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Introduction

The problem of the regression function estimation is often sought out by
practitioners to solve their problems. Both parametric and nonparametric
technics have been developed on the basis of a set of observations. In all
these research works, the authors focus on two essential points.
• The nature of the data set.
• The link between a first variable of interest and a covariate X.
These variables can take different forms. It can be unidimensional or mul-
tidimensional if it contains an exact number of information. We can also
encounter the case where the quantity of information is illimitated. In this
case we define a functional variable, we mainly talk about "Data curves".
Functional variables can be only observed on a finite grid of discretization
points, the estimation can then be viewed as a multidimensional problem.
This technic fails because of the great number of discretization points which
leads to the well-known problem of curse of dimensionality, linked to the
sparseness of the data. This motivates the extension of the finite dimensional
statistical technics to the infinite dimensional data setting. The nonparamet-
ric methods are then reasonable ways to deal with this type of data sets.
There is nowadays a large number of fields where functional data are col-
lected such as environmetrics, medicine, finance and pattern recognition. A
classical statistical problem is that of regression which consists to study the
relationship between two observed variables with the aim to predict the value
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of the response variable when a new value of the explanatory one is observed.
Note that the modelization of functional variable is becoming more and more
popular since the publication of the monograph of Ramsay and Silverman
(1997) on functional data analysis. However, the first results concerning
the nonparametric models were obtained by Ferraty and Vieu (2000) who
established the almost complete pointwise consistency of kernel regression es-
timators when the observations are independent and identically distributed
(i.i.d.). These results have been extended in Ferraty et al. (2002) by treating
the time series prediction. Dabo and Rhomari (2003) stated the convergence
in Lp norm of the kernel estimator of this model and Delsol (2007) states
the asymptotic expression for the Lp errors. The reader can found in Ferraty
and Vieu (2006) more discussions on nonparametric methods for functional
data. The asymptotic results including the mean squared convergence, with
rates, as well as the asymptotic normality of kernel estimators of regression
function have been obtained by Ferraty et al. (2007); many other recent
related references about the nonparametric functional data analysis include
Amiri et al. (2014), Ezzahrioui and Ould-Said (2008) , Rachdi and Vieu
(2007) and so on.
Meanwhile, the nonparametric k-Nearest-Neighbours (kNN) estimator for
functional data has also been investigated. For example, Burba et al. (2009)
established the pointwise consistency for independent data and Kudraszow
and Vieu (2013) gave the rate of the almost complete uniform convergence
of the regression KNN estimator.
In the most of the aforementioned works the authors used the kernel method,
whereas it is known, in the finite dimensional data case, that the latter pro-
duces high bias compared to the local linear method. We can found in Chu
and Marron (1991), Fan (1992) and Fan and Gijbels (1996) an interesting
comparison between both methods. Since the open question (cf. Ferraty and
Vieu (2006)) "How can the local polynomial ideas be adapted to infinite-
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dimensional settings?", the local linear smoothing in the functional data
setting has been considered by many authors in several versions.
The first one was considered by Baillo and Grane (2009) who studied the
consistency in mean square of the constructed local linear estimator when
the covariates are of Hilbertian nature (see also the paper by El Methni
and Rachdi (2011)). Another version of a functional local linear regression
estimator was given by Barrientos et al. (2010) in the case where the explana-
tory variable is valued in a functional semi metric space. Then, Berlinet et al.
(2011) stated the asymptotic mean square error of a functional local linear es-
timator of the regression operator which is constructed by inverting the local
covariance operator of the functional explanatory variable. The mean-square
convergences of the locally modelled regression estimation for conditional
density function and conditional cumulative distribution function have also
been established in Rachdi et al. (2014) and Demongeot et al. (2014),
respectively for independent functional data. Zhiyong and Zhengyan (2016)
established the mean-square convergence as well as the asymptotic normality
for the regression function, they also adapt the empirical likelihood method
to construct the pointwise confidence intervals for the regression function
and derived the Wilk’s phenomenon for the empirical likelihood inference.
Attaoui et al. (2017) considered the problem of the local linear estimation
of the regression operator when the regressor is functional, they constructed
an estimator by the kNN method and established its almost complete con-
sistency with rate.
Notice that Barrientos et al. (2010) obtained a rate of the pointwise almost-
complete convergence for the local linear estimator of the regression function.
But, as pointed out in Ferraty et al. (2010) "the uniform consistency results
are indispensable tools for the study of more sophisticated models in which
multi-stage procedures are involved". Under uniform convergence, one can
make prediction even if the data are not well observed. We also can solve
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some problems such as data-driven bandwidth choice (see Benhenni et al.
(2007)), or bootstrapping (see Ferraty et al. (2008)). Uniform convergence
of other local linear nonparametric estimators has been investigated in some
papers as Demongeot et al. (2010) and Demongeot et al. (2011) for the con-
ditional density and Messaci et al. (2015) for the conditional quantile. As
for us, one of our principal aims is to establish the uniform almost complete
convergence of the local linear estimator of a generalized regression function
which generalizes the regression estimator studied in Barrientos et al. (2010)
and to focus on a robust tool of prediction (a conditional quantile estimator).
First, the researchers considered a functional explanatory variable and a real
response variable (see the references previously cited). Then, the case when
the response variable is also functional is treated , see for example Ferraty
et al. (2011), (2012a). Moreover, Demongeot et al. (2017) generalized
the results established by Baillo and Grane (2009), considering both the
response and the explanatory variables of functional kind. In this direction,
they stated the rate of uniform almost-complete convergence of the local lin-
ear estimator of the regression operator.
However, in practice, observed data can exhibit a dependence form. A large
studied example is the case of the α-mixing dependence. We cite Laksaci
et al. (2011) and Attaoui et al. (2014) for papers dealing with such func-
tional dependent data. In the last works, the pointwise almost complete
convergence has been studied, while Laib and Louani (2010), and Ling et al.
(2015) obtained the asymptotic properties of the nonparametric kernel esti-
mator for functional stationary ergodic data, Benhenni et al. (2008) for the
long memory dependent case. In 2005, Masry (2005) investigated the asymp-
totic normality of the nonparametric kernel estimator for α-mixing functional
data. Demongeot et al. (2013) established the pointwise almost-complete
consistency of a fast functional local linear estimator of the conditional den-
sity when the explanatory variable is functional and the observations are
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dependent and Ferraty et al. (2012b) treated the case when the response
variable is also functional for the β-mixing observations.
The uniform almost sure convergence has been proved in Ferraty and Vieu
(2004) for kernel estimators in the situation of dependent functional data
for α-mixing functional data. It is known that the local linear method can
improve the quality of the estimation. But, despite the importance of the
uniform convergence, we are not aware of results dedicated to this topic, for
local linear estimates, in the setting of dependent functional data. In this
thesis, we address this problem. More precisely, we establish both pointwise
and uniform almost complete convergence of the local linear estimator of the
generalized regression function based on dependent functional data.

Organization of the thesis

This thesis is organized as follows.

Chapter 1 : It consists to study a local modelling approach when one re-
gresses a scalar response on an explanatory functional variable via a
regression estimator proposed in Barrientos et al. (2010). The point-
wise almost complete convergence of this estimator is given in Section
1.1.

Chapter 2 : Our principal aim, in this part, is to establish the uniform al-
most complete convergence of the local linear estimator of a generalized
regression function which generalizes the regression estimator studied
in (Barrientos et al., 2010) and to focus on a robust tool of prediction (a
conditional quantile estimator). More precisely, Section 2.1 is devoted
to introduce the generalized regression function estimator and to state
its pointwise convergence. Section 2.2 contains the principal result of
this section which consists to establish the rate of the uniform almost
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convergence of the last estimator. Then, we focus on the particular
case of the conditional distribution function estimation from which we
deduce a rate of the uniform consistency of a conditional quantile esti-
mator. In Section 2.3 using a real data set, the prediction obtained from
this last estimator is compared to those of two other known estimators.

Chapter 3 : In this chapter, we establish the almost complete convergence
of a local linear nonparametric estimator of the conditional distribution
function of a scalar response variable given a random variable taking
values in a semi metric space (the functional variable) when the col-
lected observations are α-mixing (see Sections 3.1 and 3.2 ). Then,
we derive the consistency of a conditional median estimator which is
a prediction tool. Finally, in Section 3.3 a real data study shows that
our estimator performs well with respect to other known conditional
median estimators.

Chapter 4 : We establish, in this chapter, the pointwise and the uniform al-
most complete convergence (see Sections 4.1 and 4.2) of the local linear
estimator of the generalized regression function presented in Chapter 2,
except that the data are here assumed to be α-mixing. This dependence
complicates considerably the theoretical study. A comparison between
kernel and local linear estimators, based on functional dependent data,
is conducted from two real datasets in Section 4.3.

Chapter 5 : For the sake of easy references, we briefly recall, in this annex,
some basic definitions and probabilistic tools needed in this thesis .

8



Chapter 1

Local linear estimation

A very widely studied problem in statistics is the link between two variables,
the main goal of which is to predict one of the variables (the response variable)
given a new value of the other (the explanatory variable). One way to deal
with this problem is by means of the regression method which is based on
the conditional expectation.
Since the pioneer works in Ferraty and Vieu (2006), various studies dealt with
the nonparametric functional estimation. This research field is motivated by
the fact that several data collected in practice, are given in the form of curves
and that the progress of the digital computing tools allows the treatment of
such observations.
Here, we focuse on the nonparametric estimation of the regression operator
defined by

Y = m(X) + ε,

where the explanatory variableX is valued in some infinite-dimensional space
F , Y is a scalar response, ε is a random noise independent from X.
To do that, one way consists in using a functional kernel estimator (see Fer-
raty and Vieu (2000) and Ferraty and Vieu (2006), for a deep study), which
is an extension to this functional framework of the Nadaraya-Watson ker-
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nel estimator, based on n pairs (Xi, Y i)i=1,...,n identically and independently
distributed as (X, Y ). The functional kernel estimator is defined as follows

m̂0(x) =

∑n
i=1 YiK(h−1|δ(x,Xi)|)∑n
i=1K(h−1|δ(x,Xi)|)

, (1.1)

where K is a standard univariate kernel function, δ(., .) locates one element
of F with respect to another one, and the bandwidth h := hn is a sequence
of strictly positive real numbers which plays a smoothing parameter role.
This kernel estimator m̂0(x) can be seen as the solution of the minimization
problem

min
a∈R

(WSEx(a)) with WSEx(a) =
n∑
i=1

(Yi − a)2K(h−1|δ(Xi, x)|),

since it is easy to check that the derivative of WSEx vanishes at a = m̂0(x).
Actually, the kernel estimator given by (1.1) is locally approximating m by
a constant (a zero-degree polynomial). So, to increase the effictive of the
functional nonparametric regression estimator, we use a local approximation
which is more accurate than a constant one. In particular, we consider a poly-
nomial of degree one, which is called "local linear estimator" and has been
extended to the functional framework (see Barrientos et al. (2010), Baillo
and Grane (2009) for example).
Here we are interested in estimating the regression function in a nonpara-
metric fashion. Barrientos et al. (2010), proposed an estimator m̂, as the
solution for a of the following minimization problem

min
(a,b)∈R2

(WSE ′x(a, b)) with WSE ′x(a, b) =
n∑
i=1

[Yi − a− bβ(Xi, x))]2K(h−1|δ(Xi, x)|),

where β(., .) is a known operator from F × F into R such that, ∀x ∈
F , β(x, x) = 0. So, we can write

m̂ = e′1(C ′βWCβ)−1C ′βWY, (1.2)

where
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C’=

[
1 ... 1

β(X1, x) ... β(Xn, x)

]
, Y=


Y1

...

Yn


W = diag (K(h−1|δ(X1, x)|), ..., K(h−1|δ(Xn, x)|)) and e1 = (1, 0) ∈ R2.
By a simple calculus, one’s can derive the following explicit estimator

m̂(x) =

∑n
i,j=1 Wij(x)Yj∑n
i,j=1Wij(x)

(
0

0
:= 0

)
,

where

Wij(x) = β(Xi, x) (β(Xi, x)− β(Xj, x))K(h−1|δ(Xi, x)|)K(h−1|δ(Xj, x)|).

Notice that for l ∈ {0, 1}, we have

n∑
i,j=1

Wij(x)Y l
j =

∑
i<j

{ [β(Xi, x)− β(Xj, x)]
[
β(Xi, x)Y l

j − β(Xj, x)Y l
i

]
K(h−1|δ(Xi, x)|)K(h−1|δ(Xj, x)|},

so, if the denominator of the estimator m̂(x) is zero, it is the same for its
numerator. Moreover, under appropriate assumptions to be assumed later
we get EW12(x) > 0 (see (1.8) in section 1.2).
This approach assumes that a + bβ(., x) is a good approximation of m(.)

around x. As β(x, x) = 0, a will be a suitable estimate for m(x). Notice that
the expression of m̂ allows fast computational issue and that the choices of
β and d will be crucial.

1.1 Asymptotic properties

Barrientos et al. (2010) have studied the almost complete convergence of the
locally modelled estimator of the regression operator m(x) = E(Y |X = x),
with x being a fixed element of a semimetric space (F , d) where d = |δ(x, y)|.
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First of all, for any positive real h, let B(x, h) := {y ∈ F/, |δ(x, y)| ≤ h} be a
closed ball in F of center x and radius h , Φx(h, h′) := P (h ≤ |δ(x,X)| ≤ h′)

and Φx(h) := Φx(0, h).
The pointwise almost complete convergence of the local linear estimator m̂ of
the regression functionm will be established under the following assumptions.

(H1) for any h > 0 ; Φx(h) > 0.

(H2C) m ∈ {f : F → R, lim
|δ(x,x′)|→0

f(x′) = f(x)}.

(H2L) m ∈ {f : F → R,∀x′ ∈ F ; |f(x)− f(x′)| ≤ C|δ(x, x′)|b} where b and C
are fixed in R+.

(H3) The function β(., .) is such that: ∃0 < M1 < M2, ∀x′ ∈ F ,

M1|δ(x, x′)| ≤ |β(x, x′)| ≤M2|δ(x, x′)|.

(H4) The kernel K is a positive and differentiable function on its support
[0, 1].

(H5) The bandwidth h satisfies:

lim
n→∞

h = 0 and lim
n→∞

(
lnn

nΦx(h)

)
= 0.

(H6) There exist an integer n0, such that:

∀n > n0,∀x ∈ F ,
1

Φx(h)

∫ 1

0

Φx(zh, h)
d

dz

(
z2K(z)

)
> C > 0.

(H7)

h

∫
B(x,h)

β(u, x)dPX(u) = o

(∫
B(x,h)

β2(u, x)dPX(u)

)
,

where dPX is the distribution of X.
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(H8) ∀m ≥ 2, σm : x 7−→ E(Y m/X) is a continuous operator on F .

Hypotheses (H2)-(H5) and (H8) are standard in the nonparametric functional
regression setting and extend what is usually assumed in the classical p-
dimensional nonparametric literature (see Ferraty and Vieu (2006) for a large
discussion). The kind of kernels in (H4) contains the standard kernels used
in the literature (uniform, triangle, quadratic,...). Hypothesis (H6) precises
the behaviour of the bandwidth h in relation with the small ball probabilities
and the kernel function K. The key new hypothesis is (H7) about the local
behaviour of the operator β which models the local shape of the regression.
For instance, in the special case where β = δ, this assumption means that
the local expectation of β is small enough with respect to its moment of
second order. If, in addition, the real rodom variable (r.r.v.) β(X, x) admits
a differentiable density (around 0) with respect to the Lebesgue measure then
(H7) is satisfied (see Appendix 1 for more details). Let’s state two important
theorems that consolidate the pointwise almost-complete convergence (a.co.)
and its rate.

Theorem 1.1. (Barrientos et al. (2010))
Under assumptions (H1), (H2C); (H3)-(H8), we have

m̂(x)−m(x) = oa.co.(1). (1.3)

Theorem 1.2. (Barrientos et al. (2010))
Under assumptions (H1), (H2L); (H3)-(H8), we have

m̂(x)−m(x) = O(hb) +Oa.co.

