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Introduction générale. 1

Introduction générale.

Le présent travail porte sur l'étude de I'épi-convergence presque slre de
fonctionnelles intégrales aléatoires et a pour origine la modélisation de problémes provenant
pour la plupart de la mécanique ou de I'éléctrostatique, le milieu étudié présentant une
étérogénéité microscopique répartie aléatoirement. Ainsi, nous ferons, concernant ces
fonctionnelles, une hypothése probabiliste de périodicité en loi, généralesant la périodicité
classique. Pour I'étude de la limite presque slire au sens de I'épi-convergence, nous
utilisons la Théorie ergodique de processus sous-additifs.

Cette these se compose de cinq chapitre. Dans le premier chapitre, on généralise, au
cas probabiliste, les travaux de S.Miiller concernant ['homogénéisation de fonctionnelles
intégrales non convexes. Pour cela nous ferons sur les intégrandes associées, les mémes
hypothéses de croissance et de continuité, I'hypothese de périodicité étant remplacée par une
hypothése de périodicité en loi et d'ergodicité. Un théoréme ergodique sou-additif di a
M.A.Ackoglu &U.Krengel permet de surmonter les défficultés liées a l'aléatoire.

Dan le second chapitre, on retrouve par une autre technique les résultats péceédents.
L'intérét de la méthode ainsi mise en oeuvre réside dans sa flexibilité.. Elle a été notament
utilisée avec succés pour la résolution de problemes de structures différentes.On démontre
dans un premier temps un résultat de convergence faible presque siire de mesures aléatoires
A l'aide d'un théoréme ergodique additif. On obtient ainsi, la convergence faible presque
sire des fonctions test construites a partir des problémes d'optimisations localisés sur des
celules kY, ke N, Y=]0, I[d, généralisant ainsi la convergence faible des fonctions test
classiques obtenues par prolongement périodique d'une solution d'un probleme local.

Le chapitre trois est consacré a I'homogénéisation d'un probléme de Neumann a
"trous" aléatoires et d'un probléme a "fissures” aléatoires. Pour cela, dans le but de
caractériser le domaine de l'épi-limite, nous faisons une hypothése d'ordre géométrique sur

la répartition aléatoire des trous ou des fissures. L'espace de probabilité de base est alors un
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espace de Bernoulli ce qui permet d'utiliser les techniques de prolongement et se ramener
plus au moins au cadre coercif.
Le chapitre quatre est consacré 2 1'étude de la dualité. Classiquement on y définit le

Lagrangien L du probléme (P,) et le Lagrangien Lhom gy probléme homogénéisé (P ) a
partir des fonctions de perturbation g et vy, définies sur I'espace WCI)’p (D)=V(Q) ou

V(£) cst le sous cspace des tenseurs symétriques de (Lp'(Q))me. On démontre que y,

.épi-converge presque siirement vers gy, . pour la topologie produit des topologies faible de

W(l)y (Q) et forte de V(Q). Utilisant alors un résultat de H.Attouch, D.Az¢é & R.J.B.Wets,

on obtient, lorsque Lo 4 un unique point sclle (o, u), 1a convergence faible presque sire

de tout point selle de L, vers (o, u) et on retrouve, dans le cas probabiliste la relation

g€ e(u)),
Dans le demnier chapitre nous donnons quelques résultats partiels. Dans un premier
paragraphe, on aborde I'analyse numérique. Utilisant le théoréme ergodique du premier

chapitre, nous introduisons, pour tout v d'une partie de probabilité 1 de l'espace de

probabilité de base
"% (@)= him M J(F (), a)
0

ou
: - ,2,N
TN (F (), a):=Inf{ F(w)(utl,, Y); ue W (1)}

avec I,(x)=ax ct nous démontrons que l'intégrande {1°% de fa fonctionnelle homogénéisée

vérifie
hom,N

hom —lim 13 N
£ (a)=Inf f ()=lim lim T y(F(w), a).

Dans le paragraphe suivant, nous donnons un résultat partiel d'épi-convrgence dans le cas
ot nos fonctionnelles sont définies dans I'espace non réflexif WU(Q). La fonctionnelle

¢pi-limite conjecturée est de domaine BV({) ce qui introduit quelques defficultés technique

non encore surmontées définitivement pour prouver l'inégalité presque sire

FIOM< 1 épi-lim inf F ()
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ot t désigne la topologie forte de Ll(Q).

Ce travail a fait 'objet de deux publications en collaboration avec G.Michaille: une
premiere publication intitulée " Homogénéisation stochastique de certains problémes non
coercifs " parue dans Séminaire d'Analyse Convexe de Montpellier vol.20, 1990, exp.!1,
une seconde intitulée " Stochastic homogenization of non convex integral functionals"

parue dans Mathematical Modelling and Numerical Analysis, 329 - 356 vol. 28, n® 3, 1994,

" Enfin le chapitre deux écrit églement en collaboration et compléter par d'autre exemples fera

peut-etre I'objet d'une publcation fiture.
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Chapter I
Stochastic Homogenization of Non convex Integral Functionals.

1.1 Introduction.

1.2 Epi-convergence and Ergodicity.

1.3 Notations and preliminary results.

1.4 Difinition of the process {F : Fhom, ne M1,

1.5 Almost sure epi-convergence of the process {F ; FPOm e I},
1.6 A model of random integral functional.

1.7 References.

1.1 Introduction,
In this chapter, we propose a method for stochastic homogenization of a process
(Fp)ne ;1 With a state space (5, B(F)) where B(F) is a o-field on the class F of integral

functionals G of the type

G(u, A)=J. g(x, Vu(x))dx
A

in a sense explained later, A being a bounded regular domain in RY, u: A.R™ a vector valued
function, gz R&M™ 9, R an equi~oercive and equi-bounded function, measurable with
respect to its first variable and continuous with respect to the matrix variable of M™4 but not
necessary convex.
Given a probability space (X, %, P) and a measurable map Fi(Z,T)—(F, B(F)) with
F(w)(u, A):Lf(m)(x, Fu(x))dx.

If the law of F possesses some ergodic and periodic properties, the process (F ), py defined
by
F_(w)(u, A)=f f(w)(—"—, "?u(x))dx,
A ‘n

Fh om

epi-converges almost surely when ¢, tends to 0 towards a constant in F whose integrand

f29m i5 quasi-convex (and so convex in the scalar case m=1). More precisely, there exists a

subset £ of £ with P(X")=1, such that, for every w in z, every bounded regular domain A
F'™(u, A)=r-epi lim F_()(u, A)

-+
in WHP(A, R™), equipped with its weak topology or strong topology of L’ (A, R™) denoted ,
where
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phomg, A)=L O Fy(x))dx;

and for every a in M™*¢

thnm(a)z Inf Ee—a_slfﬁ_Y—)J; Inf{J. Yf(co)(x,'Vu(x)+a)dx, uEW(‘),P(nY, Rm)}dP(m),
n

ne [*
Y denoting the unit cube |0, I[d.

Under few hypothesis on @ from wlP (A, R™) into R and on a subspace V of
w!lP(A, R™), variational properties of epi-convergence lead to almost sure convergence of Inf
{Fn(co)(u, A)+P(u); u€V} towards mjn{Fhom(u, A)+®(u); u€V}, this last statement
_ Justifying the epi-convergence process.

These results generalize ones obtained by G.Dal Maso & L.Modica [6], G.Facchinetti &
A.Gavioli [11], K.Sab [14] in stochastic convex case and S.Miiller {13] in periodic non convex
case. We give a new proof by using a direct method, where sequences of functions, to obtain
the lower bound in definition of epi-convergence, are construct thanks to an ergodic theorem
which was first used in the calculus of variation by G.Dal Maso & L.Modica [7] in the convex
case by means of compactness method.

This non convex approach finds its motivation in non linear elasticity where f(w) is the
stored energy density of a composite material with random inclusion. Hevertheless, let us point
out that our method requires an equiboundedness property on f(w) and that the class ¥ isnota
correct model in non linear elasticity. Homogenization of functionals from a class &
constructed with polyconvex functions g which takes its values in R**U{+} seems to be
open.

Let us clarify the plan of this chapter. In part 1.2, we give definition and main properties
of epi-convergence and Ergodicity . In part 1.3, we give some notations and preliminary results
about A+ T\ ,(., a). In part 1.4 we define the process {F; From ne I}, The main results are
proposition 1.6 and Corollary 1.7 where we use the Ackoglu & Krengel ergodic theorem to
define F1°™, [n part 1.5, we prove our main theorem 1.8 by means of two lemmas [1.9, L.11]
(lower bound (i) and upper bound (ii) in epi limit process), and give in corollary 1.12, the
almost sure convergence of corresponding optimization problems. In part 1.6, we give a
standard example of non homogenous random function f(w) which is a model of stored energy
density for material with random spherical inclusions distributed with a given proportion in an
independence way in R3. The corresponding integral functional F(w) is then periodic in law,
ergodic and theorem 1.8 can be applied.
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1.2 Epi-convergence and Ergodicity.

Epi-convergence is a convergence notion for sequences of functions specially designed
in order to study convergence of solutions and values of corresponding minimization problems:
it is a "variational convergence".

Let us denote (X,7) a space X with a topology T and consider a sequence (F)) . gy of

functions from X into R, the extended reals. For simplicity we give definitions in the case 1
metrizable, for further details about epi<onvergence or I'-convergence in a general setting we
refer to H.Attouch [2], Dal Maso & Modica [5], De Giorgi [8], and De Giorgi & Dal Maso [9}].

Definition 1.1. The sequence of functions (F)),¢pq from X into R is said to be T-epi-

convergent to F: X— R at the point u€ X if the two following sentences hold
(1) For every converging sequence (Up), N> U, € X up—uin (X, 7)
F(u)Sl%rgigf F,(u).
(ii) There exists a sequence, (Uy), . p1» U, € X u,—u converging in (X, T) such that
F(u)Zlir{g’igp F (u).
We then write
F(u)=t-epi lim F_(u).
When this property hold for every u€ X, the sequence (F)) gy is said to be T-epi-convergent
to F and we write F=t-epi lim F,.
Functions defined by: :
T-epi lim inf Fn(u):=min{1§1n_1 InfF (u); u=t- lim ugts
T-epi lim sup Fn(u):=min{lilp_1'§ot_;p Fp(uy); u=r- lim u,},
are the lower and upper epi-limits of the sequence (F ), . g- It is straightforward to check that:
F=t-epi lim F if and only if T-epi lim sup FnSFSr—epinE(nminf F,in X.

n-—++x

Theorem 1.2 (variational properties of epi-convergence ). Let (F ) .p; a sequence of
functions from (X, ) into R which is z-epi-convergent, F=r—e;[)1i_, I +10131 F,.
(i) Let us assume there exists a "minimizing sequence” (u,), . gy i-€
F( un)Sl{?)t; F (u)+e, with g —0

which is r-relatively compact. Then

Inf Fﬂ(u)—)Min F(u) as n—+oo,
ueX ueX

and every t-cluster point of the sequence (u,), . gy does minimize F on X.
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(ii) For every t-continuous function G: X—R;
F+G=t-epi lim(F+G).
n—+o0
Let us give now few definitions and results about Ergodicity. Let (£, G, P) be any probability
space and (T,), . »d a group of P-preserving transformations on (X, T), that is to say
(i) T,is T-measurable;
(ii) PoT (E)=P(E) for every Ein % and zin 29, where 1,(E)=2+E;

(i) T01=r T_z='l';l , foreveryzand t in 24

z+t’
In addition, if for every set Ein U satisfying for every z in z¢, 1,(E)=E, we have

P(E) € {0;1}, (1), zdis said Ergodic.. A sufficient condition to ensure ergodicity of (t) 229

is the following mixing property: for every Eand F in
lim _P(r,ENF)=P(E) P(F).

|z]— +oo

J denotes the set of intervals {x, y[ in RY where x and y belong to 29 and consider a set
function P from J into L'(E, €, P) verifing the three conditions:
(i) ¥ is superadditifve, that is, for every A in J such that there exists a finite family
(A));¢; of disjoint sets in J whose union A belongs to 3, then
PAG2E ¥ ),

(i) P is covariant, that is, for every A in J and every zin 29,
?A+Z=YAOTZ’

(iii) SuP{EE'llSWL ¥, dP, A€ J, meas(A) # @.} <+oo,

Following M.A.Ackoglu &U.Krengel [1], ¥ is called a discrete superadditive process. If -¥
is superadditive, ¥ is said subadditive. The following useful almost sure convergence result
holds (see M.A.Ackoglu &U.Krengel [1] Theorem 2.4, Lemma 3.4 and Remark p.59):

Theorem 1.3.When n tends to +oo, ;133’[0 apd converges almost surely. Moreover, if
(1,),¢ 7418 Ergodic , we have almost surely :
.1 1
L5 (00 (W)= SUP ~TE(F(4d())

where E(.) denotes the probability average operator.
1.3 Notations and preliminary results

For m, de IN*, M™*d genotes the space of real m*d matrices a=(ald),=l .
j-'l’ o

equipped with the Euclidean Hilbert-Schmitt product a:b=trace(a 'b): In that follows, we shall
denote indifferently the norms in R™ and M™"¢
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® will denote the set of all open bounded subset in IR with, Lipschiitz boundary. For
l<p<+eoand A€ O, we consider the two classical Banach spaces
LA, B®={u: A R™; u=(u);, weL'(A), i=1,...,m},

W!PA, R?)={uelP(A, R™); ‘-;-'}eLP(A); i=l,...,m, j=1,...,d},
J
respectively equipped with the two following norms

o 1/p.
ol ([ P

ol ([ e Vucopax)'”
» A A

where Vu denotes the matrix valued distributions (g;'-) i=1,..m°
Vj=t,.., d
Wé’p (A, BR™) is the subspace of functions u in W'P(A, R™) with null trace on the houndary

OA of A and W, (R% R™) is the space of vector valued functions u, measurable in RY

satisfying the following condition: every x in R¢ possesses a neighborhood A such that the
restriction of u to A belongs to W' P(A, R™).
a, B, being two given positive constants, we define the subset F of the product space

WP (RARD)x®
R loc(RER™) as follows;

G belongs to F iff there exists a function g: R%M®™¢_, R measurable with respect to its first \
variable, and a positive constant L such that, for every a, b in M™dand x a.e

(1.1) ollP<g(x,a)<P(1+alf);

(12 Igxa)-gb)SLA+aP ' +bP) ja-b,

with, for every A € © and ue W, (R%, R™)

G(u, A)=J‘ g(x, Yu(x))dx.
A
For every z€ 29 every re R™", we define on & the two operators ,and p_by
(1.3 1,G(u, A):=G(tp, Z+A)=f g(x+z, Vu(x))dx;
A

p,G(w, A=t 6o, u, + )= 8 Vum)ax
A
with
T(x)=u(x-z) and p, u(x)=~:- u(rx).
Foreverya € M™% A € © and G € F we set
T A(G, 2):=Inf{ G(u+l,, A); ue W, (A, R™)}.

where 1, denotes the linear vector valued function whose gradient is a.We shall use in the sequel

the foowing elementar Y PP ey st -
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Proposition 1.4.

