
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement et de la Recherche Scientifique

UNIVERSITE DE CONSTANTINE

INSTITUT DE MATHEMATIQUES ¥

"ÿA ÆTHESE DE DOCTORAT D’ETAT
ès Sciences Mathématiques

présentée à
L’UNIVERSITE DE CONSTANTINE

par
Messaoudi Khelifa

pour obtenir le grade de Docteur ès Sciences en Mathématiques.
Spécialité: Mathématiques Fondamentales et Appliquées

Stochastic Homogenization of Non Convex Integral
Functionals and Ergodic Theory

Soutenue le 1 11 J 1995, devant le Jury composé de:
MM. H.M. KHARROUBI, Professeur, Université d' Oran

H. ATTOUCH, Professeur, Université de Montpellier II
N. KECHKAR, Maître de Conférence, C.U de Tebessa
R. BENACEUR, Maître de Conférence, Université de Batna
C. LICHT, Professeur, Université de Montpellier II
G. MICHAILLE, Maître de Conférence, Université de Montpellier il
B. MEROUANI, Maître de Conférence, Université de Sétif
H. SISSAOUI, Maître de Conférence, Université de Annaba

Président
Rapporteur

Co-Rapporteur
Examinateur
Examinateur
Examinateur
Examinateur
Examinateur

Thèse préparée au Laboratoire d'Analyse Convexe U.S.T.L.Montpellier II, dans L'équipe de
G.Michaille, C.Licht, sous La direction du Professeur Hedy.Attouch.

' 1



Remerciements

Les travaux présentés dans cette thèse ont été effectués au Laboratoire d'Analyse
Convexe, U.S.T.L, Montpellier II, dérigé par Monsieur Le Professeur H.Attouch dont le
soutient et l’apport pédagogique durant la période que j'ai passé sous sa direction m’étaient
d'un grand intérêt et réconfort. Qu'il trouve ici l’expression de mes vifs remerciements.

J'exprime toute ma reconnaissance à Monsieur N.Kechkar d'avoir accepté la tache
ingrate de Co-Rapporteur et qui a supervisé mes travaux avec beaucoup d'intérêt

Je remercie également Le Professeur MJLKharoubi de me faire l'honneur de présider
Le Jury.

Je tiens à remercier G.Michaille non seulement d'avoir accepté de participer à ce Jury,
mais pour ses encouragements constants, pour les corrections et améliorations qu'il a suggérés.

11 m'est particulièrement agréable d'exprimer ma gratitute aux Monsieurs, R. Benaceur,

C. Licht, B. Merouani et H. Sissaoui pour avoir accepté d'examiner mes travaux.

J'exprime ma reconnaissance praticuliérement à mes parents et à ma famille Noura,

Ilyes, Noussiba, Khoubib. Chima, Chifa et à tout mes mes amis pour leur soutien moral et
matériel.

Je remercie, enfin les organismes et personnes qui ont soutenu matériellement ce
travail, je citerai en particulier le Laboratoire d'Analyse Convexe U.S.T.L Montpellier II et
Melle Bernadette Lacan.



Contents i

Contents

Introduction générale.

Chapter I.Stochastic Homogenization of Non convex Integral Functionals.
1.1 Introduction.
1.2 Epi-convergence.and Ergodicity.
1.3 Notations and preliminary results.
1.4 Difinition of the process {Fn; Fhom, n£ IN}.
1.5 Almost sure epi-convergence of the process {Fn; Fhom, n£ IN}.
1.6 A model of random integral functional.
1.7 References.

Chapter II.Ergodic Theory: Some Tools for The Calculus of Variations.
Application to Stochastic Homogenization of Non convex Integral
Functionals.

2.1 Introduction.
2.2 Notations; additive ergodic theorem.
2.3 Almost sure weak convergence of sequence of random Borel measures.
2.4 Almost sure weak convergence of sequence of random functions.
2.5 Application to stochastic homogenization of non convex integral functionals.
2.6 References.

Chapter IIL Non Coercive Random Integral Functionals and Epi-conv¬
ergence.

3.1 Introduction.
3.2 A random integral functional related to the problem of "holes" of Neumann type.
3.2.1 Definition of the integral functional Fhorn.
3.2.2 The main result.
3.3 A random integral functional related to the problem of "fissures”.
3.3.1 Definition of the integral functional Fhom.
3.3.2 The main result.
3.4 References.

Chapter IV. Stochastic Homogenization and Duality in The convex Case.
4.1 Introduction.
4.2 Preliminaries.
4.3 The main result.



iiContents

4.4. References.
Chapter V. Open Problems and Partial Results.

5.1 Numerical approach.
5.2 Random intgral functionals in non reflexive case.
5.3 Non equi-bounded random integral functionals in non linear elasticity.
5.4 References.



1Introduction générale.

Introduction générale.

Le présent travail porte sur l'étude de l’épi-convergence presque sûre de

fonctionnelles intégrales aléatoires et a pour origine la modélisation de problèmes provenant

pour la plupart de la mécanique ou de l'éléctrostatique, le milieu étudié présentant une

étérogénéité microscopique répartie aléatoirement. Ainsi, nous ferons, concernant ces

fonctionnelles, une hypothèse probabiliste de périodicité en loi, généralesant la périodicité

classique. Pour l’étude de la limite presque sûre au sens de l'épi-convergence, nous

utilisons la Théorie ergodique de processus sous-additifs.

Cette thèse se compose de cinq chapitre. Dans le premier chapitre, on généralise, au

cas probabiliste, les travaux de S.Müller concernant l'homogénéisation de fonctionnelles

intégrales non convexes. Pour cela nous ferons sur les intégrandes associées, les mêmes

hypothèses de croissance et de continuité, l'hypothèse de périodicité étant remplacée par une

hypothèse de périodicité en loi et d’ergodicité. Un théorème ergodique sou-additif dû à

M.A.Ackoglu &U.Krengel permet de surmonter les défficultés liées à l’aléatoire.

Dan le second chapitre, on retrouve par une autre technique les résultats pécèdents.

L’intérêt de la méthode ainsi mise en oeuvre réside dans sa flexibilité. Elle a été notament

utilisée avec succès pour la résolution de problèmes de structures différentes.On démontre

dans un premier temps un résultat de convergence faible presque sûre de mesures aléatoires

à l’aide d’un théorème ergodique additif. On obtient ainsi, la convergence faible presque

sûre des fonctions test construites à partir des problèmes d’optimisations localisés sur des

celules kY, ke IN*, Y=J0, l[d, généralisant ainsi la convergence faible des fonctions test

classiques obtenues par prolongement périodique d’une solution d’un problème local.

Le chapitre trois est consacré à l’homogénéisation d’un problème de Neumann à

"trous" aléatoires et d'un problème à "fissures" aléatoires. Pour cela, dans le but de

caractériser le domaine de l’épi-limite, nous faisons une hypothèse d’ordre géométrique sur

la répartition aléatoire des trous ou des fissures. L’espace de probabilité de base est alors un
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espace de Bernoulli ce qui permet d'utiliser les techniques de prolongement et se ramener

plus au moins au cadre coercif.

Le chapitre quatre est consacré à l'étude de la dualité. Classiquement on y définit le

Lagrangien Ln du problème (PQ) et le Lagrangien Lhom du problème homogénéisé (Phom) à
partir des fonctions de perturbation tpn et iphom définies sur l'espace Wg’P(Q)xV(fi) où

V(Q) est le sous espace des tenseurs symétriques de (Lp(fî))m><tn. On démontre que tpQ

.épi-converge presque sûrement vers ipÿom pour la topologie produit des topologies faible de

WQÿÛ) et forte de V(O). Utilisant alors un résultat de H.Attouch, D.Azé & R.J.B.Wets,

on obtient, lorsque Lhom a un unique point selle (a, u), la convergence faible presque sûre

de tout point selle de Ln vers (a, u) et on retrouve, dans le cas probabiliste la relation

<7€atiom(e(u)).
Dans le dernier chapitre nous donnons quelques résultats partiels. Dans un premier

paragraphe, on aborde l'analyse numérique. Utilisant le théorème ergodique du premier

chapitre, nous introduisons, pour tout to d'une partie de probabilité 1 de l'espace de

probabilité de base
thom(a)=lirnmY(Fn(to),a)

où
mlJCF», a):=Inf{Fn(to)(u+la, Y); uS WÿY)}

avec la(x)=ax et nous démontrons que l'intégrande tÿora de la fonctionnelle homogénéisée

vérifie
fhoni(a)=Inf fhom’N(a)=lim lim mï(Fn(to), a).

N n N 1

Dans le paragraphe suivant, nous donnons un résultat partiel d'épi-convrgence dans le cas
où nos fonctionnelles sont définies dans l'espace non réflexif La fonctionnelle

épi-limite conjecturée est de domaine BV(Q) ce qui introduit quelques defficultés technique

non encore surmontées définitivement pour prouver l'inégalité presque sûre

Fhom<T-épi-lim inf Fn(to)

*•
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où r désigne la topologie forte de Ll(Q).

Ce travail a fait l'objet de deux publications en collaboration avec G.Michaille: une

premiere publication intitulée " Homogénéisation stochastique de certains problèmes non

coercifs " parue dans Séminaire d'Analyse Convexe de Montpellier vol.20, 1990, exp.11,

une seconde intitulée " Stochastic homogenization of non convex integral functionals"

parue dans Mathematical Modelling and Numerical Analysis, 329 - 356 vol. 28, n° 3, 1994.

Enfin le chapitre deux écrit églement en collaboration et compléter par d'autre exemples fera

peut-etre l’objet d'une publcation fiture.
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Stochastic Homogenization of Non Convex Integral
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Chapter I

Stochastic Homogenization of Non convex Integral Functionals.

1.1 Introduction.
1.2 Epi-convergence and Ergodicity.
1.3 Notations and preliminary results.
1.4 Ditlnition of the process (Fn; F
1.5 Almost sure epi-convergence of the process {Fn; F
1.6 A model of random integral functional.
1.7 References.

hom, ne IN}.
hom. nelN}.

l.l Introduction.
In this chapter, we propose a method for stochastic homogenization of a process

(Fn)neJN witJl a state space (ü?, $(£?)) where $(IF) is a o-field on the class '!F of integral
functionals G of the type

-JV Vu(x))dxG(u, A)

in a sense explained later, A being a bounded regular domain in IRd, u: A->IRm a vector valued
function, g: JRdxMmXd-+ 1R an equi-coercive and equi-bounded function, measurable with

respect to its first variable and continuous with respect to the matrix variable of Mm*d, but not
necessary convex.

Given a probability space (E P) and a measurable map F:(L ,%)-*ÿ(&, with

F(to)(u, A)

If the law of F possesses some ergodic and periodic properties, the process (Fn)neÿ defined
=J* f(co)(x, Vu(x))dx.

by

Fn(co)(u, A)=Jÿf(co)ÿp Vu(x)jdx,
epi-converges almost surely when sn tends to 0 towards a constant Fhwm in whose integrand
t*om is quasi-convex (and so convex in the scalar case m=l). More precisely, there exists a
subset Z of L with P(E' )=1, such that, for every to in I , every bounded regular domain A

Fhom(u, A)=r-epi lim Fn(to)(u, A)
II —.

in W1 P(A, Em), equipped with its weak topology or strong topology of LP(A, lRm) denoted r,
where
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Fhom(u, A)=Jÿ Vu(x))dx;

/.“1
mxdand for every a in M

1fhom(a)= Inf
ne]H*

Y denoting the unit cube |0, l[d.
Under few hypothesis on from W1P(A, IRm) into R and on a subspace V of

Wl P(A, Rm), variational properties of epi-convergence lead to almost sure convergence of Inf
{Fn(io)(u, A)+<F(u); u£V} towards min{Fhom(u, A)+<l>(u); u€V}, this last statement
justifying the epi-convergence process.

These results generalize ones obtained by G.Dal Maso & L.Modica [6j, G.Facchinetti &
A.Gavioli [11], K.Sab [14] in stochastic convex case and S.Miiller[13] in periodic non convex
case. We give a new proof by using a direct method, where sequences of functions, to obtain
the lower bound in definition of epi-convergence, are construct thanks to an ergodic theorem
which was first used in the calculus of variation by G.Dal Maso & L.Modica [7] in the convex
case by means of compactness method.

This non convex approach finds its motivation in non linear elasticity where f(co) is the
stored energy density of a composite material with random inclusion. Hevertheless, let us point
out that our method requires an equiboundedness property on f(co) and that the class is not a
correct model in non linear elasticity. Homogenization of functionals from a class ZF
constructed with polyconvex functions g which takes its values in R*+U{+°°} seems to be
open.

f(oo)(x,Vu(x)+a)dx, u£W‘'p(nY, Rm)}dP(co),meas(nY)

Let us clarify the plan of this chapter. In part 1.2, we give definition and main properties
of epi-convergence and Ergodicity . In part 1.3, we give some notations and preliminary results
about Ai-'+KTiÿ., a). In part 14 we define the process {Fn; Fhom n€IT}. The main results are
proposition 1.6 and Corollary 1.7 where we use the Ackoglu & Krengel ergodic theorem to
define Fhom. In part 1.5, we prove our main theorem 1.8 by means of two lemmas [1.9, l.t 1]
(lower bound (i) and upper bound (ii) in epi limit process), and give in corollary 1.12, the
almost sure convergence of corresponding optimization problems. In part 1.6, we give a
standard example of non homogenous random function f(co) which is a model of stored energy
density for material with random spherical inclusions distributed with a given proportion in an
independence way in R3. The corresponding integral functional F(io) is then periodic in law,

ergodic and theorem 1.8 can be applied.
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1.2 Epi-convergence and Ergodicity.
Epi-convergence is a convergence notion for sequences of functions specially designed

in order to study convergence of solutions and values of corresponding minimization problems:
it is a "variational convergence".

Let us denote (X,T) a space X with a topology r and consider a sequence (Fn)nÇ jq of

functions from X into Ë, the extended reals. For simplicity we give definitions in the case T

metrizable, for further details about epi-convergence or T-convergence in a general setting we
refer to H.Attouch [2|, Dal Maso & Modica [5], De Giorgi [8], and De Giorgi & Dal Maso [9J.