(√
lnn

nΦx(h)

)
. (1.4)

Barrientos et al. (2010) have introduced the following decomposition on
which the proofs of the above theorems are based.
For all x ∈ F ,

m̂(x)−m(x) =
1

r0(x)
(r1(x)− Er1(x))− (m(x)− Er1(x))− m(x)(r0(x)− 1)

r0(x)
,(1.5)
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where, for l = 0, 1

rl(x) =
1

n(n− 1)EW12(x)

∑
i 6=j

Wij(x)Y l
j . (1.6)

Further, to complete the proof, we need to apply the two following lemmas.

Lemma 1.1. Under the assumptions (H1),(H3)-(H5),
(i) The hypothesis (H2C) permits to write

m(x)− Er1(x) = o(1).

(ii) and the assumption (H2L) gives

m(x)− Er1(x) = O(hb).

Lemma 1.2. Under the assumptions of (H1), (H2C),(H3)-(H7), we obtain
that
(i)

r0(x)− 1 = Oa.co.

(√
lnn

nΦx(h)

)
.

(ii) In addition, if (H8) holds, one gets

r1(x)− Er1(x) = Oa.co.

(√
lnn

nΦx(h)

)
.

We give the proofs of these results because we need them in the next
chapter.

1.2 Proofs

In what follows, let C be some strictly positive generic constant and for any
x ∈ F , and for all i = 1, . . . , n

Ki(x) := K(h−1|δ(Xi, x)|) and βi(x) := β(Xi, x).
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To treat the pointwise almost-complete convergence of m̂(x), we need the
following preliminary technical lemma.

Lemma 1.3. (see Lemma A.1 in (Barrientos et al. (2010))
Under assumptions (H1), (H3)–(H7), we obtain
i) ∀(p, l) ∈ N? × N, E

(
Kp

1 (x)|β1(x)|l
)
≤ ChlΦx(h).

ii) E [K1(x)β2
1(x)] > Ch2 [Φx(h)] for n sufficiently large.

Proof 1.1. i) One starts by using (H3) which implies

Kp
1 (x)|β1(x)|lh−l ≤ CKp

1 (x)|δ(X1, x)|lh−l,

and because the kernel K is bounded on [0, 1] (see (H4)), one gets

Kp
1 (x)|βl1(x)|h−l ≤ C|δ(X1, x)|lh−l1[0,1]

(
h−l|δ(X1, x)|

)
,

and thus, we have

E
(
Kp

1 (x)|β1(x)|lh−l
)
≤ CΦx(h),

which is the claimed result.
ii) By using (H3), it is easy to see that

E
[
K1(x)β2

1(x)
]
> CE

[
K1(x)δ2(X1, x)

]
.

Moreover, one can write

E

(
K1(x)

δ2(X1, x)

h2

)
=

∫ 1

0

t2K(t)dP |δ(X,x)|/h(t)

=

∫ 1

0

[∫ t

0

(
d

du
(u2K(u))

)
du

]
dP |δ(X,x)|/h(t)

=

∫ 1

0

[∫ 1

0

1[u,1](t)dP
|δ(X,x)|/h(t)

]
d

du
(u2K(u)),

the last equation comes from the Fubini’s theorem. In addition, it is easy to
check that ∫ 1

0

1[u,1](t)dP
|δ(X,x)|/h(t) = P (uh ≤ |δ(X, x)| ≤ h).
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So,

E

(
K1(x)

δ2(X1, x)

h2

)
=

∫ 1

0

Φx(uh, h)
d

du
(u2K(u))du.

It remains to use (H6) to obtain the desired lower bound, which ends the
proof of Lemma 1.3-(ii).

Proof of lemma 1.1 We have

Erl(x) =
1

E(W12(x))
E(W12(x)Y l

2 )),

and Er1(x) can also be written as

Er1(x) = E (E(r1(x)|X2)) =
1

E(W12(x)
E (W12(x)E(Y2|X2)) .

which allows us to write, under assumption (H4)
|m(x)− Er1(x)| = 1

|E(W12(x))| |E (W12(x)(m(x)−m(X2)))| ≤ sup
x′∈B(x,h)

|m(x)−m(x′)|.

We need to take into account hypothesis (H2C) to obtain Lemma 1.1-(i).
However, if one uses (H2L) instead of (H2C), it is clear that

sup
x′∈B(x,h)

|m(x)−m(x′)| = O(hb).

which leads us to Lemma 1.1-(ii).
Proof of lemma 1.2 ii) Remark that

r1(x) = Q(x) [M2,1(x)M4,0(x)−M3,1(x)M3,0(x)] , (1.7)

where, for p = 2, 3, 4, and l = 0, 1,

Mp,l(x) =
1

nΦx(h)

n∑
i=1

Ki(x)βp−2
i (x)Y l

i

hp−2

and
Q(x) =

n2h2Φ2
x(h)

n(n− 1)E (W12(x))
.

16



So, one has

r1(x)− E(r1(x)) = Q(x){M2,1(x)M4,0(x)− E(M2,1(x)M4,0(x))

− [M3,1(x)M3,0(x)− E(M3,1(x)M3,0(x))},

and since

M2,1(x)M4,0(x)− E(M2,1(x)M4,0(x) = (M2,1(x)− E(M2,1(x))(M4,0(x)− E(M4,0(x))

+ (M2,1(x)− E(M2,1(x))E(M4,0(x))

+ (M4,0(x)− E(M4,0(x))E(M2,1(x))

+ E(M2,1(x))E(M4,0(x))− E(M2,1(x)M4,0(x)),

M3,1(x)M3,0(x)− E(M3,1(x)M3,0(x) = (M3,1(x)− E(M3,1(x))(M3,0(x)− E(M3,0(x))

+ (M3,1(x)− E(M3,1(x))E(M3,0(x))

+ (M3,0(x)− E(M3,0(x))E(M3,1(x))

+ E(M3,1(x))E(M3,0(x))− E(M3,1(x)M3,0(x)).

We have to show that for p ∈ {2, 3, 4} and l ∈ {0, 1}

Q(x) = O(1),

EMp,l(x) = O(1),

E(M2,1(x))E(M4,0(x))− E(M2,1(x)M4,0(x)) = O

(√
lnn

nΦx(h)

)
,

E(M3,1(x))E(M3,0(x))− E(M3,1(x)M3,0(x)) = O

(√
lnn

nΦx(h)

)
,

Mp,l(x)− EMp,l(x) = Oa.co.

(√
lnn

nΦx(h)

)
.

• Treatment of the term Q(x)

We have

EW12(x) = E
[
β2

1(x)K1(x)K2(x)
]
− E [β1(x)β2(x)K1(x)K2(x)]

= E
[
β2

1(x)K1(x)
]
E(K2(x))− (E [β1(x)K1(x)])2 ,

17



together with

hE [β1(x)K1(x)] ≤ Ch

∫
B(x,h)

β(u, x)dPX1(u)

and (H7) implies that

hE [β1(x)K1(x)] = o

(∫
B(x,h)

β2(u, x)dPX1(u)

)
.

By applying Lemma 1.3-(i), with K = 1[0,1], p = 1 and l = 2 one gets∫
B(x,h)

β2(u, x)dPX1(u, t) ≤ Ch2 [Φx(h)]2 ,

which implies that

E [β1(x)K1(x)] = o
(
h [Φx(h)]2

)
.

Now, Lemma 1.3-(ii) and the last result allow to write

EW12(x) > Ch2 [Φx(h)]2 . (1.8)

So, for n sufficiently large
Q(x) = O(1)

• It is easy to see that under (H1)–(H4), for p ∈ {2, 3, 4} and l ∈ {0, 1},
we have

EMp,l(x) = h2−pΦx(h)−1E[K1(x)Y l
1β

p−2
1 ]

= h2−pΦx(h)−1E[K1(x)ml(X1)βp−2
1 ],

and because m(X1) = m(x)+o(1) (under (H2C)), one gets EMp,l(x) = O(1).
• Treatment of the term E(M2,1(x))E(M4,0(x))− E(M2,1(x)M4,0(x))

On one side, we have

E(M2,1(x))E(M4,0(x)) =
1

n2h2[Φx(h)]2

n∑
i=1

n∑
j=1

E(Ki(x)β2
i (x))E(Kj(x)Yj)

=
1

h2[Φx(h)]2
E(K1(x)β2

1(x))E(K1(x)Y1),

18



and on the other side, we get

E(M2,1(x)M4,0(x)) =
1

n2h2[Φx(h)]2

n∑
i=1

n∑
j=1

E(Ki(x)β2
i (x)Kj(x)Yj)

=
1

n2h2[Φx(h)]2

(
n∑

i=j=1

E(K2
i (x)β2

i (x)Yi) +
∑
i 6=j

E(Ki(x)β2
i (x)Kj(x)Yj)

)

= O
(
(nΦx(h))−1

)
+

n2 − n
n2h2[Φx(h)]2

E(K1(x)β2
1(x))E(K1(x)Y1),

which allows us to write

E(M2,1(x))E(M4,0(x))− E(M2,1(x)M4,0(x)) = (1− n(n− 1)

n
)h−2Φx(h)−2E[K1(x)β2

1(x)]

E[K1(x)Y1] +O
(
(nΦx(h))−1

)
.

Using similar arguments as previously, it is easy to see that

E(M2,1(x))E(M4,0(x))− E(M2,1(x)M4,0(x)) = O
(
(nΦx(h))−1

)
,

which is negligible with respect to O
(√

lnn
nΦx(h)

)
, under (H5).

• By similar arguments, one can state

E(M3,1(x))E(M3,0(x))− E(M3,1(x)M3,0(x)) = O

(√
lnn

nΦx(h)

)
.

• Treatment of the term Mp,l(x)− EMp,l(x)

We have

Mp,l(x)− EMp,l(x) =
1

n

n∑
i=1

Z
(p,l)
i (x),

where

Z
(p,l)
i (x) =

1

hp−2Φx(h)

{
Ki(x)βp−2

i (x)Y l
i − E

[
Ki(x)βp−2

i (x)Y l
i

]}
. (1.9)

In order to apply an exponential inequality, we focus on the absolute moments
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of the r.r.v. Zi(x)

E|{Z(p,l)
i (x)}m| = h(−p+2)mΦx(h)−mE|

m∑
k=0

cmk (−1)m−k(Ki(x)βp−2
i (x)Y l

i )k(E
[
Ki(x)βp−2

i (x)Y l
i

]
)m−k|

≤ h(−p+2)mΦx(h)−m
m∑
k=0

cmk E[Kk
i (x)β

(p−2)k
i (x)σlk(Xi)]|E

[
Ki(x)βp−2

i (x)ml(Xi)
]
|m−k,

(1.10)

the last inequality is obtained by conditionning on X1. In addition, (H2C)
implies that m(X1) = m(x) + o(1) whereas one gets σk(X1) = σk(x) + o(1)

as soon as (H8) is checked. This, combined with (1.10) and Lemma 1.3-(i),
allows us to write

E|{Z(p,l)
i (x)}m| = O

(
h(−p+2)m[Φx(h)]−m

m∑
k=0

E[Kk
i (x)β

(p−2)k
i (x)]E

[
Ki(x)βp−2

i (x)
]
|m−k

)
= O

(
maxk∈{0,...,m}[Φx(h)]−k+1

)
= O

(
[Φx(h)]−m+1

)
.

Finally, it suffices to apply Proposition 5.3–(ii) with a2
n = [Φx(h)]−1to get,

for p ∈ {2, 3, 4} and l ∈ {0, 1}

Mp,l(x)− EMp,l(x) = Oa.co.

(√
lnn

nΦx(h)

)
,

1.3 Appendix 1

Remark on (H6)

Let us investigate here the special case where the fuctional variable X is a
fractal process of order k (k > 0) such that

lim
ε→0

sup
t∈[0,1]

∣∣∣∣Φx(tε)tkεk
− Cx

∣∣∣∣ = 0,
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where Cx is a constant which does not depent on t and ε. This implies that,
for any ε small enough, Φx(ε) ∼ Cxε

k. We have

Φx(uh, h) = P (uh ≤ |δ(x,X)| ≤ h)

= P (|δ(x,X)| ≤ h)− P (|δ(x,X)| ≤ uh))

= Φx(h)− Φx(uh)

= Cxh
k(1− uk) + o(1).

Then, it is easy to state∫ 1

0

Φx(uh, h)
d

du
(u2K(u))du = Cxh

k

∫ 1

0

(1− uk) d
du

(u2K(u))du+ o(hk).

Now, one considers the family of kernels indexed by α > 0 and defined by
Kα(u) = α+1

α
(1 − uk)1[0,1](u). Tis family of kernel contain standard asym-

metric ones (triangle, quadratic). It comes with trivial calculus that∫ 1

0

Φx(uh, h)
d

du
(u2K(u))du =

(α + 1)k

(k + 2)(α + k + 2)
Cxh

k + o(hk),

which leads us to assumption (H6) as soon as h is small enough ( i.e. as soon
as n is large enough). In the same way, (H6) holds when ones considers the
uniform kenel 1[0,1](.).
(H6) is satisfied for much wider class of functional random variable (i.e.
Hilbertian squared integrable ones) as soon as one considers stuitable semi
metric δ (for more details, see Lemma 13.6 in Ferraty and Vieu Ferraty and
Vieu (2006), p.213).

Remark on (H7)

In the special case where β = δ, and the r.r.v. Z := β(x,X) admits a
differentiable density fZ (around 0) with respect to the Lebesgue measure
and such that fZ(0) 6= 0, which implies that

∃α > 0 fZ(z) 6= 0; ∀z ∈ [−α, α],
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then hypothesis (H7) is satisfied. Indeed, we have, for any x ∈ F

h

∫
B(x,h)

β(u, x)dPX(u) = h

∫
F
β(u, x)1B(x,h)(u)dPX(u)

= h

∫
Ω

Z(w)1{|Z(w)|6h}dP (w)

= h

∫
R
z1{|z|6h}dPZ(z)

= h

∫ h

−h
zfZ(z)dz

= h

∫ h

0

z(fZ(z)− fZ(−z))dz,

fZ is a differentiable density around 0 such that fZ(0) 6= 0 and by using the
Taylor-Young formula (fZ(z) = fZ(0) + zf ′Z(0) + zε(z) where ε(z) → 0 as
z → 0), we get, for some α > 0 such that α > h

h

∣∣∣∣∫
B(x,h)

β(u, x)dPX(u)

∣∣∣∣ =

∣∣∣∣2hf ′Z(0)

∫ h

0

zdz + h

∫ h

0

zε(z)dz

∣∣∣∣
6

2h (|f ′Z(0)|+ 1)

infz∈[0,α] fZ(z)

∫ h

0

z2fZ(z)dz

6
2h (|f ′Z(0)|+ 1)

infz∈[0,α] fZ(z)

∫
B(x,h)

β2(u, x)dPX(u).
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Chapter 2

A class of local linear estimators

with functional data

As an alternative to the well-known Nadaraya-Watson estimator for regres-
sion function, in the framework of functional data, locally modelled regres-
sion estimators perform well (see Baillo and Grane (2009), Barrientos et al.
(2010)). In this chapter, using the last method, we investigate a nonparamet-
ric estimation of some functionals of the conditional distribution of a scalar
response variable Y given a random variable X taking values in a semi-metric
space. These functionals include the regression function, the conditional cu-
mulative distribution and some other ones.
The paper of Barrientos et al. (2010) is only concerning pointwise consistency
results and our main aim is to prove the uniform almost complete convergence
of estimators including those studied in the for-mentioned paper.
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2.1 The estimation and the pointwise almost-

complete convergence

Throughout this chapter, we consider a sample of independent pairs (Xi, Yi)i=1,...,n

identically distributedas (X, Y ) which is a random vector valued in F × R,
where (F , d) is a semi-metric space. Our goal is to estimate the generalized
regression function, defined for all x in F , by

mϕ(x) = E(ϕ(Y )|X = x),

where ϕ is a known real-valued borel function.
It is clear that mϕ generalizes the classical regression function (set ϕ(t) = t)
as well as the conditional distribution function (set for any y ∈ R, ϕ(t) =

1]−∞,y](t)).
Following Barrientos et al. (2010) who proved the pointwise almost complete
convergence of the classical regression function estimator, the local linear
estimate of mϕ is obtained as the solution for a of the following minimization
problem

min
(a,b)∈R2

n∑
i=1

(ϕ(Yi)− a− bβ(Xi, x))2K(h−1d(Xi, x)),

where β(., .) is a known operator from F × F into R such that, ∀x ∈
F , β(x, x) = 0, the function K is a kernel and h := hn is a sequence of
strictly positive real numbers which plays a smoothing parameter role.
This approach assumes that a + bβ(., x) is a good approximation of mϕ(.)

around x. As β(x, x) = 0, a will be a suitable estimate for mϕ(x).
By a simple calculus, one’s can derive the following explicit estimator

m̂ϕ(x) =

∑n
i,j=1Wij(x)ϕ(Yj)∑n

i,j=1Wij(x)

(
0

0
:= 0

)
, (2.1)

with the convention 0/0 := 0, where

Wij(x) = β(Xi, x) (β(Xi, x)− β(Xj, x))K(h−1d(Xi, x))K(h−1d(Xj, x)).
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We investigate the asymptotic behaviour of the local linear estimator m̂ϕ(x)

for a fixed point x in F , under the assumptions (H1), (H3)–(H7) in chapter
1 and the addition followings assumptions.