. MG, a) M, 4 (G 2)
) ARy =TT A ThAT0: =T e (G, 23

(ii) There exists a positive constant L depending only on L,a, § and p such that, for

every a, b in M™*¢
MAG, 2)  TA(G, b)
meas(A) meas(A)
Proof. Itis straightforward to check (i). We only prove (ii). For every a€ med, let us set

<L 1+ +pP 1) fa-bl.

Let n>0 and unew(l)’p(A, R™) such that

m(b)> Fciim(G("ﬂ +, A1),

We have
m(@)-m(b)< ey (Gluy 1y A)-Glun 1y, A)+1)

< mfAlg(x,Vun(x)m)-g(x Fug(x)+b)] dx =L

Using (1.2) and Holder's inequality, with p' denotes the conjugate exponent of p, we obtain

m(a)-m(b)< m&s(A)_[ (1+a+Vu, (0)F” 1+|b+Vu @Pax+ me:?s(A)
1/,
< Lia-b| meas(A)J‘ (1+La+'\7un(x)}r’ +Ib+7u ()F 1)de) P, measL(A) .
Therefore

(1.4) m(a)-m(b)SCLIa-b}(mJ-A(l+|a}1’+|b}r’+[b+vun(x);!’)dx)llp’,,_m_ea'l(A)

where C is a constant thalt depends only on p. On the olther hand, by (1.1),
b+V Pdx <———————G(u, +l;, A
meas(A)fA' iyl dxse meas(A) (g s A)

(m0 i)
= mb)+ =——3%

a (b) meas(A)

< ey —2

o a mea(A)
From (1.4) and after making n—0

| m(a)-m(b)<L’ ja-bi (1+af !+l

where L' depends only on p, a and . We conclude the proof by intrechanging the roles of a
and b.A
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1.4 Difinition of the process {F, ; Fhom, nc N},

WP (R4 RO

Let B(¥) the trace on F of the product o-field of R , that is the smallest o.

field on & such that all the evaluation maps
GG(y, A), ue W RRE R™), Ac®

are (B(F), B(R)) measurable, B(R) denoting the Borelian o-field of IR, as a direct
consequence of the definition of B(F), we have
Proposition 1.5. For every z€ 2 and r€ R*, 7, and p, are measurable from (F, B(F))

into itself.
We define now the process {F_ . € IN}. (X, %, P) is a given probability space and F

a given measurable map
F: (Z, V)&, B&F))

wF(w)
where

F(w)(u, A)=J’ flw)(x, Vu(x))dx.
A

We assume that (t,), . g defined in (1.3) is a group of u-preserving transformations on the
probability space (F, B(F), p), where p is the probability image Po F'! of Pin & (or the
law of F)
We summarize these properties upon F by saying that F is a random integral functional,
periodic in law and ergodic.

Let (g,),¢ 1y be a sequence in R"" which tends to 0, we define the process {F, ;
ne N} by

F(E, TVy=(&F, BF))
w—F (w)
where
F_(@)(u, A):=p F(w)(u, A)= fAf(w)(E‘n-» T u(x))dx.

Note that the measurability of Fn comes from proposition 1.5. In part 1.5, we shall study in the
sense of epi convergence, the asymptotic behaviour of { F,, n€ IN}. The main tool to define the
expected epi limite is the theorem 1.3 applied to the map Ars-TW, ,(., a) when A belongs to the
set of all open intervals Jx, y[ in 29 (or equivalently to the set J ). Let us give some properties
of this map.

Proposition 1.6. For every a in M™*¢, the map
J"" Ll(g’ 58(?)’ !-1)
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AH'.]TLA(., a)
is a discrete subadditive ergodic process in (F, B(&F), u). Moreover TN, ,(., a) satisfies the
following upper growth condition on LY%F, B(F), n)
<
TAG Dy g gy, SBAHIA) meas(A).
Proof. Let us prove the (B(F), B(R)) measurability of AT 4(G, a). From the
separability of W‘I)*p (A, R™), and the continuity of the map u—G(u+l,, A) there exists a dense

countable subset {u; ; ke IN} of W(l)’p (A, R™) such that
M, (G, a)= Inf {G(u, +1, A)
A ke N { k 'a }

where from the definition of the o-field B(F), the map G—G(u+l,, A) are (B(F), B(R))

measurable. The upper growth condition is a direct consequence of (1.1). So TN Al 2)¢€

LYF, B(F), p). For the subadditivity, we consider a finite familly (Ay); ¢ Of disjoint sets of

J with A;\CA and meas(A) UA) = 0. Let 0, GeF, iel and u; W3 P(A;, R™) which
1

satisfies, G(u;ﬂa, A)<T A‘,(G, )= Card(Dy ard(I) and deﬁneu'1 in Wl P, R™) by setting Uy -u

on A,. We have
M, A(G, 2)SG(up+, A)

=3 G(u ,
i€l n a

SE My (G, a)+n,
ier
which conclude the proof after making 1 tends to 0 and noticing that covariance property is
given by proposition 1.4 (i). I

We are now in position to define the integal function F1°™ in F which will be the
expected epi limite.
Corollary 1.7. There existX' in £ with P(Z") = 1 and a function f1°™: M™ LR such that,
for all w in ', all cube Q in RY and all a in M™

o ‘}TL o(F(w), a)
o a):= t_‘m :neas(t Q
te R

A)

M,y (F(w), a)
= Inf ny .
350, e or)
Moreover f°% satisfies (1.1) and (1.2) with L' defined in proposition 1.4 (ii).
Proof. By step.First step We assume that a belongs to the subset M™ 4 of M™d with

rational entries. Combining proposition 1.6, theorem 1.3, with the probability space (F,
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B(F), u), for every a€ M'™* 9 we obtain existence of E,€ B(F), n(E,)= 1 and fomaye R
such that, for all GEE,

M ,y(G,
Foma) :=n1.i.n}oe mlgs((nY)a)

m Y(H a)
- T o)
Recall that Y denoting the unit cube 10, 1[4
Setting L'=F'( NE, ), weobtain, from above
acpm' mxd
m, v(G, a)

. (13) i *ay= ]i"foo meas(nY)

- | B
ne

meas(nY)

for every a in M™%and every 0 in ' .
Let Q be any cube in RY wih side 1 and, for every tin R™™* set k'=[tn]-1, k+=[tnj+l, and
consider Q =k (Y+z), Q+=k+(Y+z’) the two cubes such that z, '€ Zd, Q"CtQCQ+. Thanks
to the inequality

M A (F(), 2)<TN 5(F(w), a)+P(1+]alP) meas(A\B)
whenever BCA in O and noticing that meas(tQ) is equivalent to meas(k+Y) and meas(k’Y)
whenever t tends to +o°, we get from (1.5) and the covariance property,

M.+ (F ,
o L.

o My o(F(w), a)
Shtl_rffogf meas(tQ)

, M o(F(w), a)
gl[nl il-}p meas(le

. My y(Flrw), a)
s im —y
=f1°0(3)
for every ain M™% and w in X', which conclude this step.
Second step . We extend the result of previous step to every a in M™*4 In that follows, w will
be a fixed element of I', Using proposition 1.4 and above step, it is clear that '™ satisfies the
locally Lipschitz condition (1.2) with the new constant L' for every aand b in M™d g0, by a
classical argument , one can extend 2O to M™¢ by setting, for every r in M™*¢,
f’om(r)=nli@m#1°m(an) where a_ is any sequence in M™*4  converging towards r. It is

straightforward to check that this extention verifies the same condition'(l.Z). On the other
hand, from
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M o (F(w),

|oma) - meas(tQ) 2 l< o) - 1hom(an)f+

It - tmeaw»(tQ) I+ tmeaS(tQ) ) rtl?eas(tQ) |

we conclude this step by using proposition 1.4 (ii) and letting t tends to +° and a_ tends to r.
It remains to prove that f2°™ satisfies the growth condition (1.1). The upper bound is
just a consequence of the proposition 1.6. In the other hand from (1.1) and the convexity of
r_f_lrlP we get

m tO(F(w) 3 a)
meas(tQ)

2a Inf {a‘as(L@f la+Fux){P dx, u€ WéJ’(tQ, R4 )}
Q

2alalP,
which gives the lower bound after going to the limit in t.1

We now define F'°™ in F by
Flom(y, A):=fAé‘°m(Vu(x))dx,

1.5 Almost sure epi-convergence of the process {F, . F hom e N},
Our main result is the following almost sure epi convergence theorem.
Theorem 1.8. LetZ' be the subset of £ with P(£")=1 defined in the_ corollary 1.7. For all @

in £'and A in 9, we have
FIoB(y, A)=r-epi lim F_(w)(u, A) in W' (A, R™),
n—+oo

in W!P(A, R™) equipped with its weak topology T or the strong topology of LP(A, R™),

We shall give the proof with T denoting the strong topology of LP(A, R™). From (1.1) and the
compact imbedding from W!’(A, R™) into L°(A, R™), we conclude in the other case.

The proof of lheorem 1.8 will be established by means of two lemmas: the upper bound in
definition of epi-convergence is proved in lemma 1.9, the lower bound in lemma 1.11, lemma
1.10 being just a simple technical lemma. In all what follows, w denotes a fixed elementof L'.

Lemma 1.9.Forevery A€ ® and every uin W! °(A, R™)
F1°%(u, A)<t-epi lim inf F (w)(u, A),
that is to say, for every sequence u, T-converging towards u,
F"™(u, A)slim nf F(w)(u,, A).



Ch. I Stochastic Homogenization of Non conv;:x Integral Functionals. 15

Proof .First stage. Assume that A is un open cube Q in R%and u=1,, aeM™ 1t ig
convenient and involves no loss of generality, to assume that u -1, belongs to W(l)'p (QR™

(see for instance S.Miiller [13] or G.Dal Maso & L.Modica [5], [6]). From definition of phom

corollary 1.7 and proposition 1.4 (i), we get
FPom(y, Q)=meas(Q)f**™(a),
/e o(F(w), a)
FHom(y, Q=meas(Q) lim — -2
. Q) meas(Q)n_’m meas(l/e, Q)

M o(F(w),
-.-meaS(Q)nl_if:‘<>° (rlx'féﬂr.ls(((g) g

<lim inf F_(w)(u_, Q)
n—+o00

which ends the first stap.
Second step. Assume that A€ © and u=l,.

For n > 0, there exists a finite family (Q,);¢ of disjoint open cubes include in A such that
meas(A\ U Q)<n. Since oM gatisfies (1.2), we get
i€l

Flom(y, A)<T FPOR(y, Q.)+Bn(1+aP).
i€l

Using previous step, superadditivity and non decreasing properties of the set function B+ 1-

+
epi lim inf F_(w)(., B) from ® into R~ (cf H. Attouch [2, p.156-157]), we obtain

FIoM(y, A)<T t-epi lim inf F (w)(u, Q)+ nB(1+/aP)
i€l

<r-epi lim inf F(w)(u, A)+nf(1 +iajP)
and we conclude by letting n tends to 0. ‘
Third stage. A€ and u€ WHP(A, R™). We use the previous step and the density of the set of
piecewise affine continuous functions in W!'P(A, R™) (cf LEkeland & R, Temam [10}). Let v,
u, in W'P(A, R™) such that u=t- lim_u,. For n>0, there exist a finite partition (A,);¢; of A,

A;€0and Uy in WHP(A, R™) such that IU'“nh,AS‘T and its restriction u; to A; is affine.

Set v, n=u,*+uy-u and denote by ":1 n its restriction to A,. By using the second step, we get for
every i€l
in L°(A;, R™),

i . i
u_=7- \4
n T nlix?w n,n

FRoup, Ap<tim inf Fy(w) (v, o A).

After summation over i, with superadditivity of lim inf, we obten
(16) Flom(y,, A)lim inf Fo(@)(vg g A).

