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Notations and definitions

Notations

w: connected bounded open subset of R? with a Lipschitz-continuous boundary, being
locally on a single side of its boundary.

~: boundary of w, 0 € ~.

~(y): arc joining 0 to the point y € ~.

~1: relatively open subset of v such that lengthy, > 0.

Yo =Y\n-

dy: length element along ~.

(v4): unit outer normal vector along the boundary ~.

(Ta): unit tangent vector along the boundary ~, related by 71 = —vs and 7 = v;.

(x) = (21, 9): generic point in w.

2

0o = %, Oup = T T
0, = 1,04: outer normal derivative operator.
0; = 7,0,: tangential derivative operator.

A = 0,,: Laplacian operator.

A? = AA = 9,,0p8p: biharmonic operator.
Q=wx]—-1,1.

'y =wx {1}

dl': area element along 0f2.

v = (z;) = (v1, 72, 73): generic point in Q.
o= 2

Yij (V) = % (aﬂ)j + @-vi).



0% = 0y — 0,003, 0§ = 03.

Ye(v) = 5 (00v; + Ouv;).

d;;: Kronecker symbols.

A > 0: friction coeflicient.

A%, pf: Lamé constants of the material.
QF =wx| —e,¢[.

'Y =w x {*e}.

dl's: area element along 0€2°.

x® = (25

1
0 = 52

i pr— E .
o

) = (71, T, €x3): generic point in 0.

6° : @ — R: mapping for defining the middle surface & of the shallow shell.

@F = {(21, 72, 0°(1,72)) € R, (71, 2) € w}: middle surface of the shallow shell.

a5 = (|OW0°|2 + |0x6°|2 + 1) "2 (=016, —0,6°,1): continuously varying unit vector normal
to the middle surface &°.

©° : (° — R?: mapping for defining the reference configuration of the shallow shell.
O°(2°) = (21, 29, 0% (21, x2)) + x585(21, 22).

QO = @°().

¥ =0 (n).

f‘i = ©°(I'2): upper face of 93

I'= = ©°(I): lower face of Qe

O°(vy x [—¢,¢]): lateral face of Qe

OF: reference configuration of the shallow shell.

dl=: area element along .

n° = (n$): unit outer normal vector along the boundary of Q=

(ff): applied body forces of density in interior of shallow shell.

(95): applied surface forces of density on upper and lower (or lower) faces of shallow shell.

1 ﬁ;, 0): applied surface forces of von Karmén type on lateral face of shallow shell.

(
i€ = ©%(2°): generic point in QF.




u° = (45): unknown vector field.
)

E'f] (ve %(éff}j + éj@f + 0FiE, 0%0¢,): Green-Saint Venant strain tensor field.

i “m~j"m
2e () — L(Aene AenEY. T ; ;
45;(V) = 5(9505 + 0505 ): linearized strain tensor.

o5+ second Piola-Kirchhoff stresses.
0% normal components of v©.
v7: tangential components of v©.
G%: contact force.

G5 friction force.

%: velocity.

915 .

=X: normal velocity.
s, : :
. tangential velocity.

p°: mass density.

P, q°: given initial data.

Ce = (C5jr): compliance tensor.
As = (a5;1,): rigidity tensor.

de: gap function.

—: weak convergence.

—: strong convergence.

Definitions

WeP(.), (s € R, p>1): usual Sobolev space.
| ||s,p..: norm in W#P(.).

| |sp.: semi-norm in W*P(.), (s € N).

H*() = W2(), [ lls. = Il ls2, and [ |o. =1 |z,
A ve = (05) € WH(QF; R3); 0¢, independent of &5 and 95 = 0
V(QE) — 7 o .
on ©%(y; X [—¢,¢€])

K(Q€> = {\75 € V(Qg);f}f\, < don f‘i}
ve = (vf) € WH(Q2: R3); v independent of 25 and v§ = 0
V(QE) = ? « '
on 7 X [—¢,¢€]



K(Q°) = {ve € V(Q°);05 < d° on T }.

v = (v;) € WH(Q; R3); v, independent of x5 and vz = 0
V(Q) = :

ony X [—1,1]

Vi(Q) = Va(Q) = { v e W'(Q);v independent of x5 on v x [—1,1] }.
V3(Q) ={ ve W Q);v=0o0nv x [-1,1] }.
K()(Q) ={veV(Q)uy(e) <d(e) on T}
K(

Q) ={veV(Q);uvs<donl,} with d(e) = d+ O(e).
Q) = v = (v;) € H'(Q;R?); v, independent of x3 and vz = 0 }
on v X [—1,1],0;v3 + O3v; = 0 in Q ’
V(w) = {n=(m) € H'(w) x H'(w) x H*(w);n3 = Bz = 0 on n}.
) =A{

V(G = Ve e W1’4(Q5;]R3), aa"t (QE R3), 0 independent of 5§ .
and 0§ = 0 on ©%(y; X [—¢,¢])
K(QF) = { vo e V(Qe);05 < d°on T2 }.
© = (vf) € WH(Q5 R3); 2 € WH(Q5; R3), v¢ independent of x§
V(Qg) = ot «a .
and v§ =0 on y; X [—¢,¢]

K(F) ={ vv e V(¥);05 <d®on T }.

v = (v;) € WH(Q; R?); &¥ € W4 (Q; R?), v, independent of x5
V(Q) = ot :

and vy =0 on v, x [—1,1]
B veWH(Q); 2 e WH(Q), v independent of z3

Vi) = Va(@) on 71 % [21,1] '
Vs(Q) ={ v e WH(Q); 2L e WH(Q),v =0o0ny x [-1,1] }.
K()(Q)={ veV(Q);un(e) <d(e)onTy }.

KQ)={veV(Q)ivy<donT, }.
VKL(Q) = { vV € V(Q);@ﬂ]g + Oqv; = 01in }
Krp(92) = { v € Vkr(Q);v3 <don T, }

K(w) ={ne€ V(w);ns <din w}.
K={neV(w)n<dinw}
K={neVw);n<dinw}.
S(QF) = L2(QF; 7).

$(QF) = L(QF; S?).

$(Q) = L?(Q; S?).

M?: space of matrix of order 3.

S™: space of symmetric tensors of order n.



Conventions

Latin indices: belong to the set {1,2,3}.

Greek indices: belong to the set {1,2}.

The summation convention with respect to repeated indices is systematically used.

e: designates a parameter that is > 0 and approaches zero.

2¢e: thickness of the shallow shell.

Exponents iso and anis: corresponds to a problem respectively designate isotropic and
anisotropic material.

Indices sta, dyn and c: corresponds to a problem respectively designate static, dynamical

and contact cases.



Introduction

Historical notes

From one century ago it has been appear the justification of the classical von Karman’s
theory of plates. The von Karméan equations, originally proposed by Theodore von Kar-
méan [vKI0] in 1910, which play an important role in applied mathematics.

The Marguere-von Karman equations are two-dimensional equations for a nonlinearly
elastic shallow shell subjected to boundary conditions analogous to those of von Kéarmén
equations for plate. They were initially proposed by Marguerre [Mar3g§| in 1938 and von
Kéarman and Tsien [vKT39| in 1939.

Since these equations attracted the attention of several researchers. However, the
majority of the results obtained were on the static or semi-static models. The questions
of existence, unicity, regularity and stability were the subject of several research tasks.
We quote among them the works carried out by Kesavan and Srikanth [KS83|, Kavian
and Rao [KR93|, Rao [Rao95|, Léger and Miara [LMO05], Devdariani, Janjgava and Gulua
[DJGOG].

Since the remarkable work of Ciarlet and Paumier [CP86| in 1986 on the justification
of the Marguerre-von Karmén equations in Cartesian coordinates by means of the formal
asymptotic expansions method applied in the form of the displacement-stress approach,
the mathematical analysis of these equations knew much progress and developments. Thus
Andreoiu-Banica [AB99| in 1999 justified these equations in curvilinear coordinates. Then
and within the same preceding framework Gratie [Gra02] in 2002 has generalized these
equations, where only a portion of the lateral face is subjected to boundary conditions

of von Karmén type, the remaining portion being free. She shows that the leading term
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of the asymptotic expansion is characterized by a two-dimensional boundary value prob-
lem called the generalized Marguerre-von Karmén equations. Then Ciarlet and Gratie
[CGO6al [CGO6D] in 2006 have described and analyzed two models of generalized von Kar-
mén plates and generalized Marguerre-von Karméan shallow shells, and have established
an existence theorem for the generalized Marguerre-von Karméan equations.

In the dynamical case, some studies were done for the linearized isotropic homogeneous
elastic thin shells, Xiao [Xia98, XiaOTlal, Xia01bl Xia99| studied the two-dimensional linear
dynamic equations of membrane shells, flexural shells and Koiter shells, and proved the
existence and uniqueness of solutions to the dynamic equations for Koiter shells. Ye [Ye03]
improved Xiao’s results on membrane shells and extended them to the generalized dynamic
membrane shells. Yan [Yan06| justified the two-dimensional equations of linear dynamic
shallow shells with variable thickness. The existence and uniqueness of a strong, global
in time, solution of the time-dependent von Karméan equations have been established by
Puel and Tucsnak [PT96]. In this direction, see also Lions [Lio69, Theorem 4.1, Koch
and Stahel [KS93], Bohm [B6h96], Tataru and Tucsnak [TT97], Chueshov and Lasiecka
[CL04, [CLO7]. Li and Bai [LB09|, Li [Li09, [Li10] in 2009-2010 extended the study of the
Marguerre-von Karman equations to the viscoelastic case. In the same way, we quote
the works [CGB10), [CGBI3|, where we identified the dynamical equations of generalized
Marguerre-von Karméan shallow shells and we established the existence of solutions to
these equations using compactness method.

It is well-known that the analysis of convergence of the nonlinear three-dimensional
models towards the two-dimensional models in the elastostatic or elastodynamic cases
is very difficult problem. To our knowledge the method of gamma convergence is the
only method employed effectively until now for such problems. We quote the recent
work of Abels et al [AMMII] where the asymptotic behaviour of solutions of three-
dimensional nonlinear elastodynamics thin plate is studied. They showed that three-
dimensional solutions of the nonlinear elastodynamic equation converge to solutions of
the time-dependent von Karman plate equation. The same question for the nonlinear

elastodynamic Marguerre-von Karman shallow shells equations remains open.
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The problem of a unilateral contact with Coulomb friction attracted attention of many
research workers both in engineering and mathematics. In the case of linearly thin elastic
structures, Paumier [Pau02| studied the asymptotic modeling of Signorini with Coulomb
friction in the Kirchhoff-Love theory of plates by using a convergence method. In the same
way but for the frictionless case, Léger and Miara [LMOS8], LM11] extended the study to
the elastic shallow shell. More recently, Ben Belgacem et al. [BBBT02] modeled the
obstacle problem without friction for Naghdi shell. In this direction, see also Kikuchi
and Oden [KO88| and the references therein for the contact problems in elasticity. For
the nonlinear case, Chacha and Bensayah [CBO0S8| studied the asymptotic modeling of a
Coulomb frictional Signorini problem for the von Karmén plates using the formal asymp-
totic expansion method. In this direction, we quote our work [BCGI3| for justification
of the generalized Marguerre-von Karman equations with Signorini conditions. In the
dynamical case, we refer to Eck et al. [EJKO05| for further references for linear elasticity
and we quote the important result of Bock and Jarusek [BJ09| for von Karméan equations.

For anisotropic materials, the justification by asymptotic analysis has been done
for: linearly elastic plates by Destuynder [Des80], linearly elastic shells by Caillerie and
Sanchez-Palencia [CSP95| and Giroud [Gir9§|, see also Sanchez-Hubert and Sanchez-
Palencia [SHSP92]. In this way but for nonlinear case, we refer to Begehr, Gilbert and Lo
IBGLI1], Gilbert and Vashakmadze [GV0Q] for plates and Chacha and Miloudi [CM12]
for shells.

For numerical approximations, some studies have been done for the von Karman equa-
tions. Miyoshi [Miy76] studied the mixed finite element method for these equations.
Kesavan [Kes79, [Kes80| proposed an iterative finite element method of the bifurcation
branches near simple eigenvalues of the linearized problem of von Karméan equations and
mixed finite element method for the same problem. Brezzi [Bre78| and Brezzi et al.
[IBRRS0, BRRS&I| analyzed a finite element approximations of von Karmén plate bending
equations and studied a Hellan-Herrmann-Johnson mixed finite element scheme for the

von Karmén equations. Reinhart [Rei82| proposed an approximation of the von Karmén
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equations using a Hermann-Miyoshi finite element scheme. Ciarlet et al. [CGK07| studied
the finite element method for the generalized von Kérman equations. Recently, we extend

the results of Ciarlet et al. [CGKOT7] to the generalized Marguerre-von Karman equations

in |[GC14].

Organization of the thesis

The objective of this thesis is to study the asymptotic modeling of three-dimensional
problems of nonlinearly elastic shallow shells, in dynamical case, with and without unilat-
eral contact. More precisely, the aim of this study is to derive, mathematical justification
of a two-dimensional models for nonlinearly elastodynamic shallow shell problems, with
and without unilateral contact. This contact is modeled by the Signorini conditions
with Coulomb’s law friction. The derivation of the two-dimensional models is done using
an asymptotic analysis. Also, to study the numerical approximation of the generalized
Marguerre-von Karman equations.

This thesis is organized as follows:

The first Chapter, concerns the mathematical models of three-dimensional problems
of nonlinear elasticity shallow shell with and without unilateral contact, in static and
dynamical case.

The second Chapter, concerns the formal derivation of the two-dimensional dynam-
ical model for thin elastic shallow shell of generalized Marguerre-von Karman type with
homogeneous and isotropic material, starting from the three-dimensional nonlinear elas-
todynamics problem. It extended the model obtained by Gratie [Gra02] to the dynamical
case. This work was published in [CGB10].

In addition, concerns the study of existence solutions to dynamical equations of gen-
eralized Marguerre-von Karman shallow shells, which identified in this Chapter. Uusing
compactness method of Lions [Lio69]. It generalizes the study carried out by Ciarlet and
Gratie [CGO6D| to the dynamical case. This work was published in [CGB13].

The third Chapter, concerns the formal derivation of the two-dimensional dynamical

model of generalized Marguerre-von Karman shallow shell with nonhomogeneous and

13



anisotropic material.

The fourth Chapter, concerns the asymptotic modeling of the three-dimensional
model of generalized Marguerre-von Karmén shallow shell with homogeneous and isotropic
material under Signorini conditions in elastostatic. This work was published in [BCG13].

The fifth Chapter, concerns the generalization of the results obtained in the fourth
Chapter to the dynamical case.

In addition, concerns the study of existence solutions to dynamical contact equations
of generalized Marguerre-von Karméan shallow shells, which identified in this Chapter.
Using penalization method.

The sixth Chapter, concerns the generalization of the results obtained in the fifth
Chapter to the nonhomogeneous and anisotropic material.

The seventh Chapter, concerns the analysis a finite element approximations of

generalized Marguerre-von Karmén equations. This work was published in |[GC14].
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Chapter 1

Mathematical models of nonlinearly
elastic shallow shell with and without
unilateral contact

In this Chapter, we give the definitions of the kinds of nonlinearly elastic shallow shell
and the associated three-dimensional mathematical models with and without unilateral

contact.
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1.1 Definitions

Definition 1.1 (Shallow shell) A shell is shallow if, in its reference configuration, the
deviation of the middle surface from a plane is (up to an additive constant) of the order

of the thickness of the shell (see Figure 1.1).

1.

Figure 1.1

Let w be a connected bounded open subset of R? with a Lipschitz-continuous boundary +,
w being locally on a single side of v, we assume 0 € v and we denote by y(y) the arc joining
0 to the point y € . Let 41 be a relatively open subset of « such that lengthy; > 0 and
lengthyy > 0, where 75 = 7\7;. The unit outer normal vector (1,) and the unit tangent
vector (7,) along the boundary «y are related by 71 = —vy and 75 = v4. The outer normal
and tangential derivative operators v,0, and 7,0, along v are denoted respectively by 0,
and O;.

For any € > 0, let Q° = wx| —¢,¢[, 'L = w x {£e} and 6° : @ — R is a function of

class C? that satisfies #° = 0,0 = 0 on ;. We define the mapping
O° : OF = R?: ©°(2°) = (1, 22, 0° (21, 12)) + 25a5(71, 22),

for all 25 = (11,79, 25) € QF, where a§ is a continuously varying unit vector normal to
the middle surface ©¢(w). For small enough &, the mapping ©° : OF — ©°(Q)) is a
¢ — diffeomorphism (see [CP86]). We let QF = @(QF), 45 = ©°(y1), I'y. = ©°(T') and

we denote by i° = ©°(z°) a generic point in QF, (7g) is the unit outer normal vector

17



along the boundary of the set Q. The set QF in the absence of applied forces is called the

reference configuration of the shell.
Following the definition proposed by Ciarlet and Paumier [CP86|, we say that a shell

()¢ is shallow if there exists a function § € O (w) independent of € such that 6°(z, z2) =

£0(xy, x2), for all (z1,z5) € @ (see Figure 1.2).

-
——— o ——
-——
e —

L

@E
I

€
Q =

Figure 1.2
Definition 1.2 (Clamped shallow shell) If the shallow shell is subjected to a boundary
condition of place 5 = 0 on the lateral face O%(y x [—¢,¢€]).

Definition 1.3 (Forces of von Kdrmdn’s type) These specific surfaces forces acting on the

portion ©%(y1 X [—¢,€]) of its lateral face, are horizontal and their resultant after integra-

tion across the thickness of the shallow shell is given along ©(y1) and that, accordingly,
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the admissible displacements along ©°(v, X [—¢, €]) are those whose horizontal components

are independent of the vertical variable and whose vertical component vanishes.

These boundary conditions read as:
ug, independent of § and 4§ = 0 on ©° (y; X [—¢,¢]), (1.1)
2_15 ffe{(&zﬁ + &,iﬁazﬂZ) 0 ©°}ugdars = hi, 0 ©F on . '
Definition 1.4 (Classical Marguerre-von Kdrmdn shallow shell) If the shallow shell is

subjected to applied surface forces of von Kdrmdn’s type on the all lateral face ©(y X
[_57 g])

Definition 1.5 (Generalized Marguerre-von Kdrmdn shallow shell) If the shallow shell
is subjected to applied surface forces of von Kdrmdn’s type on the portion (v, X [—¢,¢])

of its lateral face, the remaining portion ©%(ye X [—¢,¢|) being free.

1.2 Three-dimensional problem of nonlinear elasticity

in Cartesian coordinates

Consider a nonlinearly shallow shell occupying in its reference configuration the set O ,
with thickness 2¢.

The shell is subjected to body forces of density (f£) in its interior Qf and to surface
forces of density (g7) on its upper and lower faces fi and [°. We assume that these
densities do not depend on the unknown.

The unknown in the three-dimensional formulation of clamped shallow shell is the
displacement field u® = (u5)(2%,t), where the functions 45 : QF — R are their Cartesian
components that the body undergoes when it is subjected to applied forces. The unknown
u° satisfies the following equations of equilibrium

—05 (6%, +A&,§jé,§a§) = f5in O,
(65 + &,i](?,iﬁf)fzj =0 on ©°(y X [—¢,¢]),
(65, + 67,;07a5)ns = g5 on ©F (I3 UTE),
where the matrix 6° = (67;) : QO — M? called the second Piola- Kirchhoff stress tensor

field.
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Let the Green-Saint Venant strain tensor field associated with an arbitrary displace-

ment field v¢ of the reference configuration O be defined by

E5(v¥) = S (0785 + 0505 + 0505,0565,).

N | —

We assume that the elastic material constituting the shell is nonhomogeneous and
anisotropic, and that the reference configuration is a natural state. The consideration of
the fundamental principle of material frame-indifference implies that the stress tensor ¢

satisfies the following Hooke’s law

A

05 = A?jkl(is)Eil(ﬁE)a

ij
which is called the constitutive equation in Cartesian coordinates of the material, where
As = (G;1;) is the rigidity tensor.

In the important special case where the elastic material is homogeneous and isotropic
and the reference configuration is a natural state, the Hooke’s law is of the following

specific form

03 = A“B (0%)0;; + 2p° B (0F),
where A\* and p° are the two Lamé constants of the material. In this case, the material is

called a Saint Venant-Kirchhoff material.

1.3 Signorini contact conditions and Coulomb friction

law

The most models for the description of contact and friction are the Signorini contact
condition and the Coulomb friction law. The Signorini condition models was proposed
in 1933 by Signorini [Sig33| and the Coulomb law of friction was proposed in 1781 by
[CousI].

We consider that the shallow shell is in contact on f‘fr with a rigid foundation. Let
d® be the normal gap, or separation, between the contact boundary and the rigid surface,
measured along the outward normal direction to fi The fact that the elastic shallow

shell cannot penetrate the foundation means that the normal displacement u%; satisfies

20



uy < d° on I'S . Moreover the contact force G5 are compressive hence G5 < 0 and either
there is contact 4%, = d° or the surface is free G§; = 0, which means G5 (4% — d°) = 0.

Thus the Signorini contact model is then given by the complementarity condition

iy < d°, G5y <0, Gy(ay — d°) =0.

Let A > 0 be the friction coefficient, then the static Coulomb friction law reads as

follows

\G ]<A]GN] :>uT—OonF

1G5 = A|G%| = 30 >0, 65 = —6G5on I
It states that, if |G%| < A|GS|, then the shallow shell sticks to the foundation, that
is 5, = 0. If |G5| = A|G%], then the shallow shell slip to the foundation, that is
5 = 0G5

The dynamical Coulomb friction law reads as follows

Gl < AlGy, |$8HT:00nF5 x 0, oo ,
1G5 = A|G5,| = 30 >0, uT:—(SG‘rsonF6 x 0, 400l .

It states that, if |G%| < A|GS|, then the shallow shell sticks to the foundation, that

oug,

is 5L = 0. If |G| = A|GS], then the shallow shell slip to the foundation, that is

8uT . c
- = —5G

1.4 Formulation of problems without unilateral contact

In this Section, we consider a nonlinearly shallow shell occupying in its reference configu-
ration the set 525, with thickness 2e. The shell is subjected to body forces of density (f2)
in its interior ¢ and to surface forces of density (g5) on its upper and lower faces f‘i and
' . On the portion @(v; x [—¢,€]) of its lateral face, the shell is subjected to horizontal

forces of von Kérman type (hS,h5,0), the remaining portion ©(v, x [—¢, ]) being free.
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1.4.1 Generalized Marguerre-von Karman shallow shell in elas-

tostatic

Consider a nonlinearly elastostatic shallow shell occupying in its reference configuration
the set STZE, with thickness 2¢, its constituting material is a Saint Venant-Kirchhoff material
with Lamé constants A* > 0 and p® > 0.

The unknown in the three-dimensional formulation is the displacement field G* =
(4g)(2°), where the functions 45 are their Cartesian components, satisfies the following
three-dimensional boundary value problem
(0565 + 67,0505) = f7 in €,

u¢, independent of &§ and u§ = 0 on ©° (y; X [—¢,¢€]),
{ o J A (655 + 6750505 0 ©F fupdag = hi, 0 ©F on (1.2)
(05 + 07,015 )75 0 © = 0 on 72 X [—e, €],
(6 + 0%,;0k15)05 0 O = g7 0 ©° on 'y, UTE,

\

where

{ 07y = ATEG, (09)dy; + 207 55 (), (1.3)

B (0°) = $(0505 + 0505 + 0Fas, 0545, ).
This problem studied by Gratie [Gra02| in detail. In addition, when 7 = 7, we obtain
the classical Marguerre-von Karman equations, which have been studied by Ciarlet and

Paumier [CP86].

1.4.2 Generalized Marguerre-von Karman shallow shell in elas-

todynamic

Consider a nonlinearly elastodynamic shallow shell occupying in its reference configuration
the set STZE, with thickness 2¢, its constituting material is a Saint Venant-Kirchhoff material
with Lamé constants A* > 0 and p® > 0.

The unknown in the three-dimensional formulation is the displacement field G° =

(4g)(2°,t), where the functions u5 are their Cartesian components satisfies the following
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three-dimensional boundary value problem

208 A [ A
(5 - 95 (03 + %85 @) = ff in OF x 0, 400,
{ u¢, independent of &§ and u§ = 0 on ©° (y; X [—¢,¢]) x ]0, 400],

% fs {(c A;B + 6255@5) o ©° ygdrs = fALfX 0 ©®° on vy x |0, +o0[,

(Ufj —|— og (95 $)n5 0O =0 on (12 x [—¢,¢€]) x 0, +o0], (1.4)
(65, + 85 )ns o@s—gzo('-)eon (5 uTe) x]0, +o0],
| 16, 0) = 5 amd 25 (0) — 4 in 6,
where
{ p° . the mass density, (1.5)
p%,q° : the given initial data. '

This problem is studied in Chapter 2.

1.4.3 Generalized nonhomogeneous anisotropic Marguerre-von

Karman shallow shell in elastodynamic

Consider a nonlinearly elastodynamics shallow shell occupying in its reference configura-
tion the set 525, with thickness 2¢. We assume that the elastic material constituting the
shell is nonhomogeneous and anisotropic, and that the reference configuration is a natural
state.

The unknowns displacement field 4° = (47)(2°,¢) and stress field 6° = (67;) (2%, )

satisfies the following three-dimensional boundary value problem in Cartesian coordinates:

([ a;;i 85(0 +0k385 @) = f7in F x 0, 400[,
1ndependent of 25 and 4§ = 0 on ©° (y; X [—¢,¢]) x |0, +o0][,
% Jo (65 + 07p0715) © O tugdas = hi, 0 ©F on 71 x |0, +00],
(05 + 0F; R us)ns 0 ©° =0 on (1 X [—¢,¢]) x ]0, +oo, (1.6)
(65 + 0F; ,‘3 us)n 5095 —gZ 0©°on (I, UT<) x]0,+o0],
(A6%);; = 45(8°) + 307870547 i QF x 0, +oc,
L 0°(25,0) = p° and 3“ (z°, O) q° in Q°,

where A .
A5(0°) = 5(9745 + 9545),
p° : the mass density, (1.7)
P°,q° : the given initial data.
The mapping A is defined by

~E _ AE nE
(Ao )z’j = CijkiOkls
A IS5 _ /\E . . AE _ ~e . . . .
where C° = () is the compliance tensor and A® = (aj;;,) the associated rigidity tensor.

This problem is studied in Chapter 3.
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1.5 Formulation of problems with unilateral contact

In this Section, we consider a nonlinearly shallow shell occupying in its reference config-
uration the set 625, with thickness 2¢. The shell is subjected to vertical body forces of
density ( ff) in its interior Q2 its lower face I'° subjected to a surface forces of density
(95). We suppose also that this shell is in unilateral contact with Coulomb friction at
the upper face r < and A its frictional coefficient, such that d is the gap function which
describes the distance between the upper face and the rigid foundation measured in the
normal direction. On the portion ©%(v; x [—¢,¢]) of its lateral face, the shell is subjected
to horizontal forces of von Karman type (h<, h5,0), the remaining portion @¢ (v, x [—¢, ])

being free.