(H2) mϕ ∈ {f : F → R, lim
d(x,x′)→0

f(x′) = f(x)}

(H2’) mϕ ∈ {f : F → R,∃b > 0,∀x′ ∈ F ; |f(x) − f(x′)| ≤ Cxd
b(x, x′)},

where Cx is a positive constant depending on x.

(H8’) ∀m ≥ 2, σm : x 7−→ E(ϕ(Y )m/X) is a continuous operator on F .

Remark that our hypotheses are very similar to the assumed conditions
(H2C), (H2L) and (H8) in Section 1.1.

Let us state the pointwise almost-complete convergence (a.co.) of m̂ϕ(x),
along with a rate.

Theorem 2.1. Assume that assumptions (H1), (H3)–(H7) and (H8’) are
satisfied.
(i) Under the additional hypothesis (H2), we have

m̂ϕ(x)−mϕ(x) = oa.co.(1).

(ii) If in addition (H2’) is satisfied, we get

m̂ϕ(x)−mϕ(x) = O(hb) +Oa.co.

(√
lnn

nΦx(h)

)
.

Notice that the proof of this theorem is based on a standard decomposi-
tion given for all x ∈ F , by

m̂ϕ(x)−mϕ(x) =
1

m0(x)
[(m1(x)− Em1(x))− (mϕ(x)− Em1(x))]− mϕ(x)(m0(x)− 1)

m0(x)
,(2.2)

where, for all l = 0, 1

ml(x) =
1

n(n− 1)EW12(x)

∑
i 6=j

Wij(x)ϕl(Yj).
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The study of each term of this decomposition can be carried out exactly
as done in the proof of Lemma 1.1 and Lemma 1.2 of the previous chapter
with replacing Y by ϕ(Y ), so for the sake of avoiding repetitions, we omit
the proof.
Now, we will focus on the uniform consistency.

2.2 The uniform almost-complete convergence

2.2.1 The estimator m̂ϕ

We will establish the uniform almost-complete convergence of m̂ϕ on some
subset SF of F which can be covered by a finite number of balls. This num-
ber has to be related to the radius of these balls (see hypothesis (U5)).
We suppose that x1, . . . , xNrn (SF ) is an rn-net for SF where for all k ∈
{1, . . . , Nrn(SF)}, xk ∈ SF and (rn) is a sequence of positive real numbers.
In this study, we need the following assumptions.

(U1) There exist a differentiable function Φ and strictly positive constants
C,C1 and C2 such that

∀x ∈ SF , ∀h > 0; 0 < C1Φ(h) ≤ Φx(h) ≤ C2Φ(h) <∞

and
∃η0 > 0,∀η < η0, Φ

′(η) < C,

where Φ′ denotes the first derivative of Φ with Φ(0) = 0.

(U2) The generalized regression function mϕ satisfies:

∃C > 0,∃b > 0,∀x ∈ SF , x′ ∈ B(x, h), |mϕ(x)−mϕ(x′)| ≤ Cdb(x, x′).
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(U3) The function β(., .) satisfies (H3) uniformly on x and the following
Lipschitz’s condition

∃C > 0,∀x1 ∈ SF , x2 ∈ SF , x ∈ F , |β(x, x1)− β(x, x2)| ≤ Cd(x1, x2).

(U4) The kernel K fulfills (H4) and is Lipschitzian on [0, 1].

(U5) lim
n→∞

h = 0, and for rn = O
(

lnn
n

)
, the function ψSF satisfies for n large

enough:
(lnn)2

nΦ(h)
< ψSF (

(
lnn

n

)
<
nΦ(h)

lnn
,

and
∞∑
n=1

exp{(1− β)ψSF

(
lnn

n

)
} <∞,

for some β > 1.

(U6) The bandwidth h satisfies: ∃n0 ∈ N, ∃C > 0, such that

∀n > n0,∀x ∈ SF ,
1

Φx(h)

∫ 1

0

Φx(zh, h)
d

dz

(
z2K(z)

)
> C > 0

and
h

∫
B(x,h)

β(u, x)dPX(u) = o

(∫
B(x,h)

β2(u, x)dPX(u)

)
uniformly on x.

(U7) ∃C > 0 such that ∀m ≥ 2 : E(|ϕ(Y )|m/X = x) < δm(x) < C < ∞
with δm(.) continuous on SF .

Roughly speaking, these hypotheses are uniform version of the assumed con-
ditions in the pointwise case and have already been used in the literature.
We refer to Messaci et al. (2015) for conditions (U1), (U3), (U4) and (U6)
and to Ferraty et al. (2010) for assumptions (U2), (U5) and (U7).
The claimed result is as follows.
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Theorem 2.2. Under assumptions (U1)–(U7), we have

sup
x∈SF

|m̂ϕ(x)−mϕ(x)| = O(hb) +Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

We can readily deduce the uniform consistency of the estimator studied
in Barrientos et al. (2010) for which, to the best of our knowledge, only the
pointwise convergence is available.
This result shows that, contrary to the finite case, the rate of convergence
obtained may differ from that of the pointwise consistency, it is function of
the entropy of the subset on which the uniform convergence states.
It is easy to see that the proof of Theorem 2.2 is a direct consequence of the
decomposition (2.2) and of the following lemmas for which the proofs are
relegated to the Appendix 2.4.

Lemma 2.1. Assume that hypotheses (U1), (U2) and (U4) hold, then:

sup
x∈SF

|mϕ(x)− Em1(x)| = O(hb).

Lemma 2.2. Under assumptions of Theorem 2.2, we obtain that:

sup
x∈SF

|m1(x)− Em1(x)| = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

Lemma 2.3. If assumptions (U1),(U3)–(U6) are satisfied, we get:

sup
x∈SF

|m0(x)− 1| = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)


and

∞∑
n=1

P

(
inf
x∈SF

m0(x) <
1

2

)
<∞.
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2.2.2 A conditional quantile estimator

Let Fx(y) = P (Y ≤ y|X = x) be the conditional distribution function of Y
given X = x where y is real and x is a fixed object in F . To estimate it,
we treat this function as a particular case of mϕ with ϕ(t) = 1]−∞,y](t) for
y ∈ R. Thus, we estimate F x(y) by

F̂ x(y) =

∑n
i,j=1Wij(x)1{Yj6y}∑n

i,j=1Wij(x)
, (2.3)

where Wij(x) is defined in (2.1).
The conditional quantile of order α (α ∈ (0, 1)) is tα(x) = inf{y ∈ R, F x(y) >

α}. So, we deduce from F̂ x a natural conditional quantile estimator as,

t̂α(x) = inf{y ∈ R, F̂ x(y) > α}. (2.4)

Notice that t1/2(x) is the so called conditional median.
To investigate the asymptotic convergence of F̂ x(y), we introduce the follow-
ing standard conditions.

(U2)’ There exist δ > 0, C > 0 and b > 0, such that for any x ∈ SF , x
′ ∈

B(x, h) and y ∈ [tα(x)− δ, tα(x) + δ], we have

|F x′(y)− F x(y)| ≤ Cdb(x, x′).

(U5)’ lim
n→∞

h = 0, and for rn = O
(

lnn
n

)
, the function ψSF satisfies for n large

enough:
(lnn)2

nΦ(h)
< ψSF (

(
lnn

n

)
<
nΦ(h)

lnn
,

and
∞∑
n=1

n(ξ+1/2) exp{(1− β)ψSF

(
lnn

n

)
} <∞,

for some β > 1 and ξ > 0.
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The following result concerns the uniform almost complete convergence of
F̂ x(y).

Theorem 2.3. Under assumptions (U1), (U2)’, (U3), (U4), (U5)’ and (U6),
we have

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

|F̂ x(y)− F x(y)| = O(hb) +Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

To prove this theorem we make use of the decomposition given, for all x
and y, by

F̂ x(y)− F x(y) =
1

m0(x)

[(
F̂ x
N(y)− EF̂ x

N(y)
)(

F x(y)− EF̂ x
N(y)

)]
− F x(y)

m0(x)
(m0(x)− 1),(2.5)

where F̂ x
N(y) = 1

n(n−1)EW12(x)

∑
i 6=jWij(x)1{Y j6y} and m0(x) is defined in

(1.5). Now, it sufficies to apply Lemma 2.3 together with the following
lemmas.

Lemma 2.4. Assume that hypotheses (U1), (U2)’ and (U4) hold, then

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣∣F x(y)− EF̂ x
N(y)

∣∣∣ = O(hb).

Lemma 2.5. Under assumptions of Theorem 2.3, we obtain that

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣∣F̂ x
N(y)− EF̂ x

N(y)
∣∣∣ = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

To obtain the uniform consistency of the conditional quantile estimator,
we introduce the following conditions used for example in Messaci et al.
(2015).

(U8) ∀ε > 0, ∃ξ > 0 such that for any function gα from SF into [tα(x) −
δ, tα(x) + δ] we have

sup
x∈SF

|tα(x)− gα(x)| > ε implies sup
x∈SF

|F x(tα(x))− F x(gα(x))| > ξ.
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(U9) ∃j > 1, ∀x ∈ SF , F x is j-times continuously differentiable on ]tα(x)−
δ, tα(x) + δ[ with respect to y and satisfies F x(l)(tα(x)) = 0 if 0 ≤
l < j, F x(j)(tα(x)) > C > 0 and F x(j) is uniformly continuous on
[tα(x) − δ, tα(x) + δ] where F x(l) stands for the lth-order derivative of
F x .

A known method can be applied to derive the following result from Theorem
2.3, see for example the proof of Corollary 3.1 in Messaci et al. (2015).

Corollary 2.1. Under the hypotheses of Theorem 2.3 and if (U8)and (U9)
are satisfied, we obtain

sup
x∈SF

∣∣t̂α(x)− tα(x)
∣∣ = O(hb) +Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

2.3 A Real data application

In this section, we use a real data set to illustrate the efficacy of the studied
method through our conditional median estimator t̂1/2. More precisely, we
compare this last estimator to two other conditional median estimators: the
first is based on the kernel method (denoted KM) and is studied in Ferraty
and Vieu (2006) and the second is based on the local linear method (denoted
LLM) and is introduced in Messaci et al. (2015).
For this purpose, we use the spectrometric data set which can be found at
http ://lib.stat. cmu.edu/datasets/tecator. These data consist of 215 pairs
(Xi, Y i)i=1,...,215. For each i, the spectrometric curve Xi is the spectra of a
finely chopped meat and Yi is the the corresponding fat content obtained by
an analytical chemical process. Our goal is to predict the fat content in a
piece of meat from its spectrometric curve. For this, we estimate the median
t1/2(x) of the conditional distribution by t̂1/2(x).
We split these real data into a learning sample containing the first 160 units
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used to build the estimator and a test sample containing the last 55 units
used to predict the fat content and to make a comparison.
The KM (resp. the LLM) estimator is computed with the same parameters
as at subsection 12.4 in Ferraty and Vieu (2006) (resp. at section 4 in
Messaci et al. (2015)). For the computation of the estimator t̂1/2(x), we use
the quadratic kernel K(x) = 3

2
(1−x2)1[0,1](x), the bandwith h is chosen by a

2-fold cross-validation method, the semi-metric d is based on the derivative
described in Ferraty and Vieu (2006) (see routines "semimetric.deriv" in the
website http://www.lsp.ups-tlse.fr/staph/npfda) and β = d.
To illustrate the performance of our estimator, we first plot the true values
(provided in the test sample) against the predicted ones by means of the three
estimators (one in each graph). This is displayed in Figure 2.1. Secondly,
to be more precise we evaluate their empirical Mean Square Errors (MSE),
defined by

MSE :=
1

55

55∑
i=1

(
Ŷi − Yi

)2

,

where Y i (resp. Ŷi) is the true (resp. the estimated) value.
The obtained results are
MSE(t̂1/2)=3.22, MSE(LLM)=3.8 and MSE(KM)=4.8.
This shows that the estimator t̂1/2 performs well and that the local linear
method seems to improve the quality of the prediction even for functional
data.

2.4 Appendix 2

In what follows, let C be some strictly positive generic constant.
To treat the uniform convergence of m̂ϕ(x) , we need to make use of

Lemma 4.1 introduced in Messaci et al. (2015) and stated here as follows.
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Figure 2.1: From left to right: the estimator t̂1/2, the KM estimator and the
LLM estimator for the spectrometric data.

Lemma 2.6. Under assumptions (U1),(U3),(U4) and (U6), we obtain that:
i) ∀(p, l) ∈ N? × N, supx∈SF E

(
Kp

1 (x)|βl1(x)|
)
≤ ChlΦ(h).

ii) infx∈SF E (K1(x)β2
1(x)) > Ch2Φ(h).

Proof of Lemma 2.1 We have

Eml(x) =
1

E(W12(x))
E(W12(x)ϕl(Y2)),

and Em1(x) can also be written as

Em1(x) = E (E(m1(x)|X2)) =
1

E(W12(x)
E (W12(x)E(ϕ(Y2)|X2)) .

So, we get under assumption (U4)
|mϕ(x)− Em1(x)| = 1

|E(W12(x))| | E (W12(x)(mϕ(x)−mϕ(X2)))| ≤ supx′∈B(x,h) |mϕ(x)−mϕ(x′)|.
We need to take into account hypothesis (U2) to obtain

sup
x∈SF

|mϕ(x)− Em1(x)| = O(hb).
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Proof of Lemma 2.2 We use again the follwing decomposition

m1(x) = Q(x) [S2,1(x)S4,0(x)− S3,1(x)S3,0(x)] , (2.6)

where, for p = 2, 3, 4, and l = 0, 1,

Sp,l(x) =
1

nΦx(h)

n∑
i=1

Ki(x)βp−2
i (x)ϕl(Yi)

hp−2

and
Q(x) =

n2h2Φ2
x(h)

n(n− 1)E (W12(x))
.

By following the same steps as in the proof of lemma 1.2, and using lemma
2.6 instead of lemma 1.3, we obtain under the assumptions (U1)–(U4) and
(U6),

sup
x∈SF

Q(x) = O(1), sup
x∈SF

E(Sp,l(x)) = O(1),

uniformly on x, for p = 2, 3, 4 , l = 0, 1,

sup
x∈SF

|E(S2,1(x))E(S4,0(x))− E(S2,1(x)S4,0(x))| = O

(
1

nΦ(h)

)
,

and

sup
x∈SF

|E(S3,1(x))E(S3,0(x))− E(S3,1(x)S3,0(x))| = O

(
1

nΦ(h)

)
,

which is, in view of hypothesis (U5), equals to O

(√
ψSF ( lnn

n )
nΦ(h)

)
.

We need to check that for p = 2, 3, 4 and l = 0, 1,

sup
x∈SF

|Sp,l(x)− E(Sp,l(x))| = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

To satisfy this aim, let us set

j(x) = arg min
j∈{1,2,...,Nrn (SF )}

d(x, xj),
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and consider the following decomposition

sup
x∈SF

|Sp,l(x)− ESp,l(x)| ≤ sup
x∈SF

∣∣Sp,l(x)− Sp,l(xj(x))
∣∣

+ sup
x∈SF

∣∣Sp,l(xj(x))− ESp,l(xj(x))
∣∣

+ sup
x∈SF

∣∣ESp,l(xj(x))− ESp,l(x)
∣∣ := F p,l

1 + F p,l
2 + F p,l

3 .