On the other hand, by (1.2)
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F(0) (Vg0 A)SFy(@)ug, AYL] (1417uy(x) P49 vy (G 90y (x)- v, (X)) dx,

and after using Holder inequality, we get to a further subsequence with respect to n
(1.7 Fn(w)(vn’n, A)<SF (w)(u, A)+Clun-u|1 A

SF (w)(u,, A)+Cn,
where C will denote any constant that does not depends on 13 and n. Note that we have
assumed that lgrg inf F(w)(u;, A)<teo and so, thinks to (1.1), up to a further subsequence
with respect to n, uy and v, . bounded in W!P(A, R™). On the other hand, by continuity

property of Fo™,
(18) RO, ARFOR(, AL f (LT 70, (P (Vu0)-Tu, () dx
A

>Fhomy A).Cy.
From (1.6), (1.7) and (1.8), after letting nj tends to 0, we get
FP™(u, A)<lim jnf Fy(w)(u,, A)

which ends the proof of Lemma 1.9.1

Before proving the lower bound in the definition of epi-convergence, we shall need the
following estimaton for n-approximating minimizer of T o(F,(w), a).
Lemma 1.10, Let n>0, Q be an open cube in R with side n of the lattice in RY spanned by
10, nf, and v, ,(«) in WwoP(Q, R™) such that

Fo(@)(vy n(@)+l, QST o(F (), a)+n.
Then
[V n(e2)lg oSCNP(meas(Q)+n)

where the constant C depends only on «, f and a.
Proof of Lemma 1.10. In that follows, C will denote different constants which depend
only on o, f and a. By (1.1), omitting the variable w we get

(19) 190,138, 0 S TFo(6) (¥ 0 @

1 n
<— F , -
a mQ( n(w) a)+ a

p

<& (1+jaP)meas(Q)+
[0 4 a

<Cmeas(Q)+ U
a

On the other hand
(vn,n)g,qscnl’mn 'nfg'Q
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where C is the Poincaré's constant in W1 (Y, R™), Recalling (1.9) we obtain
Va 1o, @S CP(meas(Q)+m),

which closes the proof of lemma 1.10.%

Lemma 1.11.Forevery A in ® and u in WHP(A, R™), there exists a sequence (W, (W) e N

in W P(A, R™) such that
u=1~nl_{m up(w),

+o0

Fiom(y, A)2lim sup F(w)(uy(w), A).

’ Proof. By step.First step. Assume that u =1, a€ M4 | et >0 and (Q);cf > (Q)iey tow
finite family of open disjoint cubes with side n of the lattice in R¢ spanned by ]O, n[ such that

uq CAC U Q, meas( U Q)=6(n), with hm n_5(n)=0 (note that I and J depend on n).
el

Using deﬁmtxon of Fhom, corollary 1.7 and proposition 1.4, we get
(1.10) Fhom, A)FM(u, UQ)
i€l

=% meas(Q,)f°™(a)
i€l
= lim iEI‘IF!,Qi(I«‘H(w), a).
The suitable sequence of functions (u“(w))nen\l will be deduced from the approximite
minimizers of T, (F,(w), a). Precisely let vj, () in Wo*(Q;, R™) such that

Fa(e)(vh () ¥l Qi)st.(F.,(m, a)+ —

Card(1u))
and define v, o, 0,  in Wih(RY R™) by v, =v, inQ;, and u, 1=v,, - +1,. Recalling (1.10)
we get
F"°™(u, A)2lim sup F,(@)(u, g, iL€JIQ,)—n
2lim sup F (w)(u, o, A)-B(1+aP)d(n)-2n.
Therefore
(1.11) Flom(y, A)21im spp lim, sup Fy(w)(up g, A).
On the other hand

Uy N alg A Vn nlg A
and thanks to the lemma 1.10

p ——————
(1.12) Uy - a*g A‘C 2 ﬂ (meas(Q)+ d(IUI))
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<CnP(meas(B)+n)
where C is a constant that depends only on p, , B, a and B is any bounded set that containing

A. From (1.11), (1.12) and using a diagonalization argument (see H. Attouch [2, cor 1.16}),
there exists a map n +>1(n) such that n(n)—0 when n—, +o° with

u=r- im0

n— +co
FPO(y, A)2lim sup Fy()(uy ny A)-

It suffices to set Up=Up o n)

Second step. We assume that u is any element in W' F(A, R™). By continuity of FP°T(,, A) in
W!P(A, R™), it suffices to assume u to be piecewise affine and continuous function, and we
conclude by using first step and again a diagonalization argument. More precisely, there exists
a finite partition (A;);c;of A, A; € @, such that “=Iai+bi in A, where a;€ m™ xd and b; € R™,
Using previous step, there exists v:x in Wl ®( A, R™), possibly depending on w, such that
i p
u=r- lim_ v, in L'(A;, R™),
Ff(u, A)2lim sup Fy(w) (vp, A).

By an argument proved in G.Dal Maso & L.Modica [5],[6] or with some different technics in
K.Messaoudi & G.Michaille [12], we can construct, by modifying v:l, another sequence u:) in

WHP(A,, R™), such that

. i. . P i '
u=r- lim_ “:1 in L'(A;, R™), u =u on J4,,

h . 1
F Om(u, Ai)th{g’%p Fn(w)(un, Ai)'

The sequence (u,), ¢ [ defined by un-—-uil on A, satisfies, after summing over i
U:T-nlimoo uﬂ’
h .
F°%(y, A)zlim sup Fy(w)(u,, A).

When u belongs to W' P(A, R™), we conclude like in the last step in the proof of lemma 1.9,
by density and diagonalization argument .(see also S.Miiller [13]). §
We give now the following consequence of theorem 1.8.
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Corollary 1.12. Let {2 be a given element in @, T; a subset of boundary dQ of Q with
strictly positive surface measure and V the subset

{ue WP(Q, R™), u=u, on Iy}
where uy€ W!P(Q, R™), V being equipped with the weak topology of W'*(Q2, R®). If Fis a
random integral functional, periodic in law and ergodic, & a continuous map from V into R,
then F2°™(u, £) is lower semi continuous for the weak topology of W P(Q, R™), fom jg
quasiconvex, and

inf{F,(w)(u, 0 }+d(u) ; ue V},

converges almost surely towards
min {Fh"m(u, Q)+P(u); ue V}.

Proof. Let w be a fixed element in Z'. Since every t-epi limit is T-lower semi continuous (see
H.Attouch [2]), it follows, from theorem 1.8, that Fh"m(u, Q) is lower semi continuous for the
weak topology of W' 2(Q, R™) and that f"°™ is quasiconvex (see J.M.Ball & F.Murat [3] ).

For the last statement, it remains to prove that
FRO%(0)(., Q)+P=1-epi lim (F(w)(., Q)+d)in V.

But ® being t-continuous perturbation of the sequence (Fn("’))neu and so (see theorem 1.2
(i1) ), it suffices to prove that
FIoR(w)(., Q)=t-epi lim F (w)(., Q) inV

and thus, that, for every u in V there exists a sequence (un(w))nE . in V such that

um—nli@m u (),
FRO(y, A)2lim sup Fr(w)(u,(w), A).

For this, it suffices to modify, in a neighbourhoud of 0Q2, the sequence of functions u (w)
obtained in lemma 1.11, in such a way to preserve above condition, with, in addition, u=u (w)
in 0Q) ( see again G.Dal Maso & L.Modica [5],[6] ).&

1.6 A model of random integral functional.

We would like to give in this section, un example of non homogeneous random
function f(w) which will be a model of stored energy density for material with inclusions
distributed at random and for which, the corresponding integral functional is a random integral
Sfunctional, periodic in law and ergodic.
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Let us denote by J the set a functions g defined as in part 1.3, equipped with the trace
o-field B(Y) of the product o-field of RR*M™® 21 define the groupe of transformations
(1),ez0n U, by

T, 8(X, 2)=g(x+z, a).
Consider a map f from ZxR&M™ 4 into R, which is (T® B(RY® BM™ Y, B(R) )
measurable function and such that, for every w in X, f(w,.,.) belongs to . It is clear that for
every z in Z9 the maps 1,f from £ into § are (T, B(J)) measurable. We say that:
£ is periodic in law if, for every z in 2% Pof '=Po(t,f);
f is ergodic  if, for every E in B(Y) such that for every z in z4 1,E=E, we have
* Pofl(B)e {0,1}.
With some slight modification of the proof of G.Dal Maso & L.Modica [7] one can easily
show that corresponding random integral functional w+—sF(w) from £ into F defined by:

F(w)(u, A)= f flw)(x, Vu(x))dx; ue WP(A, R™) and A€ O,
A

is periodic in law and ergodic in the sense of part 1.3, ( Note that no convexity assumption is
required to obtain this last result in the proof of [7]). So, we have, by definition of o-field
B({), the twa following sufficient conditions to obtain the periodicity in law and ergodicity of
F (see also G.Dal Maso & L.Modica [7}).

Proposition 1.13.

(i) If, for all finite family (x;, a);; of R&M™9, the random vectors (f(., x;, 3)) j;
and (f(., x;+z, a,)) ;¢ have the same law for every z in Zd, then F is periodic in law.

. . . : d
(i If, for all inite family (xj, & 5) jer, (%j> bjs 8) jey In R&M™ LR
lim  P([EC. x;, 2)>GI0LEC, 2+y;, b)>s5;])
2= +oo
=P([f(., x;, 3;)>1;]) P(If(., Y bj)>sj]).

Then F is ergodic.

We naw give our example. Let g, h: M™4_ R be two homogeneous stored energy

density which satisfy (1.1) and (1.2), and consider a ponctual Poisson process s Th(w, .)

_ BRY . . .
from (Z,%, P) into N of parameter pu>0, which satisfies ( see for instance N.Bouleau

[4}):
(i) For every bounded borel set A in RY,

MN(w,A)= XL 6y(A)
yeD{(w)
where by(A) denotes the Dirac measure with support {y} and D(w) is a given countable subset

of R¢ without cluster point.



Ch. I Stochastic Homogenization of Non convex Integral Functionals. 21

(ii) For every finite family (A;);¢; of bounded Borel set in RY two by two disjoint
(T( ., A)); ¢ are independent random variables.

(iti) For every bounded Borel set A in R9 every k in IN*

e—u meas(A)

P{(T(., Ay=k)}=p* (meas(A)* ——p7—
(Note that Th(w, A)=Card(AND(w)), J; T(w, A)dP(w)=u meas(A)).

For a given r>0, we define the random non homogenous stored energy density by
f(c, x, 2):=g(a)*(h(2)-g(2)) min(1, Tb(w, B(x,r))

that is
h(a) if xe¢ U B(y,r),

f(e, x, a)={ D(w)

ye

g(a) if not.

f is then a model for a stored energy density of a composit material in R¢ B((y,r))y€ D(w)

being the rescaled random inclusions with a probability expectation p meas(A) in every

bounded Borel set A. On can see that f satisfies the hypothesis of proposition 1.13, and so
defines a random integral functional, periodic in low and ergodic.
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Chapter IL

Ergodic Theory: Some Tools for The Calculus of Variations.
Application to Stochastic Homogenization of Non convex Integral Functionals.

2.1 Introduction.

2.2 Notations and additive ergodic theorem.

2.3 Almost sure weak convergence of sequence of random Borel measures.

2.4 Almost sure weak convergence of a sequence of functions.

2.5 Application to stochastic homogenization of non convex integral functionals.

2.6 References.
2.1 Introduction.

Let Q be an open regular set in r¢ u a given random Borel measure from a probability
space (L, T, P) into the set M(IRd) of non negative regular Borel measures on IRd and (€ ), N
a sequence of positive real numbers which tends to 0. Define the sequence (u ) gy of maps
from Z into the set M(Q) of non negative bounded regular Borel measures in ( by

1 (@)(A)= € () (;‘—A )

n
for every Borel set AinQand winZ.
Under appropriate integrability assumptions on p, we study the almost sure weak
convergence of (1 _(.)), g in M(€2). We shall assume that p satisfies the so called covariance

property in ergodic Theory
PT ) (A)=p(w) (z+A)
for every bounded Borel set A in le, where (), ¢ is a group of P-preserving transformations
of (£, T, P) and S any subgroup k2%0f (Zd, +).
More precisely, using an adaptation of an additive ergodic theorem due to Nguyen Xuan
Xanh & H.Zessin [7] proved in part 2.2 (see theorem 2.1), we shall establish in part 2.3 the
following convergence theorem:

Theorem 2.4.
(i) If almost surely (p 2(0)), eN is tight, then almost surely u, (w) converges for the

narrow topology towards 8(w)dx where
1 F
8() =3 E () (10, k),
g7k denoting the conditional expectation opetator with respect to the a_field
F ={EC¢T; 1 (B=E ¥ zek2%,
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(if) If (1), ¢ is ergodic, that is to say, if & contains only sets of T with probability 0
or 1, then, almost surely u_(w) converges for the narrow topology towards 8dx where

6:= I}E u() ([0, (9.

(For the relevant definitions and notations see Section 2.2).

In part 2.4, we give a stronger result in the particular case where p(w)=u(w, .)dx,
u(w, .) belonging to Lfoc(IRd, R™), 1<p<+oo, Under suitable integrability assumptions, we

prove the following result:

Theorem 2.6. Setting u (w, x) :=u(w, -’L), we have
€
n

(i) in the case 1<p<+oo, almost surely u_(w, x) converges towards

Eg kf u(., x)dx
Joxd

in LP(Q, R™) weak if p#+oo (in L (Q, R™) weak* if p=+co).