1.5.1 Signorini problem with Coulomb friction of generalized

Marguerre-von Karman shallow shell in elastostatic

Consider a nonlinearly elastostatic shallow shell occupying in its reference configuration
the set 525, with thickness 2¢, its constituting material is a Saint Venant-Kirchhoff material
with Lamé constants A* > 0 and p° > 0.
The problem consists of finding the displacement field 4 and the contact force G¢
which satisfy the following problem in Cartesian coordinates:
( —85(0 + 075 Jeus) = fin O,
{ mdependent of 25 and 4§ = 0 on ©° (y; X [—¢,¢]),
5 [ {65+ 6%85 £) 0 @ }wgdas = hi, 0 ©° on 7,
(65 —i—ak]Aku )n5 0@ =0 on v, X [—¢,¢],

(&fj + ?,ij? us)n5 0 ©° = g; 0 ©° on ', (18)
a5, < d°, G5 < 0,G5 (a5 — df)_o(mrj,
|G | < AIGS| = 5 M —0onle,
| 1G5 = A|Gy y;»aa>o s —5G6Tonf€+,
where
@5, = WER°, 05 = O — G5,R°, 19)
Gs, = Gei®, G2 = G° — G5 1. '

This problem is studied in Chapter 4.
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1.5.2 Signorini problem with Coulomb friction of generalized

Marguerre-von Karman shallow shell in elastodynamic

Consider a nonlinearly elastodynamic shallow shell occupying in its reference configuration
the set STZE, with thickness 2¢, its constituting material is a Saint Venant-Kirchhoff material
with Lamé constants A* > 0 and p® > 0.

The unknowns displacement field 4° = (45)(2°,1), stress field 6° = (67;)(2°,t) and
the contact force G¢ satisfies the following three-dimensional boundary value problem in
Cartesian coordinates:

;

p atZZ _a€<a +0k] )_ f6 m Q€ ]07 +OO[7
1ndependent of #§ and 4§ = 0 on O° (y; x [—¢,¢]) x |0, +0o0],
2% ffs{@gﬁ + Ukﬁﬁg i) 0 @ Yygdas = S, 0 ©F on 7y x |0, +00]
55, + 6,070 0 © — 0 on (3 x [—e,]) x J0,-+oc],
035 + 07,50k $)N500° = g7 0 ©° on I x |0, +oo, (1.10)
& < df,G5 <0 GE(A d‘E)—OonF‘E 10, 400,
|G |<A|G |: T =0onl= x ]0 +o0[,
|G | = A|GY| = 35 >0, 2 — _§Ggon 19 x )0, +00],

w (2°,0) = p, B (3°,0) = q in O,

(4]
(

where

8UN __ ouf ﬁe
gt~ ot )
our _ pac _ Oy he (1.11)

ot T ot ot
This problem is studied in Chapter 5.

1.5.3 Signorini problem with Coulomb friction of generalized non-
homogeneous anisotropic Marguerre-von Karman shallow

shell in elastodynamic

Consider a nonlinearly elastodynamics shallow shell occupying in its reference configura-
tion the set (¢, with thickness 2e. We assume that the elastic material constituting the
shell is nonhomogeneous and anisotropic, and that the reference configuration is a natural
state.

The unknowns displacement field 4° = (45)(2°,1), stress field 6° = (67;)(2°,¢) and

the contact force G¢ satisfies the following three-dimensional boundary value problem in
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Cartesian coordinates:

(

\

paaij — 3565+ 65,000) = f in 0 x ]0,4oc,
mdependent of 7§ and 45 = 0 on O° (y; x [—¢,¢]) x |0, +0o0],
2—15 [- A (Oap T 075001;,) © ©° hygdry = hi, 0 ©F on 7y x |0, +-o00f,
( zaj +kaaku )n 0 ®° =0 on (72 X [ 875]) X ]07 +OO[7
(05 + 88 s 0 ©° =g;io® onI* x 10, +o0[,
(AO )l] - 72]( ) —|: %35 agul in QE ]0 +OO[7
& < d G5 <0 GE(A —d*) =0onT% x]0,+o0],
|G |<A|G |:>——00nF5 10, +o0],
|G | = A|G5| = 30 >0, uT:—éGE on 1'% x 10, +o0]
U (2,0) = p°, &F (4°,0) = ¢ in Qs

Q)

(1.12)

This problem is studied in Chapter 6.

1.6

Conclusion

In this Chapter, we present a new three-dimensional models for generalized Marguerre-

von Karman shallow shell, two models without contact and three models with contact.

These models are reduced (lower-dimensional) to two-dimensional models using asymp-

totic analysis in Chapters 2-6.
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Part 1

Problems without unilateral contact
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Chapter 2

Dynamical equations of generalized
Marguerre-von Karman shallow shells

In a recent work Gratie [Gra02] has generalized the classical Marguerre-von Karman
equations studied by Ciarlet and Paumier in [CP86|, where only a portion of the lateral
face is subjected to boundary conditions of von Karman’s type and the remaining portion
being free. In this Chapter, we extend formally this study to dynamical case. To this
end, we have identified the dynamical equations of generalized Marguerre-von Kérmén
shallow shells. This work was published in [CGBI0]. Then, we establish the existence of
solutions to these equations. This results was published in [CGB13|.
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2.1 Asymptotic Modeling of generalized Marguerre-von

Karman shallow shell in dynamical case

2.1.1 Three-dimensional problem

Consider a nonlinearly elastodynamic shallow shell occupying in its reference configuration
the set S:ZE, with thickness 2¢, its constituting material is a Saint Venant-Kirchhoff material
with Lamé constants A* > 0 and p* > 0.

The shell is subjected to vertical body forces of density (f¢) = (0,0, f£) in its interior
(¢ and to vertical surface forces of density (95) = (0,0, g5) on its upper and lower faces
fi and T2 . On the portion ©%(y; x [—e,&]) of its lateral face, the shell is subjected to
horizontal forces of von Karman type (hS, kS, 0), the remaining portion ©%(y, x [—¢, ¢])
being free.

The unknown in the three-dimensional formulation is the displacement field G* =
(as)(2°,t), where the functions 4 are their Cartesian components, which satisfies the

following three-dimensional boundary value problem:

( ﬁ%ﬁ — 05(65, + 65,0505) = f£ in OF x ]0, 00

1ndependent of #§ and 45 = 0 on ©° (y; x [—¢,¢]) x ]0, 400/,
st {(6 5+6k585 i) 0 ©° bugdas = e, 0 ©F on 4 x 0, +00|

CPE 180
( Vi (05 + 0F; ku )75 0@ =0 on (12 x [—¢,¢]) x 0, +oo,
(65, + 67,05 05)AS o@e =i 0O on (I UT<) x]0,+oo],
[ 0°(2°,0) = p* and 2&° A (2°,0) = ¢ in (),
where

o = X0, + wEs (@),
P the mass densnzy,
P, q° : the given initial data.
First, we rewrite the above boundary value problem (C. PE)”On in the weak form, by

using Green’s formula, we show that any smooth solution of the boundary value problem

also satisfies the following variational problem:

( Find 0 (if,t) € V(QF) vt z 0, such that,
i {p Jo W505d37} + [ (65 + 6% s )ae fdif = [y f 5 05d4°
(V]SE>ZIZ(;1 . +fFiUFE— 93U5dra + f {f b5, 0 ©°) dxs}hg dys,
vve e V(QF), vt > 0,
U° (2°,0) = p° and %2 (2°,0) = ¢ in Q.
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150

- €
dyn, 01 @ domain 7.

Next, we formulate the variational problem (V.P¢)

Proposition 2.1 Let there be a given Ct-diffeomorphism ©°¢ that satisfies the orientation-

1S0

dyn 18 equivalent to the following

preserving condition. Then the variational problem (V.]S‘E)

variational problem
(

Find u®(z°,t) € V(QF) Vt > 0, such that,

% {p€ Jo- uf“z‘sésdxe} + fo o5, b5;0rv; 0% da*

(PVipa Q.+ Jope 0500505 0507 0 = [y f5050°da" + fr . g5050° 3T

[ Ymj~m

+ [, hed S vidashdy, Ve € V() vt > 0,

u®(z%,0) = p® and %(mE,O) =q° in €,

where
uf = @5 0 ©°, ff = ff 0 ©",
g =G5 0O hE = IS, 0 ©F, (2.2)
p; =p; 0 O, ¢; = §; 0 OF,
0505 = by, (a°) B () ,
dif = 6°daF, (2.3)
dls = §°pdr®,
such that )
VEO* (1°) = (0505(r%)) Va© € Qe,
5% (2°) = det VEO%(z°) Va© € QF,
by (0) = ((V°©° ()} ), Vo< € O,
| 3 (2%) = {bsi(a%)bsi(a%)} = Va© € (15 UT2).
Proof.
In the problem (V}SE)%‘;, using the relations 1}1’ we obtain the problem
(P,

2.1.2 Asymptotic analysis

We first transform (Ps)gzon into a problem posed over an open set independent of e.

Accordingly, let
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Q=wx]—1,1[, 1 = w x {£1} and to any point z € (2, we associate the point z¢ € Q¢
by the bijection 7° : & = (11, 79, 23) € Q — 2° = (11, 19, c3) € Q.
To the functions u®, v € V(Q°) and o° € X(02°), we associate the scaled functions

u(e), v and o(e) defined by

ué (2°,t) = 52ua(5)(w,z), ug(2°,t) = eus(e)(x, t),

vE (2%) = 20a(2), 05(°) = evs(x),
0 5(1°,1) = 005 (2) (. 1), 0% (27, 1) = 3003(2) (2, 1), (2.4)
053(2,t) = 64033(6)(:E, t),

for all 2° = 7z € F.

Next, we make the following assumptions: there exists constants A > 0, u >0, p >0
and for some T > 0, the functions f3 € L*(0,T;L*)), g3 € L*(0,T; L*(T, UT_)),
he € L*(0,T; L*()), 0 € C3(w) independent of € and p(e) € V(Q), q(e) € L*(;R3),
such that

g5(2°,t) = etgs(w,t) Vat = m°x € (P UTe),
e (Y1, 92, ) = €2ha (Y1, Y2, 1) YY1, 42) € M,
2) V(z1,72) € W, (2.5)

Using the scalings (2.4)) and the assumptions ([2.5]), we obtain

Theorem 2.1 The scaled displacement field u(e) = (u;(¢)) satisfies the following varia-

tional problem

Find u(e)(z,t) € V(Q) Vt € [0,T), such that,

(P(g))iso At (u(e),v)+ BY (o (e),v)+ 200 (0(c),u(e),v) = F(v)
dyn +e?R(g;0(e),u(e),v),Vv € V(Q),Vt €10, T,

u(e) (z,0) =p(e) and 8‘2,&5) (x,0) =q(e) in

where
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At(u(e),v) = dtg {pr us () vsda }

B (0 (e),v) = — [y05 (e)7(v)de,

C? (o (e),ule),v) = —3 [,0i (e) Bus () Hvsdu,

F(v) == [y fvsde = [ o gsvsdD = [ o [ vadws}dy,
v = 0qv — 0a805v, Ov = O30, 705 (v) = § (00v; + O%v;) .

Proof.
The proof is similar to that of Theorem 3.1 in [CP86],

we have

/ 070y, 0v; 0°da® = 55/ gij (€) ij (v)dz +<"op (e;0(g),v),
s )

/ ijbila 8657”8; vpoda® = ES/Uij (5)819’&3 (6)8?’1)3dx
Qe Q

+ €00 (g0 (e),u(e),v),

f§v§(5£dxa+/ g§v§5aﬂadl“a+/ ke, {/ v(idasg}d’y =
Qe I‘iul"i Y1 —&
1
£d (/ favsdx +/ g3v3dl’ —|—/ he {/ vadxg} dv) +e"or (5;v).
Q ryur— Y1 -1

In addition

d? 5 d
e {pa/ ufvfésdxs} = o { /u3 () vgdx} +e"op(g;u(e), v).
Qe

_j_; {p /Q u;;(a)vgdx} _ /Q 03y ()7 (v)da — /Q 015 () Pus3 ()P =

1
— / favsdx —/ g3v3dl —/ he, {/ vadxg} dy +e’R(g;0(e),ule),v).
Q ryur- 2! -1

Then

The remainders op, oc, or and gp are bounded for all 0 < & < &g, (see [CP8G]). =

We use technics of asymptotic analysis employed by Ciarlet [Cia90] in (P(e))ir,

(¢ designates a parameter approaches zero), we obtain
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Theorem 2.2 We suppose that
(Ll(E), U(€)> = (u07 00) + g(ul’ Ul) + 82(1127 02) e,
with

u’ = () € V(Q), dsuj € C°(Q),

u’ = (uf) € WH(R?), Vp > 1, o), = o) € L*(Q).

Then the leading term u® € Vg (Q) Vt € [0,T] (Kirchhoff-Love displacement field) is

solution of the problem

(

Find u® € V() Vt € [0,T], such that,
(Prep)it” i 1p Jo w§vsda} + [ 08505vad + [ 0050a(uf + 0)Dsvsdc =
KL)dyn
Jo, favsda + fr+ur_ g3vsdl + 2[71 havady,¥v € Vi (Q),Vt €]0,T7,

u’ (2,0) = p° and 88—‘10 (,0) = q° in Q,

where
7o = L ()0 + 2B ), )
E25(0°) = §(0auf + 05ud, + 0au§dpul + 0a00suf + 9500,u3).

Proof.

We introduce the formal series expansions of the scaled displacement and the scaled
stresses (u(e), o(¢)) into the variational problem (P(¢))ie, and cancel the successive pow-
ers of e, until we can fully identify the leading term, for more details see [Cia90), [(Cia97].

n
2.1.3 Equivalence with a two-dimensional problem

We show that the leading term u® of the asymptotic expansions u(e) is characterized by

the following two-dimensional problem
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Theorem 2.3 The components of the leading term u® = (u}) are of the form u® =

Co — 7300C3 and ul = (3 with ¢ = () € V(w) Vt € [0,T), where the field ¢ satisfies the

following limit scaled two-dimensional displacement problem

2/) w 88215{23 773dw - fw maﬂ(VQCB)aaBWSdW + fw Na,ﬂaa(gi’» + 9)357730&,0
(P(w))ié‘% + [, NapOpnadw = [, pansdw + 2 f71 hanady,¥n € V(w),Vt €]0,T],
(3(.,0) = p§ and %(.,0) =q) inw,

where

Map(V3() = —3 {%A@%ﬁ + 4#%&(3} ,
Nag = 28-S, (€) as + 41ES, (C),
Egﬁ (C) = % (804CB + aBCOé + aa985C3 + aﬁeaaCS + aa<3aﬁc3) )

ps = f_ll fadws + gs(., +1) + g3(., —1).

\

Proof. Since v = (v;) € Vi1 (), we conclude that there exists n = (1;) € V(w), such
that vy, = 1, — 230,13 and v3 = 93 (see [Cia97, Theorem 1.4-4]).

(i) We take v = (—x301m3, —3027m3,13), with 3 € H*(w) and 3 = 9,m3 = 0 on v;, we
get

d2
@{p/cgngdx}%—/—:cgagﬁ@agngdx—l—/Ugﬁaa(ﬁg—i-@)agngda:—
Q Q Q

/f37]3d$+/ ganzdl’.
Q F+UF_

(ii) We take v = (1, 1m2,0), with n, € H'(w), we get
/ agﬁaﬁnadx = 2/ haNadry.
Q 71

(iii) Using Fubini’s Formula: [, Fdzr = [ {f_ll Fd:vg} dw, we obtain

P2 e
ﬁ{ﬂ/ﬁ@%dﬁ} = Q,O/WW;H:@W’

/—zgag[g@a/gngdx: —/magaagngdw,
Q w
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/Qaggaa(@ + 0)0pnsda = / Nop0a(Cs + 0)0snzdw,
1
/ fansdx +/ gansdl’ = /{/ fadxs + gs(., +1) + g3(., —1) }nsdw
Q F+UF7 w —1

/agﬁéﬁnadx:/]\_fw@ﬁnadw:Q/ haNadry.
Q w "

Then

0? \
2,0/ng)nz}dw—/maﬁaaBWde+/Naﬁaa(C3+9)aﬂn3dw

1
+/ NogOgnadw = /{/ fadxs + g3(., +1) + g3(., —1) }nzdw + 2/ hanady.
w w —1

71

Next, we write the two-dimensional boundary value problem as an equivalent varia-

tional problem (P(w))je , using Green’s formulas.

Theorem 2.4 If ( = ((;) is a solution of the problem (P(w))&syil sufficiently reqular, then

15 also a solution of the following two-dimensional problem

Find ¢ € V(w) Vt € [0,T], such that,
2'0882C3
+2

85Na5 =01 w X ]O,T[,

— OapMas(V2(3) — NagOas (G +6) = ps inw x 0,17,

G3= 0,03 =0 on v x]0,T7,

(P(w))% Nasvs = 2hy on v, x 10,77,

Mas(V2()Varg = 0 on o x 10, T,

Oamap(V2(3)vp + 0r (Mas(V2G3)vaTs) = 0 on 72 x |0, T7,

Nogvg =0 on v x ]0,T7,

C3 (,0) :pg and % (70) = qg n w.

35



Proof.
Applying the Green formulas, we obtain

—/maﬁaaﬁﬁzsdw = /{(aamaﬁ)’/ﬂ"‘aT (MapVaTp) } nady
w ¥

- /maﬁyayﬂavn?)df}/_/(aaﬁmaﬁ) n3dw,
Y w

/ Nagaa (Cg + 9) 8ﬂn3dw = —/ {85 (Nagaa (Cg + 9)) } 773du)

+ / (NagOa (3 + 0)) vgmady,

v

/Naﬁﬁgnadw = _/ (a@Nab’) ﬁadw—i-/Na/jV/Bnad’Y-
w w Y
Thus

¢ -
/w {prj’ — DapMap — 05 (Napa (C3 4 0)) — pg] nadw  —

/ (85Na5) nadw+/ (Naﬂuﬁ — 2ﬁa> Nadry —/ MasVaVpO,nsdy +
w Y2

~

/ {[9amas + NagOa (G +0)] vs + 0y (Mapvats) f m3dy = 0,
Y2

for all § = (1, 73) € V(w). The functions ha : v x [0, 7] — R defined by
ﬁa = ho on vy x [0,7] and l~za =0 on v x[0,7].

These equations imply that all the factors of n,, 13, and 9,73 vanish in their respective

domains of integration. Then we get

G

2PW - aaﬂmaﬂ - 55 (Naﬁaa <C3 + 0)) = D3 mn w X ]O7T[,

and
95Nos =0 in w x 0,77,
so that

ag (Naﬁaa (Cg + 9)) = Naﬁaag (Cg + 9) inw x ]O,T[,
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consequently

0? -
2’)8_:23 — OupMap — NopOap ((3+6) = ps in w x |0, T7.
For boundary conditions, we get

Nagyg — 2710( =0 on v X ]O,T[,

thus
Nosvs = 2h, ony x10,T],
and
Nasvsg =0 on vy x 0, T7.
We also get
Maslals =0 on vy x 10,77,
and

[8ama5 + Naﬁé?a (G5 + 9)] vg + Or (Maplas) =0 on v, x 10,77,
since Nagrvg =0 on 7y, x |0, T, we conclude that

aamaﬂyﬁ + 0, (maﬁVaTﬁ) =0 on 7y X ]O,T[

2.1.4 Equivalence with the dynamical equations of generalized

Marguerre-von Karman shallow shells

We rewrite the two-dimensional boundary value problem (P(w))i°, as dynamical equa-

tions of generalized Marguerre-von Karman shallow shells as follows

Theorem 2.5 Assume that the set w is simply-connected and that its boundary v is
smooth enough. Let ¢ = ((;) be a solution of (P(w))@"n with the reqularity

(o € H3w), G € HY(w) Vt € [0,T]. Then
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a) The functions ho Y X [0,T] — R defined by :
7La = he on vy x [0,7] andﬁa =0 on v x [0,7],
are in the space H %(fy) and satisfy the compatibility conditions :

/fﬁld’y = /ﬁQd/y = /(1‘1%2 - ngle)d’}/ = 0.
Y Y Y

b) Furthermore, there exists a function ® € H*w), uniquely defined by the relations
®(0) = 0,9(0) = 0,P(0) = 0, such that

Nll = 2622CI)7 NIQ = NQI = —2812@, NQQ = 2811@.

c) Finally, the pair ((3,®) € HY(w) x HY(w) Vt € [0,T], satisfies the following scaled

dynamic equations of generalized Marguerre-von Kdrmdn shallow shells

2p3;t423 + 8“/@:; A%y =2[P, (3 + 0] +p3 inw x 10,77,

A2 = B (¢, G+ 26] in w x 10, T,
(3 =10,G3 =0 on 1 x]0,TT,

(P)fizfn Mas(V2G)Valg = 0 on y2x |0, T,

ODomas(V2(3)vg + Or (Map(V2(3)VaTs) = 0 on vo x 10,77,
b =y and 0,9 = &y on vy x 10,77,

G (,0) = p§ and 52 (.,0) = 4§ in w,

where
Co(y) = =11 [ () hady + y» L hudy + fy(y)(xlih — walu)dy,
O1(y) = -1 [ hady + v, Sy hdy, y= (11, 92) €7,
(D, (] = 0119022 + 020 PD11¢ — 2012P012C.
Proof.

a) From the definition of N,s, and since N,gv5 = 2%01 on v, we conclude that
ha € H2(7).
Hence ﬁa belong to the space € H %(7) and satisfy the compatibility conditions
(see |CGO1), Theorem 4]).
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b) (i) Since the set w is simply-connected and by using the generalized Poincaré theorem
(see [Sch66l, Theorem VI,p.59],[CGOI, Theorem 7]), the equation 95N, = 0 in
w imply that there exist distributions ¢, € D'(w), unique up to the addition
of constants, such that Ni, = 20010, Nog = —20114.

(ii) Since the equation Nj5 = Ny; implies that 9,1, = 0. Another application of
the same result shows that there exist a distribution ® € D’(w), unique up to
the addition of polynomials of degree < 1, such that ¢, = 0,®, ¥y = —0,P
so that Nij = 2050®, N1y = Nog = —2019®P, Nap = 2011 P in w.

c) (i) From N,sv5 = 2h, on vx]0, T, we obtain

~ 1 -
hl = §N1,3V/3 = 87-(82(1)),

~ 1 -
h2 = 5 28V = —87—(81(1)),

then for all y € v, we get

81(I>(y) = —/ ?Lgd’}/ et 62@(y) :/ Eld’}/,
v() v()

712d7 + Vz(l/)/ hidy,

7(y)

9 ®(y) = —1n(y) /

7(y)

Egd’}/ —I—Tg(y)/ haidry.

7(y)

O, P(y) = —mi(y) /

7(y)

Thus

¢ =7, and 0,9 = &, on yx]0,T7.

(ii) Since —0upmap = 8“/@:;“ A2C3, NopOas (G +0) = 2[®, (3 + 0], so that

G 8u(A+p) \a. .
2090 T30ran S @2 ® G w071

(iii) From A?® = $AN,, and 9,5 Nap = 0, we get

e (3A + 2p)

A’P = —
2(A+p)

[C3,Gs + 26 inw x 10,77
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2.2 Existence result for a dynamical equations of gen-

eralized Marguerre-von Karman shallow shells

2.2.1 Dynamical equations of generalized Marguerre-von Kar-

man shallow shells

Theorem 2.6 Assume that the set w is simply-connected and that the functions ﬁa €
L%(y) Vt € [0,T] satisfy the compatibility conditions. Let x € H?*(w) be the unique

solution in the sense of distributions of

A%y =0 in w,
X = ®o and 9,x = Py on 7, (2.7)
® € H2(v), 1 € Hi(y)

and let

E:W,g:@g&ézﬁe,f:@pg,izﬂb—x- (2.8)

The pair (G3,®) € HY(w) x H*(w) Vt € [0,T], satisfies the scaled dynamical equations
of generalized Marguerre-von Kdrmdn shallow shells in the sense of distributions, if and

only if, the pair (€,®) € V(w) x HZ(w) Vt € [0,T), satisfies

(2025 — usmas(V2E) = 208 + x,€ + 8] + £ inwx]0,T],
A2 = —1[€, €+ 26] in wx]0, T,
£€=0,£ =0 onyx]0,T],
(P & Mas(V2E)vavs = 0 on 12x]0, T,
Damas (V2 + 0-(map(VEE)vaTs) = 0 0on 12x]0,T7,
& =9,d =0 onyx]0,T],
£(,0) = &(.) and %(.,0) = & () in w.
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Proof.
By classical elliptic theory, there exists a unique function y € H?(w) such that
A?y =0in w, x = g and J,x = ®; on 7 (see [Cia97, Theorem 5.6-1]). Letting d=d—y,

we clearly have
A20 = A20 in w x 0,77,
¢ =0,0=0o0nvyx]0,17.
Using the functions &, 5, f and ® defined in |D the scaled dynamical equations of

generalized Marguerre-von Karman shallow shells presented in Theorem is equivalent

to the scaled problem (P)ic . =

2.2.2 Existence theory

The asymptotic analysis carried out in the first part in this Chapter is purely formal.
In what follows, we establish the existence of solutions to the dynamical equations of
generalized Marguerre-von Karmén shallow shells, by adapting a compactness method.

First, we use the following Lemma
Lemma 2.1 If (§,n,x) € [H*(w)]® such that
£=0,£=0o0n~vy and x = 0,x =0 on 7,

then

/w[é,n]xdw = /w[x,n]fdw- (2.9)

Proof.
Since C=(w) = H*(w), let the functions &, 7, and y in C*™(@), we write

[57 77] = 6711(5)2277-5) + 822(61177.5) - 2312(31277-5)-

Integrating by parts, we obtain

/[S,n]xdw—/[x,n]fdw =
/X{8227781§V1 + 811n82§y2 — 812778251/1 — 6127]@1§V2}d*y

~

- / E{Dan01 X1y + 011102 X V2 — O12NDax V1 — O12nO1 X Ve }d7y.

o
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If¢=090,£ =0o0n~v and x = 0,x = 0 on s, consequently

/w[&??]xdw — /w[x,n]é“dw =0.

Theorem 2.7 Assume f € L*(0,T; L*(w)), & € V(w) and & € L*(w), then there exists

a solution (£,®) to the problem (P)ize, such that

§€ L>(0,T;V(w)),
5 € 20, T 12(w), (2.10)
& e L>=(0,T; H2(w)).

Proof.

Denote by Gy the inverse of A% with homogenous Dirichlet boundary condition in w

(the Green operator), we write

o — —%GQ [§,§+2§] in w x ]0,T].
Then
0%¢ ) 1 ~ q
2,0@ — Oapmag (V) =2 |:—§G2 [§,§—|—29] +X,§+0} + finw x]0,7T7.

From ([2.10), we get
B+ x.€+0] € L=(0, T L (w)),

S0

dyns We have

and for the first equation in (P)

g—ig c L>(0,T; H ' (w)),
so that the initial conditions make sense.
Step 1: (Faedo-Galerkin approximation)
Let w;, i > 1 denote an orthonormal basis of the Hilbert space V' (w) and let V,, denote,
for each integer m > 1, the subspace of V(w) spanned by the functions w;, 1 <i < m.

We construct the Faedo-Galerkin approximation &,,(t) of a solution in the form
Em(t) =D i (t)w;.
i=1
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So the function &, (t) is the solution of the following approximate problem

(2p [, Zlwidw — [ Bapmip (V2Em(1)) wjde =

2 [ |G [60 (00,60 (0) + 28] + X 60 (8) + ] wydeo + [ s,
, 1<j<minwx]0,T],
(P)ign | €n(t) = B () = 0 on 7% 10, T,

Mas (V2Em(t)) vavs = 0 on 2 x 10, T,

ONION: (V Em(t)) vg + Or (Map (v2€m(t)) VaTp) = 0 on X 10,77,
\ fm (" ) gOm( ) and (%m (’O) - flm() n w,

and we have

Eom € Vi and &o — & in V(w), & € Vi and &,y — & in Lz(w).

