REBUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DE MENTOURI-CONSTANTINE

FACULTE DES SCIENCES EXACTES

DEPARTEMENT DE MATHEMATIQUES
N° d’ordre:
N° de série;

THESE POUR OBTENIR LE GRADE DE

DOCTEUR EN SCIENCES
EN MATHEMATIQUES

Option : Analyse

Théme:

METHODE DE SEMI DISCRETISATION POUR LA
RESOLUTION DE QUELQUES PROBLEMES D’EVOLUTION
INTEGRO-DIFFERENTIELS

Présentée et soutenue par

Rachid MECHRI

Le /[ 12011
JURY
Président N. BENKAFADAR Pr Université de Constantine
Directeur de these A. BOUZIANI Pr Université de Oum El Bouaghi
Examinateurs N. ADJROUD M.C. A C. U de Khenchela
N. MERAZGA Pr Université de Oum El Bouaghi
S. DJEZZAR M.C. A Université de Constantine



Acknowledgements

First and foremost, | would like to thank my parents and wife, to whom this work is
dedicated. | owe a special debt to my wife for enduring a struggle greater than either of us
imagined at the outset. Her ability to find kind words at the most difficult times meant more
than mere words can convey.

I would like to extend my deep thanks and gratitude to my advisor, Pr. Bouziani Abd-
Elfattah, who has taken the time over the last few years to listen to my incomprehensible
ramblings. His support, patience, insight and enthusiasm have fueled this process from
beginning to end and make this work possible.

I would like to thank my reading committee members:
Mr. N. BENKAFADAR, Professor at the University of Constantine.
Mr. N. ADJROUD, C. P. A at the University Center of Khenchela.
Mr. N. MERAZGA, Professor at the University of Oum El Bouaghi.
Mr. S. DJEZZAR, Professor at the University of Constantine.
For their time, interest, and helpful comments.

Finally, i would like to give thanks to my friends and extended family. There are far to
many to mention, but their sincere acts of kindness and support, both large and small, are
neither forgotten nor taken for granted.



Contents

Contents iii
Introduction v
1 Background 1

2 Existence and uniqueness of the solution of an evolution problem

for a quasilinear pseudo-hyperbolic equation 9
2.1 Statement of the problem . . . . ... ... ... ... ........ 9
2.2 Construction of the approximate solutions . . . . . .. .. ... ... 12
2.3 Aprioriestimates . . . . . ... L 16
2.4 Convergence and existence result . . . . .. ... ... ... .. 24
2.5 Uniqueness . . . . . . ..ol e e e 40

3 The weak solvability of a semilinear parabolic integrodifferential
equation with nonclassical boundary conditions 43
3.1 Statement of the problem . . . .. .. ... ... ... ... ..... 43

3.2 Construction of approximate discrete solutions . . . . . . .. ... .. 46



ii
3.3 Aprioriestimates . . . . . . ... ...

3.4 Convergence, existence and uniqueness . . . . . .. ... ..

4 Existence and uniqueness of the solution of an evolution
for a quasilinear hyperbolic integrodifferential equation
4.1 Statement of the problem . . . . . ... ... ... .....
4.2 Construction of an approximate solution . . . . . ... ...
4.3 A priori estimates . . . . .. .. .o

4.4 Convergence, existence and uniqueness . . . . . . .. .. ..

Bibliography

89



Introduction

Mathematical modeling of physical phenomena and biological processes often leads
to nonlocal problems for partial differential equations.

Recently, nonlocal boundary value problems for parabolic and hyperbolic equa-
tions with an integral condition on the lateral boundary have been actively studied,
integral conditions appear in cases where, for example, a direct measurement of phys-
ical quantities is impossible, but their averaged values are known. Such situations
occur in studying plasma processes [1], heat conduction [4, 81, 89], certain manufac-
turing processes [88], moisture transfer in porous media [119], inverse problems [120],
as well as problems in mathematical biology [53] and demography [85].

Apparently, one of the first papers treating problems with integral conditions is
[81], in which for the one-dimensional heat equation the unique solvability of the mixed
problem with Dirichlet conditions on part of the boundary and an integral condition
was established. In [89] this result was extended to the general equation of parabolic
type. The development of the theory of nonlocal problems for differential equations is
proceeding vigorously. Gushchin and Mikhailov (see [55] and the bibliography therein)
studied the solvability of nonlocal problems for second order elliptic equations in which

iii
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the values of the solution on the boundary are related to the values at the interior
points by means of some operator, which in particular, can be an integral one. In [57]
Paneyakh studied a class of nonlocal conditions such that the values of the solution
at a point of the boundary are expressed in terms of the integral of the solution with
respect to the measure corresponding to this point and obtained constraints under
which there exists a unique classical solution of the problem under study. A number
of papers dealt with the disposition of the spectrum of operators arising from nonlocal
problems for ordinary [51] and partial differential equations [56].

The investigations on nonlocal problems with integral conditions for hyperbolic
equations have appeared. Mixed problems in which one or both boundary conditions
were replaced by integral ones were studied in [9, 62]. The unique solvability of a
problem having as data only integral conditions was established in [91]. It should
be noted that the classical solution of a problem in such a setting, one that can be
described as the integral analog of the Goursat problem, was obtained for the simplest
equation u,, = 0 in [122].

This dissertation investigates the use of the Rothe discretization in time method
in solving evolution problems with integrodifferential equations and a nonclassical
boundary conditions. Since 1930, various classical types of initial boundary value
problems have been investigated by many authors using this method, it’s developed
and applied to linear as well as nonlinear evolution equations by Rektorys [105],
Bouziani [39], Kartsatos and Zigler [50], Necas [80], Bahuguna and Raghavendra [59],
and others. It consists in replacing the time derivatives in an evolution equation by

the corresponding difference quotients giving rise to a system of time-independent



operator equations. An approximate solution to the evolution equation is defined
in terms of the solutions of these time-independent systems. After proving a priori
estimates for the approximate solution, the convergence of the approximate solution
to the unique solution of the evolution equation is established. We remark that
the application of Rothe method to nonlocal problems in Chapters 3 and 4 is made
possible thanks to the use of the so-called Bouziani space, first introduced by Bouziani
Abd-Elfattah, see, for instance, [9, 19, 98].

This research began ( Chapter 2 ) with the study of the following problem ( with

a quasilinear hyperbolic equations ):

Pv v o
S’y 4 AN — = Qx[0,T 1
at2—|—0¢ v+ 5 g(x,t,v, (,%), (x,t) € Q x[0,7T], (1)
/ 8 /
v(0,2) = ¢ (), 50(0,2) =@ (), ze, (2)

t

Vs =1, Arxor) =1V, A orcor) = U0, =0,k — 1. (3)

where v is an unknown function, ¢}, @5, 1, 1} and g are a given functions supposed
to be sufficiently regular and T is a positive constant. The present chapter can be
considered as a generalization of the problems studied in my magister thesis in the
way that the conditions are nonhomogenious and the considered equation is a 2k-
dimensional one. It appears in various fields of physics and engineering sciences,
for example, in the study of transverse and longitudinal oscillations of a viscoelastic
bar. Along a different line, the case of linear hyperbolic equation with homogeneous
boundary and initial conditions was considered by Gaiduk [87] and Bouziani [21], in

[87] the author proved, with the aid of the method of contour integral, while, in [21]
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the author use a functional analysis method based on an energy inequality to prove
the existence and uniqueness of the solution.

In the next chapter, we deal with a class of semilinear parabolic integrodifferential
equations (7 is a positive constant and €2 is a bounded open domain in R™ with a

Lipschitz boundary T'):

ov 0%

& ()~ o5 () :/0 a(t—s)K (5,0 (x,8)) ds + g (2,1), (4)

/0 v(z, t)de = FE(t), /0 zv(z,t)de =G (t), tel0,T], (5)

U(I,O) = V()(‘T)v LS (07 1>> (6)

where v is an unknown function, £, G, V;, k' and a are a given functions supposed to
be sufficiently regular and 7T is a positive constant. The linear case of this problem,
ie. fo a(t—s)k' (s,v(x,s))ds =0, appears for instance in the modeling of the quasi-
static flexure of a thermoelastic rod (see [28]) and has been studied, firstly, with a
more general second-order parabolic equation or a 2m-parabolic equation in [18, 28]
by means of the energy-integrals method and, secondly, via the Rothe method [98].
For other models, we refer the reader, for instance, to [58-61], and references therein.

The purpose of the last chapter is to study the solvability of the following problem

v 0% v ¢ Jv
8t2_8x2_8t8x2_/0a(t_8)k(8 v)ds—i—g( 8t) (7)
/01 v(z,t)de = E (), /01 zv(z,t)de =G (t), te]0,T], (8)

v(z,0) = Vo(z), —uv(z,0) = Wy(z), x € (0,1), 9)



vii
where a, k', g, Vo, Wy, FE and G are sufficiently regular given functions of the
indicated variables and 7' is a positive constant.

Problems of this type were first introduced in [35], in which the first author proved
the well-posedness of certain linear hyperbolic equations with integral conditions.

Later, similar problems with equations

Pv Pv SO0
oz oz I\"Y )

and

Pv v, v (o
oz 02 Mooz I\"V o)

have been studied in [59] by using the Rothe method and in [9, 17, 24, 30, 35,
62, 90, 91, 109] by other methods, as energetic method, the Schauder fixed point
theorem, Galerkin method, and the theory of characteristics, other kinds of nonlinear
integral perturbations have been investigated by Bahuguna and Raghavendra [59] for

nonlinear parabolic and hyperbolic problems.



Chapter 1

Background

In the course of this thesis, we will work in the standard functional spaces of the
types C(I,X), C(I,X), and L*(I,X), where X is a Banach space, the main
properties of which can be found in [73].Our analysis requires also the use of the
space of functions which are square integrable in the Bochner sense, i.e. Bochner

integrable and satisfying
e de < +o0,
I

denotes this space by L? (I, H). A primitive function

to the function y (¢) can be defined, in this case, on the basis of the Riesz theorem, it

can be shown that

Lemma 1 If H is a Hilbert space and y € L* (I, H), then, the function



possesses the following properties

i) Y is a continuous abstract function in the interval I, i.e.
Y eC(I,H).
i1) Y is absolutely continuous in I, i.e.
Y € AC(I1,H).
i11) Y is strongly differentiable a.e. in I, we write
Y'(t) = y(t) in L*(I, H).
i) If Y is integrable and g € H, then

(Y(t>ag>H:/()(y(T)ag>Hd7—a

holds for all t € I.
v) Moreover, we have

Y(0) =0 in H.

Let (-,-) and ||-|| be the usual inner product and the corresponding norm respec-
tively in Lo (0, 1).We define on Cy(0, 1) (the vector space of continuous functions with

compact support in (0, 1)) the bilinear form given by

1
(4, 0)) = / S, S, vdz, (1.1)
0
where
Sou = / w(C,.)dc. (1.2)
0
The bilinear form (1.1) is considered as a scalar product on Cy(0, 1) for which Cy(0,1)

is not complete.



Definition 2 We denote by B(0,1) a completion of Cy(0,1) for the scalar product
(2.1), which is denoted (+,-) g, called the Bouziani space or the space of square integrable
primitive functions on (0,1). By the norm of function u from B3(0,1), we understand

the nonnegative number:

lull g = v/ (u, )5 = [[Sau] - (1.3)

For u € Ly(0,1), we have the elementary inequality

1
lull g < — [lull - (1.4)

V2
We denote by L (0,T; B3(0,1)) the space of functions which are square integrable

in the Bochner sense, with the scalar product

T
() magony = [ (0080 (0)adr
0

Since the space Bi (0, 1) is a Hilbert space, it can be shown that Ly(0,T; B3(0, 1)) is
a Hilbert space as well. The set of all continuous abstract functions in [0, T'] equipped

with the norm

sup Hu('77—)HB> (15)
0<r<T

is denoted C(0,T; B3(0,1)).

Definition 3 the set of all u € L? () such that Alu € L?*(Q)), i =1,k equipped

with the norm
1
lullyy = (Ihull® + [|a%u]*)

associated to the inner product

(u,v) = (u,v) + (Aku, Akv) ,



is called the space H (Ak, Q) . Clearly, H (Ak, Q) is a Hilbert space for (.,.)y.

The nature of the boundary conditions in our problems suggests to introduce the

following spaces
V= {v € H(Ak,Q); v=0and Alv=0, i=1,...k—1 over F}, (1.6)
for the first problem and for the second and the last

W:{UGLQ(O,I); /Olv(x)dx:/olxv(x)dx:0}, (1.7)

which are clearly Hilbert spaces for (-,-). Strong or weak convergence is denoted by —
or —, respectively. The letter C' will stand for generic positive constant which may

be different in the same discussion.

Lemma 4 (Gronwall’s Lemma) (a1) Let x(t) > 0, h(t), y(t) be real integrable func-

tions on the interval [a,b]. If

y(t) < h(t) +/ x (8)y(s)ds, vVt € (a,b), (1.8)

then
t

y(t) < h(t) —l—/ h(s)x(s)exp /x (t)dr | ds, Vte (0,T). (1.9)

S

In particular, if x(t) = C is a constant and h(t) is nondecreasing, then
y(t) < h(t)e ™ Vvt e (0,T). (1.10)

(ag) Let {a;}; be a sequence of real nonnegative numbers satisfying

i—1
a; <A+BhY ap, Vi=12,.., (1.11)
k=1



where A, B and h are positive constants. Then

a; < Aexp[B (i — 1) h], (1.12)

takes place for alli=1,2, ...

