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General Introduction

The objective of this thesis is the nonparametric estimation of the regression func-
tion by the kernel method based on the theory of empirical processes and in
presence of censored data.

The theory of statistical estimation is one of the fundamental elements of
mathematical statistics. This theory is subdivided into parametric and nonpara-
metric estimation. A nonparametric procedure is usually defined as a procedure
which is valid independently of the distribution of the sampled observations
and it consists in estimating from the observations some unknown function per-
taining to a class of functions which is not in bijection with a finite-dimensional
space.

One of the main problems in nonparametric estimation is the estimation of
functional characteristics associated with the law of observations, such as, for
example, the density function or the regression function (in a multivariate frame-
work).

For the density, there exists a number of methods for nonparametric estima-
tion, based on e.g., kernel smoothing, histograms, orthogonal series, splines, fre-
quency polygons, wavelets or the penalized likelihood.

In this work, we are interested in nonparametric kernel estimation for mul-
tivariate models. The kernel estimator of density fX(·) was introduced by the
Akaike-Parzen-Rosenblatt (Akaike (1954), Rosenb1att (1956) and Parzen (1962))
and it can be formulated as follows. Let the kernel K(·) be any function satisfy-
ing some regularity conditions and (hn)n≥1 be a sequence of positive constants
converging to zero and

nhdn →∞ as n→∞.

The kernel-type estimator of the density function fX(·) of X is given, for x ∈ Rd,
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General Introduction 6

by

fX;n(x;hn) :=
1

nhdn

n∑
i=1

K

(
x−Xi

hn

)
. (0.0.1)

Parzen (1962) has shown, under some assumptions on K(·), that fX;n(·;hn) is an
asymptotically unbiased and consistent estimator for fX(·) whenever hn → 0,
nhdn → ∞ and x is a continuity point of fX(·). Under some additional assump-
tions on fX(·) and hn, he obtained an asymptotic normality result, too. This es-
timator has been widely studied thereafter and has recently been the subject of
an extensive research since it can be easily interpreted and is very often used in
practical applications.

Kernel estimation method has been extended to numerous methods for non-
parametric estimation of regression function , distribution functions, failure rates,
etc. The topic of interest in our thesis is the kernel nonparametric regression.
In statistics, regression analysis models the predictive relationship between re-
sponses Y and predictors X, that is

Y ≈ m(X) + ε,

where (X,Y) ∈ Rd × Rq, ε is unknown parameter represents the error made
during model selection and m(·) is a multivariate regression function expressed
as a conditional expectation function, that is

m(X) = E(Y | X = x).

The primary goal of the regression analysis is to provide an estimate m̂(·) of
m(·) from i.i.d samples (Xi,Yi), and there are three different ways to estimate m:
parametric approach, semiparametric approach and nonparametric approach.
As with the density, it is worth noticing that the parametric regression models
provide useful tools for analyzing practical data when the models are correctly
specified, but may suffer from large modelling biases if the structures of the mod-
els are misspecified, which is the case in many practical problems. As an alterna-
tive, nonparametric smoothing methods ease the concerns on modelling biases.
Kernel nonparametric function estimation methods are popular presenting only
one of many approaches to the construction of good function estimators, includ-
ing nearest-neighbor, spline and wavelet methods. These methods have been
applied to a wide variety of data.
In this thesis, we shall restrict attention to the construction of consistent kernel-
type estimators for multivariate models.
Let {Xi,Yi}i≥1 be an Rd×Rq-valued independent vectors defined on a probabil-
ity space (Ω,A,P), with d, q ≥ 1 and Let Ψ : Rq → R be a measurable function,
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such that the random variable Ψ(Y) verifies some conditions that will be speci-
fied later. We can define the regression function of Ψ(Y) knowing X (whenever
it exists) by

mΨ(x) := E(Ψ(Y) | X = x). (0.0.2)

A well-known estimator for the regression function mΨ(·), which is often used in
non-parametric statistics, is the so-called kernel regression function estimator in-
troduced by Nadaraya-Watson (Nadaraya (1964) and Watson (1964)). Nadaraya
(1964) established similar results to those of Parzen (1962) for m̂n;hn(x) as an es-
timator for E(Y | X = x).
In this work, we are interested in general kernel-type estimator of regression
mΨ(·) defined, for a bandwidth h > 0 x ∈ Rd, by

rΨ;n(x;h) =
1

nhd

n∑
i=1

Ψ(Yi)K

(
x−Xi

h

)
, (0.0.3)

mΨ;n(x;h) =



rΨ;n(x;h)

fX;n(x;h)
=

n∑
i=1

Ψ(Yi)K

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) , for fX;n(x;h) 6= 0,

1

n

n∑
i=1

Ψ(Yi), for fX;n(x;h) = 0.

(0.0.4)

By setting Ψ(y) = y (or Ψ(y) = yk ) into (0.0.4), y ∈ R, we get the classi-
cal Nadaraya-Watson kernel regression function estimator m̆n;hn(x) of m(x) :=

E(Y | X = x) given by

m̂n;hn(x) :=

n∑
i=1

YiK

(
x−Xi

hn

)
n∑
i=1

K

(
x−Xi

hn

) , (0.0.5)

or

m̆n;hn(x) :=

n∑
i=1

Y k
i K

(
x−Xi

hn

)
n∑
i=1

K

(
x−Xi

hn

) . (0.0.6)

The asymptotic behavior of nonparametric density estimators, regression func-
tion or other functionals, including consistency and limit laws has been stud-
ied intensively over the last twenty years. For good sources of references to re-
search literature in this area along with statistical applications consult Tapia and
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Thompson (1978), Wertz (1978), Collomb (1981), Devroye and Györfi (1985), De-
vroye (1987), Silverman (1986), Müller (1988), Nadaraya (1989), Härdle (1990),
Wand and Jones (1995), Eggermont et al. (2001), Devroye and Lugosi (2001),
Györfi et al. (2002), Scott (2015), Chacón and Duong (2018) and the references
therein.
In practice, a major difficulty in estimating density and regression by the kernel
method lies in the choice of the bandwidth h > 0. It is important to choose h
so that there is a good compromise between the order of bias and the order of
variance. The smaller h is, the larger random term (the variance whose order
of magnitude is evaluated) and the smaller deterministic term (corresponding to
the estimator bias) is. For a large h, the opposite effect occurs. One of the first so-
lutions proposed to solve this problem of choice of h was to choose a bandwidth
h that minimizes the mean square error [MSE](see Wand and Jones (1995)). The
(asymptotically) optimal choice of h depends on the unknown density. To re-
solve this problem, adaptive bandwidths were introduced in the 1990’s, which
depends on the available observations and/or their location. There are various
adaptive methods of choosing the bandwidth h for fX;n(·). We cite for example
the plug-in and cross-validation methods which do not depend on the location of
x ∈ R, and the nearest-neighbor method which depends on the location of x ∈ I .
In 2005, following the precursory work of (Deheuvels (2000)), that Einmahl et al.
(2005) have proposed a practical justification for these solutions which is the "uni-
form in bandwidth consistency" of kernel density estimators. Using the theory
of empirical processes indexed by functions, they have shown that for c > 0,

lim sup
n→∞

sup
c logn/n≤h≤1

√
nhd sup

x∈I
|fX;n(x;h)− E(fX;n(x;h))|√
log(1/h) ∨ log log n

<∞, (0.0.7)

for regular kernels and bounded Lebesgue densities. The interest of this type of
result is to ensure the convergence of the estimators under general conditions,
even when h is random.
They made use of the indexing of the empirical process by functions combined
with the class properties of Vapnik- C̆ervonenkis (see, e.g., Van Der Vaart and
Wellner (1996)) and the exponential inequalities of Talagrand type (see Talagrand
(1994)).
In the last decades, empirical process theory has provided very useful and pow-
erful tools to analyze the large sample properties of a nonparametric estimators
of the regression function and the density function, refer to Pollard (1984), Pol-
lard (1990), Van Der Vaart and Wellner (1996), Kosorok (2008), Dudley (2014).
Nolan and Pollard (1987) were the first to introduce the notion of uniform in
bandwidth consistency for kernel density estimators, and they applied empirical
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process methods in their study. In the series of papers, Deheuvels (2000), Ein-
mahl and Mason (2000), Deheuvels and Mason (2004), Giné et al. (2004), Einmahl
et al. (2005), Dony et al. (2009), Maillot and Viallon (2009), Giné et al. (2009), Ma-
son and Swanepoel (2011), Mason (2012), Giné et al. (2013), Mason et al. (2015),
Bouzebda and Elhattab (2011), Bouzebda (2012), Bouzebda et al. (2018) the au-
thors established uniform consistency results for such kernel estimators, where
hn varies within suitably chosen intervals indexed by n. In the functional setting,
we can refer, among many others, to Kara-Zaitri et al. (2017), Ling et al. (2019),
Novo et al. (2019), Bouzebda and Nemouchi (2020). In our work, we will con-
sider one of the most commonly used classes of estimators that is formed by the
so-called kernel-type estimators. There are basically no restrictions on the choice
of the kernel function in our setup, apart from satisfying some mild conditions
those we will give after.

Major contribution of the thesis

It is worth noticing that the high-dimensional data sets have several unfortunate
properties that make them hard to analyze. One of the limiting aspects of density
(regression)-based approaches is their performance in high dimensions. It takes
an exponential in dimension number of samples to estimate the density (regres-
sion).
The phenomenon that the computational and statistical efficiency of statistical
techniques deterioate rapidly with the dimension is often referred to as the “curse
of dimensionality”. Dimensionality reduction methods aim to project the origi-
nal data set Ω ⊂ Rd without information loss, on to a lower M -dimensional man-
ifold of Rd. Since the value of M is unknown, there are several techniques that
provide them in advance. Following Fukunaga (1990), the minimum number of
parameters required to account for the observed properties of data is the intrinsic
(or effective) dimension dM of the data set. The notion of intrinsic dimension dM
has been studied in the statistical machine learning literature to establish fast es-
timation rates in high-dimensional kernel density and regression settings. There
are numerous known techniques for doing so e.g., Kégl (2003), Levina and Bickel
(2004), Hein and Audibert (2005), Farahmand et al. (2007).
However, understanding density estimation in situations where the intrinsic di-
mension can be much lower than the ambient dimension is becoming ever more
important: modern systems are able to capture data at an increasing resolution
while the number of degrees of freedom stays relatively constant.
Jiang (2017) drifted finite-sample- high-probability density estimation bounds
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for multivariate kernel density estimators under mild density assumptions (he
only required fX to be bounded) that hold uniformely on h and under appropri-
ate assumptions on K, and he extended this results to the manifold setting and
these for local instrinsic dimension.

In 2018 Kim et al. (2018) have extended the existing uniform in x ∈ Rd and
the bandwidth h bounds of kernel density estimators given by Einmahl et al.
(2005) and Jiang (2017) to more general cases such as the ones of distribution
with unbounded densities or supported on a mixture of manifolds with different
dimensions and these by weakening the conditions on the kernel and making it
adaptive to the intrinsic dimension of the underlying distribution.

Our principal aim in this thesis, is to establish uniform in bandwidth consis-
tency result for some general kernel-type estimators under weaker conditions on
the kernel than previously used in the literature and without assumptions on the
distribution. We extend the work of Kim et al. (2018) to the more general estima-
tors including the kernel density estimator as a particular case (studied in Kim
et al. (2018)), this generalization is far from being trivial and harder to control
some complex classes of functions, which form a basically unsolved open prob-
lem in the literature. We aim at filling this gap in the literature by combining
results Kim et al. (2018) with techniques developed in Einmahl et al. (2005). How-
ever, as will be seen in chapter 2, the problem requires much more than “simply”
combining ideas from the existing results. In fact, delicate mathematical deriva-
tions will be required to cope with the empirical processes that we consider in
this extended setting. In addition, we will consider the nonparametric Inverse
Probability of Censoring Weighted (I.P.C.W.) estimators of the multivariate re-
gression function under random censorship and obtain uniform in bandwidth
consistency results which are of independent interest.
The main results of this thesis have been published in an article (Bouzebda and
El-hadjali (2020)), written in collaboration with my co-supervisor BOUZEBDA
Salim, and published in the journal JOURNAL OF NONPARAMETRIC STATIS-
TICS.

Organization of the dissertation

This thesis is organized as follows
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Chapter 1. Mathematical framework

In chapter one we will briefly give the general framework considered in this
thesis. We define the empirical processes and we are particularly interested in
empirical processes indexed by some special classes of functions (called Vapnik-
C̆ervonenkis classes) and we give some of their instrumental properties needed
for the main results. To be self contained, we will also give some notions about
the kernel estimator of density and regression and we will need to know a bit
more about volume dimension.

Chapter 2. Uniform in bandwidth consistency results for general
kernel-type estimators

In this chapter we establish two results of the consistency of kernel-type estima-
tors by introducing a generalized multivariate empirical process indexed by a
VC class of functions, which will be useful to study various types of kernel-type
estimators in chapter 3. In particular, we will treat the uniform consistency in
two cases: first in Section 2.3, we consider a bounded class of functions (Theo-
rem 2.3.0.1) and secondly in Section 2.4 the unbounded class of functions (The-
orem 2.4.0.1), whenever some moment conditions are satisfied for the envelope
function together with entropy conditions.

Chapter 3. Uniform in bandwidth consistency for nonparametric
kernel-type estimators

This chapter is an application of the main results of chapter 2. In particular,
we will study the uniform in bandwidth consistency of the kernel type estima-
tors for density, regression, the conditional distribution, multivariate mode and
Shannon’s entropy. Analogous results are derived for the sth derivatives of den-
sity and regression functions (see section 3.2), those are of independent interest
in the setting of the nonparametric estimation. We will also study in section 3.6,
the consistency of the additive regression estimation and we discuss briefly in
Section 3.7 the bandwidth selection criterion .
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Chpater 4. Uniform in bandwidth consistency for nonparamteric
I.P.C.W. estimators of the regression function in censored case

The purpose of this chapter is to show the uniform in bandwidth consistency
for non parametric regression function mψ(x) = E(ψ(Y ) | X = x), when Y is
right-censored . To cope with this problem, we will apply the results of Chapter
3, in particular, we establish, using these methods, the asymptotic behaviour of a
regression estimator of the type "Inverse Probability of Censoring Weighted es-
timators" [I.P.C.W.] introduced by Kohler et al. (2002). Applications of the main
results include the kernel type estimators of the conditional density and the con-
ditional distribution.

Conclusions and perspectives

In this chapter, we conclude this thesis and we present some open questions and
perspectives which appeared during the preparation of this thesis.



Chapter 1

Mathematical framework

Empirical process theory plays a central role in statistics, since it concerns the set
of general borderline results relating to random samples. As a result, it has innu-
merable applications to specific problems. Among the more important properties
of these mathematical models, which have been the subject of extensive research
since the origin of modern statistics, include, among others, results related to the
theorems of Glivenko-Cantelli (Glivenko (1933),Cantelli (1933)), the Donsker’s
theorems (Donsker (1951)), to the laws of the iterated logarithm (Chung (1949)),
see also Deheuvels (1991)) and the accompanying bibliography), or functional
limit laws, global or local, (Finkelstein et al. (1971), Deheuvels (1992), Deheuvels
and Mason (1992), Deheuvels (2000)). In the early 1980s, Stute (see Stute (1982),
Stute (1986a), Stute (1986b), and Stute (1986c)) was one of the first statisticians
to make systematic use of methods derived from empirical process theory in the
study of the asymptotic properties of nonparametric functional estimators and
more particularly kernel estimators (see also Csörgő and Révész (1981) and De-
heuvels (1974)).

In this chapter, we will describe the frameworks in which this thesis works
take place, and we will present mathematical tools used in the following chap-
ters.

1.1 Empirical processes

In this part, we will mainly be involved with "empirical measures" and "empiri-
cal processes".
Empirical process theory began in the 1930’s and 1940’s with the study of the em-

13
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pirical distribution function and the corresponding empirical process, this theory
is very useful because many statistics can be expressed as functionals of the em-
pirical distribution function denoted Fn(·).

Now, suppose that X1, . . . , Xn are i.i.d random variables defined on the prob-
ability space (Ω,A,P) with distribution function F (·).

A stochastic process is a collection of random variables {X(t) : t ∈ T} on the
same probability space, indexed by an arbitrary index set T . If X1, . . . , Xn are
i.i.d real-valued random variables, then empirical distribution function is

Fn(t) = n−1

n∑
i=1

1{Xi ≤ t}, (1.1.1)

where the index t is allowed to vary over T = R, the real line. The corresponding
empirical processes Gn(t) is defined as

Gn(t) =
√
n(Fn(t)− F (t)),

By the law of large numbers, we know that, for every t ∈ R

Fn(t)
a.s−→ F (t),

where a.s−→ denotes almost sure convergence. By the central limit theorem, for
each t ∈ R,

Gn(t)
d−→ N(0, F (t)(1− F (t))),

where d−→ denotes convergence in distribution. To generalize the above two re-
sults to processes that hold for all t simultaneously, two important results in
empirical process theory concerning Fn(·) and Gn(·) are given below.

Theorem 1.1.0.1 (Glivenko (1933), Cantelli(1933))

sup
t∈R
|Fn(t)− F (t)| a.s−→ 0.

Theorem 1.1.0.2 (Donsker, 1952)

Gn(t)
d−→ G, in `∞(R),

where, for any index set T , `∞(T ) is the collection of all bounded functions f : T 7→ R.
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In the 1950’s and 1960’s, the need for generalization of Theorem 1.1.0.1 and The-
orem 1.1.0.2 became apparent that when the observations take values in a more
general arbitrary sample space X (such as Rd or a Riemannian manifold, etc.), in
this case the empirical distribution function is not as natural, it becomes much
more natural to define the empirical measure Pn indexed by some class of real-
valued functions F defined on X .
We consider a random sample X1, . . . , Xn of independent draws from a proba-
bility measure P on X . The empirical measure is defined by linear combination of
the Dirac measures δx as

Pn := n−1

n∑
i=1

δXi .

For a measurable function f : X 7→ R, the empirical measure induces a map from
F to R given by

Pnf := n−1

n∑
i=1

f(Xi).

If F is a class of measurable functions f : X → R, then {Pnf : f ∈ F} is the em-
pirical process indexed by a class of functions F . This definition is more general
as it describes all measurable functions of the sample. The definition (1.1.1) is ob-
tained ifX = R, and we re-express Fn(·) as the empirical process {Pn(f) : f ∈ F},
where F = {1{x ≤ t} : t ∈ R}.
The general empirical processes Gn is defined by

Gn :=
√
n(Pn − P),

and the collection of random variables {Gn(f) : f ∈ F} as f varies over F is
called the empirical process indexed by the class of functions F , where

Gn(f) =
1√
n

n∑
i=1

(f(Xi)− Pf).

The objective of empirical process theory is to study the properties of the approxima-
tion of Pf by Pnf , uniformly in F .