Now, define
B, (t) = —%G2 [€00). (1) +20] inw x 10,77 (2.11)

and note that
A2, (1) = —% [5m(t),5m(t) + 25} in w x 10,77, (2.12)
d,,(t) € H2(w), (2.13)

S0

so that we may rewrite the first equation of (P,,)40, as

20 [ LoD iyt alenit). ) 2 [ [Bu(0,60(0) + 8] s =

2/ [X,gm(t) +§] wjdw+/fwjdw L 1<j<m inwx]0,T], (2.14)
where
2F
a({, 77) = m /[AfA?] — (1 — 0’){811&8227”] + 822581177 — 2812&81277}]61&). (215)

The constants £ > 0 and o €]0, %[ are respectively the Young’s modulus and the
Poisson’s coefficient of the constitutive elastic material of the shallow shells.

In general ®,,(t) is not in V,,, one assures the existence of &,(t), and therefore of
®,,(t), in an interval [0, %], tm > 0 (see [Lio69, Theorem 4.1]).

Step 2: (A priori estimates)
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Multiplying a“" on both sides of ([2.14]) and summing on the index 7, we obtain

op [ FL00n0, e, Kl

5008550 [ %

/fﬁfm dw in w x]0,T7. (2.16)
Since we have
0%&m (t) O (t) () (%m( )
o [ St =t [ 12 Sne=e,

and since a is elliptic, we conclude that there exists a constant a > 0 such that

a(En(t),&n(t) = all&n®)Il ).

thus
(), 220y = Lo 0).60(0) = S D6ttt

Since @,,(t) € Hg(w), we infer by use of [Cia97, Theorem 5.8-2 | that

Using (2.12)), we get

o 0D,
atAq) m(t) = A <I>at(t)
- g S 0 [6u(t). (1) +20]
- 1[0 ¢ ] - L, 22
{85’””&”() }

which yields

—2/w{‘%m(> En(t) + ”} D, ()dw = 2[J[A2M]§>m(t)dw

ot

_ /w [Aaq)g;(t)]m%m(t)]dw

d ~
= — [ |A®,,()]*d
i [ 188 0P

d ~
= —||AD,,(D)||? .
Zl1a&, )3,
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Since Z2W ¢ V(w), ie., L2l — 9,[%20] — 0 on 4, and x = d,x = 0 on 7o, then

ot
applying Lemma [2.1] gives

z/w[x,gm()w} 858t(t)dw _ z/w[afaLt(t),gm(tHﬁ} \duw

ot ot

P, (1)
= -2 [ A2 d
and we have
0%, (1) ax
20%Pm 2 _ 2
/WA o dt/A(p ).xdw /Aq) d
From ) and ({ , it follows that
/A2CI> )oxdw = —/ t).A*ydw = 0,

and since the function y is independent of ¢, so that

- x
2 _
/WA D, (1). tdw = 0,

thus

8&%(15)
2— p—
/w A ETa xdw = 0.

Then ([2.16) can be written as

afm ( ) aém (t>

{II

B+ 306 (®): n(e)) + 1ABAOIRY = [ £

which, by integration from 0 to ¢, yields

[ %2+ Jaenlr) ) + A7) B i =

/0 t{ /w faggy)dw}dr

Hence, there exists constants C; > 0 and Cy > 0 such that

O&n(t e} = '
p||%||3w + Sl6n Dl + 18801 < € [ 171Bur

afm 8£m (0] ~
+0s [ 122 st + o1 Z2 O+ S0 + 18800V,
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Since
B, (0) = 3 [60(0), 6a(0) + 20]
then, there exists a constant C3 > 0 such that
[A®,,(0)]low < Cs.

Thus, there exists a constant Cy > 0 such that

A2 2+ Sln @l )+ 18T 1R < O+ 02 [ 122 i
for all t € [0, T, which implies that ¢, =T
Then, via Gronwall’s inequality, we conclude that
Em(t) € L*°(0,T;V(w)), (2.17)
aggt(t) € L>(0,T; L*(w)), (2.18)
®,,(t) € L=(0,T; H2(w)). (2.19)

Step 3: (Passing to the limit)

From (2.17)-(2.19), we observe that there exists &,(¢) and ®,(t) such that (weak conver-
gence is denoted —)

Ea(t) — &(t) in L*(0,T;V (w)) weaks,

8fgt(t> N ag—(tt) in L>(0,T; L2(w)) weaks,

®,(t) — B(t) in L®(0,T; H2(w)) weak * .

According to the Rellich-Kondrachoff theorem [LM68, Chap. 1, Theorem 16.1|, the com-
pact imbedding of H?*(wx]0,T[) into L*(wx]0,T[) implies that

(1) — &(t) in L*(wx]0,T]). (2.20)

Let ¢;, 1 < j < jo be functions of C'*([0,7T]) such that
Jo
$;(T)=0and ¥ =Y ¢; ®w;. (2.21)
j=1
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For m = n > jy, we obtain

2 [ Terlt) () + afea(t). o(t)) ~ 2 [ [0 60 48] v =

2/w [X,gn(t)+5] ¢(t)dw+/wf¢(t)dw in wx10,7].

Thus

/ ([ Zelvair+ [ aeo.vma

—2/ {/ (t)dw}dt = 2/ {/ X Ealt +0] Y(t)dw)dt

/0{/wf¢ Ydw}dt in w x 10, TY,

[sgemn Lot

- / £1,0(0

and we have

Since ¢ (T') = 0, we also obtain
/ olalt), U0 -

1%
/{/ (t)dw}dt =
/{/ X &n(t) +0 dw}dt+/ {/ﬁp Ydwhdt +

2p/§1n@/z 0)dw in w x ]0,77.

From (2.13)), we get

/0 Y /w [,(0). (1) + 9] w(t)d} s = / { / 1) + 0)dwhdt,

and we have

[@n(t), ()] = [@(£), (1)] in L*(wx]0, T).
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Then, because &,(t) — £(t) in L?(wx]0,T[), we obtain

/0 Y /w [,(0).€(0) + 8] wnydw}dr — / { / £) + B)dw}dt
_ / ( / O()dw} .

[ &n(t) + 0] = [x, £(t) + 6] in L*(wx]0,T7),

/OT{/W[X,gn(t)w (Bdw}dt — /{/ Y E(0) + 8] ()}t

Then passing to the limit in , we obtain

~op [ 200 Dsgar / Ta(f(t)>¢(t))dt -
/{/ Y(t)dwdt =
/{/ X, E(t) +0 dw}dt+/ {/f@/) (Ddwtdt +

2,0/ &19(0)dw in w x 10,77, (2.23)

We have

thus

for all ¥ of the form (2.21)).
Passing to the limit, we deduce that (| still true for all

Y(t) € L*(0,T;V (w)) such that W() € L2(0 T; L*(w)) and ¥(T) = 0 (this comes from
the density of functions of the form (2.21)) in the space of functions ¢ (t) € L*(0,T;V (w))
such that 220 ¢ 12(0, T; L*(w)) with ¢(T) = 0 see [DL72, [LMGS]).

Then (£, ®) satisfies

and

%

Taking into account (2.17) and ([2.18]), and applying [Lio69, Lemma 1.2], we deduce
that

£.(0) — &(0) in L*(w),
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and we obtain

£(0) =&n — & in V(w),
with the consequence that
£(0) = &.
It remains to be shown that
AP — —% [5,5+2§] in w x 0,77

Noting that

[€n (1), &) +26] — [€(1), £(¢) +26] in D' (wx]0, TY),
if » € D(wx]0,T]) we obtain

(6, &n(t) +20] — [¢,€(t) + 260] in L*(wx]0, T),

and, from (2.20)), we deduce that

/OT{/W [£n(t),€n(t)+2§ pdw}dt = /OT{/W :¢,£n(t)+2§] &, (t)dw}dt
— /OT{/w :¢,€(t)+25} (t)dw}dt

= /0 K /w £(0),€(1) + 20| pdw}t.
Finally, passing to the limit in for m = n, we have
(1) = —%GQ [e(6).€(t) + 28] inwx 10,77,
which yields

A2D = —% [g,§+2§] in w x 0,7
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2.3 Conclusion

The application of the asymptotic expansions method to the three-dimensional nonlinear
elastodynamic shallow shells, with a specific class of boundary conditions of generalized
Marguerre-von Kéarmén type, shows that the leading term of the asymptotic expansions is
characterized by two-dimensional dynamical boundary value problem called the dynamical
equations of generalized Marguerre-von Karmén shallow shells, which depends on the Airy
function ® and the vertical component (3 of the displacement field of the middle surface
of the shallow shell.

The application of the compactness method to the dynamical equations of general-
ized Marguerre-von Karman shallow shells, shows that there exists a solution to these

equations.
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Chapter 3

Dynamical equations of generalized
nonhomogeneous anisotropic
Marguerre-von Karman shallow shells

In this Chapter, we extend formally the study of the second Chapter to nonhomogeneous
anisotropic material. More precisely, we considered a three-dimensional dynamical model
for a nonlinearly elastic shallow shell with a specific class of boundary conditions of
generalized Marguerre-von Karman type, made of a general nonhomogeneous anisotropic

material.
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3.1 Setting of the problem

Consider a nonlinearly elastodynamics shallow shell occupying in its reference configura-
tion the set (728, with thickness 2. We assume that the elastic material constituting the
shell is nonhomogeneous and anisotropic, and that the reference configuration is a natural
state.

The shell is subjected to vertical body forces of density ( ff ) = (0,0, f;) in its interior
Q¢ and to vertical surface forces of density (§5) = (0,0, J5) on its upper and lower faces
[ and I'°. On the portion ©°(v; x [—¢,¢]) of its lateral face, the shell is subjected to
horizontal forces of von Karmén type (hS,hS,0), the remaining portion ©%(y, x [—¢, £])
being free.

The unknowns displacement field 4° = (47)(2°,¢) and stress field 6° = (67;) (2%, 1)
satisfy the following three-dimensional boundary value problem in Cartesian coordinates:
(PO De(6% + 65,0005) = f£in OF x )0, 400,

@¢, independent of 25 and 45 = 0 on ©° (1 X [—¢,¢]) x |0, +o0],
{ L fs {(o Azﬂ + 6k5(§,§ﬂ2) 0 ©° }ugdas = ]Al‘; 0 ©F on y; x |0, +o0],

(C.P ) (fff] + 05;0507)75 0 ©% = 0 on (72 X [—¢,¢€]) x ]0,400[,
(65 + 65;0705)75 0 ©° = g 0 ©° on ('L UTZ) x ]0, o0l
(A6°);; = a;].(ﬁ ) + 30505 in Q° x )0, +o0],
[ 0° (2°,0) = p° and au (2°,0) = ¢ in O,
where

(%) = 5(0745 + 0545),
p° : the mass density, (3.1)
P, q° : the given initial data.

The mapping A is defined by
(A&E)ij = ézs'jkl&lila
where C¢ = (éfjkl) is the compliance tensor. We suppose that the associated rigidity

tensor A° = (a5;y,) satisfy the following conditions

~E 5E oo (e

a5 (2°) € L8,

ac = 4 __ e __ NE
z]kl jzkl aklw akljl

e >0, a5 TrTs = CTHT

~E __ Q€
ijr Tij — Tyi-

First, we rewrite the above boundary value problem (C.Ps)gzz“" in the weak form, by

using Green’s formula, we show that any smooth solution of the boundary value problem
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also satisfies the following variational problem:

¢

Fmd (05, 6%) € V() x 2() w > (), such that,

dt2 {P fQE uivfdx }+fﬂs zJ%j d‘% +an Afjajs aw ¢ =
fQE f3v§dx + frf e ggv?)dl—‘8 + f {f 0, 0 ©F) dx?)}hE d7 ,
(V.Po)ams 8 e € V(§F), 9t > 0,

Joe (A6%)y75dia® — [o. 7575 (0%)di® — § . 750507 0545di® = 0
Ve e 2(F), vt > 0,

U° (2°,0) = p° and 22 (2°,0) = ¢ in Q.

\

In order to transform the problem (V.If’f)ggff into problem posed over the cylindrical
domain ¢, we use the one to one mapping (©°)~! and the relations (2.3).
Let there be a given C!-diffeomorphism that satisfies the orientation-preserving con-

dition. Then the variational problem (V. Pa)‘m}f is equivalent to the following variational

problem:
( Find (u,0°) € V(Q°) x X(Q°) Vt > 0, such that,
<A fQE ufveéad:cs} + Jo 05;b50Rv5 0% da®
+ o 05 0 ORur b5, 05,7 05 da® = [ fsv50°dat + fre ure 95v50°3°dI*
(P )yanis + [, ha{f vidagydy, Vve € V(QF),Vt > 0,

dun Jo (A0®)y750°da* — [, 7 b, Ofu; o dar
CLp el Ocusts, O b dat = 0

Ve € Z(QE),W > 0,
u®(2¢,0) = p® and %(QJE,O) = q° in §F,

where
ui =45 0 ©°,v; = 07 0 ©°, 07, = 05,00, T, =175 007,
(AO-) (AU )UOG z]kl_cmklO@
f§ = [500%, g5 =350 0%, hf = h, 0 €,

p; =p; 0 ©°%, ¢ = g; 0 ©°.

3.2 Asymptotic analysis

3.2.1 The scaled three-dimensional problem

We transform (Pe)ggﬁf into a problem posed over an open set independent of €. Accord-
ingly, let the bijection 7° : x = (21, 2o, x3) € Q — 2° = (21, To, e73) € .

First, we note that, if 6° satisfies 6° = €0 with § € C?(©). Then there exists gy =
g0 (0) > 0 such that the Jacobian matrix VO (2¢) is invertible for all 2 € QF and all ¢

with 0 < e <. Let the functions b;; (¢), 6 (¢) and 5 (¢) be defined by
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where

aﬁ (6) (z) = 0pp + € baﬁ (g;21,9),
bas (€) (z) = £(0ab(x1, 22) + 52ba3 (g;21,22)),
bys (¢) (z) = —8(856(561,362) + €2b3ﬂ (6521, 79)),
bz (e) () =1+¢ b33 (g;21,x9),
§(e) (z) =1+ £20% (521, 29) ,

\ 6(5)( )—1+62Bu(6,l‘1,$2),

and there exists a positive constant ¢ such that

sup |b§j (e;21,m9) | < ¢,
0<e<eg
(z1,z0)ERD

sup |5ji (e;21,29) | < c.
0<e<eg
(z1,z0)ED

sup |# (521, 32) | < c.
0<e<egg
(z1,x0)€ED

(3.2)

To the functions u®, v € V(2¢) and o, 7° € £(€°), we associate the scaled functions

u(e), ve V() and o(e), 7 € ¥(Q) defined by

1), u5(7%, 1) = eus(e) (@, 1),

x°) = evz(x),

(z, (°
t

([ ug(2°,1) =€2ua( )(@
vg(a°) =€ Ua( ), v5(

aaﬁ(:v t) = 20ap(e)(z,t), 05,
033(33 t) =& 033( )(Qf, )’

Top(1%) = 270p(1), 755(2%) = 77a3(2),

| 753(2°) = elmgs(a),

for all 2¢ = nz € QF.

°,t) =¢ Uag( )(x,1),

(3.3)

Next, we make the following assumptions : there exists constant p > 0 and for
some T > 0, the functions f3 € L*(0,7T;L*()), g3 € L*0,T;L*(Ty UT_)), hy €
L*(0,T; L*(v1)), 0 € C3*(w) independent of € and p(e) € V(Q), q(e) € L*(;R?), such
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that

(p°=¢e%p,
f?f(xavt) = €3f3($,t) Vit =mtx € Q€7
g5(2°,t) = etgs(w,t) Vat = m°x € (I UTE),

1)
h’ <y17y27t) Zh/oz(
0° (1, x9) = €0(x1, x2) V(21,22) € O,
Pe(7°) = e2pa(e)(x) Vaf = nfx € O,

y173/27t) V(Z/la@h) € 71,

p5(2°) = eps(e)(x) Vot =z € OF
g (7°) = 52%(5)(1’) Vit = wfx € QF,
q5(2°) = eqs(e)(x) Va© = 75 € O,

\ zgkl(xg) = Czykl( )( ) Vit =7z € QE.

Using the relations (3.2), the scalings (3.3]) and the assumptions (3.4), we obtain

Theorem 3.1 The scaled displacement-stress fields (u(e),o(e)) satisfies the following

variational problem:

Find (u(e),o(e)) € V(Q) x X(Q) Vt € [0, T], such that,

_|_
)
[\v]
oy
o
Q
©
c

e),v),¥veV(Q),VvteloT],
Ao (e),7) = B’ (r,u(e)) — €% (r,u(e) ,u(e)) =
e2S (g;0(e),u(e),),Vr € B(Q),Vt €10, T,

u(e) (z,0) = p(e) and 2 (2,0) = q(e) in Q,

(P(e))is

dyn

where

Al (2),7) = Jq Capys(€)os(e) Tapde,
B (1 (e),v) = [ (e)7};(v)de,

C(r(e),ule),v) =3 [y
D' (u(e),v) =5 {p Jous (e
F(v) = [y fsvsde + [o o gsvsdD + [ ho{ [ vadas}dy,
v = Oov — 9.0030, O§v = d3v, Y;(V) = 3 (09v; + aj%i) ,

€) 89U3 ( ) vagdx,
vgdx} ,

\

and the remainders R and S are bounded.
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Proof.
We have

/ 0;;biOcv; 0% da” = 55/ 045 (€) 75 (V) da + " op (g0 (€) ,v),
Qe Q

/ 050 Oy 05,05, vf 6°da® - = 55/Uz‘j (g) Ous (5)8?v3d:c
Qs Q

+ €00 (g0 (), u(e),v),

f§v§55dxa+/ g§v§5568d1“5+/ ke, {/ vfxdasg}dv =
Qe Fiul"i Y1 —e

1
£° (/ favsdx +/ g3v3dl’ —|—/ Ne {/ vadxg} dv) +e"or (5;v).
Q ryur— Y1 -1

d? d?
e {pa/ ufvfcsedxa} = 55@ {p/ ug (€) vgdzv} +"op(g;u(e), v).
. v

So that the first equation in variational problem (P®)§"* may be written as

D' (u(e),v)+ B (o(e),v) +2C% (o () ,ule),v) = F(v) +
e’R(e;0 (), ule),v),

where

R(g;o(e),u(e),v) =or(e;v) —op(g0(e),v) —

oc (5; o (5) ,u (E) 7V) - QD(g; u(€)7 V)'
Next, we have

/(Aas)ijfgéadxs = 55/camg(s)aw(s)mgdx—i—ggfl (e;0(e),7),
e Q

/ 70 Opu; 0°da® = 55/T,~j (5)%9]» (u(e)) dz + "op (e;7,u(e)),
Qe Q

1 5
5/£Tfjbii8;ul€bfnjﬁfnuf(5€da}€ = %/anafu?, () (9?u3 (e)dx

+ €oc (g;1,u(e),u(e)).
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anis

dyn May be also written as

Then the second equation in variational problem (P?)

Ao (e),7) = B’ (ru(e)) = €7 (r,u(e) ,u(e)) = *S (50 () ,ule) , 7),

S(g;o(e),ul(e), ) =op(e;m,u(e)) + oc (e;m,u(e) ,u(e)) —o0a(g;0(e), 7).
Now, note that, there exists a positive constant C' such that, for all u, v € V(£2) and

o, T € X(Q)

sup /\QA(a;a,T)|da: < ClofoalTloqs
0<e<en JQ

sup / os(e:mV)lde < Clrloalviie,

0<e<ep JQ

sup / oc(emuv)de < Clrlooluliiolviiio,
0<e<eg JQ

sup /|QF(5;V)|d:c < Clv|io,

0<e<ep JQ

£
swp [ Jeoteu@hvliar < CIZRD1 g alvlhso.

0<e<eo ot?

We can also refer to [CP86] for more details. m

3.2.2 The limit three-dimensional problem

Assume that the scaled displacement-stress (u(e),o(¢)) admit a formal asymptotic ex-

pansion of the form:
(u(e),0(e)) = (u’,0%) +c(u',0") + (u®,0%) +- - -, (3.5)

with
u’ = (u)) € V(Q), 0sul € C° (), u? = (uf) € WH(QR?) Vp > 1, o? € B(Q) Vp > 0,
and

cijri(€)(r) = C?jkl<x) + 5023'135(53) + 520?%1(37) e (3.6)
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with
C?jkl(x) = ciji(0)(2), C]i?jkl € L>(2) Vp=>0.
We also assume that when ¢ — 0

p(e) = p’in V(Q), q(¢) — q” in L*(Q;R?).

We substitute the formal asymptotic expansion (3.5))-(3.6|) into the variational problem

(P(g))gms, we obtain the following limit three-dimensional problem

Theorem 3.2 The leading term (u®, o) satisfies the following variational problem:

(

Find (u°, %) € V(Q) x £(Q) Vt € [0,T], such that,

Jo OnOvadr — |, 0050300500 dx = f% hw{f_l1 vodws }dry,

Y, € Vo (R),Vt €10, T,

% {p fQ ugvgdx} + fQ oROivzdr + fQ cr%(‘)iugﬁjvgdx

— Jo 0030005v3dx — fQ{agjaaeﬁgugf)jvg + U?ﬂﬁiugf)ﬁeagv;;}dx
+ fQ O'gﬁaaeagugageag,vgdx = fQ f3U3dlL’ + fl"+u1", ggvng,

Vg € V3(Q),Vt €10, T],

Jo, 360 5Tapdr — [ TapYas(0®)dz — § [, TapOsu§dpulda

+5 Jo Tap(0a005ul + 03005u,)dx

—i—% fQ Tap (0a005u + 0500,ul)Ozuddx

(P10 ) anis

dyn

—3 Jo Tap0a0030(05u3)*da = 0,

V(1a5) € L2(;S%),Vt €10, T,

Jo Ta3(Batsd + O5ud )dz + [, TazOauldsul)dx
— [ Ta30.005uldx — [, Ta30,0(d5u)*dx = 0,
V(7ag) € L2 R2),VE €10, 7],

fQ T3303uddr + % fQ 733(03ud)?*dx = 0,

V33 € LQ(Q),\V/t € ]O,T[,

u’ (z,0) = p° and aa—‘f (2,0) = q" in Q,
where
(V) = 5 (B + ;).
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Proof. Using technics of the asymptotic analysis method, we first replace u(e), o(e),
and c;5(¢)(x) by their expansions (3.5)-(3.6) in the forms A, BY, C? D! and F. Next
we equate to zero the terms which are independent of & in (P(g))%"  then we show that

dyn
u, 0%) satisfy (PP)%. m
1 /dyn

Theorem 3.3 The leading term u® satisfies the following variational problem:

(

Find u® € V() Vt € [0,T], such that,

LA p [y ulvsda} + [, 00505vadr + [, 00500 (u§ + 0)dpvsda =
(Pg)ggff fQ Javsdx + fuun gsvsdl + fw ha{f_ll Vadws tdy,

Vo € Vien(9),Vt € 10,71,

u (z,0) = p° and 88—‘;0 (2,0) =q° in Q,

where
0o _ 0,—1 EO ( 0
0-046 caﬁ'yé(x) Yo u )’
(02’5715) is the inverse of (cg.5),
E%5(u°) = 5 (0yu + 05ul + 8,005u§ + 8500,u§ + 0,uldsu) .
Proof.

The proof has been divided into 3 steps.

Step 1. The fifth equation in (PP)§ gives

1
(%,ug(l + 58311,3) = O,

so that

dzuy = 0 or dzuy = —2.

Since the inclusion H3(Q2) < C'(Q) and u = 0 on 7, x [—1, 1], the solution dzul =

—2 is eliminated. Hence we obtain
dzuy = 0 in Q. (3.7)
Consequently, the fourth equation in (P )g;gjj reduces to

Ogus + O3ud = 0 in Q. (3.8)
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Step 2. Taking into account the equations (3.7)-(3.8), the third equation in (Pp)§s

dyn
reduces to

1 1
02575025 — Yap(u?) — §aaugagu§ - 5(800851@ + 9500,u3) = 0. (3.9)

We observe that
1
Yap(u?) = 3 (Daug + Oug) -

If (cg’/gvlé) is the inverse of (c) 4. 5), we show that
0,~1 /. 7
Jgﬁ = Coa,B'yé(x)E'(y)é(uo)'

Note that
0,1 .
Cogns(T) = Qs (T) — Aapis(2)iij(T)a z,5(),
where ¢ = (i;;) is the inverse of the matrix (a;3;3).

Step 3. Taking into account the equation (3.7), we next find that the second equation

in (PY)4" reduce to

dyn
d2
j{p/ugvgdx}—I—/Jggﬂavgdx—i—/agﬁf)augf)ﬁvgdm =
dt Q Q Q

/fgvgdx—i—/ g3U3dF, (310)
Q I ur—

From the first equation and the relation (3.8)), we conclude that

1
/0238avgdx:/Ugﬁageaavgdx—i—/Ugﬁagvadx—/ ha{/ vodxs}dy. (3.11)
Q Q Q oGt -1

We replace the integral [, 0030,vsdz in equation (3.10)) by their expression (3.11)),
we find that
d2
— ,0/ ujvzdr ¢ + / 00508vadT + / 00500 (u3 + 0)Jgvsdr =
di? Q Q Q

1
/f3U3d1'+/ ggvgdf+/ ha{ Uadl'g}d’}/.
Q ryur_— Y1 -1
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3.2.3 The limit two-dimensional problem

We use some technics employed by Raoult [Rao85], who assumed that the initial data
@03 = pY and 3 = ¢) are independent of z3 and sufficiently smooth. We also assume
that the initial data p? = @, — 239,p3 and ¢© = 1, — 130,43, such that ¢, and v, are
independent of x3 and sufficiently smooth.

First, we show in the next theorem that (P7)§»" is in a sense of two-dimensional
problem posed over the two-dimensional domain .

To formulate this result, we define the following coefficients

1
02575(1'17552) = /_1 C(;,ﬁtylé(:l")dx?n (312)
1
Cg;ﬁ,ya<x1,x2):/ xgcg’gvla(:c)d:vg, (3.13)
-1
1
C2y5(m1,22) = / w3Cogs(T)das. (3.14)

Moreover we define also the tensors (NZ5) and (m&4*), associated to the Kirchhoff-Love

displacement u®, by
N5 (€) = Caprs ENs(C) + CaprsTr6(G), (3.15)

mg%is(O = Caﬁ'yéE 5(¢) + C s L5(C3), (3.16)
where
E% (€)= % (04Cs + 05Cy + 0,005C3 + 05003 + 0,(305C3),
To5(¢3) = —055Cs,

denote the components of the two-dimensional strain tensor and of the two-dimensional

curvature tensor.

Theorem 3.4 The leading term u® = (u?) is of the form u® = (, — 130,(3 and u§ = (3

with ¢ = (¢;) € V(w) Vt € [0,T]. In addition, the field ¢ satisfies the following limit scaled

two-dimensional displacement problem:

/

Find ¢ € V(w) Vt € [0,T], such that,

2p [, 2 nsdw — [, ms*0agmsdw + [, N2, (G5 + 0)Ipmsdw

+ /. Nggzsaﬁnadw = | psnsdw + 2 f% hanady,Vn € V(w),Vt €]0,T,
¢(.,0) = ¢ and %(.,0) = in w,

(P(w))ign
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where
P3 = fjl fgdxg + gg(., +1) + 93(., —]_)
Proof.

i) From v € Vg (Q), by a standard argument due to Ciarlet (see,e.g., [Cia97, Theorem
1.4-4]), we get

ud = (o — 130,(3 and uj = (3 with ¢ = (¢;) € V(w).

