (5.30) est continûment différentiable au voisinage de $v_2 = (0, 0.74, 0)$ sur la boule $B(v_2, s)$ où s = 2.444345862 est donné avec légalité (5.24).

FIGURE 5.1 – L'attracteur étrange du système (5.30) avec les conditions initialles $x_0 = 0$, $y_0 = 0.1, z_0 = 0.1$.

FIGURE 5.2 – Projection de l'attracteur du système (5.30) dans le plan y - z

 $J(v_2)$ la matrice Jacobienne (5.7) associée à $v_2 = (0, 0.74, 0)$, est définie comme suit:

$$J((0, 0.74, 0)) = \begin{pmatrix} -1.58 & 0 & 0\\ -0.85 & -1.79 & 0\\ 0 & 0 & -1.001 \end{pmatrix}$$

Afin de déterminer la matrice Jacobienne, les valeurs propres, λ_i (i = 1, 2, 3) sont données par:

$$\lambda_1 = -1.5765, \lambda_2 = -1.79$$
 et $\lambda_3 = -1.001$

Alors, toutes les valeurs propres λ_i , (i = 1, 2, 3) de la matrice Jacobienne J((0, 0.74, 0))

sont strictement supérieures à 1 en valeurs absolues, c'est-à-dire le point est instable, donc de type noeud. Voir la définition 3, de la section 1.3. Ce qui implique que la condition (i) du Théorème 2.9.2. est satisfiate, alors F est un expansion sur la boule $B(v_2, s)$ où s = 2.45. Nous allons montrer que le point v_2 est un snap-back répulsif, alors on peut chercher un point u tel que $F(u) = v_2$, $F^2(u) = v_2$ où det $(F(u)) \neq 0$ et det $(F^2(u)) \neq 0$. le point v_2 est un snap-back répulsif.

Avec une simulations numériques, il existe un point u = (0, 0.2638, 0) qui vérifiez les conditions précédentes trouvées dans la Théorème 2.9.2 et det $(F(u)) = -0.14 \neq 0$, det $(F^2(u)) = 0.3879 \neq 0$.

Nous concluons que le système (5.30) est chaotique au sens de Marotto.

Exposant de Lyapunov du système

L'exposant de Lyapunov est synonyme d'instabilité et de chaos. Cette quantité sert à mesurer le degré de sensibilité du système (5.30), comme donnée de la Section 2.8 pour le cas de dimension supérieure à 1.

Les exposants de Lyapunov du système (5.30) sont donnés comme suivant

$$\lambda_1 = 0.1618, \ \lambda_2 = -0.0032 \ \text{et} \ \lambda_3 = 0.3187,$$

donc aprés le Tableau 2.1 le système (5.30) est chaotique.

Pour calcule la dimension de Kaplan-Yorke (ou de Lyapunov. Voir la sous-section 2.8.4 et d'après la condition (2.29), on obtient

$$\lambda_1 + \lambda_2 + \lambda_3 = 0.4773 > 0.$$

Alors, la dimension de Kaplan-Yorke comme donnée de la Définition 2.30 est égale

$$D_{KY} = 2 + \frac{\lambda_1 + \lambda_2}{|\lambda_3|} \simeq 2.5.$$

Alors pour au moins un exposant de Lyapunov est positif pour certains les valeurs des paramètres, alors le système (5.30) est chaotique à ces paramètres.

Soient les valeurs des paramètres suivantes,:

$$a_{12} = 3.5, a_{13} = 2.5, a_{21} = 1.15, a_{31} = 0.2, k_3 = 3.9, r_2 = 3.79$$
 et $r_3 = 0.5.$ (5.31)

$$a_{12} = 0.62, a_{13} = 1.39, a_{21} = 1.13, r_3 = 0.2, k_3 = 3.8, a_{31} = 0.56$$
 et $d_3 = 1.$ (5.32)

FIGURE 5.3 – Réponses temporelles du système (5.30) avec les valeurs des paramètres donnée dans (5.31) et $d_3 = 1.01$ où $x_0 = 0.001$, $y_0 = 0.6$, $z_0 = 0.08$.