(ii) in the case p=1, when () is ergodic, almost surely u (w, .) converges

Z€S
towards

Ef u(., x)dx in LY(Q, R™) weak.
joxg

This last theorem generalizes, in the probability case, the well known weak convergence
result about the sequence constructed from a periodic function u in Llpoc(Rd, R™) by:

X
u_(x):=u(-).
a En

Note that the covariance property on the measure u(w, .)dx is equivalent to u(rzw, X)=

u(w, x+z) and so, in the non probability case, to the periodicity of u. For a proof of this
classical result, see for instance F.Murat & J.Ball [6} or B.Dacorogna [3].

In part 2.5, we give an application of theorem 2.4, 2.6 in homogenization of non
convex random integral functionals defined in W! ?(Q, R™) by

F_(w)u, Q)=I (W) Vu(x))dx .
Q &

Using theorem 2.6, we construct a sequence (U (W, Ny in ’W‘ P, R™) such that
floXx/ey, Vun(w, J+a)dx converges almost surely for the narrow topology, towards
197 2) dx.

o
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The functional defined by

F""“’(u):f oM Vu(x))dx,

Q

will be almost surely the expected epi limit of F n(co)(u, Q) for the strong topology of
L°(Q, R®) in WP(Q, R™),

2.2 Notations and additive ergodic theorem.
Let (£, T, P) be a probability space. For ke N*, we consider the subgroup k2 of
(?i'..,d, +) and a group (Tz)zekZd of P-preserving transformations on (E, ). let us recall that T,
" satisfies for every z,tin 124
(i) t,is C-measurable;
(ii) Pot,(E)=P(E) for ¢very E in ;s

-1
TSt

(iti) T,0T=T .

z+t?
F i denotes the invariant sub o.field of T for (t) zek2d> that is:
F ={EeT; 1(B=E Vzek2%.
If X is any topological space, B(X) wiil denote the Borel o-field of X.
1 F
For every function f from E into R™ which belongs to £ (£, T, P, E”K £ will denote the

vectoriel valued conditional expectati;t;: of f Wi}h respect to &, :
kel k
&,
(1), zd IS said ergodic if EFk is reduce to the sub o_field of sets with probability 0 or 1. In

this case, by a classical probability argumc;%:, we havc almost surely
Tk
E " f=Ef,

where E f is the vector valued expectation of f:
Ef=(Ef). .
1 Hl,...m

EBb(‘P.d) will denote the family of bounded Borel sets with positive Lebesgue measure, We
adopt the notation meas for denoting Lebesgue measure on RY A sequence (A ) cpy of
convex sets in EBb(lEd) is called regular in the sense of Nguyen Xuan Xanh & H.Zessin [7] if

there exist an increasing sequence of intervals (In)n €N in EBb(IRd) and a finite constant C

such that, for all nin N
meas( [ )<C meas(A )

Al
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For any set A of EBb(Rd) , (A) denotes the following supremum

e(A):=sup{r>0, 3B(x, r)CA},
where B(x, r={y€ le; HX~y"Sr} is the closed ball in R¢

‘Theorem below is a straightforward consequence of Nguyen Xuan Xanh & H.Zessin
theorem for additive processes (see Nguyen & Zessin [7] or U.Krengel [5, p. 209-211]).

Theorem 2.1. Let # be a map from EBb(le) into £ 1()2, <, P) such that:

Additivity: for disjoint A, A, in B, (RY), % AUA; -% <54/

o . emd . _ .

Covariance: for every zin k& and A in €Bb(1Rd), H Aorz—éﬂfmz,

Domination: there exists a>0 in &£ l().3, T, P) such that | &4 A | <a for all convex set
A€ B, (RY with Ac[0, [

Then, for any regular sequence (A ), ¢ py Of convex sets such thatnli_’rgm p(A )=t

[0.k({
Proof. For proving above result, following the proof of Nguyen Xuan Xanh & H.Zessin
[7, p.143], we use the fondamental results of theorem 3.7 and corollary 3.10 p.138 in above
paper (see also U.Krengel [5, p.209-210}) which are summarized in the following lemma:

1 =7k
Jim | = = An) X E‘(IL #&_ d,almost surely.

Lemma 2.2. Let a, b be two random variables with a, b in &£ 1()Z,CC, P), 220, (A ) oy be 2
regular sequence of convex sets in RY with nl_imme(A D=1 and (1'2)z€ zd 2 group of

P-preserving transformations whose invariant o-field is # (k=1) then almost surely

. . 1
© nﬁ%m;)'ze;dn%b”z:g b,

(ii)

ao'rz=0,

lim mea;( ) L
! An z€2dﬂ.d:n\ A,
where:

A= U 20, k% A= U @+[0, k),
zexn - ZGYn

X ={zekZ® ; 240, K'CA }; Y ={zek2"; 2+[0, k('nA_#0}; ke N,
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-

Let us now prove Theorem 2.1. For every z in kZd, we set z=kt , t€ 2% and we
define the P-preserving group of transformation (7',), . »d by 7' =1, whose invariant o.field is
& Applying (i) of above lemma to b= o and to the regular sequence of convex sets

{0k
(% A) ., we get almost surely,

neN
d
k '
M = L H T = Eg ke o
that is:
. 1 E}
ey E o dE s

z€ kZdnAn
On the other hand, by additivity, covariance of & with respect to (Tz)zekzd and domination,
we get:
|t - £ & T (W) < b aoT (w)
An zekZdnAn fok(*"2 zekzdnin \Ap ‘

which gives our result thanks to (ii) of above lemma.l

2.3 Almost sure weak convergence of sequence of random Borel measures.
M(]Rd) denotes the set of non negative regular Borel measures on RY equipped with

M., the trace on M(RY of the product o_field of R EB(R‘S.

Definition 2.3. Every map from X into M(RY which is (T, M- ) measurable will be called

a random Borel measure.
Note that above measurability is equivalent to the measurability of maps wrspu(w)(A) from X

into R, for every A in B(RY.

In that follows, we consider a given random Borel measure p which satisfies almost

surely, the two conditions

(2.1)  wp(w)A) belongs to L (X, %, P) for every bounded set A in B(RY,
(22)  n(w)A+2)=p(t w)(A) for every bounded set A in B(RY.

Q being a bounded convex open set in Rd, M(Q) the set of non negative bounded regular
Borel measure on (2 and (€ ) - gy @ sequence of positive real numbers which tends to 0%, we

define, for every w in &, every set A in B(Q) the sequence (n (w))rl€ g in M(Q) by

B (W) (A):= e u(w)(—-A)
n
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We shall study the asymptotic behaviour of the process (u ) o gy for the narrow topology, and -
more precisely, the almost sure convergence of My en for the c(C;(Q), Cb(Q))

topology, C, (€} denoting the Banach space of continuous bounded functions from € into R.
For this let us recall that a subset H of M (Q) is said to be tight if, for every n>0, there exists a
compact subset K of {2 such that

v(KC)<n V veH,

and that the Prokhorov compacity theorem asserts that every tight and bounded subset of M(Q)
is relatively sequentialy compact for the narrow topology. We are now in position to prove

Theorm 2.4.
(i) If almost surely (M (D)ye N is tight, then almost surely p () converges for the

narrow topology towards 6(w)dx where

8(wo):= iEE‘CF kL ()([0, k9

(ii) If (1)) ,¢ | zd s ergodic, then almost surely u_(w) converges for the narrow topology
towards 8dx, where
1

EUC0, K.

0:=

Proof. Proof of (i).
First step. We prove that there exists a set ¥ in T with P(Z')=1 such that, for every w in )
the sequence (un(w)) €N is bounded. Thanks to Prokhorov's theorem we shall deduce, for

every fixed w€X, the existence of a subsequence (ua(n)(co))n€ N which converges for the

narrow topology. (Note that o(n) is eventually depending on w).
For this, for every bounded Borel set A, and every w in I, let us define
H A=) (A).

& is an additive process from €8b(IRd) into Sﬂl(E,CC, P) which satisfies all conditions of

theorm 2.1. Applying this theorem for the regular family (-~ Q) g e obiain existence of z
€ n

n

in T with P(Z")=1 such that, for every w in £’
o c94’1/8,10«0) _
n— +oo m&s( 1/€nﬂ) -

éej K (X0, kY,

and so
im 4 (w)(Q)=0(w) meas(Qd).
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For every fixed  in Z', the sequence (11,(6)),¢ gy is then bounded in G (Q) and tight (by
hypothesis). Thanks to Prokhorov's theorem there exists a subsequence (u a(n)(w)) n€N such
that

Jim p o @)=v(e)

for the narrow topology. The problem is now to identify v(w).

Second step. Raisoning like above step, for every Borel set A on the form QNQ, (QNO)" or
(QnQ)n where
RN \'__.,(Qnﬂ)j:={xe R™; d(x, (QNQ)%)2n};

I S
roo

- - Qn);:={xeR™; d(x, QNQ)<n},

Q var);ing in the family of open intervals in RY with vertices in ©%and n varying in @, we get
existence of 2"=Q £, with P(E")=1 such that, for every w in %" and every A in above family:

lim p (w)(A)=0(w)meas(A).

Third step. Let us fixe 0 in £'NE" and prove
v(wXO(QNQ))=0.
We have
(2.3) v@XQNQv(®) (QNQ'™).
But, by properties of weak convergence of measures and the two above steps,
v(@(@NQYM)<tim jnfp  ((QNQ'D

=0(w) meas((QNQ'™),
so that, with (2.3)
V(w)(m <0(w) m]imm meas((QNQ) I/m)
<0(w) meas(QNQ).
On the other hand
V(@XQNQ2V(WX(QNQ) ),

and, again by properties of weak convergence of measures and the two above step,
v(w)}(QNQ),, )2lim sup Ho@@(QNQ), )

=0(w) mms((ﬂﬂ())1 /m),
so that, '

WwXQNQ)26(w) meas(QANQ).
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We finally get, thanks the above inequalities,
V(wXHQNQ))=0.
Last step. Applying first step, and a classical result about narrow convergence, we get, almost

nl_i’mmj‘ fdu O(n)(w) =f fdv(w)
Q Q

for every bounded function f from Q into R which is y o(n)®)-measurable for every n€ N

surely

and such that the set of its discontinuous points has a v(w) null measure.
In particular taking f=X A Where A is a set on the form QNQ, Q being any open interval with
_ vertices in Q4 we get thanks to third step

AL By (0 (A)=V(w)(A),
and so, with the second step, v(w)(A)=8(w) meas(A). Since the Borel o-field B(Q) is
generated by the family of such A, we obtain v(w)=0(w)dx. With classical properties of
narrow convergence, for every w in z'm:", all the sequence (u u(oJ))nE i converges towards
0 (w)dx, which closes the proof of (i).
Proof of (ii). It remains to establish that under the Ergodiciry assumption, almost surely, the
sequence (U Il(oo))Il €N is tight.
Let € Q" and K a compact convex subset of Q such that (one can suppose 6#0)

meas(K° PU
0

Raisoning like in the first step for the proof of (i), we get existence of 2 in G with P ) 1
such that, for every w in Y=n ¥

neQ+
Jim (w)(K) (@)Y - lim u (w)(K)
=meas(K 8.
So, for n>N(n)
u (W)(K<n,

On the other hand, measures p_(w), n=1,...,N(n) being regular, there exists a compact K (w)
in Q such that

pn(w)(K§)<q for n=1,...,N(n).
Setting K’ (W=KU( U ,N(n)K"(w))’ we obtain for every w in ' and every n€ [N

n=l,..

i (K (w))<n
which closes proof of (ii).§
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2.4 Almost sure weak convergence of a sequence of random functions.

In this section we consider any function u from ZxRYinto R™® satisfying the following
properties for [<p<+eo,

Case p#l.
(2.4) u(w,.) belongsto L[pOC (]Rd, R™) almost surely and for every A in EBb(le), the map

UJHJ‘ u(w, x)dx is (T, B(R™)) measurable,
A

(2.5) Forevery A in %b(le), the map wa | u(w,x) Ipdx belongs to &£ Y., p),
A

(2.6) Forevery zin kZd, u(w, x+z)=u(t,w, %) . 5., a. e

Case p=1. In this case, in addition to (2.6), we make stronger hypothesis than (2.4), (2.5)
that is

(2.4.5) The map (0, X)—u(w, x) from ExA into R™ belongs to & (ExA, dPadx)™ for

every A in EBb(IRCB.

Remark 2.5. In many applications arising from the calculus of variations, u(w, .) is a
minimizer or an n-minimizer of Inf F(w, v), where F is a normal integrand from £xX into R ,
X

that is w=$ epi F(w, .) is a closed set multifuntion, X being a subspace of LP( Q, R™). This
property on F provides measurability of wu—»l}x}f F(w,v) and, thanks to a measurability

selection theorem, we get the existence of a map w—su(w, .) which is (T, B(X)) measurable,

Consequently, (OI—)J‘ I u(e, x)Ipdx is (T, B(R)) measurable and, with the following
A

diagram where @ is linear continuous (use Holder inequality)
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fu(w,x) dx

A
Rm

_ we shall obtain the (T, B(R™)) measurability of ws I u(w, x)dx,
' A

Let (€ ), ¢ 1y D€ @ sequence in R™" that tends to 0* and define the sequence (U)e N

from £xR%into R™ by u (w, x):=u(w, ), we have:
£
n

Theorem 2.6. With assumptions (2.4), (2.5), (2.6) if p#1 and (2.4.5), (2.6) if p=1, for
every bounded convex open set () in IRd, we have:

(i) Case 1<p<+oo. Almost surely the sequence (u (w, .)), ¢ gy COnverges towards
E? kf u(., x)dx
joxid

in LP(Q, R™) weak if p#+o, in L™(Q, R™) weak-* if not.