«

ii) We observe that
EJ5(u%) = E% (¢) 4+ 3T 5(C3).- (3.17)
From the definition of 075 and (3.17), we conclude that

1 1
/_ Tasdts = /_1 ngyl&(x) [E95 (¢) 4 2370 15(Cs)] ds

1
- ( /_ 11 cg’gwl(g(iv)d:v;),) E3s (O) + ( /_ 11 xgcgg;&(x)da;g) T.5(C)
CgﬁvéEgé(O + CéﬁydTvd(CS)
N5 (0),
and

1 1
/1 r3005drs = /1 stg’Eylg(x) [E% (€) +2375(G)] das

1 1
= (/_1 1’30275715(«77)(1173) Eg(g (g) + </_1 xgcgzi@;g(I)dI:;) T,Y(g(g:g)
- 0014675E26(O + ngﬁ'yéTvé(CB)

= mI(Q),
iii) First we choose, in (P?)5»*, v € Vg1 (2) with the components
Va(T) = —230am3(21, 72), v3(z) = n3(21, 72),

with n3 € H?*(w) and n3 = d,m3 = 0 on 7.

This choice shows that (P7)3" reduce to

d2
@{p/g},ﬁgdﬂf} —/xgagﬂaagngd:c—i-/agﬁaa((g+9)85773dx =
Q Q Q

/f3773d$—|-/ g3nsdl. (3.18)
Q ryur—
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The second choice of v € V1 (Q) is

with 7, € H'(w).

In this case shows that (Py)g" reduce to

/agﬁﬁgnadx = 2/ hanadry (3.19)
Q

71

Using Fubini’s Formula: [, Fdz = | {f_11 Fdxg} dw, we have
d? 02(3
@{P/QCB,USdSU} =2p i W%d&%

/—$30358a6773dx = —/m‘?.fé“ asN3dw,
Q w

/ 025(9&((3 + 6)0pns3dr = / Ngg"saa(cg + 0)0pn3dw,
Q w

1
/f3773d1'+/ ganzdl’ = /{/ fsdxs + gs(., +1) + g3(., —1) }nsdw
Q F+UF, w —1

= / psnzdw,

/ Ugﬁ(%nadl’ = / N;g“aﬁnadw = 2/ hanadry.
Then
62C3 anis \TaNnis

+/Nggi305nadw: /pgngdw+2/ hanady.

71

Next, we write the two-dimensional boundary value problem as an equivalent boundary

value problem (P(w))

anis

dyn - Using Green’s formulas and equating to zero all the factors of

N, M3, and d,n3 in their respective domains of integration, we obtain
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Theorem 3.5 Assume that the boundary v is sufficiently smooth. Then any smooth
solution ¢ = (G;) of the variational problem (P(w))3r is also a solution of the following
two-dimensional displacement problem.:

[ Find (), ¢) € (H'(w))? x H2(w) ¥t € [0,T], such that,

ants

2
2p8 $— 8015ma6

- — N2E50a5 (¢34 0) = p3 in w x ]0,T7,

ds N =0 in w x 10,77,
CS :aVC3 =0 on 71X]O>T[a

(P(w))gme N&#5vg = 2hg on v x 10, T,
meE varg =0 on vy x 10,77,
DamiY v + O; (mg’éisl/am) =0 ony x 0,7,
Nggisuﬁ =0 ony x|0,T[,
\ ¢(.,0) = ¢ and %(.,0) =1 inw.
Proof.

Applying the Green formulas, we obtain

anis
w

e = [ {(@am)
:

Vg + 0- (m&*vats) } n3dy

_ / e a0, msdry — / (Bagm*) msds,
¥ w

/Nggisaa (G +0) Opmadw =

— [ 400 (5250 (3 + 0))

[ (0. G+ 0) v,

Y

/ N5 Oadw = — / (95Na5™) Nadw + / Nog'“vanady.
w w 0%

&Cs

/w {QPW

ﬁgﬂ%m+/(
A

[ Aumizge + a0 G-+ 0] v + 0r (miovams) b my

72

Then

|

anis

- aaﬁmaﬁ - 3/3 (NSZ"S o (C3 + 9)) - pg} N3dw —

7ggisl/ﬂ - 2%&) Nady — / mz%isyayﬁa”n3d7 +
72
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for all § = (1, n3) € V(w), with the functions ha : v x [0, 7] — R defined by
ha=ha on v x[0,T] and ha =0 on 7, x [0,7].

These equations imply that all the factors of 7, 13, and 9,73 vanish in their respective

domains of integration. Then we get

0? ; < ani :
2p S Bumi® — 0 (N0 (G ) = py im o x 10,7,
and
95N =0 inwx]0,TT,

so that

0 (N30, (G3 4+ 0)) = NF*0ap (G +0) inw x 10,71
consequently

82C3 anis \7anis :
2pﬁ — Dapmeg”® — N33 0up (3 +0) = p3 in w x 0, TT.

For boundary conditions, we get

Nemisys — 2k, =0 on vy x ]0,T],

thus
N3&*vg = 2he on v x 10,77,
and
7;’};“% =0 on v, x|0,T7.
We also get
mgé%isyaug =0 on vy x]0,77,
and

[0am&*® + NZE#04 ((3 + 0)] vs + 0- (m&y*vats) =0 on v, x 10,77,
since N%5*vg = 0 on 7, x |0, T[, we conclude that

anis anis

O vg + 0r (maﬂ VaTﬁ) =0ony x]0,T[.
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3.3 Dynamical equations of generalized nonhomogeneous

anisotropic Marguerre-von Karman shallow shells

anis

dyn 0 the form of

We now rewrite the two-dimensional boundary value problem (P(w))
dynamical equations of generalized nonhomogeneous anisotropic Marguerre-von Kéarmén

shallow shell as follows:

Note that
Ne5*(C) = Nag(C) + N33 (Ga), (3.20)
M () = mag(C) + mys(G), (3.21)
where

Noléﬁ(@ = 02,876675(@7 (3.22)
NZ(G) = C25r5 E25(G) + Cagrs Trs(Gs), (3.23)
miﬁ(é) = C(}méevé(g)a (3.24)
Mg (Cs) = CagnsB25(Cs) + CagrsTao(Ga),s (3.25)

such that

¢ = (G G2)s e45(C) = 5(0,Gs + 05¢,), EN5(Ca) = 5(0,005Cs + 0500, + 0,(a05Ca).-

We assume that C3,. 5, Ch .5 and CZ5 5 are smooth enough functions.

Theorem 3.6 Assume that the set w is simply-connected and that its boundary v is

sufficiently smooth. Let ( = ((;) be a solution of (P(w))%}f with the reqularity

(o € H3(w), (3 € HY(w) Vt € [0,T].
Then

a) The functions he v % [0,T] — R defined by
%a = ho on vy X [0,T] andl;a =0 on v x [0,7],

are in the space H %(7) and satisfy the compatibility conditions

/Eld’y = /Egd’y = /(1’1%2 - $2E1>d’y = 0.
Y Y Y
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b) Furthermore, there exists a function ® € H*w), uniquely defined by the relations
®(0) = 019(0) = 0,P(0) = 0, such that

NS = 205,®, Nt = Ngs = —28,,®, Ngg's = 20,,.

c) Finally, the pair (¢3,®) € H*(w) x H*(w) Vt € [0,T], satisfies the following problem

QPBafz?’ — Dap M3 (G, ®) = 2[®, (3 + 0] + p3 in w x |0, T,
A2 = 1€(¢, @) inw x 0,7,

(3 =10,03=0 on v x]0,TY,

(P S MEm=(C, ®)var = 0 on 49 10, T,

Oo MSE" (C3, @) + O (MSE*(C3, @)vaTs) = 0 on 72 x 10, T,
¢ =Py and 0,2 = Py on v x]0,T7,

(3(.,0) =3 and %2 (.,0) = 3 in w,

where

Po(y) = —u1 [, %2617 +y2 [, ﬁldv + fy(y)(l’l% — zahy)dy,
B1(y) = =1 [, hady + v [, ndy, v = (y1,42) €7,
(D, (] = 011 P2 + 092PD11¢ — 2012PD12C,
Mg (Gs, ®) = Fig(Gs @) +mis(Ga),
£(G3,®) = [C(())za’ycscig;; Fo (G, @) + N2E(G)]
Fls(Cs, ®) = Ol s[O3 (2005® — N7(Ga)) + Ciys (200n® — Ny’ (Gs)+
20755 (—2015% — N (Gs))],

\

such that C5. B Land C oy ~ are the inverse of C ogys and Co g s, respectively.

Proof.
The proof is divided into three steps.

a) The smoothness of functions C? a6 Ca,@»ya and the regularity of functions (; imply that
N € H?(w) and ha € H2 (7).
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The functions ﬁa satisfy the compatibility conditions, to see this, we observe that, if
we choose 7 = (a3 — bxs, ay — bxy,0) for any constants a1, as and b in the variational

problem (P(w))%* we obtain

dyn

Qg /’}Vlad")/ + b/(.’lﬁl’ﬁg — :@Eﬂdfy =0. (326)
v

y

b) Since the set w is simply-connected and by using the generalized Poincaré theorem
(see [Sch66, Theorem VI, p.59]), the equation @ﬂVgg“ = 0 in w imply that there
exist distributions ¢, € D’(w), unique up to the addition of constants, such that
N{mis = 2051hg, NEmS = —2011),.

Since the equation N&@ = N implies that d,1, = 0. Another application of
the same result shows that there exist a distribution ® € D’(w), unique up to the

addition of polynomials of degree < 1, such that ¢; = 9,P, 19 = —0; P, so that
NES = 205y ®, NS = NI = —201,®, Ngo'* = 20, ® in w. (3.27)

The regularities of Nggis € H?(w) imply that ® € H*w). Then & is uniquely
defined if we impose that ®(0) = 9,P(0) = 9,P(0) = 0.

c) (i) From Ngi*vs = 2h, on 7, we obtain

T 1 \7aNLS
hl = §N15 V,B
1 o .
= 5 (AN 4 R
= V1322<I) — V2821<I)
= 87 (82(1))7
T 1 \7aNiS
1 _ _
= 2 (AN )
= —11012P + 1,011 P
= _87' (alq)) )
thus
P (y) = —/ hodry et 0® (y) :/ hidy, (3.28)
¥(y) v(y)
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for all y € ~,

then
0 (y) = 11 (y)0h®(y)+ 12 (y) 0P (y)
= -1 (y)/ hady + vz (y) / hydry.
v(y) 7(y)
(3.29)
So that
9,®(y) = 1 on v,
and
0-®(y) = 1 (y)0h®(y)+ 12 (y) 0 (y)
= —T (?J)/ ?L2d7 + 7o (y)/ ﬁ1d7-
(y) 7(y)
(3.30)
Since
9, (y) = 0,® and @ (0) = 9,® (0) = 0,
we conclude that
® (y) = &g on 7.
(ii) We have
[@,(3+ 0] = 011902 ((34 0) + 022P011 (G5 + 0) — 2012P012 (¢ + 6)
1. o o
= 3 [N$5 002 (C3 4 0) + N{{™ 011 (G + 0) + 2N{5012 ((3 + 0)]
1-
= §ngwaa5 (Gs+0), (3.31)
thus
NG5 Onp (G +0) = 2[@, G5 + 6], (3.32)
From (3.22)), we get
e45(C) = CogsNag(C), (3.33)
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using (3.24)) and (3.27]), we obtain
miﬁ (C_) - 001457502;;§ N;( (E)
= Céﬁyécgé;é(]vggis(o — N2%(¢3))
Cé/m [C?i;;@am@ — N{'(&))

+ (2000 — N3 (G3))
+ 20055 (—2012@ — N (G))]
= Fzﬁ(c& (I))a

which yields

mgs(C) = Fop(Gs®) +ms(Gs)
= M5 (G, ®).
Then, we deduce

2
2,0%
(iii) Notice that
A’ = A(AD)
= A(0wa®)
= %AN;LZ”
= LANLO + NG
We have
Noo = Conns€s(C);

aay

taking into account (3.24]) and (3.34)), we deduce that

€33(C) = CojprsFas(C: @),
thus
Nia = Cgayécié;;fgg(g?n (I))

So that

1 _
A2p — §A[02a750;;7§1:§<(€3,®)+N§f(C3)]

= 126.9)

70

— 8aﬁM§giS(C3, q)) =2 [q),Cg + 6] + P3 n w X ]O,T[

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)



3.4 Conclusion

An application of the technics from formal asymptotic analysis to the three-dimensional
nonlinear system of elastodynamics corresponding to a shallow shell, with a specific class
of boundary conditions of generalized Marguerre-von Karman type, with nonhomogeneous
anisotropic material, shows that the leading term of the expansion is characterized by a
two-dimensional dynamical boundary value problem called the dynamical equations of
generalized nonhomogeneous anisotropic Marguerre-von Karman shallow shells, which
depends on the Airy function ® and the vertical component (3 of the displacement field
of the middle surface of the shallow shell.
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Part 11

Problems with unilateral contact

72



Chapter 4

Asymptotic modeling of a Signorini
problem of generalized Marguerre-von
Karman shallow shell

In the paper [CB0§|, Chacha and Bensayah have studied the asymptotic modeling of uni-
lateral contact problem with Coulomb frictional between an elastic nonlinear von Karméan
plate and a rigid obstacle. In this Chapter, we extend this study to the case of a shallow
shell under generalized Marguerre-von Karmén conditions. This work was published in
[BCG13].

73



4.1 Setting of the problem

We suppose that QO is occupied by a nonlinear, elastic, homogeneous, isotropic body.
In its natural configuration: a shallow shell of thickness 2¢ whose Lamé’s constants are
denoted A > 0, u > 0 and assumed to be independent of £. The shallow shell is supposed to
be subjected to applied body forces of density f¢ € (L2(€2))3, its lower face I® = ©°(I<)
subjected to a surface forces of density §° € (L*(I'2))? such that f = g = 0 and to
applied surface forces of von Karman’s type hS, € L2(3%) only on a portion ©°(; x [—¢, £])
of its lateral face, the remaining portion ©¢(y, X [—¢, £]) being free. We suppose also that
this shell is in unilateral contact with Coulomb friction (A its coefficient) at the upper
face fi = ©°(I"0) against a rigid foundation, where d#(> 0) is the gap function defined
on IS which describes the distance between the upper face and the foundation measured
in the normal direction. We supposed, also that the system is in static case.

The problem consists of finding the displacement G° and the force G¢ which satisfy
the problem:

(—05(6% + 67,0505) = f in
4¢, independent of 25 and 4§ = 0 on ©° (71 X [—¢,¢]),
25.[{ S5 T 0550505) 0 O }updas = hi, 0 ©F on i,
(C.Po)se, (05 + 0F; ku £)ns OGi—Oon”ij[ 655],
( IR ku)n 00° = gf 0O on '
o < &5, Ga < 0,65 (i df)—OonFi,
|G |<A|G |:>uT—00nF
L 1G5 = A|GS| = 30 > 0, 65 = —0G5, onI'%,

where

ée = (65 + o7,0005)A5,
Gf e G = G — Goie,
Afj = /\E,ipg )0 +?ME% (8 ). A
B (6°) = 5(8?&; + 0505 + Ofug 05 ug,).
Multiplying the system of equilibrium equations in (C.Pa)%;g,c by functions ¢f and in-

tegrating over the set O, after that using the Green formula and the boundary conditions

we obtain the following variational formulation of the problem (Oﬁs)ggc
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Find (¢, G%) € K() x (L ( [<))? such that,
AE( e V) = LF(v9) + f,yl S (05, 0 ©°)dag)he,dy + (GE,05) ¥ ¥¢ € V(Q),

VP€ 180 1) Z
(VP (G5, 5 — %) > 0, Vo° € K(9),

(G, %% — 05) + (A|G5 |, |95 — [a5]) > 0, V3¢ € V(¥),
where

As(ff Ve an o5 + kaa,iu )05A€d§:5,
er 05 di® + [pe GF bedre,
< i>¢f = Jpe Gigidle.

150

¢tac Into problem posed over the cylindrical

In order to transform the problem (V.P?)
domain ¢, we use the one to one mapping (©°)~! and the relations (2.3)) obtained from
this transformation.

Then by a simple computation, we obtain

S0

Proposition 4.1 Suppose that € is small enough. Then the variational problem (V.ps)

sta,c
15 equivalent to the following variational problem :
([ Find (v, G) e K(QE) « (LA(T2))?, such that,
(Poyie. Af(uf, ve) ) + f he{ [7. vidastdy + (GE,05) ,Wve € V(QF),
(G, vy — uN> >0, Vv e K(Q°),
| (GT v —ug) + (AGR], [vE] = |ug]) = 0, Vve e V(),
where
([ A5(uf ) = [, 0%t O0s 0 da + [, 0% b O5u b, 05,0 0° da?,
LE(v) = o f5v50°das + frf_ g5v50° 8edle, (G5, vf) fre Giviocpedle,
ui = a; o ©°, of; —6fjo@5,Gf:Gfo®g,ni — A0 O, ff = ff0O° | ¢F = §f 0 OF,
he = hi 0 ©°, & = d° 0 ©".

\

4.2 Asymptotic study

4.2.1 The scaled problem

Let Q = wx] — 1, +1[,T: = w x {£1},Ty = v x [-1,+1] and z = (2;) € Q denote a

generic point in the set €.
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We now transform the domain €2° having the thickness 2¢ into fixed domain (2 independent

of € via the simple mapping: 7° : @ — Q° where z, = 2%, 2§ = x5 hence:
1

7T5<Q) = QE,ﬂ_E(Fi) — I‘i,WE(FO) —Te. 65 = 8a78§ _ —83
€

0 Yo

We introduce the scaled displacement u(e), test function v(e) and stress tensor o(¢)

for all = = n°(x) as follows:

{ ug (2°) = %uq (¢) (), u5(a) = cus () (2), v (2°) = *va (¢) (x), v5(2%) = vs (¢) (x)
0ap(2%) = €005 (€) (1), 055(2%) = %003 (€) (), 055(2°) = €033 (€) ()

Noting that the unit normal n° on fi reads n° = (—30°+0(e?), —050°+0(?), 1+0(e?)).
If we pose G; = O_ijn? such that n’ = (—0,0, —0,0,1) then a simple computation gives:
GE, =G, + O(e),
G =e*Gs + 540ijn§6fu3 + 0(£9),

then
v = (e2(vy — vsnf) + O(e"), €2 (vy — v3nl) + O("), O(?)),
vy = eun(e),un(e) = vgng + 0(&?),

and
Gs = (%G1 + 0(£°), 3Gy + O(e°), (G — Gin?) + O(£9)).

We also introduce the scalings: fS = 3 f3, g5 = €*g3, hf, = €®h,, and d° = ed(e) where f3,
g3 and h, supposed independent of e.

By using the assumptions and notations above we obtain the result:

Proposition 4.2 For e small enough the scaled solution of the problem (P°)%5 . solves

the following problem:

Find (u(s), G(c)) € K(£)(Q) x (LA(T'.))? such that,

A'(u(z),v) = L(v) +2 [ havadzsdy + (Gi(e),v:) + [, 015(e)nl0fus(=)vsdl
(P(e))iae 8 +er, Vv € V(Q),

(Gi(e)n? + 015 (2)nlD0us(2), v5 — us(e)) + 2y > 0, Vv € K(£)(),

(Gal€), (va — ual(e)) — (v3 — ug(e))nd) +er3 > 0, Vv € V(Q),
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where

Af( = o0 (€ %J v)dz + [, 04 (e g) &us (g) 83%3(130,
V) = fQ favsdx + fr g3vsdl,
fr e)v;dl,
v = 0av — 040050, v = d3v, V5(v) = 5 (0v; + Ivy)

\

r; are bounded functions.

Proof. First, we infer from assumption 0°(z1,zs) = €6(x1,x2) for all (zy,x9) € @ with
0 € C3(w) that, for 9 > 0 small enough,

b55(2%) = ap + €7rap(e; o1, 2), D3g(2°) = €(0ab + °Tas(e; 11, 22)), big(2%) = —e(050 +
e2r35(e; 1, 12)), b33(7%) = 1+ e2r33(g; w1, x2), 6°(2°) = 1 + e%r5(e; 21, 12), for all 2° € QF,
and 3%(2°) = 1 + rg(e; 21, 29), for all 2 € 'S UTY, where the real-valued functions r;;,
rs, g are bounded. (For details, see [CP86, Theorem 3.1]).

Next, we insert the above equalities with the change of variables, we obtain,

/Q 05 bE Ofviadat = ¢ /Qo-ij(f‘:)’yfj(V)d[E +e"pi(e;o(e),v),
/Q o5 by Opus by, 05, v; 6°da® = & /Q 0i;(e)dus(e)0fvsdx + € pa(e; 0(e), u(e), v),

/ fivs6cda® —i—/ gsus6°pedre :55(/ fividx%—/ gividD) 4 €7 ps(e; v),
. 2 -

(G5, v5) = € (Gie), vi) + €7pa(e; G(e), u(e), v),

where there exists a constant ¢; such that, for all u(e) € K(e)(2), v € V(Q), a(e) € £(f2)
and G(e) € (L*(I'y))?,

sup |p1(g;0(e),v) | < cilo(e)loglv]ie,
0<e<eg

sup |p2 (g;0(¢),u(e), v) [ < afo(e)oalule)|iaelviiae;
0<e<eg

sup |p3(e;v) | < cil[vie,
0<e<eg

sup |pa(e; G(e),ule), v)| < au((|GE) 1, +IIGE) 1 r, a1 r VI r, -

0<e<egg
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Diving by €° and combining the above estimates, we get

sup |r1] < e (L4 |o(e)|oa + lo@)|oalu@) i) v

0<e<eg
+ (IGE) -y, +IGEyr, [0El ) VI, )

For finding what the unilateral contact conditions become, we use the relations

(G vy — uly) = " (Gale)nd + Gs(e),vs — uz(e)) + &'ra,
(G5, v — ) + (A G5, IVE] — [0} = € (Gale), (v — 1ale)) — (v — us())l) + &,
where there exists two constants ¢ and ¢z such that for all u(e) € K(¢)(Q), v € K(¢)(9)
and G(e) € (L*(T'y))*,
S [ra| < (G E)ll-yry +IGE -y r Tl e )@y r, + 1V r,),

and for all u(e) € K(¢)(Q), ve V(Q) and G(e) € (L*(T}))3,

sup [rs| < (|G- r, +IGEN -y, @)z r )N r, + VI,

0<e<eg

4.2.2 The two-dimensional problem

We assume that the scaled displacement-stress (u(e),o(¢)) admit a formal asymptotic

expansion of the form:

(u(e),o(e)) = (u°, 0% +e(ut, o) + 2 (u?, 0%) + ... (4.1)
then

Gi(e) = G? + G} +°G? + ..., with G¥ = ijng.

Substituting expansion into the scaled variational problem (P(g))%e ., we obtain:
Proposition 4.3 Assume that 9;u € C° (Q) then the leading term (u°,0°) of the ex-
pansion is a solution of the problem:

([ Pind (0°,0°,G0) € (Vi () N K (Q)) x () x LA(T'.) such that :
Jo 0as08vadr + [ 00500 (ug + 0)0svsdr = L (v) + (G5, v3) +2 [ havady,
Vv e Vi (),

(Pgr)io.

| (G3vs —ug) > 0,¥v e K(Q),
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where
005 = v B2, (10)80g + 21EQ5 (u°),
E25(u®) = L (8,08 + 950, + aupul + 0,005u + 500,18 ,
GY = —09,010 — 02,020 + 03.

Proof. We introduce the formal series expansions of the scaled displacement and the

is0

w20 . and cancel the successive powers of

scaled stresses into the variational problem (P(¢))
e, until we can fully identify the leading term. m
We deduce from the following Proposition that the leading term (u°, 0°) is character-

ized by an unilateral contact problem without friction.

Proposition 4.4 Ifu® is a solution of the problem (Pxr)%0 . such that u), = (o —2304C3

and ud = (3, (Co), C3 sufficiently regqular. Then (), (3 verify the two-dimensional

problem:

Find (¢,) € (H' (w))?, (3 € H* (w),(3 < d,GY € L? (w) such that
—0apMas — NapOas(Cz +0) = b + GY in w

I5Nop = 0in w,

(3 =0,(=0o0nn,

(P(w))io e Nagvs = 2he on v

OaMapVs + 0-(MaplaTs) = 0 on 72,

MagValp = 0 on s,

Nagvg = 0 on 7y

G d—G)=0inw,GS<0inw

where

Map = —3{ 508520300 + 410asCs},

Nos = OB (CVuy + 4pER (), N = 2o

ES5(C) = 5 (0aCp + 05Ca + 0a005C3 + 05004Cs + 0al305Cs) ,

W = [Y fdes + g7, g7 = gi(ar, 22, —1).

\

Proof. The proof will be divided into 3 steps.
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Step 1. First, we show that (Px)% . is in a sense a two-dimensional problem, posed over

the middle surface w of the shell.
—/magaagngdw—i— / NogOa(Cs + 0)0gnsdw —|—/Na58577adw = /(hg + GY)nadw
+ 2/ hanady,¥n € V(w).
Y1
It is known that v = (v;) € Vg (Q) if and only if there exists n = (;) € V(w)

such that v, = 1, — 30,13 and vy = 13 (see [Cia97, Théoréme 1.4-4|). The same

proof works for Gratie [Gra02, Theorem 3]. In (Pgp)%S ., we take test-functions

v = (—x301n3, —13021m3,13), with 13 € H*(w) and n3 = d,m3 = 0 on ;. Next, we
take v = (11,72, 0), with n, € H'(w). The first choice yields

/ 230 D + / 0 0u(Cs + 0)Fpmade = / Fnad + / gatiedD + (G2 ).
Q Q [9] T_

The second choice yields

/Ugﬁﬁgnadx = 2/ hanadry.
Q 71

Using Fubini’s formula to the above integrals, we get

/—xgagﬁaagngda:: —/ma/j@agngdw,
Q w
/S;O'gﬁaa(g3 + G)aﬁWSdiU = / Naﬁaa(C?) + 9)8,3773dw7
1
/f3773d$+/ g313dl+(GS, n3) _/{/ fsdzs+gs(zy, 12, —1)+G3 (21, T2, +1) }nsdw,
Q I_ w —1

/Ugﬁaﬁnadx = 2/ ha%d%
Q 71

where
G, +1) = =09, (., +1)010 — 055 (., +1)020 + 0355(., +1).

Step 2. Applying Green formulas, we obtain

/ [—0agmap — 05 (Nap0a (G5 +0)) — (h3 + GS)] n3dw—

/ (aﬂNaﬁ) N dw +/ (Nagug - 2l~za> Nady — / MapVals0,n3dy+

g V2
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Step 3.

/ { [8ama5 + NopOa (G + 0)] vg + 0, (maﬁl/aTg)} n3dy = 0,
Y2

for all = (1, 73) € V(w), and the functions hq : v — R defined by :

%a =hs on v and TLQ =0 on .
So that, all the factors of 7,, 73, and 0,73 in the above integrals vanish in their

respective domains of integration. (For more details we refer the reader to [Gra(2,
Theorem 5|)

It remains to prove the unilateral contact conditions, in this conditions of ( Py L)iﬁg’c,
we try the test-functions v = d, and then to try v = 2(3 — d, with (3 € H?*(w), we
obtain

GY(d — (3) =0in w.
Taking into account
(Gh,ms—d) >0, for all n € K (),

we obtain

GY <0in w.