FIGURE 5.4 – Les exposants de Lyapunov du système (5.30) avec les valeurs des paramètres donnée dans (5.31) et $d_3 = 1.001$ où $x_0 = 0, y_0 = -0.1, z_0 = 0.1,$

FIGURE 5.5 – Les exposants de Lyapunov du système (5.30) avec les valeurs des paramètres donnée dans (5.31) et $d_3 = 1.001$ où $x_0 = 0.1$, $y_0 = 0$; $z_0 = 0.1$.

FIGURE 5.6 – Diagrammes de bifurcations du système (5.30) avec les valeurs des paramètres donnée dans (5.32) et $x_0 = 0.15$, $y_0 = 0.2$, $z_0 = 0.08$.

FIGURE 5.7 – Diagramme de bifurcation du système (5.30) de l'espace (r_2, x, y) avec les valeurs des paramètres donnée dans 5.31 et $d_3 = 1.001$ où $x_0 = 0, y_0 = 0.1, z_0 = 0.1$.

Conclusion

Le travail développé dans cette thèse a porté sur l'étude d'un système dynamique non linéaire à temps discret basé sur le chaos. Nous avons présenté une contribution à la modélisation mathématique et à la simulation numérique de la genèse d'une croissance tumorale. Nous avons proposé un modèle de De Pillis et Radunskaya à temps continu construit à partir d'hypothèses biologiques reconnues. Et nous avons étudié ce modèle en temps discret. Et ce travail est divisé en cinq chapitres présentés ci-dessous.

Le premier chapitre est consacré au rappel de quelques définitions préliminaires indispensables concernant les des systèmes dynamiques à temps discrets.

Dans le deuxième chapitre, nous nous intéressons à certaines propriétés topologiques des systèmes dynamiques. Après ces propriétés, nous sommes passés à étude du chaos selon Li et Yorke, selon Devaney, selon Marotto etc. Au niveau quantitatif nous avons fourni une méthode pour mesurer l'exposant de Lyapunov.

Le troisième chapitre est consacré à la modélisation mathématique et les résultats numériques de la genèse d'une croissance tumorale.

Le quatrième chapitre est consacré à la discrétisation des systèmes dynamiques, par exemples les méthodes de (Euler, Taylor et Runge-Kutta). Nous présentons les résultats numériques d'une étude qualitative d'un modèle de De Pillis et Radunskaya.

Le cinquième chapitre est consacré à l'étude du comportement chaotique d'un modèle de De Pillis et Radunskaya à temps discret, nous avons présenté quelque résultats numériques de ce modèle.

Bibliographie

- Bao, Jianghong., & Yang, Qigui. (2012). "Period of the discrete Arnold cat map and general cat map." Nonlinear Dynamics, 70(2), 1365-1375. doi: 10.1007/s11071-012-0539-3
- [2] Baris. K & al, (2018), "Selection of optimal numerical method for implementation of Lorenz Chaotic system on FPGA", International Advanced Researches and Engineering Journal, 02(02), 147-152.
- Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R., Torre, L., & Jemal, A. (2018).
 "Global cancer statistics 2018 : GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries." CA : A Cancer Journal For Clinicians, 68(6), 394-424.

doi: 10.3322/caac.21492

- [4] Dang-Vu, H., & Delcarte, C. (2000). Bifurcations et chaos. Paris : Ellipses.
- [5] De Pillis, L., & Radunskaya, A. (2003). " The dynamics of an optimally controlled tumor model : A case study." *Mathematical And Computer Modelling*, 37(11), 1221-1244.