(as) If
a; < A—{—BhZak, Vi=1,2,..,
k=1
with h < %, then
A B(i—1)h ‘
< A —1,2,.... 1.1
i 1—BheXp(1—Bh) vi (1.13)

Proof. (a;) Define

v(s):exp<—/:x(r)dr) /:x(r)y(r)dr, sel.

Using the product rule, the chain rule, the derivative of the exponential function and

the fundamental theorem of calculus, we obtain for the derivative

where we used the assumed integral inequality for the upper estimate. Since x and
the exponential are non-negative, this gives an upper estimate for the derivative of v.

Since v(a) = 0, integration of this inequality from a to ¢ gives

v(t) < /ath(s)x(s)exp (—/:x(r)dr> ds.



Using the definition of v(¢) for the first step, and then this inequality and the func-

tional equation of the exponential function, we obtain

/atm(s)y(s)ds - exp(/atx(r)dr)v(t)
< /ath(s)x(s)exp(/atx(r)dr—/:x(r)dr)ds.

Substituting this result into the assumed integral inequality gives Gronwall’s inequal-
ity.
If the function h is non-decreasing, then part (a), the fact h(s) < h(t), and the

fundamental theorem of calculus imply that

() < h(t)+(—h(t)exp(/:x(r)dr))
_ h(t)exp(/stzv(r)dr), tel.

To prove assertion (ay), we rewrite the assumed inequality in the form

s=t

sS=a

i—1 A I
ZZhai, where A; = L L=L,=——, 1=1, ...,
— 1—Lh

from this inequality we successively deduce
a1 < Ay, as SA_Q(l —I—zh), ey Q4 SZ(I—{—Lh)
Hence and from

a+In ™ = [a+n) ]

<exp ((i — 1) hL),
we obtain assertion (a). m

Lemma 5 Let {u’}; be a sequence such that v/ € L? (Q), Vj € N*, hence

(=) = |+ 5 o = = 5



holds for all j € N*.
The following lemma plays a crucial role, especially in chapters 3 and 4:

Lemma 6 Let V, Y be two Hilbert spaces with v — Y. If u" — w in C(I,Y") and the

estimates

@, (O)|l, < ¢, forall tel,

du(™
t
)

< ¢, forae tel,

hold for all n > ng > 0, then

(i) we LI, V)NCo (I1,Y);
d
(i1) w is differentiable a.e. in I and d_th € L>(1,Y);

(13d)  u™(t) — u(t), U,(t) = u(t) nV forallt € I;
du™  du

— — in L*(1)Y).
a a mEEY

(iv)

Proof. Cf [73, page 26] =



Chapter 2

Existence and uniqueness of the
solution of an evolution problem
for a quasilinear pseudo-hyperbolic

equation

2.1 Statement of the problem

In the present chapter, we deal with a class of quasilinear pseudo-hyperbolic equations
(T is a positive constant and €2 is a bounded open domain in R™ with a Lipschitz
boundary I'):

0?s ds ( ds

) + a?A%s 4+ ﬂzA%g =gt uxs, @) . (t,x) € Qx[0,T7], (2.1)

9



10
subject to the initial conditions

0

S(O’ I) = 90,1 (ZE) ’ a_

ts(O, )=y (x), €9, (2.2)

and the boundary conditions

3|F><(0,T) = 77[)1, AiS|I‘><(O,T) = @D; 1= 0, ceny k— ]_, (23)

Ak—HSH‘X(O’T) = 77Z)i+27 1= 0, ceey k—1. (24)

Introducing a new unknown function u(t,z) = s(t,x) — 1, (¢, ), our problem with
nonhomogeneous boundary conditions can be equivalently reduced to the problem of

finding a function satisfying

0? 0 0
8—; A%y 5%%8—? —f <t,x, u, 8—1;) . (2,1 eQx[0,T], (2.5)
0
U(O, l’) =¥ ((E) ) Eu(oa :U) = P2 (iL’) ) T e Q? (26)
U|F><(0,T) = 0, Aiu|F><(O,T) =0 1= O, ceny k— 1, (27)
A yrcory = 0, i=0,...,k—1, (2.8)
where
du du 0%y 2 A 2k 2 A2k 01
f(twrauaa) =g (t,x,u, E) - 8752 —a’A ¢1 _B A Ea
and

0
1 (@) =1 (2) =91 (0,2), 9y () = 93 (2) = 5.9(0, ).
Hence, instead of studying directly the problem (2.1) — (2.4) , we concentrate our

attention on problem (2.5) — (2.8). Once u is known, the function s is immediately

obtained through the relation s = u + ;. Throughout the chapter, we assume that
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Hi— f(t,p,q) € L*(Q) for each (t,p,q) € I x V x V, with
V= {v € H(Ak,Q); v=0and Alv=0, i=1,...k—1 over F}. (2.9)
Hy;— For some positive constant L, the following Lipschitz condition

If (poq) = f (&P O < Lt =+ llp—=p' Il +lla =4l

is satisfied for all ¢, ¢’ € I, and all p, p', ¢, ¢ € V.
H3 - Y15, P2, A@la ASOQ €H (Azkaﬂ) nv.
Hy— v, vi e L*(Q), i=1,2k.

To close this section, we announce the main result of the chapter.

Theorem 7 Under assumptions (Hy) — (Hy) , problem (2.5) — (2.8) admits a unique

weak solution u in the sense of

(

we AC(I, V),
W' € L2(1,V) N AC(I, L2(9)),

W' € L2(1, L3(Q)),

u(0) = o,

ul(o) = 9,

and

/T (u"(t),v(t)) dt + o? /T (A*u(t), AMo(t)) dt + 82 /T (AM(t), AP (1)) dt
_ /0 (Ft,u (t) o (£)), 0(8)) dt, Yo € LI, V),

here the derivative % is denoted by u'.

The proof of the last result will be carried out along the following sections.
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2.2 Construction of the approximate solutions

In order to solve problem (2.5)—(2.8) by the Rothe method, we divide the time interval

, 1’| Into n subintervals |¢;_1,%¢;], 7 = 1,...,n, where t; = jh an =1T/n. en,
0,7] i bi Is [t; il, 7=1 h j h and h =T Th

replacing %u and

%u by the corresponding standard difference quotient, problem

(2.5) — (2.8) may be approximated at each point ¢t =¢;, j = 1,...,n, by the following

time discretized problem.

Find a function u; : 2 — R", such that

or

where

and where

starting from

P — QUj_l + Uj—2

u._
+a2A2kuj +B2A2k J

h2

6%u; + a2 A%uy + BEA*u; = f;, Vi =1, n,

wi, = 0, Aluy=0,..i=0k—1,

Ay = 0,.0=0k—1,

fi= (7,051, 0u;4),

From (2.10) , we have

Ui

h2

u.
+a2A2kuj+62A2k#:fj+

2Uj,1 —

h2

uj*Z + 62A2k

u-1(z) = ¢1(x) — hepy(x), uo(x) = ¢y (2), = €.

Uj—1

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



13

Multiplying for all j = 1,...,n, (2.11), (2.15) by v € V and integrating over 2, we get

((SQU]',U) +C¥2 (Aku/]’,U> +62 <A2k5Uj7 ) (f]7 )7 1_
or
1 2 [ A2k 21 o
ﬁ(uj,v)jta (A% uj,v) + 3 —(A uj,v)
B L 2ui — 2 A2k Uj—1
= (fj —h + B°A h v).

Forall j =1,...,n,and all p=1, ..., k, we have
2p - 62 2p—1
(A uj,v) = /QZ 922 (A u]) vdx

B 0 op—1 "9 op1 ov
= /F@VA ujv do /Qizlafﬂz‘A ujaxidx.

But, due to (2.9), v = 0 over I, then

"0 4 Ov
(A2puj,v) :—/Qizla—xiA% ! ja—wdx.

Integrating by parts the right-hand side, it follows

(Aquj,v) = —/ZA%_IUJ-& cos (V,xi)da—l—/A%_lujAvdm,
| — Ox; Q

consequently

(A2puj,v) = (AQp_luj, Av) . YwevV, Vp=1,k,

hence, having in mind that A’v, =0, Ak”v‘r =0,..... 1=1,k—1
(A%uj,'u) = (Akuj, Akv) , YvelV.
Substituting (2.19) in (2.16), (2.17) respectively, we get

((52uj,v) + o (Akuj, Akv) + B2 (Akéuj, Akv) =(fj,v), YveV,

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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and
1 2 Ak k SN k
ﬁ(uj,v)%—a (A%u;, A"v) + 3 E(A uj, A"v)
2051 — Ui 2
— (fj T %0 + % (Afu;_y, AFv), Yo e V. (2.21)
Putting
2Ui_1 — Ui
Fy=f+ % (e L2 (), (2.22)
and
_ ! 2 (AR, AF 21 ARy AF 2.23
a(uj,v) = 55 (uj,0) +a (AFu, U)+55( uj, Av) (2.23)
identity (2.21) becomes
(I(U]‘, U) - L] ('U)a Vo € ‘/7 \V/j = ma (224)

with

2

Lj ('U) = (F}‘,U) + % (Akuj,l, Ak'l}) s Vj = 1,p

Let’s prove now that the bilinear form a(.,.) is continuous and V' — elliptic.

Using (2.23), we get

a(v,v) = % (v,0) + o? (AFv, AFv) + 62% (A*v, AFv)
1 1 2
= 13 lv]|* + (oz2 + Eﬁz) | AFv]|

> kol WweV,

with

k = min (oz2 + %62, %) )
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Therefore, majorize the bilinear form af(.,.) (by virtue of the Cauchy-Schwarz inequal-

ity), we get
aw0) = o (wo) + (0242 67) (Au,A%)
’ h? ’ h )
" 1
< |7z lull ol + (a2 + Eﬁ?) | HA’“UH}
:1 2 1 2
< | o Mullg ol + (@ + 287 ) ullg ol
L7 h
[ 1 1
< o 18+ | Dl o
< K lully llolly, Vu,veV,
with
/ 1 1
2 2
k=« +Eﬁ +ﬁ7

from which it follows that the forme a(.,.) is continuous and V' — elliptic.

On the other hand, we have

2
Lol < IE ol + 5 A%, A%

2

max(1, 7) (I + [ 8% ) lolly VeV,

IN

from which we deduce that the forme L;(+), j = 1,...,n, is continuous over H(A*, Q).

Therefore, according to the Lax-Milgram theorem, for each j = 1,...,n, problem
(2.11) — (2.13) admits a unique solution u; € V.
Denote by uf, du, 52u§?, the expressions corresponding to the divisions d,, with

step lengths h,, = %
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2.3 A priori estimates

Proposition 8 For each n € N* and each j = 1,...,n, the solutions u; of the time-

discretized problem (2.11) — (2.13) satisfy the estimates

[8af]| < n, Vi=Tmn, (2.25)
n n J—
il < %’T+||901|IH, vj=Tn, (2.27)

where
n= \/2 [3K3 + a?K} + TL]exp [yLT7,
with
Ky = 2TM + |lgy|| + (0 + 1) || AFey ]|,
Ko = M [@0%,+ 520%%, + (5 +1) 2%
M= Ll + lial) + oo 17 2,0,0)1,
and

1 T+1 ,
*y:max<g,1><4+ 7 a).

Proof. Now, for j = 1,....,n, we take the difference of the relations (2.20); —

(2.20);_1, tested with v = 6%u; = (Ju; — du;_1)/h which belongs to V, we have
(52'&]' - 52’&]’,1, 52U]’> + Oé2 (Ak(S'U,]’, Ak (5U] — (SUj,l)) + 62h (Ak52’u]', Ak52’u3’)

= (fj - fjfb(szuj)-
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Accordingly, due to assumption Hy and Lemma 5, we get

6% ||* + [|0%u; — 6%u;i || + o || A*suy |
+a? || AR (duy — duy)||” + 2082 || AR, )
< fofuga |+ o [ A%

F2L(Jt; — tja| + [Juj—1 — wj—a|| + |6uj—1 — duj_al|) [|6%u;]],
then

[[6%u;||* + ||0%u; — 62w, ||* + o || Ak suy |
+a? || AF (du; — du; )| + 2087 || Ak6%uy|
e e P

+2LA(L + [|6uj_ || + || 6% w1 ||) [|0%u; ]| - (2.28)

On the other hand, thanks to the Cauchy inequality

1

b2, Ya, bER, ete >0,
2¢

€
lab| < ~a® +
2
we can write, for e = 1

1 1
1wl [usl| < 58wyl + 5 [16%]

[Pl 6%s] < 5 6%l + 5 167

and

2

Y

11
|0%w]| < 5 + 5 [|0%;
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hence

(U4 (16wl + [[6%wsa []) |6%u; || = |[0%uy]] + 1u;—a]l || 6%

[ H52ujH

1

< ——l——H(SQUJH + = ||5uj 1|| —i——H(SQUJH
+— 6% + 5 \\52%'“
1

< —+—H52 wsl” + = ||5UJ )2

I 229

Substituting (2.29) in (2.28) and omitting the second, fourth and last terms in the

left-hand side, this gives

6%, |* + o2 | AFow||* < Hé%fl!!ﬁazIIA’“éujle
+2Lh[ T R T ey T 111]
< [[0%uia|)” + o2 [|AFdu; ||
LR 13 0| + 110wy 1+ [|6%u )]
Observing that
6w | = ||h6%u; + du;_4 |

< h(h+ 1) 0%+ (1 + B [[du; %,
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it follows that

H52ujH2 + 042 Héujﬂz < ||52Uj,1||2 + 062 HAk(SUj,1||2

+Lh [1 + 362wy ||* + |8y |* + }}62%4}}2]
+0?h (h + 1) [|8%u;]|* + a2 |61 ||* + a2h ||y
— [|%u;a ||* + @ |6u; || + Lh
+Lh(3 S 1>) 8%,
a

+Lh[(1+ 2) 1621 ||* + || 0% ]| }

By recurrence, we get

16%;]* + o ||,

hence

with

< 0% |® + a® 6wl + L (G~ 1)k
j 02 ;
+Lhz (3+ T (T + 1)) |6%u;|
o
+LRY (sl + (1+5) toul?)
< 0% H +a?||ou ||}, + LT
+Lhz {(4+— (T+1 )H52u1|| T <1+ >\|5U1M
< IIMH +o® || + LT

w1+ %) th o2 + howl?].