4.2.3 Computation of ¢ in case v, =7

In the sequel, we compute the components ¢%. In order to realize this, we suppose that

~v1 = 7 which the case of Marguerre-von Karman conditions.

Computation of o2,

In the identification processus of factors of powers ¥,k = 0,1,2,3, ..., we obtain at the

order €%, the equation

/J%ij (v) dx—i—/a?jf)fug@j%gdx = /fgvgdx—i—/ g3v3dl’
Q Q Q r
1
+ / GYvsdl + 2 / he {/ Uadl'?,} dvy. (4.2)
Iy ¥ -1
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The terms of left-hand side of the equation verify

1
/Qagﬂvzﬁ (v)dx = 5 /Q Jgﬁ(aavg + 0gvo — 0a003v5 — 030030, )d,
0.0 1 0
/ O3V (V) dx = 3 / 0,3 (00v3 4+ O304 — 0a003v3)d,
Q Q

/ a33753 (v) dar = / 03303v3d,
Q Q
/ agﬁazugagvgdx = / oo 3(0au3 — 0,005u3)(0vs — 030053 )d,
Q Q
/agﬁgug@gvgdaj = / 022 (0aud — 0a003u3)D3vsd,
0 Q

/agaagugagvgdx = / 05, 05u3 (V3 — 0a005v3)d,
0

Q

0 50, 050 0 o.,0
/03383u383113d17:/03a83u363v3d$.
Q

Q
The equation (4.2]) with vz = 0 yields

1
/0368a05+/023830a—/025050831)& :2/ha {/ vadxg}d% (4.3)
Q Q Q o' -1

for all v, € H'(Q2) independent of x5 on T.
On other hand

1 1 B
/ha {/ vadarg} dy = 5 / NopOgvadx, for all v, independent of x5 on I'y,
¥ — Q

1

then (4.3) is formally equivalent to the following boundary value problem

03003 = 03003030 — Do in Q,
og3 = Oag(., +1)930 on T', (4.4)
003 = 005(., —1)030 on T'_.
Noting that 025 = %Naﬁ + %I‘g,maﬁ and from the Proposition that 85Na5 = 0 which
makes the compatibility condition f_+11 Do sdrs = 0 satisfied. Then, the explicit expres-

sions of 0¥, are given by

3

a7
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Computation of o),

We take v, = 0 in the equation (4.2)). As dsud = 0, we get

/ 02(0av3 — 0,003v3)dx + / 09303v3dx + / agﬁﬁaug(ﬁgvg — 03005v3)dx
Q Q

Q

+/0238au383v3dx:/fgvgdm+/ ggvgdf+/ vagdr,
Q Q r_ r

+

thus, we see that it is formally equivalent to the following boundary condition problem

—830?‘33 = —830'23(9a9 + aa0'33 + 8g(0258aC3) — 8302/3%@859 + 330'8380443 + f3 in Q,
09y = G + 00 5(., +1)0,0030 on T,
095 = —g3 +005(, —1)0a0030 on T'_.

(4.5)

Such that GY verifies with (3 on 'y the condition
GYd— () =0,G9 <0.
Taking in account that
0 3 9 3 3
830a38a<3d$3 = 1_1(1 — $3)85ma58a§3 + §$3ma58598aC3 + §ma58568agg,

-1

/1 830'23(9&9611‘3 = 2(1 — $§)agmagaa9 + giﬂgmagag@aae + %magageaoﬁ,

s 3 3
/ 8302ﬂ8aC3859d:U3 = El’gmalgaanaﬁe + §ma58aC3859,

-1

x3 1 1 _ 3
/ 83023d$3 = 1—1(31'3 — l’g)aagmag —+ §x3Na58a59 + Zi[f%aamagaﬁe
1

3 1 3 3
+ Z.T%ma,gaa,ge + §8aﬁma5 — Zaama,gage — Zmaﬂaaﬂe

1 -
+ §Naﬁaa697

3 1 = 3 3
/ 05(0n )z = 520 RasPsa + {3000 + Jamaatosts
1 3 3
+ §NaﬁaaﬁC3 - ZaﬂmaﬁaaCS - Z—lmaﬁaaBC:’,-

Then
1 3 3
085 = —1373(1 — 23)0apMap + 1(1 — 23)Mapap(Cs +0) + 1(1 — 23)0pmap0a0

! 23 1 1
+ (1 -+ Ig) / fgdyg — / fgdyg -+ —<1 + Ig)Gg — 5(1 — Z‘g)g; + O'ggga@'
-1 -1

1
2 2
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4.3 Generalized Marguerre-von Karman equations with

Signorini conditions

150

sta.c as generalized

We can rewrite the two-dimensional boundary value problem (P(w))
Marguerre-von Karman equations with Signorini conditions which depends on the Airy
function ®, the vertical component (3 of the displacement field of the middle surface of

the shallow shell and GY as follows:

Proposition 4.5 Assume that the set w is simply-connected and that its boundary v is

smooth enough, and let ¢ = ((;) be a solution (P(w))%° . with the reqularity (, € H?(w),

sta,c

(3 € H (w). Then

a) The functions ﬁa are in the space H%(y) and satisfy the compatibility conditions :

/ﬁld’y = /%Qd’}/ = /(ZL‘lﬁg - ZEQ?Ll)d’}/ = 0.
Y Y Y

b) Furthermore, there exists a function ® € H*(w), uniquely defined by the relations
®(0) = 019(0) = 0,P(0) = 0, such that

N = 2822(1)7 Nip = N21:—2<912‘1>, N22=20119.

c¢) Finally, the triple (G, ®,GY) € H*(w) x H*(w) x L*(w), satisfies the following prob-

lem

EA%(; =2[®,(3+ 6] + hY + GY in w,

A = L (G, G+ 20) in w,

G=0,G=0 ony,

(Piacy Mapravs =0 on 7,

OaMapVs + Or (MapraTs) = 0 on 7o,
d =&y and 0, = &, on ~,

GYd— () =01in w,G3 <0in w,
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where

k= %u%, GY = —09,010 — 69,0:0 + 0%,

Boly) = 41 [ hady + w2 [ ady + [ (@rhs — 2shn)dy,
®1(y) = =1 [, hady + 12 [ ady,y = (11, 92) €7,

(D, (] = 011P022C + 022P11¢ — 2012P012C.

\

Proof. The proof is divided into three steps.

Step 1.

Step 2.

Step 3.

4.4

The r

From the regularity of functions ¢; imply that N,5 € H?(w) and N,svs = Qﬁa on .
Hence the functions 7La belong to the space € H %(fy) and satisfy the compatibility
conditions (see [CGOIl, Theorem 4]).

Since the set w is simply-connected and by using the generalized Poincaré theorem
(see [Sch66, Theorem VI, p.59], [CGOI, Theorem 7]), the equation dsN,5 = 0 in
w imply that there exist distributions ¢, € D’(w), unique up to the addition of
constants, such that Ny, = 20210, Nog = —20114.

Since the equation Ny = Ny; implies that 0,1, = 0. Another application of the
same result shows that there exist a distribution & € D’(w), unique up to the
addition of polynomials of degree < 1, such that ¢; = 0,®, ¥y = —0;P, so that
Nijp = 2090®, Nig = Ny = —2015®, Noyy = 201D in w.

Since NugOas((s + 0) = 2[®, (3 + 0], we have
—OapMap = kA’ =2[®, G+ 6]+ A3 + GY in w.
Since A%2® = %ANM and QwNaﬁ =0, so that

f(3A 4 2p)

AP = —
20+ p)

[Cg, (3 + 2‘9] n w.

Conclusion

esult obtained in this Chapter is similar to that of [Pau02] and [CBO8| that the

leading term u® of the asymptotic expansion of displacements field is characterized by two-

dimensional problem without friction. Thus if we consider the work of Léger and Miara
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[ILMOS8] but with Coulomb friction, we affirm that we obtain the same result formally.

At the end, we deduce that the displacement u® is characterized by a two-dimensional
problem without friction. Then, our three-dimensional Signorini problem with Coulomb
friction offers toward a two-dimensional problem without friction. The loss of frictional

densities in (Pg)4o . and (P(w))io, is due to the fact that the friction force behaves
as O(g%) whereas the pressure force behaves as O(g?) therefore, at least formally, via the
Coulomb law |G&| < A|G5|, when ¢ tends towards 0 the friction force must be canceled.
The question which stands here is how to involve the friction force in the lower dimensional
problem and, in the absence of convergence and the existence of asymptotic expansion,
is it possible to obtain an algorithm which allows us to compute the higher terms in the

asymptotic expansion?
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Chapter 5

Dynamical contact equations of
generalized Marguerre-von Karman
shallow shells

In this Chapter, we extend formally the study of the fourth Chapter to the dynamical
case. More precisely, we considered a three-dimensional dynamical model for a Signorini
problem with Coulomb friction of nonlinearly elastic shallow shell with a specific class of
boundary conditions of generalized Marguerre-von Karman type, made of homogeneous
isotropic material. To this end, we have justified the dynamical contact equations of
generalized Marguerre-von Karméan shallow shells. Then, we establish the existence of

solutions to these equations, using penalization method.
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5.1 Asymptotic analysis of elastodynamic Signorini prob-
lem with Coulomb friction of generalized Marguerre-

von Karman shallow shell

5.1.1 Setting of the problem

Consider a nonlinearly elastodynamic shallow shell occupying in its reference configuration
the set O° , with thickness 2¢, its constituting material is a Saint Venant-Kirchhoff material
with Lamé constants A* > 0 and p° > 0.

The shell is subjected to vertical body forces of density (f£) = (0,0, f£) in its interior
Q°, its lower face I subjected to a surface forces of density (g5) = (0,0, g5). We suppose
also that this shell is in unilateral contact with Coulomb friction at the upper face fi and
A its frictional coefficient, such that d° is the gap function which describes the distance
between the upper face and the rigid foundation measured in the normal direction. We
suppose that d € Loo(fi), d° > 0 and independent of time t. On the portion ©%(y; X
[—e,€]) of its lateral face, the shell is subjected to horizontal forces of von Kérmén type
(fﬁ, ﬁg, 0), the remaining portion (v, X [—¢,¢]) being free.

The unknowns displacement field 4 = (u5)(2°, 1), stress field 6° = (67;)(2°,t) and
the contact force G¢ satisfies the following three-dimensional boundary value problem in
Cartesian coordinates:
( p° 8815; E)E(U +0k]35 us) = fs in QF x )0, +o0l,

mdependent of 25 and 45 = 0 on ©° (1 X [—¢,¢]) x |0, +oo],
{ = [ {6 (o +0w8§u ) 0 @ Yugdas = he, 0 ©° on 7y, x |0, +00|,
—|—Jk]8€ ug)n5 0 ©° =0 on (72 x [—¢,¢€]) x |0, +o0],
(C. Ps)fg;w (O‘Z] + %85 E)n 0®° =300 on I x |0, +o0[,
u‘§\7<dE G5 < 0,65 (ﬂN—dE)—OonFE 10, +o0f,
GEl < AlGY| = 5 8“T =0 0n 15 x 0, +o0]
|G | = A|GS| = 35 >0, uT = —6G5on T% x 10, +o0f,

e (2°,0) = p°, G- (i°,0) = q in O,
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where .
(66 = NEE (0°) 0ij + 20 B (0°)

) ppl

e (HE) — AT Ae e Qe e Aene
NELNEAE NE — NIE _ A€ RE
@ = 0°n°, 05 = 4° — a5n°,
Oty — 6ﬁ5ﬁs oug — o6 Uy ~¢ (51)
ot ot b o at at )

e _ ene (e — (e € (e

N_Gn7GT_G_ NI,
P°,q° : the given initial data,

[ p°: the mass density.
We recall that W%A(@QE; .) denotes the space formed by the traces on 9 of the
functions in the space W14(QF;.) and W—13(9Q5;.) is the topological dual space of
34
Wy ’4(898; .), for more details, we refer to Adams [Ada75].

We define
V() = { ¥ VeV | e wihay R,
X Aa: AEA'AEEVQS
V() = { e sV € V()
ey _ v, EEVQE
Ve(§¥) = { Vil iV V() |,

M) C WHATLR), (5.2)
V() © WAATLRY), (5.3)
Dy () © Wi R), (5.4)
Tr(QF) © Wi R, (5.5)
V() € WTES(I5R), (5.6)
V() © WRS(ILRY), (5.7)
T () ¢ W os(1;R), (5.8)
(0F) © WTES(DLRY), (5.9)

where Vi (QF), V5(€), ' (QF) and B%.(Q) are the topological dual spaces of Vy (),
Vr(QF), B (QF) and V() respectively.



For simplicity, we note that Wi4(;R) = Wi4(), Wi4(;R3) = Wid(), W
3 4

W-13(.) and W—13(;R?) = W3 ()

First, we rewrite the above boundary value problem (C.Ps)iso

dyn.c 10 the weak form, by

using Green’s formula, we show that any smooth solution of the boundary value problem

also satisfies the following variational problem:

Find (6, 6%, G5, G3) € K(QF) x () x W 13(19) x W-53(19)
Vt > 0, such that,
Dt (05, 9°) + B0 (0 (), v°) + 2C° (0 (€) , 0%, ¥°) = [ (¥°)
(V.p)izo & G, Oy) +(GE, vE), Vv € V() vt > 0,

(G, 0 — i) > 0, ¥9° € K(), vt > 0,

(G5, v5 — 2y 4 (A V5] — | 22|y > 0, Vv € V(OF), ¥t > 0,
a° (2°,0) = p°, 2% (&, 0) q° in QF,

where
l?a’t (08, v) dt2{ F Joe 4507dET }
GRS fm 55,355,
Ca’e (o(e),0%,v%) = 2 fQE Afjajs vpdz®,

Fe(ve) = [o f3v di® + [;o g3v3d1“5+f {f 02 0 @F) das } he dAF.
(.,.) is the duality pairing between W’%’g(f‘i) and W%A(f‘i) such that

(G5,v) = (G, 03) + (G, ¥7)
= DN (@, P¥°) + B (0 (e) , P1¥°) +2C°7 (0 (¢) , 0, Py¥°)
— FF(PV), (5.10)

for all v¢ € Wi (1),
where P1v¢ € V() is any extension of v¢ such that Pyv¢ = 0 on OQE\f‘i, and W§’4(fi)
is the subspace of traces of functions from W'4(€?) vanishing on 0Q°\I'%..

We note that

(G, 0%) = (G5, A%y
(G7.9%) = (G°,3° —nfiy).
S0

dyn,c
domain ¢, we use the one to one mapping (©°)~! and the relations (2.3)).

In order to transform the problem (VPE) into problem posed over the cylindrical

90



Let there be a given Cl-diffeomorphism ©°¢ that satisfies the orientation-preserving

S0

condition. Then the variational problem (V.P?) dyn.c

is equivalent to the following varia-

tional problem:

( Find (u°,0%, Gy, G5) € K() x B() x W3 (I') x W (I5)
Vt > 0, such that,
D=t (uf,vE) + B (0 (), v¥) 4 20°9 (0 () , 0%, v¥) = F* (v¥)
(P)ise, o4 TG i) + (GE, Vi), ¥ve € V(9), vt > 0,

W) (G — 1) > 0, WE € KC(QF), Vi > 0,
(G vi = ) + (MG Ve | = | BE]) 2 0. v e v, ve > 0,
[ uf(2%,0) = p°, 2% (2%,0) = ¢° in O,
where )
Dst (u‘f,v6 dt2 {p Jor usv56°dar}
B (o (¢),v®) = —l— Jor Uzabiya viocdz®,
(o (cr (),us,ve) =1 [ awbiﬂgusbiﬂj(‘?ﬁlvsésd:v
Fe (v an f3U§5€d:ﬂ +f1“€ g5v50° 3dl®
\ ffyl hz{f,E ade}d77
such that
u; = u; o ©°, v; =17 o OF, ]:&fjo@E7 722%20(967

f3 f3O®€7 93—93095 hE—hEOQE
p; =p; 00©°, ¢ =5 o O
dé = df o ®°.

(.,.) is the duality pairing between W53 (I ) and Wi*(T') such that
(G v7) = (G, vy) + (G, V)
= D' (u®,Pyv) + B (0 () ,Pov®) + 20 (0 () ,uf, Pyv®)
— F*(Pyv®), (5.11)
for all v¢ € W%A(FE ),
where P,ve € V(§°) is any extension of v® such that Pov® = 0 on 9Q°\I'¢, and v* €

WO (Fi) is the subspace of traces of functions from v¢ € W*(Q¢) vanishing on 9Q\I'%,.
We define

(G, vy) = (G5, nvy)

€ 1> &€ 1> €,,€
<GT>VT> = <G , Vo — 1 UN>7
such that v5;, = 05 0 ©°, v, = v}, 0 ©° and n° = n° o ©°.
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5.1.2 Asymptotic analysis

The scaled three-dimensional problem

150

dyn.c 11t0 a problem posed

We use the same arguments as in Chapter 2 to transform (P°)
over an open set independent of ¢.

First, to the functions u®, v¢ € V(¥), o¢ € (), G5 € W_%’%(F‘i) and G5 €

wW-i §(FE ), we associate the scaled functions u(e), v € V(Q), a(e) € X(Q), Gy(e) €
W=i3(Ty) and Gr(e) = (Gr,(e)) € W5(T'y) defined by

(ug(a%,t) = ePuale) (@, 1),
Ui(x)—gva() v(2) = evs (),
05 5(2°,t) = e2043(€) (2, 1), 053(2%, 1) = e%0a3(e) (2, 1),
)z, 1),
(8)7vTa> < T37UT3> :84<GT3<€>7UT3>7
8)7UN>7

u (x t) = eug(e)(x,t),

o55(2%,1) =€ 033( (5.12)

<G§“ >UTa> =& <GT
[ (G, vw) = 4G (

for all ¢ = 7€z € QF.

Next, we make the following assumptions: there exists constant A > 0, u >0, p > 0
and for some T > 0, the functions f3 € L*(0,T;L*(Q)), g5 € L*(0,T;L*(T_)), hy €
L*(0,T; L*(v)), 0 € C3(w) independent of e and p(g) € V(Q), q(e) € L*(4R3), d(e) €
L*>(T"}) such that

Y1, Y2, t) Y(y1,42) € 1,
, o) V(x1,29) € @,

QE(Il,Jfg) = 6(3]1
\ 5 (2°) = e%po(e) () Vot = n°x € OF, (5.13)
p5(2°) = eps(e)(x) Vat = nx € QF,
¢ (2°) = e%qq(e)(z) V2 = n°z € Q°,
¢ (2°) = eqs(e)(x) V& =z € QF,
| d°(2°) = ed(e)(x) Va© ="z € 'Y

Noting that the unit normal 72° on [ reads 7° = (—856° + O(c%), —950° + O(¢®), 1 +
O(£?)). Then a simple computation gives

(05, = cun(€),uy(e) = vand + O(),
8—;V:€_ugt(5), ula\’t()_au3n3+0( )

v5, = g, (€), vr, (€) = va — vsnd + O(e?),
U%g = €2UT3 (8)7UT3 (6) = 0(6)7

Our, _ 823UTQ(€) Our,(8) _ Qua 8u3 n? 6 4 O( )

(5.14)

88t 5 at( ) 76 81‘( ) ot
Uy _90ury(e) durg(e)
\ o — ¢ ot ot - 0(5)7

92



where n? = (=0,0, —0,0, 1).
Using the relations (3.2) and (5.14]), the scalings (5.12)) and the assumptions (5.13)),

we obtain

Theorem 5.1 The scaled fields (u(e),o(e),Gn(e), Gr(e)) satisfies the following varia-

tional problem:

ol

Find (u(e), (), Gy (£), Gr(2)) € K(£)(Q) x T(Q) x W5 (I;)x
W-i3(T,) Vt € [0,T), such that,

Dt(u(e),v)+ B (o (e),v)+2C% (o (c),u(e),v) = F(v)+
(Gn(e),vn(e)) + (Gro (), vr, ())+

€2 [(Gr,(e),vr, () + R (e;0 () ,u (), V)], ¥v € V(Q),Vt € 0,71,
(Gn(e),un(e) —un(e)) 2 0, Vv € K(e)(2),Vt € ]0,TT,

(G, (e), vp, () — 222Dy 4

= [(Gn(0), v (e) = Z5E) — (AGN (@), fon(e)| =
Vv e V(Q),Vt €]0,T,

| u(e) (2,0) =p(e), % (,0) =q(e) in,

(P(&))ne

8uT (E

)| =0,

where

BY (o (g),v) = [0 (€ %] v)dz,

C? (o (), ule),v) =3 [0 () Hus () vsdu,

D' (u(#) V) = & {p fo s () vada}

| F(v) = Jo fsvsda + [ gsvsdD + [ ho{ [*, vadas}dy,
such that v%(v) = 1 (0fv; + 0%v;) and the remainders R and S are bounded.

Proof.
We have

/ 05;byOpvi 0°dat = 55/ gij (€) yfj (v)dz +<"op (e;0(g),v),
Qs Q

/ o5 br ORup by, O vi 0°da® = € / 0i; () us (¢) Olvgda
. Q
+ €00 (g0 (), u(e),v),
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f§v§(5£dxa+/ g§v§(55,88d1“5+/ ke, {/ deazg}d’y =
Qe I‘iul"i Y1 —€
1
£d (/ favsdx +/ g3v3dl’ —|—/ he {/ vadx3} dv) +e"or (5;v).
Q Iy ur— Y1 -1

d? d?
D {p6 /ﬂs u?vfésdﬁ} = 55@ {p/Qu3 () vgdx} +eop(s;u(e), v).
From the relation (5.14)) and the scalings (5.12)), we get

< ?V?UJ€V> = 85<GN<8)7UN(5>>7

(GT.ve) =&"(Gr,(e),vr, (€)) + e (Gr(e), vn(€)).

150

dyn.c Ay be written as

So that the first equation in variational problem (P¢)
D' (u(e),v)+ B (o(e),v) +2C% (o () ,ule),v) = F(v) +
(Gn(e),vn(e)) + (G1.(e),vr,(€)) + €* [{Gm (), vry (€)) + R (e50 (€) ,u (e) , V)],
where
R(g;o(e).u(e),v)=or(5v) —op(e0(e),v) -
oc(g;0(e),u(e),v) —op(e;ule),v).

Now, note that, there exists a positive constant C' such that, for all u, v € V() and
o€ X(Q)

sup / op(sso,V)ldr < Cloloalviie,
Q

0<e<eg

sup /‘QC<6;07U7V)’CZI < C|U|O,Q|u|1,4,Q|V‘1,4,Qa
0<e<eo JOQ

sup /]gp(e;v)|da: < Cvl]ia,
Q

0<e<eg

0*u
sup [ lop(e,u,v)ldz < Cll—7ll_120llvlie-
O ot 3

0<e<eg

For the unilateral contact conditions, we have

(G, vy —uy) = €(Gn(e),on(e) —un(e)),
(G5 v~ 20y 4 (MG Ve~ 12 = 3G, ), v (6) — 2,y
426 @), vmy(6) — 22y (aa(e), vele)) 1 22,
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The limit three-dimensional problem

Assume that the scaled fields (u(e), o(¢), Gn(€)) admit a formal asymptotic expansion of

the form:
(u(e),o(e),Gn(e)) = (0, 0%, G}) +e(u', 0!, Gy) +*(u?, 0%, G{) + -+, (5.1D)

with
u’ = (W) € V(Q), 93uf € C° (), u? = (uf) € WH(LR?) Vp > 1,
(o7, G%) € B(Q) x Wi3(T'}) Vp >0,

We also assume that when ¢ — 0

p(e) = p”in V(Q), (5.16)
q(e) = q” in L*(Q;R?), (5.17)
d(e) — d in L®(T), (5.18)
eGn(e) = 0in W 13(T,). (5.19)

We substitute the formal asymptotic expansion (5.15)) into the variational problem

(P(€))im o, we obtain the following limit three-dimensional problem

Theorem 5.2 The leading term (u°, 0% GY;) satisfies the following variational problem:

/

Find (u°,0°,G%) € K(Q) x £(Q) x W135(I',) Vt € [0,T], such that,
Jo, o0 Oivadr — | agﬁﬁgﬁﬁgvad:& = f71 ha{fjl vadzstdy,

Vo, € Vo (Q),Vt €10,T7,

% {p Ja ugvgdx} + [ 0%s0ivsde + [, ogj@ugajvgdx

(P)gnc {4 — Jo 0030a005vsdx — [ {00;04005u30;v3 + 0(0;u03005v3 }da

+ [0, 02500005u303005vsdx = [, favsdx + [ gsvsdD + (GY, vs),

Vg € V3(Q),Vt €10,T7,

(G, v3 —ud) >0, Vv € K(Q),vt €]0,T],

u’ (z,0) = p, % (2,0) = q° in Q.

95



Proof. First, in the last inequality in (P(e))%°, ., we take the test function vp(g) =0

dyn,c’
after that vy(e) = 28“8#56), we obtain
OuTa (E) 8uT3 (8) 6uT(5)
(1.0, ~ 22 ¢ o o), - 22— (aanie), 1120y s 0, )
Jur, (g) Jur,(€) Jur(e)
— > .
(1.0, 229 ¢ o @), 22 e, 20y 0 Gy
Then, we conclude that
Our,(g), dur(e),, Jur, (€)
(61.(2), 22y = c[(aG(0), | TR — (), P2y, (5
From the (5.19) and since 8“2—?;(3) = O(¢e), we obtain

Gr.(e) =01in T, vt €]0,T].

Next, using technics of the asymptotic analysis method, we first replace u(e), o(¢)
and Gy(g) by their expansions (5.15) in the forms BY, € D! and F and we equate to
zero the terms which are independent of ¢ in (P(¢)), .. Then we show that (u°, ¢, GY})
satisfy (PP)pe .. ®
Theorem 5.3 The leading term (u°, GY,) satisfies the following variational problem:

(
Find (u®,G%) € Kx(Q) x Wi3(I,) Vt € [0,T], such that,
LA p [yuvsda} + [, 0%505vadx + [, 00500 (u§ + 0)pvsdz =

(PO)iso fﬂ nggd;U + fF_ gg'l}ng + f'yl ha{f—ll Uad'r?’}dfy + <G9V7 U3>7
2

) e Vi (), Vt €0, T,
(G%,v3 —ul) >0, Vv € Kkr(Q),Vt €]0,T],
\ u’ (z,0) = p°, 88—‘f (2,0) =q° in Q,
where

A — _
085 = e ES, (0°)das + 2uEY,(u0),

ES5(0°) = 5 (0auf + 05ub, + 0a005u8 + 0500,u8 + Daufdsus) .

«

Proof.
The proof has been divided into two steps
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Step 1. The relation ¢;; = )\EE;p (a®) 0;; + 2,u5Efj (0°) give
0 Lo o

and
Oaty + Ozud = 0 in Q. (5.23)

So that

Osul = 0 or Osuy = —2.

Since the inclusion H3(Q2) < C'(Q) and u = 0 on 4, x [—1, 1], the solution dzu =

—2 is eliminated. Hence we are left with
dzuy = 0 in Q. (5.24)
Then, we conclude

2\ = _
0 0 (110 0 (40
%08 = 1o QHEM(H )0as + 21 Eq5(u’).