doi: 10.1016/s0895-7177(03)00133-x

- [6] Devaney, Robert. (1989). An introduction to chaotic dynamical systems. Addison-Wesley, Redwood City CA.
- [7] Elhadj, Zeraoulia. (2020). "A Unified Piecewise Smooth Chaotic Mapping that Contains the Hénon and the Lozi Systems." Annual Review of Chaos Theory Bifurcations and Dynamical Systems, 1, 50-60.
- [8] Elhadj, Zeraoulia. (2019). "Chaotifying One-Dimensional Discrete Mappings Using S-Unimodality and Collet-Eckmann Condition." International Journal of Bifurcation and Chaos, 29(04), 1950050.

doi: 10.1142/s0218127419500500

- [9] Elhadj, Zeraoulia., & Sprott, Julien. (2008). "On the robustness of chaos in dynamical systems : Theories and applications." Frontiers of Physics in China, 3(2), 195-204. doi: 10.1007/s11467-008-0017-z
- [10] Elhadj, Zeraoulia., & Sprott, Julien. (2010). "A new simple 2-D piecewise linear map." Journal of Systems Science And Complexity, 23(2), 379-389.
 doi: 10.1007/s11424-010-7184-z
- [11] Elhadj, Zeraoulia., (2013). Lozi Mappings Theory and Applications (1st ed.). CRC Press.
- [12] Fareh, Hannachi., & Elhadj, Zeraoulia. (2017). "Necessary and Sufficient Conditions for the Occurrence of Bisecting Bifurcations in the General 2D Piecewise-Linear Mapping." International Journal of Bifurcation and Chaos, 27(05), 1750079. doi: 10.1142/s0218127417500791
- [13] Formenti, Enrico., & Durand, B. (1998). Automates cellulaires et chaos : de la vision topologique à la vision algorithmique. École Normale Supérieure de Lyon.
- [14] Galka, Andreas. (2000). Topics in nonlinear time series analysis. Topics in nonlinear time series analysis, with implications for EEG analysis. Vol. 14. World Scientific.
- [15] George., A., & Selvam, M. (2014). "A Discrete Model of Rossler System." International Journal of Advanced Technology in Engineering and Science, 2(8), 130-134.
- [16] Hassan, Sarif. (2019). "Computational Complex Dynamcs of the Discrete Lorenz System." Journal of Applied Nonlinear Dynamics, 8(3), 345-366. doi: 10.5890/jand.2019.09.002
- [17] Hénon, Michel. (1976). "A two-dimensional mapping with a strange attractor." Communications In Mathematical Physics, 50(1), 69-77. doi: 10.1007/bf01608556
- [18] Ikeda, Kensuke. (1979). "Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system." Optics Communications, 30(2), 257-261. doi: 10.1016/0030-4018(79)90090-7
- [19] Itik, Mehmet., & Banks, Stephen. (2010). " Chaos in a three-dimensional cancer model." International Journal of Bifurcation and Chaos, 20(01), 71-79. doi: 10.1142/s0218127410025417
- [20] Kamel, Djeddi. (2019). "Dynamics in a Discrete-Time Three Dimensional Cancer System." IAENG International Journal of Applied Mathematics, 49(4), 625-631.

Retrieved from http://www.iaeng.org/IJAM/issues v49/issue 4/IJAM 49 4 31.pdf

- [21] Kaplan, James L., & Yorke, James A. (1979). "Chaotic behavior of multidimensional difference equations." *Lecture Notes in Math, Springer, Berlin*, 204-227. doi: 10.1007/bfb0064319
- [22] Kocarev, L., Szczepanski, J., Amigo, J., & Tomovski, I. (2006). "Discrete Chaos-I: Theory." *IEEE Transactions on Circuits and Systems I : Regular Papers*, 53(6), 1300-1309.