Let’s, now, study each term F p,l
k for k = 1, 2, 3.

Study of the terms F p,l
1 and F p,l

3 .
First, let us analyze the term F p,l

1 . Since K is supported in [0, 1] and accord-
ing to (U1), we can write for all p = 2, 3, 4

F p,l
1 ≤

C

nhp−2Φ(h)
sup
x∈SF

n∑
i=1

∣∣∣Ki(x)βp−2
i (x)ϕl(Yi)1B(x,h)(Xi)−Ki(xj(x))β

p−2
i (xj(x))ϕ

l(Yi)1B(xj(x),h)(Xi)
∣∣∣

≤ C

nhp−2Φ(h)
sup
x∈SF

n∑
i=1

Ki(x)1B(x,h)(Xi)|ϕl(Yi)|
∣∣∣βp−2
i (x)− βp−2

i (xj(x))1B(xj(x),h)(Xi)
∣∣∣

+
C

nhp−2Φ(h)
sup
x∈SF

n∑
i=1

βp−2
i (xj(x))1B(xj(x),h)(Xi)|ϕl(Yi)|

∣∣Ki(x)1B(x,h)(Xi)−Ki(xj(x))
∣∣

:= F p,l
1.1 + F p,l

1.2.

Analysis of the term F p,l
1.1.

According to assumption (U3), we get

1B(x,h)(Xi)
∣∣∣βi(x)− βi(xj(x))1B(xj(x),h)(Xi)

∣∣∣
≤ Crn1B(x,h)

⋂
B(xj(x),h)(Xi) + Ch1B(x,h)

⋂
B(xj(x),h)(Xi)

and

1B(x,h)(Xi)
∣∣∣β2
i (x)− β2

i (xj(x))1B(xj(x),h)(Xi)
∣∣∣

≤ Crnh1B(xj(x),h)
⋂
B(x,h)(Xi) + Ch21B(x,h)

⋂
B(xj(x),h)(Xi).
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By grouping the cases p = 3 and p = 4, we found

1B(x,h)(Xi)
∣∣∣βp−2
i (x)− βp−2

i (xj(x))1B(xj(x),h)(Xi)
∣∣∣

≤ Crnh
p−31B(xj(x),h)

⋂
B(x,h)(Xi) + Chp−21B(x,h)

⋂
B(xj(x),h)(Xi).

which gives the following inequality

F P,l
1.1 ≤

Crn
nhΦ(h)

sup
x∈SF

n∑
i=1

|ϕl(Yi)|Ki(x)1B(x,h)
⋂
B(xj(x),h)(Xi)

+
C

nΦ(h)
sup
x∈SF

n∑
i=1

|ϕl(Yi)|Ki(x)1B(x,h)
⋂
B(xj(x),h)(Xi). (2.7)

Analysis of the term F p,l
1.2.

Using the following inequality

1B(xj(x),h)(Xi)
∣∣∣Ki(x)1B(x,h)(Xi)−Ki(xj(x))1B(x,h)

⋃
B(x,h)(Xi)

∣∣∣
≤ 1B(x,h)

⋂
B(xj(x),h)(Xi)|Ki(x)−Ki(xj(x))|+Ki(xj(x))1B(xj(x),h)∩B(x,h)(Xi)

and by hypotheses (U3) and (U4), we obtain

|βp−2
i (xj(x))|1B(xj(x),h)(Xi)

∣∣Ki(x)1B(x,h)(Xi)−Ki(xj(x))
∣∣

≤ Chp−2
[rn
h

1B(x,h)∩B(xj(x),h)(Xi) +Ki(xj(x))1B(xj(x),h)∩B(x,h)(Xi)
]
,

which leads to

F p,l
1.2 ≤

Crn
nhΦ(h)

sup
x∈SF

n∑
i=1

|ϕl(Yi)|1B(x,h)∩B(xj(x),h)(Xi)

+
C

nΦ(h)
sup
x∈SF

n∑
i=1

|ϕl(Yi)|Ki(xj(x))1B(x,h)∩B(xj(x),h)(Xi).
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This last inequality combined with (2.7) allow us to write

F p,l
1 ≤ Crn

nhΦ(h)
sup
x∈SF

n∑
i=1

|ϕl(Yi)|1B(x,h)∩B(xj(x),h)(Xi)

+
C

nΦ(h)
sup
x∈SF

n∑
i=1

|ϕl(Yi)|Ki(xj(x))1B(xj(x),h)∩B(x,h)(Xi)

+
C

nΦ(h)
sup
x∈SF

n∑
i=1

|ϕl(Yi)|Ki(x)1B(x,h)∩B(xj(x),h)(Xi).

Taking into account hypothesis (U4), we find

F p,l
1 ≤

Crn
nhΦ(h)

sup
x∈SF

n∑
i=1

|ϕl(Yi)|1B(x,h)∪B(xj(x),h)(Xi). (2.8)

Let
Zi =

Crn|ϕl(Yi)|
hΦ(h)

sup
x∈SF

1B(x,h)∪B(xj(x),h)(Xi).

The assumption (U7) implies that

E|Zm
1 | ≤

Crmn
hmΦ(h)m−1

, (2.9)

so, by applying Proposition 5.3–(ii), with a2
n = rn

hΦ(h)
,

1

n

n∑
i=1

Zi = EZ1 +Oa.co.

(√
rn lnn

nhΦ(h)

)
.

Applying (2.9) again (for m = 1), one gets

F p,l
1 = O(

rn
h

) +Oa.co.

(√
rn lnn

nhΦ(h)

)
.

Combining this with assumption (U5) and the second part of the assumption
(U1), we obtain
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F p,l
1 = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 . (2.10)

Second, since

F p,l
3 ≤ E

(
sup
x∈SF

∣∣Sp,l(x)− Sp,l(xj(x))
∣∣) ,

we deduce that

F p,l
3 = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 . (2.11)

Study of the term F p,l
2 .

For all η > 0, we have that

P

F p,l
2 > η

√
ψSF

(
lnn
n

)
nΦ(h)

 = P

 max
j∈{1,...,Nrn (SF )}

∣∣Sp,l(xj(x))− E(Sp,l(xj(x))
∣∣ > η

√
ψSF

(
lnn
n

)
nΦ(h)


≤ Nrn(SF) max

j∈{1,...,Nrn (SF})
P

∣∣Sp,l(xj(x))− E(Sp,l(xj(x))
∣∣ > η

√
ψSF

(
lnn
n

)
nΦ(h)

 .

Let us set for p = 2, 3, 4 that

∆p,i =
1

hp−2Φx(h)

[
Ki(xj(x))β

p−2
i (xj(x))ϕ

l(Yi)− E(Ki(xj(x))β
p−2
i (xj(x))ϕ

l(Yi))
]
.

Using the binomial Theorem, Lemma 4.8 and hypothesis (U1), (U2) and
(U7), gives for p = 2, 3, 4,

E |∆p,i|m = O
(
Φ−m+1(h)

)
.

Therefore, we can apply a Bernstein- type inequality as done in the Propo-
sition 5.3–(i), to obtain

P

 1

n

∣∣∣∣∣
n∑
i=1

∆p,i

∣∣∣∣∣ > η

√
ψSF

(
lnn
n

)
nΦ(h)

 ≤ 2 exp

(
−Cη2ψSF

(
lnn

n

))
.
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Thus, by choosing β such that Cη2 = β, we get

P

F p,l
2 > η

√
ψSF

(
lnn
n

)
nΦ(h)

 ≤ CNrn(SF)1−β. (2.12)

Then, hypothesis (U5) allows us to write

F p,l
2 = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 . (2.13)

Finally, the result of Lemma 2.2 follows from the relations (2.10), (2.13) and
(2.15).
Proof of lemma 2.3 The first part of the claimed results can be directly
deduced from the proof of Lemma 2.2 by taking, for all i, ϕ(Yi) = 1.
For the second part, It comes straightforward that

inf
x∈SF

m0(x) <
1

2
⇒ ∃x ∈ SF such that 1−m0(x) >

1

2
⇒ sup

x∈SF
|1−m0(x)| > 1

2

⇒
∞∑
n=0

P

(
inf
x∈SF

m0(x) <
1

2

)
<∞,

. Proof of Lemma 2.4 We have

EF̂ x
N(y) =

1

EW12(x)
E
[
W12(x)1{Y26y}

]
and EF̂ x

N(y) can also be written as

EF̂ x
N(y) = E

[
E(F̂ x

N(y)|X2)
]

=
1

EW12(x)
E
[
W12(x)E(1{Y26y}|X2)

]
.

So, we get under assumption (U4)∣∣∣F x(y)− EF̂ x
N(y)

∣∣∣ = 1
|EW12(x)|

∣∣E {W12(x)
[
F x(y)− FX2(y)

]}∣∣ ≤ sup
x′∈B(x,h)

∣∣F x(y)− F x′(y)
∣∣.

We need to take into account hypothesis (U2)’ to obtain

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣∣F x(y)− EF̂ x
N(y)

∣∣∣ = O(hb).
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Proof of lemma 2.5 First, we write

m1(x) = Q(x)
[
T x2,1(y)T x4,0(y)− T x3,1(y)T x3,0(y)

]
, (2.14)

where, for p = 2, 3, 4, and l = 0, 1,

T xp,l(y) =
1

nΦx(h)

n∑
i=1

Ki(x)βp−2
i (x)1l{Yi≤y}
hp−2

and Q(x) is defined in (1.7).
By following the same steps as in the proof of lemma 1.2, and using lemma
2.6 instead of lemma 1.3, we obtain under the assumptions (U1)–(U4) and
(U6),

sup
x∈SF

Q(x) = O(1), sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

E(T xp,l(y)) = O(1),

uniformly on x, for p = 2, 3, 4 , l = 0, 1,

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

|E(T x2,1(y))E(T x4,0(y))−E(T x2,1(y)T x4,0(y))| = O

(
1

nΦ(h)

)
,

and

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

|E(T x3,1(y))E(T x3,0(y))−E(T x3,1(y)T x3,0(y))| = O

(
1

nΦ(h)

)
,

which is, in view of hypothesis (U5)′, equals to O

(√
ψSF ( lnn

n )
nΦ(h)

)
.

We need to check that for p = 2, 3, 4 and l = 0, 1,

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣T xp,l(y)− E(T xp,l(y))
∣∣ = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

To satisfy this aim, we can cover the compact [tα(x) − δ, tα(x) + δ] by dn

open intervals centered at yj with radius ln = n−ξ−1/2 and dn = Cl−1
n as the

following
[tα(x)− δ, tα(x) + δ] = ∪dnj=1]yj − ln, yj + ln[.
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Set ty = mint∈{1,...,dn} |y − t| and consider the following decomposition

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣T xp,l(y)− ET xp,l(y)
∣∣ ≤ sup

x∈SF
sup

y∈[tα(x)−δ,tα(x)+δ]

∣∣T xp,l(y)− T xj(x)p,l (y)
∣∣

+ sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣T xj(x)p,l (y)− T xj(x)p,l (ty)
∣∣

+ sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣T xj(x)p,l (ty)− ET xp,l(ty)
∣∣

+ sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣ET xj(x)p,l (ty)− ET
xj(x)
p,l (y)

∣∣
+ sup

x∈SF
sup

y∈[tα(x)−δ,tα(x)+δ]

∣∣ET xj(x)p,l (y)− ET xp,l(y)
∣∣

:= Lp,l1 + Lp,l2 + Lp,l3 + Lp,l4 + Lp,l5 .

Let’s, now, study each term Lp,lk for k ∈ {1, ..., 5}.
Study of the term Lp,l3 .
For all ε > 0 , we have

P
(
Lp,l3 > η

)
= sup

x∈SF
sup

y∈[tα(x)−δ,tα(x)+δ]

P
(∣∣T xj(x)p,l (ty)− E(T

xj(x)
p,l (ty)

∣∣ > ε
)

≤ dnNrn(SF) max
j∈{1,...,Nrn (SF )}

max
ty∈{t1,...,tdn}

P
(∣∣T xj(x)p,l (ty)− E(T

xj(x)
p,l (ty)

∣∣ > ε
)

≤ dnNrn(SF) max
j∈{1,...,Nrn (SF )}

max
ty∈{t1,...,tdn}

P

(∣∣∣∣∣
n∑
i=1

∆
xj(x)
i,p,l (ty)

∣∣∣∣∣ > nεΦ(h)

)
,

where

∆
xj(x)
i,p,l =

1

hp−2

[
Ki(xj(x))β

p−2
i (xj(x))1

l
{Yi≤y} − E(Ki(xj(x))β

p−2
i (xj(x))1

l
{Yi≤y})

]
.

We set ε = η

√
ψSF ( lnn

n )
nΦ(h)

with η > 0. By similar arguments as those invoked

for studying F p,l
2 and combined with (U5)’ and dn = nξ+1/2, ones has

Lp,l3 = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

41



Study of the terms Lp,l2 and Lp,l4 .
First, let us analyze the term Lp,l2 , we have

Lp,l2 = sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

1

nΦxj(x)(h)

n∑
i=1

Ki(xxj(x))β
p−2
i (xxj(x))

hp−2
|1l{Yi≤y} − 1l{Yi≤ty}|

≤ ln sup
x∈SF

1

nΦxj(x)(h)

n∑
i=1

Ki(xxj(x))β
p−2
i (xxj(x))

hp−2

≤ ln sup
x∈SF

Sp,0(xj(x)).

In view of relations (2.12) and ESp,0(xj(x)) = O
(
rn
h

)
and combined with

(U5)’, the fact that ln = n−ξ−1/2, we can derive

Lp,l2 = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

Second, since

Lp,l4 ≤ E

(
sup
x∈SF

∣∣T xj(x)p,l (y)− T xj(x)p,l (ty)
∣∣) ,

we deduce that

Lp,l4 = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 . (2.15)

Study of the terms Lp,l1 and Lp,l5 .
Because of the boundless of 1l{Yi≤y} , the study of the term Lp,l1 is exactly the
same as that of F p,l

1 (see the proof of Lemma 2.2). So we obtain

Lp,l1 = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 ,

which entails that

Lp,l5 = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .
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Proof of corollary 2.1 Since

sup
x∈SF

|F x(tα(x))−F x(t̂α(x))| = sup
x∈SF

|F̂ x(t̂α(x))−F x(t̂α(x))| ≤ sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

|F̂ x(y)−F x(y)|,

then the condition (U8), together with Theorem 2.3, imply that

lim
n→∞

|t̂α(x)− tα(x)| = 0, a.co. (2.16)

Now using the Taylor expansion of the function F x, we get under hypothesis
(U9), that

F x(t̂α(x))− F x(tα(x)) =

j−1∑
l=1

F x(l)(tα(x))

l!

[
t̂α(x)− tα(x)

]l
+
F x(t′α(x))

j!

[
t̂α(x)− tα(x)

]j
=
F x(t′α(x))

j!

[
t̂α(x)− tα(x)

]j
,

where t′α(x) lies between tα(x) and t̂α(x).
Because of (2.16) and the uniform continuity of F x(j), we get that

lim
n→∞

sup
x∈SF

|F x(j)(t′α(x))− F x(j)(tα(x))| = 0, a.co. (2.17)

So, there exists a positive real number τ such that

∞∑
n=0

P

(
inf
x∈SF

F x(j)(t′α(x)) < τ

)
<∞.

Then

sup
x∈SF

|t̂α(x)− tα(x)|j ≤ sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

|F̂ x(y)− F x(y)|.