Step 2. Taking into account the equation (5.24)), we next find that the second equation

3 0\iso
in (P)gn. reduce to

d2
@{p/ugvgdaj}—i-/0238av3dx+/agﬁ8augagvgdx =
Q Q Q

/ f3’U3d$ + / ggvng + <G]DV, ’U3>, (525)
Q r_

From the first equation and the relation (5.23)), we conclude that

1
/0238av3dx:/agﬁﬁﬁﬁﬁavgdx—f—/Jgﬁaﬂvada:—/ ha{/ vadzs}dy. (5.26)
Q Q Q " -1

We replace the integral fQ 0030, v3dz in equation (5.25) by their expression (5.26)),
we find that
d2
— p/ uyvsdz o + / 00 305vadx + / 00300 (u3 + 0)0gvsde =
dt? Q Q Q

1
/ f3U3dl’ +/ ggvgdf +/ ha{/ Uada')g}d’)/ + <G(]]V7 U3>.
Q T_ Y1 -1
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The limit two-dimensional problem

We use some technics employed by Raoult [Rao85], who assumed that the initial data
@03 = pY and 3 = ¢) are independent of z3 and sufficiently smooth. We also assume
that the initial data p? = @, — 239,p3 and ¢© = 1, — 130,43, such that ¢, and v, are
independent of x3 and sufficiently smooth.

First, we show in the next theorem that (Py); . is in a sense of two-dimensional
problem posed over the two-dimensional domain .

Theorem 5.4 The leading term u® = (u?) is of the form u® = (, — 130,(3 and u§ = (3

with ¢ = (¢;) € V(w) Vt € [0,T]. In addition, the field ¢ satisfies the following limit scaled

two-dimensional problem:

(

Find (¢, f.) € K(w) x H2(w) Vt € [0,T)], such that,

20 J., G s = [, MapOasisdo + [, Naa(Cs + 0)Dprsd

(P@)igne | + [, NagOpnadw = [, Dsnsde +2 [ haniady + (fo,15), Y € V(w), ¥t €]0, T,
(fems — ) 20, Vn € K(w), vt €]0,T7,

C(?O) =¥, %(70) =1 inw,

where

man(V2Gs) = =4 { 2 AGubas + 40usCs }

Nag = 55 B2y (C) dap +4pEQ; ()

E25(¢) = 5 (9aCp + 05Ca + 0a095Cs + 05004(3 + 0aC305C3) ,
ps = [, fadas + ga(., —1),

d=d(.,+1),

<fC7 773> = <G5)V> U3>'

Proof.

i) From v € Vi (), by a standard argument due to Ciarlet (see,e.g., [Cia97, Theorem
1.4-4]), we get

Ug = Co — 230aC3 and uz = G with ¢ = (G) € V(w).
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From the definition of o7, we conclude that

1
/ oOudrs = Nag(O),

1

and

1
/ xgagﬂd:cg = Mmas(Q).

1

S0

e V€ Vi (Q) with the components

ii) First we choose, in (Py)
Vo (7) = —230am3(21, T2), v3(x) = n3(21, 22),
with 73 € H?*(w) and 13 = d,m3 = 0 on 7.

This choice shows that (P7)ie, . reduce to

d2
ﬁ{p/gmgdx} —/x30368a5773dx+/Ugﬂaa(anLQ)@gngdm =
Q Q Q

/ fanada + / gl + (forn). (5.27)
Q

The second choice of v € Vi1 (9) is

Va(2) = Na(x1, 22), v3(x) =0,
with 1, € H'(w).

In this case shows that (Py)je . reduce to

/ogﬁagnadx = 2/ hanadry (5.28)
Q

71

Using Fubini’s Formula: [, Fdz = [ {fjl Fdxg} dw, we have
d? (s
@{P/QCSU?)CZIU} = QP/OJWmdUJ,
/ _x30256a5n3dx = - / maﬂaamkdwa
Q w

/Q 00 50a(Cs + 0)D3msd = / Nasa(Go + 0)Dsmades,
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1
/ Janpdar + / gapdl = / ([ fodes + g5 —1)}ades
Q T_ w —1

= / p3nzdw,

/Ugﬁaﬁnadx:/]vaﬁaﬁnadw:2/ hanady.
Q w g!

Then
PG _
2p e n3dw — | MapOapnzdw + | NupOa(Cs + 0)0pnsdw
+/ NopOsnadw = / psnsdw + 2/ hanady + (fe; 13)-
w w gé!
]

Next, we write the two-dimensional boundary value problem as an equivalent boundary

value problem (P(w))ie .. Using Green’s formulas and equating to zero all the factors of

Nas N3, and 9,m3 in their respective domains of integration, we obtain

Theorem 5.5 Assume that the boundary v s sufficiently smooth. Then any smooth

solution ¢ = ({;) of the variational problem (P(w))i, . is also a solution of the following

two-dimensional problem:

Find (((a), G, fe) € (HY(w))? x H*(w) x H2(w) Vt € [0,T], such that,
2058 — Ougmas — Napdas (o +0) = pa+ fo inw x 0T
agNag =01muw X ]O,T[,

(3 =0,(3 =0 onyx]0,T7,

_ Nosvg = 2hg on y1 x |0,T7,
(P(w))

dyn,c
Maslals =0 on 2 x |0,T7,

OaMapVs + Or (MapvaTs) =0 on vo x 0,77,
Nagvs =0 on 72 x 10,77,
<3 S dafc S Oafc(CB _d> =0mwx ]0>T[7

¢(,0) =9, %(.,0) = ¢ inw.
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Proof.
Applying the Green formulas, we obtain

—/maﬁaaﬁﬁzsdw = /{(aamaﬁ)’/ﬂ"‘aT (MapVaTp) } nady
w ¥

/maﬁVaVﬂauﬁsd’V—/(aaﬁmaﬁ) N3dw,
¥ w

/ Nagaa (Cg + 9) 8ﬂn3dw = —/ {85 (Nagaa (Cg + 9)) } 773du)

+ / (NagOa (3 + 0)) vgmady,

v

/Naﬁﬁgnadw = _/ (a@Nab’) 77adw+/NaﬁV677ad’Y-
w w Y

Then
/ |:2p o — 5ma5 — 65 (Nagaa (Cg + 9)) - pg} 773dw - <fc>773> -

/ aﬁ nadw+/<Naﬂyﬁ_2ﬁa> 77ad7—/ maﬁyayﬂaun?)d/y +
Y2

~

/ {[9amas + NagOa (G +0)] vs + 0y (Mapvats) f m3dy = 0,
Y2

for all § = (1a,n3) € V(w), with the functions ha : v x [0, 7] — R defined by
ﬁa = ho on vy x [0,7] and l~za =0 on v x[0,7].

These equations imply that all the factors of n,, 13, and 9,73 vanish in their respective

domains of integration. Then we get
6 i |
210 atQ - aaﬁmaﬁ - aﬂ (Naﬁ’@a (gg + 9)) e p3 _|_ fc in w X ]O,T[,
and
95Nag =0 inw x]0,T7],

so that

ag (Naﬁaa (Cg + 9)) = Naﬁaag (Cg + 9) inw x ]O,T[,
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consequently

0? - )
2P8Ti3 — OupMap — NopOap (G +6) = ps + foin w x ]0,T7.
For boundary conditions, we get

Nusvs — 2he =0 on v x 10,77,

thus
Nasvg = 2h, ony x10,T],
and
Nasvs =0 on vy x 0, T7.
We also get
Maslas =0 on vy, x 10,17,
and

[aamag + NugOa (G + 9)] vg + Or (MaplaTs) =0 on vy x 10,77,
since N,sv5 =0 on v, x ]0,T], we conclude that

OaMapVs + Or (MaplaTs) = 0 on 72 x |0, T7.

S0

dyn.c» We take the test function 73 = d after

Finally, in the last inequality in (P(w))
that n3 = 2(3 — d, we obtain

(fe,d—G3) =20,
and

(fe, g —d) > 0.
Thus

(fe.g—d) =0.
n
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5.1.3 Dynamical contact equations of generalized Marguerre-von

KAarman shallow shells

S0

dyn.c 0 the form of

We now rewrite the two-dimensional boundary value problem (P(w))
dynamical contact equations for a generalized Marguerre-von Kéarman shallow shell as

follows:

Theorem 5.6 Assume that the set w is simply-connected and that its boundary v is

sufficiently smooth. Let ¢ = ((;) be a solution of (P(w))%°, . with the regularity

dyn,c
(o € H}(w), (3 € H*(w) and f. € H ' (w) Vt € [0,T].
Then
a) The functions ha Y X [0,T] — R defined by

he = he on vy X [0,T] andﬁa =0 on v x [0,7],

are in the space H %(7) and satisfy the compatibility conditions

/%1d’7 = /%Qd’y = /(1‘1%2 - ngle)d’}/ = 0.
Y Y Y

b) Furthermore, there exists a function ® € H*%w), uniquely defined by the relations

®(0) = 0,9(0) = 0,@(0) = 0, such that

Nip = 2009®, Nig = Ny = —2015®, Noy = 20,,P.

c) Finally, the triple ((3,®, f.) € (H3*(w)NK) x HY(w) x H™}(w) Vt € [0,T], satisfies the

following problem
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205 8t2 — OapMap(V?(s) = 2[®, (34 0] + ps + fo in w x]0,T7,

A%P = 3212‘)‘ [G3,C3 4+ 20] inw x ]0,T7,

CS = aVCS =0 on ’le]OaT[a

. Map(V?(3)vavs =0 on 12x10,T7,
(P)dyn,c

Damas(V2(3)vg + Or (Map(V2(3)VaTs) = 0 on vo x 10,77,
b =Py,0, =P onyx]0,T7,
G3<d, f. <0, fe(¢s—d)=01inwx]0,T],

G (., 0) = @3, 884153 (,0) =13 in w,

where
[ —0umas(V2G;) = B0 A2,
Boly) =~y [, hady + w2 [ Pady + [ (@ihs — 2ohn)dy,
®1(y) = =1 [, hady + 12 [ ady,y = (11, 92) €7,
| [9.¢] = 011800C + 0 ®011C — 201,01
Proof.

The proof is divided into three steps.

a) The regularity of functions ¢; imply that N, € H*(w) and ha € H%(v).

The functions ﬁa satisfy the compatibility conditions, to see this, we observe that, if
we choose 1 = (a; — bzy, az — bz, 0) for any constants ay, a; and b in the variational

problem (P(w))70, ., we obtain

(a / hady + b / (x1hy — xohy )dy = 0. (5.29)

v v

b) Since the set w is simply-connected and by using the generalized Poincaré theorem
(see [Sch66, Theorem VI, p.59]), the equation dsN,s = 0 in w imply that there
exist distributions ¢, € D'(w), unique up to the addition of constants, such that
Nig = 20510, Noo = —2011,.
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Since the equation Nis = Ny; implies that 0,1, = 0. Another application of the
same result shows that there exist a distribution & € D’(w), unique up to the
addition of polynomials of degree < 1, such that ¢, = 0P, ¥y = —0;P, so that
Nip = 20950®, Nig = Ny = —2015®, Noy = 2011P in w.

The regularities of N5 € H?(w) imply that ® € H*(w). Then ® is uniquely defined
if we impose that ®(0) = 0,9(0) = 0,P(0) = 0.

¢) (i) From Nusvs = 2h, on 7, we obtain
- 1._
hl = §N1/31/5

1 _ _
= 3 (V1N11 + V2N12)
= V1322(I) — V2821(I>

= 87' (82(1))7
~ 1 _
hg = §Ngﬁl/ﬂ
1 _ _
= 5 (V1N21 + V2N22)
= —11012® + 1,011 P
= _87' (alq))>
thus
ho(y) = - / hody et 0x® (y) = / hidy, (5.30)
¥(y) (y)
for all y € 7,
then
0, (y) = v (y) e (y) +ra(y) 0 (y)
= I (?J)/ E2d7+7/2 (y)/ Edv.
7(v) v(y)
(5.31)
So that

al/q)(y> = (I)l on v,
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and

Since

we conclude that

(ii) We have

[(1)7<3+9] =

thus

Then, we deduce

e
205

Notice that

71 (y) 1P (y) + 72 (y) 2P (y)

= -7 (?J)/ E2d7+7'2 (y)/ ﬁld%
7(v) v(y)

(5.32)

0;® (y) = 0;Pp and @ (0) = 0,9 (0) = 0,

® (y) = Py on .

0119052 (G5 + 0) + 022011 (34 0) — 20129012 (¢3 + 6)

% [Naooaz (G5 +0) + N110h1 (G3 4 0) + 2N12012 (3 + 0)]
1_
5 Vasas (G +0). (5.33)
NogOag (G +0) = 2[®, G5 + 0] (5.34)
— 6a5ma5<C3) =2 [(I), Cg + 0] + p3 + fc nw X ]O,T[
A*® = A(AD)
= A(04a®)
= lANaa
2
_ o H(B3A+2p)
(5.35)
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5.2 Existence result for dynamical contact equations of
generalized Marguerre-von Karman shallow shells

Theorem 5.7 Assume that the set w is simply-connected and that its boundary v is suffi-
ciently smooth. Assume that the functions o € L3(v) Vt € [0,T) satisfy the compatibility

conditions. Let x € H*(w) be the unique solution in the sense of distributions of

A%y =0 in w,
x =Py and 0,x = Py on v, (5.36)
®) € Hi(y), & € H2(y)

and let

b= 1O ¢ VG, G VED. = VE. .~ VEL,

d=VEd, &= —y. (5.37)

The triple ({3, ®, f.) € (H3(w)NK) x H*(w) x H™Y(w) Vt € [0,T), satisfies the dynam-
ical contact equations of generalized Marguerre-von Kdrmdn shallow shells in the sense
of distributions, if and only if, the triple (£,®, f.) € (H3(w) N K) x (H*(w) N HZ(w)) x
H=Yw) Vt € [0,T], satisfies

208 — Dusmap(V2E) = 2& + x, €+ 0] + f + fo in wx]0,T],
AD = —L[g € +26] in wx]0, T,

£ =0,6 =0 onnx]0,T],

pyi | Moo (Vs =0 om0 7],

Oamas(VZE)Vs + Or(Mas(VZE)vaTs) = 0 0n 12 x]0, T,
® =0, =0 onyx]0,T],

§<d fo<0,f(§—d) =0 inwx]0,T],
£(.,0) =¢&(.) and %(.,0) =& (.) inw.
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Proof.

By classical elliptic theory, there exists a unique function y € H?(w) such that
A?y =0in w, y = @y and 9,x = ®; on v (see [Ciad7, Theorem 5.6-1]).
Letting d=03— X, we clearly have

{ A2 = A2 inw x |0, 7T
¢ =0,0=0o0nvyx]0,17.

Using the functions &, 5, f, jZ, d and ® defined in 1) we then see that the scaled
dynamical equations of generalized Marguerre-von Karman shallow shells presented in
Theorem [5.6/is equivalent to the scaled problem (P)7e .. =

The asymptotic analysis carried out in the first part is purely formal. In what follows,

we establish the existence of solutions to the dynamical contact equations of generalized

Marguerre-von Karman shallow shells. We use penalization method.

5.2.1 Penalized problem

For any ¢ > 0 we define the following penalized problem, using
fo= =l —d]", (5.38)

with [.|T = max{.,0}.

205 — Oapmap(VE) =20 + X, £+ 0]+ f — M6 —dI" in wx]0, T,
AD = —L[g € +260] in wx]0,T],

) §=0,£=0on 71X]07T[7

(Pﬁ)zlsyomc mag(V2£)Van = O on 72X]07 T[v

aamaﬂ(vzg>yﬁ + aT(maB(v2§)VaTﬁ) =0 on 72X]07 T[,

® =9,b =0 onvx]0,T],

| €(,0) = &(.) and %(,0)=&(.) in w.

Theorem 5.8 Assume f € L*(0,T; L*(w)), & € V(w) and & € L*(w). Then there exists

a solution (£,®) to the problem (P.)i°  such that

dyn,c’

£ € L>0,T;V(w)),
% € L(0,T; L2 (w)), (5:39)
® € L*(0,T; H2(w)).
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Proof.
Denote by Gy the inverse of A% with homogenous Dirichlet boundary condition in w

(the Green operator), and write

b = —%Gz [g,g+25] in w % ]0,77.

Then
’E 20y o 1 = Py e G
2055 — Oastan (V26) =2 | =52 [€.6+20] +x.6+0) +f = '[¢—d]
inw x]0,T7.

From ([5.39)), we get

(@4 x.6+ 8] € L¥(0,T; L' (w)),

S0

dyn.c We have

and, for the first equation in (P.)

9%

Sp € LX(O0. T H (W),

so that the initial conditions make sense.
Step 1: (Faedo-Galerkin approximation)

Let w;, i > 1 denote an orthonormal basis of the Hilbert space V (w) and let V,, denote,
for each integer m > 1, the subspace of V(w) spanned by the functions w;, 1 <i < m.

We construct the Faedo-Galerkin approximation &,,(¢) of a solution in the form

= Z Qi (t)w

Thus, the function &,,(t) is the solution of the approximate problem

(20 [, T wsd — [, 0usmap (V26(1)) wyd =

2/ [ 3Gy [gm ), Em(t )+29} +x, Em(t )+6] w;dw+

i [, fwidw — et [ [&n(t) ]*w]dw1<]<m1nwx]OT[

(P )dyn.c § Em(t) = 0,&m(t) =0 on v x]0,T7,

oo (V26,0 (1)) Vs = 0 0m 72 10, 7

Oamas (V2m(t)) vs + Or (Map (VPEm(t)) vaTs) = 0 on 720, T,
Em (,0) = Eom () and % (1,0) = &) in w,
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and we have

Eom € Vi and &, — & in V (W), & € Vi and &, — & in L (w).

Now, define
B, (1) — —%GQ [£l0).60(t) +20] 1w x 10,7, (5.40)

and note that
A2, (1) = —% [€0(0),6t) + 28] inw x10.T], (5.41)
d,,(t) € H2(w), (5.42)

1S0

so that we may rewrite the first equation of (P,)g0, . as

2p/w 822?2@ widw + a(&,(t), w;) — 2/w [@m(t),fm(t) + 5] widw =
2 [ [0 + 8w+ [ Juso = [ 16,0 = d s

, 1<j<m inwx]0,TY, (5.43)
where the form a is defined by .
Step 2: (A priori estimates)
Multiplying by on both sides of (5.43)) and summing on the index j, we obtain
0*Em(t) O&m(t) %30
2 [ S Ee s + a(6nlt). S5
Om(t) 9&m(t)

—2/[ m(t),Em(t) + } Sn L dw —2/w[x,§m<t> 0| =

/fagm /[fm( ) —d]*t (%g( )dw inw x]0,77. (5.44)

Since we have

2o [ Fenl%nl0), 3 [ it 260

Ot2 ot ot dt” ot 16

JIZCR aémt“dwzwt/mm P

= e llln(t) — IR

o)
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a(&n(t).&n(t)) = all&n(®)|fi ),

(). 0y = La(ent). 60 (0).

Using the same arguments as in the Section 2.2, we prove that

[ [0 +7] 50 = [ |20 60) 3] Bt

which yields

2 [ |2 60 48] Butnas = FIATOIR..

and

2 /w [X,gm(t)Jrﬂ Iom() 1y = /w [aggp,gm(t)qﬁ} ydw

ot
0P, (1)
— _—9 [ A2V
/w 9 xdw

= 0.

Then (5.44)) can be written as
3§m( )

B+ éa@m(t) n(0)) + 1183 (1), +
et 0&n (1)
Fllen®) - 81 = [ 1255

which, by integration from 0 to ¢, yields
0, 1 ~
[ %D+ Jatent). utr) + 5T +
- t o€,
Sllentr) =1y = [ 1] 122 dpar

Hence, there exists constants C; > 0 and C'y > 0 such that

O - -1 .
%Dy gugm(t)rr?v(w FUAB, O3+ et - A1, <

6’m 0 o
v [ 1518tr+ 0 [ 122+ o 2+ SO +

<0l

-1 _
182 (O)]f3 + 5116 (0) = dI* I3
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so that

A 24 6 + AT, + S llEntt) — 1, <
& [ 5t + € [ 1252 st + ol + 5 Vol +
188, (0B + S0 — ¥ IR
Since
NB(0) =~ [6n(0), 6n0) +20]

1 e
= _5 [€Om>€ﬂm + 29] )
then, there exists a constant C3 > 0 such that
185,0(0) fo.s < Cs.

Thus, there exists a constant Cy > 0 such that

&,
ol £8t<t>

-1
« ~ € ~
B+ Sem(® ) + 11AB (01 + S llEm(®) — IR, <

! aSM<T> 2
d
C4+02/0 I 7 ||0,w T,

for all t € [0, T], which implies that ¢, =T

Then, via Gronwall’s inequality, we conclude that

&m(t) € L7(0, T3 V(w)),

Om(t)
ot

(1) € L2(0,T; Hi(w)),

€ L>(0,T; L*(w)),

e En(t) —d|t € L0, T; L*(w)).

Step 3: (Passing to the limit)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

From (5.46)-(5.48), we observe that there exists &,(¢) and ®,(t) such that (weak conver-

gence is denoted —)
E(t) — (1) in L%(0, T V(w)) weaks,
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3%525) - 8,’;—(? in L°°(0,T; L*(w)) weaks,

$,(t) — D(t) in L=(0,T; H3(w)) weak * .

According to the Rellich-Kondrachoff theorem [LM68, Chap 1, Theorem 16.1], the com-
pact imbedding of H?(wx]0,T[) into L?(wx]0,T[) implies that

&(t) — &(t) in L*(wx]0,T7). (5.50)
Let ¢;, 1 < j < jo be functions of C'*([0,7T]) such that

¢](T) = 0 and ’l/] = zo: ¢j ® w]’. (551)
j=1

For m = n > jy, we obtain

20 [ et + atea(t),010)- =2 [ [Ba(0.60(0) + ] w0

w

2 [ [v6ul +8] vids + [ oo = [0 - o

inw x]0,77.

Thus,

/ ([ 2o vmaar+ [ aeo.vma
—2/ {/ ()dw}dt_2/ {/ . 6alt) + 0] w(t)dw)
+/0 {/wfwtdw}dt—e /{/fm — (t)dw}dt in w x 10,77,

and we have
o
T /w afgiT>1/z(T)dw— /w ‘%gi )1/1(0)dw _ / { / 06nlt) 00() 1 1 gy

- / £1,0(0
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Since (T") = 0, we also obtain

/{/%" d}ﬁ+/ al6u(t), Y1)t
/ {/ (t)dw}dt =
/ {/ X &n(t) +9 dw}dt+/ {/fw )dwldt —

_1/ {/ Em(t) +¢ dw}dt+2p/§1nw Jdw in w x ]0,77. (5.52)
From , we get

/O T{ /w [in(t),gn@) ()dw)dt = / { / £) + 0)dw}dt,

and we have

[@n(8), (1)) = [@(t), & (1)] in L*(wx]0, TY).

Then, because &,(t) — £(t) in L*(wx]0,T[), we obtain

/{/ (t)dw}dt — /{/ 1) + B)dwdt
_ / ( / (1) dw}t.

[ En(t) + 6] — [\, &(t) + 0] in L2 (wx]0, T,

/OT{/w [X,gn(t)w tdwdt — /{/ E() +9 (t)dw)dt.

Then passing to the limit in , we obtain
/’aamwwwt—

/{/
/{/ (t)dw}dt =
/{/ X, €(t) +9 dw}dt+/ {/ﬁp Vdwldt —

/ {/ Em(t) — d] 0 (t)dw + Qp/fl 0)dw in w x )0, T, (5.53)

We have

thus
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for all ¢ of the form ({5.51]).

Passing to the limit, we deduce that holds for all
W(t) € L*(0,T;V(w)) such that 228 € 12(0,T; L*(w)) and ¢(T) = 0. Using the density
of functions of the form in the space of functions ¥(t) € L?(0,T;V (w)) such that
%) ¢ 12(0,T; L*(w)) with ¢(T) = 0 see [DL72, LMGS].

Then (£, @) satisfies

QP% - aaﬁmaﬁ(v2£) = 2[(’13 + X?£ + 5] + f - 671[5 - &]Jr n wX]O’T[’
and
9 o\ _
E(O) = &1

Taking into account (5.46) and (5.47)), and applying [Lio69, Lemma 1.2], we deduce
that

£:.(0) — £(0) in L?(w),
and we obtain
£.(0) =& — & in V(w),

with the consequence that
£(0) = &
Finally, the same arguments as in Section 2.2, show that
AP = —% [§,§+25] in wx 10,77,

the proof of the existence of a solution to the penalized problem is complete. =
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5.2.2 Existence of solutions to the dynamical contact equations

of generalized Marguerre-von Karman shallow shells

Theorem 5.9 Assume f € L*(0,T; L*(w)), & € V(w) and & € L*(w). Then there exists

a solution (£,®, f.) to the problem (P)s°  such that

dyn,c’

4

§e L>(0,T;V(w)),

% € L>(0,T; L2(w)), (5.5
® e L=(0,T; H2(w)),

| fo€ L¥(0,T; H ' ().

Proof. For & a solution of the penalized problem, we obtain

0%E(t)

25

— OapmMap (VZE(t)) — 2 {—%GQ [gg(t), E(t) + 25] +x, & () + 5} -
() = dIt = f inw x 0, 7Y,

where

B.(t) = — 5 [6(0),€(0) + 28] inw x 0.7,

d.(t) € HE(w).

Then, we get the following variational formulation

/ o [ Teetoaten.) -

2/w {—%Gg [fe(t),fe(t)+20] +x,§e(t)+5} wdw +

/w e Ve (t) — d] T zdw)dt = /0 T{ /w fadwldt. (5.55)

We put z = —1 with 2 € HZ(w) in (5.55)) and by using [Cia97, Theorem 5.8-2 |, we have

/{2 /82§€ zdw + a(&(t),z) —

) /w {—%GQ [e.(0).£.(0) +20] +X,z] &) + 0w +

/w e U[&(t) — d] T zdw)dt = /0 T{ /w fadwldt.
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Which yields

0 < /{/ Ve (t) — d]tdw)dt
= 2p/w(51 6% )d +/ {/fdw}dt

where C'5 is independent of e.

The estimates analogous to (5.45)), we have

O&(t o ~ e ~
A D SOl + 1B + )~ A, <

t
Cy+ Cy / 1 95lT) 2 (5.57)
0 0
Then, we conclude that
E(t) € L=(0, TV (w)), (5.58)
ag(;i ) € L>(0,T; L*(w)), (5.59)
(t) € L=(0,T; Hy(w)), (5.60)
e Me() —d)" € L¥(0,T; L*(w)), (5.61)
0% (t) .
L0, T, H .62
S e 201, 1 W), (562)
where the dual estimate of the acceleration term has the form
O%E(t
I 8t2( )||Loo(07T;H—l(w)) < (.. (5.63)

From (5.58)-(5.62), we observe that there exists a sequence e, — 0, &, () and @, (t)
such that

&, (t) — &(t) in L=(0,T;V(w)) weaks, (5.64)
06, (t) . O(M) . ooy . 72
—5r —5 o L*(0,T; L*(w)) weakx, (5.65)
®, (1) — ®(t) in L=(0,T; H2(w)) weaks, (5.66)
— e () —dt = f.in L®(0,T; H ' (w)) weaks, (5.67)
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Peull) o O8O sy 10,1 17 (0 weak (5.68)

According to the Rellich-Kondrachoff theorem, the compact imbedding of H?(wx]0, T)
into L?(wx]0,T[) implies that

E.(t) — &(t) in L*(wx]0,T]). (5.69)

For ¢ (t) € L*(0,T;V(w)) such that alg—it) € L*(0,T; L*(w)) and ¥(T) = 0, we have

y / P i)t + al (8). (2)) — 2 / (@, (1), €, (1) + 0] w(t)do =

ot? w
2/w [X,§€n(t) + 5] »(t)dw + /w fp(t)dw — ! /w[fgn(t) - cﬂﬂb(t)dw inw x]0,77.