Definition 1.1. The sequence of functions (Fn)nejq from X into IR is said to be r-epi-

convergent to F: X— at the point u G X if the two following sentences hold
(i) For every converging sequence (un)ne]N, X uÿu in (X, r)

F(u)ÿjmi£fFn(un)-
(ii) There exists a sequence, (ua)nejq, un€X ua->u converging in (X, r) such that

F(u)>limsupFn(un).
We then write

F(u)=T-epi lim Fn(u).
When this property hold for every u£ X, the sequence (Fn)ne jq is said to be r-epi-convergent
to F and we write F=r-epi lim Fn.
Functions defined by:

r-epi lim inf Fn(u):=min{lim mf Fn(un); uÿT-Jjmÿ un};
7-epi lim sup Fn(u):=min{lim sup Fn(un); uÿljm, un} ,

are the lower and upper epi-limits of the sequence (Fn)ne jq. It is straightforward to check that:
F=r-epi lim Fn if and only if r-epHirrÿsup Fn<F<r-epnimjinf Fft in X.

Theorem 1.2 (variational properties of epi-convergence ). Let (Fn)n€jjq a sequence of

functions from (X, r) into Ë which is r-epi-convergent, F=r-epi lim Fn.
(i) Let us assume there exists a "minimizing sequence" (un)ne jq i.e

Fn(unÿIn£ F»+en with enÿ°
u€X

which is r-relatively compact Then
Inf Fa(u)-»Min F(u) as n-»+°°,
ueX ueX

and every r-cluster point of the sequence (un)nÇ does minimize F on X.

I
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(ii) For every r-continuous function G: X-*K;
F+G=t-epi lim(FQ+G).

Let us give now few definitions and results about Ergodicity. Let (E, P) be any probability
space and (Tz)z£2d a group of P-preserving transformations on (E, CG), that is to say

(i) TZ is

(ii) POTZ(E)=P(E) for every E in ‘ft and z in 2d, where rz(E)=z+E;

(iii) Tzort=rz+t, r z=rÿ, for every z and t in 2d.

In addition, if for every set E in % satisfying for every z in Sd, xz(E)=E, we have

P(E)€{0;1}, (rÿÿdis said Ergodic.. A sufficient condition to ensure ergodicity of (TZ)Z£
is the following mixing property, for every E and F in %

iJimÿ P(TZEHF)=P(E) P(F).

3 denotes the set of intervals [x, y[ in lRd where x and y belong to 2d and consider a set
function ¥ from J into LÿE, P) verifing the three conditions:

(i) ¥ is superadditifve, that is, for every A in J such that there exists a finite family
(Ajlÿj of disjoint sets in J whose union A belongs to jj, then

(ii) ¥ is covariant, that is, for every A in and every z in Zd,
*A+z=*A<*z.

Ae|, meas(A)* o.}<1(iii) sup{meas(A)

Following M.A.Ackoglu &U.Krengel [1|, ¥ is called a discrete superadditive process. If -¥
is superadditive, ¥ is said subadditive. The following useful almost sure convergence result
holds (see M.A.Ackoglu &U.Krengel [1] Theorem 2.4, Lemma 3.4 and Remark p.59):

1Theorem 1.3.When n tends to +°°, converges almost surely. Moreover, if

(rz)ze is Ergodic , we have almost surely :
11jssujfW

where E(.) denotes the probability average operator.
1.3 Notations and preliminary results

For m, delN*’ Mm*d denotes the space of real mxd matrices a=(ajj)j_, m

equipped with the Euclidean Hilbert-Schmitt product a:b=trace(a fb): In that follows, we shall
denote indifferently the norms in Rm and MmXd

%
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0 will denote the set of all open bounded subset in Rd with.Lipsdiitz boundary. For
l<p<+oo and Ae0, we consider the two classical Banach spaces

LP(A, Rm):*{u: A-*Rm; uKU|)t* uÿeLÿA), i=l„..,m},
W1J>(A, KmHu€Lp(A, Rm);ÿ€Lp(A); j=l,...,d},

respectively equipped with the two following norms

lulo A:=(JAJu(x)ip<ix)1/p;
|u|i |u(x)|pdx+J* |Vu(x)|Pdxy P,

where Vu denotes the matrix valued distributions

(A, Em) is the subspace of functions u in W1 ,P(A, Rm) with null trace on the boundary

dA of A and Wjoÿ(Rd, Rm) is the space of vector valued functions u, measurable in Rd
satisfying the following condition: every x in Rd possesses a neighborhood A such that the
restriction of u to A belongs to W1 IRm).

a, P, being two given positive constants, we define the subset & of the product space

EW;o'c(Ed.IRm)xO
G belongs to iff there exists a function g: IRdxMmXd_R measurable with respect to its first
variable, and a positive constant L such that, for every a, b in Mm*d and x ae
(1.1) ata|pSg(x,a)<P(l+|a|P);
(1.2) lg(x,a)-g(x,b)|£L(1 +|a|p'1■‘■fbl1’'1) |a-b|,
with, for every A € 0 and u€Wÿ(]Rd, Rm)

as follows:

G(u, A)=JAg(x, Vu(x))dx.

For every z€ Zd, every r€1R*+, we define on the two operators xz and pr by
rzG(u, A):=G(TÿU, z+A)=Jÿg(x+z, Vu(x))dx;

PrG(u, A):ÿG(pr u, A)-Jÿg(ÿ Vu(x))dx

rzu(x)=u(x-z) and pr u(x)=~ u(rx).

For every a € Mm*d, A € 0 and G €& we set

mA(G, a):=Inf{G(u+la, A); ue WÿfA, lRm)} .

where la denotes the linear vector valued function whose gradient is aWe shall use in the sequel
followingdciiiciitdiy «ÿ>********** < ■- ******

(1.3)

with
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Proposition 1.4.
m mA(prG a) HflÿÿIG.a)
' ' meas(A) mieas(l/r A) TIIAÿG, a)=mA+z(G, a);

(ii) There exists a positive constant L depending only on L,a, P and p such that, for
every a, b in MmXd

Instaxr ‘Tÿsrl*L’O+W'+DT1) w*
Proof. It is straightforward to check (i). We only prove (ii). For every a€Mm*d, let us set

a)
meas(A)m(a)=

Let T)>0 and un £ WÿA, Em) such that

1

We have
1m(a)-m(b)< ïiîÿÿj(G(un+la. A)-G(utl+lb, A)+n)

sSÿÂ)JAl8<x’Vun(’‘)+a)'8(ï ,Vui<x) n+b)J dx+ meas(A)

Using (1.2) and Holder’s inequality, with p' denotes the conjugate exponent of p, we obtain

m(a)-m(b)< ïïÜCAJJA 0+la+Vun(x)r1+|b+Vun(x)r1)

(HÿJ/1+ÿ+Vun«lP'1+lb+VunWIP‘,)P'dx)1/P'
m(a)-m(b)<CL|a-b|(ïîÿÿyJÿ(l+|alp+(b(p+!b+Vutl(x)tp)dx)

where C is a constant that depends only on p. On the other hand, by (1.1),

J>VuqWP>dx,_l— °,Vll>,A)

<Ê-(l+|bp)+-5-—
a mea(A)

ndx+ meas(A)

+
_D_
meas(A) *< L|a-b|

Therefore
l/p’+_D_

meas(A)(1.4)

1
meas(A)

a
From (1.4) and after making q-»0

m(a)-m(b)<L’ |a-b| (l+lajPÿ+IbJ1ÿ1)
where L’ depends only on p, a and p . We conclude the proof by intrechanging the roles of a
and b.1
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hom1.4 Difinition of the process {Fn . F , n€H}.
WÿRd.RmjxO

Let £8(£F) the trace on & of the product ex-field of 1R , that is the smallest cr.
field on & such that all the evaluation maps

G.->G(u, A), ue Wj£(Rd, Rm), AeO

are ( S(£F), £ê(]R)) measurable, 5B(IR) denoting the Borelian cx-field of 1R, as a direct
consequence of the definition of £B(£F), we have
Proposition 1.5. For every z€2 and r€1R*+, rz and pr are measurable from (£F, $(£F))
into itself.

We define now the process {Fn . n€IN}. (L , P) is a given probability space and F

a given measurable map
F: (£, %)-*(&', §{$))

iot-+F(co)

where
F(co)(u, A)=|ÿf(w)(x, Vu(x))dx.

We assume that (rz)z€ defined in (1.3) is a group of p-preserving transformations on the
probability space (£F, 3)(oF), p), where p is the probability image Po F1of P in (or the
law of F)
We summarize these properties upon F by saying that F is a random integral Junctional,
periodic in law and ergodic.

Let (en)ne]N be a sequence in 1R which tends to 0, we define the process (Fn .
n€IN} by

wi-*Fn(w)
where

=f f(w)(:p Vu(x))dx.
JA EnFn(co)(u, A):=p£nF(co)(u, A)

Note that the measurability of Fÿ comes from proposition 1.5. In part 1.5, we shall study in the

sense of epi convergence, the asymptotic behaviour of {Fn. n£ IN}. The main tool to define the
expected epi limite is the theorem 1.3 applied to the map Av-*-TflA(., a) when A belongs to the
set of all open intervals ]x, y[ in 2d (or equivalently to the set J ). Let us give some properties
of this map.

Proposition 1.6. For every a in Mm*d, the map
J-L'fy, £B(F), |i)
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A*— >ÿ <TTU , a)
is a discrete subadditive ergodic process in (£F, $(£F), p). Moreover 7n»A(., a) satisfies the
following upper growth condition on Ll(è f, £B(£F), p)

imA(.,a)| <p(l+|ajp) meas(A).S8(£F),u)

Proof. Let us prove the ( <£(ÿF),$(E)) measurability of a). From the
separability of WÿA, Em), and the continuity of the map ui-*G(u+la, A) there exists a dense

countable subset (uk; ke IN} of WÿfA, Em) such that

A(G> a>= Ir£,{G(uk+1a* A)ÎkclN
where from the definition of the o-field $(£F), the map G»-*G(uk+la, A) are ( $(£F), &(E))
measurable. The upper growth condition is a direct consequence of (1.1). So TftA(., a)£
L](ÿ, $(£F), p). For the subadditivity, we consider a finite fàmilly (Aj)ieI of disjoint sets of

J with AjCA and meas(A\UAi) = 0. Let rpO, G€£F, i€l and u‘n€W*’p(Ai, Em) which

satisfies, Gfuÿ+lÿ AjJlTTlÿG, a)+ÿÿÿ and defineÿ in w‘,p(A, E™) by setting uÿuÿ
on We have

mA(G, a)SG(un+ltf A)

=E G(u' +la, Aj)
iel 1

SL mA.(G, a)+n,
iel **

which conclude the proof after making q tends to 0 and noticing that covariance property is
given by proposition 1.4 (i). I

We are now in position to define the integal function Fhom in dF which will be the
expected epi limite.
Corollary 1.7. There exist E' in E with P(E’) = 1 and a function f*10"1: Mm*d-*1R such that,
for all co in E', all cube Q in Ed and all a in M

fhom(a):= lim

m*tl

mtQ(F(co), a)
meas(t Q)t-*»

teR

■imnY(F((o), a) dP(to)}.= Inf
ne IN

Moreover f*10® satisfies (1.1) and (1.2) with L' defined in proposition 1.4 (ii).
Proof. By step.First step We assume that a belongs to the subset M'™*d of M®*d with
rational entries. Combining proposition 1.6, theorem 1.3, with the probability space (£F,

meas(nY)

*
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we obtain existence of Ea€ 5)(£F), pfEÿ 1 and fhom(a) £ IR>mxd$(IF), p), for every a€M
such that, for all Ge Ea

a)fhom(a):= Um
„-..+00 meas(nY)

’ mnY(H, a)
cp meas(nY)Â dp(H)}.= Inf

neN
Recall that Y denoting the unit cube ]0, l[d.
Setting EÿF'1! flEÿ ), we obtain, from above

a€M,mXd
a)fhom(a):= lim(1.5) meas(nY)

.cj
Jz

a) dp(w)}= Inf
nelN meas(nY)

.mxdfor every a in M
Let Q be any cube in ]Rd wih side n and, for every t in R+* set k'=[tqj-l, k+=[tq]+l, and
consider Q"=k~(Y+z),Q+=k+(Y+z’) the two cubes such that z, z’e2d, Q"CtQCQ+. Thanks
to the inequality

and every in in E' .

mA(F(w), a)<mB(F(co), a)+p(l+|ajP) meas(A)B)

whenever BCA in 0 and noticing that meas(tQ) is equivalent to meas(k+Y) and meas(k'Y)
whenever t tends to +°°, we get from (1.5) and the covariance property,

Y(F(TZCJ)> a)fhom(a)= lira meas(tQ)
mto(F(€0), a)

£lim inf meas(tQ)
mÿFM, a)

meas(tQ)

Tflk" Y(F(TZÿ). a)

<lnn sup

≤ lim
t +oo

=ftom(a)
for every a in Mm*dand to in E', which conclude this step.