It remains to apply the result of Theorem 2.3 to obtain the claimed result.
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Chapter 3

Forecasting with Functional Time

Series

A very widely studied problem in statistics is the link between two variables,
the main goal of which is to predict one of the variables (the response variable)
given a new value of the other (the explanatory variable). One way to deal
with this problem is by means of the regression method which is based on
the conditional expectation. In others, one alternative technique used is the
conditional quantile which involves the conditional distribution function.
Notice that the nonparametric estimation based on the local linear approach
for functional independant data was, for example, studied in Messaci et al.
(2015) and subsection 2.2.2 for the conditional quantile.
Moreover, observed data can exhibit a dependence form. A large studied
example in Time Series is the case of the α-mixing dependence. We cite for
example Attaoui et al. (2014) and Laksaci et al. (2011) for papers dealing
with such functional dependent data.
This chapter takes place within this field. We establish strong consistency of
a local linear nonparametric estimator of the conditional distribution function
of a scalar response variable given a random variable taking values in a semi
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metric space (the functional variable) when the collected observations are α-
mixing. Then, we derive the consistency of a conditional median estimator
which is a prediction tool.

3.1 Estimation and hypotheses

Let us consider n pairs of random variables (Xi, Yi)i=1,...,n identically dis-
tributed as the pair (X, Y ) which is valued in F ×R, where F is an infinite-
dimensional space equipped with a semi-metric d.
Let x, Nx and y be resbectively a fixed point in F , a neighbourhood of
x and a real, we estimate the conditional cumulative distribution function
F x(y) = P (Y 6 y | X = x) by F̂ x(y), given in (2.3). Remark that a double
kernel local linear estimator was been introduced in Messaci et al. (2015)
and studied for independent data.
As the conditional quantile of order α (α ∈ (0, 1)) is tα(x) = inf{y ∈
R, F x(y) > α}, we deduce from F̂ x a natural conditional quantile estima-
tor given by,

t̂α(x) = inf{y ∈ R, F̂ x(y) > α}. (3.1)

Recall that t1/2(x) is the so called conditional median.
To study the asymptotic behaviour of the local linear estimator F̂ x, we need
the following assumptions.

(D1) There exist δ > 0, C > 0, b > 0 such that: ∀x′ ∈ Nx, ∀y ∈ [tα(x) −
δ, tα(x) + δ], |F x(y)− F x′(y)| ≤ C(db(x, x′)).

(D2) The kernel K is a positive and differentiable function on its support
[0, 1] and ∃ C,C ′ such that

0 < C1[0,1](t) ≤ K(t) ≤ C ′1[0,1](t) <∞.
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(D3) The sequence (Xi, Yi) is a stationary α-mixing sequence with coefficient
α(n), moreover (D3a) and (D3b) are satisfied, where
(D3a): ∃ C > 0,∃a > 3,∀n ∈ N;α(n) ≤ Cn−a,
(D3b): ∃ C,C ′ > 0 such that: C ′ [Φx(h)]a/(a−1) < ψx(h) ≤ C [Φx(h)]a/(a−1) ,

with ψx(h) := ψx(0, h) and ψx(h1, h2) := P (h1 ≤ d(X1, x) ≤ h2, 0 ≤ d(X2, x) ≤ h2).

(D4) The bandwidth h satisfies

∃ n0 ∈ N,∀n > n0,
1

ψx(h)

∫ 1

0

ψx(zh, h)
d

dz

(
z2K(z)

)
dz > C > 0

and
h2

∫
B(x,h)

∫
B(x,h)

β(u, x)β(t, x)dP(X1,X2)(u, t)

= o

(∫
B(x,h)

∫
B(x,h)

β2(u, x)β2(t, x)dP(X1,X2)(u, t)

)
,

where dP(X1,X2) is the joint distribution of (X1, X2).

(D5) lim
n→∞

h = 0 and ∃ 0 < η0 <
a−3
a+1

,∃ C1 > 0 such that C1n
3−a
a+1

+η0 ≤ Φx(h).

Hypothese (D1) is a standard regularity condition allowing to deal with the
bias. (D2) is a technical condition. (D3a) means that (Xi, Yi) is arithmeti-
cally mixing and is extensively used in the literature as in Ferraty and Vieu
(2006) and in Laksaci et al. (2011). (D4) is of the same kind as (H6)
together with (H7) in the section 1 (Appendix 3.5 is an example of this codi-
tion). The choice of bandwidth is given by (D5), in particular it implies that
lnn/nΦx(h)→ 0 as n→∞.

3.2 Results

Our first result concerns the asymptotic behaviour of F̂ x(y).
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Proposition 3.1. Under assumptions (H1), (H3) and (D1)–(D5), we have

sup
y∈[tα(x)−δ,tα(x)+δ]

|F̂ x(y)− F x(y)| = O(hb) +Oa.co.

(√
lnn

nΦx(h)

)
.

It is easy to see that the proof of Proposition 3.1 is a direct consequence
of the standard decomposition given in (2.5) and of the following lemmas
whose proofs are relegated to the Appendix 3.4.

Lemma 3.1. Assume that hypotheses (H1), (H3), (D1)–(D4) hold, then

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣∣F x(y)− EF̂ x
N(y)

∣∣∣ = O(hb).

Lemma 3.2. Under assumptions of Proposition 3.1, we obtain that

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣∣F̂ x
N(y)− EF̂ x

N(y)
∣∣∣ = Oa.co.

(√
lnn

nΦx(h)

)
.

Lemma 3.3. If assumptions (H1),(H3) and (D2)–(D5) are satisfied, we get

∣∣∣F̂ x
D − 1

∣∣∣ = Oa.co.

(√
lnn

nΦx(h)

)

and
∞∑
n=1

P

(
F̂ x
D <

1

2

)
<∞.

To obtain the consistency of the conditional quantile estimator, we add
the following assumption.

(D6) F x is differentiable with a continuous density fx satisfying fx[tα(x)] >

0.

A known method can be applied to derive the following result from Proposi-
tion 3.1, see for example Theorem 3.1 in Laksaci et al. (2011).
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Theorem 3.1. Under the hypotheses of Proposition 3.1 and if (D6) is sat-
isfied, we obtain

∣∣t̂α(x)− tα(x)
∣∣ = O(hb) +Oa.co.

(√
lnn

nΦx(h)

)
.

3.3 Real data application

In this section, a real data set will permit us to illustrate the efficacy of our
studied estimator t̂1/2 with respect to other conditional median estimators:
The kernel one (denoted KM) studied in Ferraty and Vieu (2006) and the
local linear estimator (denoted LLM) introduced in Messaci et al. (2015).
The KM (resp. LLM) estimator is computed with the same parameters as
at subsection 12.4 in Ferraty and Vieu (2006) (resp. at section 4 in Messaci
et al. (2015)). For the computation of the estimator t̂1/2, we use the kernel
K(x) =

[
3
2
(1− x2) + 0, 001

]
1[0,1](x) (close to the quadratic kenel), the band-

width h is chosen by the cross-validation method and the semimetric d is
the PCA one described in Ferraty and Vieu (2006) (see routines "semimet-
ric.pca" in the website http://www.lsp.ups-tlse.fr/staph/npfda with q = 4 )
and β := d.
Our aim is to study the US monthly electricity consumption observed during
338 months (from January 1973 up to February 2001) which can be found
at http://www.economagic.com. As pointed out in Ferraty and Vieu (2006),
this time series can be viewed as dependent functional data.
The consumption of a year is the explanatory variable and the consumption
of each month of the following year is the response one. We eliminate the
337 and 338 months and we retain the remaining 28 years.
Fix s ∈ {1, 2, . . . , 12}, in order to predict the electricity consumption of the
sth month of the last year (the 28th) by each cited method, we use the 27

first years to define the training sample (Xi, Y
s
i )(i=1,...,26) used to build the
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Figure 3.1: Performance of the three methods for the Electricity data.

estimators under investigation, where Xi stands for the consumption of the
whole ith year and Y s

i is the consumption of the sth month of the (i + 1)th

year. Then, for all s ∈ {1, 2, . . . , 12}, we predict Y s
27, which is the consump-

tion of the sth month of the 28th year, given X27.
The criteria allowing us to compare between the three estimators is the em-
pirical Mean Square Error (MSE), defined by

MSE :=
1

12

12∑
i=1

(
Yi − Ŷi

)2

,

where Yi (resp. Ŷi) is the real (resp. the forecasted) value of the ith month
of the last year.
The obtained results are:
MSE(t̂1/2)=0.00235, MSE(LLM)=0.00333 and MSE(KM)=0.00253.
Based on this data set, we see that our estimator provides an acceptable
performance.

In Figure 3.1 and for each mentioned method, the solid (resp. dotted)
lines stand for the true (resp. forecasted) values.
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3.4 Appendix 3

In what follows, let C be some strictly positive generic constant. To treat
the almost-complete convergence of F̂ x(y), we need the following preliminary
technical lemma.

Lemma 3.4. Under assumptions (H1), (H3), (D2), (D3b) and (D4), we
obtain
i) ∀(p, l) ∈ N? × N, E

(
Kp

1 (x)|βl1(x)|
)
≤ ChlΦx(h).

ii) ∀(p1, p2, l1, l2) ∈ N? × N? × N× N,
E
[
Kp1

1 (x)Kp2
2 (x)|βl11 (x)||βl22 (x)|

]
≤ Ch(l1+l2) [Φx(h)]a/(a−1).

iii) E [K1(x)K2(x)β2
1(x)] > Ch2 [Φx(h)]a/(a−1) for n sufficiently large.

Proof 3.1. i)(see Lemma 1.3-i).
ii) In view of hypotheses (H3) and (D2), we get

E
(
Kp1

1 (x)Kp2
2 (x)|βl11 (x)||βl22 (x)|

)
≤ Ch(l1+l2)E

[
1[0,1](h

−1d(X1, x))1[0,1](h
−1d(X2, x))

]
≤ Ch(l1+l2)P [(X1, X2) ∈ B(x, h)×B(x, h)] .

So, we derive the claimed result by using (D3b).
iii) Applying (H3), it is easy to see that

E
[
K1(x)K2(x)β2

1(x)
]
> CE

[
K1(x)d2(X1, x)K2(x)

]
.

Combining hypothesis (D2) with Fubini’s theorem, we obtain

E
[
K1(x)d2(X1, x)K2(x)

]
= h2

∫ 1

0

∫ 1

0

t2K(t)K(u)dP(h−1d(X1,x),h−1d(X2,x)(t, u)

> Ch2

∫ 1

0

(∫ 1

0

∫ 1

0

1[z,1](t)dP(h−1d(X1,x),h−1d(X2,x)(t, u)

)
d

dz
(z2K(z))dz.

50



Moreover, we have∫ 1

0

∫ 1

0

1[z,1](t)dP(h−1d(X1,x),h−1d(X2,x)(t, u) = P (zh ≤ d(X1, x) ≤ h, 0 ≤ d(X2, x) ≤ h) = ψx(zh, h).

Finally (D4) permits us to end the proof.

As the dependence assumption reveals covariance terms, let us define for
p ∈ {2, 3, 4} and l ∈ {0, 1}

(Sx)2
n,l,p(y) =

n∑
i=1

n∑
j=1

|Cov(ζxi,p,l(y), ζxj,p,l(y))|, (3.2)

where, for i ∈ {1, . . . , n}

ζxi,p,l(y) =
1

hp−2

{
Ki(x)βp−2

i (x)1l{Yi6y} − E[Ki(x)βp−2
i (x)1l{Yi6y}]

}
. (3.3)

We now focus on these covariances terms in the following result.

Lemma 3.5. Under assumptions (H1), (H3), (D1)–(D4) we have

(Sx)2
n,l,k(y) = O(nΦx(h)). (3.4)

Proof 3.2. for k ∈ {0, 2} and l ∈ {0, 1}, we set

(Sx)2
n,l,k(y) =

n∑
i=1

n∑
j=1

|Cov(ζxi,p,l(y), ζxj,p,l(y))| = R1,n(x)+R2,n(x)+nV ar(ζx1,p,l(y))

(3.5)
with

R1,n(x) =
∑
S1

|Cov(ζxi,p,l(y), ζxj,p,l(y))|; S1 = {(i, j) : 1 ≤ |i− j| ≤ mn} .

and

R2,n(x) =
∑
S2

|Cov(ζxi,p,l(y), ζxi,p,l(y))|; S2 = {(i, j) : mn + 1 ≤ |i− j| ≤ n− 1} ,
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where the sequence (mn) will be specified below.
Since for all i in {1, ..., n}, E(ζxi,p,l(y)) = 0, we get

R1,n(x) =
∑
S1

|E[ζxi,p,l(y)ζxj,p,l(y)]|

≤ 1

h2(p−2)

∑
S1

{E[Ki(x)β
(p−2)
i (x)Kj(x)β

(p−2)
j (x)] + |E[Ki(x)β

(p−2)
i (x)]||E[Kj(x)β

(p−2)
j (x)]|}.

Under (D3) in view of hypothesis (H3), together with the application of
Lemma 1.3, we obtain

R1,n(x) ≤ Cnmn

[
(Φx(h))a/a−1 + (Φx(h))2

]
≤ Cnmn (Φx(h))a/a−1 .

To apply a covariance inequality for bounded mixing sequences, we must cal-
culate the absolute moments of the r.r.v. ζxi,p,l(y).

E|ζxi,p,l(y)|q ≤ h−q(p−2)

q∑
j=0

Cj,qE|Kj
i (x)β

(p−2)j
i (x)||EKi(x)β

(p−2)
i (x)|q−j.

By using Lemma 1.3, we get

E|ζxi,p,l(y)|q = O
(
max06j6q(Φx(h))1+q−j)

= O (Φx(h)) .

Now, we can use Rio inequality (see Proposition 5.4–(i)) and∑
j≥x+1

j−q ≤ [(a− 1)xa−1]−1,

together with hypothesis (D3) to obtain

R2,n(x) =
∑
S2

|Cov(ζxi,p,l(y)), ζxj,p,l(y))|

≤ C
∑
S2

[α(|i− j|)]

≤ C

a− 1
nm−a+1

n .
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Choosing mn = (Φx(h))−1/a−1 , we obtain

R1,n(x) = O(nΦx(h)) (3.6)

and
R2,n(x) = O(nΦx(h)). (3.7)

For the variance term, Lemma 1.3 permit to write

V ar(ζx1,p,l(y)) ≤ C
[
Φx(h) + (Φx(h))2

]
≤ CΦx(h).

(3.8)

We readily derive the claimed result from (3.5), (3.6), (3.7) and (3.8).

Proof of Lemma 3.1 We have

EF̂ x
N(y) =

1

EW12(x)
E
[
W12(x)1{Y26y}

]
and EF̂ x

N(y) can also be written as

EF̂ x
N(y) = E

[
E(F̂ x

N(y)|X2)
]

=
1

EW12(x)
E
[
W12(x)E(1{Y26y}|X2)

]
.

So, we get under assumption (D2)∣∣∣F x(y)− EF̂ x
N(y)

∣∣∣ = 1
|EW12(x)|

∣∣E {W12(x)
[
F x(y)− FX2(y)

]}∣∣ ≤ sup
x′∈B(x,h)

∣∣F x(y)− F x′(y)
∣∣.

It sufficies to take into account hypothesis (D1) to obtain the result.

Proof of Lemma 3.2 Inspired by the decomposition (1.7), we set

F̂ x
N(y) = Q(x)

[
T x2,1(y)T x4,0(y)− T x3,1(y)T x3,0(y)

]
,

where

T xp,l(y) =
1

nΦx(h)

n∑
i=1

Ki(x)βp−2
i (x)1l{Y j6y}
hp−2

and
Q(x) =

n2h2Φ2
x(h)

n(n− 1)EW12(x)
.
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So, it suffices to show that, for p ∈ {2, 3, 4} and l ∈ {0, 1}, we have

sup
y∈[tα(x)−δ,tα(x)+δ]

|ET xp,l(y)| = O(1) and Q(x) = O(1),

sup
y∈[tα(x)−δ,tα(x)+δ]

|T xp,l(y)− ET xp,l(y)| = Oa.co.

(√
lnn

nΦx(h)

)
,

sup
y∈[tα(x)−δ,tα(x)+δ]

|Cov
[
T x2,1(y), T x4,0(y)

]
| = O

(√
lnn

nΦx(h)

)

and sup
y∈[tα(x)−δ,tα(x)+δ]

|Cov
[
T x3,1(y), T x3,0(y)

]
| = O

(√
lnn

nΦx(h)

)
.