6+ a2 sl < P+ o oy + LT

J
#9Lh Y [[18%l]” + a2 oully ]

i=1

1 T+1
Y = max (E’l) <4+ %az) .
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In virtue of Lemma 4, we can write

|8%0* + 02 |G|}, + LT
1—~Lh

8%y ]| + o |62,

xexp [yL(j — 1) h/1 —yLh],

provided that h < %L In particular, since h is intended to tend towards zero, we can,

without loss of generality, consider that i < 5=—. In this case we get
2. |12 2 2 2 2 2 2
[6%u;])7 + o 16w ])% < 2 [||5 w |+ o 0w}, + LT |
x exp [2yLT]. (2.30)

To estimate H52ulH2 +a?||0us||3, , we test the relation (2.20), written for j = 1, with
v = du; = (uy — ) /h which is an element of V' and observing that dug = ¢,

6*uy = (Su; — ,) /h, we have

(Oug — g, duy) + ozz(hAkéul + Akgpl, Akéul) + 62(Ak5u1, Akéul) = (f1,0uq),

> =

hence

1 a’h 2
ol — ||¢2|r+ o R

2
S N ey T A CoN [ PO

IN

frl[ 0wl

from which we deduce that
8 || + [|6us — @o]® + a2h? || A*Suy ||

+a? || 6uy + A ||* + 262 || AFdu, ||

< 20| full 18w ]| + al® + @ || Ak ||,
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consequently,

2

Y

16ur]l® < 2R | full 1usll + llpall® + o® [| A%y

taking into account that

12l = lf (100, 0]
< N (s @rs92) = f (82, 0,0) [ + 1 f (2,0, 0)]

< =
< Lol + leall) + guavs 1 (4,0,0)] == M < +o0,
by virtue of assumption (Hs), then
[dur| < K, (2.31)

where
Ky = 2T'M + ||| + (O‘2 + 1) HAk‘PlH ‘

On the other hand, taking (2.20) written for j = 1 and tested with v = 0%u;, we

obtain
(6%uy, %ur) + o (AFuy — AFp,, A*§2uy) + B2 (AFduy — AFp,, AF5u,)
= (f1,6%u1) — (A%, + B2 AFp,, AF§%uy)
therefore
(6%uy1, %up) + o (Akéul, AFgu; — Akcpz) + 5°h (Ak52u1, Ak52u1)
= (f1,0%m) — (?A% @ + B2 A%y, 6%u1)
consequently,

2 2
6%+ S A5 | + S | A%Su — Al + 521 | AF5P |

2
< A8 + [la?A% g, + B28%g, | [ + % || A%
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Provided that ||(52u1H > HAkgOQH , We can write

2
%"+ T AR5 |* 5% || A% 6% |

I

2
< M [Pur]| + a?A%p, + BA% || ||| + 5 (| A%l |70
from which it follows that

2
[+ Ao + 5% AR5 < o ]

where
Ko = M+ 0?8% 0, + 0% + (5 +1) %)
hence
0% ]| < Ko, (2.32)
and

a? ||Ak5u1H2 < 2K22.

The sum of the inequality (2.31) squared and multiplied by o with the last inequality,
gives

o? ||ous |3 < (2K3 + o*K7) . (2.33)
Substituting (2.32) and (2.33) in (2.30), it holds that
”52%'“2 +a? ||5uj||§{ < 2[3K;+ o’K7 4+ TL] x exp [2yLT], Vj =1,p,

hence
[0%u;|* + o [|3u, 13, < n?, Vi =T,

where

n=1/2[3K} + a2K? + TL] exp [y LT].
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from which it follows that

[6%us]| <, Vi =Tom, (2.34)
and
n s me
On the other hand, we have
il < (0wl + N10uall g + -+ 10wl ) + llenllg s
from where
Ui .
sl < ETJr leally s Vi =T1n. (2.36)

Finally, the inequalities (2.34), (2.35) and (2.36) can be generalized for each n € N*,
from where we obtain the desired estimations (2.25), (2.26) et (2.27). So, the proof

of the Proposition 8 is complete. m



24

2.4 Convergence and existence result

Let us define, in the interval I = [0, 7], the abstract functions

fa (1)

As a consequence of Proposition 8, we have the following Corollary

Corollary 9 There exist C' > 0 such that the estimates

(

n
ul’

n

Uj,

\

J
,

n
out,
n
ouy,

52t

n
5u17

n
\ ouy_q,

lu" Dl <

|

I @)l <. H

WPy Ut — ),

= ul g+ SPul(t — 7)),

£ (8.3, 0a0))

in I},
for t =0,
in I = (7,17
in I,
for t =0,
in I7,
fort =0,
in ];”,
for t =0,
in 7,
for t =0,
in 1:]”,
in 7.

C, in ()] < C,
U, (t H <C,
o, <
d n
U — S < Ch,,
dt L2(I.L2())

],

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)
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I (£) — u™ (8)] 5 < Ch, ‘ U, () — U" (t)H < Ch,, (2.48)
" () = @)l < Chae U = Oa @) < Chay (249)

hold for allt € I and n € N*.

Proof. Obviously, estimates (2.45) [(2.46), (2.47), respectively| are a direct con-
sequence of estimates (2.25) [(2.26), (2.27), respectively]. On the other hand, from

(2.37) and (2.38) [(2.39) and (2.40), respectively|, we can write

(t" — t)ou, in 7,
G () —u" () =4 ! ’ (2.50)
hpou?, fort =0,
and
_ (t" — t)0%u”, in I,
U, ()= U, (t) =4 7 ’ ! (2.51)
hnduf, for t =0,

from which, for each t € I, by virtue of (2.26) and (2.25) respectively;

IN

h, max ||5u

i (1) = ™ ()] omax [dug]]

< ChTw

and

On(®) = Un(®)]] < o max 6%

0<j<pn

IN

Chy,.

Similarly, we obtain

—hpouy, for t =0,
u () — uy, (t) = (2.52)

(t —t7)oul, in I},
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and
N —hn52u’f, for t =0,
Un () = T, (1) = (2.53)
n\ 52, n i Tn
(t —t7)0%u7, in 17,
which implies
[ () =@ Ol < B max 5 ]],,
< Ch,,Vtel,

and

Un(®) = 0a(®)] < o max 6%

0<j<pn

< Chy,,Vtel,

which achieves the proof of Corollary 9.

Proposition 10 There ezists a functionu € AC(I,V) withvu' € L* (I, V)NAC (I, L* (Q2))

and " € L? (I,L*(Q)), such that

u" — u in C(1,V), (2.54)
Uur — in C(I, L*(Q)), (2.55)
U, — wu in L*(I,V), (2.56)
U, — in L*(I1,V), (2.57)
Y, — ' in L*(I, L*(Q)). (2.58)

Moreover, the error estimate
n 2 n 2
||U - UHC(LV) + ||U - U,HC(I,LQ(Q)) S Chna

takes place for all n > nyg.
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Proof. In view of identity (2.20) and due to the definitions of @, (t), U, (t) and

Y, (t), this shows that for each n and m € N*

o? (AR, (1), AFu(t)) + 5 (A’“ﬁn (1), A%(t)) (Yo (1), 0(t))

= (@), WweL (V) aetel, (2.59)
and
o? (AR, (), AFu(t)) + B2 (A’“ﬁm (1), A%(t)) 4 (Yo (1), 0(1)
= (Fal®)0®), WwelI?(1V), ae tel (2.60)

Taking the difference of relations (2.59) and (2.60) tested with v = U, — U, which
belongs to V., it follows that

% (Man () — AFTL,, (1), AR, (£) — AP, (t))

+82 (Akﬁn (t) — AFT,, (1), AR, (£) — AR, (t))

+ (Yn (t) = Yo (8), Un () — Uy (t))
- (};(t) P, T, () — T, (t)) ae.tel

Ignoring the second term in the left-hand side, we have

a? <Akﬂn () — ARG, (t), AFT, (1) — AFT, (t))

< (};(t) — Jul), T () — U (t)) ,ae. tel (2.61)

On the other hand, observing that

Uy — Uy = (U —u™) + (U, —u") + (v — Up,) ,
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and

the inequality (2.61) becomes

o (Aku" (t) — AFu™ (8), AR, (t) — A*T,, (t)) + (U™ (t) = U™ (), Y, (t) — Yo (1))

< —a? (Akﬁn (t) — AFu™ (t) ,Akfjn (t) — AR (t))— (Un O — U (0. Y () - Y, (t)>
o? (Akum () — ARG, (t), AT, (£) — AT, (t)) B

+ (F®) = Fa®). 0u () = U ()

~—

s
Q)
~
Mm
~

~~
[\)
D
[\)

N—

But, we have

(A%Nﬂ—A%m@”M@JQ—A%@QD
1d

= 7% | AR ™ (t) — ARu™ (8)]|7, ae. t €1, (2.63)
and
(U™ (&) = U™ (1), Yn (t) = Yin (1))
1d n m 2
= G U =U" I aetel (2.64)

Accordingly, substituting (2.63) and (2.64) in (2.62), we derive, with the help of

Schwarz and Cauchy inequalities

a® d k u” k, m -9 n m 2
O Ak 1) — At ) + 5 10 (1)~ U (1)
< a?||ART (1) = AT (0)| (1A% (1) = Ak (0] + [| A% (1) = A5 (0]

n@—UWMMwUWﬂ—@MMH

f, (t)H2, ae. tel,
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by virtue of Corollary 9, we have

HM(? £) — AFT,, H <c, ( U, (1) — Up (t)H < Cand ||V, (1) = Y (D] < C,

whence

kn km n m 2
Lot ) - Ak O+ 2 o ) v o)

< Cff|a% (1) — At @) + [|A%™ (1) — Al (1)]]]
+0 [ 0 (1) =" <t>H + HU"‘ ()= 0]
151 CRCRLAC] [R FCR A >H

< Cff|a%a (1) — At )H+HA’“um<t)—A’“ﬂm(t>}H
el
2o @ - <t>H2 F 2o ) - U 0P
+ o H “nol, aeter

here, the elementary inequality
(a+b+0) <3(a®+b*+ %),
has been used, and on the basis of estimate (2.48), we obtain
S Ak ) = Ak |+ 10 () - o )
< C(hn+hp) + C (hy + h)?

w3l @) — o 12+ | e - fm(t)HZ, aetel. (2.65)

For every t fixed in (0,7, there exist two integers p and ¢ corresponding to the

subdivision of I into n and m subintervals, respectively, such that t & [t;} 1,t$}
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[t;”_l,tgn} . Now, owing to assumption (H), let us majorize the last term of the

inequality (2.65)

Falt) = Fnt)|

sl
< L([tg =t + Nan(t) = am(?)
< L(h 4 B+ [ (8) — (B + | Oat) =

IN

™ () = ()| 7 +

(8 - U (1)

(1) = U @)+ U = Oa()])

taking into account (2.49), we obtain

o) = Fa®|| £ LO+C) (ha+h) + L (1) -

+LU () = U™ ()]

L ((hn + him) + ([ (t) = u" ()] 5 + [[u"(t) —

<t>H>

(2.66)

Substituting (2.66) in (2.65) and integrating over (0, t) with consideration to the fact

that u™(0)

from where

= u"(0)

IN

IA

=, and U"(0) = U™(0) = ¢,, this gives
n m 2 n m
o [|atur(t) — Atum ()| + U@ = U @I

C (hy + hu) + C (o + i)

+C/0 (Il (s) = w™ ()15 + U™ (s) = U™ (s)|°) ds

|Akun () — AFum (1)) + [Un () — U™ (1))

C (hy + hu) + C (hy + i)

+C/0 (Il (s) = w™ ()15 + U™ (s) = U™ (s)]°) ds

(2.67)
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On the other hand, for almost all t € I, we have

() = wm @ = 2 (u”(t) — " (6), T (t) = U <t>)

IN

2 [Ju"(t

<t (t) - w" @)

Integrating over (0, t) with consideration to the fact that «™(0) —u™(0) = 0, we arrive

at

o) = OF < [ ) = )P ds
11 (5) = T ()
< /Hu —u™(s)||%, ds

H ds. (2.68)

2
ds

We sum up the inequalities (2.67) and (2.68), we deduce that

[l () = ™ (@) + 1U"(8) = U™ (O]

C (hy + hn) 4 C (hy + b))

IA

e / () — ™) + U () — U™(s)]]?) ds

t 2 t 2
+/ ds—l—/
0 0

C (B + ho) + C (h + hm)2
[ oo -0u

([l

+C/O (Il (s) = w™ ()15 + 1U"(s) = U™ ()]°) ds

Un(s) —U"(s) U™(s) — Upn(s)

IA

TL

I'e)
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consequently, by virtue of corollary 9, we get

lu"(t) = u™ ()5 + U () — U™ (@)
< C (hp 4 hm) + C (hyy + hp)”

t
+C/O (l[u"(s) = u™ ()5 + 1U" (s) = U™ (s)]%) ds.
Now, let us apply the Lemma 4 to the last inequality, this gives

[u"(t) — ™ ()5 + U () — U™ ()|
< C (hn + ) + C (hn + hiy)* +

(C (hn + hn) + C (h + hin)?) 7.