With the notation ‖Q‖F = supf∈F |Qf |, a class F of measurable functions is
said to be a P-Glivenko-Cantelli class if

‖Pn − P‖F
a.s−→ 0, (1.1.2)

F is called P-Donsker if under suitable conditions

Gn
d−→ G, in `∞(F), (1.1.3)

where the limit process G is a tight Borel measurable element in `∞(F).
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Size of a function class

In empirical process theory, it is important to measure the size of a given class
F of measurable functions defined on X . Whether a given class F is Glivenko-
Cantelli or Donsker depends on the "size" (or"complexity") of the class. A finite
class of integrable functions is always Glivenko- Cantelli and a finite class of
square integrable functions is always Donsker. A relatively simple way to mea-
sure the size of a class F is to use entropy numbers. The ε-entropy of F is es-
sentially the logarithm of the number of "balls" or "brackets" of size ε needed to
cover F . From this informal definition, it is already clear that the entropy num-
bers increase as ε decreases to zero.
In the following paragraph, we give a way to measure the size of a class F in
terms of entropy.

Covering numbers

For 1 ≤ r, let Lr(P) denote the collection of functions g : X 7→ R such that
‖g‖r,p := [

∫
X |g(x)|pdP(x)]1/r <∞.

Definition 1.1.0.3 (Kosorok (2008))
For a probability measure Q, the covering numberN (F , Lr(Q), ε) is the minimum num-
ber of Lr(Q)-balls of radius ε needed to cover F , where an Lr(Q)-balls of radius ε is the
set {h ∈ Lr(Q) : ‖h− g‖Q,r < ε}.

The centers of the balls need not belong to F , but they should have finite norms.
The uniform covering numbers are given by

sup
Q
N (F , Lr(Q)), ε‖F‖Q,r), (1.1.4)

where F : X 7→ R is an envelope for F , meaning that |f(x)| ≤ F (x) for all x ∈
X and all f ∈ F , and where the supremum is taken over all finitely discrete
probability measure Q with ‖F‖Q,r > 0. The minimal envelope function is x 7→
supf |f(x)|. It will usually be assumed that this function is finite for every x.
Notice that the uniform covering number does not depend on the probability
measure P for the observed data.
The entropy is the logarithm of of the covering number and the uniform entropy
numbers are defined as

sup
Q

logN (F , Lr(Q), ε‖F‖Q,r),
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where the supremum is over all probability measures Q on (X ,A), with 0 <

QF r <∞.

Vapnik- C̆ervonenkis (VC) classes of functions

One of the starting points for controlling uniform covering numbers is the so-
called Vapnik- C̆ervonenkis classes, or VC classes. There are several non- equiv-
alent definitions of VC classes of functions. We will only mention here the so-
called VC subgraph classes of functions (for the definitions of the VC classes of
functions called major and hull, we refer the reader to Van Der Vaart and Wellner
(1996) and Kosorok (2008)). In our framework, the most interesting definition is
that of the VC subgraph classes of functions, since they present the property of
polynomial covering number. The other types of VC-classes of functions usually
have only polynomial entropy numbers, which is essentially enough to show
that, for example, a class is Glivenko- Cantelli or Donsker. For an extensive ex-
position on VC-classes, we refer the reader to the books of Van Der Vaart and
Wellner (1996), Kosorok (2008).
First, we introduce VC classes of sets, and VC classes of functions.

Definition 1.1.0.4 Say that the collection C of subsets of the sample space X picks
out a certain subset A of the finite set {x1, . . . , xn} ⊂ X if it can be written as A =

{x1, . . . , xn} ∩ C, where C ∈ C.

Definition 1.1.0.5 The collection C is said to shatter {x1, . . . , xn} if C picks out each of
its 2n subsets.

Definition 1.1.0.6 The VC index V (C) of C is the smallest n for which no set of size n
is shattered by C.

A collection C of measurable sets is called a VC class if its index V (C) is finite.

Definition 1.1.0.7 A collection F is a VC class of functions if the collection of all sub-
graphs {(x, t) : f(x) < t}, if f ranges over F , forms a VC class of sets in X × R.

It has been shown that any class F of measurable functions on a measure space
(X ,A) is Vapnik- C̆ervonenkis (VC) class of functions with respect to an envelope
function F if there exists a measurable function F everywhere finite such that
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|f | < F , for all f ∈ F and if there exists finite numbers A and ν such that 0 < ε <

1, and for all Q probability measure on (X ,A) such that
∫

F2dQ <∞, we have

N (F , ‖ · ‖L2(Q), ε‖F‖L2(Q)) ≤
(
A

ε

)ν
.

Consequently, VC-classes are examples of polynomial classes in the sense that their
covering numbers are bounded by a polynomial in 1/ε.
Now, we present two important examples of VC-classes of functions:

Example 1.1.0.8 A finite-dimensional vector of measurable functions fromX ×R is VC
subgraph with V (F) ≤ dim(F) + 2.

Example 1.1.0.9 The class of indicator functions of the type 1{(−∞, t]}, for t ∈ R, or
1{(s, t]}, for (s, t] ∈ R2 is a VC class of functions.

The next lemmas (LEMMA 9.7 and 9.9 of Kosorok (2008)), consist of useful tools
for building VC-classes from other VC-classes.

Lemma 1.1.0.10 Let C and D be VC-classes of sets in a set X , with respective VC-
indices VC and VD; and let E be a VC-class of sets in W , with VC-index VE . Also let
φ : X 7→ Y be a fixed function. Then

(a) C u D := {C ∩D : C ∈ C, D ∈ D} is VC with index ≤ VC + VD − 1;

(b) C t D := {C ∪D : C ∈ C, D ∈ D} is VC with index ≤ VC + VD − 1;

(c) D × E is VC index in X ×W with VC index ≤ VD + VE − 1;

(d) φ(C) is VC with index VC if φ is one to one.

Lemma 1.1.0.11 Let F and G be VC-subgraph classes of functions on a set X , with
respective VC indices VF and VG . Let g : X 7→ R, φ : R 7→ R, and ψ : Z 7→ X be fixed
functions. Then

(a) F ∧ G := {f ∧ g : f ∈ F , g ∈ G} is VC -subgraph with index ≤ VF + VG − 1;

(b) F ∨ G is VC with index ≤ VF + VG − 1;

(c) {F > 0} := {{f > 0} : f ∈ F} is a VC-class of sets with index VF ;
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(d) −F is VC-subgraph with index VF ;

(e) F + g := {f + g : f ∈ F} is VC with index VF ;

(f) F · g := {fg : f ∈ F} is VC with index ≤ 2VF − 1;

(g) F ◦ ψ := {f(ψ) : f ∈ F} is VC with index ≤ VF .

The following lemma proved in Einmahl and Mason (2000) is very helpful in our
proofs. It provides stability by Cartesian products of classes of functions with a
polynomial covering number.

Lemma 1.1.0.12 Let F and G be two classes of real valued measurable functions on H
satisfying

|f(x)| ≤ F (x), f ∈ F , x ∈ H, (1.1.5)

where F is a finite valued measurable envelope function onH;

‖g‖∞ ≤M, g ∈ G,

where M > 0 is a finite constant. Assume that for all p-measures Q with 0 < Q(F 2) <

∞,
N (F , ε(Q(F 2))1/2, dQ) ≤ C1ε

−ν1 , 0 < ε < 1,

and for all probability measure Q,

N (G, εM, dQ) ≤ C2ε
−ν2 , 0 < ε < 1,

where ν1, ν2, C1, C2 ≥ 1 are suitable constants. Then we have for probability measures
Q, with Q(F 2) <∞,

N (FG, εM(Q(F 2))1/2, dQ) ≤ C3ε
−ν1−ν2 , 0 < ε < 1,

for some finite constant 0 < C3 <∞.

1.2 Non-parametric kernel estimators

The problem of non-parametric estimation consists, in most cases, in estimating,
from observations, an unknown function, an element of a certain functional class.
Recall that a non-parametric procedure is defined independently of the distribu-
tion or law of the sample of observations. More specifically, a non-parametric
estimation method is defined when it does not boil down to the estimation of a
finite number of real parameters associated with the distribution of the sample.
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1.2.1 Kernel density estimator

There exists a number of methods for non-parametric density estimation, based
on e.g., kernel smoothing, histograms, orthogonal series, splines, frequency poly-
gons, wavelets or the penalized likelihood. An extensive survey of these topics
can be found for example in Devroye and Lugosi (2001). In 1956, Rosenblatt pro-
posed a kernel density estimators KDEs obtained by a convolving the empirical
distribution function and an appropriate function, called kernel K(·), [Akaike
(1954), Rosenb1att (1956), Parzen (1962)]. This method of estimation is popular
because of their conceptual simplicity and nice theoretical properties. Formally,
let f(·) be a probability density with respect to Lebesgue measure on Rd, and let
(X,Xi, i ≥ 1) be an independent and identically distributed (i.i.d) Rd−valued
random variables with unknown Borel probability distribution P. For a given
kernel K(·), where K(·) is an appropriate function on Rd (often a density), the
kernel density estimator (KDE) of fX(·) known as the Akaike-Parzen-Rosenblatt
(see Akaike (1954), Rosenb1att (1956), Parzen (1962)) with kernel K and band-
width (hn)n≥1, is defined as

x ∈ Rd 7→ fX;n(x;hn) :=
1

nhdn

n∑
i=1

K

(
x−Xi

hn

)
. (1.2.1)

where (hn)n≥1 is a sequence of positive constants converging to zero and nhdn →
∞ as n→∞.
These kernel density estimators have remained popular over time due to their
consistency properties. It is well known that when the bandwidth hn > 0 con-
verges to 0 and nhdn converges to infinity, these estimators are convergent in L1,
whether in probability, average or almost surely.
To establish the strong consistency, one usually writes the difference fX;n− fX as
the sum of a probabilistic term fX;n − EfX;n and the bias (deterministic term)
EfX;n − fX. The order of the bias depends on the smoothness properties of
the density fX(·), whereas the random term can be studied, under existence
of Lebesgue density and fixed bandwidth (see, Prakasa Rao (1983), Giné and
Guillou (2002), Sriperumbudur and Steinwart (2012), Steinwart et al. (2017)) or
via empirical process techniques (see Stute (1982), Stute (1984), Pollard (1984)),
among other authors. Deheuvels (2000) for one-dimensional case, and Giné and
Guillou (2002) have shown that if K(·) is a regular kernel, the density function
fX(·) is bounded and hn satisfies some regularity conditions,

‖fX;n − EfX;n‖∞ = O(
√
| log hn|/nhn).

In addition, this rate cannot be improved. Interestingly, there is no need for
continuity of fX(·) for this result. (Of course, continuity of fX(·) is crucial for
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controlling the bias).

Adaptive kernel density estimators

Varying the bandwidth along the support of the sample data gives flexibility to
reduce the variance of the estimates in areas with few observations, and reduc-
ing the bias of the estimates in areas with many observations. Kernel density
estimation methods relying on such varying bandwidths are generally referred
to as adaptive kernel density estimation methods. Uniform in bandwidth consis-
tency for KDE have been received relatively less attention, although such con-
sistency of KDEs with adaptive bandwidth may depend on the location of x.
Deheuvels (2000), Einmahl et al. (2005) proved the almost sure uniform conver-
gence of the kernel density estimator, with bounded Lebesgue densities if the
bandwidth varies within an interval [an, bn], they have shown that

lim sup
n→∞

sup
c logn/n≤h≤1

√
nhd‖fX;n − EfX;n‖∞√
log (1/h) ∨ log log n

<∞,

Jiang (2017) provided a finite-sample bound of ‖fX;n − EfX;n‖∞ that holds uni-
formly on h and under appropriate assumptions on K(·), and extended it to case
of densities over well-behaved manifolds. In 2019, Kim et al. (2019) extend exist-
ing uniform bounds on KDEs by weakening the conditions onK(·) and making it
adaptive to the so-called intrinsic dimension of the underlying distribution noted
by dvol, and they obtained a result similar to that of Einmahl et al. (2005), given
by

sup
h≥ln

sup
x∈X
|fX;n(x;h)− E(fX;n(x;h))| ≤ C

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

. (1.2.2)

1.2.2 Kernel regression estimator

Several paradigms of non-parametric regression estimation m(x) := E(Y | X =

x) are available, including, the wight estimation, least squares estimation, and
penalized least square estimation or smoothing spline. Weight estimation is de-
clined in several models including the partition estimator, the nearest neighbor
k estimator and the Nadaraya-Watson kernel estimator. The latter, which was
introduced independently by Nadaraya (1964) and Watson (1964), is one of the
most popular non-parametric regression models because it is uniformly best in
terms of integrated mean square error,in the sens that it turns out to be optimal
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in the minimax sense.
Let {Xi, Yi}i≥1 be an Rd × R-valued independent vectors defined on a probabil-
ity space (Ω,A,P), with d ≥ 1, the expression of the classical Nadaraya-Watson
kernel regression function estimator of m(x) is given by

m̂n;hn(x) :=

n∑
i=1

YiK

(
x−Xi

hn

)
n∑
i=1

K

(
x−Xi

hn

) , (1.2.3)

which is in the form of a weighted local average of the Yi values. The conver-
gence of this estimator to m(x), has been studied intensively over the last few
years. We refer, in particular, to Collomb (1981), Bosq (1987),Nadaraya (1964),
Härdle (1990), Györfi et al. (2002), for additional details and references. The con-
sistency of kernel regression estimators when the bandwidth hn varies within
suitably chosen intervals indexed by n, has been established using empirical
process methods, in the series of papers, Einmahl and Mason (2000), Deheuvels
and Mason (2004), Einmahl et al. (2005), Dony et al. (2009), Maillot and Viallon
(2009), Mason and Swanepoel (2011), Mason (2012), Giné et al. (2013), Bouzebda
and Elhattab (2011), Bouzebda (2012), Bouzebda et al. (2018) and Bouzebda and
Nemouchi (2020).

1.3 Volume dimension

If X takes values in a high-dimensional space (i.e., if d is large), it is particularly
difficult to estimate the regression function. The reason for this is that in the case
of large d it is, in general, not possible to densely pack the space of X with finitely
many sample points, even if the sample size n is very large.
Density and regression estimation on manifolds has received much less attention
than the “fulldimensional” counterpart.
In this section, we have to know the intrinsic dimension dM , such a notion has
been studied in the statistical machine learning literature, so as to establish fast
estimation rates in high-dimensional kernel regression settings.
We first introduce a concept proposed by Kim et al. (2018, 2019), the so called
volume dimension, to characterize the intrinsic dimension of the underlying dis-
tribution. To be more specific, the volume dimension dvol is the rate of decay of
the probability of vanishing Euclidean balls.
Let ‖ · ‖ be the Euclidean 2-norm. For x ∈ Rd and r > 0, we use the notation
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BRd(x, r) for the open Euclidean ball centered at x and radius r, i.e.,

BRd(x, r) =
{
y ∈ Rd : ‖y − x‖ < r

}
.

When a probability distribution P has a bounded density fX(·) with respect to
a well-behaved manifold M of dimension dM , it is known that, for any point
x ∈M , the measure on the ball BRd(x, r) centered at x and radius r decays as

P (BRd(x, r)) ∼ rdM ,

when r is small enough. From this, Kim et al. (2018) define the volume dimension
of a probability distribution P to be the maximum possible exponent rate that can
dominate the probability volume decay on balls, i.e., fix a subset X ⊂ Rd, then

dvol(P) := sup

{
ν ≥ 0 : lim sup

r→0
sup
x∈X

P(BRd(x, r))

rν
<∞

}
. (1.3.1)

Now, we establish some notation that are used throughout the manuscript. For
more detailed definitions, see (Kim et al. (2018), Appendix A). The Hausdorff
measure is a generalization of the Lebesgue measure to lower dimensional sub-
sets of Rd. For ν ∈ {1, . . . , d}, let λν be a normalized ν-dimensional Hausdorff
measure on Rd satisfying that its measure on any ν-dimensional unit cube is 1.
We use the notation

ων := λν(BRν (0, 1)) =
π
ν
2

Γ
(ν

2
+ 1
) ,

for the volume of the unit ball in Rν for ν = 1, . . . , d. First introduced by (Fed-
erer, 1959), the reach has been the minimal regularity assumption in the geomet-
ric measure theory. A manifold with positive reach means that the projection to
the manifold is well defined in a small neighborhood of the manifold. The vol-
ume dimension is a natural generalization of the dimension of a manifold. If a
probability distribution has a positive measure on a manifold with positive reach
satisfying

P(M ∩ X) > 0,

then 0 ≤ dvol ≤ dM and in particular, the volume dimension of any probability
distribution is between 0 and the ambient dimension d.

Remark 1.3.0.1 The name “volume dimension” suggests that the volume dimension of
a probability distribution has a connection with the dimension of the support. The two
dimensions are indeed equal when the support is a manifold with positive reach and the
probability distribution has a bounded density with respect to the uniform measure on
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the manifold (e.g., the Hausdorff measure). In particular when the probability distri-
bution has a bounded density with respect to the d-dimensional Lebesgue measure, the
volume dimension equals the ambient dimension d. But, if the probability distribution
P has an unbounded density, the volume dimension is strictly smaller than the dimen-
sion of the support which illustrates why the dimension of the support is not enough to
characterize the dimensionality of a distribution, (for more details see Proposition 3 in
Kim et al. (2018)). we give an example from Kim et al. (2018) of an unbounded den-
sity. In this case, the volume dimension is strictly smaller than the dimension of the
support which illustrates why the dimension of the support is not enough to characterize
the dimensionality of a distribution.

Example 1.3.0.2 (Kim et al. (2018)) Let P be a distribution on Rd having a density p
with respect to the d-dimensional Lebesgue measure. Fix β < d, and suppose p : Rd → R
is defined as

p(x) =
(d− β)Γ

(
d
2

)
2π

d
2

‖x‖−β2 1(‖x‖2 ≤ 1).

Then, for each fixed r > 0,

sup
x∈Rd

P(BRd(x, r)) = P(BRd(0, r)) = rd−β.

Hence from definition in 1.3.1, the volume dimension is

dvol(P) = d− β.



Chapter 2

Uniform in bandwidth consistency
results for general kernel-type
estimators

Introduction

In this chapter, we establish a general theorems (Theorem 2.3.0.1 and Theorem
2.4.0.1) of the consistency of kernel type estimators. To obtain these theorems,
we will make use of properties, suitably selected, of the multivariate empirical
process, indexed by classes of functions, which will serve as a working basis.
This process is defined in (2.0.1) below. Set, for x ∈ I and any h > ln

Wn;h(x; Ψ) =
n∑
j=1

(cΨ(x)Ψ(Yj) + dΨ(x))K

(
x−Xj

h

)
−nE

{
(cΨ(x)Ψ(Y) + dΨ(x))K

(
x−X

h

)}
(2.0.1)

where h > 0 is a bandwidth parameter, Ψ ∈ Fq, ln is a positive sequence ap-
proaching 0 and cΨ(·) and dΨ(·) are continuous functions on a compact set I ⊂ X.