Second step . We extend the result of previous step to every a in Mm*d. In that follows, to will
be a fixed element of E\ Using proposition 1.4 and above step, it is clear that f*10111 satisfies the
locally Lipschitz condition (1.2) with the new constant L' for every a and b in Mm*d. So, by a
classical argument , one can extend f*10111 to Mm*d by setting, for every r in Mm*d,
fhom(r)=Qlimofhom(an) where an is any sequence in M’m*d converging towards r. It is

straightforward to check that this extention verifies the same condition (1.2), On the other
hand, from

meas(tQ)
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mtQ(F((j), r) |< |fk°m(r) - fhQnl(an)|+

. I Aom/ \
nt0(F(u), an)t !mtQ(F(a)), an) mtQ(F(to) r) ,

,r meas(tQ) 11 meas(tQ) meas(tQ) 1

we conclude this step by using proposition 1.4 (ii) and letting t tends to +°° and an tends to r.
It remains to prove that tÿorn satisfies the growth condition (1.1). The upper bound is

just a consequence of the proposition 1.6. In the other hand from (1.1) and the convexity of
r— r|r|p we get

|ÿom(a) - meas(tQ)

Hflt0(F(to), a)
meas(tQ) ≥0 Inf (meaÿtQ) f la+Vu(x)|p dx, uCWjÿtQ, Ed )}

•'tQ
>alajp,

which gives the lower bound after going to the limit in t.l

We now define Fhom in by
Fhom(u, A):=JAfhom(Vu(x))dx,

hom, ne H}.1.5 Almost sure epi-convergence of the process (Fn , F

Our main result is the following almost sure epi convergence theorem.
Theorem 1.8. Let £' be the subset of I with P(I’)=1 defined in the corollary 1.7. For all co
in £' and A in 0, we have

Fhom(u, A)=r-epi Urn Fn(co)(u, A) in W1J,(A, Em),

in Wl Era) equipped with its weak topology r or the strong topology of LP(A, Km).

We shall give the proof with T denoting the strong topology of LP(A, Em). From (1.1) and the
compact imbedding from Wl ,P(A, Em) into LP(A, Rm), we conclude in the other case.
The proof of lheorem 1.8 will be established by means of two lemmas: the upper bound in
definition of epi-convergence is proved in temma 1.9, the lower bound in lemma 1.11, lemma
1.10 being just a simple technical lemma. In all what follows, co denotes a fixed element of £' .

Lemma 1.9,For every A€0 and every u in Wl P(A, JRm)
Fhom(u, A)<r-epi iim inf Fn(co)(u, A),

that is to say, for every sequence un, r-converging towards u,
Fhom(u, A)5immf Fn(co)(un, A).
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Proof .First stage. Assume that A is un open cube Q in Rd and u=la, a€MmXd. It is
convenient and involves no loss of generality, to assume that un-la belongs to (Q, JRm)

(see for instance S.Miiller [13] or G.Dal Maso & L.Modica [5], [6]). From definition of Fhom
corollary 1.7 and proposition 1.4 (i), we get

Fhom(u, Q)=meas(Q)fllom(a),
a>Fhom(u, Q)=meas(Q) lim

meas(l/en Q)

fllo(Fn((d)t a)
n-»+°o

=meas(Q) lim meas(Q)
n-*+°°

<lim inf F»(un, Q)

which ends the first stap.
Second step. Assume that A€0 and u=la.
For r) > 0, there exists a finite family (Qj)ie[ of disjoint open cubes include in A such that
meas(A\ UQi)<n- Since f*om satisfies (1.21, we get

ici
Fhom(i>, A)<lFhom(u, Qil+Pnd+ialP).

Using previous step, superadditivity and non decreasing properties of the set function Bi— >r-

epi lim inf Fn(co)(., B) from © into 1R (cf H. Attouch [2, p.156-157]), we obtain
Fhom(u, A)<£ r-epi Urn inf Fn(to)(u, Q;)+ nPfl+lalP)

iel
<r-epi lim inf Fn(«)(u, A)+nP(l+!a)p)

and we conclude by letting q tends to 0.
Third stage. A€© and u€W1 Rm). We use the previous step and the density of the set of
piecewise affine continuous functions in Wl P(A, Rm) (cf I.Ekeland & R.Temam [10]). Let u,

un in W1,P(A, Rm) such that uÿÿlrnÿ un. For q>0, there exist a finite partition (Aj)ieI of A,

\€© and uÿ in W1,P(A, Rm) such that ju-uÿljÿq and its restriction u‘n to Aj is affine.

Set vQ n=uI1+un-u and denote by vÿ its restriction to Ai. By using the second step, we get for

every i€l

vn,n

AiJSlim mf F„(W) (vÿ. Aj).

After summation over i, with superadditivity of lim inf, we obten .
FÿVA)<MminfF>0<vn,,,,A).(1.6)

On the other hand, by (1.2)

ft:
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F»(VM. A)+LjA(H|VuB(x)rl»|Vv„in(x)|>,-|)|Vun(i)-Vvn ,t(n)| dx,

and after using Holder inequality, we get to a further subsequence with respect to n
Fn(w)(vn,n’ A)<Fn(u))(un, A)+C|un-u|1(A

<Fn(w)(un, A)+Cq,
where C will denote any constant that does not depends on n and n. Note that we have
assumed that lim inf Fn(to)(un, A)<+°° and so, thinks to (1.1), up to a further subsequence

with respect to n, and vn n bounded in W1 Em). On the other hand, by continuity

property of Fhom,
&om(un, A)>Iÿoni(u, A)-L,Jÿ(U|Vu(x)iP-1+|Vun(x)|F-1)(|Vu(x)-Vun(x)|)dx

£Fhom(u, A)-Cq.
From (1.6), (1.7) and (1.8), after letting q tends to 0, we get

Fhom(u,A)<lirninfFQ(co)(V A)

(1.7)

0.8)

which ends the proof of Lemma 1.9.1
Before proving the lower bound in the definition of epi-convergence, we shall need the

following estimaton for q-approximating minimizer of <mq(Fn(co), a).

Lemma 1.10. Let q>0, Q be an open cube in IRd with side q of the lattice in Kd spanned by
]0, q[, and vnr)(w) in wJ’p(Q, lRm) such that

Fn(w)(vn n((o)Ha, Q)<mQ(Fn(co), a)+q

Then

lvnÿ)lo,QÿCqp(meas(Q)+q)
where the constant C depends only on a , fî and a.
Proof of Lemma 1.10. In that follows, C will denote different constants which depend
only on a , P and a. By (1.1), omitting the variable to we get
(1.9) lVvn,n+alo.Q£ÿn(wKvn.n+1a’Q)

a)+

£ — (l+|a|p)meas(Q)+ —a

—
a

a
On the other hand

IVnS.oÿÿVn.nlS.Q
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where C is the Poincaré's constant in W* P(Y, Em). Recalling (1.9) we obtain

|vn.n!o,Q-Cnp(meas(Q)+n),

which closes the proof of lemma 1.10.1

Lemma 1.11. For every A in 0 and u in W1,P(A, Em), there exists a sequence (uÿw))ÿ
in W1,P(A, Era) such that

uÿT-ÿUmÿ un(oo) ,

Fhom(u, A)>linm sup Fn(co)(un(w) , A).

Proof. By step.First step. Assume that u = la, a€MmXd. Let r|>0 and (Qj)iej , (Qi>i€j tow

finite family of open disjoint cubes with side q of the lattice in IRd spanned by ]0, q[ such that
UOjCAC U Q, meas(U Qi)=6(q), with lim ô(q)=0 (note that I and J depend on q).
iel ieluJ ieJ nÿ+°°

Using definition of F*10”, corollary 1.7 and proposition 1.4, we get
FhoTn(u, A)>Fhorn(u, U Q)

i€l
=L meas(Qi)fhom(a)

iel

SJTÏIQXFÿW), a).

will be deduced from the approximite

(1.10)

= lim

The suitable sequence of functions (un(co))

minimizers of Tn,Q.(Fn(w), a). Precisely let vÿ in WQ'P(Q1, lRm) such that
n€lN

W(v‘ *>+
and define vn>n, un n in Wÿ(Rd, Em) by va n=vÿ in Qr and Vrf vQ)q+la- RecaUing (1.10)

we get
Fhom(u, A)>lim supF»ÿ, UQ)-q

>lim sup Fn(to)(un n, A)-P(l+|a|p)0(q)-2q.

Fhora(u, A)Himjyiplim sup Fn(co)(un>n, A).

lun,n'1alo,A=ÿVn,nlo,A

Therefore
(1.11)

On the other hand

and thanks to the lemma 1.10

(1.12)
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where C is a constant that depends only on p, a, {3, a and B is any bounded set that containing
A. From (1.11), (1.12) and using a diagonalization argument (see H. Attouch [2, cor 1.16]),
there exists a map n »— >q(n) such that n(n)-»0 when n_*+°° with

u=T-nÜ*L un,fi(n)’

Fhüm(u, A)ülim sup Fn(w)(un n(n), A).

It suffices to set un:=un n(n)

Second step. We assume that u is any element in W1 Rm). By continuity of Fhom(., A) in
* Wl Rm), it suffices to assume u to be piecewise affine and continuous function, and we

conclude by using first step and again a diagonalization argument. More precisely, there exists
a finite partition (A4)ie j of A, A; € 0, such that uÿ+bj in Ai, where aÿ and b,€Rra.
Using previous step, there exists vÿ in W1p( A1, Rm), possibly depending on co, such that

uÿhnÿ vjj in LP(\, Rm),

Fhora(u, Aj)>linm sup Fn(co) (vÿ, Aj) .

By an argument proved in G.Dal Maso & L.Modica [5],[6] or with some different technics in
K.Messaoudi & G.Michaille [12], we can construct, by modifying vÿ, another sequence uÿ in

W1,p(Ai, Rm), such that

u=T-nlirno uÿ in LP(Ai5 Rm), uÿ=u on dAj,

Fhom(u, A,)aiom sup Fn(«)(i4. Aj) .

The sequence (un)n£ jq defined by un=u|i on Aj satisfies, after summing over i

u=T-nfe un’
Fhom(u, A)>lim sup Fn(to)(un, A).

When u belongs to W1,P(A, lRm), we conclude like in the last step in the proof of lemma 1.9,
by density and diagonalization argument .(see also S.Müller [13]). I

We give now the following consequence of theorem 1.8.
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Corollary 1.12. Let Q be a given element in ©, T0 a subset of boundary dCl of Û with
strictly positive surface measure and V the subset

{ueW1P(Q. Rm), u=u0 on T0}
where UQG W1,P(Q, IRm), V being equipped with the weak topology of WltP(0, IRm). If F is a
random integral functional, periodic in law and ergodic, d> a continuous map from V into IR,
then Fhom(u, fl) is lower semi continuous for the weak topology of W1,p(ü, Rm), f*1001 is
quasiconvex, and

inf{FQ(w)(u, Q )+4>(u) ; u€V},
converges almost surely towards

min {Fhom(u, Q)+4>(u); u€V}.

Proof. Let co be a fixed element inV.Since every x-epi limit is x-lower semi continuous (see
H.Attouch [2]), it follows, from theorem 1.8, that Fhom(u, Ù) is lower semi continuous for the
weak topology of W1,p(fl, Rm) and that f110111 is quasiconvex (see J.M.Ball & F.Murat [3] ).

For the last statement, it remains to prove that
Fhom(io)(., Q)+d>=T-epi lim ( Fn(<o)(., H)+d> ) in V.

But being x-continuous perturbation of the sequence (Fn(co))ne and so (see theorem 1.2

(ii) ), it suffices to prove that
Fhom(w)(., fl)=T-epi Urn Fn(w)(., Q) in V

and thus, that, for every u in V there exists a sequence (un(co>) _ _ in V such that
n€N

u=T'n!E.
Fhom(u, A)>lim sup Fn(io)(un(to), A).

For this, it suffices to modify, in a neighbourhoud of dü, the sequence of functions un(co)
obtained in lemma 1.11, in such a way to preserve above condition, with, in addition, u=un(co)
in dù ( see again G.Dal Maso & L.Modica [5],[6] ).l

1.6 A model of random integral functional.
We would like to give in this section, un example of non homogeneous random

function f(cu) which will be a model of stewed energy density for material with inclusions
distributed at random and for which, the corresponding integral functional is a random integral
Junctional, periodic in law and ergodic.
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Let us denote by the set a functions g defined as in part 1.3, equipped with the trace
KdxMmxdcr-field of the product cx-field of E

(Tz)z€2on9.by
and define the groupe of transformations

TZ g(x, a)=g(x+z, a).

Consider a map f from £xEdxMmXd into E, which is (<£<* &(EV $(MmXd), $(E) )
measurable function and such that, for every to in I, f(w,.,.) belongs to Q. It is clear that for
every z in Zd the maps rJ from £ into § are (%, 3)(Q )) measurable. We say that:
/ is periodic in law if, for every z in 2d Po/'ÿPofrÿ'1;

/ is ergodic if, for every E in $($) such that for every z in Zd rzE=E, we have
* POf\E)e{0,\}.

With some slight modification of the proof of G.Dal Maso & L.Modica [7] one can easily
show that corresponding random integral functional C0f-+F(w) from £ into £F defined by:

F(w)(u, A)=J* f(w)(x > Vu(x))dx; u€W1J>(A, Em) and A €O',

is periodic in law and ergodic in the sense of part 1.3. ( Note that no convexity assumption is
required to obtain this last result in the proof of [7]). So, we have, by definition of a-field
£B(tj ), the two following sufficient conditions to obtain the periodicity in law and ergodicity of
F (see also G.Dal Maso & L.Modica [7]).

Proposition 1.13.
(i) If, for all finite family (x,, aj)ieI of EÿMÿ, the random vectors (f(., xi, sÿ)) i€l

and (f(., Xj+z, aÿ) j€[ have the same law for every z in Zd, then F is periodic in law.
(ii) If, for all finite family (xi? aj, rÿ) ieI, (yj, bj, Sj) jeJ in EÿMÿxE

lim P([f(., Xi, ai)>riln[f(., z+w, bj)>SjJ )
j2|-.+o°
zcZ<l

=P([f(., Xi, ai)>r1l) P([f(., yj, bj)>Sjl).
Then F is ergodic.

We now give our example. Let g, h: MmXd-> E be two homogeneous stored energy
density which satisfy (1.1) and (1.2), and consider a ponctuai Poisson process toi-ÿIKco, .)

ædR11)
from (L.'ï, P) into IN of parameter p>0, which satisfies ( see for instance N.Bouleau
[4]):

(i) For every bounded borel set A in Ed,
3t(w,A)= £ Ô (A)

yeD(w)
where 5y(A) denotes the Dirac measure with support {y} and D(w) is a given countable subset
of Ed without cluster point
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(ii) For every finite family (Ai)ieI of bounded Borel set in Rd, two by two disjoint
(%( Aj))ieI are independent random variables.

