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Université Frères Mentouri-Constantine1
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Introduction

Various phenomena of modern natural science often lead to nonlocal problems on

mathematical modeling, and nonlocal models turn out to be often more precise that lo-

cal conditions; see [51]. Nonlocal problems form a relatively new division of differential

equations theory and generate a need in developing some new methods of research [50].

Nowadays various nonlocal problems for partial differential equations are actively studied

and one can find a lot of papers dealing with them; see [53, 59, 63, 30, 67] and references

therein. We focus our attention on nonlocal problems with integral conditions for hyper-

bolic, parabolic and elliptic equations which have been studied in [52, 54, 55, 56, 62, 59,

66, 68, 70, 72, 73, 1, 2, 27, 19, 82, 25, 26, 46]. Systematic studies of nonlocal problems

with integral conditions originated with the papers by Cannon [60] and Kamynin [65].

These and further investigations of nonlocal problems show that classical methods most

widely used to prove solvability of initial-boundary problems break down when applied

to nonlocal problems. Nowadays several methods have been devised for overcoming the

difficulties arising because of nonlocal conditions. It appears that conditions for the ex-

istence and uniqueness of a solution to the nonlocal problem are closely related to the

notion of regular boundary conditions [57, 58, 74]. It is known that the system of root

functions of an ordinary differential operator with strongly regular boundary conditions

form a Riesz basis in L2(0,1). This property is particularly useful for obtaining results on

solvability of boundary problems. Ordinary differential equations with integral boundary

conditions represent a very interesting and important class of problems. They arise in

many areas of applied mathematics and physics. Ordinary differential equations on an

interval with non localacal conditions relating the solution values at various points of the

interval were studied in [75, 83] and other papers. For a detailed survey of the literature

on the topic, see [78, 82, 83]. Nonlocal conditions are usually represented in the form

of a Stieltjes integral. When considering such conditions, one usually assumes that this

integral contain an atomic measure at the endpoints of the interval, which allows one
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to construct the adjoint operator [77, 78, 81]. In other papers, either the measure was

required to be constant sign on some subintervals [79], or some restrictions were imposed

on the asymptotic behavior of the weight functions in the integral conditions [80]. The

methods of the theory of nonlocal elleptic problems [84] allow one to aviod such restric-

tions. This approach was used for the firest time in [82].

The manuscript is subdivided into five chapters in addition to an introduction containing a

fairly brief presentation and bibliographical review of the work already undertaken on the

topic addressed. A plan of the manuscript is also inserted. In the first chapter, we present

some necessary concepts related to the half-group theory, which we will use in the second

and third chapters. The second chapter is devoted to the study of the boundary problems

for an ordinary differential equations of the second order with non-regular conditions,

namely the conditions of integral type. We study a second- order ordinary differential

operator with a spectral parameter and with integral conditions. On certain conditions

imposed on the weight functions appearing in the integral conditions, we obtain a priori

estimates for the solutions and prove the unique solvability of the problem for sufficiently

large parameter values . In addition, we prove the Fredholm solvability and the spectrum

of the posed problem. The tird chapter deal with a coupled system of differential equa-

tions with nonlocal conditions. We reduce the problem posed to an abstract first-order

differential equation, whose coeficient near the derivative is a generally non-invertible op-

erator. Using the results of chapter one, we establish existence and uniqueness results

for the reduced problem. Thus of the studied problem. In the fourth chapter we study

a boundary problem for parabolic equation with integral conditions. Such a condition

is not regular. The study method is based on the reduction of the posed problem to an

equivalent problem for abstract differential equation with integral condition. Thus, the

operator induced by the problem posed has a non-dense domain, and not self-adjoint. On

certain conditions imposed on the data of the problem posed, one shows that the operator

coefficient generates a semigroup with singularity. Then one exploiting the results of the
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first chapter, one establishes the solvability of the reduced problem, thus the solvability

of the treated problem. In the fifth chapter, we are interested in the problem of bound-

ary values with integral condition for a first order abstract differential equation. We use

ideas from [10] the goal is the construction of an approximation algorithm of a solution of

the problem posed. We present the algorithm as a general approximation scheme, which

includes finite element methods and finite difference methods and projection methods.
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Chapter 1

Semigroups with non-densely defined

generating operator

1.1 Statement of problem

We consider the Cauchy problem

u
′
(t) +Au(t) = f(t) (0< t≤ T ) ,u(0) = u0 (1.1.1)

for a linear first order differential equation in a Banach space E. Here A is a given

linear operator with domain D ⊂E, f(t), t > 0 is a given continuous ranging in E and u0

is a given element of E.