• Applying Lemma 3.4 i), we readily obtain

sup
y∈[tα(x)−δ,tα(x)+δ]

|ET xp (y)| = O(1). (3.9)

• Treatment of the term Q(x)

On the one hand, we have

h2E [β1(x)β2(x)K1(x)K2(x)] ≤ Ch2

∫
B(x,h)

∫
B(x,h)

β(u, x)β(t, x)dP(X1,X2)(u, t).

On the other hand and in view of (H3) and (D3b), we obtain

E [β1(x)β2(x)K1(x)K2(x)] = o
(
h2 [Φx(h)]a/(a−1)

)
.

Now, Lemma 3.4-(iii) and the last result allow to write, for n sufficiently
large

Q(x) =
n2h2Φ2

x(h)

n(n− 1)EW12(x)
≤ C

[Φx(h)]2

[Φx(h)]a/(a−1)
≤ C.

• Treatment of the term supy∈[tα(x)−δ,tα(x)+δ] |T xp,l(y) − ET xp,l(y)| , for p ∈
{2, 3, 4} and l ∈ {0, 1}.
We have for any y ∈ [tα(x)− δ, tα(x) + δ],

T xp,l(y)− ET xp,l(y) =
1

nΦx(h)

n∑
i=1

ζxi,p,l(y),
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where ζxi,p,l(y) is defined in relation (3.3).
By applying Proposition 5.5–(ii), we get for any ε > 0, r ≥ 1 and for some
0 < C <∞

P
(
|T xp,l(y)− ET xp,l(y)| > ε

)
≤ P

(
|

n∑
i=1

ζxi,p,l(y)| > nεΦx(h)

)
≤ C [B1(x) +B2(x)] ,

(3.10)
where

B1(x) =

(
1 +

ε2n2 [Φx(h)]2

r(Sx)2
n,l,k(y)

)−r/2
and B2(x) = nr−1

(
r

εnΦx(h)

)a+1

.

Now, taking for η > 0

ε = η

√
lnn

nΦx(h)
and r = (lnn)2,

we obtain

B2(x) ≤ Cn1−(a+1)/2(lnn)2a− (a+1)
2 [Φx(h)]−(a+1)/2 ,

and using (D5), one gets

B2(x) ≤ Cn−1−η0(a+1)/2(lnn)2a− (a+1)
2 . (3.11)

Moreover, in view of equation (3.4) and the fact that ln(x+ 1) = x− x2/2 +

o(x2/2) where x tends to zero, we can write

B1(x) ≤ Cn−η
2/2, (3.12)

which shows that B1(x) is the general term of a convergent series for an
appropriate choice of η.
Hence, by combining relations (3.10), (3.11) and (3.12), we derive

|T xp,l(y)− ET xp,l(y)| = Oa.co.

(√
lnn

nΦx(h)

)
.
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From this last result, it is easy to obtain the uniformity on the compact
[tα(x) − δ, tα(x) + δ]. We omit the details because they are well known, we
can see for instance the second part of the proof of Lemme 2.4 in Messaci et
al. (2015).

• Finally, by following similar arguments used to prove (3.4), we obtain

sup
y∈[tα(x)−δ,tα(x)+δ]

|Cov
[
T x2,1(y), T x4,0(y)

]
| = O

(
1

nΦx(h)

)
and

sup
y∈[tα(x)−δ,tα(x)+δ]

|Cov
[
T x3,1(y), T x3,0(y)

]
| = O

(
1

nΦx(h)

)
.

In view of (D5), this last rate is negligible with respect to O
(√

lnn
nΦx(h)

)
.

Proof of Lemma 3.3 The first part of the claimed results can be directly
deduced from the proof of Lemma 3.2 by taking l = 0 in all its proof and
this easily yields to the second part.
Proof of Theorem 3.1 Following the proof of Theorem 3.1 in Laksaci et
al. (2009), for any ε > 0 small enough, there exist δ0 in (0, δ], such that

inf
y∈[tα(x)−δ0,tα(x)+δ0]

fx(y) ≥ C > 0,

so, we get for a large enough n0∑
n≥n0

P
(
|t̂α(x)− tα(x)| > ε

)
≤
∑
n≥n0

P

(
sup

y∈[tα(x)−δ0,tα(x)+δ0]

|F̂ x(y)− F x(y)| > Cε

)
.

The result is then an easy consequence of Proposition 3.1.

3.5 Appendix 4 : Remark on (D4)

In the following, we give an exemple of a random variable that satisfies the
condition (D4).
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Let X be a functional squared integrable random element of a separable
Hilbert space F with orthonormal basis {ej, j = 1, ...,∞}. Assume that
Y = (X1, ..., Xk) (where k ∈ N∗) be absolutely continuous with respect to
the Lebesgues measure on Rk and let be B(x, h) := {u ∈ F/ dk(x, u) ≤ h}
be a closed ball for x ∈ F , where the semi-metrics dk are usually known as
projections type semi-metrics (they described in Lemma 13.6 in Ferraty and
Vieu (2006)).
We assume that the density function f1,2 of (X1, X2) being continuous at
(x1, x2) and such that f1,2(x, x) > 0, we arrive at

ψx(uh, h) = P (uh ≤ dk(X1, x) ≤ h, 0 ≤ dk(X2, x) ≤ h)

= P (dk(X1, x) ≤ h, dk(X2, x) ≤ h)− P (dk(X1, x) ≤ uh, dk(X2, x) ≤ h) .

Remark that if x =
∑∞

j=1 x
jej in F then ∃y = (x1, ..., xk) ∈ Rk. So, On one

side, we have

ψx(h) := P (dk(X1, x) ≤ h, dk(X2, x) ≤ h)

=

∫
B(y,h)

∫
B(y,h)

f1,2(t, u)dtdu

=

∫
B(y,h)

∫
B(y,h)

(f1,2(y, u) + δ1(y, t))dtdu

=

∫
B(y,h)

∫
B(y,h)

(f1,2(y, y) + δ2(y, u) + δ1(y, t))dtdu

= (f1,2(y, y) +O(h))

∫
B(y,h)

∫
B(y,h)

dtdu

= f1,2(y, y)h2kV 2(k) +O(h)h2kV 2(k) ∼ Cxh
2k,
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where the notation V (k) is the volume of the unit ball in Rk such that
V (k) = π

k
2

k
2

Γ( k
2

)
. On the other side, we get

P (dk(X1, x) ≤ uh, dk(X2, x) ≤ h) =

∫
B(y,uh)

∫
B(y,h)

f1,2(t, v)dtdu

= (f1,2(y, y) +O(h))

∫
B(y,uh)

∫
B(y,h)

dtdu

= f1,2(y, y)ukh2kV 2(k) +O(h)h2kV 2(k) ∼ Cxu
kh2k,

which allows us to write

ψx(uh, h) ∼ Cxh
2k(1− uk). (3.13)

Now, one considers the family of kernels indexed by α > 0 and defined by
Kα(u) = α+1

α
(1− uk)1[0,1](u). It comes with trivial calculs that∫ 1

0

ψx(uh, h)
d

du
(u2K(u))du =

(α + 1)k

(k + 2)(α + k + 2)
Cxh

2k + o(h2k),

which leads us to assumption (D4) as soon as h is small enough ( i.e. as soon
as n is large enough). In the same way, (D4) holds when ones considers the
uniform kenel 1[0,1](.).

58



Chapter 4

Local linear estimation of a

generalized regression function

with functional dependent data

In Chapter 2, we study a generalized regression estimator in the case where
the data are independent. The present work gives an extension to the depen-
dent case (α-mixing) and this fact complicates considerably the study. The
interest comes mainly from the fact that some application fields, for func-
tional methods, need to analyze time series. These motivation is illustrated
using two real-data sets.
Let us consider n pairs of random variables (Xi, Yi)i=1,...,n identically dis-
tributed as the pair (X, Y ) which is valued in F ×R, where F is an infinite-
dimensional space equipped with a semi-metric d.
We estimate the generalized regression function mϕ, by the following explicit
estimator

m̂ϕ(x) =

∑n
i,j=1 Wij(x)ϕ(Yj)∑n

i,j=1Wij(x)

(
0

0
:= 0

)
,
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where

Wij(x) = β(Xi, x) (β(Xi, x)− β(Xj, x))K(h−1d(Xi, x))K(h−1d(Xj, x)).

4.1 The pointwise almost-complete convergence

Let x be a fixed point in F , We investigate the asymptotic behavior of the
local linear estimator m̂ϕ(x), under the assumptions (H1), (H3), (D2), (D4)
and the following addition assumptions.

(M1) There exists b > 0 such that for all x1, x2 ∈ B(x, h), | mϕ(x1) −
mϕ(x2)| ≤ Cxd

b(x1, x2), where Cx is a positive constant depending on
x.

(M2) The sequence (Xi, Yi) is an α-mixing sequence with coefficient α(n),
moreover (M2a) and (M2b) are satisfied.

(M2a) There exist C > 0, a > sup(3, 1+u
ud

) satisfying: ∀n ∈ N;α(n) ≤ Cn−a,
where d and u are defined in (M2b) and (M4) respectively.

(M2b) There exist 0 < d ≤ 1, C > 0, C ′ > 0 such that C ′ [Φx(h)]1+d <

ψx(h) ≤ C [Φx(h)]1+d , where ψx(h) := ψx(0, h) and ψx(h1, h2) :=

P (h1 ≤ d(X1, x) ≤ h2, 0 ≤ d(X2, x) ≤ h2) .

(M3) For all m ≥ 2, δm : x 7→ E(|ϕ(Y )|m/X = x) is a continuous operator at
x and ∃C > 0, such that supi 6=j E (|ϕ(Yi)ϕ(Yj)|/(Xi, Xj)) ≤ C <∞.

(M4) The bandwidth h satisfies limn→∞ h = 0 and ∃ η0 > 0, 0 < u < 1,
C1 > 0, C2 > 0 such that C1n

3−a
a+1

+η0 ≤ Φx(h) ≤ C2n
−u, with η0 <

a−3
a+1

.

Hypothesis (M1) is standard and has been assumed in the independent
case (see Barrientos et al. (2010)). (M2a) means that (Xi, Yi) is arithmeti-
cally mixing which is a standard choice of the mixing coefficient in the time
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series as well as in the context of functional data. Concerning (M3), similar
conditions have already been imposed in the literature to deal with the re-
gression estimation problem: see for example assumptions (6.4) and (11.10)
in Ferraty and Vieu (2006). The choice of the bandwidth is given by (M4)
which implies that nΦx(h)/lnn→∞ as n→∞.
Now, let us state the rate of the pointwise almost-complete convergence of
m̂ϕ(x).

Theorem 4.1. Assume that assumptions (H1), (H3), (D2), (D4) and (M1)–
(M4) are satisfied, then

m̂ϕ(x)−mϕ(x) = O(hb) +Oa.co.

(√
lnn

nΦx(h)

)
.

Notice that this rate of convergence is the same as that of Barrientos et
al. (2010) (independent observations) as well as that of Laksaci et al. (2011)
(dependent observations).
The proof follows directly from the standard decomposition given in (2.2),
then, we apply the following lemmas for which the proofs are relegated to
the Appendix 4.4.

Lemma 4.1. Assume that hypotheses (H1), (H3), (D2), (D4), (M1) and
(M2) hold, then

mϕ(x)− Em1(x) = O(hb).

Lemma 4.2. Under assumptions of Theorem 4.1, we have

m1(x)− Em1(x) = Oa.co.

(√
lnn

nΦx(h)

)
.

Lemma 4.3. If assumptions (H1),(H3), (D2), (D4), (M2a), (M2b) and
(M4) are satisfied, we obtain

m0(x)− 1 = Oa.co.

(√
lnn

nΦx(h)

)
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and
∞∑
n=1

P

(
m0(x) <

1

2

)
<∞.

4.2 The uniform almost-complete convergence

In this section, we establish the uniform almost-complete convergence of m̂ϕ

on some subset SF of F which can be covered by a finite number of balls.
This number has to be related to the radius of these balls.
To this goal, we suppose that x1, . . . , xNrn (SF ) is an rn-net for SF where for
all k ∈ {1, . . . , Nrn(SF)}, xk ∈ SF and (rn) is a sequence of positive real
numbers.
In this study, we need the following assumptions.

(E1) The kernel K fulfills (D2) and is Lipschitzian on [0, 1].

(E2) The sequence (Xi, Yi) satisfies (M2a) and

(E2b) There exist 0 < d ≤ 1, C1 > 0, C2 > 0 such that for all x1, x2 ∈ SF ,
0 < C1 [Φ(h)]1+d ≤ P [(X1, X2) ∈ B(x1, h)× ∈ B(x2, h)] ≤ C2 [Φ(h)]1+d .

(E3) ∀m ≥ 2, ∃ C1 > 0, E(|ϕ(Y )|m/X) ≤ C1 and ∃ C2 > 0,

supi 6=j E (|ϕ(Yi)ϕ(Yj)|/(Xi, Xj)) ≤ C2 <∞.

(E4) The hypothesis (D4) is satisfied uniformly on x ∈ SF .

(E5) The bandwidth h satisfies (M4) and for rn = O
(

lnn
n

)
, the function ψSF

satisfies for n large enough ψSF
(

lnn
n

)
∼ C lnn.

Roughly speaking, most of these hypotheses are uniform version of the corre-
sponding conditions in the pointwise case. (E2) and (E5) allow to treat the
dependence terms and were inspired by imposed conditions in Laksaci et al.
(2011) and Attaoui et al. (2014). (E1) is a technical assumption. The last
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condition on entropy in (E5) is satisfied in some common cases (see example
4 on page 338 in Ferraty et al. (2010)) and leads to find again the same rate
as in the pointwise case but uniformly on x.
Our result is as follows.

Theorem 4.2. Under assumptions (U1)–(U3), (E1)–(E5) we have

sup
x∈SF

|m̂ϕ(x)−mϕ(x)| = O(hb) +Oa.co.

(√
lnn

nΦ(h)

)
.

Notice that this rate of convergence is the same as that of Ferraty et al.
(2010) (independent observations) under our hypothesis (E5).
It is easy to see that the proof of Theorem 4.2 is a direct consequence of the
decomposition (1.5) and of the following lemmas for which the proofs are
postponed to the Appendix 4.4.

Lemma 4.4. Assume that hypotheses (U1)–(U3), (E1), (E2) and (E4) hold,
then

sup
x∈SF

|mϕ(x)− Em1(x)| = O(hb).

Lemma 4.5. Under assumptions of Theorem 4.2, we obtain that

sup
x∈SF

|m1(x)− Em1(x)| = Oa.co.

(√
lnn

nΦ(h)

)
.

Lemma 4.6. If assumptions (U1),(U3), (E1), (M2a), (E2b), (E4) and (E5)
are satisfied, we get

sup
x∈SF

|m0(x)− 1| = Oa.co.

(√
lnn

nΦ(h)

)

and
∞∑
n=1

P

(
inf
x∈SF

m0(x) <
1

2

)
<∞.
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4.3 Real data application

In this section, we use two real data sets (the electricity consumption data
given in Section 3.3 and El Nino data) to illustrate the efficacy of the lo-
cal linear estimator (LLR) corresponding to the studied estimator m̂ϕ for
ϕ(t) = t. More precisely, we compare it to the conditional expectation kernel
estimator (KR) studied in Ferraty and Vieu (2006).
The (KR) estimator is computed with the same parameters as at subsection
12.4 in Ferraty and Vieu (2006). For the computation of the (LLR) estima-
tor, we use the quadratic kernel K(x) = 3

2
(1−x2)1[0,1](x), the bandwidth h is

chosen by the cross-validation method and the semimetric d is the PCA one
described in Ferraty and Vieu (2006) (see routines "semimetric.pca" in the
website http://www.lsp.ups-tlse.fr/staph/npfda with q = 5 for the electricity
consumption data and q = 2 for El Nino time series) and β := d.

Figure 4.1: Performance of the two methods for the Electricity data.
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The study of El Nino time series is the same as the lectricity consumption
data but here we study the monthly Sea surface Temperature from June, 1950
up to May, 2004 (available online at http://www.cpc.ncep.noaa.gov/data/indices/)).
Our aim is to predict the Sea surface Temperature of each month of the 54th

year given the 53th one.