Since the right-hand side of this inequality does’nt depend on ¢, we pass to the supre-

mum in the left part, it follow that

n

mi|2 n m||2
[u" —u ||C(I,V)+||U -U ||C(I,L2(Q))

< (o + i) + (o + hip)?] €7, (2.69)

from which we deduce that both {u"} and {U"} are Cauchy sequences in the Banach
spaces C'(I,V) and C(I,L*(Q)), respectively. Accordingly, there exist two functions

uwe C(I,V) and U € C(I,L*(9)) such that

u

"y in C(1,V), 270)
2.70

Ur— U inC(I,L*(Q)).

Lemma 11 There exists a function s with the properties

s € AC(I1,V) with s € L> (I,V)NAC (I,L* (Q)) and s" € L* (I,L*(Q)),
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and sub-sequences

{uh, € ('}, i}y € (i}, {Un}, € {00} and (¥}, € Vi),

such that

u" = s in L*(1,V), (2.71)
Uy, — 8 in L*(1,V), (2.72)
U, — s  inL*I,V), (2.73)
Y, — s in L*(I,L* (). (2.74)

Proof. We integrate the estimates (2.45) and (2.48a) squared over (0,T). Succes-

siwely we obtain

IN
Q

||un||L2(I,V)

IN
Q

[l 21,1y

||ﬁn_un”L2(I,V) < Chy.

The sequences {u"}, and {u,}, are bounded in the Hilbert space L*(I,V'), we can
extract from {u™}, [{u,},, respectively] a sub-sequence {u™} [{u,,}, respectively]

which converges weakly in L*(I,V), i.e.

u™ = s in L*(1,V), (2.75)

and

Up, — @ in L*(1,V). (2.76)
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Let’s prove that ¢ is none other than the function s. For this, note that

(ﬂnl — S, /U)LQ(I,V)‘ = ‘(anl — ™ 5 U)L2(I,V) + (Unl — S, U)L2(I,V)‘

< [[tn, — u™|] L2(I,V) " v vy T ‘(Um - SJU)LQ(I,V)‘

IA

Y

Chy, - ||| 2ayv) t ‘(Um - 3?U>L2(I,V)

for allv € L*(I,V). Passing to the limit for nj — +o00, owing to (2.75), we obtain

(ﬂm - 57U)L2(I,V)‘ - 07

1.e.

Up, — 8 in L*(1,V).
Compared with (2.76), we deduce, according to the uniqueness of the limit in L*(I, V),
that s = . Analogously, we deduce that {ﬁn} and {Y,} are bounded in L*(I,V') and

L3(I, L* (2)), respectively, and so, it’s possible to extract a sub-sequences {Um} and

{Y,,,} such that

Uy, — S inL*I,V), (2.77)

Y,, — Y  anL*(I,L*(Q)).

By virtue of (2.37) and (2.40) , we have fort € IN;”

t J—1 L4 t
/ Uy, (T)dr = E / (5u;”d7+/ duj'dr
0 i=1 Y ti-1 tj—1

7j—1

= hnl Z 5U?L + (t - tj—l) 5U?l
i=1
= ujly +ouy' (t—t-1) — ¢

= u™ (t) — Y1,
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then

t
/ Unl (T) dT = unl (t) - 9017 Vt € In (278)
0

Lemma 12 The limit function s satisfies
t
s(t):/ S(r)dr+ g, in I2(IV).
0

Proof. Owing to Lemma 1 and the limit relation (2.77), the integral w (t) =

fot S (1) dr exists, with the properties
we AC (I,V), w' = S in L*(I,V) and w(0) =0 in V. (2.79)

By virtue of (2.70) , (2.75) and the uniqueness of the weak limit, we obtain the required
result if u™ — w + ¢, in L2 (I, V) i.e.

lim [ (u™ (t),v(t))Hdt:/O (w (t) + ¢y, v(t) y dt, Yve L2(I,V),

n;—oo 0

or

lim (u™(t) —w () — ¢, v(t))y dt = 0.

n—oo Jg
Let’s suppose, first, that v (t) = v € V, Vt € I, then by virtue of (2.78) and since
the norms of functions are uniformly bounded with respect to t and n;, owing to the

dominated convergence theorem of Lebesgue we conclude

lim (" (t) = (w (t) + 1) ,v) dt

n—oo J
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but U™ — S in L?(I,V), then

T
lim (u"(t) = (w(t) +¢q1),v)ydt =0, Vtel.

n—0o0 J

Analogously, this can be extended to cases where v is a step function. Because of the
step functions space is a dense subspace of L? (I,V), then, the last result is true for

all v € L?(I,V), we can thus arrive at

u" = w +¢, in L*(1,V).

Hence, owing to (2.79), the function s satisfies

s € AC(I1,V), (2.80)
s = Sin L*(I,V), (2.81)
s(0) = ¢, inC(,V). (2.82)

Having in mind that U,, — S in L2 (I, V), in what follows U,, — S in L* (I, L* (Q)) .
Similarly, we conclude that the integral [, Y (7) dr exists and [) Y (7) dr+p, = S (t),

with the properties

SeAC(I,IX(Q), S' () =Y (t), S(0) =, in L*(Q) and s" (t) = Y (t).

(2.83)
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Owing to (2.70), (2.80), (2.81), (2.82), and (2.83), we deduce that
u € AC(I,V),
U = 4 in L*(I,V)NAC(I, L*(Q2)),
Y, — u”in L*(I,L*(Q)),
u(0) = 1,
u'(0) = .
Moreover, letting m — oo in (2.69), we obtain the desired error estimate
[u" — UH2C(1,V) + U™ - “IHQC(I,H(Q))
< C (hn + hi) T

< Chy,

and the proof is complete. =

Theorem 13 The limit function u from Proposition 10 is a weak solution to problem

(2.5) — (2.8) in the sense of:
(

uwe AC(I,V),

W € LA, V)N AC(I, L*(Q)),

W' € L2(1, L3(Q)),

u(0) = ¢y,
u'(0) = s,

and

/0 (u"(t),v(t)) dt + o? /0 (A*u(t), A*v(t)) dt + 82 /0 (A*(t), A*v(t)) dt

_ /0 (Pt u (), (), v(E) dt, Vo € L2(1, V). (2.84)
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Proof. In light of the properties of the function u listed in Proposition 10, the first
three conditions are already seen. On the other hand, since v* — u in C(I, V') and
U" —«/ in C(I,L*(Q)) as n — oo and, by construction, u"(0) = ¢, and U"(0) = ¢,
it follows that u(0) = ¢, and w/(0) = ¢, so the initial conditions are also fulfilled. It
remains to see that the integral identity (2.84), is obeyed by w.

In view of (2.38), (2.40), (2.41) and (2.44), the identity (2.20) becomes

(Vo (), 0(1)) + 0 (A4, (1), AF0(0)) + 57 (AT, (1), A¥o() )

- (};l (t),v(t)) Yoe L2(LV), ae. tel. (2.85)
Integrating (2.85) over (0, ), this gives

/OT(Y,”() ())dt+a/ (Akum(>,A%(t>)dt+52/oT (Akﬁm(t),A%(t))dt

_ /OT (Fu0),00)) d,

which may be rewritten in the form

4<mw—wwmmﬁ+l<w@mmw
t+a / (AR, (1) — AFu(t), AFo(t)) di + o2 / (AFu(t), Ako(t)) dt

0

+3 / M Up, (t) — AR/ (¢ ),A%(t)) dt+ﬁ2/0T (A™/ (1), A*u(t)) dt

=L£(hx)f@w@wﬁ»w@)ﬁ+é(f@MWUWLMWﬁ-

Thus, to establish relation (2.84), we have to show that

l/(Y(ﬂ—M@)u»ﬁ+u{/(A%mm—¢vwmA%u»ﬁ

0

+5° / A’“ U, (t) — A/ (¢ ),A%(t)) dt — 0, (2.86)

n;—00
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and

/OT <J?”l (t) —f (t, U<t)a U/(t)) ,U(t)> dt — 0, (2.87)

n;—oo
for all v € L*(I,V). Obviously, limit relation (2.86) is a direct consequence of (2.56),

(2.57) and (2.58), while for relation (2.87), let us observe that

Fuul) = f (tut), (1)
= |7 (00,00 0) = 1 (1w, 0/0)

< L(jt 1]+l (1) — )] + |

U, (t) — u’(t)H> NVte I,

and this, by virtue of condition (H,), whence

Furl) = £, u(t), (1)

IN

L (B + it (6) = () +

O () = /(1))
< L (o + i (8) = 0 (8) g + ™ (0) = w(@)]

a

On(0) = U@ + 107 (@0) = )]

Due to estimates (2.49), we obtain

Fuul) = f (tu(t), (1)

< L(Chyy + [u™(8) — u(t) ||y + U™ () — W' (B)]])

for all ¢t € I, from where, performing a limit process n; — oo and taking into account

(2.54) and (2.55), we get

Fau ) = (& u(®), ' ()| — 0,
hence
Ful)) = f @) o 0
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from which we deduce the desired relation. m

2.5 Uniqueness

Proposition 14 The limit function u from Proposition 10 is the unique weak solution

of the problem (2.5) — (2.8).
Proof. Let u; and us be two weak solutions of (2.5) — (2.8). From (2.84), for
w(t) =wuy (t) —ug (t) and v € L*(I, V), such that
u'(t), for t € [0, a]
0, for t € ]a, T
where a € [0,77] is arbitrary, we obtain
a2/ (AFu(t), AM (1)) dt + 52 / | AF ( H dt—i—/ (u" (t) ,u' (t)) dt
< / 1f(Eyu (8) 0y () = f(E uz (8) ,ug (8)]| |/ (£)]] dt
< /0 (w1 + [ @)l @] dt.

Hence, omitting the second term in the left-hand side of the inequality thus obtained

and applying the inequality of Cauchy to the right part, we get

o? /0 ’ (AFu(t), AM/(t)) dt + /0 ' (u" (t),u' (t)) dt

L [ 3L [
5 [ woras S [ wora,
0 0

from where, with consideration to the fact that v € AC (I,V),

2 2 1 1
S &% @) = S AR @) + S I @] = 5 e O

L [ 3L [
5 [ e [ eae
0 0



so, because

u(0) =0 in V and «/(0) = 0 in L*(Q),

we obtain

a? 2 1 L [ 3L [*
S A @I + 5 v (@] < 5 / lu () dt + = / e @I .
0 0

here, using the elementary inequality

u@I* < [ (IO + 1w OIF)

it follows
O @)+ o @I + g I (@)
< (145) [ (o + o) a.
then
min (02, 1) (|| A% (@) + @) ) + o)
< 2(14 %) [ (ol + o) ae

fu @I+ @I < s [ (@l + 1 o)) .

min (a2, 1

In light of which, due to Lemma 4, we get
lu (@) 13 + 1@/ (@)|I* = 0,

and consequently

u(a) =0, Ya € 10,7,

which achieves the proof. m
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Chapter 3

The weak solvability of a
semilinear parabolic
integrodifferential equation with

nonclassical boundary conditions

3.1 Statement of the problem

The purpose of this chapter is to study the solvability of the following equation:

)= T = [(al- 9K (e dstg(@n), @0e0.1)x0.7]
ot Z, aan Z, = . a S S, v\x, S ST g\, 3 Z, y s 3
(3.1)

with initial condition
v(z,0) = Vo(z), x€(0,1), (3.2)

43
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and the integral conditions

/ (e t)dr = E(), e [0.7], (3.3)

/1 zv(z,t)de = G(t), tel0,T], (3.4)

where v is an unknown function, £, G and Vj are a given functions supposed to be
sufficiently regular, while &’ and a are suitably defined functions satisfying certain
conditions to be specified later and T is a positive constant.