doi: 10.1109/tcsi.2006.874181

- [23] Lacasa, Lucas., & Gómez-Gardeñes, J. (2013). "Correlation Dimension of Complex " Networks. Physical Review Letters, 110(16). doi: 10.1103/physrevlett.110.168703
- [24] Li, Tien-Yien., & Yorke, James A. (1975). "Period Three Implies Chaos." The American Mathematical Monthly, 82(10), 985-992.
 doi: 10.2307/2318254
- [25] Wanqing, Song., & Jianru Liang. (2013). "Difference equation of Lorenz System." *International Journal of Pure and Applied Mathematics*, 83(1). doi: 10.12732/ijpam.v83i1.9
- [26] Lin, Wei., Ruan, Jiong., & Zhao, Weirui. (2002). "On the mathematical clarification of the snap-back-repeller in high-dimensional systems and chaos in a discrete neural network model." *International Journal of Bifurcation and Chaos*, 12(05), 1129-1139. doi: 10.1142/s0218127402004966
- [27] Lozi, René. (1978). "Un attracteur étrange (?) du type attracteur de Hénon." Le Journal De Physique Colloques, 39(C5), C5-9-C5-10. doi: 10.1051/jphyscol :1978505
- [28] Manneville, Paul. (2004). Instabilites, chaos et turbulence. Palaiseau [France] : Editions de l'Ecole Polytechnique.
- [29] Marotto, Frederick. (1978). "Snap-back repellers imply chaos in Rⁿ." Journal of Mathematical Analysis and Applications, 63(1), 199-223. doi: 10.1016/0022-247x(78)90115-4
- [30] May, Robert. (1976). Simple mathematical models with very complicated dynamics. *Nature*, 261(5560), 459-467.

doi: 10.1038/261459a0

- [31] Murray, James. (2004). Mathematical Biology (3rd ed.). New York, NY : Springer New York.
- [32] Ricordeau, Christian. (1997). L'adieu au big-bang: une hypothèse sur l'évolution de l'univers depuis la naissance de l'espace-temps jusqu'à aujour-d'hui. Paris: Aubin.
- [33] Shi, Yuming., & Chen, Guanrong. (2004a). "Chaos of discrete dynamical systems in complete metric spaces." Chaos, Solitons & Fractals, 22(3), 555- 571.
- [34] Shi, Yuming. (2004b). "Discrete chaos in Banach spaces." Science In China Series A, 48(2), 222.
 doi: 10.1360/03ys0183
- [35] Shi, Yuming., & Chen, Guanrong. (2006a). "Introduction to anti-control of discrete chaos : theory and applications." *Philosophical Transactions of The Royal Society A : Mathematical, Physical and Engineering Sciences*, 364(1846), 2433-2447. doi: 10.1098/rsta.2006.1833
- [36] Shi, Yuming., Yu, Pei., & Chen, Guanrong. (2006b). "Chaotification of discrete dynamical systems in Banach spaces." International Journal of Bifurcation and Chaos, 16(09), 2615-2636. doi: 10.1142/s021812740601629x
- [37] Wiggins, Stephen. (1990). Introduction to applied nonlinear dynamical systems and chaos. New York : Springer-Verlag.
- [38] Wolf, Alan., Swift, J., Swinney, H., & Vastano, J. (1985). "Determining Lyapunov exponents from a time series." *Physica D : Nonlinear Phenomena*, 16(3), 285-317. doi: 10.1016/0167-2789(85)90011-9
- [39] Yuksel, Gamze., & Isik, Osman. (2015). "Numerical analysis of Backward-Euler discretization for simplified magnetohydrodynamic flows." Applied Mathematical Modelling, 39(7), 1889-1898.

doi: 10.1016/j.apm.2014.10.007

[40] Zwarycz-Makles, K., & Majorkowska-Mech, D. (2018). "Gear and Runge-Kutta Numerical Discretization Methods in Differential Equations of Adsorption in Adsorption Heat Pump." Applied Sciences, 8(12), 2437.
 doi: 10.3390/app8122437

Annexes

1 Test de stabilité de jury

Soit un système discret dont la fonction de transfert est la suivante :

$$H(z) = \frac{N(z)}{P(z)},\tag{A.1}$$

où z est réelle ou complexe.