(iii) For every bounded Borel set A in Rd, every k in IN*
-Unleas(A)

P{(U(.f A)=k)}=pk (meas(A))k 2--
(Note that %(co, A)=Card(AHD(to)),J" %(w, A)dP(w)=p meas(A)).

For a given r>0, we define the random non homogenous stored energy density by

f(co, x, a):=g(a)+(h(a)-g(a)) min(l, Tt(oo, B(x,r))

- that is
h(a) if x£ U B(y,r),

yeD(w)f(w, x, a)=i
g(a) if not.

f is then a model for a stored energy density of a composit material in Rd, B((y,r))y€Dÿ
being the rescaled random inclusions with a probability expectation p meas(A) in every
bounded Borel set A. On can see that f satisfies the hypothesis of proposition 1.13, and so
defines a random integral junctional, periodic in low and ergodic.
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Chapter II.

Ergodic Theory: Some Tools for The Calculus of Variations.
Application to Stochastic Homogenization of Non convex Integral Functionals.

2.1 Introduction.
2.2 Notations and additive ergodic theorem.
2.3 Almost sure weak convergence of sequence of random Borel measures.
2.4 Almost sure weak convergence of a sequence of functions.
2.5 Application to stochastic homogenization of non convex integral functionals.
2.6 References.

2.1 Introduction.
Let Q be an open regular set in IR , p a given random Borel measure from a probability

space (E, P) into the set M(Kd) of non negative regular Borel measures on Kdand (en)ne
a sequence of positive real numbers which tends to 0. Define the sequence (Mn)n€jq of maps
from E into the set M(Q) of non negative bounded regular Borel measures in Q by

pn(w)(A):=edp(w)(-A)en
for every Borel set A in O and to in E.

Under appropriate integrability assumptions on p, we study the almost sure weak
convergence of (Pn(-))n£ jq in M(O). We shall assume that p satisfies the so called covariance

property in ergodic Theory
p(Tzto)(A)=p(w) (z+A)

for every bounded Borel set A in Rd, where (rz)z€S is a group of P-preserving transformations

of (E. CC, P) and S any subgroup kZdof (2d, +).

More precisely, using an adaptation of an additive ergodic theorem due to Nguyen Xuan
Xanh & H.Zessin [7] proved in part 2.2 (see theorem 2.1), we shall establish in part 2.3 the
following convergence theorem:

Theorem 2.4.
(i) If almost surely (pn(w))Q€JJ is tight, then almost surely pn(co) converges for the

narrow topology towards 0(w)dx where

0(co):-p E%(.) ([0, krt,
Eÿk denoting the conditional expectation operator with respect to the O-field

TZ(E)=E V z€kZd} ,
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(ii) If (TZ)Z£S is ergodic, that is to say, if £Fk contains only sets of % with probability 0
or 1, then, almost surely 4n(w) converges for the narrow topology towards 0dx where

([0,k6.
(For die relevant definitions and notations see Section 2.2).

In part 2.4, we give a stronger result in the particular case where p((o)=u(w, .)dx,
u(co, .) belonging to Lÿoc(Ed, Rm), l£p£+°°. Under suitable integrability assumptions, we

prove the following result:

Theorem 2.6. Setting un(co, x) :=u(to, — ), we have
£n

(i) in the case l<p<+°°, almost surely un(co, x) converges towards

u(. , x)dx

in LP(Q, Rm) weak if p*+«> (in L (Q, Rm) weak* if p=+«>).
]0k[d

(ii) in the case p=l, when Uz)zeS is ergodic, almost surely un(w, .) converges
towards

E;Ld
This last theorem generalizes, in the probability case, the well known weak convergence

result about the sequence constructed from a periodic function u in L1Poc(Rd, Rm) by:

u(.,x)dx in 1ÿ(0, Rm) weak.

un(x):=u(— ).en
Note that the covariance property on the measure u(to, .)dx is equivalent to U(TZW, X)=

u(co, x+z) and so, in the non probability case, to the periodicity of u. For a proof of this
classical result, see for instance F.Murat & J.Ball [6] or B.Dacorogna [3].

In part 2.5, we give an application of theorem 2.4, 2.6 in homogenization of non
convex random integral functionals defined in W1,p(fi, Rm) by

Fn(wXu, n)=J f(w)(-p Vu(x))dx .

Using theorem 2.6, we construct a sequence (uQ(co, -))n€j,| in W1,p(n, Rm) such that
f((oXx/en, Vun(to, .)+a)dx converges almost surely for the narrow topology, towards
fbÿaldx.

' 4ÿi
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The functional defined by

Fhom(u)=f fiom(Vu(x))dx,
JQ

will be almost surely the expected epi limit of Fn(to)(u, Ci) for the strong topology of

LP(Q, JRm)inW1>p(fl, Em).

2.2 Notations and additive ergodic theorem.
Let (£, % P) be a probability space. For k€IN*, we consider the subgroup k2d of

(2d, +) and a group (rz)zÇkÿof P-preserving transformations on (I, %). let us recall that TZ
satisfies for every z, t in k2d:

(i) tz is

(ii) Pofz(E)-P(E) for every E in %;

(iu) w=W rÿ;1.
cfk denotes the invariant sub cr.field of % for (Tz)zekgd , that is:

rz(E)=E Vz€k2d}.
If X is any topological space, £§(X) will denote the Borel field of X.
For every function f from E into Rm which belongs to P)m, E: k f will denote the

vectoriel valued conditional expectation of f with respect to Tk:

(Tz)z£k2d's said ergodic if £Fk is reduce to the sub o.field of sets with probability 0 or 1. In
this case, by a classical probability argument , we have almost surely

where E f is the vector valued expectation of f:

£Bb(2id) wall denote the family of bounded Bcrel sets with positive Lebesgue measure. We

adopt the notation meas for denoting Lebesgue measure on IRd. A sequence (An)n€jÿ of

convex sets in ®b(Rd) is called regular in the sense of Nguyen Xuan Xanh & H.Zessin [?] if

there exist an increasing sequence of intervals (IQ) in and a finite constant C

such that, for all n in N
mcas( In)ÿC mcas(An)

I
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For any set A of , p(A) denotes the following supremum

p(A):=sup{r>0, 3B(x, r)CA},

where B(x, r)={y€Kd; ||x-y||<r} is the closed ball in IRd.
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Theorem below is a straightforward consequence of Nguyen Xuan Xanh & H.Zessin
theorem for additive processes (see Nguyen & Zessin [7] or U.Krengel [5, p. 209-211J).

Theorem 2.1. Let be a map from ®b(Ed) into S6-1(E, P) such that:

Additivity: for disjoint Ap A2 in ~ÿA +ÿA ’
Covariance: for every z in k2dand A in 66b(]Rd), <5ÿAoTz=<5ÿ'A+zi
Domination: there exists a>0 in %*(!, P) such that I ïA I <a for allA

Ae with Ac[0, k[d.
Then, for any regular sequence (AQ)ne of convex sets such that Jimj>(An)=+«>

d , almost surely.

Proof. For proving above result, following the proof of Nguyen Xuan Xanh & H.Zessin
[7, p.143], we use the fondamental results of theorem 3.7 and corollary 3.10 p.138 in above
paper (see also U.Krengel [5, p.209-210}) which are summarized in the following lemma:

convex set

&
[0Jc[

Lemma 2.2. Let a, b be two random variables with a, b in S6-*(£,% P), a>0, (An)n€ be a
regular sequence of convex sets in !Rd with nÜmoç(An)=+<» and (Tz)z€Zd a group of

P-preserving transformations whose invariant O-field is (k=l) then almost surely

£ box b,1(i) nÿ»> meas(A_)
ze

1(H) aotz=0,

where:

Aa= U (z+[0, krt; An= U (z+[0, left,
2€Xn zeYn

Xa={zekSd ; z+[0, k[dCAn}; Ya={z€k2d ; z+[0, kÿflAÿfO}; k€IN*.
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Let us now prove Theorem 2.1. For every z in kZd, we set z=kt , t£ 2d and we
define the P-preserving group of transformation (t't)t€2d by T*t=rkt whose invariant a.field is

rk. Applying (i) of above lemma to and to the regular sequence of convex sets

(ç Aq) we get almost surely,

28

kd •=/kA.SR.m«(V = [0Jc[d°Tt
1/k A,,

that is:

On the other hand, by additivity, covariance of S& with respect to (TJ2€k2d and domination,

I

we get*
|ÿA(w)- I 4 My|< I

zekZÿnÿ zekZÿnÀjj IAJJ
which gives our result thanks to (ii) of above lemma.I

aorz(w)

2.3 Almost sure weak convergence of sequence of random Borel measures.
MCE11) denotes the set of non negative regular Borel measures on Ed equipped with

<M>, the trace on M(Ed) of the product a.field of E

Definition 2.3. Every map from E into MlE*1) which is (%, M ) measurable will be called
a random Borel measure.
Note that above measurability is equivalent to the measurability of maps toi-»p((o)(A) from £
into E, for every A in

In that follows, we consider a given random Borel measure p which satisfies almost
surely, the two conditions

(2.1) Wh-*ju((0)(A) belongs to 26, VE.'Ï, P) for every bounded set A in
(2.2) p((o)(A+z)=p(T2w)(A) for every bounded set A in SHE4*).
Q being a bounded convex open set in Ed, M(ft) the set of non negative bounded regular
Borel measure on Q and (£,)„£ jq a sequence of positive real numbers which tends to 0+, we
define, for every co in £, every set A in $(Q) the sequence (pn(to))n€jq in M(Q) by

pn(m)(A):=edp(«)(~A).en

a....
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We shall study the asymptotic behaviour of the process (dn)„e JJJ for the narrow topology, and

precisely, the almost sure convergence of (pn(to))n€ for the cr(c£(0), Cb(H))

29

more

topology, CÿQ) denoting the Banach space of continuous bounded functions from Cl into 1R.
For this let us recall that a subset H of M (O) is said to be tight if, for every n>0, there exists a
compact subset K of ft such that

v(K°)<n V v€H,

and that the Prokhorov compacity theorem asserts that every tight and bounded subset of M(Q)
is relatively sequentialy compact for the narrow topology. We are now in position to prove

Theorm 2.4.
(i) If almost surely (Mn(w))flçfj is tight, then almost surely pn(w) converges for the

narrow topology towards 0(to)dx where
0(w):= ~E%(.)([0, krt

(ii) If ergodic, then almost surely pn(oo) converges for the narrow topology
towards 0dx, where

0:= krt.
Proof. Proof of (i).
First step. We prove that there exists a set l' in % with P(l')=l such that, for every to in l'
the sequence (juQ(to))nç is bounded. Thanks to Prokhorov's theorem we shall deduce, for

every fixed (o€l, the existence of a subsequence (po(a)(w))n€N which converges for the

narrow topology. (Note that <y(n) is eventually depending on to).

For this, for every bounded Borel set A, and every to in I, let us define

is an additive process from 5©b(IRd) into P) which satisfies all conditions of

theorm 2.1. Applying this theorem for the regular family (— Cl)

in % with P(Z' )=1 such that, for every to in l'

we obtain existence of Z'
Ea n€lN’

and so
n|imo pQ(to)(O)=0(co)meas(fl).
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For every fixed to in l', the sequence (jun(oa))ne is then bounded in Cÿ(fi) and tight (by

hypothesis).Thanks to Prokhorov's theorem there exists a subsequence (MCT(n)(w))n£ such

that

for the narrow topology. The problem is now to identify v(co).

Second step. Raisoning like above step, for every Borel set A on die form QfiQ, (QnQ)r| or
(Qnü)n where

._-(QnO)ÿ:={x€lRm; d(x, (QnQ)c)>n|;
(Qnü)-={xeEm;d(x, QnO)<n},

Q varying in the family of open intervals in 1Rÿ with vertices in <Qd and q varying in we get
existence of E"=n£ with P(E")=1 such that, for every to in l"and every A in above family:

A A

njimo pn(to)(A)=0(to)meas(A).

Third step. Let us fixe to in L'nl" and prove
v(to)(d(OnQ))=0.

We have

v(to)(nnQ)<v((o) ((nnQ)1/m) .
But, by properties of weak convergence of measures and the two above steps,

v(to)((ünQ)l/m)<linmmfMc(n)((o)((OnQ)1/m)
=0(co) meas((nnQ)1/m),

(2.3)

so that, with (2.3)

v(<o)(QnQ)<0((o) üm meas((QnQ)l/m)

<0(to) meas(QnQ).
On the other hand

v(toxnnQ)ÿv((oX(nnQ)1/m),
and, again by properties of weak convergence of measures and the two above step,

vCMXtonOyjaimjupnÿwWQno»ÿ
=0(co) rneas((nnQ)1/m),

so that,

v(toXQnQ)>0(to) meas(OnQ).
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We finally get, thanks the above inequalities,
v(w)(d(ftnQ))=0.

Last step. Applying first step, and a classical result about narrow convergence, we get, almost
surely

JS&.f fdW“)=fJn Jn
fdv(co)

for every bounded function f from O into E which is pa(n)(co)-measurable for every n€IN
and such that the set of its discontinuous points has a v(io) null measure.
In particular taking f=XA where A is a set on the form QflQ, Q being any open interval with
vertices in Qd, we get thanks to third step

„11ÿ0(n)(wKA)=v(wXA)’
and so, with the second step, v(w)(A)=0(co) meas(A). Since the Borel o-field £0(0) is
generated by the family of such A, we obtain v(to)=0(to)dx. With classical properties of
narrow convergence, for every to in E'flE", all the sequence (pn(to))ne converges towards
0(w)dx, which closes the proof of (i).

Proof of (ii). It remains to establish that under the Ergodidty assumption, almost surely, the
sequence (fin(w))n€N is tight.

Let q €fl)+and K a compact convex subset of Û such that (one can suppose 0*0)

<K‘)4meas
0

Raisoning like in the first step for the proof of (i), we get existence of Eÿ in % with P(T(1)=1
such that, for every w in E*= Eÿ

Jim. n„M(Kc)=„a». M„(«)(n) -an,M»(K)
=meas(Kc)0.

So, for n>N(q)
jun(w)(Kc)<n.