It is convenient at the beginning to reduce problem (3.1) — (3.4) with inhomo-
geneous integral conditions to an equivalent one with homogeneous conditions. For

this, we introduce a new unknown function u by setting
u(z,t) =v(x,t) — R(x,t), (z,t) € (0,1)x[0,T],

where

R(z,t) = 6 (2G(t) — E(t)) z — 2 (3G(t) — 2E(1)).

Then, the function u is seen to be the solution of the following problem

%(w,t}—% (x,t) = /0 a(t—s)k(s,u(x,s))ds+ f(z,t), (x,t) € (0,1)x]0,T],
(3.5)
u(z,0) = Up(x), =€ (0,1), (3.6)
/1 uw(z,t)de =0, te€|0,T], (3.7)
/1 zu(x,t)de =0, te€[0,T], (3.8)
where
OR(z,t)
f(ﬂ?,t) 29(96',75)——, (39)

ot
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Uo(z) = Vo(z) — R(x,0), (3.10)

and

k(s,u(x,s)) =k (s,u(zx,s)+ R(x,s)). (3.11)

Hence, instead of looking for the function v, we search for the function u. The solution
of problem (3.1) — (3.4) will be simply given by the formula v(x,t) = u(z,t) + R(z,t).
In the sequel, we make the following assumptions:
H,— Functions f :[0,7] — L9 (0,1) and a : [0,7] — R are Lipschitz continuous,
ie.
L eR; If ()= fFE) <hlt—t], vtel0,T],
and
Ay €R; |a(t) —a(t)| <t -1, Vtel0,T].
Hy— Mapping & : [0, 7] x W — Ly (0,1) is Lipschitz continuous in both variables,
ie.

s € R; [k (t,u) =k (¢ )| < s [lt — '+ [lu—]]],

forall ¢, t' € I, u, u' € W, and satisfies
3[4, l5 € R, ||]€ (t,u)HB S l4 ||U||B + l5,

for all t € I and all uw € W, where I, and [5 are positive constants.

Hs— Function Uy € H%(0,1) N W, i.e.

1 1
Us € H*(0,1); / Uo(x)dx:/ zUy (z) dx = 0.
0 0

We will be concerned with a weak solution in the following sense.
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Definition 15 A function u : I — Ly(0,1) is called a weak solution to problem
(3.5) — (3.8) if the following conditions are satisfied:

(1) we L*(I,W)NnC(I,B30,1)),

(it)  w is strongly differentiable a.e. in I and du/dt € L>(I, B3(0,1)),

(i73) w(0) = Uy in W,

(1v) the identity

= (/0a(t—s)k(s,u(s))ds,v>3+(f(t),U)B, (3.12)
holds for allv € W and a.e. t € [0,T].

This chapter is organized as follows. In Section 2, by the Rothe discretization in
time method, we construct approximate discretised solutions to problem (3.5) —(3.8).
Some a priori estimates for the approximations are derived in Section 3, while Section
4 is devoted to establish the existence and the uniqueness of the solutions of the
problem under study.

To close this section, we announce the main result of this chapter:

Theorem 16 Under assumptions (Hy)—(Hs), Problem (3.5) —(3.8) admits a unique

weak solution u, in the sense of Definition 15.

3.2 Construction of approximate discrete solutions

In order to solve problem (3.5) — (3.8) by the Rothe method, we proceed as follows.

Let n be a positive integer, we divide the time interval I = [0, 7] into n subintervals
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I = [t7_,,t], j = 1,...,n, where t} := jh, and h,, := T//n. Then, for each n > 1,

problem (3.5) — (3.8) may be approximated by the following recurrent sequence of

time-discretized problems. We successively look for functions uj € W such that

1
up —uf o dPuf I
=hy Yy a(th —t0) k() + f7, (3.13)
2 i W
hy, dz P

/1 uf (z)dr =0, (3.14)

/1 zuj(z)dr =0, (3.15)

starting from

2

for every j = 1,...,n, where u} (v) := u (x,t?), oul} = (u? - u’j“_l) [hn, [ (2) =
Jf (,t7) . For this, multiplying for all j = 1,...,n, (3.1) 0= [ [fo }

and integrating over (0, 1), we get

1 1 d2un
/(5u IR vdx—/o W;(:c)%ivdx

1

1 J 1
0

Note that, using a standard integration by parts, for any function v from the space

w

%%vz/01<1—5>v(s>d5:/Olv@)ds—/olsv(f)ds:o. (3.18)
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Carrying out some integrations by parts and invoking (3.18) , we obtain for each term

n (3.17) :

1 1
/0 ou () S2vdr = /0 %%x (5u;l (z)) S2vda

For the second term in left-hand side, we get

L 9% ou” ! L ou”
_J 2 - _J 2 o J o
/0 57 () S5vdx e () 35w i /0 e () Spvde

1 ou™
= —/ %(m) Spvdx
0
1
= —uy;(x) %$v|(l)—|—/ u; (z) vdz
0

= (uj,v). (3.20)

While for the first one in the right-hand side, we obtain

1

1]
hn/ a (£ — 1) k(10 o (2)) Soda
0

=0
Jj—1 1
_ hnza(t;—t?)/ (0, (2) Soda
i=0 0
j—1 1 a )
— no__ 4n . n ,n Cx
- hn;a(tj tl) 0 axdxk(tz’ z( )) \ngdm
Jj—1 1
= hnZa(t?—t?)[ ok (7, ul (x)) %gv\;dx—/ ok (7, ul (z) Spvda
=0 0
Jj—1 1
= —hnza(ty—t?)/ ok (0 ul () Spvde
=0 0
j—1
= —h, a(t?_t?) (k(tzlv ZL)?v)Ba (321)



and for the last one

/01 f7 (@) S (z)de = /01 8%:%35 (f] (z)) SZvdz
1
= S, (7 (@) S - / S, (7 (2)) Sovde
0
- = ( JTL’U)B'
By virtue of (3.19), (3.20), (3.21) and (3.22), (3.17) becomes
(8uf, 0) p + (4], )
= hn ) a(t] —t7) (k& u]),v)5+ (f]0) 5

i
or
(u},v) 5 + hn (uff,0)
= h2 > a (67 —t7) (B, uf) ,0) g + b (f]0)  + (W] ,0)
Let n(,.): W x W — Rand L; () : W — R be two functions defined by

1 (u,0) = (u,0) g+ hn (u,0)

Jj—1

Lj(v)= hiZa(t’; —t?) (k(t?,u?),v)B—l—hn( f,v)B—l— (u;‘_l,v)B.

1=
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(3.22)

(3.23)

(3.24)

(3.25)

To derive the existence and uniqueness of u}, we need to use the Lax-Milgram theo-

rem. For this, let us prove that the bilinear form 7(., .) is continuous and W —elliptic.

Using (3.24), we get

U(Uav) = (UvU)B+hn<U7U>
> (1+h) ol

2
> 2|l

(3.26)
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On the other hand, we have

|77 (u7v)| = |(uav)B + hn, (u’v>|

N

[l ol + o [l o]

IA

el ol (3.27)

estimates (3.26) and (3.27) implies that 7(.,.) is continuous and W — elliptic. Also,

from (3.25) we have

1L (v)] =

7j—1
ne > (=) (k (8, u)) )
1=0

i (f750)  + (£1,0)
j—1
< hnCZ(ClHu?HJrCz)Jrhan}‘H+Hu§‘1H] o], (3.28)
1=0

which prove that L; (.) is continuous for each j = 1,...,n. Since n(.,.) is continuous
and W — elliptic and Lj; (.) is continuous, the Lax-Milgram Lemma guarantees the

existence and uniqueness of u}, Vj=1,...,n.

3.3 A priori estimates

Lemma 17 There exist C' > 0 such that, for all n > 1, the solutions u; of the

discretized problems (3.13) — (3.16), j = 1,...,n, satisfy the estimates

|ut]] < C, (3.29)
|ouf]|, < C. (3.30)
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Proof. Testing the difference (3.23); — (3.23);_; with v = du} (€ W), taking into

account assumptions (H;) — (Hs3) and the Cauchy-Schwarz inequality, we obtain
|ou? |, + [[ul —

Cy
Jj— 1||B 3

JHB ?1HB
j—2
RS il + S+ S o

< [|ouy 2 3

Jj— 1HB7

where
O = 8max {1o€. ThoC + MyC + 4}, My = mae o (1)] and ¢ = mas (L. 15}

Multiplying the left-hand side of the last inequality with (1 — $th,) (< 1 and positive for n > nqg)

and adding the terme

—C’l [Hu - H(Su’;HB} (<0 forn >ng),

uj |
Uj1llp

we get

(1= Ciha) (067 5 + 11

j—2
< (el + 1] + Con2 S N + Catn, (3.31)

=0

Applying the last inequality recursively, it follows that

(1= bl ([l ], + ] ]
j—2
< llugllg + l6ugll g + CLT) 4+ T'Crhy, Z i\l 5 (3.32)

=0

or, by virtue of Lemma 4, there exists ny € N* such that

1wl + l[ifll 5 < o ¥ 2 o,
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where

Cy = (exp (TCh) + 1) [[[6ug | 5 + [  + TCH]

x exp [(exp (T'Ch) + 1) T'CY] .

And so our proof is complete. =

We address now the question of convergence and existence.

3.4 Convergence, existence and uniqueness

Now let us introduce the Rothe function " (t) : I — W obtained from the functions

u; by piecewise linear interpolation with respect to time
u"(t) = uj_y +oul(t—t7 ), in I}, (3.33)

as well the step functions @, (t), @n(t), ™ (t) and k (¢,7,(t)) defined as follows:

” uy, fort=0, ® u (0), for t =0, (334)
u,(t) = Un(t) = 3.34
u?, in 7= (17,17, ur in 7,
- f(0), fort=0,
) = (3.35)

f@), inIr,

~ 0, for t =0,
k(t,u,(t)) = (3.36)

ha g a (0 —2) k(7 up), in It = (£, 7],

i Ug j—1Y5

Corollary 18 There exist C' > 0 such that the estimates

[ ()] < C, lan (D) <C,  Viel, (3.37)
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d n
’ - | <C, fora.etel, (3.38)
a ||,
[t () = u" @) g < Chn, lin (8) =" (B)]| g < Chny Vi€, (3.39)
and
HE(t,ﬂn(t))H <C, Vel (3.40)

hold for all n € N*.

Proof. For the inequalities (3.37),(3.38) and (3.39) see [98, Corollary 4.2.],
whereas for the last inequality, assumption (H;) and estimate (3.29) guarantee the

desired result. m

Proposition 19 The sequence (u™), converges in the norm of the space C(I, By (0,1))

to some function u € C(I, B3 (0,1)) and the error estimate

|u" — “HC(I,B;(O,l)) < O hn, (3.41)

takes place for all n > ny.

Proof. By virtue of (3.34), (3.35) and (3.36) the variational equation (3.23) may

be rewritten in the form

(% 00) + @00 = (Fnam.),+(Foe),. e

for a.e. t € [0,7]. In view of (3.42), using (3.38) and (3.40) with the fact that

|

Fro)|| < M = max | (@)

we obtain

du™

v (t)

IN

& (t)HB+‘

@0l < ([Fea],+ el

< Clolly, aetelo,T). (3.43)
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Now, for n, m be two positive integers, testing the difference (3.42)" — (3.42)™ with
v =u"(t)—u" (t) which is in W, with the help of the Cauchy-Schwarz inequality and

taking into account that

2((du/dt) (t) ,u () g = (d/dt) |u®)|, aete[0,T],

and, by virtue of (3.43) we obtain after some rearrangements

5zl () =™ (O + la" (1) — @™ ()|

IA

Cllu™ (8) = tm(B)]|  + C flun(t) = u™ (1)l 5

+ H%(t,an(t)) - E(t,ﬂm(t))HB [u" () = u™ (1)l 5

@ - e ) - w Ol aeted . (3.4

To derive the required result, we need to estimate the third and the last term in the
left-hand side, for this, let ¢ be arbitrary but fixed in (0, 7|, without loss of generality
we can suppose that there exist three integers p, ¢ and [ such that

te(t)

nL N (), n= fm, =t

qg—1"q

From which, using (3.36) we can write

|t = F )|,

p—1 |B(+1)-1
= | D YD (@t — ) k() —a (6 — ) k(£ )

i=0 | =58 B
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Taking into account assumption (H;) and the fact that !a — t”) (tg” — t;") ‘ <

Ch,,, thus, there exist ¢, € [0, Ch,] such that

RO ’/%<t;am<t>>HB

p—1 |B(F+1)-1

< hm Z k(t% J)HB

J=0 i=jB

#a (o =) [ (8. ) = k7w )

Therefore, recalling assumptions (H;), (Hy) and having in mind that ¢, € [0, Ch,],

we estimate

|t 0) = Rt @)

p—1 | BG+1)-1
< hy > Chat C (hat [l =]l ,)

Jj=0 i=jp

from where, we derive

EACIECEHON]

p—1 | B(+1)
< S| S Chat €t finls) — u” ()
=38

J=0

+lu” (s) =™ (8)ll  + [[u™ (s) = Um(s)l )]

holds for all s € (tm tz’}rl} We take the supremum with respect to s from 0 to ¢ in

the right-hand side, invoking the fact that s € (t;”,tﬁl] C (t t”} and estimate

Jj—1 ")

(3.39), we obtain

[ a) - k@),

0<s<t

qg—1
< b [Chnwsup ||u”<s>—um<s>||3]7
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so that

H%,m@)) —k (t,ﬂm(t>>HB < Chy + C sup |Ju" (s) —u™ (s)]| -

0<s<t

Let t € (t8_,,t2] N ("

ooty t™], from assumption (Hy) it follows that

q—1°"q

|

o -ml|, = 1) - el
<l =]

< lihy,.