Test de stabilité de jury voir [27] est utilisé directement sur Le polynôme caractéristique du système suivant

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$$
(A.2)

où a_0, a_1, a_{n-1} et a_n sont des coefficients réels et avec $a_n > 0$.

Soient

$$b_{k} = \begin{pmatrix} a_{0} & a_{n-k} \\ a_{n} & a_{k} \end{pmatrix}, c_{k} = \begin{pmatrix} b_{0} & n_{n-1-k} \\ b_{n-1} & b_{k} \end{pmatrix}, d_{k} = \begin{pmatrix} c_{0} & c_{n-2-k} \\ c_{n-2} & c_{k} \end{pmatrix}, \dots$$
(A.3)

Les conditions nécessaires et suffisantes pour que le polynôme P(z) n'ait pas de racines à l'extérieur ou sur le cercle unitaire, sont les conditions suivantes:

$$P(1) > 0,$$

$$(-1)^{n}P(-1) > 0,$$

$$| a_{0} | < a_{n},$$

$$| b_{0} | > | b_{n-1} |,$$

$$| c_{0} | > | c_{n-2} |,$$

$$| d_{0} | > | d_{n-3} |.$$

$$\vdots$$

(A.4)

Remarque 8.1.1 Vérifiez les trois conditions faciles à calculer $P(1) > 0, (-1)^n P(-1) > 0$ et $|a_0| < a_n$. Arrêtez si l'une de ces conditions n'est pas remplie.

Remarque 8.1.2 $Si a_n < 0$

- d'abord, on construit un autre polynôme Q(z) = -P(z)
- puis, on traite le nouveau polynôme Q(z).

2 Tableaux annexes

	Nombre de nouveaux cas	Nombre de décès (%
Type de cancer	(% types)	types)
Poumon	2,093,876 (11.6%)	1,761,007 (18.4%)
Poitrine	2,088,849 (11.6%)	$626,\!679\ (6.6\%)$
Prostate	$1,276,106\ (7.1\%)$	358,989 ($3.8%$)
Colon	1,096,601 (6.1%)	551,269 (5.8%)
Non mélanome de la peau	$1,042,056\ (5.8\%)$	$65,155\ (0.7\%)$
Estomac	$1,033,701 \ (5.7\%)$	$782,\!685\ (8.2\%)$
Foie	841,080 (4.7%)	781,631 (8.2%)
Rectum	704,376 (3.9%)	310,394 (3.2%)
Oesophage	572,034 (3.2%)	508,585 $(5.3%)$
Col de l'utérus	569,847 (3.2%)	311,365 (3.3%)
Thyroïde	567,233 (3.1%)	41,071 (0.4%)
Vessie	549,393 (3.0%)	199,922 (2.1%)
Lymphome non hodgkinien	509,590 (2.8%)	248,724 (2.6%)
Pancréas	$458,918\ (2.5\%)$	432,242 (4.5%)
Leucémie	437,033 (2.4%)	309,006 (3.2%)
Rein	403,262 (2.2%)	175,098 (1.8%)
Corpus uteri	382,069 (2.1%)	89,929 (0.9%)
Lèvre, cavité buccale	354,864 (2.0%)	177,384 (1.9%)
Cerveau, système nerveux	$296,851 \ (1.6\%)$	241,037 (2.5%)
Ovaire	295,414 (1.6%)	184,799 $(1.9%)$
Mélanome de la peau	287,723 (1.6%)	60,712 (0.6%)
Vésicule biliaire	219,420 (1.2%)	165,087 $(1.7%)$
Larynx	177,422 (1.0%)	94,771 (1.0%)
Myélome multiple	$159,985\ (0.9\%)$	106,105 (1.1%)
Nasopharynx	$129,079\ (0.7\%)$	$72,987 \ (0.8\%)$
Oropharynx	92,887~(0.5%)	51,005 (0.5%)
Hypopharynx	80,608 (0.4%)	34,984 (0.4%)
Lymphome hodgkinien	$79,990 \ (0.4\%)$	$26,167 \ (0.3\%)$
Testic	71,105~(0.4%)	9,507~(0.1%)
Glandes salivaires	52,799~(0.3%)	$22,176\ (0.2\%)$
Anus	48,541 (0.3%)	19,129 (0.2%)
Vulve	$44,235\ (0.2\%)$	$15,222 \ (0.2\%)$
Sarcome de Kaposi	41,799~(0.2%)	19,902 (0.2%)
Pénis	34,475~(0.2%)	15,138 (0.2%)
Mésothéliome	30,443~(0.2%)	$25,576\ (0.3\%)$
Vagin	$17,600 \ (0.1\%)$	8,062 (0.1%)
Tous les types hors skin	17,036,901	9,489,872
Tous les types	18,078,957	9,555,027