This problem was studied by many authors (see.[47, 48] and references therein) and

investigated by semigroup methods. As a rule, strongly continuous and analytic semi-

groups were used in this case. The operator A for these semigroups turns out to be

densely defined, and its resolvent (A+λI)−1 satisfies

∥∥∥(A+λI)−1∥∥∥≤ c |λ|−r (1.1.2)

with r = 1 in the complex half-plane ReA> ω > 0 the case of an analytic semigroup.
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However, in applications, there are situations when these conditions turn out to be

strict. Namely, the operator A may have a domain of definition that is not dense in E,

and its resolvent may admit a worse estimate for decay (r < 1).

For example, in [18] examples of differential operators in space of continuous functions.

If these operators satisfy some boundary conditions, then their domains of definition are

not dense in the space under consideration.

In [49] an example is given of the differentiation operator A = (−1)kd2k

dx2k in the space

Lp (0,1) with irregular boundary conditions. In particular, conditions are considered in

which some moments of functions from the domain of the operator vanish. In this case,

the domain of definition of the operator A is not a dense set in Lp (0,1), and estimate

(1.1.2) of the norm of its resolvent holds for r < 1, and the corresponding semigroup has

a singularity at zero.

1.2 Semigroups with singularities

In this section we present other examples of non-densely defined linear operators A and the

corresponding semigroups U (t), these semigroups and their derivatives admit a singularity

at zero.

‖U (t)‖ ≤Mt−α exp(−ωt) ,
∥∥∥U ′ (t)∥∥∥≤Mt−β exp(−ωt) . (1.2.1)

for some α≥ 0,β ≥ 1,ω > 0 with β is not rigidly connected with α. This distinguishes

this class of semigroups of previously studied classes (eg,in [47, 18, 21, 35]). In this paper

we consider some properties of such semigroups. We also study the fractional powers of

A, and finally considered problem (1.1.1) and the theorem of its solvability. Note that in

this theorem the parameter β can be any integer greater than or equal to 1+α,0≤ α< 1.

This distinguishes this theory from the corresponding result [49], where the more general

case of variable operator coefficient A= A(t), but β < 2.
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Let us give the definition [49] of the class of semigroups used. We denote by L(E)

the space of linear bounded operators acting from E to E. We assume that there is an

operator function U (t) (t > 0) with the following properties:

1- U (t) for every t > 0-bounded linear operator acting from E to D;

2- U (t)U (s) = U (t+ s) (t,s > 0);

3- U (t) is differentiable for t > 0 in the norm of L(E) and d
dtU (t) =−AU (t);

4- U (t)Au= AU (t)u for u ∈D, t > 0;

5- limt→0+U (t)u= u for u ∈D;

6- the estimates (1.2.1) for some α≥ 0,β ≥ 1,ω > 0.

Definition 1.2.1. An operator-valued function U (t), possessing the properties 1−6, listed

above will be called the semigroup (of class A(α,β)) generated by operator A.

Note that the semigroup U (t) is uniquely determined by the operator A. This follows

from the fact that the Cauchy problem u
′+Au= 0,u(0) = 0 has only the trivial solution

in the class of functions u= u(t), admitting for large t the estimate

‖u(t)‖ ≤M exp(ωt)

. The indices α and β in (1.2.1) are necessarily related by the inequality α+1≤ β. Indeed,

property 3 ◦of the semigroup implies the formula

U (t) = U (τ) +
τ∫
t

AU (s)ds (0< t≤ τ)

.