Using the similar approach as in the penalized problem, we prove that

0*¢

275 — Dapas(V6) = 2[8 + x.€ + 0]+ f + fo in wx]0, T

AP — —% [§,§+25] in wx 10,77,

. K
6(0) - §0a E

From the estimate 1} and the convergence 1) we obtain & — d<0inw x 10, T7.
Then, the convergence 1D yields that f. < 0 in w x 10, T in the dual sense.

From (5.61)) and since [&., (t) — d]T — 0 in L?(wx]0,T), we get

(0) =&

(fob—d)y — —eY [, (t) —d|T, €, (t) —d]F)
= 0.

5.3 Conclusion

An application of the technics from formal asymptotic analysis to the three-dimensional
dynamical model for a Signorini problem with Coulomb friction of nonlinearly elastic

shallow shell with a specific class of boundary conditions of generalized Marguerre-von
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Karman type, made of homogeneous isotropic material, shows that the leading term
of the expansion is characterized by a two-dimensional frictionless dynamical contact
boundary value problem called the dynamical contact equations of generalized Marguerre-
von Kéarman shallow shells, which depends on the Airy function ®, the vertical component
(3 of the displacement field of the middle surface of the shallow shell and contact force f..

The application of the penalization method to the dynamical contact equations of
generalized Marguerre-von Karméan shallow shells, shows that there exists a solution to

these equations.
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Chapter 6

Asymptotic analysis of elastodynamic
Signorini problem with Coulomb
friction of generalized nonhomogeneous

anisotropic Marguerre-von Karman
shallow shell

In this Chapter, we extend formally the study of the fifth Chapter to nonhomogeneous
anisotropic material. More precisely, we considered a three-dimensional dynamical model
for a Signorini problem with Coulomb friction of nonlinearly elastic shallow shell with a
specific class of boundary conditions of generalized Marguerre-von Karméan type, made of

a general nonhomogeneous anisotropic material.
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6.1 Setting of the problem

Consider a nonlinearly elastodynamic shallow shell occupying in its reference configuration
the set 625, with thickness 2. We assume that the elastic material constituting the shell is
nonhomogeneous and anisotropic, and that the reference configuration is a natural state.

The shell is subjected to vertical body forces of density ( ff ) = (0,0, f§ ) in its interior
QF, its lower face I subjected to a surface forces of density (95) = (0,0, g5). We suppose
also that this shell is in unilateral contact with Coulomb friction at the upper face fi and
A its frictional coeflicient, such that d¢ is the gap function which describes the distance
between the upper face and the rigid foundation measured in the normal direction. We
suppose that d° € Loo(f‘i), d® > 0 and independent of time ¢. On the portion O°(y; X
[—e,¢]) of its lateral face, the shell is subjected to horizontal forces of von Karman type
(he, S, 0), the remaining portion @(v, x [—¢, €]) being free.

The unknowns displacement field 4° = (45)(2°,1), stress field 6° = (67;)(2°,t) and
the contact force G¢ satisfies the following three-dimensional boundary value problem in
Cartesian coordinates:

(

56;2 — 88(0' + akj us) = f‘E in QF x x 10, 400l

1ndependent of 25 and 45 = 0 on O° (y; X [—¢,¢]) x |0, +o0][,
L [ (0% + 05,0505) 0 ©F s = i, 0 ©7 on 7 x 0, +oo],
+ 0% kue)ﬁi 0 ®° =0on (2 X [—¢,¢]) x]0,400[,
+ 07,0505 )05 0 ©F =g; 0O on T x 10, 400,
)iy = 3, (00) + Lras ozt in OF x 0, +oc].

& < df,Ge <0, G6 (ﬁN—ds) =0 on T x )0, +oo[,

yG6| <A|Gy| = & ‘9“T — 0 on I x 0,400,

|G | = A|GS, |:>35>0 uT——(SG‘EonF8 x 10, +o00[,
[ 07 (&°,0) = p7, 5= (4,0) = & in O,

>

i

~

€
(C pa ) anis ) 8]
: dyn,c &

A

>/—\/—\/Eq\> N

where
1 Az—:Az—: e ne
~Ee _N©E ~Ee ANE
U,N Ll Il uT Asll —UNII ’,\E
0uy _ 9uc ~e 00T _ 9u° 00y e

ot T ot n L - AT n-, (6.1)
= Gn°, G; = G* — Gyn°,

P°,q° : the given initial data,

p° : the mass density.

\

The mapping A is defined by

(A&E) iy ézsjklé-lib
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where ¢ = (éfjkl) is the compliance tensor, we suppose that the associated rigidity tensor

As = (ag;1,) satisfy the following conditions

~E ~E oo (e

a5, (2°) € L (),

NEL __nE _NE . nE
azgkl a’]zk:l aklzg akljl
de >0, a;

e e
lTle ZCTWTZ 5 =175

ijk Jr iy Jir

We suppose that f‘i smooth enough, such that the relations 1)1) are satisfied.
First, we rewrite the above boundary value problem (C.Pa)%}fc in the weak form, by
using Green’s formula, we show that any smooth solution of the boundary value problem

also satisfies the following variational problem:

Find (4°,6°, G5, G3) € K(QF) x B(QF) x W13 (15) x W13 (I

Vt > 0, such that,

Dot (45, vE) 4+ B (0 (e) ,v°) + 2097 (0 (¢) , 4%, ¥°) = F* (v°)

(G5, 05) + (G5, V%), Vv € V(QE) w > 0,

(V.Poyamis 3 Jae (A6%)y75da" — [o. 7535 (07)di" — 5 fo 750505 057 i = 0,
Vi< e D(Q°), Vi > 0,

(G, 0y — i) > 0, ¥° € K(09), Vt > 0,

(Gi. 97 — G) + (A |G5| V3| = |G ]) 2 0,99 € (@), v > 0,

[ ¢ (25,0) = P, % (2°,0) = & in €,

where
D (08,9) = 5 {7 [y aodic}
Bigﬁ (O (6) 7V fQE z]’Yzj( )dlL’
05’9 (0 (€)1, %) = 5 [ 55,0507 0507 i,

Fe (V) = [ f505 dx + fpe %gdrf+f {f 02 0 @F) das } he dAF.

(.,.) is the duality pairing between W_%%(f‘i) and W%‘l(f‘i) defined by .

In order to transform the problem (VPE)ZZZ;S’C into problem posed over the cylindrical
domain ¢, we use the one to one mapping (©°¢)~! and the relations .

Let there be a given Cl-diffeomorphism ©°¢ that satisfies the orientation-preserving

condition. Then the variational problem (Vps)flgffc is equivalent to the following varia-
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tional problem:

5(I9)

wlw

( Find (v, 0%, G5, G3) € K(9F) x () x W 3(T9) x W~
Vvt > 0, such that,
Dt (wf,ve) + B (0 (e),ve) + 209 (0 () ,uf, v®) = F* (v9)

+(G5, vy) + (G, v5), Vve € V(Q°),Vt > 0,

s fQE (Ao®)ijr50°da® — [o. 7507, 0pus 0°d®

(P )dync e Tijbki 8%?()%821 u;o°da® =0

VT € Z(QE) vVt >0,

(G, vy —uy) >0, Vv € (), Vt > 0,

(G5, Ve — 8“T> (NG| Ve — )G“T ) >0, Vv € V() ¥t >0,

L u®(2°,0) = pg,aa‘; (z5,0) = q° in £,

where )
DeEit (UE,VE dt2 {p st E(Ssdl’ }
B (o (g),v + fQ awbija%sésda:
C# (o () ,u =3 ng 05 b5 O ui b5, 05, vp 6°da,
an vgéadx —i—st g5v 5558dI‘8
| B vdas .
such that

u; =u; 0 O, v =07 0 ©°, o, =07, 00°, T, =77 00",
(AU ) (Aa’ )’LJ © @ z]kl z]kl © @

5 =f5005, 93—930@‘E hs—}fo@s

pl—sz@‘s, ql_qlo@‘g

d° = df o ©°.

.,.) is the duality pairing between W~1-3(I') and W 14(I%) defined by (5.11)).
+ +

6.2 Asymptotic analysis

6.2.1 The scaled three-dimensional problem

We use the same arguments as in Chapter 3 to transform (P¢)7° . into a problem posed
over an open set independent of ¢.
First, to the functions u®, v¢ € V(°), o°, 7° € (%), G5 € W_%’g(Fir) and G5 €

W_%’%(Fi), we associate the scaled functions u(e), v € V(2), o(¢e), 7 € 3(Q),
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Gy(e) e Wi

(

(I4) and Gr(e) = (G (e)) € W

ul (2°,1) = uq(e)(m,t), u§ (2%, t) = eus(e)(x, t),
v (2°) = e*va(x), 5
agﬁ(xg,t) = e%0,4(c
() = 70 (0). T 07) = 7). (6:2)
T53(2%) =€ Ta3(),

(G, vr,) = (G, (e),v1.), (GT,, vry) = eX(Gry(€), vy),

\ (Gy,vN) = €4<GN(€),’UN>,

for all 2¢ = 7z € Q°.

Next, we make the following assumptions : there exists constant p > 0 and for some
T > 0, the functions f3 € L?(0,T;L*(R)), g3 € L*(0,T; L*(T'_)), hy € L*(0,T; L*(71)),
6 € C?*(w) independent of £ and p(e) € V(), q(e) € L* (4 R?), ciyu(e) € L>®(Q),
d(e) € L>(I';) such that

(" =¢p,
fs(xf,t) = 3 f(x, t) Vaf = 12 € OF
g5(x°,t) = egs(x, t) Vaf = nfx € T,
he (15 42, 1) = €2ha(y1, y2, t) Y(y1,12) € M,
0°(x1, x2) = €6(x1, 22) V(azl,xg) €w,
P5(2°) = e2pa(e)(x) Vaf = m°z € QF, (6.3)
p5(2°) = eps(e)(z) Va© = 7w € O,
2 (2) = 20a(2)(2) VaF = 73 € O,
q5(2°) = eqs(e)(x) Va© =z € O,
i (%) = cijni(e) () Va© = m°x € OF

| d°(2°) = ed(e)(x) Va© = 72z € IS

Using the relations (3.2]) and (5.14]), the scalings (6.2) and the assumptions (6.3)), we

obtain

Theorem 6.1 The scaled fields (u(e),o(¢),Gn(e),Gr(e)) satisfies the following varia-
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tional problem:

Find (u(e),0(c), Gn(e), Gr(e)) € K(£)() x (Q) x W5 (T';)
Wi (D) Vit € [0,T), such that,

D' (u(e),v)+ B (o (e),v) +2C% (6 (¢),u(e),v) = F(v)+
(Gn(),un(e)) + (G (€), vr, (e))+

2 [(Gry(e),vry () + R(si0 (e) ,u(e), v)], Vv € V(Q),Vt €]0,T7,

Ao (e),7) = B’ (r,u(e)) = C?(m,u(e) ,u(e)) =

(P())dyme 9
e2S (g;o(e),u(e),7),Vr € X(Q),Vt €10, T,
(Gn(e),vn(e) —un(e)) >0, Vv e K(e)(Q),Vt €]0,T7],
(G, (), vr, (g) — 22Oy 4
e [(Gn(e), vr(e) = 25D) — (AGW(e), len(e)] - [252])] 2 0,
Vv e V(Q),Vt €]0,T7,
| u(e)(2,0)=pl(e ), 2 (2,0) = q(e) inQ,
where

Ao (e),7) = [o Caprs(€)oss(e) Tapde,

BY (7 (g),v) = [o7ij (e %J v)dz,

CO(1(e),u(e),v) =3 [, 7 (&) Hus (¢) Hvsda,

D' (u(e),v) = gz {p Jous () vsdr}

F(v) = [o fsvsdr + [ gsvsdD + [ ho{ [, vadas}dy,
| (V) =3 (0v; + 0fui)

such that the remainders R and S are bounded.

Proof.

The same argument used in the proof of Theorem [5.] the first equation in variational

problem (P?)g"* may be written as

D' (u(e),v)+ B (o(e),v) +2C% (o () ,ule),v) = F(v) +
(Gn(e),vn(e)) + (G1.(e),vr.(e)) + €* (G (), vry (€)) + R (e50 () ,u (e) , V)],
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where
R(&;U(é),ﬂ(&),v) = QF(g;V>_QB(5;O-(5)’V)_
oc (g0 (e),u(e),v) —op(eiu(e), v).

Next, we have

/(Aas)iﬂfjéedxs = 55/camg(s)avg(a)mﬁdx—l—gm (e;0(e),7),
. Q

/ 70y Opu; 0°da® = e’ / 7,5 (€) ’yfj (u(e))dr +<"op (s;7,u(e)),
Qe Q

1 £1E OE,,ELE e ERE < 65
5/95 T bk O b5, 05, up 0 das - = g/ﬂnjﬁfug () 8?u3 (¢) dx

+ e'oc(g;m,u(e),u(e)).

anis

Then the second equation in variational problem (P¢)3*.

may be also written as
A(U (6) 7T) - BG (7_7 u (5)) - Ce (7_7 u (5) ,u (8>) - 525 (5; o (5) yu (5> 7T) )
where

S(e;o(e),ule),r)=op(e;mule)) + oo (g57,u(e) ,u(e)) —oa(e;0(e), 7).

Now, note that, there exists a positive constant C' such that, for all u, v € V() and
o, T €3(Q)

sup /\QA(&—;U,T)W < Cloloalloo,
(9]

0<e<egg

sup /|QB(€;T,V>|dJZ < C7loalVv]ia,
Q

0<e<eg

sup / ec(emuvlde < Clrhaluliaalviise,
0<e<en JQ

sup /]Qp(a;v)|d:c < Cv]ia,
Q

0<e<eg
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sup /mpeu Wiar < A2 vl

0<e<eo ot?

For the unilateral contact conditions, we have

(G, vi —uy) = € (Gn(e),un(e) —un(e)),
(G v — 28y (G Vi~ 12)) = (G, (), o ) — 22l
*{Gri(e), on(e) - au?’f )~ (e ol urtely)
|

6.2.2 The limit three-dimensional problem

Assume that the scaled fields (u(e), o (), Gy (g)) admit a formal asymptotic expansion of

the form:
(u(e),0(e),Gn(e)) = (u°,0°,GY) +e(u', o', Gy) + (v, 0%, G3) + - -, (6.4)

with
u’ = (u)) € V(Q), 95ud € C° (), v = (uf) € WH (O R?) Vp > 1,
(07, GB) € 5() x WH(T,) ¥p >0,
and
cijri(e)(z) = c?jkl<x) + 5Czljkz<$) + 520223'1@1@) Ty (6.5)
with
() = ciju(0) (@), iy € L2(Q) Vp = 0.

We also assume that when ¢ — 0

p(e) = p’in V(Q), (6.6)
q(e) = q° in L*(;R?), (6.7)
d(e) = din L>=(T,), (6.8)
eGy(e) = 0in W 3(T,). (6.9)

We substitute the formal asymptotic expansion (6.4))-(6.5]) into the variational problem

(P(g))gms., we obtain the following limit three-dimensional problem
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Theorem 6.2 The leading term (u°, 0% GY,) satisfies the following variational problem:
( Find (u, 0% G%) € K(Q) x B(Q) x W—i3(T',) Vt € [0,T], such that,
Jo 0nOvadr — [, 005030050, dx = f% hoc{f_l1 vodxs}dy,
Vo, € Vo(Q),Vt €10, T,
% {p fQ ugvgda:} + fQ o%Oivzdr + fQ U?jaiugﬁjvgdx
— [ 0930a003vsdx — [ {07,;00005u30;vs + 0730;u305005v3 }dx
+ [ 0050a005u303005v3dx = [, favsda + [ gsvsdl + (G, v3),
Vo € V3(Q),Vt €10, 77,
Jo 360 %Tapdr — [ TapYap(0®)dz — § [, TapOau§dpulda
+5 Jo Tap(9a005ul + 03005u),)da
(P))imee 8 41 [ 75 (0a805ul + 0500,ud)dsulda
—3 Jo Tap0a0030(05u3)*dx = 0,
V(1ap) € L*(;S%),Vt €0, T,
Jo Tas(0au§ + O5ud)dx + [, Taz0au3dsul)da
— [ T30a005uldx — [, Ta30.0(d5u)*dz = 0,
V(ra3) € L2(R?), ¥t € 10,77,
fQ T3303u3d + % fQ 733(03ud)?dr = 0,
V133 € L*(Q),Vt €10, T,
(G%,v3 —ul) >0, Vv eKkK(Q),vte]o,T],

| v (2,0) = p° %% (2,0) = q° in Q.

Proof. First, in the last inequality in (P(e))g*., we take the test function vy (e) =0

after that vr(e) = 222 we obtain
(0, (0), - 22y 1 efian, (@), - 22— aan(e), -1 20 20, (610)
(6,000, 22y 4 i, 229~ aen0. 20200 )
Then, we conclude that
(G060, 2y e 20 e, 2By ey
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From the and since augi(g) = O(g), we obtain
Gr,(e)=0in Ty, Vt €]0,T].

Next, using technics of the asymptotic analysis method, we first replace u(e), o(¢),

Gn(e) and ciji(g)(x) by their expansions (6.4)-(6.5) in the forms A, B?, €Y D! and F

and we equate to zero the terms which are independent of ¢ in (P(¢))g*.. Then we show

that (u°, 0% GY) satisfy (PP)3ms,. m

Theorem 6.3 The leading term (u°, GY;) satisfies the following variational problem:

;

Find (u®,G%) € Kx(Q) x W=13(T',) Vt € [0,T], such that,
% {p fQ ugvgdx} + fQ Ugﬁaﬁvada: + fQ Jgﬁaa(ug + 0)0gvsdr =

(P(J)am's fQ ngng’ + fl", 93’U3dr + ffyl ha{f—ll Uad.l’g}d’y + <G(])V7 ’U3>,
2

dyn,c
" W e Vien(Q), vt €10, 71,
<G5)V,U3 — Ug> >0,Vve ICKL<Q),\V/t S ]O,T[,
| u (2,00 =" %7 (2,0) =q" in O,
where

0,1/ \ 7
Ugﬁ = Caﬁ'yé(x)Epyé(uO)?
(02’5_715) is the inverse of (cg.5),
EY5(u) = 1 (0yuf + 95u + 0,005uf + 0500,u3 + Oyu§dsus) .

Proof.
The proof has been divided into 3 steps

Step 1. The fifth equation in (PP)§r, give
1
agug(l + 58311%) = O,

so that
dzuy = 0 or dzuy = —2.

Since the inclusion H3(Q2) < C'() and u = 0 on 7, x [—1, 1], the solution dzu =

—2 is eliminated. Hence we obtain

dzul = 0 in Q. (6.13)
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Consequently, the fourth equation in (P}) reduce to

Doty + Ozud = 0 in Q. (6.14)

Step 2. Taking into account the equation 1)1. the third equation in (Pf)flgf;jc
reduce to

1 1
CoprsOas — Yap(u’) — §8augﬁgug - 5(8a985ug + 9500,u3) = 0. (6.15)
We observe that
1
Yap(u®) = 5 (Daug + Oug) -
0

If (02’5_715) is the inverse of (c,4.5), we show that

0,—1 =
Ug,@ = Caﬁwé(x)Egé(uo)-

Note that

0,—1 .
Cogns(T) = Qs (T) — Aapis(2)iij(T)ajz,5(),

where i = (i;;) is the inverse of the matrix (a;s;s).

Step 3. Taking into account the equation (6.13)), we next find that the second equation

3 0\anis
in (P) g reduce to

d?
@{p/ugvgdx}—i-/0338avgdx+/agﬁ8augﬁgvgdx =
Q Q Q

/ nggdiU + / ggvng + <G[])V7 U3>, (616)
Q r_
From the first equation and the relation (6.14)), we conclude that
1
/ 002 0v3dr = / 02505980[1136[:17 + / agﬁﬁﬁvadﬂc — / ha{/ vodzrs}dy. (6.17)
Q Q Q 71 -1

We replace the integral [, 0930,v3d2 in equation (6.16)) by their expression (6.17),
we find that
d2
— p/ ugvzdr ¢ + / 00 505vadx + / 00500 (u3 + 0)Ogvsdr =
dt? Q Q Q

1
/fgl)gdl"’—/ g3vgdf—|—/ ha{/ vad:vg}d7+(G?V,U3>.
Q I_ Y1 —1
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6.2.3 The limit two-dimensional problem

We show in the next theorem that (Py)g. is in a sense of two-dimensional problem posed

over the two-dimensional domain @.

Theorem 6.4 The leading term u® = (u?) is of the form u® = (, — 130,(3 and u§ = (3

with ¢ = () € V(w) Vt € [0, T]. In addition, the field ¢ satisfies the following limit scaled

two-dimensional problem:

’

Find (¢, f.) € K(w) x H%(w) Vt € [0,T], such that,

20 [, 5 ¢ ngdw J, M Oapnadw + [ Ngg“@ (C3 + 6)0pms3dw

(P(w))ZZZS,C +/, N;”Z“(?gnadw = |, pamzdw + 2 f% hanady + (fe;m3), V0 € V(w),Vt €]0,T],
(fems — () 20, Vn € K(w), vt €]0,T7,

C(0) =, 5 (-0) =¥ inw,

where
p3 = fjl fadxs + g3(., —1), d = d(.,+1), {fe,m3) = (G%, v3), Nggis and m&E* are defined
by the relations (m and (-)

Proof.

i) From v € Vg (), by a standard argument due to P.G Ciarlet (see,e.g., [Cia97, The-
orem 1.4-4]), we get

Ug = Ca — 300G and uy = (3 with ( = (G) € V(w).

ii) We observe that
El5(un”) = B35 (C) + 237T,5(Ca)- (6.18)
From the definition of o5 and (6.18)), we conclude that

1 1
/_ Oapdrs = /_1 Cos () [E95 (O) + 23T 15((s) ] das

1
1 1
= (/1 Cagns(© )d$3> Els (¢) + (/13736276715(55)‘1553) T15(Gs)
= CssEY5(C) + ClgysTrs(Cs)
= NemE(e),
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1 1
/ r30g5drs = /195302’5;5(37) [ED5 (C) + 3T 15(C3)] das

- (/ xgcgﬂ;(s(x)dxg) B0+ ([ adih@dn) T

= CapsENs(Q) + Capy5TH5(Ga)
= may* (),

iii) First we choose, in (Py), v € V() with the components

Ua(l‘) = —133(%773(1717132)7 U3(13) = ?73(131,372),

with 13 € H?*(w) and n3 = d,m3 = 0 on ;.

This choice shows that (PY) reduce to

d2
ﬁ{p/cgngdm} —/xgagﬂﬁagngdx—i-/agﬁaa(g“g+9)5’5n3dx =
Q Q Q
/f3773d$+/ gsnzdl + (fe, n3). (6.19)
Q r

The second choice of v € Vi (Q) is

Ua(x) = na(xth)a U3($) =0,
with 1, € H'(w).

In this case shows that (Py)g", reduce to

/agﬁﬁgnadx = 2/ hanady (6.20)
Q gt

Using Fubini’s Formula: [, Fdz = [ {fjl Fdxg} dw, we have

G
dtz{P/C:s??:sdI} 2p o — Madw,
/ :vgaaﬁ(?aﬁngd:c = /m””“S 3Nz dw,

Q

[ Ahtulca-+ )0 = [ Neu(+ 6)0m
Q

w
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Then

1
/ Janpdar + / gampdl = / ([ fodes + g5 —1)}ades
Q T_ w —1

= / p3nzdw,

/ 00 508N dr = / N&3*Ognadw = 2 / hanady.
Q w

71

2p 8752 ngdw /mamS agngdw—l—/N“ms o (C3 4 0)0pnzdw

+/Nggwaﬁ77adw - /p3773dw+2/ hanad’7+ <fca773>'

71

Next, we write the two-dimensional boundary value problem as an equivalent boundary
value problem (P(w))%is

dyn,c*

Theorem 6.5 Assume that the boundary v is sufficiently smooth. Then any smooth

solution ¢ =

(¢;) of the variational problem (P(w))%™ is also a solution of the following

dyn,c

two-dimensional displacement problem.:

(P(w))

anis
dyn,c

([ Find ((¢.), G, 1) € (H(w))? x H2(w) x H~2(w) ¥t € [0,T], such that,

2028 — Dapmy® — N2B0ap (C3 +0) = ps + fo inw x 0,7,
s Nemis = 0 in w x 10, TT,

(3=0,(3 =0 on 1 x]0,T[,

N35vg = 2hg on y x |0, T,

anis
maﬁ

vavg =0 on v x 10,17,

O m’"“sl/g + 0, ( Znﬁwuam) =0 on v x 0,77,
NEsvg = 0 on vy, x |0, T,

<3 < dafc < OafC(C?) _d> =01 wx ]07T[7

C(?O) =¥ %(7()) =1 inw.
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Proof.
Applying the Green formulas, we obtain

/mams aﬁﬁiﬂdw /{ a manzs Vﬂ+87—< g%lSVaTﬁ)}n3d’y

/mamsyayﬁ(?,,ng,d’y — / (8a5mg%zs) nadw,

/ Nams o (G5 +0) Opmzdw = / {(95 “ms o (G +6) )} n3dw

+ /(N&‘Z“ o (G4 0)) vansdy,
Y

/Nggis(‘)ﬁnadw = —/ (aﬁN;;giS) nadw—l—/Nggisygnadv.

¥
Then

82
/ [Qp af;’ Dapmt* — g (N5 04 (Cs+9))—p3] m3dw — (fe;m3)  —

/(8 N;gw) nadw—i—/ (Nagwy —2h )nach / m“”lsuaugﬁyngdv +
w ol

[ Aumize + Nego0n G-+ 0] v+ 0r (migfovams) b mdy = 0,

Y2

for all § = (1a,n3) € V(w), with the functions hea : v x [0,T] — R defined by
ﬁa = ho on vy x [0,7] and l~za =0 on v x[0,7].

These equations imply that all the factors of n,, 13, and 9,73 vanish in their respective

domains of integration. Then we get

%G

2022 = Ougm® — 03 (NGF“0 (G +0)) = py+ fo i w x 10,71,

and
9sNIE® =0 inwx]0,T7,
so that

95 (N3E"0a (G +0)) = N33 00p (3 +6) inw x]0,T],
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consequently

aQC anis \7ants .
2p 81523 — Oapmigy” — N3§"0ap (G +0) = py + fo in w x ]0,T7.