(3.45)

(3.46)

Ignoring the second term in the left-hand side of (3.44) which is clearly positive and

using estimates (3.37), (3.39), (3.45) and (3.46) , yields

d . n m (a2
Sl () = @1

< C(hy+ hy) +C sup |Ju" (s) —u™ (s)||%, a.e.t € [0,T).

0<s<t

Integrating this inequality with respect to time from 0 to ¢ and invoking the fact that

u™(0) = u™(0) = Uy, we get

™ (8) =™ ()11 SC(hn+hm)+C/0 sup [u” (&) — u™ (€| &,

0<g<t

whence

t

sup [u” (s) = ™ (8)|[; < O (hn + ) +C [ sup [lu" (€) —u™ (&) d.

0<s<t 0 0<e<t

Accordingly, by Gronwall’s Lemma we obtain

sup [[u” (s) = u"™ ()| < O (A + hun) exp (ct), V¢ € [0,T],
0<s<t

consequently

sup ||lu” (s) —u™ (s)ll g < CV'hn + hum,

0<s<T

(3.47)
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takes place for all n, m € N*. This implies that (u" (¢)), is a Cauchy sequence in

the Banach space C'(I, B3(0,1)), and hence it converges in the norm of this latter to
some function u € C(I, B3(0,1)). Besides, passing to the limit m — oo in (3.47), we

obtain the desired error estimate, which finishes the proof. =

Now, we present some properties of the obtained solution.

Theorem 20 The limit function u from Proposition 19 yields the following statements
(i) weC(I,B3(0,1))N LI, W)),

(it)  wu is strongly differentiable a.e. in I and du/dt € L>=(I, B3(0,1)),

(1)  w,(t) — w(t) in B3(0,1) for allt € I,

(iv)  u™(t), un(t) = u(t) in W forallt € 1,

(v) = (t) — 2 (¢) in L*(1, B}(0,1)).

Proof. On the basis of estimates (3.37) and (3.38), uniform convergence statement
from Proposition 19 and the continuous embedding W < B3(0,1), the assertions of

the present theorem are direct consequences of Lemma 6. m

Theorem 21 Under assumptions (Hy) — (Hjs) , problem (3.5) — (3.8) admits a unique
weak solution, namely the limit function u from Proposition 20, in the sense of Defi-

nition 15.

Proof. We have to show that the limit function u satisfies all the conditions (i),
(ii), (iii), (iv) of Definition 15. Obviously, in light of the properties of the function u
listed in Theorem 20, the first two conditions of Definition 15 are already seen. On the

other hand, since u™ — u in C(I,W) as n — oo and, by construction, u"(0) = Uy, it
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follows that u(0) = Uy, so the initial condition is also fulfilled, that is, Definition

15(i4i) takes place. It remains to see that the integral identity (3.12) is obeyed by wu.

For this, integrating (3.42) over (0,¢) and using the fact that «™(0) = Uy, we get

(u" (t) — Up,v) g +/0 (U (7),v) dT

_ /Ot (E(T,an(7)>,v)3d7+/ot (fn (7) ,U)Bdf,

consequently, after some rearrangements

(u™ (t) — Up,v)p +/0 (Un(7),v) dT

t

t
+ / (7= f@)0) ar (3.48)
0
Let §,: I — I and 3,, : I — I denotes the functions

0, fort=0 0, fort=0
Sp(t) = , Sn(t) = . (3.49)

n 3 ~TL n 3 ~7’L
7y, in I 7, in [
To investigate the desired result, we prove some convergence statements. Using

(3.34), (3.35) and (3.49) we have for all ¢t € (¢7_,, "]

E(t,an(t))—/o a(t— )k (s,u(s)) ds
_ /Oj [a (7 = 8, () k (30 (8) 11 (5)) —a(t — ) K (s,u(s))] ds
+/tj a(t—s)k (s, (s)) ds. (3.50)

Taking into account (3.37), (3.41) and assumptions (H;), (Hs) it follows that

la (¢7 = 30 (5)) k (3 (5) , itn (5)) — a(t — 8) Kk (s,u(s))]| ; £ OV (3.51)
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Thanks to (3.50) and (3.51) we obtain

Hz(t,an(t)) _ /Ota(t— k(s u(@)ds| <OV (3.52)

On the other hand, in view of the assumed Lipschitz continuity of f, we have

|

o=@ < 1 G =10l

B

Now, the sequences {(u,(T),v)}, {(fn (1) ,v) } and {(75 (T, Un (7)) ,v) } are uni-
B B

formly bounded with respect to both 7 and n, so the Lebesgue theorem of majorized

convergence is applicable to (3.48), thus, having in mind (3.39), (3.41), (3.52)

and (3.53), we derive
(u(t) — Uo,v)g ~|—/0 (u(r),v)dr

- /Ot</07a(7'—s)k(s,u(s))ds,v>3d7+/Ot(f(T),v)BdT, (3.54)

takes place for all v € W and ¢ € [0, 7). Finally, differentiating (3.54) with respect to

t, we get

_ (/Ota(t—s)k(s,u(s))ds,v)B+(f(t),v)B, aete0,T].

The uniqueness may be argued in the usual manner. Indeed, exploiting an idea in
3], consider u; and uy two different solutions of (3.1) — (3.4) and define w = uy — us.

Then, we have

(0 ’”>B (), v)

_ </Ota (t— ) [k (5,01 (5)) — K (5, us ()] ds,v)

B
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Choosing v = w (t) as a test function, with the aid of Cauchy-Schwarz inequality and

assumption (Hs), we obtain

5 < (1R + o ()
< € [l G (51 = (. () s o - (3.59)
Let € € [0,p] such that
(3.56)

w = max ||w (s ,
10 (€)1 = max [ (3)]

integrating (3.55) over (0,p), 0 < p < T, using (3.56) and invoking assumption (Hs)

we get
Plld 2 2 2 2
/O [—— lw ()] + [lw (D] } dt < Cp” flw (|5

consequently, with the fact that w (0) =0

3
[ e wor|ascr [ Llooke s

2dt

Choosing p as constant verifying the condition

l\DIH

JaeN; T =apand Cp <

which gives, by virtue of (3.57) that
1d

[ et [(ooPas [ 34 woRa

taking into account that £ < p, we obtain

lw ()] = 0, on [0,p].

Following the same lines as for [0, p| , we deduce that
|w@)[ =0, on [ip,(i+1)p], i=1, 2,3, ..,

therefore, we derive w (t) = 0, on [0, 7], then u; = up. This achieves the proof.



Chapter 4

Existence and uniqueness of the
solution of an evolution problem
for a quasilinear hyperbolic

integrodifferential equation

4.1 Statement of the problem

In this chapter, we want to study the solvability of the following integrodifferential

equation

v 0% v ¢ / Ov
oF 0 0toa? :/0 - a)k(sv)ds+ g (t’vﬁ) B
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subject to the boundary integral conditions

1 1

/ v(z,t)dr = E (), / zo(z,t)de =G (t), te]0,T], (4.2)
0 0
and starting from
0
v(z,0) = Vo(x), av(z, 0) = Wy(x), xz € (0,1), (4.3)

where a, k', g, Vo, Wy, E and G are sufficiently regular given functions of the
indicated variables ( satisfying certain conditions to be specified later ) and T is a
positive constant.

By the transformation
u(@,t) = o(w,) — R(z,t), (2.1 € (0,1) x [0, (4.4)

where

R(x,t) = 6 (2G(t) — E(t))z — 2 (3G(t) — 2E(1)), (4.5)

problem (5.1) — (5.3) with inhomogeneous integral conditions (5.2) is converted to

the following equivalent problem with homogeneous conditions for the new unknown

function u :
Pu  *u  Pu ! du
52 " 9m2  DtonE /0 a(t—s)k(s,u)ds+ f <t,u, a) : (4.6)
1 1
/ u(x,t)dr =0, / zu(x,t)dr =0, te0,7], (4.7)
0 0
u(@,0) = p(@),  Fu(z,0)=9y(),  re(0,1), (4.8)
where

ou\ J(u+ R) O*R(x,t)



63

OR(z,1)

o(2) = Vola) — R(@,0),  t(z) = Wolx) - (4.10)

and

k(s,u(z,s)) =K (s,u(x,s)+ R(z,s)). (4.11)

Hence, instead of looking for the function v, we seek the function u. The solution of

problem (5.1) — (5.3) will be given by
v(x,t) = u(x,t) + R(x,t). (4.12)

This chapter is divided as follows. We begin by stating the precise assumptions
of the functions involved in the posed problem and by making precise the concept of
the solution. Section 2, is devoted to the construction of approximate solutions of
problem (4.6)—(4.8). Then, some a priori estimates for the approximations are derived
in Section 3, while the convergence of the method, uniqueness and the continuous
dependence on initial data of the solution to problem under study are established in
Section 4.

Let (-,-) and ||-|| be the usual inner product and the corresponding norm respec-
tively in Ly(0,1).

Throughout this chapter, we will make the following assumptions:

Hy— Functions f : [0,T] x W x W — L5(0,1) and a : [0,7] — R are Lipschitz

continuous, i.e.
3y =05 |1f (6w, 0) = f W) <Dt =2+ llu =] + [lo=2fl],  (4.13)

and

3o > 0; Ja(t) —a(t)| <Lt —1t], (4.14)
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for all t,t' € I and u,v,u/,v" € W.

Hy— Mapping k : [0,T] x W — L4 (0, 1) is Lipschitz continuous in both variables,
ie.

Sy € R; [k (1) — k (¢, )| < B [1t — ] + u — o] (4.15)

and satisfies

Ty, Is € R; || ()|l < L llullg + 15, (4.16)

forall ¢, t' € I, u, v € W, where 3, I, and [5 are positive constants.

Hs— Functions o, ¥ € H*(0,1) NW, i.c.

o, 1 € {v € H2(0,1); /Olv (z) dz = /01 o (2) dr = o} | (4.17)

We look for a weak solution in the following sense.

Definition 22 A function v : I — L*(0,1) is called a weak solution to problem
(4.6) — (4.8) if the following conditions are satisfied:

(i) uwe CO (I,W),

(i1)  w is strongly differentiable a.e. in I with du/dt € L>(I, W)NC%(I, B3(0,1))
and d*u/dt* € L>=(I, B3(0,1)),

(iit)  uw(0) =@ in W and (du/dt) (0) =1 in B(0,1),

(tv)  the identity

((dPu/dt?) (t),v) , + ((du/dt) (t) ,v) + (u(t),v)

— ta(t—s)k(s,u(x,s))ds,v + | f t,u(t),%(t) ), (4.18)
( ), <l B

holds for allv € W and a.e. t € [0,T].
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In this chapter, we will demonstrate the following main result:

Theorem 23 Under assumptions (Hy)— (Hjz) , Problem (4.6) — (4.8) admits a unique

weak solution u, in the sense of Definition 23.

4.2 Construction of an approximate solution

Let n be a positive integer. To solve problem (4.6) — (4.8) by the Rothe method,
we subdivide the time interval I by points ¢t = jh, j = 0,...,n, where h = T'/n is a
step time. Then, we are conducted to solve successively for j = 1,...,n the following

recurrent sequence of time-discretized problems:

62uj pye ul — 5u = h, Zaﬂkl + /i (4.19)

1
/ wi(z)de =0, te0,T], (4.20)

0

1
/ zuj(r)dr =0, te][0,T], (4.21)

0
starting from

Uo(l’) = SO(ZE)7 S (07 1)7 (422)
6u0(x) = ¢<$), S (Oa 1)7 (423)

where u? :=u (7) , 6ul! := (u) — ul_y) /b, 1" = [ (tj, 0521, 0u;_1) , @l = a (£F —t7')

J J

and k' := k(t',ul), for all j,7 = 1,...,n. Multiplying for all j = 1,...,n, (4.19) by

1 Z
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S2v = [ [fgv (1) dT] d¢ and integrating over (0, 1), we get

0

1 1 92 2
0 1o
/ 5%u ”“%dm — ——u"2vdr — —5u”c‘2vdx

o Oz o 0x?
1

1 J 1
/ “k;z"“%dx—l—/ [ S2vdz,
0

(4.24)

carrying out some integrations by parts for each term in (4.24), with consideration to

the fact that

%w:/o (1—£)v(£)d£=/o v(é)dé—/o €o(€)de =0, Yo e W,

it follows that

and also

Let n(.,.): W xW — Rand L, (.) : W — R be two functions defined by

n(u,v) = (u}‘,v)B + h, (u}‘,v) + hi (u;‘,v) ,

Jj—1

Sy al (kv + bl (f ),
i=0

+hy, (U] 1,1}) ( l—u;-‘_2,v)B.