Therefore

‖U (t)‖ ≤Mτ−α exp(−ωτ) +M

τ∫
t

s−α exp(−ωs)ds

≤Mτ−α+ M

β−1
[
t−(β−1)− τ−(β−1)

]
≤ ct−(β−1).
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By the condition

‖U (t)‖ ≤Mt−α

for small t. Hence, α ≤ β− 1. If β = 1, then α = 0, and in what follows we will assume,

as before, that the condition α+ 1≤ β.

We introduce the set

D0 =
{
x ∈ E : ∃ lim

t→0+

U (t)− I
t

x

}

and on this set define the operator

A0x= lim
t→0+

U (t)− I
t

x,

which is called the generating operator of the semigroup. Use the equality

U (t)x−U (s)x=−
t∫
s

AU (τ)xdτ (t,s > 0) .

If x ∈D, then you can pass to the limit as s→ 0:

U (t)x−x=−
t∫

0
U (τ)Axdτ.

Therefore, the expression

U (t)− I
t

x=−1
t

t∫
0
U (τ)Axdτ

has a limit as t→ 0, and hence x ∈D0, D ⊂D0 and A0x=−Ax for x ∈D.

Now let x ∈D0. Then equality

U (t) U (s)− I
s

x=−1
s

t+s∫
t

AU (τ)xdτ

One can pass to the limit as s→ 0: U (t)A0x = −AU(t)x. Let the operator A have a

bounded inverse operator A−1. Then U (t)A−2A0x = −U (t)A−1x. One can pass to the

limit as t→ 0. As a result, we obtain equation x = −A−1A0x. This means that x ∈ D,

D0 ⊂D and A=−A0.
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1.3 Examples

We consider some examples of semigroups of class A(α,β).

1. If D dense in E
(
D = E

)
, and α = 0,β = 1, then U (t)-analytical semigroup.

2. Let the operator A acts in the space L2 (−∞,+∞)×L2 (−∞,+∞) and given by

the formula

Au=−D2u1− iDku1,Dlu1−D2u2− iDku2,

where D = i ddx ,u = {u1,u2} ,k ≥ 2, l ≥ 2. Such an operator generates a system of

differential equations parabolic in the sense of Shilov [47]. If we apply the Fourier

transform with respect to the variable x to both parts of the system and denote

the image of the function u(t,x) by ũ(t,p), then we come to the system of ordinary

differential equations
dũ

dt
+A(p) ũ= 0

where

A(p) =

p2− ipk 0

−pl p2− ipk

 .
In this case

U (t,p) =

 exp
((
−p2 + ipk

)
t
)

0

tpl exp
((
−p2 + ipk

)
t
)

exp
((
−p2 + ipk

)
t
)


is a semigroup of class A
(
l
2 −1, l+k2 −1

)
, since∣∣∣pl exp

(
−p2t

)∣∣∣≤ ct−l2 .

Resolvent of A(p) has the form

(A(p) +λI)−1 =


1

λ+p2−ipk 0
pl

(λ+p2−ipk)2
1

λ+p2−ipk

 .
This shows that for l > 2k operator A has no regular points. If l ≤ 2k estimate

(1.1.2) holds with r = 2k−l
k .
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3. Let E be a set of sequences u= {xn,yn}∞1 , for which the norm

‖u‖=
∞∑
n=1

(
n

1
2 |xn|+ |yn|

)

. We introduce a subspace L= {u∈E : x1 = y1 = 0} and define the operator function

in E

U (t)u= {0,0;(xn cosnt−yn sinnt)exp(inpt−nt) ,(xn sinnt+yn cosnt)exp(inpt−nt)}∞2 .

Here p ≥ 1 is a parameter. Operator-valued function U (t) is a semigroup of class

A
(

1
2 ,

1
2 +p

)
for any p≥ 1. It is generated by the operator A acting according to the

rule

Au= {0,0;−(inp−n)xn+nyn,−(inp−n)yn−nxn}∞2

with domain

D (A) =
{
u ∈ L :

∞∑
n=2

[
n

1
2 |(inp−n)xn−nyn|+ |(inp−n)yn+nxn|

]
<∞

}
.

For this operator in (1.1.2) r = 2− 3
2p for p < 3

2 and r = 1 for p≥ 3
2 .