For boundary conditions, we get

Namisy, — 2k, =0 on vy x ]0,T],

thus
NYE*vg = 2h, on v x 0,77,
and
N&3®vg =0 on vy, x]0,T7.
We also get
My vaerg =0 on v x 10,77,
and

[aamg%“ + Ngg"s L (C3 + 9)] vg + 0, (mg%isyaﬁg) =0 on vy, x|0,T7,
since N%*vg = 0 on 7, x |0, T, we conclude that

Oamt*vs + 0r (MY vaTs) = 0 on 79 x 0, 7.

anis

dyn.cy We take the test function n3 = d after

Finally, in the last inequality in (P(w))
that n3 = 2(3 — d, we obtain

(fe,d—G3) =20,
and

(fe, g —d) > 0.
Thus

(fe.G—d) =0.
n
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6.3 Dynamical contact equations of generalized non-
homogeneous anisotropic Marguerre-von Karman

shallow shells

We now rewrite the two-dimensional boundary value problem (P(w))4, in the form of

dynamical contact equations of generalized nonhomogeneous anisotropic Marguerre-von

Karmén shallow shell as follows:

Theorem 6.6 Assume that the set w is simply-connected and that its boundary y is

sufficiently smooth. Let ( = ((;) be a solution of (P(w))%  with the regularity

dyn,c
(o € H3(w), (3 € H*(w) and f. € H ' (w) Vt € [0,T].
Then

a) The functions he v % [0,T] = R defined by
ha = ha on v X [0,T] and ho =0 on v, x [0, 7],

are in the space H %(fy) and satisfy the compatibility conditions

/Tle")/ = /Egd”y = /(1'171,2 — l’gﬁl)d")/ =0.
2 B 2

b) Furthermore, there exists a function ® € H*w), uniquely defined by the relations
®(0) = 019(0) = 0,P(0) = 0, such that

Nflnis - 2822(1), N{Jénis — N;{Lis - —2812@, NSQWL'S — 2811(1).

c) Finally, the triple (3, ®, f.) € (H3(w)NK) x HY(w) x H Y (w) Vt € [0,T], satisfies the

following problem
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2/)6;(23 - Mams(CBa D) =2[D, 3+ 0] +ps+ feoinwx]0,T],
AP = 2£((3, D) inw x 0,71,
(3= al/C?) =0 on 1 x ]OaT[a

anis Mgnis<g37 (I)>V04Vﬂ =0 on Y2 X ]07 T[’
(P)

dyn,c

]\4("”8(<37 )Vﬁ + 87- (Mggis(C;;, CI))VQT/B) = 0 on 7y X ]O,T[,
O =Py,0, =P onyx]0,T7,
(3<d, fe <0, fe(Gg—d) =0inwx]0,T],

G (., 0) = @3, %Cf’ (,0) =13 in w,

where

Po(y) = =1 [y hedy + y2 [ ndy + [ ) (21he — walu)dy,
B1(y) = =1 [ hady + 1 [ Indy, y = (11, 92) €7,
(D, (] = 011 P2 + 092PD11¢ — 2012PD12C,
Mg (G, ®) = Fig(Gs @) +mis(Ga),
£(G,®) = [02a750;§;§ Fo(Cs, @) + N2E(G)]
Fos(Gs, @) = Cla 501175 (200® — NI (G3)) + Oy (200 P — N33’ (G)) +
20755 (—201® — N1 (C))),

\

such that maﬂ(gg) aﬁ %(C3) are defined in Section 3.3 and Cgﬂvg’ Clﬁ_w are the inverse of

«

Cogrsr Ca

o aByo respectively.

Proof.
The proof is similar to that of Theorem [3.6, We prove that

a) The functions he € H %('y) satisfy the compatibility conditions.

b) The regularities of N23* € H?(w) imply that ® € H*(w). Then & is uniquely defined
if we impose that ®(0) = 0;9(0) = 9,P(0) = 0, such that

N = 200,®, Nip's = Ngis = —201,®, Ny = 2011 P in w.
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c) (i) From NZi*vg = 2h, on 7, we obtain

@z@o,&,@:@l OH’}/X]O,T[.

(ii) We have
NaiOap (s +0) = 2[®, G5 + 6],

and

miE () = Fls(G, @) +m2i(G)
= M (G, D).

Then, we deduce

0%Gs

20 — Qe Mi™ (G, @) = 2[®, G + 0] +ps + fo in w x J0, T

(iii) Notice that

1 .
A0 = CA[CRsCriniFas (G, @) + N2(G)]

_ %g(gg,cm. (6.21)

6.4 Conclusion

An application of the technics from formal asymptotic analysis to the three-dimensional
dynamical model for a Signorini problem with Coulomb friction of nonlinearly elastic
shallow shell with a specific class of boundary conditions of generalized Marguerre-von
Karméan type, made of a general nonhomogeneous anisotropic material, shows that the
leading term of the expansion is characterized by a two-dimensional frictionless dynamical
contact boundary value problem called the dynamical contact equations of generalized
nonhomogeneous anisotropic Marguerre-von Karmén shallow shells, which depends on
the Airy function ®, the vertical component (5 of the displacement field of the middle

surface of the shallow shell and contact force f..
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Part 111

Numerical approximations
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Chapter 7

Finite element approximations of
generalized Marguerre-von Karman
equations

This Chapter, make as apply the finite element method for approximating solutions to the
generalized Marguerre-von Karman equations, solving these equations amounts to solving

a single discrete cubic operator equation. This work was published in [GC14].
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7.1 Generalized Marguerre-von Karman equations

Ciarlet and Gratie |[CGO6b| have shown that, the generalized Marguerre-von Karman

equations written as

[ —Oapmap(V3) = [0, + 0] + f in w,
AP = —[€,€ 4 20] in w,
iS50 = 8,,5 =0 on Y1
P § ,
( )sta maﬁ(v2£)ya7/ﬂ =0 on Yo,
Damas(V2E)vs + O0r(Map(VZE)VaTs) = 0 on 7,
( & =y and 0,P = P; on 7,

where

mas(V26) = =3 {34 A0as + 4ast |
(DO(y) =N f’y(y) §2d7 + 2 ffy(y) ﬁ/ld’y + f'y(y) (l’th - [L'th)d")/, Yy € 7>

Q1(y) = —1n ) hody + vy fw(y) hidy, y €,
(D, &] = 011P00E + 092P011E — 2012P012E.

The known functions # and f are, up to constant factors, the function that defines
the middle surface of the shell and the resultant of the vertical forces acting on the
shell. The functions &y and ®; are known functions of the appropriately “scaled” density
(ha) : 71 — R? of the resultant of the horizontal forces acting on the portion of the lateral
face of the shell with v, as its middle line and the functions %a € L?(v) defined by Ea = hq
on vy, he =0 on ~9. The constants A and p are the Lamé constants of the material. The
unknown £ : w — R is, up to constant factors, the vertical component of the displacement

field of the middle surface of the shell and the unknown ® : @ — R is the Airy function.

7.2 The continuous cubic operator equation

Let us briefly recall some of the results obtained in [CGOGb| concerning the properties of
the continuous cubic operator equation.
Let X € H?*(w) denote the unique solution in the sense of distribution to the boundary

value problem:

A?X = 16,6] in w, (7.1)

X = P¢ and 0,y = @1 on 7. (7.2)
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Let F' € V(w) denote the unique solution in the sense of distribution to the boundary

value problem:

= Oopmas (VF) = fin w, (7.3)
F=09,F=0onm, (7.4)

Map (V2F) vavg = 0 on 7, (7.5)

Oamap (VPF) vg + 0 (map (V2F) va7s) = 0 on 7. (7.6)

Let the bilinear mapping:
B : H*(w) x H*(w) — Hj(w),

be defined as follows: for each pair (¢,7) € H*(w) x H?*(w), the function B(¢,n) € HE(w)

is the unique solution in the sense of distribution to the boundary value problem:
A’B(&,n) = [&1)] in w, (7.7)

B(&n)=0,B(§n) =0ony. (7.8)
Let the second bilinear mapping;:

B: H*(w) x H*(w) — V(w),

be defined as follows: for each pair (®,€) € H2(w) x H%(w), the function B(®,§) € V(w)

is the unique solution in the sense of distribution to the boundary value problem:

~ dagmas (V2B(®,€)) = [0,¢] inw, (7.9)
B(®,&) = 8,B(®,£) =0 on 7, (7.10)

Mas (v2§(<b,5)> Vavs = 0 om Y, (7.11)
OtV + O, <maﬁ (VQE(@, g)) wﬁ> — 0 on . (7.12)

First, Ciarlet and Gratie [CGO6b| have shown that, the generalized Marguerre-von Kar-
méan equations are reduced to a cubic operator equation, such that a pair (£, ®) €
V(w) x H?(w) satisfies the generalized Marguerre-von Kéarman equations in the sense
of distributions if and only if the function £ = (6 + &) € V(w) satisfies the cubic operator
equation:

CE)+(I—-L)E—-F=0, (7.13)
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and the Airy function ® € H?(w) is given by

=Y - B9, (7.14)

where
The cubic mapping
is defined by

The linear mapping
L:V(w)— V(w),
is defined by
L = B(X,n)-
Noting that, finding the solution 5 of the above operator equation ([7.13)) is equivalent

to solving the following variational problem:

(P)iso FIEngG V(w),vSlLCh tklat’
sta (CE)+ (I —-L)—F,n)=0foralln e V(w),

where ((.,.)) is the inner-product on V(w) defined by

mm»:ﬁ/mmv@mmm,

and let ||.|| denote the norm associated with the inner product ((.,.)) which is equivalent
to the norm ||.|| g2(.) over the space V(w).

Next, Ciarlet and Gratie [CGO6b] have shown that, under the assumptions (w is
simply-connected, the functions Ea satisfy natural compatibility conditions, and the norms
|hallz2¢y,) are small enough), the generalized Marguerre-von Karméan equations have at
least one solution (&, ®) € V(w) x H?*(w) in the sense of distributions.

The cubic operator equation generalizes an operator equation originally intro-
duced by Berger |[Ber67] and Berger and Fife [BFGS], then used by Naumann [Nau74] and
Ciarlet et al. [CGKO7] for analyzing the von Karman equations for a nonlinearly elastic

plate.
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7.3 The finite element method

7.3.1 The discrete cubic operator equation

Let w be a bounded connected, open subset of R? with a Lipschitz continuous boundary
v, we henceforth assume that ~ is a polygon, so that @& can be exactly covered by a
regular family of triangulations.

Let W), C H*(w), Vi, C V(w), Vor, C HE(w), be standard conforming finite element
spaces associated with such a family, i.e. that satisfy the minimal conditions of [[CiaT§],
Theorem 6.1-7|. As usual, the parameter h denotes the greatest diameter of all the finite
elements found in a given triangulation, strong and weak convergence are noted — and
— respectively. All convergences are meant to hold as h — 0.

Let X € W) denote standard finite element approximation of ¥ € H?(w), which
therefor satisfies

IXn — Xl 2wy — 0. (7.15)

Let F} € V}, denote the unique solution of the variational equations

— / OapMas (V2 Fy)pdw = / fondw for all n, € Vj,,

with satisfies
|1 Fy — Fllg2() — 0. (7.16)

Let the bilinear mapping
By, : H*(w) x H*(w) — Von,

be defined as follows: for each pair (£,n) € H?*(w) x H*(w), the function By, (&,n) € Vyy, is

the unique solution of the variational equations,

/ABh(g,n)Aghdw = /[5, n)spdw for all ¢, € Vop,
hence, for (£,7n) € H?*(w) x H?(w) fixed,
1Br(&;m) — B(& )|l 12wy — 0. (7.17)
Finally, let the another bilinear mapping

Eh : Hz(w) X H2((.U) — Vh,
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be defined as follows: for each pair (®,¢) € H%(w) x H2(w), the function B, (®,¢) € V;,

is the unique solution of the variational equations

— [ Gusras(VBu(®. s = [ [0l or all € Vi,
hence, for (®,¢) € H*(w) x H?(w) fixed,
1B(®.) = B®,6)]l 120y — 0. (7.18)
For each h > 0, the discrete problem is then defined through the following theorem:

Theorem 7.1 The discrete problem of generalized Marguerre-von kdrmdn equations con-

sists in finding (gh, ®y) € Vi, x Wy, such that gh satisfies the discrete operator equation:
Co(&) + (I — Lu)&n — By = 0 in Vi, (7.19)

and Oy, 1s given by

O, = Xn — Bu(En, &) in Wi, (7.20)

where the discrete cubic mapping Ch: Vi — Vi is defined by

Cru(mn) = Bu(Bu(nn, 1), mn),

the linear mapping Ly Vi, =V is defined by

Zh??h = Eh(ih,ﬁh),
and
g;l:g—i—fh andﬁh:§+Fh.

Proof. The discrete problem of generalized Marguerre-von kirméan equations consists in

finding (Eh, ®y) € Vi, x Wy, such that Eh satisfies the variational equation

- / Oapmas(V2(En — 0))pdw = / ([®n, &n] + f)nudw for all m,, € Vi, (7.21)

w

and ®,, satisfies the variational equation
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/A2<I>h.19h = /([5,5] — [€n, E])¥ndw for all ¥, € W (7.22)
By definition of th: function atld the mapping By, imply that
®p, = Xn — Bu(6n, &) in Wi
By definition of the function F), and the mapping Eh, imply that
& — Fi = Bi(®1,&,) in V. (7.23)

Eliminating ®;, between these two operator equations (|7.20)) and ((7.23)), yields the single

operator equation
Bu(Bu (&) &n) + & — Bu(Xn &) — Fr = 0 in V.
Then, we conclude that gh € V), is found by solving the discrete operator equation:
Cn(&n) + (I — Lp)&n — F, = 0 in Vi,

]
Naturally, finding the solution gh of the above discrete operator equation (7.19) is

equivalent to solving the following discrete variational problem:

(P Find &, € Vj, such that,
h)sta ~ [ T \Ne -~
“\ (Cul&n) + (I = Ln)én — Fymw)) = 0 for all ny € Vi,

7.3.2 Convergence

We will need the following lemma:

Lemma 7.1 The bilinear mapping By, is sequentially compact, hence a fortiori continu-

ous, in the sense that, if
(o) = (&m) € [H? (W),
then

By(&nymn) — Br(€,n) € Hg(w).
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Proof.
We define the following inner-product on H3(w)

(¢,9)a :/ACAgdw,

and let ||.]]a denote the norm over the space Hg(w), which corresponds to the inner
product (., .)a.
From the definition of the mapping By, we get

(Bu(€,m).<)a = / €, nleduo,

for all (€,1,6) € [H2(w)]? x H3(w)
Then there exists a constant ¢; such that
[ Br(&:m)lla < alléllwraw)lnlwiaw), (7.24)
for all (&,n) € [H?*(w)]*
Let (&, mn) — (&,n) € [H?*(w)]?, using the bilinearity of By, we have
By (&nymn) — Br(§,m) = Bu(& — &m) + Br(§mn —n) + Br(§n — & mn — 1)
From ([7.24)), it follows that there exists a constant ¢, such that
| Bu(&nsmn) — Bu(&,n)lla < ca(€n — EllwrawyInllwraw) + [[Ellwrae Inn — nllwraw)
+ & = Ellwrae lmn = nllwraw))-
The compact imbedding of H?(w) into W'*(w) implies that Bp(&,,mn) — Br(€,n) €
HZ(w), for more details see the proof (part (iv)) of [Cia97, Theorem 5.8-2|. m
Theorem 7.2 Assume that w is simply-connected, the functions h, satisfy natural com-

patibility conditions, and their norms ||ha||2(,) are small enough. Then

(a) there exists a constant M such that, for each h > 0, the discrete variational problem

(Pp)° has at least one solution &, € Vi, that satisfies ||| < M.

sta

(b) Let (E)ns0 be any subsequence that weakly converges in H*(w), let £ € V(w) denote
its limit and let the associated subsequence (®p)p>o be defined by (7.20). Then & is

150

o, and

a solution of the variational problem (P)
(& ®1) = (€,®) in H(w) x H*(w),
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where ® is defined by (7.14]).

Proof.

(a) (i) The definitions of the mapping B, and the function Y, imply that the linear

mapping Ly is continuous, then there exists a constant cs such that

| Lnllcovw) < cs Z 1hallL2(y,)- (7.25)

(ii) From the definitions of the mappings By, By, and C),, we conclude that, for any
N € Vi

(Coulm)ymn)) = (Bu(Br(msmn),mn))
= /[Bh(nh,nh)ﬂ?h]??hdw-

Taking into account By, (np,, nn) € HE(w), then applying [Cia97, Theorem 5.8-2
|, we deduce that

(Culmm),m)) = /[nh,nh]Bh(nh,nh)dw

- /ABh(nh,nh)ABh(nh,ﬁh)dw

= [JABR(1h: )| 7200y = 0

So that, the discrete cubic operator CN'h satisfies
(Ch(mn), ) > 0 for all m, € Vi, (7.26)

(iii) Since the mapping By, is sequentially compact (see Lemma[7.1)), so that
if Eh € Wy, be such that

& — gin H*(w).
Then
B (&n, &) — Ba(€,€) in H2(w).

From ([7.17)), it follows that

Bu(&r, &) — B(E,€) in H(w). (7.27)
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(iv) Let x, € Wy, Eh € Wy, and n, € W), be such that
Xn — X In H%w),&égin H2(w),nh4nin HQ(w), (7.28)

then

((Ba(Xns &) m) = (B(X.€).m))- (7.29)

To shown this, we have

(Bu(Xns ) m)) — (B(X,€).m) = /[%,&]nhdw—/[%f]ndw

w

_ / R Gl + / % Enlmdes

w

- /w[%a gh]nhdw‘i‘/w[%a Enlnde

— /wb?, EpJnde — /w[%, €]ndw
= /w[%h - X gh]nhdw
+ [ -
L

The compact imbedding of H?(w) into C%(w), gives

/w %0 — % Bl < call T — T lllmwlmlme, (730
and
JE&m—nds < IR &l wlm — oo,

< oslIXl a2 lénllm2wllnn — nlleow)-  (7.31)

Since X, — ¥ in H2(w) and &, — € in H2(w), the inequality (7.30) and (7.31)
imply that the first and second terms approach zero as h — 0.
We have

/[)A(/, gh - g]ndw = /(773119282251 + 77522%31151 - 277312%81261)0{@

- /w[%f]ndw,

since n0,px € L*(w) and 0,.&, — 0y, in L*(w), imply that the third terms
approach zero as h — 0 which implies ([7.29)).
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(v) By adapting a compactness method due to Lions (see [Lio69, Chap. 1, Theorem
4.3]), we show that, if the norms ||hs|12(,,) are small enough, there exists a
constant M independent of h, such that the discrete problem (P;)%° has at

sta
least one solution &, that satisfies ||&,[ < M.

To see this, let w, 1 < i < d(h) be a basis of V}, that is orthonormal with
respect to the inner product ((.,.)).

Let (.,.) and |.| denote the Euclidean inner product and Euclidean norm in
RYM and let X = (X;)™") be any vector in R ™).
We define the mapping 7, : R¥" — V}, by letting

d(h)
m(X) =) X! for all X € R™™),

=1

and we define the mapping G" = (G?) : R¥" — RI™ by letting, for all
X e R

(G(X) = (Ch(m(X)) + (I = Ly)(X) = Fy,wl)) =0,
1<i<d(h).

So that, for all X € Rd4")

(GM"X).X) = ((Culgn(X)) + (I = Ly)mn(X) = Fyymi(X)))-

Since ||Fy| < cl|f]] 12(w) and the properties established in (i) and (ii) imply
that

(G"X),X) > (1= |ILallen) X[ = [1Fa]IX]
> (1=c3 ) lhalleea) X = eoll fll 221X

We assume that the norms |hq|r2¢,,) are small enough, in the sense that
Z hallz2(y) < c3' and let

M= 51— 3 Ihallzzen) Nz,

thus
(G"(X),X) >0,
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for all X € R¥"  such that |X| = M.

Hence a simple corollary to the Brouwer fixed point theorem (see [Lio69, Chap.
1, Lemma 4.3|) applied to the continuous mapping G” (the continuity of G"
follows from that of the mappings C, and Zh) shows that, there exists at least
one vector X € R¥" such that

G"(X) =0 and | X|| < M.

Equivalently, there thus exists at least one solution

d(h)
’Sh = ZX’Lth € Vh7

i=1

to problem (P,,)%° such that ||&,| < M.

sta

(b) (i) Since the sequence (£,)p0 found in (a)-(v) is bounded independently of 4 in the
space V' (w), there exists a subsequence (Eh) n>o and E € V(w) such that

& — € in H(w). (7.32)

Then ¢ is a solution of the variational problem (P)i°. Too see this,

given any 1 € V(w), there exists functions n, € V}, such that
nn — 1 in H*(w),
so that, by part (a)-(v),
(Cu(&) + (I = L)&, — From)) = 0 for all ny, € Vi, (7.33)

From , it follows that

(& = Fo,mn)) = ((E = F.m)).
By definition of the linear mapping Zh, we know that

(Zn&nsmn)) = (Bu(Xns &), m));
by part (a)-(iv), we know that ((Bu(Xa, &) 1)) = (B(X,€),n)), hence
(Ln&n,mn)) = (L&),
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By definition of the cubic mapping éh, we know that

(Cu(&n)ymn)) = /[Bh(ﬁh,fh)aﬁh]nhdw.

by part (a)-(iii), we know that By (&, &) — B(E,€) in HZ(w), so that
[B(&n, &), &) — [B(&,€),€] in L'(w), (7.34)

thus
((Cnl(&n),m)) = ((C(€),m)).
Then passing to the limit as A — 0 in (|7.33)), we obtain

(C(E)+ (I — L) — F,n)) =0 for all n € V (w).
(ii) The subsequence (£,)rs0 found in (b)-(i), satisfies strongly convergent
& — € in H2(w). (7.35)

150

To shown this, we let 7, = ho in the variational equations of (P,)%e.

Then
((C(&n), ) + IElI* = ((Ba(Rn &), &) — ((Fi,4)) = 0.
From , it follows that

((Fa &) = ((F,€)). (7.:36)
by part (a)-(iv), we conclude that
((Ba(Xn: &), 60)) = ((B(X.€).€)) (7.37)

By definition of the cubic mapping 5h, we know that

(Chl(&): &) = /[Bh(fh,fh)yﬁh]fhdw-

Using , we get o -
((Ch(&n), &n)) = ((C(£),€))- (7.38)

From (7.36) — (7.38)) and since € is a solution to the variational problem (P)e,

we deduce that

1€x11* — 11€11%,
which implies (7.35]).
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(iii) It remains to be shown
®), — & in H*(w). (7.39)

From , we know that
®p, = Xn — Bul&n &)
Since i — X in H2(w) and By(&, &) — B(E,€), we obtain
(X — B(&n, &) = (X — B(&,9)),
which implies .

7.4 Conclusion

In this Chapter, we establish the convergence of a conforming finite element approxima-
tions to the generalized Marguerre-von Karman equations. We first reduce the discrete
problem of these equations to a single discrete cubic operator equation, whose unknown is
the approximate of vertical displacement of the shallow shell. We next solve this discrete
operator equation, by adapting a compactness method due to J.L. Lions and Brouwer’s
fixed point theorem. Then we establish the convergence of a conforming finite element
approximations to these equations. Using weak regularity on solutions, but in order to

get an error estimates it need more regularity.

153



Conclusions and perspectives

The major conclusions of these studies are:
Firstly, a mathematical justification of five new two-dimensional models in nonlinear

shallow shells theory by asymptotic analysis method:

1. Dynamical equations of generalized Marguerre-von Karman shallow shells.

2. Dynamical equations of generalized nonhomogeneous anisotropic Marguerre-von

Kéarman shallow shells.
3. Generalized Marguerre-von Karman equations with Signorini conditions.
4. Dynamical contact equations of generalized Marguerre-von Karman shallow shells.

5. Dynamical contact equations of generalized nonhomogeneous anisotropic Marguerre-

von Karmaéan shallow shells.

Secondly, the existence of a solution to the two models 1 and 4.

Thirdly, the convergence of a conforming finite element approximations to the gener-
alized Marguerre-von Karméan equations.

Notice that, in the case v = 71, the previous models reduce to the classical Marguerre-
von Karméan shallow shell models. If the function 8 = 0 in @, the shallow shell becomes
a plate. Then the generalized Marguerre-von Karman shallow shell models reduce to the

generalized von Karman plate models.

As future work, we plan to:

1. Derive an estimate for the error of the approximate solution to the generalized
Marguerre-von Karméan equations, which obtained in last Chapter and numerically

study for these equations.
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. Study the existence of a solution to the models 2, 3 and 5.

. Study the numerical analysis for two models 1 and 4. It is a natural complement to

our study, where we establish the existence of solutions to these models.

. Extend these studies for shallow shell to general shell problems.
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Title: Asymptotic analysis of a Signorini problem with Coulomb

friction for shallow shells. Dynamical case

Abstract: The objective of this thesis is to study the asymptotic modeling of three-
dimensional problems of nonlinearly elastic shallow shells, in dynamical case, with and
without unilateral contact. Also, to study the numerical approximation of the generalized
Marguerre-von Karman equations.

In the first Part, we consider a three-dimensional dynamical models for a nonlinearly
elastic shallow shells with a specific class of boundary conditions of generalized Marguerre-
von Karmén type, without unilateral contact. Using technics from asymptotic analysis,
we justify two two-dimensional models. The first model in homogeneous and isotropic
material case, called dynamical equations of generalized Marguerre-von Karméan shallow
shells. The second one in nonhomogeneous and anisotropic material case, called dynami-
cal equations of generalized nonhomogeneous anisotropic Marguerre-von Karman shallow
shells. In addition, we establish the existence of solution to the first model.

In the second Part, we extend the two models in first part, to a Signorini contact with
Coulomb friction case. To this end, we justify the dynamical contact equations of gener-
alized Marguerre-von Karman shallow shells. Also, we establish the existence of solution
to these equations. Next, we justify the dynamical contact equations of generalized non-
homogeneous anisotropic Marguerre-von Karman shallow shells. In addition, we justify
the contact equations of generalized Marguerre-von Kéarmén shallow shells, in static case.

In the third Part, we establish the convergence of a conforming finite element approx-
imations to the generalized Marguerre-von Karméan equations.

Key words: nonlinear shallow shell theory, asymptotic analysis, dynamical problem,

Signorini problem, Coulomb friction, Marguerre-von Karméan equations.



Titre: Analyse asymptotique du probléme de Signorini avec frotte-
ment de Coulomb pour les coques peu-profondes. Cas dynamique

Résumé: L’objectif de cette thése est d’étudier la modélisation asymptotique des coques
peu-profondes non linéairement élastiques, dans le cas dynamique, avec et sans contact
unilatéral. Aussi, d’étudier I'approximation numérique des équations de Marguerre-von
Karman généralisées.

Dans la premiére Partie, nous considérons des modéles tri-dimensionnels dynamiques
pour les coques peu-profondes non linéairement élastiques avec une classe spécifique de
conditions aux limites de type Marguerre-von Karman généralisé, sans contact unilatéral.
En utilisant les techniques de 'analyse asymptotique, nous justifions deux modéles bi-
dimensionnels. Le premier modéle dans le cas d’'un matériau homogeéne et isotrope, appelé
les équations dynamiques des coques peu-profondes de Marguerre-von Karman général-
isées. Le second dans le cas d'un matériau non homogéne et anisotrope, appelé les équa-
tions dynamiques des coques peu-profondes non homogénes anisotropes de Marguerre-von
Karman généralisées. En plus, nous établissons l'existence de solution pour le premier
modeéle.

Dans la deuxiéme Partie, nous étendons les deux modéles en premiére Partie, au cas
contact de Signorini avec frottement de Coulomb. A cette fin, nous justifions les équations
de contact dynamiques des coques peu-profondes de Marguerre-von Karméan généralisées.
Aussi, nous établissons l'existence de solution & ces équations. Ensuite, nous justifions les
équations de contact dynamiques des coques peu-profondes non homogénes anisotropes
de Marguerre-von Karman généralisées. En plus, nous justifions les équations de contact
des coques peu-profondes de Marguerre-von Karman généralisées, dans le cas statique.

Dans la troisieme Partie, nous établissons la convergence d’une approximations par
éléments finis conforme pour les équations de Marguerre-von Karmén généralisées.

Mots clés: théorie de coque peu-profonde non linéaire, analyse asymptotique, prob-
léme dynamique, probléme de Signorini, frottement de Coulomb, équations de Marguerre-

von Karmaén.
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