In view of (2.0.1), the introduction of the process Wn;h(x; Ψ) provides a suit-
able and general set-up to study various types of kernel estimators (e.g. the den-
sity and regression functions, the conditional distribution, multivariate mode
and Shannon’s entropy) discussed in Chapter 3, for related details the reader
is referred to Einmahl and Mason (2000), Deheuvels and Mason (2004), Einmahl
et al. (2005), Bouzebda and Elhattab (2009, 2011), Bouzebda (2012), Bouzebda and
Nemouchi (2020).
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In order to present the main results, we start by presenting the hypotheses in
Section 2.1. We give some notation used in this manuscript and we provide also
the hypotheses on the class of functions and the kernel functions. We follow Kim
et al. (2018) for weakening the conditions on the kernel functions (integrability
conditions on the kernel, see Assumption 3). In Section 2.3, we establish the con-
sistency of the estimator Wn;h(x; Ψ) when the class of functions Fq is bounded.
In Section 2.4, we treat the unbounded case, where the envelope functions satisfy
some moment conditions.

2.1 Notation and assumptions

Let (X1,Y1), (X2,Y2), . . . , be a sequence of independent and identically dis-
tributed Rd × Rq-valued random variables with d, q ≥ 1. Let PX = P be an
unknown marginal Borel probability distribution in Rd.
For a specified measurable function Ψ, we consider the regression function of
Ψ(Y) evaluated in X = x, for x ∈ X = supp(P) and Ψ ∈ Fq,

mΨ(x) = E(Ψ(Y) | X = x),

where Fq is a class of measurable functions defined on Rq with a measurable
envelope function F that is,

F (y) ≥ sup
Ψ∈Fq

| Ψ(y) |, y ∈ Rq, (F.i)

which fulfills the following assumptions. We will work under assumption (F.ii)
and (F.iii) below.
First, to avoid measurability problems, we assume that

Fq is pointwise measurable. (F.ii)

That is, there exists a countable subclass F0 of Fq such that we can find, for any
function g ∈ Fq, a sequence of functions gm ∈ F0 for which

gm(z)→ g(z), z ∈ Rq.

This condition is discussed in (Van Der Vaart and Wellner, 1996, Example 2.3.4.
p 110) and (Kosorok, 2008, §8.2. p. 110).
We assume that Fq is of VC-type, with characteristicsA1 and ν1 (“VC” for Vapnik
and Červonenkis), meaning that for some A1 ≥ 3 and ν1 ≥ 1,

N (Fq, L2(Q), ε) ≤
(
A1‖F‖L2(Q)

ε

)ν1

, for 0 < ε ≤ 2‖F‖L2(Q), (F.iii)
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where Q is any probability measure on (Rq,B), where B represents the σ-field of
Borel sets of Rq, such that 0 < ‖F‖L2(Q) <∞, and where for ε > 0,N (Fq, L2(Q), ε)

is defined as the smallest number of L2(Q)-open balls of radius ε required to
cover Fq.
If (F.iii) holds for Fq, then we say that the VC-type class Fq admits the charac-
teristics A1 and ν1. For instance, see (Pollard, 1984, Examples 26 and 38), (Nolan
and Pollard, 1987, Lemma 22), (Dudley, 2014, §4.7.), (Van Der Vaart and Well-
ner, 1996, Theorem 2.6.7), (Kosorok, 2008, §9.1) provide a number of sufficient
conditions under which (F.i) holds, we may refer also to (Deheuvels, 2011, §3.2)
for further discussions. For instance, it is satisfied, for general d ≥ 1, whenever
g(x) = φ(τ(x)), with τ(x) being a polynomial in d variables and φ(·) being a
real-valued function of bounded variation, we refer the reader to (Einmahl et al.,
2005, p. 1381). Notice that condition (F.ii) implies that the supremum in (F.i) is
measurable.
Under (F.ii), (F.iii) the regression function mΨ(x) is defined as

mΨ(x) =
1

fX(x)

∫
Rq

Ψ(y)fX,Y(x,y)dy =
rΨ(x)

fX(x)
,

where
rΨ(x) =

∫
Rq

Ψ(y)fX,Y(x,y)dy.

The conditional variance σ2
Ψ(x) of Ψ(Y) given that X = x ∈ X, is defined to be

σ2
Ψ(x) = Var(Ψ(Y) | X = x) =

1

fX(x)

∫
Rq
{Ψ(y)−mΨ(x)}2fX,Y(x,y)dy.

We fix a subset X ⊂ Rd on wich we are considering the uniform convergence
of the kernel regression estimator. We first characterize the intrinsic dimension
of the distribution P, proposed by Kim et al. (2018), by its rate of the probability
volume growth on balls. According to the remark given in the first chapter, that
is, if a probability distribution has a positive measure on a manifold with positive
reach, then the volume dimension is always between 0 and the dimension of the
manifold. In particular, the volume dimension of any probability distribution is
between 0 and the ambient dimension d.

Lemma 2.1.0.1 (Kim et al. (2018)) Let P be a probability distribution on Rd, and dvol

be its volume dimension. Then for any ν ∈ [0, dvol), there exists a constant Cν,P depend-
ing only on P and ν such that for all x ∈ X and r > 0,

P(BRd(x, r))

rν
≤ Cν,P. (2.1.1)

For the exact optimal rate, we impose conditions on how the probability volume
decay in (2.1.1).
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Assumption 1 Let P be a probability distribution on Rd, and dvol be its volume dimen-
sion. We assume that

lim sup
r→0

sup
x∈X

P(BRd(x, r))

rν
<∞. (2.1.2)

Assumption 2 Let P be a probability distribution on Rd, and dvol be its volume dimen-
sion. We assume that

sup
x∈X

lim inf
r→0

P(BRd(x, r))

rν
> 0. (2.1.3)

These assumptions are in fact weak and hold for common probability distribu-
tions. In particular, Assumptions 1 and 2 hold when the probability distribution
has a bounded density with respect to the d-dimensional Lebesgue measure.
Let K(·) be a kernel function defined on Rd, that is a measurable function such
that

(K.1) ∫
Rd
K(x)dx = 1.

From the Nadaraya-Watson Kernel estimator, we consider the kernel estimators
of fX(x), rΨ(x), mΨ(x), given respectively, for a bandwidth h > 0, by

fX;n(x;h) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
, (2.1.4)

rΨ;n(x;h) =
1

nhd

n∑
i=1

Ψ(Yi)K

(
x−Xi

h

)
, (2.1.5)

mΨ;n(x;h) =



rΨ;n(x;h)

fX;n(x;h)
=

n∑
i=1

Ψ(Yi)K

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) , for fX;n(x;h) 6= 0,

1

n

n∑
i=1

Ψ(Yi), for fX;n(x;h) = 0.

(2.1.6)
In this section, we follow Kim et al. (2018) for weakening the conditions on the
kernel and making it adaptive to the intrinsic dimension of the underlying distri-
bution and without assumptions on the distribution. It is worth noticing that for
general distributions (such as the ones supporte don a lower-dimensional man-
ifold), the usual change of variables argument is no longer directly applicable.
However, we can provide a bound based on the volume dimension under an
integrability condition on the kernel, given bellow.
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Assumption 3 Let K : Rd → R be a kernel function with ‖K‖∞ <∞, and fix k > 0.
We impose an integrability condition: either dvol = 0 or∫ ∞

0

tdvol−1 sup
‖x‖≥t

|K|k(x)dt <∞. (2.1.7)

Assumption 4 Let K : Rd → R be a pointwise measurable kernel function with
‖K‖2 <∞. We assume that

K :=

{
(x, h) 7→ K

(
x− ·
h

)
: x ∈ X, h ≥ ln

}
is a uniformly bounded VC-class with dimension ν2, i.e., there exists positive number
A2 ≥ 1 and ν2 ≥ 1 such that, for every probability measure Q on Rd and for every
ε ∈ (0, ‖K‖∞), the covering numbers N (K, L2(Q), ε) satisfies

N (K, L2(Q), ε) ≤
(
A2‖K‖∞

ε

)ν2

.

By combining Assumption 3 and Lemma 2.1.0.1, we can bound EP [K2] in terms of the
volume dimension dvol.

Lemma 2.1.0.2 Let (Rd,P) be a probability space and let X ∼ P. For any kernel K(·)
satisfying Assumption 3 with k > 0, the expectation of the k-moment of the kernel is
upper bounded as

EP

[∣∣∣∣K (x−X

h

)∣∣∣∣k
]
≤ Ck,P,K,εh

dvol−ε (2.1.8)

for any ε ∈ (0, dvol), where Ck,P,K,ε is a constant depending only on k,P, K and ε.
Further, if dvol = 0 or under Assumption 1, ε can be 0 in (2.1.8).

Remark 2.1.0.3 (Kim et al. (2018)) It is important to emphasize that Assumption 3 is
weak, as it is satisfied by commonly used kernels. For instance, if the kernel function
K(x) decays at a polynomial rate strictly faster than dvol/k (which is at most d/k) as
x→∞, that is, if

lim sup
x→∞

‖x‖dvol/k+εK(x) <∞

for any ε > 0, the integrability condition (2.1.7) is satisfied. Also, if the kernel function
K(x) is spherically symmetric, that is, if there exists K̃ : [0,∞) → R with K(x) =

K̃(‖x‖2), then the integrability condition (2.1.7) is satisfied provided ‖K‖k < ∞. Ker-
nels with bounded support also satisfy the condition (2.1.7). Thus, most of the commonly
used kernels including Uniform, Epanechnikov, and Gaussian kernels satisfy the above
integrability condition.



Chapter 2. Uniform in bandwidth consistency results for general kernel-type estimators 30

2.2 The generalized empirical process

Compared to the univariate case, where the observations take their values in R,
the study of empirical processes becomes more delicate in Rd, d ≥ 1. The general
theoretical framework allowing the study of i.i.d. random variables with values
in a more general measurable space than R (such as, for example, Rd) is based on
the notion of generalized empirical process.
In this chapter, we establish a general theorems which, under weaker conditions
on the kernel, will yield as special cases (given in chapter 3) the consistency of
kernel-type estimators for density, regression, the conditional distribution, multi-
variate mode and Shannon’s entrpoy and we will work in high- dimensional data
sets particularly when the data generating distribution is supported on mani-
folds.
Recalling the definition of general empirical process

Wn;h(x; Ψ) =
n∑
j=1

(cΨ(x)Ψ(Yj) + dΨ(x))K

(
x−Xj

h

)
−nE

{
(cΨ(x)Ψ(Y) + dΨ(x))K

(
x−X

h

)}
.

For the future use, introduce the classes of continuous functions on a compact
J = Iη, for some 0 < η < 1, indexed by Fq

FC = {cΨ(x) : Ψ ∈ Fq}, FD = {dΨ(x) : Ψ ∈ Fq}.

We shall always assume that the classes FC and FD are relatively compact with
respect to the sup-norm topology on J = Iη, which by the Arzela-Ascoli theorem
is equivalent to these classes being uniformly bounded and uniformly equicon-
tinuous on J. Let

CFq := sup{‖cΨ‖J : Ψ ∈ Fq} and DFq := sup{‖dΨ‖J : Ψ ∈ Fq}. (2.2.1)

We can now state, in theorems 2.3.0.1 and 2.4.0.1 below, a technical result, which
will be particularly useful in proving the other results of chapter 3.

2.3 Theorem in bounded case

To establish consistency of kernel-type estimators when the class of functions
is bounded, we combine Talagrand’s inequality (see appendix) and a VC type
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bound, following the approach of Sriperumbudur and Steinwart (2012). We ap-
ply Talagrand’s inequality due to Bousquet (2002) and simplified in Steinwart
and Christmann (2008).

Theorem 2.3.0.1 Let P be a probability distribution and let K(·) be a kernel function
satisfying Assumption 3 and 4. Assume that Fq satisfy the above conditions and the
classes of continuous functions FC and FD are as above, that is, relatively compact with
respect to the sup-norm topology. Also assume that the envelope function F of the class
Fq satisfies

∃M > 0, F (Y)1{x ∈ J} ≤M, a.s. (H.i)

Then, for any δ > 0, we have with probability at least 1− δ,

sup
h≥ln

sup
x∈I

sup
Ψ∈Fq

1

nhd
|Wn,h(x,Ψ)|

≤ C1

(log (1/ln))+

nldn
+

√
(log (1/ln))+

nl2d−dvol+ε
n

+

√
log (2/δ)

nl2d−dvol+ε
n

+
log (2/δ)

nldn

(2.3.1)

for any ε ∈ (0, dvol), where C1 is a constant depending only on A, ‖ϑ‖∞, d, ν1, ν2, dvol,
Ck=2,CFq ,P,K,ε, ε.
Further, if dvol = 0 or under Assumption 1, ε can be 0 in (2.3.1).

When δ is fixed and ln < 1, the dominating terms in (2.3.1) are log(1/ln)
nldn

and√
(log(1/ln))

nl
2d−dvol
n

. If ln does not vanish too rapidly, then the second term dominates

the upper bound in (2.3.1) as in the following result that has been proven in Kim
et al. (2018) for a density, where it is stated as Corrolary 13.

Corollary 2.3.0.2 Let P be a probability distribution and let K(·) be a kernel function
satisfying Assumption 3 and 4. Fix ε ∈ (0, dvol). Further, if dvol = 0 or under Assump-
tion 1, ε can be 0. Suppose

lim sup
n

(
log

(
1

ln

))
+

+ log

(
2

δ

)
nldvol−ε
n

<∞,

Then with probability at least 1− δ

sup
h≥ln

sup
x∈I

sup
Ψ∈Fq

1

nhd
|Wn,h(x,Ψ)| ≤ C2

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

, (2.3.2)

where C2 is a constant depending only on A, ‖ϑ‖∞, d, ν1, ν2, dvol, Ck=2,CFq ,P,K,ε, ε.
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Proof of Theorem 2.3.0.1

We first note that under the Assumptions 3 and 4, and making use of Theorem
12 in Kim et al. (2018), we have with probability at least 1− δ

sup
h≥ln

sup
x∈X

dΨ(x)

nhd

∣∣∣∣∣
n∑
i=1

K

(
x−Xi

h

)
− nEK

(
x−X

h

)∣∣∣∣∣
≤ DFq sup

h≥ln
sup
x∈X

1

nhd

∣∣∣∣∣
n∑
i=1

K

(
x−Xi

h

)
− nEK

(
x−X

h

)∣∣∣∣∣
≤ A

(log (1/ln))+

nldn
+

√
(log (1/ln))+

nl2d−dvol+ε
n

+

√
log (2/δ)

nl2d−dvol+ε
n

+
log (2/δ)

nldn

)
, (2.3.3)

where ε ∈ (0, dvol) and A is a constant depending only on CFq ,A2, ‖K‖∞, d, ν2,
dvol, Ck=2,P,K,ε, ε.
Consider the following class of functions,

G := {ϑΨ,h,x(·, ·) : x ∈ X, h ≥ ln,Ψ ∈ Fq},

where, for x ∈ I ⊂ X, Ψ ∈ Fq and h ≥ ln, ϑΨ,h,x(z,y) : Rd × Rq → R

ϑΨ,h,x(z,y) = cΨ(x)Ψ(y)K

(
x− z

h

)
. (2.3.4)

And we set

η̃Ψ,h,x :=
1

nhd

n∑
i=1

cΨ(x)Ψ(Yi)K

(
x−Xi

h

)
=

1

nhd

n∑
i=1

ϑΨ,h,x(Xi,Yi).

Let us introduce

G̃ :=

{
1

hd
cΨ(x)Ψ(Y)K

(
x−X

h

)
: x ∈ I, h ≥ ln,Ψ ∈ Fq

}
,

a class of normalized functions. Notice that we have

η̃Ψ,h,x − Eη̃Ψ,h,x =
1

nhd

n∑
i=1

cΨ(x)Ψ(Yi)K

(
x−Xi

h

)
− E

(
1

hd
cΨ(x)Ψ(Y)K

(
x−X

h

))
=

1

n

n∑
i=1

1

hd
ϑΨ,h,x(Xi,Yi)− E

(
1

hd
ϑΨ,h,x(X,Y)

)
. (2.3.5)

It clearly suffices to show the following proposition.
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Proposition 2.3.0.3 Under the assumptions of Theorem 2.3.0.1 and for all A′ > 0, we
have with probability at least 1− δ,

sup
h≥ln

sup
x∈I

sup
Ψ∈Fq

|η̃Ψ,h,x − Eη̃Ψ,h,x|

≤ A′


(

log

(
1

ln

))
+

nldn
+

√√√√√
(

log

(
1

ln

))
+

nl2d−dvol+ε
n

+

√√√√√ log

(
2

δ

)
nl2d−dvol+ε
n

+
log
(

2
δ

)
nldn

 ,(2.3.6)

for any ε ∈ (0, dvol), where the positive constant A′ depends only on A1, A2, ‖ϑ‖∞ , d,
ν1, ν2, dvol, Ck=2,CFq ,P,K,ε, ε.

Proof of Proposition 2.3.0.3

Notice that for g ∈ G, sup
x∈I
|η̃Ψ,h,x − Eη̃Ψ,h,x| can be written as follows

sup
x∈I
|η̃Ψ,h,x − Eη̃Ψ,h,x| = sup

g∈G̃

∣∣∣∣∣ 1n
n∑
i=1

g(Xi,Yi)− E (g(X,Y))

∣∣∣∣∣ . (2.3.7)

Now, it is immediate to check that

‖g‖∞ ≤ l−dn ‖ϑΨ,h,x‖∞ ≤ l−dn CFqM ‖K‖∞ . (2.3.8)

In order to bound the VC dimension of G̃, we consider

G̃ := {ϑΨ,h,x : x ∈ I, h ≥ ln,Ψ ∈ Fq} ,

be a class of unnormalized functions. Fix η < l−dn ‖ϑΨ,h,x‖∞ and a probability
measure Q on Rd. Suppose [

ln,

(
η

2 ‖ϑΨ,h,x‖∞

)−1/d
]

is covered by balls{(
hi −

ηld+1
n

3d ‖ϑΨ,h,x‖∞
, hi +

ηld+1
n

3d ‖ϑΨ,h,x‖∞

)
, 1 ≤ i ≤ N1

}
,

and (G,L2(Q)) is covered by{
BL2(Q)

(
Kj,

ldnη

3CFqM

)
∪ BL2(Q) (Ψk, ε̃) , 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

}
,
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where

ε̃ ≤ ldnη

3CFq ‖K‖∞
.

For 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and 1 ≤ k ≤ N3, we let

gi,j,k =
1

hdi
gj,k =

1

hdi
cΨ(x)Ψk(Y)Kj

(
x−X

h

)
.