4. Let E =Lp (0,∞)∩L1 (0,∞) with the norm ‖u‖= ‖u‖Lp +‖u‖L1
and A -differential

operator A= −d2

dx2 with domain

D (A) =

u(x) ∈ E, ∃u
′
(x) ∈ E,

∞∫
0
u(x)dx= 0

 .
Then the semigroup generated by this operator is given by the formula

U (t)ϕ(x) = 1
2
√
πt

∞∫
0

[
exp

(
−(s+x)2

4t

)
+ exp

(
−(s−x)2

4t

)]
ϕ(s)ds

−
exp

(
−x

2

4t

)
√
πt

∞∫
0
ϕ(s)ds.

It belongs to the class A
(

1
2 −

1
2p ,

3
2 −

1
2p

)
, and in (1.2.1) component decreasing re-

solvent r = 1
2 + 1

2p .
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Remark 1.3.1. Note that in Examples 2 and 3 the parameters α and β and r are related

to each other by some rigid equalities, in Examples 3 and 4 the domains of definition

of the operators under consideration are not dense subsets of E, and in Example 2 the

operator has no regular points (forl > 2k). Therefore, in what follows we do not use the

properties of the resolvent of the operator A, the parameters α and β are not related by

any equalities.

Remark 1.3.2. Estimate (1.2.1) allow one to construct negative fractional powers of the

operator A.

Suppose that there exists a bounded inverse operator A−1. denote by D
(
A−ρ

)
the set

of elements u ∈ E, for which improperly (at zero) the integral
∞∫
0
sρ−1U (s)ds (ρ > 0).

For such u, we put

A−ρu= 1
Γ(ρ)

∞∫
0
sρ−1U (s)udt. (1.3.1)

From this definition it follows easily continuous embedding D ⊂D
(
A−ρ

)
. If ρ > α, then

D
(
A−ρ

)
= E, and the operators A−ρ are bounded.. For ρ < α, as shows an example of

[47], these operators may not be bonded.

We establish some properties of fractional powers.

Lemma 1.3.1. The following equality:

A−pA−q = A−(p+q),p > 0, q > α; (1.3.2)

A−pA−q = A−qA−p = A−(p+q),p,q > α; (1.3.3)

A−pA−qu= A−(p+q)u= A−qA−pu,p > α,q > 0,u ∈D
(
A−q

)
. (1.3.4)
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Proof. Consider the equality

1
Γ(p)

∞∫
ε

τp−1U (τ)

 1
Γ(q)

∞∫
δ

τ q−1U (s)ud

dτ

= 1
Γ(p)Γ(q)

∞∫
ε+δ


1− δσ∫
ε
σ

sp−1 (1− s)q−1 ds

σp+q−1U (σ)udσ (1.3.5)

In the last expression the inner integral is the limit of the δ→ 0+ uniformly in σ ≥ ε > 0.

Therefore, (1.3.5) can be put δ= 0. We show now that the right-hand side of this equation

(δ = 0) there is a limit for ε→ 0+. Let p,q < 1. Then∥∥∥∥∥∥ 1
Γ(p)Γ(q)

∞∫
0

{
1∫
0
sp−1 (1− s)q−1 ds

}
σp+q−1U (σ)udσ 1

Γ(p)Γ(q)
∞∫
ε

 1∫
ε
σ

sp−1 (1− s)q−1 ds

σp+q−1U (σ)udσ

∥∥∥∥∥∥
= 1

Γ(p)Γ(q)

∥∥∥∥∥∥
ε∫
0

{
1∫
0
sp−1 (1− s)q−1 ds

}
σp+q−1U (σ)udσ+

∞∫
ε


ε
σ∫
0
sp−1 (1− s)q−1 ds

σp+q−1U (σ)udσ

∥∥∥∥∥∥
≤ 1

Γ(p+q)
ε∫
0

Mdσ‖u‖
σ1−p−q+α + 1

Γ(p)Γ(q)
∞∫
ε


(

1− ε

σ

)q−1 ε
σ∫
0
sp−1ds

M exp(−ωσ)dσ‖u‖
σ1−p−q+α

≤ c1εp+q−α ‖u‖+ c2ε
p
∞∫
ε

exp(−ωσ)dσ‖u‖
σα(σ−ε)1−q →ε→0 0,

Since the last integral does not exceed
∞∫
0

exp(−ωσ)dσ
σ1−q+α .