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

Since 1(., .) is continuous and W —elliptic and L; (.) is continuous, then, Lax-Milgram

Lemma guarantees the existence and uniqueness of u}, for all j =1,...,n



4.3 A priori estimates

Lemma 24 There exist C' > 0 such that, for all n > 1, the solutions u7

discretized problems (4.19) — (4.23), j = 1,...,n, obey the estimates

gl < c
L e
o], < ©
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of the

(4.30)
(4.31)

(4.32)

Proof. Using v = 52u§-‘ (e W) as a test function in the difference (4.26); —

(4.26);_1, we obtain

J 1
= Iy [a? _a] IJ (k;zﬁ,&zu?)B

0
Hhyald ;g Koy, 0%u)) p + (ff = o 0%u)) s

5%u ”) + (5u§l, ou — 5u?_1) + h, (52u;?, 52u’]7)

(4.33)

taking into account assumptions (H;) — (H3) and the Cauchy Schwarz inequality, we

get

o315 = ol
Il = Mo | + 2 | 6%
Jj—
< Chy %] Z + [l'll)

=0

(14 ) 11,

o [+ [0y |, + (0% ], | o2,

(4.34)
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hence,
Iw%ﬂ@+H5\\—WV = 8w | 4 2 [0

< Chy [|8%]] 5 EJWWB+ChHV7WB

+0htwjduHﬁ%HB
+Cha |94 [ + Ch |8%5
+Chy, [[6%ul4 )7 - (4.35)
Noting that
P ([l 5 = il p = el 5 (4.36)
hence
j-1
i Zl loullp + lelp = [lufall5- (4.37)
Similarly,
hnji [6%u} || 5 + [19llp > [|0uf ]|, - (4.38)
Using the inequality (4.37) i_n (4.35), we get after some rearrangements
9% 1+ Nlowy |+ 2h fl6%u5
< WUt Chy) ([0 [0 + O 0%+ O |52
O 4, 3 el ) (430

or, by virtue of (4.37) and (4.38)

%5 1 + 6w |° + 2 | 6%

il

o+ Ch 5%

+Ch2 ||5%u| Z [h Z I5ugll g + ||6%up HB)], (4.40)

=0

< (1+Chy) M&%1H+H¥ I + Gl



69

from which we deduce that

2 {1 + (|90 + 20 | %5
< (1+Ch, [H5U?—1||2+H52 Fally] + O[5l
-1

e (Héu?Hé + o2 [5) + Ch [l6%u2]1, (4.41)

=0

then, with the fact that

Chll], = (OVi) (Vi %],

1
1C%ha+ b [|6%5 (4.42)

IN

B b
we obtain

(1= Cha) | [[9%u|[5, + []6w ]

IN

(1+Chy [”52 Y[ ]
j—1
+OR? (||(52u”||B + Haum\?) + Ch,, (4.43)

1=0

Hence

(1= Cha) (|12 + 16w ]
< (U Chy) ([l |*+ 0%y ]
7j—1

+(v+ Cha) CR2Y (||5uﬂ|2 + Ha?u;bufg) 4 (y+ Chy) Chy,  (4.44)

i=0
with

v:=2exp (TC) > (1+ Ch,)", Vn > no, (4.45)
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for all p < j. Now, let’s suppose that

(1= Cha)” [[[0%|I5, + |6 |

< 1+ O (o, |+ (|87 1)

+(p+ Cha) €2 3 (6w + 0%,

1=0

+ (yp + Chy) Chy, (4.46)
multiplying the last inequality by (1 — ch,,) and using (4.43), we get

(1= Cha) (62 + 0]

I
B

IN

(1+ Chn)p [(1 + Chn) [”(SU?—(pH)HZ + H(SQU?—(I)H)“QB}
j—1
+C2 S (6w + 0% 3) + Ch

1=0

j—1

+(p+Chy) CR2 Y (10> + [l6%a)

1=0

+ (yp + Chy,) Ch,, (4.47)
using (4.45) we obtain

(1= Cha)** [[|o% |5, + [0 ]

< (14 Chy)"™! [H‘SU?—@H)HQ + ||52“?—(p+1>H79]
j—1

(1 (p+ 1) + Chy) C2 Sl + [[o%ur][3)

1=0

+(y(p+1)+ Chyn) Chy, (4.48)
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then, the following inequality is verified for all j.

(1= Cha) |[[02], + (|6 ]

< (O (15wl + 0% 2]
7j—1
+ (v + Cha) 12 3 (10 + |2 |)
=0
+ (vj + Chy) Ch,. (4.49)

Hence

(1-cr2) (Il + o)
1 n
(1 + CT5> [llo% 15, + lowg 1]

j—1

+ (v + Cha) C2 3 (%[5, + low )

=0

IN

+ (vj + Chy) Chy,. (4.50)
This shows that
6% I, + [[ouy||”

< C ||t

I + Nowg)® + 1]

i1
+Chy Y ([0 5, + ou ) (451)
i=0
Applying the Gronwall’s Lemma in (4.51) and taking into account the fact that

J
ha 3 _NI6ufll > B || 0w + 6uly + ... + ouf |

v

[ ]| = llell (4.52)

we get the desired result. So, the proof is complete. m
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4.4 Convergence, existence and uniqueness

Let us define, in the interval I = [0, 7], the abstract functions

u"(t) = uj_, +ouj(t —t7_,), in I7, (4.53)
(
uy for t =0,
Un(t) = (4.54)
| in [ = (t7_,,17]
Unt) = ouly+3u)(t—tr,), inll, (4.55)
(
- ouy, for t =0,
Un(t) = <« (4.56)
\ ouy, in I7,
(
5, fort =0,
Y, (t) = (4.57)
2,n i Tn
\ oy, in I7,
.
uf, for t =0,
un(t) = (4.58)
\ ui_q, in 17,
(
~ out, for t =0,
Un(t) = (4.59)
ouy_q, in _fj”,
Tty = £ (8,30, 0u(). in 17 (4.60)
(
- 0, for t =0,
k(t,u,(t) = (4.61)
i—1 n .n oo (n n
\ ha >0 ay ki, in I} = (tj,l,tj} :

Lemma 25 There exist C > 0 such that the estimates

[ () < C. llan 0Nl <6 @I <C, [T <c Iva@lz <6 (@462)
‘ % (t)“ <, ‘ U, (t) — % (t) ) < Chy, (4.63)

H%(t,an(mHB <, (4.64)
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\ U, (1) — U, (t)HB < Chpy i (1) — ™ (8)]| < Ch, (4.65)

‘ 0, (t) — U, (t)HB < Chpy | (t) —u™ (8)]| < Ch, (4.66)
IFo)<c e

|7 ®&=F @], < Clnthn)+Clun®) —un(®)ll; — (468)

+C||Un(t) = Un()l 5,
and

HE(t,ﬂn(zﬁ)) —%(t,ﬂm(t))H < Chy, +C sup |[u"(s) —u" (s)| 5, (4.69)

0<s<t

hold for allt € I and n > ny.

Proof. Having in mind estimates (4.30) — (4.32) and assumptions (H;) — (Hs),

O E

(4.30), (4.31)

estimates (4.62) — (4.66) follow immediately. Whereas, from the inequality ‘
Hf( (1), (1)) - t”00H+Hf (#2,0,0)

and (H;) that

o)

IN

Clluja | + Cllouiy || + masx | £ (2,0,0)]

IN

C. (4.70)

For estimate (4.68), let ¢ be arbitrary but fixed in (0, 7], then there exist two integers
p and ¢ corresponding to the subdivision of (0,77 into n and m subintervals, respec-

tively, such that ¢ € (t7_,, ] N (¢

o1ty o1, t0]. According to (4.66) and assumption (H;)
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we get
[Fro=Fro| = | (5 am.0.m) - £ (5 5.0,0.0)]
< O+ hin) + Cllun(t) — um ()l
FCUn(t) = Un(8)l - (4.71)
For the last inequality, we have
» . p— q—1
Hk (t,n(t)) — F (L, am(t))HB — (|hn Zapzkl" B @l (4.72)
=0 1=0 B
Let [ be an arbitrary positive integer such that [ = nm, noting that
|F i) = & @ im)|
|E )~k @@ +[Feam) -Feao)| @)
hence, to establish that
|7t @) = F @) < Cha+C sup 0 (5) =u" (5)lg,  (474)
0<s<t
we can suppose that there exist § € N* such that
m = fn. (4.75)

On the other hand, let ¢1, t, € (t7_,,t7] such that t; € (51, 7], to € (7, 0]

and A < u, using (4.61) we write

H’i%(tl,am@l)) — % (ta, i(ta) H

o ZCLM — hm Zaw y

. (4.76)
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where

H%(tl,am(tl)) — k (ta, ’izm(tg))HB

A—1 A—1 p—1
< | YA = b Y al K (B Y al k"
i=0 i=0 B i=A B
-1 p—1
< e — @ I s + B Y Jag| 1R 5 (4.77)
=0 i=A

then, by taking into account assumptions (H;) — (H3), (4.30) and (4.75), we derive

HE(tl,am(tl)) — E(tQ,am(tz))HB

A—1 pn—1
< Chp Y 0 —t7+ by C, (4.78)
=0 i=A

and consequently, by virtue of assumption (Hs) and estimate (4.78), having in mind

that (¢3¢0 U (¢7,t7] C (7

i1y tﬂ , and Ay, < ph, < T, we get

J—17j

|F 1 m(t2)) = F (t2, i (82))]| | < Cha (4.79)
Therefore, (4.75) and (4.79) enables us to suppose that
38 € N*; m = fBn and t; = t". (4.80)
From which, identity (4.72) becomes

EACIEEHON N

p—1 [B(+1)-1

p—1
= |[Bhm Y ap Kt —h > [ apkr || (4.81)
§=0

i=0 \ i=jp B
that is,

B _ p—1 | B(+1)-1
Hk (t,Tn(t)) — & (t,am(t))HB b |3 (@ —amk ||| 482)
j:

i=35 5
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Taking into account assumption (H;) and the fact that ) = t", we infer that

n m n n m m
Apj — Qg < C’tp_tj_tq +t;

IN

-]

< Chy, (4.83)

we suppose that a; ; > a;, thus, there exists €, € [0,Ch,] such that

ay ;= ay;+ Chy — €. (4.84)

p,J

Performing the substitution aj ; = a; + Ch,, — €, in the identity (4.82), we get

HE(t,an(t)) . E(t,ﬁm(t»HB
p—1 |B(i+1)-1
< hw > | Y e+ Chy = 2] K7 — aikM|| | (4.85)

J =5

whence

[ ae) -k anm)|
p—1 | BG+1)-1

< ey | DD (Cha =) K+ e R =B, (4.86)
Jj= i=jp

Therefore, recalling assumptions (Hy), (Hz), using estimate (4.86) and having in

mind that ¢, € [0, Ch,], we estimate

|t 0) = E ko),
p—1 | BG+1)-1

<y | Y ChatC (Rt = w],) | (4.87)

7=0 | i=jB
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this consists the fact that Ay i = Ayl If not, we follows the same lines as above, from

where, we derive

H%(t,ﬂn(t)) _ E(t,am(t))HB

p—1 | B(j+1)-1

3 Chn+o(hn+uug—u"(s)||3
j=0 | i=jB

+ [lu" (s) = u™ ()|l g + [[u™ (s) = wi"[| )],

p—1 [BG+1)-1

IN
>
3

< hn Z Chy, + C (hp + ||Un(s) —u" (S)HB
J=0 [ =jB
+ " (s) = u™ ()l g + [[u™ (s) = um(s)5)], (4.88)

holds for all s € (t;”, tﬁJ . Hence, we take the supremum with respect to s from 0 to

t in the right-hand side, invoking the fact that s € (t;“, tﬁ-l} C (t?_l, tﬂ and estimate

(4.65) , we obtain

HE(t,an(t)) _ E(t,am(t))HB

p—1 | B(F+1)-1

< by Chy +C sup [lu (s) =™ ()5 . (489)

i=0 | =8 O=s=t

which implies that

HE(t,ﬁn@)) _ Zé(t,am(t))HB

q—1
< YO+ C sup ) 9] (190
P 0<s<t
and finally,
Bt () = ¢ Tn®)| < Cho+C sup um (5) =" ()15, (497)
B 0<s<t

hence the proof is complete. m
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Proposition 26 There exists a function u such that

(1) uw € COY(ILW), du/dt € L*(I,W) N C%(I,B3(0,1)) and d*u/dt* €
L(1,B5(0,1)),

(i1) u" —uin C(I,W),

(i73)  un(t) = u(t), in Wforallt eI,

(tw) U, — du/dt in C(I,B(0,1)),

(v) Un(t) — du/dt in W for allt €1,

(vi)  du™/dt — du/dt in L* (I,W),

(vit)  (d/dt) U, — d*u/dt* in L*(I, B(0,1)).

Moreover, the error estimates

Hun - UHC(LW) < Cy/hy, (4.92)
" — du/dt“c(LB%(oJ)) < O/ g, (4.93)

take splace for all n > ny.