(ii) Case p=1. If () e xz¢ is ergodic, almost surely the sequence (u (w, .)) ¢ iy

converges towards

Ej: d u(., x)dx,
J0.k[

in L'(Q, R™) weak.
The proof of the theorem 2.6, will be a direct consequence of the following lemma

Lemma 2.7. Under hypothesié (2.4), (2.5), (2.6) if p*1 and (2.4.5), (2.6) if p=1, for every
bounded convex open set € in IRd, there exists £ in U with P(Z')zl such that, for every

\J

WeEX :

(i) The sequence (u (w, .)), ¢ g is equibounded in L°(<2, R™), more precisely
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=meas(Q) £ “:F ha(., 01 dx,
xpd

tim 1N

actually, this assersion holds under (2.5) and (2.6) if p#1;

(ii) For every interval Q with vertices in ©¢

f un(w, x)dx
Qna

copverges towards

meas(QN€) £ “f u(., x)dx;
Jok¢

(iif) In the specific case p=1, if (1,),, »d is ergodic, the sequence (u (w, .)) ¢ gy IS
equiintegrable, that is: for every £>0, there exists n>0 (possibly depending on fixed w ) such
that, for every Borel subset A of (2 with meas(A)<n,

sng- tu (0, x) I dx<e.
A

Remark 2.8. In the case p=1 (i) and (iii) in above lemma imply uniform integrability of the
sequence (u (®, .)),ep> that is equivalent by Dunford-Pettis theorem, to the relative

compacity of the sequence (un(w, MNaeN for the weak topology of Ll(Q, R™). Assertion (ii)
allows us to identify the weak limit.
Assuming for the moment lemma 2.7, let us prove theorem 2.6. For this, w is a fixed

elementin L' and the technique reproduced bellow is then classical (see Dacorogna [3, p.19-
20] for instance)

Proof of Theorem 2.6. Proofof (i ) (1<pS+e0). Even if it means doing the sequence
(u (@, ) en substitute for

u (W, ) - Eg:kj: u(., x)dx,

okt

thanks to (ii) of lemma 2.7, it suffices, under hypothesis
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u_(w, x)dx=0
n— +oo n
QnQ
for every interval Q with vertices in Qd, to prove that for every v in Lp'(Q, R™)

lim f u_(w,x)v(x)dx=0
n=ie Jo 0

where
P
ﬁ={px‘fp*+”’

1 if p=+oo,
Letvin Lp'(Q, R™), £>0 and i%l %XQ,na 2 step function, Q being any interval with vertices
in Qd, such that
Iv-Z aixgnal (g, mmy<e
We get

IJ‘Qun(w, x).v(x) dx‘Slun(w, .)le(Q’ ]Rm)lv—i% aiinngle'(Q, R™*

i€l

+1 aif un(w, x)dx |
QnQ

<Ce+ X Iail | un(w, x)dx |,
i€l Qiﬂﬂ

C denoting any constant that does not depends on n. After making n tends to +° and using (ii)
of lemma 1.7, we get

mnlj'u(wngnmdSCe.
n— +o0 ﬂ n

Proof of (ii) (p=1). Thanks to equiintegrability (iii) of lemma 2.7, for € >0, there exists 5>0
such that

2.7 Slﬁpj“ Iun(w, x)dx <¢,
3
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where

Q=0 {xeQ, lu_(w, x) [>8}.

On the other hand, let ve LN(Q, R™) and i%l aixQ nQ astep function like in proof of (i) such
1

that

1
2.8) Iv-Z axgnal g, BR™
.- . | [0 |<cC.

where C is a positive constant that depends only on |v|
@):

L@, R™) We get, like in proof of

IL u (@, )v(x)dx| < fn bu (@, 0 Hv(x)-Z axq(0ldxr

+CE, | u (s, x)dx |

Qna

sfn lu @x) (V001 +X Ta;)dx+

o)
+6 lV“%I a‘XanQ l dx+
o0
o
+CL | un(u), x)dx |,
1€l Qiﬂﬂ

so by (2.7) and (2.8)

IJ‘Q un(w, x)v(x)dx[_<.C€+z-:+Ci2€ZI lfQinﬂ un(w, x)dxl .

We conclude thanks to (ii) of lemma 2.7 after making n tends to +oo.8
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It remains to prove Lemma 2.7.

Proof of (i). It suffices to applied the first step of the proof of theorem 2.4 where
u(w):=|u(w, .) |p dx. (Note that (2.5) or (2.4.5) if p=1 and (2.6) imply respectively (2.1) and
(2.2)).

Proof of (ii). We apply second step of theorem 2.4 to each measure pi(w)::ui(w, Jdx
i=1,...,m, where ui(w, .) are components of u(w, .). (Note that if p#1 (2.4) and (2.5) imply
(2.1) thanks to Holder inequality).

Proof of (iii) . Raisoning on each component, one can assume u(w, .} be a scalar valued
function. Let 5€ Q" a truncation parameter destined to tend to +o° and set
min(d, u(w, x)) if u(w, x)20
ug(w, x)=

-min(d, -u(w, x)) if u(w, x)<0,
vg(w, X)=u(w, x)-ug(w, x).
It is straightforward to check that vy satisfies (2.4.5) and (2.6). Applying (i) proved above to
vs, we get existence of Ly in % with P(Zy)=1 such that, for & in L' = 0T
€

(2.9) l_l.%J‘ |v5 (e, x) | dx=meas(Q) E :F |vz5 (., x) | dx.
1 Q ’ jo.xd .

For >0, let 3 be large enough so that

E Fval., %) | dx<%.
:’:lok[d ® z

Indeed by (2.4.5), the map (w, x)—u(w, x) belongs to £ ' (Ex]0,k{, dPedx) and

f :’: d 'Vb(“” x)ldP(co) dx=—25 f u(o, x)|dP(oo)dx.
T Jiokl KJ (0,0, [(w,x)| >5}

So, recalling (2.9), for a fixed w in T we get existence of N(g)€ IN such that
€
(2.10) su f | Vg,ol0, Xx) | dx<5-.

> NE) Ja

Let A be a measurable subset of ). For n > N(g) and by (2.10) we have

£ <8
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fA (oo, x)ldefA vy o(0, x)ldx+J'A luy (0, 9] dx

<;—+5 meas(A),

€
and, for meas(A)<£ =1] we obtain

ng%).[\ lun(w, X) | dx<e.1

2.5 Application to stochastic homogenization of non convex integral
functionals

Let M™ 4 be the space of real mxd matrices, o, f and L three given positive constants
and (1), »dan ergodic group of P-preserving transformation (note that it is easy to show that
(T,),czd i ergodic for every ke N) in a probability space (L, T, P), C being P-complete.
For every w in X, every A in (9, the family of bounded open subsets in RY, every u in
W!'P(A, R™) and every p; 1<p<+, set

F(w)(u, A):= R flw)(x, Yu(x))dx

where, f(w) is a real function defined in R%M™*¢ measurable with respect to its first

variable and satisfying for every a, b in M™4 almost surely and almost everywhere

Q.11) alal <f(w)(x, 2)sP(1+1al’);
(2.12) I fw)(x, a)-f(w)(x, b)lSL(l*‘lalp‘l*" |b|p_l) fa-bl;
(2.13) f(r w)(x, A)=f(w)(t,x, a) for every z in 24

Let us remark that, thanks to continuity property (2.12) on f(w), the map
u—F(wXu, A) from W!P(A, R™) into R is continuous for the strong topology of
WA, R™).

d o m

We assume moreover that the map w—F(w) from X into Rwll‘;cp(m > By i
measurable, the second space being equipped with the standart product o-field, so that all maps
wF(w) (u, A), Ain O, uin wiP (A, R™) are random variables. A sufficient condition for a
such measurability is the (T B(R%Ye BM™ Y, B(R)) measurability of the map (w, x, a)—»
fw) (x, ) from ExR&M™4into R.

S
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Q being a given bounded convex open set in RY with piecewise ! boundary, and
. *+ . .
(€ [ @ Sequence in R which tends to 0, consider the sequence (Fn(w)(., Q))]1€ N defined

by
F (w)(u, Q):J' f(w) (2> Vu(®)dx in WHP(Q, R™),
Q €,

Our purpose is then to establish the following theorem which is an essential step in the proof of
epi-convergence of the sequence (F n(., Q)) . INin wP(Q, R™) equipped with the strong
. n

* topology of LP(Q, R™).

Theorem 2.9. There exists v (w) in WPy Q, R™) such that, almost surely

lim v (@)=l in L(Q, R™) strong,
Jim, F (@), (@)= Inf, EGT,\ (F(), ),
where I is the linear function from R%into R™ defined by L,(x)=a.x, ¢ M™ and
My (F(), 2):=Inf { Flw)(u+l, kY) ; ue Wi P(kY, R™},

Y being the unit cube |0, l[d.

For proving above theorem, we shall need some measurability properties about the
closed set valued multifunction I: E::W(I)’p(kY, RR™) defined by:

T(w):={ue Wy (kY, R™) ; Fw)(utl, kST, y(F(w), a)+n},
where ) belongs to o™,

Proposition 2.10. The closed set valued multifunction I' is measurable and consequently,
possesses a (T, EB(W(‘,’p(kY, IR™))) measurable selection W n(w) from X into

WP (kY, R™).

Proof. Continuity of the map uwsF(w)(u, kY) and measurability Hypothesis on F imply that
(, u—F(w)(u +1,, kY) is a Caratheodory function from ExW'*(kY, R™) into R. Wy (kY)
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being separable, by a classical argument the map wrs T, v(F(w), a) from L into R is a

random variable.
On the other hand, the Caratheodory function (w0, W—F(w)(u+l, kY) from ExWyP(kyY, R™)
into R is actually a normal integrand: it is a direct consequence of the separability of

W(’)“p (kY, R™). The level set multifunction constructed from this normal integrand and the

random variable w+— Tty (F(w), a) is then measurable and possesses a measurable selection
(see C.Castaing&M.Valadier [2], C.Hess [4], ].P.Aubin & H.Frankowska [1]).R

Applying proposition 2.10, there exists a (C, EB(W(I)’p (kY, R™) ) measurable selection

WU, T](u)) from X into W(l)'p (kY, R™) such that
(2.14) ‘JTLkY (F(w), a)SF(w)(uk,n(w)ﬂa’ kY)Ska(F(w), ay+n.

loc

Let us extend u r](w) on W!P (Rd, R™) in the following way:

Gk,n(w, )=ty (10, x-z) if x belong to z+kY.
It is clear that

(2.15) ﬁk n(w, x+z)=ﬁk q(rlw, x) for every z in k29

On the other hand, noticing that on A in EBb(le)

uk,ﬂ(w’ ')=Z€E[:(A) Xz+kYn Auk,f}(Tzw’ -2),

where [(A)={z€ k24 . z+kYNA+a} and Xg is the caracteristic function of any set E, we
obtain by proposition 2. 10, the measurability of ﬁk , from £ into W!P(A, R™).

Finally, we define a map g from rxR%into R by:
g(, x)=fw)(x, a+Vu (w, X)),

and a test function Ve n(w, x) by

~

X
=gax+ —
vk’n,n(w, X):=ax enuk_,n(w, En).
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We have

Proposition 2.11. There exists Ek 0 in £ with P(Z‘.k n)=1 such that, the two following

assertions hold

. . . S ) m
() fim_ vk’q,n(m) 1 strongly in LP(A, R™),

(i) lim, F )V, A=

n-— +co n n—u-l-oo

g,(, )dx

=meas(A) E:f f(w)(x, a+v5k (w, x)) dx.
3% d
Proof. Proof of (i). It suffices to apply lemma 2.7 (i) to the function ﬁk r‘(co, .). We must
~ 1
prove that the map wa luk q(oo, J) |pdx belongs to &£ (Z,T, P) for every A in B, (RY
A ,

(see (2.5)), (2.6) being satisfied thanks to (2.15). Measurability is a direct consequence of
measurability of cm-—-;ﬁk n(w, .} from I into W1P(A, R™). Moreover

(2.16) f f L, %) | dx dP(w)< f J e, @, %) | dxdP(w)
U +
zeI(A)Z kY
.—.f z J 13 (o, x+2)]" dxdP()
5 zel(AYky N

f f 2T 0l° dP(w)dx
21 Sy
P
= card I(A) J' f lu  (w, x)| dP(w)dx,
kY Jx uk'q

where we have used the P-preserving property of (1), | d

Using Poincaré inequality, growth condition (2.11) imposed on f(w) and definition of u q(w )
(see (2.14)), we get

luk r'(w, x) | pdeC g-(1+|alp)meas(kY)ﬂ},
’ o ~

kY
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where C is the Poincaré constant.

So that (2.16) implies

J' f le (w, x) | pdde(w)<+°°.
rJda

proof of (ii). We apply theorem 2.4 (ii) of part 2.3 to the random Borel measure u on £ defined
by:

p(w)=g(w, .)dx.