On the other hand, measures pn(w), n=l,...,N(n) being regular, there exists a compact Kn(to)
in Q such that

Mn(wÿKnÿ<n for n=l»-»N(n)-

Setting K'(to)=KU( U K (<e)>, we obtain for every to in E* and every n€IN
n=UJÿn) “

pn(w)(K,c(w))<n
which closes proof of (ii)J
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2.4 Almost sure weak convergence of a sequence of random functions.

In this section we consider any function u from £xRdinto Rm satisfying the following
properties for l<p<+°°.

Case p*l.

(2.4) u (to, .) belongs to (Rd, Rm) almost surely and for every A in SiÿR*1), the map

u(oo, x)dx is (*£, £B(Rm)) measurable,itoi— >

For every A in ®b(IRd), the map IJ*
(2.6) For every z in k2d, u(to, x+z)=u(xzco, x) a. s., a. e.

Case p=l. In this case, in addition to (2.6), we make stronger hypothesis than (2.4), (2.5)
that is

(2.4.5) The map (to, x)i— »u(to, x) from ExA into lRm belongs to S&ÿExA, dP®dx)m for

every Ain

I u(co,x) I Pdx belongs to S51(£ P),(2.5)

Remark 2.5. In many applications arising from the calculus of. variations, u(w, .) is a

minimizer or an p-minimizer of Inf F(to, v), where F is a normal integrand from IxX into R ,
x

that is wzX epi F(to, .) is a closed set multifiintion, X being a subspace of Lp( Q, Rm). This

property on F provides measurability of cot— *Inf F(to,v) and, thanks to a measurability

selection theorem, we get the existence of a map (OK->U(W, .) which is (% ®(X)) measurable.
|u(to, x)|Pdx is (%, £8(R)) measurable and, with the followinglConsequently, coi— >

diagram where cp is linear continuous (use Holder inequality)



Ch. IL Ergodic Theory: Some Tools for The Calculus of Variations. 33

u
I

a -------►‘to •

\\ / <p

U(LC,X) dx

Rm

weshall obtain the (*£, $(Rm)) measurability of UHJ
Let(en)n£ifj be a sequence in R*+ that tends to 0* and define the sequence (un)n£

from £xRd into Rm by uQ(io, x):=u(oo, — ), we have:

u(m, x)dx.

En

Theorem 2,6. With assumptions (2.4), (2.5), (2.6) if p*l and (2.4.5), (2.6) if p=l, for
every bounded convex open set fl in Rd, we have:

(i) Case l<p<+°°. Almost surely the sequence (un(co, .))nÇ K converges towards

u(. , x)dxEÿkf
J]0Jcta

in LP(Q, Rm) weak if p*+°°, in L°°(Q, Rm) weak-* if not.

(ii) Case p=l. If (rz)zek2d is ergodic, almost surely the sequence (uQ(to, .))n€JN
converges towards

Jlojc[d u(. , x)dx,

in LÿH, Rm) weak.

The proof of the theorem 2.6, will be a direct consequence of the following lemma

Lemma 2.7. Under hypothesis (2.4), (2.5), (2.6) if p*i and (2.4.5), (2.6) if p=l, for every
bounded convex open set Cl in lRd, there exists £* in % with P(L )=1 such that, for every
W€E':

(i) The sequence (uQ(w, ,))n£ M is equibounded in Lp(0, Rm), more precisely

If?
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I u(. , x) I Pdx,nÜ&>n(w’ -)T =meas(ü)LP(Q, Em)

actually, this assersion holds under (2.5) and (2.6) if p*l;

(ii) For every interval Q with vertices in <Qd,

f V"
jQnn

, x)dx

converges towards

meas(QflD) u(. , x)dx;

(iii) In the specific case p=l, if ('t2)zek2d 's ergodic, the sequence (uQ(w, *))ne is

equiintegrable, that is: for every e>0, there exists q>0 (possibly depending on fixed to ) such
that, for every Borel subset A of Q with meas(A)<q,

supj* I ua(to, x)|dx<e.

Remark 2.8. In the case p=l (i) and (iii) in above lemma imply uniform integrability of the
sequence (UQ(ü), .))ne jq» that is equivalent by Dunford-Pettis theorem, to the relative

compacity of the sequence (uQ(to, ,))n€K for the weak topology of Ll(Q, Em). Assertion (ii)

allows us to identify the weak limit

Assuming for the moment lemma 2.7, let us prove theorem 2.6. For this, co is a fixed
element in Z' and the technique reproduced bellow is then classical (see Dacorogna [3, p.19-
20] for instance)

Proof of Theorem 2.6.Proof of (i) (l<p<+°°). Even if it means doing the sequence
(un(w, .))n€n substitute for

u(. , x)dx,

thanks to (ii) of lemma 2.7, it suffices, under hypothesis
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nhmo f un(oo, x)dx=0
jQnQ “

for every interval Q with vertices in to prove that for every v in Lp (O, Em)

un(tt,x)v(x)dx=0

where

\fi if pÿ+oo,

■. 1 if p=+°°.

Let v in Lp (Q, lRm), e>0 and «,XQ na a steP function, Qj being any interval with vertices

in such that

P’=

lv-i|[aixQ.nnlLP’(aEn,)<£.

We get

ljÿun(“. X).v(x) dxlil un(co, .) I Lp(a I V-|, alXQjnn I LP(0, K«y

+ li?.a‘JQinn u.(“>x)dxl

ij un(io, x)dx|,

C denoting any constant that does not depends on n. After making n tends to +°° and using (ii)
of lemma 1.7, we get

nhmo |J* un(w, x)v(x)dx I <C e.

Proof of (ii) (p=l). Thanks to equiintegrability (iii) of lemma 2.7, for e >0, there exists 5>0
such that

supj jun(oo, x) Idx < e,(2.7)
°»
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where

nô= n {xeQ, I un(w, x) I >0}.

On the other hand, let v€L°°(Q, lRm) and oijXQ a step function like in proof of (i) such

that

lv'ili a‘xQinn 1 L'(ü. E'Vf'
I a{ I <C.

where C is a positive constant that depends only on I v ! L°° n We get, like in proof of

(2.8)

(i):

ljÿ un(co, x)v(x)dx|<Jÿ I un(w, x)||v(x)-Ei aÿOO I dx+

<J IUQ(CO,X)I( lv(x)| +Iilail)dx +

+6f ,v'£t aixQinnldx+

l4ino“"(W'X)<Ul'
so by (2.7) and (2.8)

IJ* UQ(W, x)v(x)dxl<Ce+e+CIi |J un(co, x)dxl .

We conclude thanks to (ii) of lemma 2.7 after making n tends to +°°.l
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It remains to prove Lemma 2.7.

Proof of (i ). It suffices to applied the first step of the proof of theorem 2.4 where

p(io):= I u(to, .) I P
dx. (Note that (2.5) or (2.4.5) if p=l and (2.6) imply respectively (2.1) and

(2.2)).

Proof of (ii). We apply second step of theorem 2.4 to each measure juÿtoÿuÿco, .)dx

i=l,...,m, where U*((JO, .) are components of u(co, .). (Note that if p*l (2.4) and (2.5) imply
(2.1) thanks to Holder inequality).

Proof of (Hi) . Raisoning on each component, one can assume u(co, .) be a scalar valued
function. Let 5 €(Q+ a truncation parameter destined to tend to +°° and set

min(ô, u(co, x)) if u(oo, x)>0

[-min(ô, -u(w, x)) if u(co, x)<0,
u0(co, x)=j

Vg(to, x)=u(w, x)-u5(to, x).

It is straightforward to check that v5 satisfies (2.4.5) and (2.6). Applying (i) proved above to

vs, we get existence of Eg in with P(£g)=l such that, for to in E := D + Eg

lim I Ivg (to, x) |dx=meas(ü) E 4- |vg(.,x)|dx.(2.9)

For e>0, let Ô be large enough so that

E-f d ivg(.,x)|dx<j.J]0Jc[U

Indeed by (2.4.5), the map (w, x)i-*u(to, x) belongs to &VEXJO,ÿ, dPodx) and

L iv |v6<“'x)'dP<“,dx=?I
So, recalling (2.9), for a fixed co in £’, we get existence of N(e) €IN such that

„>sj?£Jn I)ldX<T
Let A be a measurable subset of fl For n > N(e) and by (2.10) we have

I u(to, x) I dP(w)dx.
|(w,x), |u(co,x)l>ô}

(2.10)
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J* f un(w, x)|dxÿJ* 1 v8 Q(W, x)|dx+J* 1 ufl Q(Cû, X) I dx

<2+0 meas(A),

e
and, for meas(A)<— =rj we obtain

25

sup I |u_(to, x) I dx<e.ln>Nfe)JA

2.5 Application to stochastic homogenization of non convex integral
functionals

LetMmXd be the space of real mxd matrices, a, (3 and L three given positive constants
and (r2)ze 2<jan ergodic group of P-preserving transformation (note that it is easy to show that
(rz)z€k2d ergodic for every kcBT) in a probability space (E, % P), % being P-complete.
For every co in I, every A in ©, the family of bounded open subsets in Kd, every u in
W1 Rm) and every p; l<p<+<», set

F(w)(u, A):=Jÿ f(to)(x, Vu(x))dx

where, f(co) is a real function defined in RdxMmXd, measurable with respect to its first
variable and satisfying for every a, b in MmXd, almost surely and almost everywhere

ala|P<f(w)(x, a)£f3(l + la|P);
I f(io)(x, a)-f(w)(x, b)IÿL(l +!a|P'!+lblP l)la-bl;
f(rzwXx, a)=f(w)(rzx, a) for every z in 2d.

(2.11)

(2.12)
(2.13)

Let us remark that, thanks to continuity property (2.12) on f(w), the map
UH-»F(IOXU, A) from Wld>(A, IRm) into IR is continuous for the strong topology of
W1,P(A, Rra).

W,‘i(Kd. B”)*® .
IS

measurable, the second space being equipped with the standart product ct-field, so that all maps
<oi~»F(w) (u, A), A in ©, u in W1,P(A, lRm) are random variables. A sufficient condition for a
such measurability is the (*£® ®(Rÿ® $(MmXd>, $(R)) measurability of the map (to, x, a)i->
f((o) (x, a) from ExRÿM'ÿinto R.

We assume moreover that the map toi— *F(co) from E into IR

■ II
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Q being a given bounded convex open set in Rd with piecewise C0,1 boundary, and

(en)aeN a which tends to 0, consider the sequence (Fn(to)(., Q)) defined

by

F (co)(u, Q)=f f(oo)(ÿ Vu(x))dx in W1>p(0, Rm).
” Jn e„

Our purpose is then to establish the following theorem which is an essential step in the proof of
epi-convergence of the sequence (Fn(., O)) W1,P(Q, Rm) equipped with the strong

topology of LP(Q, Rm).

Theorem 2.9. There exists vn(w) in W1,p)(0, lRm) such that, almost surely

n|imo vn(to)=la in Lp(0, lRm) strong,

Urn F„(wXvo(M))=kIÿ. Eÿmky (F(.), a),
n-»+oo

where la is the linear function from Rd into Rrn defined by la(x)=a.x, a€M

mkY(F(co), a):=Inf {F((o)(u+la, kY) ; u€Wj-p(kY, Rm)},

m*d and

Y being the unit cube ]0, l[d
For proving above theorem, we shall need some measurability properties about the

closed set valued multifunction f: EzÿWÿfkY, Rm) defined by:

r(w):={u€WjÿkY, Rm) ; F(<o)(u+la, kY)<mky(F(to), a)+q},

where q belongs to

Proposition 2.10. The closed set valued multifunction T is measurable and consequently,
possesses a (‘K, $(W‘,p(kY, Rm))) measurable selection

wJ>p(kY, Rm).

Va<M) from £ into(01— *

Proof. Continuity of the map u*-»F(w)(u, kY) and measurability Hypothesis on F imply that
(to, u)t-»F(«)(u +la, kY) is a Caratheodory function from IxW1,p(kY, Rm) into R. W*,p(kY)
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being separable, by a classical argument the map toi— *<Tn>|cY(I:r(o3), a) from L into E is a

random variable.

On the other hand, the Caratheodory function (to, u)t-*F(co)(u+la, kY) from £xWÿ’P(kY, Em)

into E is actually a normal integrand: it is a direct consequence of the separability of

WÿkY, Em). The level set multifunction constructed from this normal integrand and the

random variable coi— a) *s measurable and possesses a measurable selection

(see C.Castaing&M.Valadier [2], C.Hess [4], J.P.Aubin & H.Frankowska [l]).l

Applying proposition 2.10, there exists a (CG, SfW'ÿkY, Em) ) measurable selection

n(to) from I into Wj'p(kY, Em) such thatcoi— >ÿ

(2.14) mky (F(to), a)<F(to)(uk n(co)+la, kY)<7akY(F(to), a)+n.

Let us extend on Wjo*ÿ(Ed, Em) in the following way:

uÿ. x):=uk n(Tzco, x-z) if x belong to z+kY.

It is clear that

x+z>=uk X) for every z in kZd.

On the other hand, noticing that on A in

(2.15)

“M<w’ -z)-

where I(A)={z€kZd ; z+kYDAÿo} and xE is the caracteristic function of any set E, we
obtain by proposition 2.10, the measurability of from E into WliP(A, Em).

Finally, we define a map g from LxEd into E by:

g(co, x):=f(w)(x, a+Vuÿ x)),

and a test function vfc n(w, x) by

vk,nÿ“-x):=ax+CD“kJa-r>-
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We have

Proposition 2.11. There exists £ in £ with P(£ )=1 such that, the two following

assertions hold

(i) lim v. (co)=l strongly in LP(A, IRm),
n —+ -K° ic,rj,n &

<U> x>d*

=meas(A) E f(to)(x, a+V5k x)) dx.