Also, choose h0 >

(
η

2‖ϑΨ,h,x‖∞

)−1/d

,x0 ∈ I,Ψ0 ∈ Fq and let

g0 =
1

h0

ϑΨ0,h0,x0 .

We will show that{
BL2(Q) (gi,j,k, η) : 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and 1 ≤ k ≤ N3

}
∪
{
BL2(Q) (g0, η)

}
(2.3.9)

covers G̃.

For the first case when h ≤
(

η

2‖ϑΨ,h,x‖∞

)−1/d

, find hi, Kj and Ψk with

h ∈
(
hi −

ηld+1
n

3d ‖ϑΨ,h,x‖∞
, hi +

ηld+1
n

3d ‖ϑΨ,h,x‖∞

)
,

Ψ ∈ BL2(Q) (Ψk, ε̃) ,

K ∈ BL2(Q)

(
Kj,

ldnη

3CFqM

)
.

Then the distance between 1
hd
ϑΨ,h,x and 1

hdi
gi,k is upper bounded as follows∥∥∥∥ 1

hd
ϑΨ,h,x(X,Y)− 1

hdi
gi,k(X,Y)

∥∥∥∥
L2(Q)

=

∥∥∥∥ 1

hd
cΨ(x)Ψ(Y)K

(
x−X

h

)
− 1

hdi
gi,k(X,Y)

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd
cΨ(x)Ψ(Y)K

(
x−X

h

)
− 1

hdi
cΨ(x)Ψ(Y)K

(
x−X

h

)∥∥∥∥
L2(Q)

+

∥∥∥∥ 1

hdi
cΨ(x)Ψ(Y)K

(
x−X

h

)
− 1

hdi
gi,k(X,Y)

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd
ϑΨ,h,x −

1

hdi
ϑΨ,h,x

∥∥∥∥
L2(Q)

+

∥∥∥∥ 1

hdi
ϑΨ,h,x −

1

hdi
cΨ(x)Ψ(Y)Kj

(
x−X

h

)∥∥∥∥
L2(Q)

+

∥∥∥∥ 1

hdi
cΨ(x)Ψ(Y)Kj

(
x−X

h

)
− 1

hdi
cΨ(x)Ψk(Y)Kj

(
x−X

h

)∥∥∥∥
L2(Q)

.(2.3.10)

Now the first term of (3.6.3) is upper bounded as∥∥∥∥ 1

hd
ϑΨ,h,x −

1

hdi
ϑΨ,h,x

∥∥∥∥
L2(Q)

= | 1

hd
− 1

hdi
| ‖ϑΨ,h,x‖L2(Q)
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= |hi − h|
d−1∑
k=0

hk−di h−1−k ‖ϑΨ,h,x‖L2(Q)

≤ |hi − h|dl−d−1
n ‖ϑΨ,h,x‖∞ <

η

3
. (2.3.11)

Also, the second term of (3.6.3) is upper bounded as∥∥∥∥ 1

hdi
ϑΨ,h,x −

1

hdi
cΨ(x)Ψ(Y)Kj

(
x−X

h

)∥∥∥∥
L2(Q)

≤ 1

hdi
CFqM

∥∥∥∥K (x−X

h

)
−Kj

(
x−X

h

)∥∥∥∥
L2(Q)

<
η

3
. (2.3.12)

And the last term of (3.6.3) is upper bounded as∥∥∥∥ 1

hdi
cΨ(x)Ψ(Y)Kj

(
x−X

h

)
− 1

hdi
cΨ(x)Ψk(Y)Kj

(
x−X

h

)∥∥∥∥
L2(Q)

≤ l−dn CFq‖K‖∞ ‖Ψ(Y)−Ψk(Y)‖L2(Q)

< l−dn CFq‖K‖∞ε̃ ≤
η

3
. (2.3.13)

Combining (3.6.4), (3.6.6) and (3.6.7) to (3.6.3), we arrive at the following
bound ∥∥∥∥ 1

hd
ϑΨ,h,x(X,Y)− 1

hdi
gi,k(X,Y)

∥∥∥∥
L2(Q)

< η.

For the second case when h >
(

η

2‖ϑΨ,h,x‖∞

)−1/d

, we have

∥∥∥∥ 1

hd
ϑΨ,h,x

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd
ϑΨ,h,x

∥∥∥∥
∞
<
η

2
,

holds, and hence∥∥∥∥ 1

hd
ϑΨ,h,x − g0

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd
ϑΨ,h,x

∥∥∥∥
L2(Q)

+ ‖g0‖L2(Q) < η.

Therefore (2.3.9) is shown. Hence combined with (F.iii), (2.2.1) and Assump-
tion 4 and due to Lemma 9.9, p.160 of Kosorok (2008), gives that every probabil-
ity measure Q on Rd and for every η ∈

(
0, h−d ‖ϑΨ,h,x‖∞

)
, the covering number

N (G̃, L2(Q), η) is upper bounded as

sup
Q
N (G̃, L2(Q), η)

≤ N

([
ln,

(
η

2 ‖ϑΨ,h,x‖∞

)−1/d
]
, | · |, ηld+1

n

3d ‖ϑΨ,h,x‖∞

)
sup
Q
N
(
cΨ(x)Fq, L2(Q), CFq ε̃

)
sup
Q
N
(
K, L2(Q),

ldnη

3CFqM

)
+ 1
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≤
3d ‖ϑΨ,h,x‖∞

ηld+1
n

(
2 ‖ϑΨ,h,x‖∞

η

)1/d(
3A1M‖K‖∞

ldnη

)2ν1−1(3A2CFqM ‖K‖∞
ldnη

)ν2

+ 1

≤
(

3Ad ‖ϑΨ,h,x‖∞
ldnη

)2ν1+ν2−1
[(

3d2−2ν1−ν2 ‖ϑΨ,h,x‖∞
ηld+1
n

)(
2 ‖ϑΨ,h,x‖∞

η

)1/d

+

(
3Ad ‖ϑΨ,h,x‖∞

ldnη

)−2ν1−ν2+1
]

≤
(

3Ad ‖ϑΨ,h,x‖∞
ldnη

)2ν1+ν2−1

, (2.3.14)

for some finite constant 0 < A <∞. For p > 2, note that assumption (H.i) implies
that

sup
x∈I

E(F p(Y) | X = x) < Mp <∞.

From Lemma 2.1.0.2 and using a conditioning argument, we observe that, for
p ≥ k

E
∣∣∣∣cΨ(x)kΨk(Y)Kk

(
x−X

h

)∣∣∣∣ ≤ Ck
FqE

∣∣∣∣Ψk(Y)Kk

(
x−X

h

)∣∣∣∣
≤ Ck

FqE
∣∣∣∣Kk

(
x−X

h

)
E
(
Ψk(Y) | X = x

)∣∣∣∣ ,
where

E(Ψk(Y) | X = x) ≤ sup
x∈J

E(F k(Y) | X = x).

Then, for k = 2, we have

E
∣∣∣∣ 1

hd
cΨ(x)2Ψ2(Y)K2

(
x−X

h

)∣∣∣∣ ≤ MpC2
Fq

∣∣∣∣E 1

hd
K2

(
x−X

h

)∣∣∣∣
≤ MpC2

k=2,CFq ,P,K,εl
−2d+dvol−ε
n . (2.3.15)

Now from (2.3.8), (2.3.14), and (2.3.15), applying Theorem A.1.0.1 to (2.3.7) gives
that ‖η̃Ψ,h,x − Eη̃Ψ,h,x‖∞ is upper bounded with probability at least 1− δ as

sup
h≥ln

sup
x∈I

sup
Ψ∈Fq

|η̃Ψ,h,x − Eη̃Ψ,h,x|

≤ C


2(2ν1 + ν2 − 1) ‖ϑ‖∞ log

(
2Ad ‖ϑ‖∞

M
p
2Ck=2,CFq ,P,K,εl

(dvol−ε)/2
n

)
nldn

+

√√√√√√2(2ν1 + ν2 − 1)C2
k=2,CFq ,P,K,ε log

(
2Ad ‖ϑ‖∞

M
p
2Ck=2,CFq ,P,K,εl

(dvol−ε)/2
n

)
nl2d−dvol+ε
n
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+

√
C2
k=2,CFq ,P,K,ε

log
(

1
δ

)
nl2d−dvol+ε
n

+
‖ϑ‖∞ log

(
1
δ

)
nldn


≤ CA,‖ϑ‖∞,d,ν1,ν2,dvol,Ck=2,CFq ,P,K,ε

,ε

×


(

log

(
1

ln

))
+

nldn
+

√√√√√
(

log

(
1

ln

))
+

nl2d−dvol+ε
n

+

√√√√√ log

(
2

δ

)
nl2d−dvol+ε
n

+
log
(

2
δ

)
nldn

 .

Theorem 2.3.0.1 now follows from (2.3.3) and Proposition 2.3.0.3. 2

2.4 Theorem in unbounded case

In this section, we will treat the unbounded case, where (H.i) is replaced by (H.ii).
Our proofs are based on an extension of the methods developed in Einmahl et al.
(2005). We will use the same idea with suitable modifications, from the proof of
Theorem 02 of Einmahl et al. (2005), namely, combining an exponential inequality
of Talagrand with a suitable moment inequality.

To prove Theorem 2.3.0.1 in this case,we assume, for some p > 2, that

sup
x∈J

E(F p(Y) | X = x) <∞.

Theorem 2.4.0.1 Assume that Fq and K satisfies the above conditions, and the kernel
K(·) satisfying assumption 3. Further assume that the classes of continuous functions
FC and FD are as above, that is, relatively compact with respect to the sup-norm topol-
ogy. Assume that Fq satisfy the above conditions and further assume that the envelope
function F of the class Fq satisfies for some p > 2

βP(F ) := sup
x∈J

E(F p(Y) | X = x) <∞. (H.ii)

Then we have for any c > 0 and 0 < h0 < (2η)dvol−ε, with probability 1,

lim sup
n→∞

sup
c(logn/n)γ≤h≤h0

sup
x∈I

sup
Ψ∈Fq

1

nhd
|Wn,h(x,Ψ)| =: K(c)

√
(log(1/h) ∨ log log n)

nh2d−dvol+ε
,

(2.4.1)

for any ε ∈ (0, dvol), and γ = 1− 2/p.
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Remark 2.4.0.2 Note that the condition (H.ii) may be replaced by more general hypothe-
ses upon moments of Y as in Deheuvels (2011). That is

(M.1)′′ We denote by {M(x) : x ≥ 0} a nonnegative continuous function, increasing
on [0,∞), and such that, for some s > 2, ultimately as x ↑ ∞,

(i) x−sM(x) ↓; (ii) x−1M(x) ↑ . (2.4.2)

For each t ≥ M(0), we define Minv(t) ≥ 0 by M(Minv(t)) = t. We assume
further that:

E (M (|F (Y)|)) <∞.

The introduction of the function Ψ(·) in our setting is motivated by Remark 1.2 of De-
heuvels and Mason (2004) or Remark 1.1 of Deheuvels (2011).

Proof of Theorem 2.4.0.1 :

We shall prove Theorem 2.4.0.1 under assumption (H.ii). We first note that

lim sup
n→∞

sup
c(logn/n)γ≤h≤h0

sup
x∈I

sup
Ψ∈Fq

√
nh2d−dvol+ε

∣∣∣∣∑n
i=1 dΨ(x)

{
K

(
x−Xi

h

)
− EK

(
x−Xi

h

)}∣∣∣∣
nhd
√

(log(1/h) ∨ log log n)

(2.4.3)

≤ DFq lim sup
n→∞

sup
c(logn/n)γ≤h≤h0

sup
x∈I

√
nh2d−dvol+ε

∣∣∣∣∑n
i=1

{
K

(
x−Xi

h

)
− EK

(
x−Xi

h

)}∣∣∣∣
nhd
√

(log(1/h) ∨ log log n)
.

(2.4.4)

In view of Theorem 1 in Einmahl et al. (2005) by an obvious modification of the
proof, it is easy to see that this quantity is finite with probability 1.

Proposition 2.4.0.3 Under the assumptions of Theorem 2.4.0.1, for all c > 0, there
exists a Q0(c) > 0 such that with probability 1,

lim sup
n→∞

sup
c(logn/n)γ≤h≤h0

sup
x∈I

sup
Ψ∈Fq

|η̃Ψ,h,x − Eη̃Ψ,h,x| =: Q0(c)

√
(log(1/h) ∨ log log n)

nh2d−dvol+ε
.

(2.4.5)
where Q0(c) <∞.
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Proof of Proposition 2.4.0.3

For x ∈ I, ak = c
(

lognk
nk

)γ
≤ h ≤ h0 and Ψ ∈ Fq, let

ϑ
(k)
Ψ,h,x(u,v) = cΨ(x)Ψk(v)K

(
x− u

h

)
, (2.4.6)

and

ϑΨ,h,x(u,v) = cΨ(x)Ψ(v)K

(
x− u

h

)
. (2.4.7)

Let αn be the empirical process based on the sample (X1,Y1), . . . , (Xn,Yn), i.e.,
if g : Rd × Rq → R, we have

αn(g) =
n∑
i=1

(g(Xi,Yi)− Eg(X,Y)) /
√
n. (2.4.8)

To prove our uniform in bandwidth results, we shall apply Talagrand (1994) ex-
ponential inequality for the empirical process combined with a moment bound
due to Einmahl et al. (2005). See, respectively, Proposition A.2.0.1 and Talagrand’s
inequality in the Appendix of this manuscript.
Let γ = 1− p/2, Ψ ∈ Fq and nk = 2k, k ≥ 1. Set for j ≥ 0 and c > 0

hj,k = 2jak = 2jc

(
log nk
nk

)γ
and

Ψk(y) = Ψ(y)1{F (y) < (nk/k)1/p}. (2.4.9)

The proof of Proposition 2.4.0.3 will be divided into two parts which are a con-
sequence of two lemmas. We begin with a truncation argument. Set for nk−1 ≤
n ≤ nk, x ∈ I, ak ≤ h ≤ h0 and Ψ ∈ Fq

η̃Ψ,h,n(x) :=
1

nhd

n∑
i=1

cΨ(x)Ψ(Yi)K

(
x−Xi

h

)
:=

1

nhd

n∑
i=1

cΨ(x)Ψk(Yi)K

(
x−Xi

h

)
+

1

nhd

n∑
i=1

cΨ(x)Ψk(Yi)K

(
x−Xi

h

)
=:

1

nhd

n∑
i=1

cΨ(x)Ψ(Yi)1{F (Yi) < (nk/k)1/p}K
(

x−Xi

h

)
+

1

nhd

n∑
i=1

cΨ(x)Ψ(Yi)1{F (Yi) ≥ (nk/k)1/p}K
(

x−Xi

h

)
=: η̃Ψ,h,n,k(x) + η̃Ψ,h,n,k(x).
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Lemma 2.4.0.4 There exists a constant Q1(c) <∞, such that with probability 1,

lim sup
k→∞

max
nk−1≤n≤nk−1

sup
ak≤h≤h0

sup
x∈I

sup
Ψ∈Fq

|η̃Ψ,h,n,k − Eη̃Ψ,h,n,k| =: (2.4.10)

Q1(c)

√
(log(1/h) ∨ log log n)

nh2d−dvol+ε
.

Proof of Lemma 2.4.0.4

Notice that
1

ndd
(η̃Ψ,h,n,k − Eη̃Ψ,h,n,k) =

√
nαn(ϑΨ,h,x,k), (2.4.11)

where αn is the empirical process based on (X1,Y1), . . . , (Xn,Yn) defined by
(2.4.8). For k ≥ 1, let

Gk(h) := {ϑΨ,h,x,k : Ψ ∈ Fq,x ∈ I}.

Remark that we have

max
nk−1≤n≤nk−1

sup
ak≤h≤h0

sup
x∈I

sup
Ψ∈Fq

√
nh2d−dvol+ε |η̃Ψ,h,n,k − Eη̃Ψ,h,n,k|√

(log(1/h) ∨ log log n)

= max
nk−1≤n≤nk−1

sup
ak≤h≤h0

√
nh2d−dvol+ε ‖

√
nαn‖Gk(h)√

(log(1/h) ∨ log log n)
.

Note that for each ϑΨ,h,x,k ∈ Gk(h)

‖ϑΨ,h,x,k‖∞ ≤ ‖K‖∞CFq(nk/k)1/p =: B0(nk/k)1/p. (2.4.12)

By Assumption 3 and from Lemma 2.1.0.2, we get that

E
[
(ϑΨ,h,x,k)

2 (X,Y)
]
≤ E

[
ϑ2

Ψ,h,x(X,Y)
]
≤ C2

Fqβ
2/p
P EK2

(
x−X

h

)
≤ C2

Fqβ
2/p
P CP,K,εh

dvol−ε

=: hdvol−εB1.

Thus
sup

ϑ∈Gk(h)

Eϑ2
Ψ,h,x(X,Y) ≤ hdvol−εB1. (2.4.13)

Recalling that for j, k ≥ 0,

hj,k = 2jak = 2jc

(
log nk
nk

)γ
,

and set

Gj,k(h) := {ϑΨ,h,x,k : Ψ ∈ Fq,x ∈ I and hj,k ≤ h ≤ hj+1,k}.
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Clearly by (2.4.13), for all hj,k ≤ h ≤ hj+1,k

E
[
(ϑΨ,h,x,k)

2 (X,Y)
]
≤ hdvol−εB1 ≤ 2B1h

dvol−ε
j,k =: σ2

j,k.

We shall use Corollary A.2.0.2 in the Appendix to bound

E

∥∥∥∥∥
nk∑
i=1

εiϑ(Xi,Yi)

∥∥∥∥∥
Gj,k

.

Note first that by arguing as in the proof of Lemma 5 of Einmahl and Mason
(2000), each Gj,k ⊂ G, where G is pointwise measurable class of functions with
envelope function

G(x,y) = CFq‖K‖∞F (y),

and satisfies the uniform entropy conditions. Further, we note that each Gj,k
satisfies (i) and (v) of the corollary A.2.0.2 with

β2 = β
2/p
P , σ2 = σ2

j,k and U = B0(nk/k)1/p,

we obtain after a small calculation that for a suitable positive constants B2 and
B3 and for k ≥ 1 j ≥ 0

E

∥∥∥∥∥
nk∑
i=1

εiϑ(Xi,Yi)

∥∥∥∥∥
Gj,k

≤ B3

√
nkh

dvol−ε
j,k log((B2h

dvol−ε
j,k )−1 ∨ C1)

≤ B3aj,k, (2.4.14)

where
aj,k =

√
nkh

dvol−ε
j,k log((B2h

dvol−ε
j,k )−1 ∨ log log nk).