Proof. By virtue of (4.54) — (4.61), the variational equation (4.26) may be

rewritten in the form

= (F(ta.) ,U)B + (/@ ,U)B . (4.94)

Testing the difference (4.94),, — (4.94),, with v = U, (t) — Uy, (t), taking into account

the fact that

™ (£) — u™ @)%, ace. t e, (4.95)
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and
(Un (t)_Um (t)vyn (t)_Ym (t))
1d )
= 5%” U, () = Un (O, ae. tel, (4.96)
we obtain
1d . . 1d m |2
S U7 @) = U™ @1 + 55 e (6) = u™ ()]
< (8) = i ()] [ Ta®) = Tn®)]| + i (5) = w @)1 || T t) = T8 +
1Yo () = You ()1 | U (1) - U“()\
1Y (8) = Yo (D)l @)
+[[F ) = F @) [Tuw - Tat)]|,
+{| 7 @) = ]| || —fjm(t)HB. (4.97)
Or, by virtue of Lemma 4, we can write
1d 1d m o2
52 10 (8) = Un (D5 + 5 7 " (6) =™ ()]
< C (bt ha) +C sup " (s) =™ ()] | Tult) = Tu(1)]
+C [[Un(s) = Un(3)ll || Tat) = Tm(8)] - (4.98)

Noting that

0u) = Tn(®)| < {|00) = Ca®)], + 10a(6) = Un(Dll 5+ ||Un () = Tt

B

IN

C (hpm 4 hy) + |Un(t) — Un(t)|l 5, (4.99)
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using (4.99) in (4.98) we get

1d . ., m o 1d m 2
S U™ @) = U™ O + 5 I () = a” (0]

IN

C (hy + hy) + C sup |Ju™(s) —u™ (S)||2

0<s<t

+C UA(E) = Un(®) |

(1) — ﬁm(t)H (4.100)

B

recalling (4.99) in this last, it follows that

d 2 d n m 2
00 = Un(®) 5 + 2 " (1) = ™ ()]

< Cllnt )+ C (1020 = Unle) + s, " () = )] (2101

0<s<t

Integrating this inequality with respect to time from 0 to ¢ and invoking the fact that
u™(0) = «w™(0) and U, (0) = U,,(0), we get
1T (1) = Un(@)I[ + ™ (8) = u™ (1))

< C (han + ) + C [ [1Ua() = Un(5)I[5 + supoe, <, [[u" () = u™ (7)]*] ds,
(4.102)

from which we deduce that
U (t) = Unn ()| + supg<aey [u™ (s) — w™ (s)]”

< O (hun + ) + C [ [I1U(5) = Unn($) | + subpere, [[u” () —u™ (7)]*] ds.

(4.103)
By virtue of Gronwall’s Lemma and the above inequality, we obtain
sup [|Un (8) = Up ()| + sup_[[u” (s) = u™ (8)|* < C (b +hn) . (4.104)
0<s<T 0<s<T

takes place for all n, m € N*. This implies that (U, (t)),, (u"(t)), are a Cauchy
sequences in the Banach spaces C(I,B3(0,1)) and C(I, W), respectively. Hence,

there exist two functions u € C'(I,W) and U € C(I, B3(0,1)) such that

("), —u  in C(I,W), (4.105)
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(Un), = U  inC(I,B;(0,1)). (4.106)

Now, on the basis of the estimates (4.30)—(4.32) and the convergence results (4.105), (4.106),
Lemma 6 enables us to state the following assertions

(1) uwe CU(IL,W),

(1) w is strongly differentiable a.e.in I and du/dt € L>(1, W),

(13)  up(t) = u(t), foralltel,

(iv)  du™/dt — du/dt in L* (I,W),

as well as

(1) UeC%(I,B(0,1)),

(2) U is strongly differentiable a.e.in I and dU/dt € L*>(1, B(0, 1)),

(3)  Up(t)—~Uin W forallt eI,

(4) (d/dt)U, — dU/dt in L*(I, B(0,1)).

On the other hand, by virtue of (4.63), (4.106) and the convergence property (iv)

stated above, we get

(U(§) —du(®) fdtv), = Tim(U(5)— Uy (2).0),
—I—lirrln <Un (t) — %u” (1) ,U)B + ligbn (%u" (t) — du(t) /dt, v)B

from which, we deduce that U = du/dt and consequently dU/dt = d*u/dt*. Finally,
letting m — oo in (4.104), we obtain the desired error estimate. So, the proof is

complete. m

Theorem 27 Under assumptions (Hy) — (Hs) , problem (4.6) — (4.8) admits a unique
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weak solution, namely the limit function u from Proposition 26, in the sense of Defi-

nition 22.

Proof. Note that in light of what precedes, the limit function u satisfies all the
conditions (i), (i¢), (i7i) and (iv) of Definition 22. It remains to see that u obeys the

integral identity (4.18). For this, integrating (4.94) over (0,t), we get
t
Ua () = 0,0)5 4 (@ () = .0) + [ @)} dr
0

— /Ot (E (7, Un (7)) ,U>Bd7 + /Ot <f" (1) ,U)BdT, (4.108)

consequently, after some rearrangement

+/ </<; i) = [ a(r—s)k (s, (z,s)) ds, U>Bd7
| (7o

+ fr(r <T u(r), Ou (T)) ,U) dr. (4.109)
ot B
Using (4.58) and (4.61) we have for all ¢ € (¢7_,,t7]

k(t,ﬂn(t))—/o a(t—s)k(s,u(.,s))ds

—1—/{7 a(t—s)k(s,u(.,s))ds, (4.110)



where §,, : I — I denotes the function

0, fort=0,
Sn(t) =

n 3 ~n
7y, in I7.

Thus, estimating the term

la (t7 — 3, (s)) —a(t—-s)

9

owing to assumption (H;), taking into account that ¢ € I7 we obtain

|a(t?—§n(s))—a(t—s)| < C‘t?—§n(s)—t+s|

IN

C (|t§‘ —t| +1s = 8a (5)])

< Chn7
which clearly follows that
de, > 0; |a (7 =38, (s) —a(t— 3)| + e, = Chy,.

For the term
k(8 (s),tn (s)) =k (s,u(.ss)),

we have, using assumption (Hs)

1K (8n (5)  in (5)) = K (s,u (., 9)) |5

< Cll3a(s) = sl 4 [ltn (s) = u (., 9)l 5],
or, by (4.66), (4.92), (4.111) and the fact that

[n (s) = u (s 8)ll g < llin (s) =" (s)]| g + [[u" (5) —u (. 8)lp,
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(4.111)

(4.112)

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)
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we get
I (3 (5) 1 0 (5)) = K (5,0 (5 9)lp < CV . (4.118)

Taking into account estimate (4.84) and assumptions (H;), (H2) we estimate

Ha (7 — 8 (5)) k (80 () it (5)) —a(t — s) k (s, u (.,5))HB

<t =50 (9)) k(6 (), (5)
—(a (t;Z — 5, (8)) + Chy — €5) k (s, u (., 3))HB
S ||(Chn - gn) k (87 u (" S))HB

+ ||a (7 = 50 (9)) k(8 (5) it (5)) —a (£] — 8, (s)) k (s, u (., s))HB

IN

C(Chn —&n) (14 flu(.s)lp)

+a (87 = 80 ()| 1k (5 (5) st (5)) = e (5,0 8)) | . (4.119)

hence, by virtue of (4.30) and (4.118), it follows that

|a (7 =50 (5)) k(3 () ln () —a(t — s) k (s, u (., s))HB
< C(Chy)(1+C)+Cyhn < C\/hy (4.120)

TL*)OO()j

this consists the fact that a (t — s) > a (7 — 3, (s)) . If not, we follows the same lines

as above. On the other hand, in view of the assumed Lipschitz continuity of f, we

have

-1 (rue. 5 )

IA
=
~~
e
S
S
§)
2
&
2
~—
|
~
S
g
—
\]
S~—
g\
—
\]
=

B
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Now, the sequences {(u,(7),v)}, {(fn (1) ,v)B} and {(7% (T, Un (7)) ,v)B} are uni-
formly bounded with respect to both 7 and n, so the Lebesgue theorem of ma-

jorized convergence is applicable to (4.109), thus, having in mind (4.110), (4.120),

and (4.121) , we derive

<U<t>—¢,v>3+<u<t>—so,v>+/o (u(r) v) dr

_ /Ot </0Ta(7'—s)k(s,u(x,s))ds,v)BdT+/Ot <f <r,u<7),g—?<7)) ,u<>1].31a2)

takes place for all v € W and t € [0,7]. Finally, differentiating (4.122) with respect

to t, we get

(" (1), v)p + (W' (), 0) + (u(t), v)

_ </0ta(t—s)k(s,u(m,s))ds,v)B—1— (f (t,u(t),%(t)) ,U>B,(4.123)

which achieves the proof of the existance. The uniqueness may be argued as follow.
Let r be another solution for (4.6) — (4.8) and w = u — r. Then, with v = v’ (¢) as
test function in the difference (4.123), —(4.123), and taking into account assumptions

(Hy), (H3) and the fact that

((d/dt)w () ,w (1) = (1/2) (d/dt) |lw (2] (4.124)

we obtain

5 (/) ! 1% + ' () + 5 (@fde) o D]

+

IN

N lw" ()]l 5

/0a(t—s)k(s,u(m,s))ds—/oa(t—s)k(s,r(m,s))ds

F(re. 5 0) = ¢ (e, 5 0)

[w ()], YVt €[0,T]
B




86

from which, we deduce that

%(d/dt) lw' ()5 + v @) + = (d/dt>||w<>||23

IN

Il Ol s 1a(0] [ )] 0

+C (lw )l + Hw Ollp) ' ()l ¥t € [0,T]

or, by virtue of the property (i) from Proposition 26

1 , 2 1 2

5 (d/dt) ' (@)l + 5 (d/dt) ||w (@)l

< C sup [l (s)|g v )]z +Cllw @)+ Cllw’ (O,
for all ¢ € [p1,p2] C [0, T],where
p ot =p2—p, w(t) =0, Vte0,p]

and w' (t) # 0, YVt € |p1,pa,

from which, with (4.125), it follows

(d/dt) |’ (1) + (d/dt) [lw ()7

< C sup JJw(s)|5+Clw (1)

(4.125)

this for all ¢ € [p1, po] . Integrating the above inequality on (pq,t) C [p1, p2], we get

' (0)1 + lw ()11

t
gO/
P1

lw' ()] + sup ||w(€)||2B] ds,

56[}71,3}

or

2
[’ () + sup [lw (s)]5

s€[p1,t]
t
< c /
pP1

lw' ()] + sup ||w(§)IIQB] ds

&€[pa,s]
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Applying Gronwall’s inequality, we get

' ()11 + S lw ()] <0, Vt € [pr, pa].

se [p1 ,t

Contradiction with (4.125) . This achieves the proof. =

Finally, we introduce the result of continuous dependence of the solution upon the

data.

Theorem 28 Let u* be the weak solution of problem (4.6) — (4.8) corresponding to

(p*, " a*, k*, f*) instead of (p,,a,k, f), then the inequality

Ju(6) = (1))
< - lE +lle - oI
*AWA””“‘@k“”@”“—ﬂWT—®W@mW@mw42m
f (T,u(r) : %u(ﬂ) s (T,u* (T)’d%“* (7))

t
/
0

takes place for allt € I.

2

dr,  (4.126)
B

Proof. Subtracting the identity (4.123) for u and u* with w (t) = u(t) — u*(t) as

a test fuction in the resulting relation, we get by integration over (0, t)

1 1

310’ O, = 310’ OV + [ @ + 5 o O = 5w O

IN

/0 T la(r—s)k(s,u(s))ds —a" (T = 5) k" (s,u ()l g ds | (7)l|  dT

[ (oo ) - (. o)

[w" ()l g d,
B
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hence

' (0)11 = e’ (0)][ +2 /Ot [l @I + [ @)1 = e (0)])

< / [t =) ds o (= )k (s @Dl s|

i / t ¥ (T,u(f),%u(f)) —f (T,u* (T%%U* (T))

0
t
+2 [ | (D) dr, (4.127)
0

2

dr
B

from which we deduce the desired result and so the continuous dependence of the

solution of (4.6) — (4.8) upon data. So the proof is complete. m
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RESUME:Dans cette thése on démontre I'existence et l'unicité de quelques problemes
d'évolution. On commence par un probléme avec une équation pseudo-hyperbolique quasi-
linéaire avec des conditions initiales et aux limites non-homogénes.Le second chapitre est
consacré a I'étude d'un probleme relatif a une équation semi-linéaire parabolique intégro-
différentielle avec des conditions aux limites non classiques et le dernier chapitre est pour
I'étude d'un probléme avec une équation quasi-linéaire pseudo-hyperbolique intégro-
différentielle avec des conditions aux limites non classiques. La méthodeutilisée est celle de

discrétisation de Rothe.

ABSTRACT: The thesis is concerned with the study of the existence and the uniqueness of
evolution problems. We began with a problem for a quasi-linear pseudo-hyperbolic equation
with nonhomogeneous boundary and initial conditions. The second is for a semi-linear
parabolic integro-differential equation with non-classical boundary conditions, and the last
one is for a quasi-linear hyperbolic integro-differential equation with non-classical boundary

conditions. We use the Rothe-time discretization method.