Proof. Proof of (i). It suffices to apply lemma 2.7 (i) to the function uk .). We

prove that the map tonj* I uk n(w> •) I Pdx belongs to P) for every A in £Bb (IRÿ

(see (2.5)), (2.6) being satisfied thanks to (2.15). Measurability is a direct consequence of
measurability of toi-*uk .) from £ into W1 lRm). Moreover

?dx dP(to)<

must

UJJ. I x) I PdxdP(w)(2.16)
U z+kY

zel(A)

= f £ f I u (to, x+z) I ?dxdP(co)
zeI(AjkY k,n

= £ f f |u (r to, x) I PdP(to)dx
z€l(A)JkYj£ M

LX IUM(“-‘)|P= card 1(A) dP(to)dx,

where we have used the P-preserving property of (rz)z€kZd

Using Poincaré inequality, growth condition (2.11) imposed on f(to) and definition of ufc (to )

(see (2.14)), we get

/ I \ x)|Pdx<C — (l+la|P)meas(kY)+f|,

$
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where C is the Poincaré constant

So that (2.16) implies

J* J* I uk x) i PdxdP(w)< +°°.

proof of (ii). We apply theorem 2.4 (ii) of part 2.3 to the random Borel measure p on E defined
by:

p(w)=g(w, .)dx.

We must prove (2.1) and (2.2) . (2.2) is a direct consequence of (2.13), (2.15) and definition
of g. The (ÿ, $(R)) measurability of

l g(io, x)dx

from I into R comes from the (*£, IRm)) measurability of the map
.)+la from I into W1,PA, lRm), the fact that (to, u)i-*F(co)(u, A) is a Caratheodory

function (see J.P.Aubin & H.Frankowska [1, lemma 8.23, p.311) for instance) and

J* g(io, x)dx=F(co)(uk .)+la, A).

mi— »

Finally, with growth condition (2. 1 1), after raisoning like above proof of (i),

(1+ 1 a+Vu, (w, x) I P)dxdP(co)< +°°.lJ J* g(to, x)dxdP(w)<ÿJ J* k,n

We are in position to prove theorem 2.9,

Proof of Theorem 2.9. Proposition 2. 1 1 above implies, for every to in E'= fl Eÿ

nÿlo Fn(wXvk „q(w), Q)=kBflÿ finj, E f(wXx, a+Vufc>f|(u, .)) dx meas(a)

cmkY(F(rn, a))
meas(kY)

=kM* E jÿkY a) meas(n>’

meas(Q)

t'f-
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where we have used the Lebesgue dominated theorem for convergence with respect to q and
the convergence of

a)
meas(kY)

towards

. (See U.Krengel [5, lemma 2.2 p.2Q2] for instance for this last result). We end the proof by a
diagonalization argument I
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Chapter ni

Non coercive Random Integral Functionals and Epi-convergence.

3.1 Introduction.
3.2 A random integral functionals related to the problem of "holes" of Neumann type.
3.2.1 Definition of the integral functional F*10™.
3.2.2 The main result.
3.3 A random integral functionals related to the problem of "fissures".
3.3.1 Definition of the integral functional Fhom.
3.3.2 The main result.
3.4 References.

3.1 Introduction.
The purpose of the present chapter is the study of homogenization of elastic material

with many small "holes” or "fissures" distributed in on random way.
To overcome the lack of coerciveness we shall take some hypothesis in relation with

geometry of "holes" or "fissures" distribution in such a way that an extension technic can be
applied see D.Cioranescu & J.Saint Jean Paulin [4] in the case of "holes", H. Attouh &F.Murat
{3] and JJ.Telega & T.Lewinski [5] in the case of "fissures”.

For each both problems, the probabilised space (Z, CG, P) being given, we build a class
of random integral functionals which has the required properties.

Finally we apply method developped in chapter I to obtain in each case the epi limit
expression and shall give a result of almost sure convergence for corresponding optimization
problems. These results generalize ones obtained by H.Attouch [2] and D.Cioranescu & J.Saint
Jean Paulin [4] for "holes" and H.Attouch & F.Murat [3] for "fissures" in the periodic case.

3.2 A random integral functionals related to the problem of "holes" of
Neumann type.

Let Y=}0, l[d be a unit open cube and T a finite set of compact T of Y whose the

boundary is C1 piecewise. For every z€2 , Tz denotes a compact of z+Y such that -z +TZ€T.
gd dWe shall consider, the family (TJzÿà as 311 element co of Z:=T or as a part U Tÿ of IR .

7 /C z€Zd Z

Let P) be a probability space which is the product of Bernoulli's space (I\ £P, II),
where denotes the set of all parts of T, and n is a probability measure on T constructed from
the presence probability of element in T, that is (£,*£, P):=(L, £P, IT)ÿ.
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For technical reasons, we consider a sequence (£n)ne]N of the type £n=t ", teIN* and 0
the family of sets which are a finite union of cubes eqI, where q and I varying respectively in IN
and (recall that 3 is the set of all open paving in ]Rd with vertices in 3d).

Remaks 3.1.For every AeO, there exists nAe lN*such that for every n>nA, d\ fl zQ<x>=0.
We define the group (TJzFgd of (ergodic, P-preserving) transformations on L as

follows:
TtO=tO+Z.

It is obvious that for every AeO and every coeL the caracteristic function xAÿ uof A\ to

defined by:
a(w-

satisfies for every zC Sdand every x€A
a(rzto, x)=a(co, x-z).

Let to be a fixed element in L, for every AeO and u€Lp(A, Em), we define the

integral functional F(to) from Ljÿ(Ed, Em)xO into IR+U {+°°} by:

f f(Vu(x))dx if uAltoeW1’p(A\ to, Em)
=s A\ toF(to)(u, A)

+°° if not,

where uÿ w denotes the restriction of u to A\ to and f is a given function from M

which satisfies:
a , P and L being three given positive constants, for every a, b in MraXd

a|a|p<f(a)<P(l+|a|p) a.e;
|f(a)-f(b)|<L(1+|ar1+Np_1)|a-b| a.e.

m*d into E

(3.1)
(3.2)

We define the sequence (Fn(to))n£ by:

Fn(to):=p£nF(to)=F(en(o) that is

J f(Vu(x))dx if uAU œeW1J>(A\ ento, Em),
Fn(to)(u, A)=| A\ento

1+»= if not.
Our goal is the study by epi-convergence the asymptotic behaviour of the above sequence
when en tends to zero.

(3.3)

mpac/l I)
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ftl+°° if not.

We shall show that for every Ae0 and ue LP(A, JRm),

Fhom(., A)=T-epi lim Fn(w)(., A) almost surely in LP(A, Rm)
where T denotes the strong topology of LP(A, IRm).

The two following propositions are essential to show that domain of T-epi lim Fn(co) is
W1,P(A, Pm).

Pom(Vu(x))dx if u€W1,P(A, Em),
Fhom(U,A)=

Proposition 3.4. For every AeO and every sufficiently large neIN, there exists a linear
continuous operator Fn from W1,P(A\ enco, lRm) into W1,P(A, lRm) (which eventualy

depends on w ) satisfying, for every u€W1 enw, lRm),

(i) Pn u=u on A\ enco;
* A«H,AUnW
W |V,PiiU|o,ASC|Vu|o,Al £nw’

where C is a constant depending only on co.
Proof. We have (cf remark (3.1)) dA fl for n large enough so that we can, thanks to
the fact that f is finished, use the D.Cioranescu & J.Saint.Paulin |4] results.1

Proposition 3.5. For every AeO, there exists Z’ in Z with P(X")=1 such that for every
co €Z"» the sequence (an(co))nC M defined by:

*»„((0, .):=a((0, ÿ;
converges almost surely towards meas(A)0, with 0=1
topology of L (A).
Proof. It suffices to apply theorem 2.6, chapter II.■

meas(Y\ co)dP(co) for the weak-*

3.2.2 The main result.
Let co€Zm=Z"nZ’ where Z* and Z" are given by theorem 3.2 and proposition 3.5.

Since the family 0of sets A is countable, by a classical diagonalization argument, there exists a
subsequence of (Fn(to))nefj still denoted (Fn(co))ne N such that T-epi lim Fn(co)(., A) exists in
LP(A, IRm) for all A in 0. In that follows, we consider this subsequence and we shall show
that, for every A in O'

Fhom(., A)=r-epi lim Fn(to)(., A) in LP(A, Em)



49Ch. in. Non coercive Random Integral Functionals and Epi-convergence.

Before proving this result, let us show that almost surely r-epi lim Fn(to)(., A) "lives"

in W1,P(A, Rm):

Proposition 3.6. If we set G:=r-epi lim Fn(co)(., A),then almost surely domG=W1,p(A,
Rm).
Proof. Let u€dom G={ueLp(A, Rm), G(u)<+°°}, then by epi-convergence there exists a
sequence (un)n€ (we omit the dependence on to); un€LP(A, lRm) such that almost surely

u=T-nÜnL un’

nhmo Fn(to)(un)<+«

Therefore from (3.1) the sequence (un)nejq is bounded in W1,P(A\ ento, Km) independently
on n. Using proposition 3.4, the sequence (ÿVÿ),,ÿ is bounded in W1,P(A, IRm)
independently on n and there exist a subsequence of (iPnun)ne]ÿ still denoted (ÿnUn)neK and
u* in W1,P(A) (possibly depending on to) such that

uÿhmÿ ?>n for the weak topology of W1,P(A, Em),

uÿÿHinÿ tPnun for the strong topology of LP(A, Rm)

Making n tends to +°° in the equality,

?Pnun a(to, r-)=un a(to, r->cn cn
and using proposition 3.5, we obtain u=u*€W1,p(A, JRm) almost surely. Other inclusion is

obvious.I

Theorem 3.7. For all to in Eÿand for all A in 0, we have
Fhom(u, A)=T-epi lim Fn(co)(u, A) in LP(A, Kra).

Proof. It remains to check the assertions (i) and (ii) in definition of epi-convergence (see

definition 1.1 chapter I).
The proof of (i) is like of the proof of lemma 1.9 chapter I, where all cube used are such that a
cube of remark 3.3 (i). While to check (ii), it suffices to note that if A=Q is a such open cube
of the lattices in lRd spanned by ]0, eq[ and u=la, a€K ,

Fhom(u, Q)=meas(Q)1*°»=ÿ mQ(Fn(to), a),

and (we omit the dependence on to) for vnÿ€WQ,P(Q) such that

Fn(w)(vÿq+la’ *)+ÿ
we have

Fh°m(u, Q)ÿim sup Fn(to)(vn Eq+la, Q)-eq
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It is obvious that WQ'P(Q, EmJ. Let us define by
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A diagonalization argument leads to

U=T-nfe
Fhom(u, Q)>lim sup Fn(co)(u +ia. Q)nÿq(n)

Indeed from the Poincare's inequality and proposition 3.4 (iii), there exists a constant C(Y)
depending only on Y=]0, ![** such that:

V*Dvn4,Q
en«i)

<aqP(|Vvni£q+a|oQUn(0 +|alp meas(Q))

-CEqP(~ Fn(w)(vn Eq+lav Q)+|a|P meas(Q))

<aqP(ÿ(l+|alP)+lap) meas(Q)
4 a

=Ceqp meas(Q),
where C denotes different constants independent on n and eq. If u is any function in
W1,P(A, Em), we conclude like in chapter 1.1

Remark 3.8. The proof of (ii) is also a straightforward application of the theorem 2.9,
chapter II where

g(io, x):=a(<o, x)f(a+VDM(to, x).

We shall show that almost sure epi-convergence of the sequence (Fn(co))n€jjÿ implies
almost sure convergence of corresponding optimization problems. More precisely

Theorem 3.9. Let fi be a fixed element in 0 and g a given element in LP(Q, IRm). Then

Inf{Fn(w)(u )+ f gu dx; u€Wj>p(fl, Rm)}
JCl\eDic

Inf{Fhom(u)+vJ gu dx; u€Wj’p(0, 3Rm)},

where v=meas(Q)0; 0 is the matimatical expectation of meas(Y\ to).

converges almost surely towards
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Proof. It suffices to apply proposition 3.5 and theorem 3.7 to show that the sequence
(H»)n£K defined on WjÿO, Km) by

Hn(w)(u)=Fn(w)(u)+J gu dx,
fl'cn“

epi-converges almost surely towards

Hhom(u)=Fhom(u)+vJ gu dx in W’-r(Q, JRm),

and use variational properties of epi-convergence theorem 1.2 chapter 1.1

3.3 A random integral functionals related to the problem of "fissures".
Let Y=]0, l[d be a unit open cube and T a finite set of parts y of IR satisfying the

following properties:
There is a compact set K with regular boundary such that YcKcY, there exist two open sets

Yj and Y2 in IR with common boudary 35, which is a manifold of dimension d-1 and of class

C1 in IRdsuch that Y=Y1UY2U35 and Yc35 (see figure)

Yi K
•n\

Y

1 35
Y2

yC35
Y=YIUY2 UK

A vector t which is normal to 35 being chosen, for all u in
W1 ,p(Yj, K“)nW1,p(Y2, JRn,)=W1>p(Y \35, Em),

we define two traces on Y and therfore, a jump denoted by [u].
For all z in Z , Yz denotes a subset of z+Y such that -z+Yz belongs to T. We shall

part U Y of lRd. Let

(L ,%, P) be a probability space which is the product of Bernoulli’s space (T, £P, II), where £P
denotes the set of all parts of T, and IT is a probability measure on T constructed from the
presence probability of element in T that is (T-,%, P):-(I , 3d, II)

We consider a sequence (en)ntjÿ> die family 0, and the group (Tz)7£%das *n 3.2.

Zd
consider, the family (Yz)z£ÿd as 311 element co of I:=r or as a
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Let to be a fixed element in I, for every Ac O' and ue LP(A, Rm), we define F(oo) from
Lj,oc(Rd, Rm)xO intoR+U{+°°| by

j!.. «Vu(*))dxifu
•s*/A\ w
G+OO if not

€C(A\ w)
F(w)(u, A)=

where
C(A\ w):={u€W1,P(A\ co, Rm); [u]>0 intoHA},

and fis a given function from Mm*dinto R which satisfies (3.1) and (3.2). We define
Fn(to) from Lj’oc(Rd, Rm)xO into R+U {+°°}by:

/ f(Vu(x))dx if uAU w€C(A\eno)),
(3.4) Fn(M)(u,A)=rAUn(c

l+°o if not.