Applying Talagrand’s inequality in the Appendix with

M = B0(nk/k)1/p and σ2 = σ2
j,k ≤ 2B1h

dvol−ε
j,k ,

we get for any t > 0 and large enough k

P
{

max
nk−1≤n≤nk

∥∥√nαn∥∥Gj,k ≥ A1 (B3aj,k + t)

}
≤ 2

{
exp

(
−A2t

2/(2B1nkh
dvol−ε
j,k )

)
+ exp

(
−A2tk

1/p/(B0nk)
1/p
)}

.

Set for any ρ > 1, j ≥ 0 and k ≥ 1,

pj,k(ρ) = P
{

max
nk−1≤n≤nk

∥∥√nαn∥∥Gj,k ≥ A1 (D3 + ρ) aj,k

}
.
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As we have

aj,k/
√
nkh

dvol−ε
j,k ≥

√
log log nk and hj,k ≥ c(log nk/nk)

1−2/p,

we readily obtain for large k and j ≥ 0 that

pj,k(ρ) ≤ 2 exp
(
−(ρ2A2/B1) log log nk

)
+ 2 exp

(
(
√
cρA2/B0)

√
log nk log log nk

)
,

which for γ = A2

B1
∧
√
cA2/B0 implies

pj,k(ρ) ≤ 4 exp(−ργ log log nk).

Let for large enough k
lk = max{j : hj,k ≤ 2h0}.

Then, we have lk ≤ k for all large k and large enough ρ consequently,

Pk(ρ) :=

lk−1∑
j=0

pj,k(ρ) ≤ 4lk(log nk)
−ργ ≤ 1

k2
.

Notice that by definition of lk for large k,

2hlk,k = hlk+1,k ≥ 2h0,

which implies that we have for nk−1 ≤ n ≤ nk,[
c log n

n
, h0

]
⊂
[
c log nk
nk

, hlk,k

]
.

Thus for all large enough k,

Ak(ρ) :=

{
max

nk−1≤n≤nk−1

sup
ak≤h≤h0

sup
x∈I

sup
Ψ∈Fq

√
nh2d−dvol+ε |η̃Ψ,h,n,k − Eη̃Ψ,h,n,k|√

(log(1/hdvol−ε) ∨ log log n
> 2A1(B3 + ρ)

}

⊂
lk−1⋃
j=0

{
max

nk−1≤n≤nk

∥∥√nαn∥∥Gj,k ≥ A1 (B3 + ρ) aj,k

}
.

It follows for large enough ρ that

P (Ak(ρ)) ≤ Pk(ρ) ≤ 1

k2
,

wich by Borel-Cantelli lemma implies Lemma 2.4.0.4. 2

Lemma 2.4.0.5 With probability 1,

lim
k→∞

max
nk−1≤n≤nk−1

sup
ak≤h≤h0

sup
x∈I

sup
Ψ∈Fq

√
nh2d−dvol+ε

∣∣η̃Ψ,h,n,k − Eη̃Ψ,h,n,k

∣∣√
(log(1/h) ∨ log log n)

= 0. (2.4.15)
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Proof of Lemma 2.4.0.5

First, note that for any h ≤ h0, Ψ ∈ Fq and nk−1 ≤ n ≤ nk

sup
x∈I

∣∣nhdEη̃Ψ,h,n,k

∣∣ ≤ ‖K‖∞CFqnkE [F (Y)1{X ∈ J, F (Y ≥ (nk/k)1/p}
]
.

We further have by (H.ii),

EF p(Y)1{X ∈ J} ≤ ∞,

and we see that uniformly in nk−1 ≤ n ≤ nk, h ≤ h0 and Ψ ∈ Fq,

sup
x∈I

∣∣nhdEη̃Ψ,h,n,k

∣∣ = o(n
1/p
k k1−1/p) = o

(√
nka

dvol−ε
k log(1/advol−ε

k )

)
as k →∞, where

ak = c(log nk/nk)
1−2/p.

By the monotonicity of the function h → hdvol−ε log(1/hdvol−ε), h ≤ 1/ exp, we
readily obtain that

lim
k→∞

max
nk−1≤n≤nk−1

sup
ak≤h≤h0

sup
x∈I

sup
Ψ∈Fq

√
nh2d−dvol+ε

∣∣Eη̃Ψ,h,n,k

∣∣√
(log(1/hdvol−ε) ∨ log log n)

= 0. (2.4.16)

It remains to establish that, with probability 1,

lim
k→∞

max
nk−1≤n≤nk−1

sup
ak≤h≤h0

sup
x∈I

sup
Ψ∈Fq

√
nh2d−dvol+ε

∣∣η̃Ψ,h,n,k

∣∣√
(log(1/hdvol−ε) ∨ log log n

= 0. (2.4.17)

Observe that we have

max
nk−1≤n≤nk−1

sup
ak≤h≤h0

sup
x∈I

sup
Ψ∈Fq

nhd
∣∣η̃Ψ,h,n,k

∣∣
≤ ‖K‖∞CFq

nk∑
i=1

F (Yi)1{Xi ∈ J, F (Yi) > (nk/k)1/p}.

Inspecting the proof from Lemma 1 of Einmahl and Mason (2000), we see that the
argument there also applies if we set hnk = c(log nk/nk)

1−2/p in equation (2.10) of
Einmahl and Mason (2000) to give as k →∞, with probability 1,

nk∑
i=1

F (Yi)1{Xi ∈ J, F (Yi) > (nk/k)1/p} = o

(√
nka

dvol−ε
k log(1/advol−ε

k )

)
,

and we see by the same arguments as in (2.4.16) that (2.4.17) holds, thereby fin-
ishing the proof of Lemma 2.4.0.5. 2

Proposition 2.4.0.3 now follows from Lemmas 2.4.0.4 and 2.4.0.5.

2
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Remark 2.4.0.6 For notational convenience, we have chosen the same bandwidth se-
quence for each margins. This assumption can be dropped easily. If one wants to make use
of the vector bandwidths (see, in particular, Chapter 12 of Devroye and Lugosi (2001)).
With obvious changes of notation, our results and their proofs remain true when hn is
replaced by a vector bandwidth hn = (h

(1)
n , . . . , h

(d)
n ), where minh

(i)
n > 0. In this sit-

uation we set hn =
∏d

i=1 h
(i)
n , and for any vector v = (v1, . . . , vd) we replace v/hn by

(v1/h
(1)
n , . . . , v1/h

(d)
n ). For ease of presentation we chose to use real-valued bandwidths

throughout.



Chapter 3

Uniform in bandwidth consistency
for nonparametric kernel-type
estimators

Introduction

In this chapter, we establish a set of uniform convergence results for some ker-
nel estimators. To state the main contributions, we will make use of properties
of the empirical process Wn;h(x; Ψ), indexed by classes of functions, which will
serve as our working basis. Particularly, we will show in sections 3.1 and 3.2 how
Theorems 2.3.0.1 and 2.4.0.1 can be used to establish the uniform-in-bandwidth
consistency for density and regression function estimators and their derivatives
and we will see that the proofs will follow straightforwardly from these Theo-
rems. In Section 3.3, we show how Theorem 2.3.0.1 can be used to establish the
uniform in bandwidth consistency for the kernel estimator of the conditional dis-
tribution function.
The approach we use also allows us to deal with the uniform-in-bandwidth con-
sistency of other estimators such as Kernel mode estimator and Shannon’s en-
tropy, introduced respectively in Sections 3.4 and 3.5.
An important result on the estimate of the additive regression function is given
in section 3.6 using additive models introduced by Stone (1985), and we close
this chapter with a discussion on the problem of bandwidth selection criterion.

45
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3.1 Estimation of this density and regression func-
tions

For this purpose recall that the definition of the estimator of the kernel density
of fX(·) based upon the sample X1, . . . ,Xn is

fX;n(x;h) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
.

Corollary 3.1.0.1 Assume thatK(·) satisfies Assumptions 3 and 4, we have forC3 > 0,
with probability at least 1− δ,

sup
h≥ln

sup
x∈X
|fX;n(x;h)− E(fX;n(x;h))| ≤ C3

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

. (3.1.1)

Moreover, we have for any C4 > 0, K1(X, C4) < ∞ and 0 < h0 < (2η)dvol−ε, with
probability 1,

lim sup
n→∞

sup
c(logn/n)γ≤h≤h0

sup
x∈X
|fX;n(x;h)− E(fX;n(x;h))| =:

K1(X, C4)

√
(log(1/h) ∨ log log n)

nh2d−dvol+ε
. (3.1.2)

Proof.

Applying corollary 2.3.0.2 with cΨ(x) = 0 and dΨ(x) = 1, we get (3.1.1) with
probability at least 1 − δ. From therorem 2.4.0.1 and by (H.ii) [setting cΨ(x) = 0,
dΨ(x) = 1], (3.1.2) follows with probability 1.

Remark 3.1.0.2 For proving strong consistency of |fX;n(x;h)− fX(x;h)|, we write the
difference fX;n(x;h)− fX(x) as the sum of probabilistic term |fX;n(x;h) −
E(fX;n(x;h))| and a deterministic term |E(fX;n(x;h))− fX(x)|, the so-called bias. The
first (random) term has been studied via empirical process techniques, whereas, the order
of the bias depends on smoothness properties of fX(·) only. That is, if fX(·) is uniformly
continuous density, then Bochner’s lemma (see Einmahl et al. (2005)) gives that, for
ȟn → 0,

sup
ln≤h≤ȟn

sup
x∈X
|E(fX;n(x;h))− fX(x;h)| = o(1).
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Next consider the kernel-type estimator of rΨ;n(x;h) and general kernel-type esti-
mator of the regression function (see Nadaraya (1964) and Watson (1964)), given
respectively by (2.1.5) and (2.1.6).

To prove the strong consistency of mΨ;n(x;h), we shall consider another, but
more appropriate and more computationally convenient, centering factor than
the expectation EmΨ;n(x;h), which is delicate to handle. This is given by

ÊmΨ;n(x;h) =

E
(

Ψ(Y)K

(
x−X

h

))
E
(
K

(
x−X

h

)) =
E(rΨ;n(x;h))

E(fX;n(x;h))
.

Remark 3.1.0.3 Note that ÊmΨ;n(x;h) does not coincide in general with EmΨ;n(x;h).
However, under mild regularity assumptions, the difference between these two quantities
becomes asymptotically negligible as hn → 0 and nhdn →∞, (examples of this are given
in Deheuvels and Mason (2004)).

Corollary 3.1.0.4 Assume that the kernel function K(·) satisfies Assumptions 3 and 4.
If there exists M > 0 such that

F (Y)1{x ∈ J} ≤M, a.s.,

we have for C5 > 0, and under Assumption 1 with probability at least 1− δ,

sup
h≥ln

sup
x∈I

sup
Ψ∈Fq

|rΨ;n(x;h)− E(rΨ;n(x;h))| ≤ C5

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

(3.1.3)

Moreover, if we assume that for some p > 2

βP(Ψ) := sup
x∈J

E(F p(Y) | X = x) <∞

we have for any C6 > 0 and 0 < h0 < (2η)dvol−ε, with probability 1,

lim sup
n→∞

sup
C6(logn/n)γ≤h≤h0

sup
x∈I

sup
Ψ∈Fq

|rΨ,n(x, h)− E(rΨ;n(x;h))| =:

K2(I, C6)

√
(log(1/hdvol−ε) ∨ log log n)

nh2d−dvol+ε
, (3.1.4)

where K2(I, C6) <∞.
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Proof. Applying theorems (2.3.0.1) and corollary 2.3.0.2 with cΨ(x) = 1 and
dΨ(x) = 0, we get (3.1.3) with probability at least 1 − δ. From Theorem 2.4.0.1
and by (H.ii) [setting cΨ(x) = 1 and dΨ(x) = 1], (3.1.4) follows with probability 1.

Corollary 3.1.0.5 Assume that the conditions of Theorem 2.3.0.1 and 2.4.0.1 hold, in
particular thatFD are relatively compact with respect to the sup-norm topology on J, and
the enveloppe function F satisfies (H.i) or (H.ii) according as the class Fq is bounded
or unbounded. Then for any kernel K(·) satisfying Assumptions 3 and 4 and under
Assumption 1, with probability at least 1− δ,

sup
h≥ln

sup
x∈I

sup
Ψ∈Fq

∣∣∣mΨ,n(x, h)− ÊmΨ;n(x;h)
∣∣∣ ≤ C7

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

. (3.1.5)

Moreover, if Fq is not necessarily bounded, but satisfies (H.ii), we have almost surely

lim
n→∞

sup
C8(logn/n)γ≤h≤h0

sup
x∈I

sup
Ψ∈Fq

∣∣∣mΨ,n(x;h)− ÊmΨ;n(x;h)
∣∣∣ :=

K3(I, C8)

√
(log(1/h) ∨ log log n)

nh2d−dvol+ε
. (3.1.6)

where K3(I, C8) <∞.

Proof. It is easy to show that, for all h > ln the following relation holds∣∣∣mΨ;n(x;h)− ÊmΨ;n(x;h)
∣∣∣ ≤ |rΨ,n(x;h)− E(rΨ;n(x;h))|

|fX,n(x;h)|
(3.1.7)

+
|E(rΨ;n(x;h))|

|fX;n(x;h)E(fX;n(x;h))|
|fX,n(x;h)− E(fX;n(x;h))|

From (3.1.1), (3.1.3) of Corollaries 3.1.0.1 and 3.1.0.4, it follows with probability
at least 1− δ,

sup
h≥ln

sup
x∈I

sup
Ψ∈Fq

∣∣∣mΨ,n(x, h)− Ê(mΨ,n(x;h))
∣∣∣ ≤ C7

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

and from (3.1.2), (3.1.4), it follows with probability 1,

lim
n→∞

sup
C8(logn/n)γ≤h≤h0

sup
x∈I

sup
Ψ∈Fq

∣∣∣mΨ,n(x;h)− ÊmΨ;n(x;h)
∣∣∣ :=

K3(I, C8)

√
(log(1/h) ∨ log log n)

nh2d−dvol+ε
. (3.1.8)
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Remark 3.1.0.6 Under the assumption that fX,n(·) is bounded away on I, uniformly
in c(log n/n)γ ≤ h ≤ h0 and combining this with (3.1.0.4) or (3.1.0.4) it follows that
sup
x∈I
|E(rΨ;n(x;h))|

sup
x∈I
|EfΨ(x;h)| remains bounded.

Remark 3.1.0.7 We note that the main problem in using estimator such as in (2.1.6) is
to choose properly the smoothing parameter h. The uniform in bandwidth consistency re-
sults given in Corollary 3.1.0.5 shows that any choice of h between h′n and h′′n ensures the
consistency of mΨ;n(x;h). Namely, the fluctuation of the bandwidth in a small interval
does not affect the consistency of the nonparametric estimator mΨ;n(x;h) of mΨ(x).

3.2 Estimation of the density and regression deriva-
tives

Estimation of function (density or regression) derivatives is a versatile tool in
statistical data analysis. A statistical test for modes of the data density, which is
based on the second order density derivative Genovese et al. (2013). The optimal
bandwidth of kernel density estimation depends on the second-order density
derivative Noh et al. (2018). More applications in fundamental statistical prob-
lems such as regression, Fisher information estimation, parameter estimation,
and hypothesis testing are discussed in Singh (1977). The derivative of regres-
sion, that is used in modal regression, which is an alternate approach to the usual
regression methods for exploring the relationship between a response variable Y

and a predictor variable X, we may refer to Ziegler (2003, 2002). Here and else-
where the non negative integer vector s ∈ ({0} ∪ N)d denotes a fixed order of
differentiation in the following sense. Let ξ be an arbitrary measurable func-
tion with ξ : Rd → R. We consider estimation of functionals of ξ defined at
x = (x1, . . . ,xd) ∈ J. For each d-uple of nonnegative integers s1 ≥ 0, . . . , sd ≥ 0,
s = (s1, . . . , sd), we define the differential operator Ds of order

|s| = s = s0 + s1 + · · ·+ sd,

where |s0| = 0 and

Dsξ(x) :=
∂|s|

∂xs11 . . . ∂xsdd
.

For Ds operator to be well defined and interchange with integration we need
some smoothness condition that will be assumed later. Our aim is to investigate
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the kernel-type estimators of the s-th derivativesDsfX;n(x;h) andDsrX;n(x;h) of
fX;n(x;h) and rX;n(x;h), respectively, given by

DsfX,n(x, h) = (nhd+|s|)−1

n∑
i=1

DsK

(
x−Xi

h

)
, (3.2.1)

DsrΨ;n(x;h) = (nhd+|s|)−1

n∑
i=1

Ψ(Yi)D
sK

(
x−Xi

h

)
. (3.2.2)

Introduce the following process. Given any two continuous and bounded func-
tions cΨ and dΨ on J, set for x ∈ J

W
(s)
n;h(x; Ψ) =

n∑
j=1

(cΨ(x)Ψ(Yj) + dΨ(x))DsK

(
x−Xj

h

)
−nE

{
(cΨ(x)Ψ(Y) + dΨ(x))DsK

(
x−X

h

)}
. (3.2.3)

We treat the Nadaraya-Watson kernel estimator see (Nadaraya (1964); Watson
(1964)) and its partial derivatives when the predictor variables are Rd valued.
For this purpose, we need to introduce a general kernel function K : Rd → R,
fulfilling the conditions

(K.2) The partial derivative DsK : Rd → R exists and

‖DsK‖∞, ‖DsK‖2 <∞;

(K.3) The derivative of the kernel is such that:∫ ∞
0

tdvol−1 sup
‖x‖≥t

(DsK)2(x)dt <∞;

(K.4) We assume that

K(s) :=

{
(x, h) 7→ DsK

(
x− ·
h

)
: x ∈ X, h ≥ ln

}
is a uniformly bounded VC-class with dimension ν2, such that, the covering
numbers N (K(s), L2(Q), ε) satisfies

N (K(s), L2(Q), ε) ≤
(
A2‖DsK‖∞

ε

)ν2

.

Under Assumption (K.3), we can bound EP [DsK2] in terms of volume dimension
dvol as follows (see Kim et al. (2018))
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Lemma 3.2.0.1 Let (Rd,P) be a probability space and let X ∼ P. For any kernel K(·)
satisfying Assumption (K.3), the expectation of the derivative of kernel is upper bounded
as

EP

[(
DsK

(
x−X

h

))2
]
≤ Cs,P,K,εh

dvol−ε, (3.2.4)

for any ε ∈ (0, dvol), where Cs,P,K,ε is a constant depending only on s,P, K and ε.
Further, under Assumption 1, ε can be 0 in (3.2.4).

Proof. We proceed similarly to proof of Lemma 11 in (Kim et al. (2018)), where
we plug in DsK(·) in the place of K(·).

Note that we will work in the multivariate framework, where d ≥ 1, q ≥ 1

are arbitrary integers, and we keep the assumptions of chapter 2.Throughout,
`n, n = 1, 2, . . . , denote a nonrandom (bandwidth) sequence of positive constants
satisfying the following assumptions: as n→∞,

(H.1) `n ↘ 0 and n`dn ↗∞,

(H.2) n`2k+d
n / log(`−dn )→∞,

(H.3) log(`−dn )/ log log n→∞.