Figure 4.2: Performance of the two methods for El Nino data.

In Figures 4.1 and 4.2, the solid lines (resp. the dotted ones) correspond
to the true observations (resp. the forecasted ones obtained by the men-
tioned method). In order to get a more precise comparison between the two
estimators, we evaluate their empirical Mean Square Errors (MSE), with

MSE :=
1

12

12∑
i=1

(
Yi − Ŷi

)2

,

where Yi (resp. Ŷi) is the real (resp. the estimated) value of the ith month
of the last year.
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We find
• For the Electricity data

MSE(LLR)=0.0016 and MSE(KR)=0.0024.
• For El Nino time series

MSE(LLR)=0.2558 and MSE(KR)=0.3500.
In conclusion, as for independent data, the local linear method seems to
improve the quality of prediction compared to the kernel one. The (LLR)
estimator which have been introduced and studied, for independent data, in
Barrientos et al. (2010) also gives good results for dependent observations.

4.4 Appendix 5

In what follows, let C be some strictly positive generic constant.
1. To treat the pointwise almost-complete convergence of m̂ϕ(x) , we

need the following preliminary technical lemma.

Lemma 4.7. Under assumptions (H1), (H3), (D2), (M2b) and (D4), we
obtain
i) ∀(p, l) ∈ N? × N, E

(
Kp

1 (x)|βl1(x)|
)
≤ ChlΦx(h).

ii) ∀(p1, p2, l1, l2) ∈ N? × N? × N× N,
E
[
Kp1

1 (x)Kp2
2 (x)|βl11 (x)||βl22 (x)|

]
≤ Ch(l1+l2) [Φx(h)]1+d.

iii) E [K1(x)K2(x)β2
1(x)] > Ch2 [Φx(h)]1+d for n sufficiently large.

The proof of this Lemma works as that of Lemma 3.4.
As the dependence assumption reveals covariances terms, let us define for
k ∈ {0, 2} and l ∈ {0, 1}

S2
n,l,k(x) =

n∑
i=1

n∑
j=1

|Cov(Λ
(k,l)
i (x),Λ

(k,l)
j (x))|, (4.1)

66



where, for i ∈ {1, . . . , n}

Λ
(k,l)
i (x) =

1

hk
{
Ki(x)βki (x)ϕl(Yi)− E[Ki(x)βki (x)ϕl(Yi)]

}
. (4.2)

We now focus on these covariances terms in the following result.

Lemma 4.8. Under assumptions (H1), (H3), (D2), (D4), (M1)–(M3) we
have

S2
n,l,k(x) = O(nΦx(h)). (4.3)

Proof 4.1. for k ∈ {0, 2} and l ∈ {0, 1}, we set

S2
n,l,k(x) =

n∑
i=1

n∑
j=1

|Cov(Λ
(k,l)
i (x),Λ

(k,l)
j (x))| = J1,n(x)+J2,n(x)+nV ar(Λ

(k,l)
1 (x))

(4.4)
with

J1,n(x) =
∑
S1

|Cov(Λ
(k,l)
i (x),Λ

(k,l)
j (x))|; S1 = {(i, j) : 1 ≤ |i− j| ≤ mn} .

and

J2,n(x) =
∑
S2

|Cov(Λ
(k,l)
i (x),Λ

(k,l)
j (x))|; S2 = {(i, j) : mn + 1 ≤ |i− j| ≤ n− 1} ,

where the sequence (mn) will be specified below.
Since for all i in {1, ..., n}, E(Λ

(k,l)
i (x)) = 0, we get

J1,n(x) =
∑
S1

|E[Λ
(k,l)
i (x)Λ

(k,l)
j (x)]|

≤ 1

h2k

∑
S1

{E[Ki(x)βki (x)Kj(x)βkj (x)E(|ϕl(Yi)ϕl(Yj)||(Xi, Xj)]

+ |E[Ki(x)βki (x)E(ϕl(Yi)|Xi)]||E[Kj(x)βkj (x)E(ϕl(Yj)|Xj]|}.

Under (M3) and because E[ϕ(Y )|X] = mϕ(X) = mϕ(x) + o(1) in view of
hypothesis (M1), together with the application of Lemma 4.7, we obtain

J1,n(x) ≤ Cnmn

[
(Φx(h))1+d + (Φx(h))2

]
≤ Cnmn (Φx(h))1+d .
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To apply a covariance inequality for unbounded mixing sequences, we must
calculate the absolute moments of the r.r.v. Λ

(k,l)
i (x).

E|Λ(k,l)
i (x)|q ≤ h−qk

q∑
j=0

Cj,qE|Kj
i (x)βkji (x)ϕlj(Yi)||EKi(x)βki (x)ϕl(Yi)|q−j

≤ h−qk
q∑
j=0

Cj,qE[Kj
i (x)βkji (x)E(|ϕ(Yi)|lj|Xi)][E(Ki(x)βki (x)E(|ϕl(Yi)||Xi))]

q−j,

the last inequality is obtained by conditionning on Xi. In addition,(M3) im-
plies that E(|ϕ(Y )|j|X) = δj(X) = δj(x) + o(1) and using Lemma 4.7, we
get

E|Λ(k,l)
i (x)|q = O

(
max06j6q(Φx(h))1+q−j)

= O (Φx(h)) .

Now, we can use Rio inequality (see Proposition 5.5–(ii)) together with hy-
pothesis (M2a) to obtain

J2,n(x) =
∑
S2

|Cov(Λ
(k,l)
i (x),Λ

(k,l)
j (x))|

≤ C
[
E|Λ(k,l)

1 (x)|q
]2/q∑

S2

[α(|i− j|)]1−
2
q

≤ C [Φx(h)]
2
q

∑
S2

|i− j|−a(1− 2
q

)

≤ C [Φx(h)]
2
q n2m

−a(1− 2
q

)
n .

Choosing mn = (Φx(h))−d , we obtain

J1,n(x) = O(nΦx(h)) (4.5)

and

J2,n(x) ≤ C (nΦx(h))
[
n (Φx(h))

(q−2)(ad−1)
q

]
≤ C (nΦx(h))n1−u(q−2)(ad−1)

q ,
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the last result coming from the condition (M4). Now, in view of (M2a) we
can choose q such that u (q−2)(ad−1)

q
> 1. So, we obtain

J2,n(x) = O(nΦx(h)) (4.6)

For the variance term, Lemma 4.7 and hypothesis (M3) permit to write

V ar(Λ
(k,l)
1 (x)) ≤ C

[
Φx(h) + (Φx(h))2

]
≤ CΦx(h).

(4.7)

We readily derive the claimed result from (4.4), (4.5), (4.6) and (4.7).

Proof of Lemma 4.1 The bias terms is not affected by the dependence
condition. So, the proof works exactly as that of Lemma 1.1 with replacing
Y by ϕ(Y ). Remark that EW1,2(x) > 0 under the assumed hypotheses (see
relation (4.8)).
Proof of Lemma 4.2 Inspired by the decomposition given in 2.14, we set

m1(x) = Q(x) [S2,1(x)S4,0(x)− S3,1(x)S3,0(x)] ,

where, for p ∈ {2, 3, 4} and l ∈ {0, 1},

Sp,l(x) =
1

nΦx(h)

n∑
i=1

Ki(x)βp−2
i (x)ϕl(Yi)

hp−2
and Q(x) =

n2h2Φ2
x(h)

n(n− 1)EW12(x)
.

So, we need to show taking into account the dependence assumption of the
observations, if necessary, that for p ∈ {2, 3, 4} and l ∈ {0, 1}

ESp,l(x) = O(1),

Q(x) = O(1),

Sp,l(x)− ESp,l(x) = Oa.co.

(√
lnn

nΦx(h)

)
,

Cov [S2,1(x), S4,0(x)] = O

(√
lnn

nΦx(h)

)
,

Cov [S3,1(x), S3,0(x)] = O

(√
lnn

nΦx(h)

)
.
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• It is easy to see that under (H1), (H3), (D2) and (M1), for p ∈ {2, 3, 4}
and l ∈ {0, 1} ,we have
ESp,l(x) = O(1) .
• Treatment of the term Q(x)

We have

EW12(x) = E
[
β2

1(x)K1(x)K2(x)
]
− E [β1(x)β2(x)K1(x)K2(x)] ,

together with

h2E [β1(x)β2(x)K1(x)K2(x)] ≤ Ch2

∫
B(x,h)

∫
B(x,h)

β(u, x)β(t, x)dP(X1,X2)(u, t)

and (D4) implies that

h2E [β1(x)β2(x)K1(x)K2(x)] = o

(∫
B(x,h)

∫
B(x,h)

β2(u, x)β2(t, x)dP(X1,X2)(u, t)

)
.

By applying (H3) and (M2b), we get∫
B(x,h)

∫
B(x,h)

β2(u, x)β2(t, x)dP(X1,X2)(u, t) ≤ Ch4 [Φx(h)]1+d ,

which implies that

E [β1(x)β2(x)K1(x)K2(x)] = o
(
h2 [Φx(h)]1+d

)
.

Now, Lemma 4.7-(iii) and the last result allow to write

EW12(x) > Ch2 [Φx(h)]1+d . (4.8)

So, for n sufficiently large

Q(x) =
n2h2Φ2

x(h)

n(n− 1)EW12(x)
≤ C

[Φx(h)]2

[Φx(h)]1+d
≤ C.

• Treatment of the term Sp,l(x)− ESp,l(x) We have

Sp,l(x)− ESp,l(x) =
1

nΦx(h)

n∑
i=1

Γ
(p,l)
i (x),

70



where

Γ
(p,l)
i (x) = Λ

(p−2,l)
i (x) =

1

hp−2

{
Ki(x)βp−2

i (x)ϕl(Yi)− E
[
Ki(x)βp−2

i (x)ϕl(Yi)
]}
,

(4.9)
with Λ

(k,l)
i (x) is defined in (4.2).

Note that, because E(Γ
(k,l)
1 (x)) = 0, E|Γ(k,l)

1 (x)|q = O(Φx(h)) for q > 2 and
using Tchebychev’s inequality, we can apply Proposition 5.5–(i), to get for
any q > 2, ε > 0, r ≥ 1 and for some 0 < C <∞

P (|Sp,l(x)− E [Sp,l(x)] | > ε) = P

(
|

n∑
i=1

Γ
(p,l)
i (x)| > nεΦx(h)

)
≤ C [A1(x) + A2(x)] ,

(4.10)

where

A1(x) =

(
1 +

ε2n2(Φx(h))2

rS2
n,l,k(x)

)−r/2
and A2(x) = nr−1

(
r

εnΦx(h)

)(a+1)q/(q+a)

.

Now, taking for η > 0

ε = η

√
lnn

nΦx(h)
and r = (lnn)2,

we obtain

A2(x) ≤ Cn1− (a+1)q
2(q+a) (lnn)−2+

3(a+1)q
2(q+a) (Φx(h))−

(a+1)q
2(q+a) ,

Next, using (H8), it exists some real number ν > 0 such that

A2(x) = O(n−1−ν). (4.11)

Moreover, in view of equation (4.3) and the fact that ln(x+ 1) = x− x2/2 +

o(x2/2) where x tends to zero, we can write

A1(x) ≤ Cn−η
2/2, (4.12)
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which shows that A1(x) is the general term of a convergent series for an
appropriate choice of η.
Hence, by combining relations (4.10), (4.11) and (4.12), we derive

Sp,l(x)− ESp,l(x) = Oa.co.

(√
lnn

nΦx(h)

)
.

• Finally, by following similar arguments used to prove (4.3), we obtain

Cov [S2,1(x), S4,0(x)] = O

(
1

nΦx(h)

)
and

Cov [S3,1(x), S3,0(x)] = O

(
1

nΦx(h)

)
.

In view of (M4), this last rate is negligible with respect to O
(√

lnn
nΦx(h)

)
.

The proof is then completed.
Proof of Lemma 4.3 The first part of the claimed results can be directly
deduced from the proof of Lemma 4.2 by taking for all i, ϕ(Yi) = 1.
We can deduce thatm0(x) converges almost completely to 1 and this involves
that

∞∑
n=1

P

(
m0(x) <

1

2

)
<∞.

2. To treat the uniform convergence of m̂ϕ(x), we need the following pre-
liminary technical lemma. This is the uniform version of Lemma 4.7 and its
proof works in the same manner.

Lemma 4.9. Under assumptions (U1), (U3), (E1), (E2b) and (E4), we
obtain
i) ∀(p, l) ∈ N? × N, supx∈SF E

(
Kp

1 (x)|βl1(x)|
)
≤ ChlΦ(h).

ii) ∀(p1, p2, l1, l2) ∈ N? × N? × N× N,
supx∈SF E

(
Kp1

1 (x)Kp2
2 (x)|βl11 (x)||βl22 (x)|

)
≤ Ch(l1+l2) [Φ(h)]1+d.

iii) ∃n0 ∈ N,∀n > n0, infx∈SF E [K1(x)K2(x)β2
1(x)] > Ch2 [Φ(h)]1+d.
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Proof of Lemma 4.4 We have

Eml(x) =
1

EW12(x)
E
[
W12(x)ϕl(Y2)

]
and Em1(x) can also be written as

Em1(x) = E [E(m1(x)|X2)] =
1

EW12(x)
E [W12(x)E(ϕ(Y2)|X2)] .

So, we get under assumption (E1)
|mϕ(x)− Em1(x)| = 1

|EW12(x)| |E {W12(x) [mϕ(x)−mϕ(X2)]}| ≤ sup
x′∈B(x,h)

|mϕ(x)−mϕ(x′)|.

We need to take into account hypothesis (U2) to obtain

sup
x∈SF

|mϕ(x)− Em1(x)| = O(hb).

Proof of Lemma 4.5 Following the same steps as in the proof of Lemma 4.2,
but using Lemma 4.9 instead of Lemma 4.7, we obtain under assumptions
(U1), (U3) and (E1)–(E5), for p ∈ {2, 3, 4} and l ∈ {0, 1}

sup
x∈SF

Q(x) = O(1), sup
x∈SF

ESp,l(x) = O(1) (4.13)

and

sup
x∈SF

Cov [S2,1(x), S4,0(x)] = O

(
1

nΦ(h)

)
, sup

x∈SF
Cov [S3,1(x), S3,0(x)] = O

(
1

nΦ(h)

)
.

(4.14)
It remains to show that, for p ∈ {2, 3, 4} and l ∈ {0, 1},

sup
x∈SF

|Sp,l(x)− ESp,l(x)| = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 . (4.15)

To this aim, let us set

j(x) = arg min
j∈{1,2,...,Nrn (SF )}

d(x, xj),
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and consider the following decomposition

sup
x∈SF

|Sp,l(x)− ESp,l(x)| ≤ sup
x∈SF

∣∣Sp,l(x)− Sp,l(xj(x))
∣∣

+ sup
x∈SF

∣∣Sp,l(xj(x))− ESp,l(xj(x))
∣∣

+ sup
x∈SF

∣∣ESp,l(xj(x))− ESp,l(x)
∣∣ := F p,l

1 + F p,l
2 + F p,l

3 .

Let us now study each term F p,l
k for k ∈ {1, 2, 3}.