From these estimated follows that the right side of (1.3.5) as ε→ 0+tends to A−(p+q)u,

when p,q < 1. The case p < 1, q ≥ 1, or p≥ 1, q < 1, or p,q ≥ 1 are considered analogously.

Equation (1.3.2) is proved. Now, if p > α, then, interchanging p and q, we obtain the

equality A−qA−p =A−(p+q). It follows from (1.3.3). Referring to (1.3.4). If u ∈D
(
A−q

)
,

p > α, then the left-hand side of equation (1.3.5) for ε→ 0+ there is a limit, when δ = 0.

Therefore, there is a limit and at the right side. Hence, we obtain the first equality in

(1.3.4). The second equality (1.3.4) follows from (1.3.2). The lemma is proved.

Let ρ= n (n= 1,2, ....). Then the formula

Anu= 1
Γ(n)

∞∫
0
sn−1U (s)vds (α < 1)
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defines a left inverse to the operator An, that is AnAnu = u for items u ∈D (An) . Since

it is assumed the existence of A−1, the left An inverse is also a right inverse. Thus, when

ρ= n; equation (1.3.1) gives the operator inverse to An, and A−n =An. If D (A) =E, An

operator that is the right inverse of An, and A−n =An without assuming the existence of

a bounded operator A−1. We define the positive fractional powers of the operator A. Let

Aρ =
(
A−ρ

)−1
ρ > 0. This definition is correct. Indeed, let u ∈D (Aρ) and A−ρu= 0.

Then, using Lemma 1, we obtain the equality

A−(2+[ρ])u= A−(2+[ρ]−ρ)A−ρu= 0

([ρ] - integer part of ρ). It follows that u = 0. This implies the existence of operator(
A−ρ

)−1
. For the elements u ∈D

(
A2
)

we have the representation

Aρu= 1
Γ(1−ρ)

t∫
0
s−ρAU (s)vds (0< ρ < 1) . (1.3.6)

We will demonstrate this. Let A0 operator given right-hand side of equation (1.3.6).

Similarly to Lemma 1 proves that

A−ρA0u= u,A0A
−ρu= u

(
u ∈D

(
A2
))

The first one means that A0u = Aρu for u ∈ D
(
A2
)
. Consequently, D

(
A2
)
⊂ D (Aρ).

Formula (1.3.6) is mounted.

Lemma 1.3.2. The following inequality moments:∥∥∥A−ρu∥∥∥≤ c∥∥∥A−1u
∥∥∥ρ−α ‖u‖1+α−ρ , if ρ ∈ (α,1] (1.3.7)

‖Aρu‖ ≤ c‖Au‖ρ+α ‖u‖1−ρ−α , if ρ ∈ (0,1−α) ,u ∈D (A) . (1.3.8)

Proof. For ρ > α the operator A−ρ is bounded and

∥∥∥A−ρu∥∥∥≤ 1
Γ(ρ)

N∫
0
sρ−1 ‖U (s)‖‖u‖ds+ 1

Γ(ρ)

∥∥∥∥∥∥
∞∫
N

sρ−1AU (s)A−1vds

∥∥∥∥∥∥
≤ c1Nρ−α ‖u‖+ c2N

ρ−α−1
∥∥∥A−1u

∥∥∥ .
15



Minimizing this expression for N > 0, we obtain (1.3.7). Putting there u1 = A−1u and

using Lemma 1, we obtain the second inequality (1.3.8).

Lemma 1.3.3. The inequality

‖AρU (t)‖ ≤ ct−βρ−α(1−ρ)−δ exp(−ωt) , ρ ∈ (0,1) .

Here δ > 0, if β > 1 +α, and δ = 0, if β = 1 +α. If further estimated

∥∥∥A2U (t)
∥∥∥≤Mt−γ exp(−ωt) , 1 +β ≤ γ,ω > 0,

then the inequality

∥∥∥A1+ρU (t)
∥∥∥≤ ct−γρ−β(1−ρ)−δ exp(−ωt) , ρ ∈ (0,1)

Here δ > 0, if γ > 1 +β, and δ = 0, if γ = 1 +β.