(H.4)

lim sup
n

(
log
(

1
`n

))
+

+ log
(

2
δ

)
n`dvol−ε

n

<∞.

Theorem 3.2.0.2 Under H.i, (K.2- 4), and assume that h satisfies (H.1) and for any
δ > 0, we have with probability at least 1− δ,

sup
h≥ln

sup
x∈I

sup
Ψ∈Fq

1

nhd+|s|

∣∣∣W (s)
n;h(x; Ψ)

∣∣∣
≤ D0

(
(log (1/ln))+

nl
|s|+d
n

+

√
(log (1/ln))+

nl
|s|+2d−dvol+ε
n

+

√
log (2/δ)

nl
|s|+2d−dvol+ε
n

+
log (2/δ)

nl
|s|+d
n

)
,(3.2.5)

for any ε ∈ (0, dvol), where D0 is a constant depending only on A, ‖ϑ‖∞, d, ν1, ν2, dvol,
Cs,CFq ,P,K,ε, ε. Further, under Assumption 1, ε can be 0 in (3.2.5). Under H.ii, (K.1-2)
and assume that h satisfies (H.1-3), we have for any D1 > 0 and 0 < h0 < (2η)dvol−ε,
with probability 1,
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lim sup
n→∞

sup
D1(logn/n)γ≤h≤h0

sup
x∈I

sup
Ψ∈Fq

1

nhd+|s|

∣∣∣W (s)
n;h(x; Ψ)

∣∣∣ :=

P1(D1)

√
(log(1/h) ∨ log log n)

nh|s|+2d−dvol+ε
, (3.2.6)

for any ε ∈ (0, dvol),P1(D1) <∞ and γ = 1− 2/p.

Corollary 3.2.0.3 Assume (K.1-4) and h satisfies (H.1-4), Then, with probability at
least 1− δ

sup
h≥ln

sup
x∈X

∣∣∣f (s)
X;n(x;h)− E(f

(s)
X;n(x;h))

∣∣∣ ≤ D2

√
log (1/ln)+ + log (2/δ)

nl|s|+2d−dvol+ε
n

(3.2.7)

where D2 is a constant depending only on A, ‖K‖∞, d, ν1, dvol, Cs,P,K,ε, ε. Further,
under Assumption 1, ε can be 0 in (3.2.7). Moreover, assume (K.2-4) and assume that
and h satisfies (H.1-3), for any D3 > 0 and 0 < h0 < (2η)dvol−ε, with probability 1,

lim sup
n→∞

sup
D3(logn/n)γ≤h≤h0

sup
x∈X

∣∣∣f (s)
X;n(x;h)− E(f

(s)
X (x;h))

∣∣∣ =:

P2(I, D3)

√
(log(1/h) ∨ log log n)

nh|s|+2d−dvol+ε
, (3.2.8)

where P2(I, D3) <∞.

Corollary 3.2.0.4 Assume (K.1-4), (H.i), and h satisfies (H.1-4). Then, with probability
at least 1− δ

sup
h≥ln

sup
x∈I

∣∣∣r(s)
Ψ;n(x;h)− E(r

(s)
Ψ;n(x;h))

∣∣∣ ≤ D4

√
log (1/ln)+ + log (2/δ)

nl|s|+2d−dvol+ε
n

(3.2.9)

where D4 is a constant depending only on A, ‖K‖∞, d, ν1, dvol, Cs,P,K,ε, ε. Further,
under Assumption 1, ε can be 0 in (3.2.9).
Moreover, assume (K.2-4),(H.ii), and h satisfies (H.1-3), for any D5 > 0 and 0 < h0 <

(2η)dvol−ε, we have with probability 1,

lim sup
n→∞

sup
D5(logn/n)γ≤h≤h0

sup
x∈I

∣∣∣r(s)
Ψ,n(x, h)− E(r

(s)
Ψ (x;h))

∣∣∣ =:

P3(I, D5)

√
(log(1/h) ∨ log log n)

nh|s|+2d−dvol+ε
, (3.2.10)

where P3(I, D5) <∞.
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Now, we treat the derivatives Nadaraya-Watson estimator when the predictor
variables are Rd-valued. Unless specified, we will limit most of our exposition to
the case where s = (s1, . . . , sd) is such that sj = 1 and sl = 0 for l 6= j and denote
by sj = (0, . . . , 1, . . . , 0) the corresponding d-uple. It will become obvious later
on that our method allow to treat likewise the case of an arbitrary s. Thus

m
(sj)
Ψ;n(x;h) = D(sj)(mΨ;n(x;h)) =

r
(sj)
Ψ;n(x;h)

fX;n(x;h)
−
rΨ;n(x;h)f

(sj)
X;n(x;h)

f 2
X;n(x;h)

.

To prove the strong consistency of m(sj)
Ψ;n(x;h), we shall consider another, but

more appropriate and more computationally convenient, centering factor than
the expectation Em(sj)

Ψ;n(x;h), which is delicate to handle. This is given by

Ê[m
(sj)
Ψ;n(x;h)] :=

E[r
(sj)
Ψ;n(x;h)]

E[fX;n(x;h)]
−

E[rΨ;n(x;h)f
(sj)
X;n(x;h)]

E[f 2
X;n(x;h)]

=
E(r

(sj)
Ψ;n(x;h))

E(fX;n(x;h))
−

E(rΨ;n(x;h))E(f
(sj)
X;n(x;h))

E(f 2
X;n(x;h))

.

A similar setup applies for operators Ds with |s| = s ≥ 2. It is not too difficult to
derive from the previous results uniformly consistent estimatorsm(s)

Ψ;n(x;h) of the
partial derivatives of the regression mΨ;n(x;h). For the future use, we consider
in more detail estimators m(1)

Ψ;n(x;h). We observe that

m
(1)
Ψ;n(x;h) =

r
(1)
Ψ;n(x;h)

fX;n(x;h)
−
rΨ;n(x;h)f

(1)
X;n(x;h)

f 2
X;n(x;h)

. (3.2.11)

Corollary 3.2.0.5 Assume the conditions of Theorem 2.3.0.1, and the envelope function
F satisfies (H.i). Then, we have, almost surely

sup
h≥ln

sup
x∈I

∣∣∣m(1)
Ψ;n(x;h)− Ê

[
m

(1)
Ψ;n(x;h)

]∣∣∣ ≤ D6

√
log (1/ln)+ + log (2/δ)

nl1+2d−dvol+ε
n

. (3.2.12)

Proof. Observe that we have the following chain of inequalities∣∣∣m(1)
Ψ,n − Êm(1)

Ψ;n

∣∣∣
=

∣∣∣∣∣ r
(1)
Ψ,n

fX,n

−
rΨ,nf

(1)
X,n

f 2
X,n

−
Er(1)

Ψ,n

EfX,n

+
ErΨ,nEf (1)

X,n

Ef 2
X,n

∣∣∣∣∣
≤ 1

|fX,n|

∣∣∣r(1)
Ψ,n − Er(1)

Ψ,n

∣∣∣+
|Er(1)

Ψ,n|
|fX,nEfX,n|

|EfX,n − fX,n| −

∣∣∣∣∣f
(1)
X,n

fX,n

mΨ,n −
Ef (1)

X,n

EfX,n

ÊmΨ,n

∣∣∣∣∣
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≤ 1

|fX,n|

∣∣∣r(1)
Ψ,n − Er(1)

Ψ,n

∣∣∣+
|Er(1)

Ψ,n|
|fX,nEfX,n|

|fX,n − EfX,n| −
|mΨ,n|
|fΨ,n|

∣∣∣f (1)
X,n − Ef (1)

X,n

∣∣∣
+
|Ef (1)

X,n|
|fX,n|

∣∣∣mΨ,n − ÊmΨ,n

∣∣∣ . (3.2.13)

Applying Theorem 2.3.0.1 and 2.4.0.1 and from Corollaries 3.1.0.1 and 3.1.0.5, we
get that both

sup
h≥ln

sup
x∈X
|fX,n(x, h)− E(fX;n(x;h))| ≤ C3

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

, (3.2.14)

and

sup
h≥ln

sup
x∈I

sup
Ψ∈Fq

∣∣∣mΨ,n(x, h)− ÊmΨ,n(x;h)
∣∣∣ ≤ C7

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

. (3.2.15)

Moreover, Corollary 3.2.0.3 and equation (3.2.9) of Corollary 3.2.0.4 with s = 1,
gives

sup
h≥ln

sup
x∈X

∣∣∣f (1)
X,n(x, h)− Ef (1)

X,n(x, h)
∣∣∣ ≤ D2

√
log (1/ln)+ + log (2/δ)

nl1+2d−dvol+ε
n

, (3.2.16)

And

sup
h≥ln

sup
x∈I

∣∣∣r(1)
Ψ,n(x, h)− Er(1)

Ψ,n(x, h)
∣∣∣ ≤ D4

√
log (1/ln)+ + log (2/δ)

nl1+2d−dvol+ε
n

. (3.2.17)

Using the fact that fX,n(·) is bounded away on I. Therefore, we can infer (3.2.0.5)
from (3.2.14)-(3.2.17).

Remark 3.2.0.6 The treatment of the other derivatives for s > 2 is similar and will
not be presented here for the sake of clarity. We note that, when s ≥ 2, m(s)

Ψ,n(x, h) =

Ds(mΨ,n(x, h)) may be obtained likewise thought the usual Leibniz expansion of deriva-
tives of products given by

m
(s)
Ψ;n(x;h) =

s∑
j=0

Cj
sr

(j)
Ψ;n(x;h){f (−1)

X;n (x;h)}(s−j), fX;n(x;h) 6= 0.
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3.3 Kernel estimator of the conditional distribution
function

By setting Ψt(Y) = 1{Y ≤ t}, t ∈ Rq, into (2.1.6) we obtain the kernel estimator
of the conditional distribution function given by

Fn,h(t | x) :=

n∑
i=1

1{Yi ≤ t}K
(

x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) . (3.3.1)

This kernel estimator is called the conditional empirical distribution function and
was first studied by Stute (1986a). Considering the bounded case in Corollary
3.1.0.5.

Corollary 3.3.0.1 Assume the conditions of Theorem 2.3.0.1 and F satisfies (H.i). Then
for any kernel K(·) satisfying Assumptions 3 and 4 and under Assumption 1, we have
almost surely

sup
h≥ln

sup
x∈I

∣∣∣Fn,h(t | x)− Ê(Fn,h(t | x))
∣∣∣ ≤ C

′

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

, (3.3.2)

where
Ê(Fn,h(t | x)) = E [1{Y ≤ t}K ((x−X)/h)] /hE(fX;n(x;h)).

Corollary 3.3.0.1 being direct consequence of (3.1.0.5), the bounded case, details
of its proof are omitted.

3.4 Multivariate mode

In the sequel, we follow Mokkadem and Pelletier (2003), and we state the prob-
lem from this paper by keeping the same notation and definitions. The kernel
mode estimator is any random variable Θ̂n,hn satisfying

fX;n(Θ̂n,hn ;hn) = sup
x∈Rd

fX;n(x;hn). (3.4.1)

SinceK(·) is continuous and vanishing at infinity, the choice of Θ̂n,hn as a random
variable satisfying (3.4.1) can be made with the help of an order on Rd. The
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definition

Θ̂n,hn = inf

{
y ∈ Rd such that fX;n(y;hn) = sup

x∈Rd
fX;n(x;hn)

}
,

where the infimum is taken with respect to the lexicographic order on Rd, en-
sures the measurability of the kernel mode estimator. Let us now assume Θ is
nondegenerate, that is, D2f(Θ) (the second order differential at the point Θ) is
nonsingular. We denote by ∇`(·) the gradient of the function `(·). By definition
of Θ̂n,hn , we have

∇fX;n(Θ̂n,hn ;hn) = 0,

so that
∇fX;n(Θ̂n,hn ;hn)−∇fX;n(Θ;hn) = −∇fX;n(Θ;hn). (3.4.2)

For each i = 1, . . . , d, Taylor’s expansion applied to the real-valued application
∂fX;n(·;hn)

∂xi
implies the existence of ξn(i) = (ξn;1(i), . . . , ξn;d(i))

> such that
∂
∂xi

fX;n(Θ̂n,hn ;hn)− ∂
∂xi

fX;n(Θ;hn) =
d∑
j=1

∂2

∂xi∂xj
fX;n(ξn(i);hn)(θ̂n,j;hn − θj),

|ξn;j(i)− θj| ≤ |θ̂n,j;hn − θj|, ∀j = 1, . . . , d.

Define the d× d matrix Hn = (Hn,i,j)1≤i,j≤d by setting

Hn,i,j =
∂2

∂xi∂xj
fX;n(ξn(i);hn).

Equation (3.4.2) can then be rewritten as

Hn(Θ̂n,hn −Θ) = −∇fX;n(Θ;hn). (3.4.3)

Application of Corollary 3.2.0.3 ensures that

lim
n→∞

sup
x∈Rd

∣∣∣∣ ∂2

∂xi∂xj
fX;n(x;hn)− E

(
∂2

∂xi∂xj
fX;n(x;hn)

)∣∣∣∣ = 0, a.s.

Moreover, classical computations give the uniform convergence of E
(

∂2

∂xi∂xj

fX;n(x;hn)) to ∂2

∂xi∂xj
fX(x) in a neighborhood of Θ. Since

lim
n→∞

Θ̂n,hn = Θ a.s.,

we thus obtain
lim
n→∞

Hn = D2f(Θ).

In view of (3.4.3), it follows that the convergence rate of Θ̂n,hn − Θ is given by
that of [D2f(Θ)]∇fX;n(Θ;hn) refer to Mokkadem and Pelletier (2003). Under
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some regularity assumptions and making use of Corollary 3.2.0.3, one can show
that

lim sup
n→∞

sup
D3(logn/n)γ≤h≤h0

√
nh2d−dvol+ε

∣∣∣Θ̂n,hn −Θ
∣∣∣√

(log(1/h) ∨ log log n)
<∞, (3.4.4)

3.5 Shannon’s entropy

The differential (or Shannon) entropy of f(·) is defined to be

H(f) := −
∫
Rd
f(x) log (f(x)) dx (3.5.1)

:= −
∫
Rd

log (f(x)) dF(x), (3.5.2)

whenever this integral is meaningful, and where, for x = (x1, . . . , xd), dx de-
notes Lebesgue measure in Rd. We will use the convention that 0 log(0) = 0 since
u log(u) → 0 as u → 0. The concept of differential entropy was originally intro-
duced in Shannon’s paper Shannon (1948). Since this early epoch, the notion of
entropy has been the subject of great theoretical and applied interest. We refer
to (Cover, 2006, Chapter 8.) for a comprehensive overview of differential en-
tropy and their mathematical properties. Entropy concepts and principles play
an fundamental role in many applications, such as quantization theory Rényi
(1959), statistical decision theory Kullback (1959), and contingency table analysis
Gokhale and Kullback (1978). Csiszár (1962) introduced the concept of conver-
gence in entropy and showed that the latter convergence concept implies con-
vergence in L1. This property indicates that entropy is a useful concept to mea-
sure “closeness in distribution”, and also justifies heuristically the usage of sam-
ple entropy as test statistics when designing entropy-based tests of goodness-
of-fit. This line of research has been pursued by Vasicek (1976); Dudewicz and
Van Der Meulen (1981); Ebrahimi et al. (1992) [including the references therein].
The idea here is that many families of distributions are characterized by maxi-
mization of entropy subject to constraints (see, e.g., Jaynes (1957) and Lazo and
Rathie (1978)). Given fX,n(·, h) in (3.1), we estimate H(f) using the representa-
tion (3.5.1), by setting

Hn,hn(f) := −
∫
An

fX,n(x, hn) log
(
fX;n(x;hn)

)
dx, (3.5.3)

where
An := {x ∈ Rd : fX;n(x;hn) ≥ γn},
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and γn ↓ 0 is a sequence of positive constant. To prove the strong consistency
of Hn,hn(f), we shall consider another, but more appropriate and more compu-
tationally convenient, centering factor than the expectation EHn,hn(f), which is
delicate to handle. This is given by

ÊHn;hn(f) := −
∫
An

EfX;n(x;hn) log
(
EfX;n(x;hn)

)
dx.

We first decompose Hn;hn(f) − ÊHn;hn(f) into the sum of two components, by
writing

Hn,hn(f)− ÊHn,hn(f)

= −
∫
An

fX;n(x;hn) log
(
fX;n(x;hn)

)
dx

+

∫
An

EfX;n(x;hn) log
(
EfX;n(x;hn)

)
dx

= −
∫
An

{log fX;n(x;hn)− logEfX;n(x;hn)}EfX;n(x;hn)dx

−
∫
An

{fX;n(x;hn)− EfX;n(x;hn)} log fX;n(x;hn)dx

:= ∆1,n,hn + ∆2,n,hn . (3.5.4)

We observe that for all z > 0,

|log z| ≤
∣∣∣∣1z − 1

∣∣∣∣+ |z − 1| .

Therefore, for any x ∈ An, we get

| log fX;n(x;hn)− logEfX;n(x;hn)| =
∣∣∣∣log

fX;n(x;hn)

EfX;n(x;hn)

∣∣∣∣
≤

∣∣∣∣EfX;n(x;hn)

fX;n(x;hn)
− 1

∣∣∣∣+

∣∣∣∣ fX;n(x;hn)

EfX;n(x;hn)
− 1

∣∣∣∣
=
|EfX;n(x;hn)− fX;n(x;hn)|

fX;n(x;hn)
+
|fX;n(x;hn)− EfX;n(x;hn)|

EfX;n(x;hn)
.