We must prove (2.1) and (2.2) . (2.2) is a direct consequence of (2.13), (2.15) and definition
of g. The (G, B(IR)) measurability of

wa g(w, x)dx
A

from L into R comes from the (T, BWIP(A, R™)) measurability of the map ws
t (60, )+, from Z into WA, R™), the fact that (&, up—F(w)(u, A) is a Caratheodory

function (see J.P.Aubin & H.Frankowska [1, lemma 8.23, p.311]} for instance) and

J. g(w, x)dx=F(w)(ﬁk r](u), DL, A).
A :

Finally, with growth condition (2.11), after raisoning like above proof of (i),
f f g(e2, x)dxdP(c0) <P f f (1+12+Vi_ (@, 01" )dxdP(w)<+eo.8
5y YA y YA '

We are in position to prove theorem 2.9,

Proof of Theorem 2.9. Proposition 2.11 above implies, for every winX = 1? an
n

o, fimy tm F (0)(v, (@), Q)= lim lim E :ﬁ f(w)x, a+Vu, (0, .)) dx meas(Q2)

Y

M (@, a))
= m, E—reasky)

meas(2)

= Inf. E M,y (F(), 2) meas(q),

&
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where we have used the Lebesgue dominated theorem for convergence with respect to n and

the convergence of
£ Ty y(F(w), a)
meas(kY)
towards

i
96 E STy (FO), ),

(see U.Krengel {5, lemma 2.2 p,202] for instance for this last result). We end the proof by a
diagonalization argument. §
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Chapter 11
Non coercive Random Integral Functionals and Epi-convergence.

3.1 Introduction.

3.2 A random integral functionals related to the problem of "holes” of Neumann type.
3.2.1 Definition of the integral functional F'°™,

3.2.2 The main result.

3.3 A random integral functionals related to the problem of "fissures”.

3.3.1 Definition of the integral functional F*°™

3.3.2 The main result.

3.4 References.

3.1 Introduction.

The purpose of the present chapter is the study of homogenization of elastic material
with many small "holes” or "fissures" distributed in on random way.

To overcome the lack of coerciveness we shall take some hypothesis in relation with
geometry of "holes™ or "fissures” distribution in such a way that an extension technic can be
applied see D.Cioranescu & J.Saint Jean Paulin [4] in the case of "holes”, H. Attouh &F.Murat
[3] and J.J.Telega & T.Lewinski [5] in the case of "fissures”.

For each both problems, the probabilised space (£, <G, P) being given, we build a class
of random integral functionals which has the required properties.

Finally we apply method developped in chapter I to obtain in each case the epi limit
expression and shall give a result of almost sure convergence for corresponding optimization
problems. These results generalize ones obtained by H.Attouch [2] and D.Cioranescu & J.Saint
Jean Paulin [4] for "holes” and H.Attouch & F.Murat [3] for "fissures" in the periodic case.

3.2 A random integral functionals related to the problem of "holes" of
Neumann type.
Let Y=]0, 1[d be a unit open cube and I' a finite set of compact T of Y whose the

d
boundary is c! piecewise. For every z€ Z', T, denotes a compact of z+Y such that -z +T,€T.

We shall consider, the family (Tz)zezd as an element  of ).".:=1‘2d orasapart U Tz of RY
zézd

Let (Z£,%, P) be a probability space which is the product of Bernoulli's space (I', &P, I1),
where & denotes the set of all parts of T, and I1 is a probability measure on I' constructed from
the presence probability of element in T, that is (£, %, P):=(E, P, mz,

-
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For technical reasons, we consider a sequence (g,)__p of the type e=t , telN*and O

the family of sets which are a finite union of cubes €.I, where q and I varying respectively in IN
and J (recall that J is the set of all open paving in R with vertices in Zd).

Remaks 3. 1.For every A€ 0, there exists n A€ N *such that for every n>n,, 0A N g w=0.
We define the group (Tz)zezd of (ergodic, P-preserving) transformations on ¥ as
follows:
T W=w+z.
It is obvious that for every A€ and every w€X the caracteristic function ¥ Al wof Al ®

defined by:
a(w, .):=XA‘ w(')’
satisfies for every z€ 2%and every x€ A
a(rzw, x)=a(w, x-z).
Let o be a fixed element in I, for every A€ and u€ L°(A, R™), we define the
integral functional F(w) from L (RY, R™)x0 into R*U {+0} by:

f f(Fu(x))dx if u, | weW“’(A\ w, R®
F(w)(u, A)=47 A\ ®
+oo if not,

whereu,, denotes the restriction of u to Al w and f is a given function from M®4into R

which satisfies:
o, B and L being three given positive constants, for every a, bin Mm xd

3.1 alalP<f(a)<p(1+aP) a.e;
(3.2) f(a)-f(b)I<L(1+]aP 1 +]b/PV)ja-b| ae.

We define the sequence (F (w))nem
Fn(w).—penF(w)=F(s“w) that is

f(Fu(x)dxifu,  eWF(Algw, R™),
n

(3.3) F (w)(u, A)={ " Al &0
+oo if not.

Our goal is the study by epi-convergence the asymptotic behaviour of the above sequence
when € tends to zero. '

-

A r I DR ST 1 meacif B\
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f C POR(Tux))dx if ue WA, R™),
Fhom(u, A)=gvA
) +oo if not.
We shall show that for every A€ ® andue LP(A, R™),
F'""(., A)=r-epi lim F, ()(., A) almost surely in L"(A, R™)

where T denotes the strong topology of L'(A, R™).

The two following propositions are essential to show that domain of 1-epi lim F_(w) is
w' (A, B™).

Proposition 3.4. For every A€ (J and every sufficiently large n€ IN, there exists a linear
continuous operator ¥ from w!T(Al e 0, R™) into WA, R™) (which eventualy

depends on w ) satisfying, for every ue W' *(A\ g0, R™),

(i) ®P,u=u on Ale w;
(@) 18guly \SCIV ) e
(ii) VP ul, ,<CIVy

0,A\ £’

where C is a constant depending only on w.

Proof. We have (cf remark (3.1)) A N g,w=0 for n large enough so that we can, thanks to
the fact that I is finished, use the D.Cioranescu & J.Saint.Paulin [4] results.#

Proposition 3.5. For every A€ (J, there exists " in £ with P(Z")=1 such that for every
weXs the sequence (a_(w)), gy defined by:

a,(w, )=a(w, )
n
converges almost surely towards meas(A)0, with 6= J; meas(Y\ w)dP(w) for the weak-*

topology of L (A).
Proof. It suffices to apply theorem 2.6, chapter IL.K

3.2.2 The main result.
Let w€X "=X"NL where I’ and X" are given by theorem 3.2 and proposition 3.5.

Since the family O of sets A is countable, by a classical diagonalization argument, there exists a
subsequence of (F(0)), ¢ still denoted (F (w)),, ¢ g such that T-epi lim F (w)(., A) exists in
LP(A, R™) for all A in . In that follows, we consider this subsequence and we shall show
that, for every A in 0

F'(., A)=r-epi lim F(w)(, A) in L°(A, R®)
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Before proving this result, let us show that almost surely T-epi lim F (w)(., A) "lives"
in WIP(A, R™):

Proposition 3.6. If we set G:=t-epi lim F_ (w)(., A),then almost surely domG=W!"P(A,
R™). _

Proof. Let ue dom G={ue L’(A, R™), G(u)<+=}, then by epi-convergence there exists a
sequence (u.), . jg (we omit the dependence on w); u,€ LP(A, R™) such that almost surely

u=t- lim_u,,
Jm, Fp(@)(ug)<es

Therefore from (3.1) the sequence (u,), gy is bounded in w! ’p(A\ £,0, RR™) independently
on n. Using proposition 3.4, the sequence (¥ u ) g is bounded in WA, R™)
independently on n and there exist a subsequence of (¥ u,), . py still denoted (¥ v ) gy and
u* in W!P(A) (possibly depending on w) such that
L 1,p
u*= lim_ ®,u,, for the weak topology of W (A, E™),

u*= lim ¥ _u_ for the strong topology of L"(A, R™)

n_—o+oo
Making n tends to +o in the equality,
®u, a(w, ;n-)zun a(w, 5—‘-n—),
and using proposition 3.5, we obtain u=u*€ w!P(A, R™) almost surely. Other inclusion is

obvious.l

Theorem 3.7. Forall win X' and for all A in ®, we have
FPOmy, A)=r-epi lim F_(w)(u, A) in L°(A, R™).
Proof. It remains to check the assertions (i) and (ii) in definition of epi-convergence (see

definition 1.1 chapter I).
The proof of (i) is like of the proof of lemma 1.9 chapter I, where all cube used are such that a

cube of remark 3.3 (i). While to check (ii), it suffices to note that if A=Q isa such open cube
d
of the lattices in R% spanned by 10, £ and u=l,, a€ RY
FPo(u, Q)=meas(Q) f"°™(a)= lim TN o(Fy(w), a),

and (we omit the dependence on w) for v, £ W(‘)’p (Q) such that

Fn(w) (vn ,£q+la’ Q)SmQ(Fn(w) ’ a) +€q9

we have
FPO(u, Q)2tim, sup Fy(@)(vy ¢ *le Q-5
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. Zlir{l}, sm‘!p Fn(w)(ann,sq+lav Q)-eq'
It is obvious that ® v _ £q€ W:,’p(Q, R™). Let us define u,, £ by

=yt
Uy g = (A £q

A diagonalization argument leads to
u=t- lim_ Un £q(n)’
FROR(u, Q)2lim sup Fy(@)(iy gy +ae Q)
Indeed from the Poincare's inequality and proposition 3.4 (iii), there exists a constant C(Y)
depending only on Y=]0, 1[d such that:
PV e qjg’QSC(Y)eqp{V v, ﬁq:g,Q

p

p
_<.qu IvaQn"n,eqo,()\ £,0

p P
Sceqp('vvn ,€q+al0,Q\ enw + I a I meaS(Q))

scb-qP% R0V ¢ * oo Q)+Hal” meas(Q)

<CePEqtoial) vial) meastQ

==C£-:qp meas(Q),
where C denotes different constants independent on n and Ey If u is any function in

WIP(A, R™), we conclude like in chapter 1.1

Remark 3.8. The proof of (ii) is also a straightforward application of the theorem 2.9,

chapter II where
g(w, x):=a(w, x)f(a+fok q(w, x).

We shall show that almost sure epi-convergence of the sequence (F(w)), .y implies

almost sure convergence of corresponding optimization problems. More precisely

Theorem 3.9. Let Q) be a fixed element in ( and g a given element in LP(Q, R™). Then
Inf{F, (c)(u )+ f gu dx; ue W2 P(Q, R™)}

Ol w
converges almost surely towards
Inf{F2°(u)+v J' gu dx; ue W P(Q, R™)},
Q

where v=meas({2)0; 0 is the matimatical expectation of meas(Y\ w).
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Proof. It suffices to apply proposition 3.5 and theorem 3.7 to show that the sequence
(H,(00))pe 1y defined on W2 P(Q, R™) by

H, (0)(0)=F, () (u)+ f gu dx,
(93 E W

epi-converges almost surely towards

Hhom(u)=Fh°m(u)+vf gudx in WF(Q, R™),
Q

and use variational properties of epi-convergence theorem 1.2 chapter 1.1

3.3 A random integral functionals related to the problem of "fissures".

Let Y=]0, 1[d be a unit open cube and I' a finite set of parts y of lR.d satisfying the
following properties:
There is a compact set K with regular boundary such that YCKCY, there exist two open sets
Y, and Y2 in le with common boudary 43, which is a manifold of dimension d-1 and of class

d
C'in R such that Y=Y UY,U33 and Y& I (see figure)

Y1 K

Y2

yCi’S
Y=Y1UY2 UK

A vector 1t which is normal to 35 being chosen, for all u in
WY, R™M)nwH (Y, R™)=wW' (Y \&, R™),

we define two traces on Y and therfore, a jump denoted by [u].

d
Forall zin 2, Y, denotes a subset of z+Y such that -z+V, belongs to I'. We shall
Zd
consider, the family (YZ)ZEZd as an element o of L:=I'  or as a part U YZ of RY Let
224

(Z,%C, P) be a probability space which is the product of Bernoulli's space (T, &P, IT), where P
denotes the set of all parts of I', and IT is a probability measure on I' constructed from the
presence probability of element in I that is (X T, P=(X, P, H)Z’-d.

We consider a sequence (En)nEN’ the family O, J and the group (rz)Z€ 2d s in part 3.2,
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~ Letwbea fixed element in E, for every A€ 0 and ue L°(A, R™), we define F(w) from

Lroc(Rd, R™)x0 into R* U {+o0) by
f f(Vu(x))dx if u,, €C(Al )
F(w)(u, A)={"A\ w
+oo if not
where
CA\ w):={ue W' P(A\ o, R™); [u]20 in wNA},

and f is a given function from M™dinto R which satisfies (3.1) and (3.2). We define
F(w) from L} (R% R™)x0 into R*U (+eo}by:

f(Fu(x)dx ifu,,  €C(Algw),
(3.4) Fn((,o)(u, A= Al g B

+o0  if not.

Our goal is to study by an epi-convergence method the asymptotic behaviour of above
sequence when €_goes to zero.