Our goal is to study by an epi-convergence method the asymptotic behaviour of above
sequence when en goes to zero.

3.3.1 Definition of the integral functional Fhom.
For every A in J), every to in I and every a in Rd, we define

*HlA(F(to), a):=Inf{F(to)(u+la, A); u eC(A\ to), u=0 on <5A}.
A straightforward adaptation of proposition 1.4, 1.5 and 1.6 in chapter I, shows that the set
function Qt-ÿTiïlgfFfto), a) from J into R+ is an ergodic discret sub-additive process.The
measurability of coi— A(F(co), a) comes from equality

mA(F(to), a):=Inf{F(oj)(u+la, A), uCV}
u=0 on dA}, and the measurability of thewhere V={u€W1’f(A\ U K+z, Rm) ;

zeZd
multifunction to|l|epi F(to)(u+la, A) from L into VxR.
Applying the M.A.Ackoglu & U.Krengel [1] subadditive ergodic theorem, we obtain
Theorem 3.10. There exist a subset L* in % with P(L)=1 and a function f*10™ from Mm*d
into R such that for every cube Qin 3

meas(— Q)
En

a)4 dP(co)}.= Inf
neIN

Moreover f*om satisfies (3.1) and (3.2) with an other constant L’ obtained as in
proposition 1.4 (ii) of chapter I.

meas(nY)
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Proof. It is a simple adaptation of the proof of corollary 1.7 chapter I.l
We now define, for every AG 0 and uG LP(A, Em), the integral functional F*1

LPc(Ed, Em)xO into E+U{-K*>) by:

Fhom(u,A)=

om from

fl+°° if not.
We shall show that for every AG O' and uG LP(A, Em),

A)=r-epi lim Fn(oo)(., A) almost surely in LP(A, Eni) strong.
From remark 3.1 and the fact that T is finished we prove cf H.Attouch & F.Murat [3] the
following main tool.

fhoni(Vu(x))dx if uG W1,P(A, Em),

Proposition 3.11. For every AG0 and every sufficiently large nG IN, there exists a linear
continuous operator 0n from W1,P(A\ ento, Em) into W1 ,P(A, Em) (which eventualy depends
on to) satisfying, for every uGW1,p(A\ento, Era),

(i) 0„u=u in a neighbourhood of dA,

W l®.ul0 A<C|uÿ, A(

(iv)

where C is a constant depending only on compact K.

EnW’

3.3.2 The main result.
Fix to in L* where £' is given by theorem 3.10. Since the family O' of sets A is

countable, by a classical diagonalization argument, there exists a subsequence of (Fn(to))n€
still denoted (Fn(io))neM such that r-epi lim Fn(to)(., A) exists in LP(A, Em) for all A in 0. In

that follows, we consider this subsequence and we shall show that, for every A in 0
Fhom(„A)=r-epi lim Fn(to)(., A) in LP(A, Em).

Before proxang this result, let us show that almost surely r-epi lim Fn(to)(., A) "lives"

in W1,P(A, Em).

Proposition 3.12. If we set G:=r-epi lim FD(OJ)(., A), then almost surely domG=
W!’P(A, Em).
Proof. Let uG dom G be, then by epi-convergence there exists a sequence (un)n€jq (we omit
the dependence on to), unGLp(A, Em) such that almost surely
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ju=T-nfo£o S’

1„!S5X, Fn((0)(un)<+oo.

Therefore from (3.1) the sequence (un)n€j.j is bounded in W1,P(A\ ento, IRm) independently
on n. From (ii) and (iii) in proposition 3.11, the sequence (ÿnun)nelN *s bounded in
W1 ,P(A, Rm) independently on n. So there exist a subsequence of (Gfnun)ne still denoted
(©nun)ne jq and u* in W1 ,P(A) (possibly depending on to) such that

u*ÿ}ÿ ÔJJUJJ for the weak topology of W1,P(A, ]Rm),

uÿÿhmÿ (5nun for the strong topology of LP(A, Rm).

After making n tends to +°° in the equality,
un=®nVurAun

and using proposition 3. 1 1 (iv), we obtain u=u*€W1 Rm) almost surely. Other inclusion
is obvious.l

Theorem 3 . 1 3. For all to in l’ and all A in ©, we have
Fhom(u, A)=T-epi lim Fn(to)(u, A) in Lp(A, JRm) .

Proof. It is a straightforword adaptation of the proof of theorem 3.7 part 3.2.2.I
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Chapter IV

Stochastic Homogenization and Duality in The Convex case.

4.1 Preliminaries.
4.2 The main result.
4.3 References.

4.1 Preliminaries.
In this chapter, we study the asymptotic behaviour of the classical perturbed

optimization problem when f(to, x, . ) is convex, leading to the limit of its dual formulation.
Vu + VuWe get in this way, the structural equation o£ dfhom(e(u)) where e(u)=

the limits u and a of solutions of primal and dual problems corresponding to Fn(«). We adopt

again an epi-convergence process on the sequence of perturbed functionals, which provides
almost sure weak convergence of the saddle points sequence towards the saddle point of
Lagrangian of the homogenized problem.

The situation and notations are the same as in chapter I, but here d=m and more
specifically, we study the asymptotic behaviour of the dual formulation of the problem

(£Pn) Inf{Fn(<e)(u, n)+d>(u); ueV}
and asymptotic behaviour of corresponding saddle points in linearized elasticity, which is
introduced by D.Azé {3] in the periodic case. We assume that

f(w)(x, e(u)(x))dx,

which links2

iF(w)(u, A)

where e(u)= and where f(to) is measurable on x, convex with respect to the matrix

variable and satisfies almost surely the following condition, for every a in the subspace Mÿxd
of symétrie elements of Mdxd

ajaf<f((o)(x, a)<p(l+|a|p)
a and P are two given positive real numbers, with 0<a<p. It is easy to see that (1.2) of the
section 1.3 in the chapter I is automatically satisfied. Indeed, every o that belongs to die
subdifferential <3f(o:)(x, a) satisfies (crl<C( I +|a|p~3 ) where C is a constant dependind only on P
(see H.Attouch [1], p.52 for p=2 or B. Dacorogna [5] in a more general setting) and with this
bound, the convexity inequality leads to (1.2).

V will be the space W’’P (0, IR*1) and <ï\ the functional defined by

4>(u)= f <p(x)u(x)dx,

(4.1)
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where cp is any function that belongs to Lp (Ü, IRÿ), and p' denotes the conjugate exponent of
p. Thanks to Korn inequality (cf G.Duvaut & J.Lions [6] for instance),

(f Iu(x)|p dx+f |e(u)(x)|f) dx),/p
J A JA

defines an equivalent norm in W1’’’(A, still denoted |u|j A-
With these new hypothesis, one could obtain similar results of chapter I for function of the
form

1f(w)(x,e(u)(x))dxF(w)(u, A)

and infimum become minimum.
A classical way to perturb our optimization problem, is to define for every A in © the

following bivariate functional Wn((o)(., A) from W1,P(A, EÿxIÿA) into IR

VB(w)((u,<r), A):=Jÿf(w) (p e(u)(x)+o(x))dx+Jÿcp(x)u(x)dx,
where

E(A)-{o: A->Mdxd; cKÿj), <7ÿ=0ÿ, ai j€LP(A), i, j=l,...,d}.
The primal (£Pn) and dual (£Pn)* problems for a fixed element Q in ©, take the form:

(£Pn) min {Vn(w)((u, 0), Û); u€Wj’p (Ü, Eÿ};

(£Pn)* sup {-Ÿ*(<o)((0, a), Ü); oeE(D)}

in{P f*(&)(*-> o(x))dx; diva=cp, a£L(D)},
Jo en

where 'f'*(co)(., O) and f*(to) denote the Fenchel conjugates of Vn(w)(., Q) and f(w).

= m

Similarly the following perturbation of the homogenized limit problem difined in part 1.5 of the
chapter I

vphom((u,c), A):=f fhom(e(u)(x)+o(x))dx+f
JA JA

leads to the primal (£Phom) and dual (£Phom)* problems
(£Phom) min {q/hom((u, 0), Ü); ueWjÿO, Ed)};

(cphom)* sup {. ('Phom)*((0, CT), Q); aeE(Q)}

<p(x) u(x)dx

= min{Jÿ (fbomf

un(w) and <7n(to) being respectively a solution of (£Pn) and (£Pn)*, (un(co), <Jn(to)) is a saddle

point of the associated Lagrangian defined from W1 >P(D, Ed)xE(ü) into E by

Ln((o)((u,a)) = - (co)((u, a), Q)

(o(x))dx; diva=<p; a€l(Q)}.
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= f o(x):e(u)(x)dx -[ <p(x)u(x)dx - f f*(co)(ÿ--> o(x))dx
JQ JQ en

*/owhere (co)(., £2) denotes the Fenchel conjugate of MVcoX., Q) with respect to its second

variable.
Finally, if u and o are respectively solutions of (£Phorn) and (£Phom)*5 (U) a) is a saddle

point of the associated Lagrangian

=[ a(x):e(u)(x)dx-[ tp(x) u(x)dx- f (fhom)*)(o(x)dx
JQ JQ

Lhom(u, o)

For further details about above notions, we refer to I.Ekeland & R.Temam [7],
Let (0 be a fixed element in £, we have the following result.

Proposition 4.1. Every saddle point (un(co), on(co)) of the Lagrangian Ln(co), is bounded in

WQ’P(Q, IRd)xL(Q). Therefore, there exists ((u(co), o( co)) in W0',p(£2, Rd)xX(Q) such that, to

a further subsequence, (un(co), On((o)) tends towards ((u(0)), o(co)) in WQ-P(£2, Rd)xX(£2),

equiped with the product of the weak topology of W01,p (£2, lRd) and Lp(A,Mdxd)

Proof. It is easy to show, thanks to the growth condition (4.1) that un(co) is bounded in

Wj|’P(Q, Rd). On the other hand, again by (4.1) and the convexity assumption, one can prove

that every element o that belongs to 3f(co)(— ’ e(un(co))) satisfies lol<C(l+le(un(co))lp'1)

which, with the property an(co)eOf(co)(— ’ e(un(co))) leads to the conclution.l
En

In the classical periodic homogenization the structural equation which links u to o is
given by oe ôfhom(e(u(.))), this last equation being obtained by using energy method
introduced by L.Tartar [9] and partialy written in F.Murat [8]. We can't adopt this approach in
the stochastic case because of the presence of set in with null probability that depends on
every sequence considered. This is the reason for which we adopt again an epi-convergence
process.

We show that almost surely, every cluser point (u(co), a(co)) of a saddle point (un(co),
on(co)) is a saddle point (u, o) of the Lagrangian Lhom and so does not depends on co and

satisfies: oe ôfhom(e(u)), u and a are respectively solution of (£Phom) and (£Phom)*.
The main tool is the following proposition, direct consequence of H.Attouch, D.Aze &

R.Wets [2], theorems 2.4 and 3.2.
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Proposition 4.2. If œ is a fixed element of £ such that
Q)=tx s-epi lim 4/n(co)(., £2),

where x*s denotes the topology product of the weak topology of WQ1,P (£2, Rd) and the strong

topology of £(£2). Then every cluster point ((u(co), G(CO)) of proposition 4.1 is a saddle point
c , homof L

4.3 The main result.
We are now in position to prove the main result of this chapter. Let £' be the subset of

the probability one defined in corollary 1.7, part 1.4 chapter I. We have
Theorem 4.3. For every co in £'>

4/hom(., £2)=t*s-epi lim T#n(co)(., £2).

Moreover every cluster point (u(œ), o(œ)), in the sense of the proposition 4.1, of the sequence
of saddle point (un(co), crn(co)) of Ln(co), is a saddle point of Lhom, and so deos not depends

on cu. o is then a solution of the dual problem (£Phom)* where

(fhom)*(a)_ sUp ±x(epi f min [f f(co)*(x, G+. )dx, Ge K(nY)) }dP(co))(a),
ne IN* nu Jj; JnY

where epi denotes the continuous infimal convolution defined by:
h

[epi g(û»(.)dP(œ)](a):=inf { Jÿg(co)(a(co))dP(cu); Jÿa(co)dP(co)=a} ,

and where
K(nY):={ae £(nY); [ o(y)dy=0, diva=0}

JnY

Proof. Above expression of (f*10"1)* is a straightforward consequence of the definition of the
Fenchel conjugate, permutation of two sup, property of the continuous infimal convolution
which is, in our case the Fenchel conjugate of

min { J f(co)(x, e(u)(x)+.)dx, ue W,J'P(nY, Rd)}dP(co),

and finally, classical expression of Fenchel conjugate of

{J f(co)(x, e(u)(x)+.)dx, ue W0l’p(nY) },min

which is

*



Ch. IV. Stochastic Homogenization and Duality in The Convex case. 60

{f f(co)*(x, o+. )dx, oeK(nY))}.
JnY

min

We refer to H.Attouch [1] for this last result and to C.Castaing &M.Valadier [4] for more
about continuous infimal convolution.
It remains to prove that

vPhom(., Q)=xxs-epi lim ¥n(to)(., ft).

Noticing that for every A in ©, ui— » (p(x)u(x)dx is x-continuous perturbation so we can
•'A

neglect the presence of this term in the expression of vFn(co)(., ft) and 'Fhom (., ft) (see

theorem 1.2 (ii)).
On the other hand, with this convention we get, when a is constant

A)=Fn(0))(u+lo, A),
4/hom((u,a), A)=Fhom(u+la, A).

These remarks lead to the following steps:
first step. We prove 4/hom(., ft)=x*s-epi lim vf/n(co)(., ft) in WQ1,p(ft, Rd)xE(ft) where "£(0)

is the subspace of piecewise constant functions of 1(0).
(i)Upper bound. Let u=x-nlimÿ uR and a=s-nijm. an with (un, an)e W0lp(ft, Rd)xS(ft)

We have CÿIÿXQ. where (ft.)i€l is a finite partition of ft and u+lÿxÿJirnÿ un+lai>
So, by theorem 1.8 of chapter I,

Fhom(u+lai, ftÿlim mf Fn(co)(u„+lai, ftp,.