Under conditions of Corollary 3.1.0.1, in addition we assume, cn−1γ−4
n (log n) ≤

hn, then we can prove the following result, which is an extension of Theorem 2.1
of Bouzebda and Elhattab (2011), there exists a positive constant Υ, such that

lim sup
n→∞

sup
hn≤h≤1

√
nh2d−dvol+εγ4

n|Hn,h(f)− ÊHn,h(f)|√
(log(1/h) ∨ log log n)

≤ ∞ a.s.
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3.6 Additive models

Notice that the parametric regression models provide useful tools for analyzing
practical data when the models are correctly specified, but may suffer from large
modeling biases when the structures of the models are misspecified, which is
the case in many practical problems. As an alternative, nonparametric smooth-
ing methods ease the concerns on modeling biases. However, it is well known
that unrestricted multivariate nonparametric regression models are subject to the
curse of dimensionality, in multivariate settings, and fail to take advantage of the
flexibility structure in modeling phenomena with moderate set of data, see Stone
(1985, 1986), Fan and Gijbels (1996) and Härdle (1990) among others. We assume
that the relation between the response variables and the covariates can be repre-
sented by the following relation

Ψ(Y ) = m0 +mΨ(X) + ε, (3.6.1)

where m(·) is the nonlinear part of the model and ε is the modeling error and m0

is a constant. The papers by Stone (1985, 1986) proposed the additive model re-
gression, which allows easier interpretation of the contribution of each explana-
tory variable and reduction of the computational requirement. Hence, additive
regression models circumvent the curse of dimensionality that afflicts the estima-
tion of fully nonparametric regression models, the interested reader may refer
to Fan and Gijbels (1996), Härdle (1990). To reduce the dimension impact an
additive structure to the nonparametric function mψ(·), that is

mΨ(x) = E (Ψ(Y ) | X = x) , ∀ x = (x1, . . . , xd) ∈ Rd

= µ+
d∑
l=1

ml(xl) := mΨ,add(x), (3.6.2)

where xl is the l-th component of the vector x. To avoid unnecessary complexity,
we assume that µ = 0. For the identifiability purpose of the additive component
functions ml(·), we impose the constraints

Eml(Xl) = 0 for 1 ≤ l ≤ d.

Notice that the backfitting algorithm of Breiman and Friedman (1985), Buja et al.
(1989) and Hastie and Tibshirani (1990) is widely used to estimate the one - di-
mensional components ml(·) and regression function m(·). The backfitting idea
is to project the data onto the space of functions which are additive. This pro-
jection is done via least squares, where the least squares problem is solved with
the Gauss-Seidel algorithm. Notice that the additive model has now become a
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widely used multivariate smoothing technique, in large part due to the exten-
sive discussion in Hastie and Tibshirani (1990), where the authors give a good
overview and analyze estimation techniques based on backfitting, and the avail-
ability of fitting routines in S-Plus, described in Chambers et al. (1990). It should
be remarked that important progress has also been made by Mammen et al. (1999)
or Opsomer et al. (1997) in the asymptotic theory of backfitting. Mammen et al.
(2012) provided an overview over smooth backfitting type estimators in addi-
tive models and also discussed extensions to varying coefficient models, addi-
tive models with missing observations, and the case of nonstationary covariates.
Auestad and Tjø stheim (1991), Tjøstheim and Auestad (1994) and Linton and
Nielsen (1995) proposed a method based on marginal integration of the mean
functionm(·) for estimating the additive components. Their analysis is restricted
to the case of dimension d = 2, Chen et al. (1996) tried to extend this result to
arbitrary d, we may refer also to Newey (1994), Bouzebda and Chokri (2014),
Bouzebda et al. (2016) and Bouzebda and Didi (2017) for more references. One
advantage of the integration method is that its statistical properties are easier to
describe; specifically, one can easily prove central limit theorems and give ex-
plicit expressions for the asymptotic bias and variance of the estimators. There is
a main disadvantage of the integration estimator which is perhaps even more
time consuming to compute than the backfitting estimator. Motivated by all
these properties, our approach will be based on the marginal integration method.
Let q1(·), . . . , qd(·) be d density functions defined in R with some compact support
included in C, where

C = C1 × · · · × Cd

is a compact set of Rd, and C1, . . . , Cd be a compact intervals of R. Setting

q(x) =
d∏
l=1

ql(xl) and q−l(x−l) =
d∏

j=1,j 6=l

qj(xj).

We then obtain

ηl(xl) =

∫
Rd−1

mΨ(x)dx−l −
∫
Rd
mΨ(x)q(x)dx, for l = 1, . . . , d, (3.6.3)

in such a way that the following two equalities hold,

ηl(xl) = ml(xl)−
∫
R
ml(z)ql(z)dz, for l = 1, . . . , d, (3.6.4)

mΨ,add(x) =
d∑
l=1

ηl(xl) +

∫
Rd
mΨ(z)q(z)dz. (3.6.5)

Finally, we will assume tacitly the following assumptions on the density func-
tions q`(·), for 1 ≤ ` ≤ d.
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(Q.1) q`(·) is bounded and continuous, for all 1 ≤ ` ≤ d;

(Q.2) q`(·) has k + 1 continuous and bounded derivatives.

In view of (3.6.4) and (3.6.5), we note that ηl(·) and ml(·) are equal up to an ad-
ditional constant. Therefore, ηl(·) is also an additive component, fulfilling a dif-
ferent identifiability condition. From (2.3.9) and (3.6.3), a natural estimate of this
l-th component is given by

η̂l(xl;h) =

∫
Rd−1

mΨ;n(x;h)q−l(x−l)dx−l −
∫
Rd
mΨ;n(x;h)q(x)dx, for l = 1, . . . , d,

(3.6.6)

from which we deduce the estimate m̂Ψ,n,add(·) of the additive regression func-
tion,

m̂Ψ,n,add(x;h) =
d∑
l=1

η̂l(xl;h) +

∫
Rd
mΨ,n(x)q(x)dx. (3.6.7)

Notice that we have, for l = 1, . . . , d,

η̂l(xl;h)− Êη̂l(xl;h) =

∫
Rd−1

{
mΨ;n(x;h)− ÊmΨ;n(x;h)

}
q−l(x−l)dx−l

−
∫
Rd

{
mΨ;n(x;h)− ÊmΨ;n(x;h)

}
dx. (3.6.8)

Making use of Corollary 3.1.0.5 and similar arguments to those used in Bouzebda
et al. (2016) in the proof of Theorem 3.1, one can show that the relation (3.6.8) can
be used to show that

lim sup
n→∞

sup
x1∈I⊂R

√
nh

2 log(1/h)

∣∣∣η̂1(x1;h)− Êη̂1(x1;h)
∣∣∣ < C9 a.s., (3.6.9)

where C9 > 0. By the same reasoning as in Theorem 3.2 in Bouzebda et al. (2016),
one can show that

lim sup
n→∞

sup
x∈Id⊂Rd

√
nh

2 log(1/h)

∣∣∣m̂Ψ,n,add(x;h)− Êm̂Ψ,n,add(x;h)
∣∣∣ < C10 a.s., (3.6.10)

where C10 > 0 and

Êm̂Ψ,n,add(x;h) =
d∑
l=1

Êη̂l(xl;h) +

∫
Rd

ÊmΨ,n(x)q(x)dx. (3.6.11)
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We will not discuss further (3.6.9) and (3.6.10), and leave its study open for future
research. It will be of interest to consider the exact constants in the preceding
equations, the proof of such a statement, however, should require a different
methodology than that used in this thesis, and we leave this problem for future
work.

Remark 3.6.0.1 The extension of results to te the functional setting is difficult since the
only available papers for the “volume dimension” are only given in the finite dimensional
framework. The subject is itself the subject of a long paper to be investigated. Even if this
is out of the scope of the present paper, we give some idea about the dimensionality re-
duction as suggest by the referee. To be more precise, it well known that the estimation
problems of a regression function are especially hard in the case when the dimension of
the explanatory X is large. It worth noticing that one consequence of this is that the opti-
mal minimax rate of convergence n−2k/(2k+d) for the estimation of a k times differentiable
regression function converges to zero rather slowly if the dimension d of X is large com-
pared to k. To circumvent the so-called curse of dimensionality, the only way is to impose
additional assumptions on the regression functions. The simplest way is to consider the
linear models but this rather restrictive parametric assumption can be extended in several
ways. An idea is to consider the additif models to simplify the problem of regression es-
timation by fitting only functions to the data which have the same additive structure. In
projection pursuit one generalizes this further by assuming that the regression function
is a sum of univariate functions applied to projections of x onto various directions, we
note that this includes the single index models as particular cases, the interested reader
may refer to (Györfi et al., 2002, Chapter 22) for more rigorous developments of such
techniques. Other ways are to be investigated are the semi-parametric models, consid-
ered like intermediary models between linear and nonparametric ones, aiming to combine
the flexibility of nonparametric approaches together with the interpretability of the para-
metric ones, for details on these methods for functional data, one can refer to (Ling and
Vieu, 2018, Section 4.2) and the reference therein. Notice that there is some recent ad-
vances for the uniform convergence rate in the functional framework, we may refer to
Kara-Zaitri et al. (2017), Ling et al. (2019) and Bouzebda and Nemouchi (2020) among
many other references.

3.7 The bandwidth selection criterion

The selection of the bandwidth, however, is more problematic. It is worth notic-
ing that the choice of the bandwidth is crucial to obtain a good rate of consistency,
for example, it has a big influence on the size of the estimate’s bias. In general, we
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are interested in the selection of bandwidth that produces an estimator which has
a good balance between the bias and the variance of the considered estimators.
It is then more appropriate to consider the bandwidth varying according to the
criteria applied and to the available data and location which cannot be achieved
by using the classical methods. The interested reader my refer to Mason (2012)
for more details and discussion on the subject.
Many methods have been established and developed to construct, in asymptoti-
cally optimal ways, bandwidth selection rules for nonparametric kernel estima-
tors especially for Nadaraya-Watson regression estimator we quote among them
Hall (1984), Hardle and Marron (1985), Tsybakov (1987), and Rachdi and Vieu
(2007). This parameter has to be selected suitably, either in the standard finite
dimensional case, or in the infinite dimensional framework for insuring good
practical performances. Let us define the leave-out-(Xi,Yi) estimator for regres-
sion function

mΨ,n,j(x;h) =

n∑
i=1,i 6=j

Ψ(Yi)K

(
x−Xi

h

)
n∑

i=1,i 6=j

K

(
x−Xi

h

) . (3.7.1)

In order to minimize the quadratic loss function, we introduce the following cri-
terion, we have for some (known) non-negative weight functionW(·) :

CV (Ψ, h) :=
1

n

n∑
j=1

(Ψ (Yj)−mΨ,n,j(x;h))2W (Xj) . (3.7.2)

Following the ideas developed by Rachdi and Vieu (2007), a natural way for
choosing the bandwidth is to minimize the precedent criterion, so let’s choose
ĥn ∈ [an, bn] minimizing among h ∈ [an, bn] :

sup
Ψ∈Fq

CV (Ψ, h) ,

we can conclude, by Corollary 3.1.0.5, that :

sup
Ψ∈Fq

sup
x∈I

∣∣∣mΨ,n,j(x; ĥn)− Ê(mΨ,n,j(x; ĥn))
∣∣∣ −→ 0 p.s.

The main interest of our results is the possibility to derive the asymptotic prop-
erties of our estimate even if the bandwidth parameter is a random variable, like
in the last equation. One can replace (3.7.2) by

CV (Ψ, h) :=
1

n

n∑
j=1

(Ψ (Yj)−mΨ,n,j(x;h))2 Ŵ (Xj,x) . (3.7.3)
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In practice, one takes for j = 1, . . . , n, the uniform global weights W (Xj) = 1,
and the local weights

Ŵ (Xj,x) =

{
1 if ‖Xj − x‖ ≤ h,

0 otherwise.

Remark 3.7.0.1 Deheuvels and Mason (2004) consider local plug-in type estimators
ĥn = ĥn(x), which satisfy,

P
(
an ≤ ĥn(x) ≤ bn : x ∈ R

)
→ 1,

with an = c1hn and bn = c2hn, where 0 < c1 ≤ c2 <∞, or fulfil, for any ε > 0

P

(
sup
x∈I

∣∣∣∣∣ ĥn(x)

hn
− η(x)

∣∣∣∣∣ > ε

)
→ 0, (3.7.4)

where η(·) is an appropriate continuous function on R and I = [a, b] ⊂ R, for a < b. We
refer to their Example 2.1 p. 246, where they show subject to smoothness conditions that
the optimal ĥn(x) satisfies (3.7.4) with hn = n−1/5, for d = 1, in terms of asymptotic
mean square error for estimating the density function f(·) or regression function mΨ(·).
Following their methods, it will be interesting to derive our results for local plug-in
estimators ĥn(x), where the convergence is either in probability or with probability 1

depending on conditions on ĥn(x). We omit the corresponding details here.



Chapter 4

Uniform in bandwidth consistency
for nonparamteric I.P.C.W. estimators
of the regression function in
censored case

Introduction

Consider a triple (Y,C,X) of random variables defined in R × R × Rd. Here Y
is the variable of interest, C a censoring variable and X a concomitant variable.
Throughout, we will use Maillot and Viallon (2009) notation and we work with a
sample {(Yi, Ci,Xi)1≤i≤n} of independent and identically distributed replication
of (Y,C,X), n ≥ 1. Actually, in the right censorship model, the pairs (Yi, Ci),
1 ≤ i ≤ n, are not directly observed and the corresponding information is given
by Zi := min{Yi, Ci} and δi := 1{Yi ≤ Ci}, 1 ≤ i ≤ n. Accordingly, the observed
sample is

Dn = {(Zi, δi,Xi), i = 1, . . . , n}.

Survival data in clinical trials or failure time data in reliability studies, for exam-
ple, are often subject to such censoring. To be more specific, many statistical ex-
periments result in incomplete samples, even under well-controlled conditions.
For example, clinical data for surviving most types of disease are usually cen-
sored by other competing risks to life which result in death. In the sequel, we
impose the following assumptions upon the distribution of (X, Y ). Denote by I

65
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a given compact set in Rd with nonempty interior and set, for any α > 0,

Iα = {x : inf
u∈I
‖x− u‖ ≤ α}.

We will assume that, for a given α > 0, (X, Y ) [resp. X] has a density function
fX,Y [resp. fX] with respect to the Lebesgue measure on Iα × R [resp. Iα]. For
−∞ < t <∞, set

FY (t) = P(Y ≤ t), G(t) = P(C ≤ t), and H(t) = P(Z ≤ t),

the right-continuous distribution functions of Y , C and Z respectively. For any
right-continuous distribution function L defined on R, denote by

TL = sup{t ∈ R : L(t) < 1}

the upper point of the corresponding distribution. Now consider a pointwise
measurable class F of real measurable functions defined on R, and assume that
F is of VC-type.

4.1 Definition of the I.P.C.W estimators

In this thesis, we will mostly focus on the regression function of ψ(Y ) evaluated
at X = x, for ψ ∈ F and x ∈ Iα, given by

mψ(x) = E(ψ(Y ) | X = x),

when Y is right-censored. To estimate mψ(·),we make use of the Inverse Prob-
ability of Censoring Weighted (I.P.C.W.) estimators which have recently gained
popularity in the censored data literature (see Kohler et al. (2002), Carbonez et al.
(1995), Brunel and Comte (2006)). The key idea of I.P.C.W. estimators is as fol-
lows. Introduce the real-valued function Φψ(·, ·) defined on R2 by

Φψ(y, c) =
1{y ≤ c}ψ(y ∧ c)

1−G(y ∧ c)
. (4.1.1)

Assuming the function G(·) to be known, first note that Φψ(Yi, Ci) = δiψ(Zi)/(1−
G(Zi)) is observed for every 1 ≤ i ≤ n. Moreover, under the Assumption (I)
below,

(I) C and (Y,X) are independent.
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We have

mΦψ(x) := E(Φψ(Y,C) | X = x)

= E
{
1{Y ≤ C}ψ(Z)

1−G(Z)
| X = x

}
= E

{
ψ(Y )

1−G(Y )
E(1{Y ≤ C} | X, Y ) | X = x

}
= mψ(x). (4.1.2)

Therefore, any estimate of mΦψ(·), which can be built on fully observed data,
turns out to be an estimate for mψ(·) too. Thanks to this property, most statistical
procedures known to provide estimates of the regression function in the uncen-
sored case can be naturally extended to the censored case. For instance, kernel-
type estimates are particularly easy to construct. Set, for x ∈ I, h ≥ ln, 1 ≤ i ≤ n,

ωn,K,h,i(x) := K

(
x−Xi

h

)/ n∑
j=1

K

(
x−Xj

h

)
. (4.1.3)

We assume that h satisfies (H.1). In view of (4.1.1), (4.1.2), and (4.1.3), whenever
G(·) is known, a kernel estimator of mψ(x) is given by

m̃ψ,n,h(x) =
n∑
i=1

ωn,K,h,i(x)
δiψ(Zi)

1−G(Zi)
. (4.1.4)

The function G(·) is generally unknown and has to be estimated. We will de-
note by G∗n(·) the Kaplan-Meier estimator of the function G(·) Kaplan and Meier
(1958). Namely, adopting the conventions∏

∅

= 1

and 00 = 1 and setting

Nn(u) =
n∑
i=1

1{Zi ≥ u},

we have

G∗n(u) = 1−
∏
i:Zi≤u

{
Nn(Zi)− 1

Nn(Zi)

}(1−δi)

, for u ∈ R.

Given these notation, we will investigate the following estimator of mψ(x)

m̃∗ψ,n,h(x) =
n∑
i=1

ωn,K,h,i(x)
δiψ(Zi)

1−G∗n(Zi)
, (4.1.5)

refer to Kohler et al. (2002) and Maillot and Viallon (2009). Adopting the conven-
tion 0/0 = 0, this quantity is well defined, sinceG∗n(Zi) = 1 if and only ifZi = Z(n)

and δ(n) = 0, where Z(k) is the kth ordered statistic associated with the sample
(Z1, . . . , Zn) for k = 1, . . . , n and δ(k) is the δj corresponding to Zk = Zj . When the
variable of interest is right-censored, functionals of the (conditional) law can gen-
erally not be estimated on the complete support (see Brunel and Comte (2006)).
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4.2 Assumptions

In order to obtain our results, we will work under the following assumptions.

(A.1) F = {ψ := ψ11{(−∞, τ)}, ψ1 ∈ F1}, where τ < TH et F1 is a pointwise
measurable class of real measurable functions defined on R and of type
VC.

(A.2) The class of functions F has a measurable and uniformly bounded enve-
lope function Υ with,

Υ(y) ≥ sup
ψ∈F
| ψ(y) |, y ≤ TH .

(A.3) The class of functions M :=
{
mψ
fX
, ψ ∈ F

}
is relatively compact with re-

spect to the sup- norm topology on Iα.

In what follows, we will study the uniform convergence of m̃∗ψ,n,h(x) centered by
the following centering factor

Êmψ;n(x;h) =

E
(
ψ(Y )K

(
x−X

h

))
E
(
K

(
x−X

h

)) .

This choice is justified by the fact that, under hypothesis (I) we have

E
{

Φψ(Y,C)K

(
x−X

h

)}
= E

{
1{Y ≤ C}ψ(Z)

1−G(Z)
K

(
x−X

h

)}
(4.2.1)

= E


ψ(Y )K

(
x−X

h

)
1−G(Y )

E[1{Y ≤ C} | X,Y]


= E

{
ψ(Y )K

(
x−X

h

)}
.