3.3.1 Definition of the integral functional From,

For every A in J, every win X and every a in R¢ we define
M, o (F(w), 2):=Inf{F(w)(u+l,, A); u €C(A\w),u=00n 0A}.
A straightforward adaptation of proposition 1.4, 1.5 and 1.6 in chapter I, shows that the set
function Q»—-»‘]TLQ(F(UJ), a) from J into R* is an ergodic discret sub-additive process.The
measurability of wrs T, 5 (F(w), a) comes from equality
M, o(F(w), a):=Inf{F(w)(utl,, A), ueV}
where V={ue W' P(A\ UZd K+z, R™) ; u=0 on 0A}, and the measurability of the
z€
multifunction w}{3epi F(w)(u+1,, A) from £ into VxR.
Applying the M.A.Ackoglu & U.Krengel [1] subadditive ergodic theorem, we obtain
Theorem 3.10. There exista subset L' in % with P(X')=1 and a function '™ from M™*¢

into R such that for every cube Qin J
™ oF(®), )

llen

fhom ) = lim

meas(;- Q)
M, ,y(F(), 2)
e g el

Moreover ™ satisfies (3.1) and (3.2) with an other constant L' obtained as in
proposition 1.4 (ii) of chapter 1.
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Proof. Itisa simple adaptation of the proof of corollary 1.7 chapter L8
We now define, for every A€ @ anduell (A, R™), the integral functional Fbom from
LD (R% R™)x0 into R¥U{+w} by:

Fh m J- fhom'(vu(x))dx if ue W! ,P(A’ Rm)’
© (U, A): A

+oo if not.
We shall show that for every A€ ( and ue A, R™),
B (., A)=T-epi lim F_(w)(., A) almost surely in L"(A, R™) strong.
From remark 3.1 and the fact that T is finished we prove cf H.Attouch & F.Murat [3] the

following main tool.

Proposition 3.11. For every A€ 0 and every sufficiently large n€ N, there exists a linear
continuous operator (& from W! (Al _co, R™) into W' P(A, R™) (which eventualy depends
on w) satisfying, for every ue W' (Al e 0, R™),

(i) @ u=u in a neighbourhoud of A,

(ii) |@Ilulo,ﬁr<'clulo,A\ Epw’

(i) (VQquly ,<CIVuly ,, cqe’

(iv) ]V@nu-ulo’ ASCenlVuly -

where C is a constant depending only on compact K.

3.3.2 The main result.
Fix w in £’ where L' is given by theorem 3.10. Since the family & of sets A is

countable, by a classical diagonalization argument, there exists a subsequence of (F () ¢ N
still denoted (F(w)), ¢ jy such that 1-epi lim F (w)(., A) exists inLP(A, R™) forall A in 0. In
that follows, we consider this subsequence and we shall show that, for every A in 64
FI°™(,, A)=r-epilim F(w)(, A) in L'(A, R™).
Before proving this result, let us show that almost surely T-epi lim F (w)(., A) "lives”
in W P(A, R™).

Proposition 3.12. If we set G:=r-epi lim F (w)(,, A), then almost surely domG=
whPA R™).

Proof. Let u€ dom G be, then by epi-convergence there exists a sequence (u,), gy (We omit
the dependence on w), u, € LP(A, R™) such that almost surely
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uzr.nl—lon}oo uﬂ’

' lim, Fy()(u,) <+,

n— +oo

Therefore from (3.1) the sequence (u ), i 18 bounded in wiP (Al g 0, RR™) independently
on n. From (ii) and (iii) in proposition 3.11, the sequence (& u ) .y is bounded in
W! (A, R™) independently on n. So there exist a subsequence of (& u,), ¢ gy Still denoted
(G u,) e pg and u* in W' (A) (possibly depending on w) such that

u*= lim @ u, for the weak topology of WA, R™),

u*= lim_ @ u, for the strong topology of (A, R™).

After making n tends to +0 in the equality,
unzgnun+un'&nun
and using proposition 3.11 (iv), we obtain u=u*€ WHP(A, R™) almost surely. Other inclusion

is obvious.1

Theorem 3.13. Forall winZ’ and all A in @, we have
Fhom(y, A)=r-epi lim F_(w)(u, A) in L7(A, R™).
Proof. It is a straightforword adaptation of the proof of theorem 3.7 part 3.2.2.1
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Chapter IV

Stochastic Homogenization and Duality in The Convex case.
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Chapter 1V

-

Stochastic Homogenization and Duality in The Convex case.

4.1 Preliminaries.
4.2 The main result.
4.3 References.

4.1 Preliminaries.
In this chapter, we study the asymptotic behaviour of the classical perturbed
optimization problem when f(w, x, . ) is convex, leading to the limit of its dual formulation.

t
We get in this way, the structural equation ¢ € 0f"°™(e(u)) where e(u)= F—u-—-;———zl-la which links

the limits u and ¢ of solutions of primal and dual problems corresponding to F_(w). We adopt

again an epi-convergence process on the sequence of perturbed functionals, which provides
almost sure weak éonvergence of the saddle points sequence towards the saddle point of
Lagrangian of the homogenized problem.
The situation and notations are the same as in chapter I, but here d=m and more
pec1ﬁcall y, we study the asymptotic behaviour of the dual formulation of the problem
(P, Inf{F (w)(u, Q)+P(u); u€eV}
and asymptotic behaviour of corresponding saddle points in linearized elasticity, which is
introduced by D.Azé [3] in the periodic case. We assume that
F@)(u, A)= J'A (), e(u)(x))dx,

t
where e(u)= Y_u_%‘?u’ and where f(w) is measurable on x, convex with respect to the matrix

variable and satisfies almost surely the following condition, for every a in the subspace M:"d

of symetric elements of M4

(4.1) alaP<f(w)(x, a)<B(1+/aP)

o and P are two given positive real numbers, with O<oa<p. It is easy to see that (1.2) of the
section 1.3 in the chapter I is automatically satisfied. Indeed, every o that belongs to the
subdifferential 0f(w)(x, a) satisfies lo1<C(1+/alP!) where C is a constant dependind only on §
(see H.Attouch [1], p.52 for p=2 or B. Dacorogna [5] in a more general setting) and with this

bound, the convexity inequality leads to (1.2).
V will be the space W* (Q, RY and P, the functional defined by

P(u)= f @(x)u(x)dx,
¢)



Ch. IV. Stochastic Homogenization and Duality in The Convex case. 57

where ¢ is any function that belongs to L7 (Q, RY, and p' denotes the conjugate exponent of
p. Thanks to Korn inequality (cf G.Duvaut & J.Lions [6] for instance),
i/p
(J; )P dx+ Ale(u)(x)lp dx)
defines an equivalent norm in W' (A, RY still denoted ful, 4-
With these new hypothesis, one could obtain similar results of chapter I for function of the

form

F(o)(u, A>=f F(w)(x. e(u)(x))dx
A

and infimum become minimum.
A classical way to perturb our optimization problem, is to define for every A in O the
following bivariate functional ¥ _(w)(., A) from W!'T(A, RxZ(A) into B

¥ (0)((u,0), A):=fAf(w) - e(tl)(X)+cr(X))dx+J‘Q P()u(x)dx,

where
Z(A)i={c:A—->MSXd; 0=(0; ), ©;;=0;;. cj,jﬁL"(A), i, j=1,...d}.

The primal (@n) and dual (g)n)* problems for a fixed element Q) in ©, take the form:
(P min {¥_(@)((@ 0), Q); ueW)’ (@, R}

(P*  sup {-¥.(@)((©, 0), Q); €T}
=min{f f*(w)(fﬂ o(x))dx; divo=gp, oc€X(Q)},
Q n
where ‘P:(w)(., Q) and *(w0) denote the Fenchel conjugates of ‘l’n(w)(., Q) and f(w).

Similarly the following perturbation of the homogenized limit problem difined in part 1.5 of the
chapter |
yhom(y o), A):=J' FoMe(u)(x)+o(x))dx+] @(x) u(x)dx
A A

leads to the primal (P'™) and dual (PP™* problems
(PR min (WU, 0), Q); we WhT(Q, RY}:;

(Phom*  qup {- (W0, 0), Q); cEL(Q)}
= min{J' (F°™* (o(x))dx; divo=p; c€X(Q)}.
Q

u () and 0, () being respectively a solution of (P and (P)*, (u (v), o (w)) is a saddle
point of the associated Lagrangian defined from W' *(Q, RY=Z(Q) into R by
*
L (@)((1,0)) =- ¥, (@), 0), Q)
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=J o(x):e(u)(x)dx -j o(x)u(x)dx -.[ f*((o)(ix o(x))dx
Q Q Q €,
where ‘}’n/c(w)(., Q2) denotes the Fenchel conjugate of Wn(w)(., ) with respect to its second

variable.
Finally, if u and © are respectively solutions of (_9)"0"’) and (PPO™* (&) is a saddle

point of the associated Lagrangian

L™, 0)=J o(x):e(u)(x)dx-J o(x) u(x)dx-J ("™ )(o(x)dx.
Q Q Q

For further details about above notions, we refer to I.Ekeland & R.Temam [7].
Let w be a fixed element in Z, we have the following result.

Proposition 4.1. Every saddle point (u (), 6 _(w)) of the Lagrangian L (w), is bounded in
WP, RYxZ(Q). Therefore, there exists ((u(), 6(w)) in W(©, RH)xZ(Q) such that, to

a further subsequence, (u (®), 6, (@)) tends towards ((u(), 6()) in WIP(Q, RY)xZ(Q),
equiped with the product of the weak topology of Wol‘p (©, RY) and Lp'(A,M‘:Xd)
Proof. It is easy to show, thanks to the growth condition (4.1) that un((o) 1s bounded in

Wé’p(Q, le). On the other hand, again by (4.1) and the convexity assumption, one can prove

that every element ¢ that belongs to af(co)(L’ e(un((o))) satisfies IclSC(l+|e(un(w))Ip'1)
e ,
n

which, with the property Gn(u))e af((o)(—x—» e(un(w))) leads to the conclution.i
n
In the classical periodic homogenization the structural equation which links u to ¢ is

given by 6edf"®™(e(u(.))), this last equation being obtained by using energy method
introduced by L.Tartar [9] and partialy written in F.Murat [8]. We can't adopt this approach in
the stochastic case because of the presence of set in G with null probability that depends on
every sequence considered. This is the reason for which we adopt again an epi-convergence

process.
We show that almost surely, every cluser point (u(w), 6(w)) of a saddle point (un((o),

o, (w)) is a saddle point (u, ) of the Lagrangian L"°™ and so does not depends on @ and
satisfies: o df"°™(e(u)), u and © are respectively solution of (PMO™) and (PPOMy*,

The main tool is the following proposition, direct consequence of H.Attouch, D.Aze &
R.Wets [2], theorems 2.4 and 3.2.
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-

Proposition 4.2, If w is a fixed element of X such that
Whom( Q)=1x s-epi lim ¥ _(@)(., Q),

where txs denotes the topology product of the weak topology of WOI‘p (Q, IRd) and the strong

topology of X(Q). Then every cluster point ((u(®w), 6(w)) of proposition 4.1 is a saddle point
hom

of L .

4.3 The main result.
We are now in position to prove the main result of this chapter. Let %' be the subset of

the probability one defined in corollary 1.7, part 1.4 chapter I. We have
Theorem 4.3. For every @ in X
PROM(, Q)=txs-epi lim ¥ _(w)(., ).

Moreover every cluster point (u(®), 6(w)), in the sense of the proposition 4.1, of the sequence
of saddle point (u (), 6, (®)) of L _(w), is a saddle point of L"°™ and so deos not depends

on . G is then a solution of the dual problem (PM™)* where

("™ * @)= Sup idx(epij min {J' f(w) (x, 6+ )dx, oeK(nY))}dP(w))(a),
ne N* n )3 nY

where epiJ. denotes the continuous infimal convolution defined by:
z

[epi L g(w)(.)dP(w)](a):=inf {Lg(co)(a(co))dP(w): '[Za(w)dp(w)=a},

and where
K(nY):={oceXZ(nY); J y o(y)dy=0, divo=0}.
n

Proof. Above expression of (f'°™* is a straightforward consequence of the definition of the
Fenchel conjugate, permutation of two sup, property of the continuous infimal convolution

which is, in our case the Fenchel conjugate of

j min { J f(@)(x, e(W(x)+.)dx, ue W P(nY, R }dP(w),
z nY

and finally, classical expfcssion of Fenchel conjugate of

min { J f(@)(x, e(u)(x)+.)dx, ue W, (nY)},
nY

which is

(¥
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min { J f(®)*(x, o+ )dx, ceK(nY))}.
nY

We refer to H.Attouch [1] for this last result and to C.Castaing &M.Valadier [4] for more
about continuous infimal convolution.
It remains to prove that

Phom(, Q)=txs-epi lim ¥ _(0)(., Q).

Noticing that for every A in O, uv—»j @(x)u(x)dx is T-continuous perturbation so we can
A

neglect the presence of this term in the expression of ¥ _(w)(., ) and whom 0y (see

theorem 1.2 (ii)).
On the other hand, with this convention we get, when o is constant
¥ (0)((u,0), A)=F _(@)(u+l, A),
oM (), A)=F""(u+l_, A).
These remarks lead to the following steps:
first step. We prove W'OM(. Q)=1xs-epi lim ¥ (), Q) in Wol'p(Q, ]Rd)x‘E(Q) where (Q)

is the subspace of piecewise constant functions of X(£2).
. | _ . , ST v L.p d
(i)Upper bound. Let u=t- lim u and ¢=s- lim & with (u_, 6 )e W, (Q, R )% 8 (Q).

We have <5=i;L[ai)(Qi where (€2). | is a finite partition of €2 and utly=T- lim - u +ly;.

So, by theorem 1.8 of chapter I,
Fhom(u+lai, Q)slim inf F (@)(up+a;, €)).

that is
h .
4.2) d"M((u,0), Q)<lim inf & ()((u,, ©), Q).