Ohom((u,a), Qÿlim mf <Dn(co)((un, o), ftp.
tliat is
(4.2)

But, by convexity

<t>n(co)((un, an),Oi)>d>n((o)((un, o), ftp+J q(co)(x, e(un)(x)+a(x)):(an- o)(x) dx

where xt— »q(co)(x, e(un)(x)+a(x)) is an integrable selection of the closed set multivalied
function xt— »3(co)(x, e(un)(x)+a(x)) (for more about integral of set valued maps and existence
of integrable selections, we refer to C.Castaing &M.Valadier [4]).

so (4.2) and (4.3), after summing over i, lead to
d>hom((u, a), Q)<limmf <Dn(co)((un, an), ft)

where we have use Holder's inequality and the estimation
lq(co)(x,e(un)(x)+o(x))l<C(l+le(un)(x)+a(x)|P-1)

(4.3)

in the last term of (4.3).

t
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(ii) Lower bound. Let (u, a)e W01P(Q, IRd)x?(Q). By theorem 1.8 of the chapter 1, there

exists vjÿco) in Wl,p(£X, IRd) such that u+lapX-ÿUmÿvÿco) and vÿ(co)=lai on 5£X. Setting

un(co):=vÿ(co)- lai in every Qj,
Fhom(u+lai, ai)>lim sup Fn(Cù)(un(Cû)+lai, Qj).

and, after summing over i

u=T-lnjmÿ un(co) and o=on,
cDh0m((u,o),Q)>linm sup <t>n(co)((un(co), on), Q)

Second step. We end the proof by using the s-density of t(Q.) in X(Q), a continuity and a
diagonalization argument like in the proof of theorem 1.8 in chapter I.l
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ChapterV

Open Problems And Partial Results.

5.1 Numerical approach.
5.2 Random integral functionals in non reflexive case.
5.3 Non equi-bounded random integral functionals in non linear elasticity.
5.4 References.

5.1 Numerical approach.
The situation and notations aie the same as in chapter I with d=2, m=l, p=2 and £n=“

ne IN*. Let Q in J, we subdivise Q on N small cubes of size h= Ne IN (the number of

interior "points " or "nodes" of Q is N2), h is the step of the subdivision of Q. (hi, hk) denotes
the coordinates of interior points Pk p (k, l)e N*2. T any elementary triangle which decompose

Q and t the reunion of six triangles Dk j i=l,...,6 of common vertices Pk { (see figure) .

y s

Dk.l3T
2

4
Pk,l 5

1 6

h

k x
We define by a classical way the family of functions (<pk by

«
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'1 if (i,j)=(k, 1),

0 if not,"Vi'V*
cpk ( is continuous in Q and coincides with an affine function on each triangle T.

For every A in W2,2(A) will denote the set of all functions ue L~(A), whose distributional

derivatives up to the order 2 belong to L2(A) and

L (8au)2dx)1/_lul2.A=(f
■'A

the norm in W2-2(A), where for every (p in C”(A), <dau, <p>=( — 1 )ÿ<u, > ;

aacp=

Ia|<2

loci5' 'ip
a=( at, a2) e IN2, lahoÿ+aÿ.

daiXl da2x2’
Consider the Sobolev subspace W01,2,N (Q) of WQ1'2 (Q) generated by (pk (,

W0U’N (Q)=Vect{(pk [; (k, l)eN*2}.

The following proposition is classical (see P.A.Raviait & J.M.Thomas [6] for instance).

Proposition 5.1. For every u in WQ2(Q)nW2'2(Q), there exists uN in Wÿ'2ÿ (Q) such that

I U'UN i,Q~ "Ï+N u 2,q'
where C is a constant independent on N.

Let us consider the following optimization problems

mQ(Fn(co), a):=Inf{Fn(co)(u+la, Q); W0‘'2(Q)}u e

and

tJ(Fn(ffl), a):=Inf{Fn(co)(u+la, Q); W0l,2,N(Q) }.u e

Recall that (cf chapter I) from the M.A.Ackoglu & U.Krengel subadditive ergodic theorem
almost surely

fhom(a)=nUmo mY(Fn(co), a)=Inf f m Y (Fn(co), a) dP(co).
,w+ n j

Using again M.A.Ackoglu & U.Krengel [1], we get almost surely

TU y (Fn(a>), a) dP(co).

(5.1)

nhmM7TlY (Fn(co), a)=Inf J
fh°m,N(a)ÿÿ(JTlN (Fn(ca)j a) forevery a in Mmx(l

Set
(5.2)

Lemma 5.2. 7TlY (Fn(co), a)=<ïïlY(Fn(G)), a)=Inf TTly (Fn(co), a).

»
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Proof. Since W<5’2’N (Y) CWQ1’2 (Y) , almost surely

7nY(Fn(co), a)<7Tly (Fn(co), a),

65

therefore
<JïlY(Fn(cû), a)<lim inf THy (Fn(co), a).

On the other hand for e in 1R*+ there exists un £
in WQ2(Q)nW2’2(Q), witch possibly

depending on 0) such that
Fn«o)(u +la, Y)<mY(Fn(co), a)+e,

1 9 Nand uN in W0’"' (Y) satisfying (see proposition 5.1)

Un,e"UN 1,Y “ l+N VJ2.Y‘(5.3)

Noticing that

Fn«*XV+'a’ Y)=Fn(W)(u„,e+,a* Y> ' Vla’Y)

< THy (F„(co), a)+e,

TO y - IFn(“><Ve+la. Y) '<V«>XV'a’ Y) I<
we get

<7TlY(Fn((o), a)+e,

and from (1.2) in chapterI

Y (F„((0), a)-C(l+ 1 VuN+aIJ>Y+ 1 Vun e+a IJY)I/2 1 Vu,, £-VaNI ≤

Y(Fn(œ), a)+e,

or equivalently

mY (Fn(co), a)<<JHY(Fn(co), a)+e+Rÿn-
where

<„=C(1+ 1 VuN+a \]y+ 1 Vun £+a lÿ)WIVu„£-VuN lo Y

lim R" =0.
N->+oo

Let us show that

For this we use the following estimations (direct consequence of proposition 5.1, and (1.1)

chapter I)

IVV%I„,/IVUNI1,Y
sc<e-n>«r

I VuM+a I <I Vu IN o,Y N o,Y
<C(e, n, a);

(5.4)

+ la I(5.5)

s
'0'
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=Inf fhom,N(a)J
N '

5.2 Random integral functionals in non reflexive case.
Let (L,%, P) be a probability space, O’ as in chapter I, a, P and y being three given

positive constants; 0<a<p. For a fixed element toe X, we define the class of functionals
(u, A)i-*F(co)(u, A) from L1'oc(IRd)xO into R*+u{+°°} by

[ I f(co)(x, Vu) dx if ue WJ,1(A)
= < JAF(to)(u, A)

+oo if not,

the function (x, a)i-*f(cû)(x, a) from RdxRd into R is measurable on x; convex on a and
satisfies a following linear growth condition with respect to a

alal-y < f(co)(x, a)<p(l+lal) a.e., for every a in Rd.
We define the sequence (Fn(tü))ng by
(5.7)

f f f(co)(— , Vu) dx if ueW1J(A)
< h £n
l +°° if not.

Fn(0))(u, A)=

Let 3)(£F) be the trace o-field on of the product a-field of IR
interest to stochastic homogenization in LÿQ) strong, of the process(Fn)ne jÿwith a state space

. We shall

(£F , 2i(5F). This type of problem provides its motivation in plastcity theory. Using an
R.Temam [8] approximation result stated in G.Bouchitté [3] theorem 2.1 1, we get an almost
sure partial epi-convergence result.

For every A in (?, every (0 in X and every a in Rd, we set

mA(F(co), a):=Min{F(to)(u+la, A); UGWÿA)}.
Assume that the map cot-»F(co) from X into cF is periodic in law and ergodic. As usual,

from M.A.Ackoglu & U.Krengel [1] subadditive ergodic theorem, there exist ICI with
P(X)=1 and ai— » fhom(a) from lRd into R such that, for every cube Q in Rd and every (ù in l'

fhom(a):= lim
t— )+oo

te IR

= Inf { I
nelN*

Moreover f*1001 is obviously convex and satisfies (5.7).
For a fixed element £2 in (?, let Mb(£2, Rd) be the space of all Rd valued Radon measures |i

with bounded total variation on Q i.e., the total variation norm

mtO(F(0)), a)
meas(t Q)

7nnY(F(c»), a)
dP(co)}.meas(nY)
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jj|i|=sup{<|i, (p>, (pe CQ(O) |(p(x)|<1}

is bounded. <|i, <p>:=j\p|i= j\pd|i denotes the integral of cp with respect to measure |i. With

the above norm, Mb(Q, Rd) is a natural dual of the space C0(Q, Rd) of continuous functions

on Q with null trace on c)Q equipped with the uniform-convergence norm. Ll(Q, IRd) is a

closed subset of Mb(Q, Kd).

I

Definition 5.4. For every convex function g verifying (5.4), we associate the functional G

from Mb(Q, Rd) into 1R denoted j*ÿg(|i) and defined by

G(|i):=sup{ J\|i - Jÿg*(v(x))dx; veC0(Q, Rd)},

g* is the Fenchel conjugate of g.
The space BV(Q) of the functions of bounded variation is defined as the space of all

functions ue1ÿ.(0) whose distributional gradient, Vu belongs to Mb(Q, lRd).

Equipped with the norm

= f lui dx+ f | Vu I ,) JO. JQ
u 1 BV(il

BV(Q) is a separable non reflexive Banach space, whose WU(Q) is a closed subset. It is

included in LP(Q), with continuous injection if l<p<ÿpThis injection is compact if in addition

l<p< . For the general properties of BV(Q) we refer to E.Giusti [4], V.G.Maz'ya [5],

L.M.Simon [7] and A.I.Vol'pert & S.I.Hudjaev [9]. Let x be the strong topology of Ll(Q).

Proposition 5.5. If T-epi lim Fn(co) exists almost surely, then its domain is BV(Q).
Proof, let u be an element in domain of T-epi lim Fn(co), by epi-convergence, there exists a

L*(Q) such thatsequence une
u=x-n!&~ v

Fn(co)(un)<+oo.

From (5.7), Vun is bounded in L*(Q, Rd), therefore (to a near subsequence ) converges

towards Vu in Mb(£2, Rd) weak, hence ue BV(Q). For the other inclusion it suffices to use
(5.7) and to recall (cf R.Temam [8, p.126] in the general framework of the space BD(f2)) that,
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the set C°°(Q, IRd) of all Revalued functions of class C°° in Q is dense in BV(Q) in the

following sense: for every ue BV(Q), there exists uneC“(Q) such that

ru=l-nhrnÿ un in L!(£2),

< Vunw Vu in Mb(Q, Rd) weak (i.e.a(Mb, CQ)),

f I Vu I dxi-* f I Vu 1 .1

We now define the integral functional Fhom by setting

jjhom(Vu) dx if ue BV(fl),

+oo if ueLl(Q)\BV(Q).

A plausible conjecture is Fhom=t-epi lim Fn(co) almost surely in LÿQ). We now state the

partial result.

Theorem 5.6. For every ue LÿQ), there exists a sequence une L(Q) satisfying

un'

Fhom>x-epi lim sup Fn(co) almost surely.
Proof. We invoke our method detailed in chapter I, to get for a fixed co in l'

Fhom>x-epi lim sup Fn(co) almost surely in Wl l(Q).

Fhom(u, Q)=<(5.8)

Setting
Fhom(u, Q) if ue WU(Q)

F(u, Q)-
+oo if ue Ll(Q)\ w'-VO).

Then, we obtain almost surely
F(u, Q)>x-epi lim sup Fn(co)(u, Q) for every u in L'(f2).

Going to the lower semicontinuous regularization in above inequality, we get almost surely
Fhom(u, G)>x-epi lim sup Fn(co)(u, Q) for every u in LÿQ),

where we have used cf H.Attouch [2] the lower semicontinuity of x-epi lim sup Fn(co) and the
fact that cf R.Temam[8], Fhom(u, Q) defined in (5.8) is the lower semicontinuous
regularization of F(u, Q).l
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5.3 Non equi-bounded random integral functionals in non linear elasticity.
It is known that f(co) given in chapter I (part 1.2) is never convex. On the other hand, it

is known that f(co) is an explicit function 7 of matrice a, comatrice com(a) and determinant
det(a) with

lim ?(œ)(a,com(a),det(a))=+«>.
det(a)->0+

In this way, it would be interesting to improve our results by taking a class that contains
Integral functionals with such integrand. Monotone troncature process on f(co), to obr ;

equibounded functions fm(co) (see for example H.Attouch [2]) seems unifortunately to fail in a

so general setting because we cannot control the link between the two parameters n and m at the
limit . A last improvement would be to introduce in the set V of optimization problem, the
constraint detVu>0 which garantees that u is an orientation preserving deformation. It seems to

be more difficult to deal with this last condition.
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Résumé. L'objectif des travaux de cette thèse est l'étude par le concept
d'épiconvergence du comportement asympthotique des suites de fonctionnelles intégrales
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Résumé. L'objectif des travaux de cette thèse est l'étude par le concept

d'épiconvergence du comportement asympthotique des suites de fonctionnelles intégrales

aléatoires non nécessairement convexes et non nécessairement coercives. On présente une
méthode directe utilisant le théorème ergodique des pnocéssus additifs, retrouvant ainssi

et précisant un résultat de S. Müller obtenu dans le cas périodique. Dans ie cas convexe
les variables primates et duales aléatoires sont étudiées Entre autres, un résultat de

convergence faible presque sure d'une suite de mesures de Borel aléatoires a été établi et

a été utilisé pour résoudre les problèmes à "trous” et à "fissures’' aléatoires.

Mots-Clés. Homogémésarion, Epiconvergence, Théorie Ergdique Des Processus
Additifs et Sous Additifs, Dualité.