TABLEAU A.1 – Nouveaux cas et décès en le monde pour 36 cancers et tous les cancers combinés en 2018. Voir [3].

	Nombre de nouveaux cas	Nombre de décès (%
Type de cancer	(% types)	types)
Poumon	$3\ 835\ (7.2\%)$	3 826 (13.0%)
Poitrine	11 847 (22.3%)	3 367 (11.4%)
Prostate	$2\ 578\ (4.9\%)$	$1\ 033\ (3.5\%)$
Colon	3 201 (6.0%)	$1\ 752\ (5.9\%)$
Estomac	2 241 (4.2%)	$2 \ 001 \ (6.8\%)$
Foie	563 (1.1%)	544 (17%)
Rectum	2 229 (4.2%)	1 232 (4.2%)
Oesophage	321~(0.60%)	303 (1.0%)
Col de l'utérus	$1\ 594\ (3.0\%)$	$1\ 066\ (3.6\%)$
Thyroïde	$2\ 103\ (4.0\%)$	261 (0.89%)
Vessie	$2\ 938\ (5.5\%)$	$1\ 379\ (4.7\%)$
Lymphome non hodgkinien	1 716 (3.2%)	932 (3.2%)
Pancréas	940 (1.8%)	918 (3.1%)
Leucémie	$1\ 578\ (3.0\%)$	$1\ 125\ (3.8\%)$
Rein	606 (1.1%)	376 (1.3%)
Corpus uteri	436 (0.82%)	73 (0.25%)
Lèvre, cavité buccale	$291 \ (0.55\%)$	83 (0.28%)
Cerveau, système nerveux	1 686 (3.2%)	$1 \ 326 \ (4.5\%)$
Ovaire	992 (1.9%)	588 (2.0%)
Mélanome de la peau	272~(0.51%)	163~(0.55%)
Vésicule biliaire	$1\ 263\ (2.4\%)$	735 (2.5%)
Larynx	866~(1.6%)	778 (2.6%)
Myélome multiple	665~(1.3%)	588 (2.0%)
Nasopharynx	$1 \ 340 \ (2.5\%)$	504 (1.7%)
Oropharynx	321~(0.60%)	303 (1.0%)
Hypopharynx	57 (0.11%)	23~(0.08%)
Lymphome hodgkinien	832~(1.6%)	257~(0.87%)
Testic	128 (0.24%)	26~(0.09%)
Glandes salivaires	129 (0.24%)	38 (0.13%)
Anus	107 (0.20%)	43 (0.15%)
Vulve	76(0.14%)	27~(0.09%)
Sarcome de Kaposi	63~(0.12%)	29 (0.10%)
Pénis	4 (0.01%)	1 (0.00%)
Mésothéliome	65~(0.12%)	53~(0.18%)
Vagin	36~(0.07%)	16 (0.05%)
Tous les types	$53\ 076$	29 453

TABLEAU A.2 – Incidence, mortalité et prévalence par site de cancer en Algérie. Voir (The Global Cancer Observatory - All Rights Reserved - May, 2019).