But, by convexity

(4.3) @ (w)((u Gn),Qi)z(Dn((o)((u o), Qi)+ q(o)(X, e(uy)(x)+0(x)):(0 - 0)(x) dx
Qi
where x— q(w)(x, e(u,)(x)+0(x)) is an integrable selection of the closed set multivalied

function x+— J()(x, e(u,)(x)+0(x)) (for more about integral of set valued maps and existence

n’ n’

of integrable selections, we refer to C.Castaing &M.Valadier [4]).
so (4.2) and (4.3), after summing over i, lead to
®"O™((u, 6), Q)<lim inf B, (@)((uy, 5,), )
where we have use Holder's inequality and the estimation
Iq(@)(x, e(u)(x)+6(x))I<C(1+le(u )(x)+o(x)IP!)

in the last term of (4.3).
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(ii) Lower bound. Let (u, 0)e Wol’p(Q, IRd)xi(Q). By theorem 1.8 of the chapter 1, there
exists v} (@) in W(Q,, RY) such that u+ly=t- lim v}(®) and v} (®)=l,; on 9. Setting

un((o):=v[il(co)- ly; in every ‘Qi’
FO™(u+1y;, Q)2lim sup Fy(@)(ug(@)+ly;, Q).

and, after summing over i

u=‘c-ln'_1r)r}m un((o) and G=0,
"™ ((u,6),Q)2lim sup D, (©)((uy(®), G,), Q)

Second step. We end the proof by using the s-density of €(Q) in £(Q), a continuity and a

diagonalization argument like in the proof of theorem 1.8 in chapter L1
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ChapterV

Open Problems And Partial Results.

5.1 Numerical approach.
5.2 Random integral functionals in non reflexive case.
5.3 Non equi-bounded random integral functionals in non linear elasticity.

5.4 References.

5.1 Numerical approach.
The situation and notations are the same as in chapter [ with d=2, m=1, p=2 and snzﬁ

1

ne N* LetQin J, we subdivise Q on N small cubes of size h= Y Ne N (the number of

interior "points " or "nodes" of Q is N2), h is the step of the subdivision of Q. (hl, hk) denotes

the coordinates of interior points P, ., (k, I)e N*2.T any elementary triangle which decompose

kI
and D, . the reunion of six triangles D!, , i=1,...,6 of commou vertices P . (see figure) .
Kl gles Dy k.l g

|
A
T 3 Dk.l
2
[ 4
Pk s
' 6
h
k X
We define by a classical way the family of functions ((pk l)kl N by
’ €
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Lif i, j)=(k, 1),
P, )=
%Py {0 if not,

0 is continuous in Q and coincides with an affine function on each triangle T.

For every A in J Wz‘z(A) will denote the set of all functions ue Lz(A). whose distributional

derivatives up to the order 2 belong to LZ(A) and
1/2
lul, \=( f S (@%w’dx)
A

lal<2
. 2.2 . o a
the norm in W™7°(A), where for every ¢ in C*(A), <d%u, ¢>=(—-1) '<u, d ¢>;
o alal(p o)
0 p=———, a=(0;, 0, e N7, |ocl=oc1+(x2.

N7 a2
a Xl a Xz

Consider the Sobolev subspace Wol'z‘N (Q) of W(}‘Z (Q) generated by Per
1.2.N .
Wo ™ (Q=Vect{g, ;; (k, De N™-}.

The following proposition is classical (see P.A.Raviart & J.M.Thomas [6] for instance).

Proposition 5.1. For every u in WI'Z(Q)ﬂWZ’z(Q), there exists u,_ in wl-2N (Q) such that
y 0 N 0

C
- < — ’
|uuN|1,Q“ 1+N Iu'z,Q
where C is a constant independent on N.

Let us consider the following optimization problems
: 2
M o(F (@), 2):=Inf{F (@)(u+l, Q) ue W, (Q)}

and
M, (@), 0:=Inf{F (@)(utl, Q) ue Wy Q).

Recall that (cf chapter I) from the M.A.Ackoglu & U.Krengel subadditive ergodic theorem
almost surely

om, \_ _
5.1 £ (a)—nglpw My (Fp(w), a)—Igf Lm y (Fy(w), a) dP(w).

Using again M.A.Ackoglu & U.Krengel [1], we get almost surely
. N N
Jim T (Fy(@), a)=Inf f MY (Fy(w). 2) dP().
z

Set
(5.2) fhom‘N(a)=n_1_i’r£1m°JT1,§;J (F,(w), a) forevery a in M™xd,

Lemma 5.2. lim TNy (Fy(0), =T y(F, (@), )=Inf MY (F,(@), ).

o
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Proof. Since Wé‘z'N Y) CWO1 2 (Y), almost surely
N
mY(Fn((‘o)’ a)SmY (Fn((o)’ a),

therefore
. N
My (F (o), a)Slkrgigf My (Fy(w), a).

On the other hand for € in R ** there exists u__in Wy A(QNW**(Q), witch possibly

depending on @ such that
Fn(m)(un’eﬂa, Y)<ST (F (w), a)+e,

and uy in Wol‘z'N (Y) satisfying (see proposition 5.1)

el
(5.3) lu |1,y < Iun,e | )y

ne N
Noticing that
Fn((’))(“n,g*'la’ Y)=Fn(w)(un’€+la, Y) - Fn(co)(uN+la, Y)+Fn(co)(uN+la, Y)
< mY (Fn(w)v a)+£7
we get

MY Fo@), ) - [ F(@)(u, +y, Y) - F(@)ug+l, Y) |

and from (1.2) in chapter [
2

MY (F (@), )-C(1+] Vu +alg y+| Vu 2 IO‘Y)” ?

V“ _V” <
| n’e N |O.Y

< ]ILY(I n((o)v d ) tE,
or equivalently

MY (Fy(@), STy (Fy (@), a)+e+R) -

where
2

N _ 2 , 12
Rg ,=C(1+|Vu +alg o+ | Vun’£+a loy) | Vu Vuy Io,Y
Let us show that
im RY =0.

Not+eo &1

For this we use the following estimations (direct consequence of proposition 5.1, and (1.1)

chapter I)
(5.4) l Vun’E-VuN lo,YS | U eUn | Ly
< C(g, n) ﬁ;
5.5 | Vu+al <Ivu | +lal
(53) N oy N0y
<C(e, n, a);

Ay
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=Inf " N(a).1
N

5.2 Random integral functionals in non reflexive case.

Let (X, T, P) be a probability space, U as in chapter I, o, B and 7y being three given
positive constants; O<a<p. For a fixed element we X, we define the class F of functionals
(u, A F(@)(u, A) from L. (R%x0 into R**U{+eo) by

: 1,1
F@)(u, A) = JAf(co)(x, Vu) dx if ue W' (A)
+eo if not,
the function (x, a)— f(w)(x, a) from RI%xR%into R is measurable on X; convex on a and
satisfies a following linear growth condition with respect to a
(5.7) olal-y < f(w)(x, a)<P(1+1al) a.e., for every a in RY.
We define the sequence (Fn((:o))ne N by
ff(m)(l, Vu) dx if ue W'(A)

F (w)(u, A)=y A €n

+oo if not.

Wb (RAO
Let B(&) be the trace o-field on & of the product o-field of R Toc (R . We shall

interest to stochastic homogenization in L](Q) strong, of the process(Fn)ne INWith a state space

(F, B(F). This type of problem provides its motivation in plastcity theory. Using an
R.Temam [8] approximation result stated in G.Bouchitté [3] theorem 2.11, we get an almost

sure partial epi-convergence result.
For every A in 0, every @ in X and every a in ]Rd, we set
M, A (F(e), a):=Min{ F(@)(u+l,, A); ue Wy (A)}.

Assume that the map ww— F(w) from X into & is periodic in law and ergodic. As usual,

from M.A.Ackoglu & U.Krengel [1] subadditive ergodic theorem, there exist ¥'C3 with
P(X)=1 and ars fhom(a) from RY9into R such that, for every cube Q in RY and every  in by
M o(F(®), 2)

fhom(a):z[lj)r_?w 0
te R
= My (F(), a)
_nel?z\f[* {L meas(nY) dP(w)}.

Moreover £ is obviously convex and satisfies (5.7).
For a fixed element Q in 0, let M (L, le) be the space of all RY valued Radon measures V]

with bounded total variation on Q i.e., the total variation norm
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jﬂl ul=sup{<y, o>, @eCy(Q) lox)I<1}

is bounded. <, @>:=J.Q@u=-[9¢dp denotes the integral of ¢ with respect to measure y. With

the above norm, M, (€2, IRd) is a natural dual of the space Cy(€2, IRd) of continuous functions

. . . . 1 .
on Q with null trace on dQ equipped with the uniform-convergence norm. L (2, R d) is a

closed subset of M, (€2, IRd).

Definition 5.4. For every convex function g verifying (5.4), we associate the functional G
from M,(Q, R% into R denoted ng(u) and defined by
G=supt | vi - [ grveondn vecy@. RY),

g* is the Fenchel conjugate of g.
The space BV(Q) of the functions of bounded variation is defined as the space of all
functions ue LllOC(Q) whose distributional gradient, Vu belongs to M, (£, IRd).

Equipped with the norm
lu IBV(Q)=J.QI u |dx+J-Q| Vul,

BV(Q) is a separable non reflexive Banach space, whose WI‘I(Q) is a closed subset. It is
included in LP(Q), with continuous injection if 1<p< fr This injection is compact if in addition
1<p< E-dT' For the general properties of BV(2) we refer to E.Giusti [4], V.G.Maz'ya [5],
L.M.Simon {7] and A.L.Vol'pert & S.I.Hudjaev [9]. Let T be the strong topology of LI(Q).

Proposition 5.5. If t-epi lim F (w) exists almost surely, then its domain is BV(Q).

Proof. let u be an element in domain of t-epi lim F_(w), by epi-convergence, there exists a

1
sequence u.€ L (€2) such that
uzt-ninloo Un»
,,E,”)m F (@)(u,)<+oo.
. oo
From (5.7), Vu, is bounded in L (£, IRd), therefore (to a near subsequence ) converges

towards Vuin M(£, le) weak, hence ue BV(€2). For the other inclusion it suffices to use
(5.7) and to recall (cf R. Temam [8, p.126] in the general framework of the space BD(£2)) that,
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- the set C™(Q, IRd) of all R%-valued functions of class C™in @ is dense in BV(Q) in the
following sense: for every ue BV(Q), there exists u e C™(Q) such that
e R
u=T nl&)m{rm u, in L1(Q),

Vu, - Vu in My(Q, R?) weak (i.e.6(M,, Cp)),

[ 1vulaxe [ 1vuls
Q Q

We now define the integral functional ghom by setting

Jﬂfhom(Vu) dx if ue BV(Q),

(5.8) FOMy Q)=
+o0 if ue LYQN\ BV(Q).

. . . .. . 1
A plausible conjecture is Fh°m=t-ep1 lim F,(w) almost surely in L (£2). We now state the

- partial result.

1 1
Theorem 5.6. For every ue L (), there exists a sequence u,e L (€2) satisfying

u=Tt- lim up,
n—o +oo

EM™M> 1 epi lim sup F_(®) almost surely.

Proof. We invoke our method detailed in chapter I, to get for a fixed @ in X

- FhomZI-epi lim sup F(®) almost surely in WI‘I(Q).

Setting
Fhomey Q) if ue Wh(Q),

F(u, Q)= 1 -
. +oo if ue L(Q)\ W " (Q).

Then, we obtain almost surely
ﬁ(u, )2t-epi lim sup F_(w)(u, ) for every u in LI(Q).

Going to the lower semicontinuous regularization in above inequality, we get almost surely
F"°™(u, Q)>1-cpi lim sup F, (@)(u, Q) for every u in LYQ),

where we have used cf H.Attouch [2] the lower semicontinuity of T-epi lim sup F, () and the

fact that cf R.Temam][8], Fhom(u, Q) defined in (5.8) is the lower semicontinuous

regularization of ﬁ(u, Q.1
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5.3 Non equi-bounded random integral functionals in non linear -elasticity.
It is known that f(®) given in chapter I (part 1.2) is never convex. On the other hand, it

is known that f(w) is an explicit function f of matrice a, comatrice com(a) and determinant

det(a) with

lim f(w)(a,com(a),det(a))=+oco.
det(a)—0t

In this way, it would be interesting to improve our results by taking a class &F that contains
Integral functionals with such integrand. Monotone troncature process on f(w), to obt

equibounded functions f (w) (see for example H.Attouch [2]) seems unifortunately to fail in a
so general setting because we cannot control the link between the two parameters n and m at the
limit . A last improvement would be to introduce in the set V of optimization problem, the
constraint detV u>0 which garantees that u is an orientation preserving deformation. It seems to

be more difficult to deal with this last condition.
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Résumé. L'objectif des travaux de cette these est I'étude par le concept
d'épiconvergence du comportement asympthotique des suites de fonctionnelles integrales
aléatoires non nécessairement convexes et non nécessairement coercives. On présente une
méthode directe utilisant le théoréme ergodique des procéssus additifs, retrouvant ainssi
et précisant un résultat de S. M(ller obtenu dans le cas périodique. Dans le cas convexe
les variables primales et duales aléatoires sont étudiées Entre autres, un résultat de
convergence faible presque siire d'une suite de mesures de Borel aléatoires a été établi et
a été utilisé pour résoudre les problémes a "troug” et & "fissures” aléatoires.

Mots-Clés. Homogéniésation, Epiconvergence, Théorie Ergdique Des Processus
Additifs et Sous Additifs, Dualité.