4.3 Results

We have now all the ingredients to state the result corresponding to the censored
case.
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Theorem 4.3.0.1 Under assumptions (A.1-3), (I), Assumption 1, assume that h satis-
fies (H.1-H.3) and for any kernel K(·) satisfying Assumptions 3 and 4, with probability
at least 1− δ,

sup
h≥ln

sup
x∈I

∣∣∣m̃∗ψ,n,h(x)− Ê(mψ,n(x;h))
∣∣∣ ≤ C

′

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

. (4.3.1)

Proof of Theorem 4.3.0.1

In the following proposition we show that Theorem 4.3.0.1 naturally follows
from Corollary 3.1.0.5. We first establish the version of Theorem 4.3.0.1 corre-
sponding to the case where G(·) is known (i.e., with m̃∗ψ,n,h replaced by m̃ψ,n,h).
To complete the proof of Theorem 4.3.0.1, the consistency of the Kaplan-Meier
estimator will be helpful (see Lemma 4.3.0.3 below)

Proposition 4.3.0.2 Under assumptions (A.1- 3), (I), Assumption 1, assume that h
satisfies (H.1-3) and for any kernel K(·) satisfying Assumptions 3 and 4, with probabil-
ity at least 1− δ

sup
h≥ln

sup
x∈I

sup
ψ∈F

∣∣∣m̃ψ,n,h(x)− Êmψ(x;h)
∣∣∣ ≤ C

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

(4.3.2)

Proof. Recalling the definition 4.1.1 of Φψ

Φψ(y, c) =
1{y ≤ c}ψ(y ∧ c)

1−G(y ∧ c)
. (4.3.3)

it is obvious that Φψ is uniformly bounded, in (y, c) ∈ R2 and ψ ∈ F , since F is
uniformly bounded, ψ(t) = 0 for all t > τ and G(τ) < 1. This property, when
combined with the VC property of F1, ensures that the class of function

FΦ := {Φψ : ψ ∈ F}

verifies (F.i), (F.iii). Similarly, it can be shown that FΦ is a pointwise measurable
class of functions (F.ii). Moreover, by (A.3) and (4.1.2), the class

MΦ := {mΦψ | fX, ψ ∈ F1}

is almost surely relatively compact with respect to the sup- norm topology on Iα.
So we can apply Corollary 3.1.0.5 with Y = (Y,C) and Ψ = Φψ. The result of
Proposition 4.3.0.2 is straightforward.

To complete the demonstration of Theorem 4.3.0.1, we will use the result of the
next approximation Lemma 4.3.0.3.
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Lemma 4.3.0.3 Under assumptions of Theorem 4.3.0.1, we have with probability one,

sup
h≥ln

sup
x∈I

sup
ψ∈F

∣∣m̃ψ,n,h(x)− m̃∗ψ,n,h(x)
∣∣ = o

(√
log(1/h)

nhd

)
as n→∞. (4.3.4)

Proof.

Notice that we have

sup
h≥ln

sup
x∈I

sup
ψ∈F

∣∣m̃ψ,n,h(x)− m̃∗ψ,n,h(x)
∣∣

= sup
h≥ln

sup
x∈I

sup
ψ∈F

∣∣∣∣∣
n∑
i=1

ωn,K,h,i(x)δiψ(Zi)

(
1

1−G(Zi)
− 1

1−G∗n(Zi)

)∣∣∣∣∣
≤ sup

h≥ln
sup
x∈I

n∑
i=1

|ωn,K,h,i(x)| sup
t≤τ

sup
ψ∈F
|ψ(t)|

[1−G∗n(τ)][1−G(τ)]
sup
t≤τ
|G∗n(t)−G(t)|.

(4.3.5)

Since
sup
ψ∈F
|ψ(t)| <∞,

the kernel K(·) is uniformly bounded and

τ < TH = TF ≤ TG,

the law of iterated logarithm for G∗n(·) established in Földes and Rejtő (1981)
ensures that

sup
t≤τ
|G∗n −G(t)| = O

(√
log log n

n

)
almost surely as n→∞.

By combining the results of Proposition 4.3.0.2 and Lemma 4.3.0.3, the result of
the Theorem 4.3.0.1 is immediate by noting that, under the conditions (H.1-3),
we have, for n sufficiently large,

sup
t≤τ
|G∗n −G(t)| = o

(√
log(1/h)

nhd

)
almost surely as n→∞.

Hence the proof is complete.

Kernel estimator of the conditional distribution function in the censored case

We will show how Theorem 4.3.0.1 can be used (A.2) to establish the uniform in
bandwidth consistency for an estimator for the conditional distribution function.
Towards this aim, we introduce the following quantities:
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F̃ ∗h,n(t | x) :=
n∑
i=1

ωn,K,h,i(x)
δi1{Zi ≤ t}
1−G∗n(Zi)

and

ÊFh,n(t | x) =
E [1{Y ≤ t}K ((x−X)/h)]

EK ((x−X)/h)
.

Rates of convergence for F̃ ∗h,n(t | x) can be obtained under weaker conditions,
when restricting ourselves to t ∈ [−∞, τ0] with τ0 < TH . On the other hand, it is
noteworthy that (A.2-3) are automatically fulfilled for the particular choice

F = {1(−∞, t] : t ≤ TH}.

This property will enable us to easily describe uniform consistency for estimators
of the conditional distribution function F (t | ·) := P(Y ≤ t | X = ·) over t ∈
(−∞, TH).

Corollary 4.3.0.4 Under assumptions (A.1), (I) and Assumption 1, assume that h sat-
isfies (H.1-3) and for any kernel K(·) satisfying Assumptions 3 and 4, we have, for all
τ0 < TH , with probability at least 1− δ,

sup
h≥ln

sup
x∈X

sup
t≤τ0

∣∣∣F̃ ∗h,n(t | x)− ÊFh,n(t | x)
∣∣∣ ≤ C

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

. (4.3.6)

Proof. Corollary 4.3.0.4 being a direct consequence of Theorem 4.3.0.1 with

F = {1{[0, t]} : t < τ0 < TH},

details of its proof are omitted.

Kernel estimator of the conditional density function in censored case

To establish the uniform in bandwidth consistency for the estimates of the condi-
tional density, we denote by h′ an additional bandwidth. As for the conditional
density f(t | x) := fX,Y (x, t)/fX(x), we consider the following estimator:

f̃ ∗
h,h′ ,n

(t | x) :=
n∑
i=1

ωn,K,h,i(x)
δi1{Zi ∈ [t− h

′

2
; t+ h

′

2
]}

h′ [1−G∗n(Zi)]
,

and the corresponding centering term,

Êfh,h′ ,n(t | x) :=
E
[
1{Y ∈ [t− h

′

2
; t+ h

′

2
]}K ((x−X)/h)

]
h′EK ((x−X)/h)

.



Chapter 4. Uniform in bandwidth consistency for nonparamteric I.P.C.W. estimators of the regression
function in censored case 72

Corollary 4.3.0.5 Under assumptions (A.1), (I), Assumption 1, assume that h satisfies
(H.1-3) and for any kernelK(·) satisfying Assumptions 3 and 4, we have, for all τ0 < TH

and for {h′n}n≥1 a sequence of positive constants such that h′n ≥
√

nl
2d−dvol+ε
n

log(1/ln)++log(2/δ)
, with

probability at least 1− δ,

sup
h≥ln

sup
h′≥h′n

sup
x∈X

sup
t≤τ0

∣∣∣f̃ ∗h,h′ ,n(t | x)− Êfh,h′ ,n(t | x)
∣∣∣ ≤ C

′

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

.

(4.3.7)

Proof.

Since

h
′

n ≥

√
nl2d−dvol+ε
n

log (1/ln)+ + log (2/δ)
,

we have for any s > 0,

sup
h≥ln

sup
h′≥h′n

sup
x∈X

sup
t≤τ0

∣∣∣f̃ ∗h,h′ ,n(t | x)− Efh,h′ ,n(t | x)
∣∣∣

≤ 1

h′n
sup
h≥ln

sup
h′≤s

sup
x∈X

sup
t≤τ0

h
′
∣∣∣f̃ ∗h,h′ ,n(t | x)− Efh,h′ ,n(t | x)

∣∣∣ .
Set s ∈ (0, TH − τ0). By applying Theorem 4.3.0.1 with

Fs =

{
1

{[
t− h

′

2
, t+

h
′

2

]}
, t < τ0 < TH

}
,

we have with probability at least 1− δ,

sup
h≥ln

sup
h′≥h′n

sup
x∈X

sup
t≤τ0

∣∣∣f̃ ∗h,h′ ,n(t | x)− Efh,h′ ,n(t | x)
∣∣∣ ≤ C

′

√
log (1/ln)+ + log (2/δ)

nl2d−dvol+ε
n

.

(4.3.8)

Hence the proof is complete.



Conclusions and perspectives

In this thesis, we have used general methods based upon empirical process tech-
niques to prove uniform in bandwidth consistency for kernel-type function esti-
mators. We have considered an extended setting when dimension can be much
lower than the ambient dimension. In addition, our work complements the pa-
per Kim et al. (2018) by considering other examples of kernel estimates. Exam-
ples include regression function, conditional distribution, mode and Shannon’s
entropy. We have investigated the general kernel estimators in the framework of
censored data. The results allow data-driven local bandwidths.
To complete this thesis we raise some perspectives that may be the object of fu-
ture works:

• Our results are especially useful to establish uniform consistency of data-
driven bandwidth kernel-type function estimators. The interest of doing so
would be to extend our work to k-nearest neighbours estimators. Presently
it is beyond reasonable hope to achieve this program without new technical
arguments.

• An other direction of research is to consider the projection pursuit regres-
sion and projection pursuit conditional distribution, which need an exten-
sion and generalization of the methods used in the present thesis. If we
assume that the regression function mΨ(·) is smooth enough, that is p + 1

times differentiable at a fixed x0, it will be better to use the local polyno-
mial regression techniques, refer to Fan and Gijbels (1996), to obtain a more
appropriate estimate at x0 than that given by the Nadaraya-Watson estima-
tor. The uniform consistency of such estimators will be treated in future
investigation.

• We study this model with other types of censored data (left censorship,
double censorship, mixed censorship). To do this, we define a general
censoring framework that encompasses all censoring models and we show
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uniform in bandwidth consistency for kernel-type density and regression
function estimators.

• As a generalization of Nadaraya-Watson estimates of a regression function
and using the same concept of the present work we use a conditional U -
statistics and we apply the methods developed in Dony and Mason (2008)
and Bouzebda and Nemouchi (2020) to

m(t) := E[ϕ(Y1, . . . , Ym)|(X1, . . . , Xm) = t], for t ∈ Rdm.

to establish uniform in t and in bandwidth consistency (i.e., hn, hn ∈ [an, bn]

where 0 < an < bn → 0 at some specific rate). This work is in progress.

• In the traditional kernel methods for curve estimation, it has been widely
regarded that the performance of the kernel methods depends largely on
the smoothing bandwidth, and depends very little on the form of the ker-
nel. Most kernels used are symmetric kernels and, once chosen, are fixed.
This may be efficient for estimating curves with unbounded supports, but
not for curves which have compact support or subset of the whole real
line and are discontinuous at boundary points. A great advantage of the
wavelet methods in statistics is to provide adaptive procedures in the sense
that they automatically adapt to the regularity of the object to be estimated.
Another remarkable advantage of the wavelet procedures is that they can
be very easily used. For future investigations, we will extend our results to
the wavelet estimators.

• We have treated the uniform convergence in both cases when the class of
functions is bounded or unbounded satisfying some moment conditions. It
would be of interest to complete our investigation by considering the weak
dependence. A natural question arises is, how to relax the dependence
assumption on the sequence of r.v. to cope with more general framework
by considering the weak dependence or by assuming only the ergodicity.



Appendix A

A.1 Uniform convergence on a function class

As discussed in chapter 2 we combine Talagrand inequality (Bousquet (2002),
Steinwart and Christmann (2008)) and (Sriperumbudur and Steinwart (2012)) VC
type bound to obtain our result. We derive a uniform convergence for a more
general class of functions (for more details see Kim et al. (2018)).

Theorem A.1.0.1 Let (Rd,P) be a probability space and let X1, . . . ,Xn be i.i.d. from
P. Let F be a class of functions from Rd to R that is uniformly bounded VC-class with
dimension ν, i.e., there exists positive numbersA,B such that, for all f ∈ F , ‖f‖∞ ≤ B,
and for every probability measure Q on Rd and for every ε ∈ (0, B), the covering number
N (F , L2(Q), ε) satisfies

N (F , L2(Q), ε) ≤
(
AB

ε

)ν
.

Let σ > 0 with EPf
2 ≤ σ2 for all f ∈ F . Then there exists a universal constant C not

depending on any parameters such that

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣
is upper bounded with probability at least 1− δ,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣
≤ C

νB
n

log

(
2AB

σ

)
+

√
νσ2

n
log

(
2AB

σ

)
+

√
σ2 log

(
1
δ

)
n

+
B log

(
1
δ

)
n

 .

Let X,X1, . . . ,Xn be i.i.d from a probability space (H,A,P) with comment distri-
bution. Let G be a pointwise measurable class a real valued functions defined on
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H. Further let ε1, . . . , εn be a sequence of independent Rademacher random vari-
ables independent of X1, . . . ,Xn. Let G(·) be a finite-valued measurable function
satisfying for all x ∈ H,

G(x) ≥ sup
g∈G
|g(x)|,

and for some ν > 0, C <∞

N (ε,G) ≤ Cε−ν , 0 < ε < 1;

with
N (ε,G) = sup

Q
N (ε

√
Q(G2),G, dQ);

where the supremum is taken over all probability measures Q on (H,A) for
which 0 <

∫
G2dQ <∞ and dQ is the L2-metric. In our proofs, we make frequent

use of the following moment bound, established in Proposition 1 of Einmahl et al.
(2005).

A.2 Empirical processes tools

Recall the definitions introduced from empirical process theory in the second
section. Keep in mind that the class G denotes a generic class of functions with
envelope function G(·).

Proposition A.2.0.1 (Proposition 1 of (Einmahl et al., 2005))
Let G be a pointwise measurable class of bounded functions such that for some constants
C, ν ≥ 1 and 0 < σ ≤ β and G(·) as above, the following conditions hold:

(i) E [G(X)2] ≤ β2;

(ii) N (ε,G) ≤ Cε−ν , 0 < ε < 1;

(iii) σ2
0 := supg∈G E [g(X)2] ≤ σ2;

(iv)
sup
g∈G
‖g‖∞ ≤

1

4
√
ν

√
nσ2/ log(C1β/σ), where C1 = C1/ν ∨ e.

Then we have for some absolute constant A,

E

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
G

≤ A
√
νnσ2 log(C1β/σ). (A.2.1)
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Corollary A.2.0.2 Let G be as in Proposition A.2.0.1 (i)-(iii), and instead of (iv) assume
that

(v) supg∈G ‖g‖∞ ≤ U , where σ0 ≤ U ≤ C2

√
nβ, and C2 = 1

4
√
ν logC1

.

Then we have

E

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
G

≤ A{
√
νnσ2

0 log(C1β/σ0) + 2νU log(C3n(β/U)2)}. (A.2.2)

A.3 Talagrand’s inequality

The following inequality, which is essentially due to Talagrand (1994) (see also
Ledoux (1997)), is crucial for our work. Let αn be the empirical process based on
the sample X1, . . . ,Xn, that is, if g : G → R, we have

αn(g) =
n∑
i=1

(g(Xi)− Eg(X))/
√
n,

and set for any class G of such functions∥∥√nαn∥∥G = sup ‖
√
nαn(g)‖.

Theorem A.3.0.1 (?’s inequality) Let G be a pointwise measurable class of functions
satisfying, for some 0 < M <∞,

‖g‖∞ ≤M, g ∈ G.

Then we have for all t > 0,

P

{
max

1≤m≤n

∥∥√mαm∥∥G ≥ A1

(
E

∥∥∥∥∥
n∑
i=1

εig(Xi)

∥∥∥∥∥
G

+ t

)}
≤

2

{
exp

(
−A2t

2

nσ2
G

)
+ exp

(
−A2t

M

)}
,

where
σG2 = sup

g∈G
Var(g(X))

and A1, A2 are universal constants.
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Thesis abstract

In this thesis, we are concerned with the uniform in bandwidth consistency of
kernel-type estimators of the regression function derived by modern empirical
process theory, under weaker conditions on the kernel than previously used in
the literature. Our theorems allow data-driven local bandwidths for these statis-
tics. We extend existing uniform bounds on kernel type-estimator and making
it adaptive to the intrinsic dimension of the underlying distribution, which will
be characterising by the so-called intrinsic dimension. The thesis is divided in
three main parts, we describe as follows. The first part is devoted to general
empirical processes indexed by classes of functions. The results are obtained for
uniformly bounded classes of functions or unbounded with envelope functions
satisfying some moment conditions. The purpose of the second part is the statis-
tical applications to illustrate the usefullness of the main contribution. Applica-
tions include the uniform in bandwidth consistency of the kernel type estimators
for density, regression, the conditional distribution, multivariate mode, Shan-
non’s entropy, derivatives of density and regression functions. The third part
is devoted to the uniform in bandwidth consistency for non-parametric inverse
probability of censoring weighted (I.P.C.W.) estimators of the regression function
under random censorship. These new results are applied for the non-parametric
conditional density and conditional distribution functions.

Keywords : Conditional empirical processes; VC-classes; Kernel-type estima-
tors, density function; regression function; censored data.
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Résumé de la thèse

Dans cette thèse, nous nous intéressons à la convergences uniforme en terme
de fenêtre de l’estimateur à noyau de la fonction de régression, en utilisant la
théorie moderne des processus empiriques, sous des conditions très générales
sur le noyau par rapport à la littérature existante. Nous obtenons des résulats
de convergence uniforme en terme de fenêtre adaptative à la dimension intrin-
sèque pour une famille large d’estimateurs à noyau. La thèse est divisée en trois
parties principales, que nous décrivons comme suit. La première partie est con-
sacrée aux processus empiriques généraux indexés par des classes de fonctions.
Les résultats sont obtenus pour des classes de fonctions uniformément bornées,
ou non bornées avec des fonctions enveloppes satisfaisant certaines conditions
de moments. La deuxième partie a pour objet les applications statistiques per-
mettant d’illustrer l’utilité de la contribution principale de cette thèse. Les ap-
plications comprennent la consistance uniforme en terme de fenêtre des estima-
teurs de type noyau de la densité, la régression, la distribution conditionnelle, le
mode multivarié, l’entropie de Shannon, les dérivés des fonctions de densité et
de régression et les modèles additifs. La troisième partie est consacrée à la con-
sistance uniforme en terme de fenêtre de l’estimateur non paramétriques du type
“inverse probability of censoring weighted” (I.P.C.W.) de la fonction de régres-
sion dans le cadre de la censure à droite. Ces nouveaux résultats sont appliqués
aux fonctions, de densité conditionnelle et de distribution conditionnelle, non
paramétriques.

Mots clés : Processus empiriques conditionnels ; classes VC ; l’estimateur à
noyau , fonction de densité ; fonction de régression ; données censurées.
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