Study of the term F p,l
2

For all ε > 0, we have that

P
(
F p,l

2 > ε
)

= P

(
max

j∈{1,...,Nrn (SF )}
|Sp,l(xj)− ESp,l(xj| > ε

)
≤ Nrn(SF) max

j∈{1,...,Nrn (SF )}
P (|Sp,l(xj)− ESp,l(xj| > ε)

≤ Nrn(SF) max
j∈{1,...,Nrn (SF )}

P

(∣∣∣∣∣
n∑
i=1

Γp,li (xj)

∣∣∣∣∣ > nΦ(h)ε

)
,

where Γp,li (x) is defined in (4.9). By applying Proposition 5.5–(i) in Ferraty
and Vieu (2006) and since E|Γ(k,l)

1 (x)|q = O(Φx(h)) for q > 2 , we have for
any q > 2, ε > 0, r ≥ 1 and for some 0 < C <∞

P
(
F p,l

2 > ε
)
≤ C(A1 + A2),

where

A1 = Nrn(SF)

(
1 +

ε2n2Φ2(h)

rS2
n,l,p

)−r/2
, A2 = Nrn(SF)nr−1

(
r

εnΦ(h)

)(a+1)q/(q+a)

and S2
n,l,p := supx∈SF S

2
n,l,p(x) = O(nΦ(h)) in view of relation (4.3) together

with hypothesis (U1).
Choosing for η > 0

ε = η

√
ψSF

(
lnn
n

)
nΦ(h)

and r =

(
ψSF

(
lnn

n

))2

,
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we obtain

A1 = O(n−1−ν) and A2 = O(n−1−ν′),

where ν, ν ′ > 0.
Hence, we get for η large enough

P

F p,l
2 > η

√
ψSF

(
lnn
n

)
nΦ(h)

 ≤ Cn−1−ξ,

where ξ > 0.
Study of the terms F p,l

1 and F p,l
3

First, let us analyse the term F p,l
1 . SinceK is supported in [0, 1] and according

to (U1), we have the relation (2.8) which give by

F p,l
1 ≤

Crn
nhΦ(h)

sup
x∈SF

n∑
i=1

|ϕl(Yi)|1B(x,h)∪B(xj(x),h)(Xi).

Let
Zi =

Crn|ϕl(Yi)|
h

sup
x∈SF

1B(x,h)∪B(xj(x),h)(Xi).

In the same manner as for proving (4.3), we have under hypotheses (U1),
(E2b), (E3) and (E5)

S2
n =

n∑
i=1

n∑
j=1

|Cov(Zi, Zj)| = O(nΦ(h)).

It remains to use similar arguments as to treat F p,l
2 to obtain

F p,l
1 = Oa.co.

√ψSF
(

lnn
n

)
nΦ(h)

 .

Second, since

F p,l
3 ≤ E

(
sup
x∈SF

∣∣Sp,l(x)− Sp,l(xj(x))
∣∣) ,
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we deduce that

F p,l
3 = O

√ψSF
(

lnn
n

)
nΦ(h)

 .

Applying (4.13), (4.14) and (4.15) together with the last condition of hy-
pothesis (E5), the result of Lemma 4.5 is immediately obtained.
Proof of Lemma 4.6 The first part of the claimed results can be directly
deduced from the proof of Lemma 4.5 by taking for all i, ϕ(Yi) = 1 and this
yields easily to the second part.
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Chapter 5

Annex : Some probabilistic tools

In this Annex, we briefly present some probabilistic tools we need in this
thesis.

The almost Complete Convergence

The concept of the almost complete convergence was introduced by Hsu and
Robbins (1947), this convergence is in some sense easier to state than the
almost sure one. Moreover, this mode of convergence implies other stan-
dard modes of convergence, such that the almost sure convergence and the
convergence in probability.

Definition 5.1. Let (Zn)n∈N∗ be a sequence of real random variables (r.r.v.).
We say that (Zn)n∈N∗ converges almost completely to some r.r.v. Z, and we
note Zn

a.co.7−→ Z, if and only if

∀ε > 0,
∞∑
n=1

P (|Zn − Z| > ε) <∞.

Moreover, let (un)n∈N∗ be a sequence of positive real numbers going to zero;
we say that the rate of the almost complete convergence of (Zn)n∈N∗ to Z is
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of order (un) and we note Zn − Z = Oa.co.(un), if and only if

∃ ε0 > 0,
∞∑
n=1

P (|Zn − Z| > ε0un) <∞.

In the following proposition, we recall some results extensively used in
this thesis. For more details, the reader can see Bosq and Lecoutre (1987)
and Ferraty and Vieu (2006).

Proposition 5.1. Let lx and ly be two deterministic real numbers and let
(un)n∈N∗ be a sequence of real numbers going to zero.

i). If limn→+∞Xn = lx, a.co. and limn→+∞Yn = ly, a.co., we have
a) limn→+∞(Xn + Yn) = lx + ly a.co.,
b) limn→+∞(Xn × Yn) = lx × ly a.co.,
c) limn→+∞

1
Yn

= 1
ly

a.co. as long ly 6= 0.

ii). If Xn − lx = Oa.co.(Un) and Yn − ly = Oa.co.(Un), we have
a) (Xn + Yn)− (lx + ly) = Oa.co.(Un),
b) (Xn × Yn)− lx × ly = Oa.co.(Un),
c) 1

Yn
− 1

ly
= Oa.co.(Un) as long ly 6= 0.

The strong mixing

The field of mixing conditions is of great interest in statistics. This comes
mainly from the fact that it opens the door for application involving time
series. Notice that, there are many ways of modelling the dependence of a
sequence of random variables in the case of mixing. But, In this section we
focus on the α-mixing (or strong mixing) notion, which is one of the most
general among the different mixing structures introduced in the literature
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(see for instance Roussas and Ioannides (1987) or Chapter 1 in Yoshihara
(1994) for definitions of various other mixing structures and links between
them). For the strong mixing in the functional context, we refer to Ferraty
and Vieu (2006), especially sections 10.3 and 10.4.
All that can be done here is to give a narrow snapshot of part of the strong
mixing in the functional context which applied in the theoretical advances in
Chapters 3 and 4.
To start with, some notations are introduced. Let (Zn)n∈Z be a sequence
of random variables on the probability space (Ω,A, P ), which takes values
in the measurable space (Ω′,A′). Denote σkj , −∞ 6 j 6 k 6 +∞, the
σ-algebra, which is generated by the random variables {Zj, ..., Zk}.

Definition 5.2. The strong mixing coefficient of a sequence (Zn)n∈Z of ran-
dom variables is defined as

α(n) = sup
{k∈Z,A∈σk−∞,B∈σ

+∞
n+k}
|P (A ∩B)− P (A)P (B)|.

The sequence (Zn)n∈Z is called α-mixing (or strong mixing), if

α(n)→ 0 as n→∞.

Depending on the rate of convergence of α(n) one considers two cases.

• arithmetic (or algebraic) α-mixing.

• geometric α-mixing..

Definition 5.3. The sequence (Zn)n∈Z is said to be arithmetically α-mixing
with rate a > 0 if

α(n) ≤ Cn−a.

It is called geometrically α-mixing if

∃C ∈ R∗+, ∃t ∈]0, 1[, α(n) ≤ Ctn.
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To study the nonparametric kernel functional statistical methods (see our
chapters 3 and 4), we need the following proposition

Proposition 5.2. Assume that Ω′ is a semi-metric space with semi-metric
d, and that A is the σ-algebra spanned by the open balls for this semi-metric.
Let x be a fixed element of Ω′. Then we have
i) (Zn)n∈R is α-mixing then (d(Zn, x))n∈Z is α-mixing.
ii) In addition, if the coefficients of (Zn)n∈Z are geometric (resp. arithmetic)
then those of (d(Zn, x))n∈Z are also geometric (resp. arithmetic with the same
order).

Exponential Inequalities

The literature contains various versions of exponential inequalities. These
inequalities differ according to the various hypotheses checked by the ran-
dom variables.
This section instructs the exponential inequality taking into account two sit-
uations: the case of independent observations (Bernstein’s inequality) and
the case of dependent observations (Rio’s inequality or the Fuk-Nagaev in-
equality), for more detail see Ferraty and Vieu (2006). It is the main tool
for proving our asymptotic results that are examined in chapters 1, 2, 3 and
4.

Independent case

In all this subsection, let (Zn)n∈Z be a sequence of centered random variables.

Proposition 5.3. (See Corollary A.8 in Ferraty and Vieu (2006))
i). if ∀m ≥ 2, ∃Cm > 0; E|Zm

1 | ≤ Cma
2(m−1), we have ∀ε > 0

P

(
|

n∑
i=1

Zi| > εn

)
≤ 2exp

(
− ε2n

2a2(1 + ε)

)
.
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ii). Assume that the variables depend on n (that is, assume that Zi := Zi,n.
if ∀m ≥ 2, ∃Cm > 0; E|Zm

1 | ≤ Cma
2(m−1)
n and if un = n−1a2

n log n verifies
lim
n→∞

un = 0, we have

1

n

n∑
i=1

Zi = Oa.co. (
√
un ) .

Mixing case

There is a wide literature concerning covariance inequalities for mixing vari-
ables. For this, we us first start with some covariance inequality.
Let (Tn)n∈Z be a stationary sequence of real random variables

Proposition 5.4. (See Proposition A.10 in Ferraty and Vieu (2006)) As-
sume that (Tn)n∈Z is α-mixing. Let us, for some k ∈ Z, consider a real
variable τ (resp. τ ′) which is σk−∞-measurable (resp. σ+∞

n+k-measurable).
i). If τ and τ ′ are bounded, then

∃C, 0 < C < +∞, Cov(τ, τ ′) 6 Cα(n).

ii). If, for some positive numbers p, q and r such that p−1 + q−1 + r−1 = 1,
we have E(τ)p <∞ and E(τ ′)q <∞, then

∃C, 0 < C < +∞, Cov(τ, τ ′) 6 C(E(τ)p)1/p(E(τ ′)q)1/q(α(n))1/r.

Secondly, we present two Rio’s exponential inequalities for partial sums
of a sequence (Zn)n∈Z of stationary and centered arithmetically mixing real
random variables. Assume that (Zn)n∈N∗ are identically distributed and are
arithmetically α-mixing with rate a > 1 and let us introduce the notation

S2
n =

∑n
i=1

∑n
j=1 |cov(Zi, Zj)|

Proposition 5.5. (See Proposition A.11 in Ferraty and Vieu (2006))
i). If ∃p > 2 and M > 0 such that ∀t > M ; P (|Z1| > t) ≤ t−p, then we have

81



for any r > 1, ε > 0 and for some C < +∞

P

(
|

n∑
i=1

Zi| > ε

)
≤ C

{(
1 +

ε2

rS2
n

)−r/2
+
(r
ε

)(a+1)p/(a+p)
}
.

ii). If ∃M <∞ such that |Z1| ≤ M , then we have for any r > 1, ε > 0 and
for some C < +∞

P

(
|

n∑
i=1

Zi| > ε

)
≤ C

{(
1 +

ε2

rS2
n

)−r/2
+
(r
ε

)(a+1)
}
.

Kolmogorov’s entropy

For the uniform consistency, where the main tool is to cover a subset SF with
a finite number of balls,one introduces a topological concept defined asfollows

Definition 5.4. Let S be a subset of a semi-metric space F , and let ε > 0

be given. A finite set of points x1, x2, ..., xN in F is called an ε-net for S
if S ⊂

⋃N
k=1B(xk, ε). The quantity ψS(ε) = ln(Nε(S)), where Nε(S) is the

minimal number of open balls in F of radius ε which is necessary to cover
S, is called Kolmogorov’s ε-entropy of the set S.

It is known that the entropy of a set measures its complexity. We refer
to Kolmogorov and Tikhomirov (1959) and Ferraty et al. (2010) for more
details and examples on this topic.
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Perspectives

To conclude this thesis we raise some perspectives that may be the object of
future works.
• Establish the quadratic mean convergence and the asymptotic normality
of the generalized regression estimator with the local linear method, for α-
mixing observations.
• Show the almost complete convergence results (pointwise and uniform)
similar to those of Chapter 2 when both the response variable and the ex-
planatory one are functional.
• Study the almost complete convergence (pointwise and uniform) similar to
those of chapter 4 in the doubly functional case when the sample considered
is a strong mixing sequence.
• Spatial modelization : Local linear estimation of the generalized regression
for functional data.
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Abstract
In this thesis, we consider the problem of the nonparametric estimation of
the generalized regression function when the response variable is real and
the regressor is valued in a functional space (space of infinite dimension), by
using the local linear method. These study includes, among others, those of
the regression function and the conditional cumulative distribution function.
Firstly, we consider a sequence of independent and identically distributed ob-
servations and we generalize the work of Barrientos et al. (2010). Indeed, we
are concerned with a class of estimators, including their estimator, for which
both the pointwise and the uniform almost-complete convergence, with rates,
are established, while only the pointwise one is proved in the fore-mentioned
paper. Then, a real data set study illustrates the performance of our method-
ology with respect to other known estimators.
Secondly, we suppose that the observations are strongly mixing (α mixing)
and we establish the pointwise and the uniform almost complete convergence,
with rates, for the previously introduced estimators. These results can be
used to solve the prediction problem for functional time series. This is illus-
trated through two real datasets wich, in addition, permit us to compare the
local linear method, adopted in this thesis, with respect to the kernel one.

Keywords: Functional data; Nonparametric estimation; Generalized regres-
sion function; Local linear method; Uniform almost complete convergence;
Rate of convergence; Entropy; α mixing.



Résumé
La problématique abordée dans cette thèse est l’estimation non paramétrique

de la fonction de régression généralisée d’une variable réponse réelle condi-
tionnée par une variable explicative fonctionnelle (à valeurs dans un espace
de dimension infinie), par utilisation de la méthode locale linéaire. Cette
étude inclut, entre autres, celles des fonctions de régression et de répartition
conditionnelle.
Dans un premier temps, nous considérons une suite d’observations indépen-
dantes et identiquement distribuées et nous généralisons l’étude proposée par
Barrientos et al. (2010). En effet, nous étudions une classe d’estimateurs, in-
cluant le leur, pour lesquels nous établissons la convergence uniforme presque
complète, avec taux, alors que seule la convergence ponctuelle est établie dans
le travail cité. Ensuite, une étude sur des données réelles illustre la perfor-
mance de notre méthodologie par rapport à d’autres estimateurs connus.
Puis, dans un second temps, nous traitons le cas où les observations sont
fortement mélangeantes et nous étudions aussi bien la convergence presque
complète ponctuelle qu’uniforme, avec taux, des estimateurs précédemment
introduits. Ces résultats peuvent être utilisés pour le problème de la prévi-
sion de séries chronologiques. Fait que nous illustrons sur deux exemples de
données réelles qui ont aussi permis de comparer la méthode locale linéaire,
adoptée dans cette thèse, à celle plus ancienne du noyau.

Mots-clés: Données fonctionnelles ; Estimation non paramétrique ; Fonc-
tion de régression généralisée ; Méthode locale linéaire ; Convergence presque
compète uniforme, Taux de convergence ; Entropie ; α mélange.



 

 ملخص

 

المشكلة التي تم تناولها في هذه الأطروحة هي التقدير الغير الوسيطي لبعض وظائف التوزيع 

بعد غير  فضاء ذوالشرطي لمتغير الاستجابة الحقيقي المشروط بمتغير تفسري وظيفي )في 

والتوزيع (، وذلك باستخدام الطريقة الخطية محليا. وتشمل هذه الوظائف وظيفة الانحدار، منتهي

 .التراكمي المشروط، والكثافة المشروطة

تقدير وظيفة  وموزعة بشكل موحد ثم نقوم بتعميمأولا، نعتبر سلسلة من الملاحظات المستقلة 

مجموعة من التقديرات التي  رس. حقيقة: ند2010 الانحدار التي اقترحها باريونتوس وآخرون

، اما من خلال تحديد سرعة التقارب لهذا التقدير المنتظم شبه الكاملالتقارب الو لهذا ندرس   هتشمل

ثم ننهي المرحلة  بالنسبة للتقارب الشبه الكامل النقطي فهو مدروس في المرجع المعطى سابقا.

 .توضح فعالية منهاجيتنا مقارنة بالتقديرات المعروفة الأخرى التي دراسة البيانات الحقيقيةب، الاولى

التقارب الشبه ندرس  ثمامل مع الحالة حيث الملاحظات هي مرتبطة بقوة في الخطوة الثانية، نتع

ويمكن استخدام هذه النتيجة لمشكلة التنبؤ  .، بإعطاء سرعة التقاربالكامل النقطي و المنتظم

لتوضيح فعالية التقدير بالمقارنة مع طريقة  لحقيقيةللبيانات ا امثلة نستخدم اخيرابالسلاسل الزمنية و 

 النواة.

 

الطريقة ؛ المعممالانحدار  دالة  ؛التقدير غير الوسيطي البيانات الوظيفية؛:  الكلمات المفتاحية     

 القوي. الخلط ؛الانتروبي ؛سرعة التقارب ؛الشبه الكامل المنتظم التقارب ؛ةالمحلي الخطية
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