Lemma 1.3.4. The following limit relations:

a)

lim
t→0+

U (t)A−ρ = A−ρ

at ρ >min
{

2α, β−1
β−α

}
;

b) if D = E, then

lim
t→0+

U (t)A−ρ = A−ρ

for ρ > α.

Proof. Proof of Lemmas 3 and 4 is given in [49].

Remark 1.3.3. When ρ≤ α expression and A−ρ (U (t)− I) can not aspire to zero. This

is evidenced by the example 2 and. 3. Indeed, in this example,

(U (t,p)− I)A−ρ (p) =


exp(ipkt−p2t)−1

(ipk−p2)ρ 0
tpl exp(ipkt−p2t)

(ipk−p2)ρ + ρpl[exp(ipkt−p2t)−1]
(ipk−p2)1+ρ

exp(ipkt−p2t)−1
(ipk−p2)ρ

 .
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If ρ≤ l
k −1, then ρ≤ α, and since k ≥ 2, there is no such district that∣∣∣∣∣∣∣

pl
[
exp

(
ipkt−p2t

)
−1

]
(
ipk−p2

)1+ρ

∣∣∣∣∣∣∣≥ c > 0,

where |p| ≥R > 0.

Lemma 1.3.5. If 0< ρ < 1−α
β−α , then

Aρ
t∫

0
U (t− s)f (s)ds=

t∫
0
AρU (t− s)f (s)ds. (1.3.9)

Here, f (s) continuous for s > 0, the function for which ‖f (s)‖ ≤ cs−µ, µ < 1.

Proof. The integral J on the right in (1.3.9) exists, since the estimate

‖AρU (t− s)f (s)‖ ≤ c(t− s)−βρ−α(1−ρ)−δ s−µ

and βρ+α (1−ρ)< 1. We show that J ∈D
(
A−ρ

)
. For this we consider equality

1
Γ(ρ)

∞∫
a

τρ−1U (τ)


t∫

0
AρU (t− s)f (s)ds

dτ
= 1

Γ(ρ)

t∫
0
τρ−1U (τ)


∞∫
a

τρ−1AρU (τ + t− s)dτ

f (s)ds.

Here in the last expression the inner integral is the limit as well a→ 0+, since

‖AρU (τ + t− s)‖ ≤ c(t− s)−βρ−α(1−ρ)−δ exp(−ω (τ + t− s)) .

Therefore, there is a limit of the left side of the last equality in and a→ 0+. This means

that J ∈D
(
A−ρ

)
. Let

w =
t∫

0
U (t− s)f (s)ds.

Then

A−1w =
t∫

0
A−1A−ρAρU (t− s)f (s)ds= A−1A−ρ

t∫
0
AρU (t− s)f (s)ds.

17



It follows from this equality

w = A−ρ
t∫

0
AρU (t− s)f (s)ds,

which means that w ∈D (Aρ). formula ”Equation” (1.3.9) is proved.

1.4 Solvability of the problem

5. Let us turn to problem (1.1.1). By its solution we mean a continuous function u= u(t)

for t ≥ 0, for which there exist and are continuous for t > 0 functions u′ (t), Au(t)) and

relations (1.1.1) are satisfied. Such a solution is called ”weakened” in [47].

Consider the homogeneous problem

u
′
+Au= 0 (t > 0) ,u(0) = u0. (1.4.1)

If there exists a semigroup U (t) of class A(α,β) generated by A, then the solution of

(1.4.1) is given by the formula u(t) = U (t)u0, if u0 ∈ D (Aρ), where ρ > min
{

2α, β−1
β−α

}
orρ > α in the case of D =E (Lemma 4). In the general case, it is impossible to improve

ρ, as is stated in the remark to Lemma 4. Note that there are no restrictions on the

parameters α and β, and the solution to this problem can exist in the of operator A does

not have regular points. Let us turn to the inhomogeneous problem (1.1.1). Its solution

u(t) = U (t)u0 +g (t), where

g (t) =
t∫

0
U (t− s)f (s)ds

inhomogeneous particular solution of equation (1.1.1). The properties of operation

function g (t) were studied in [49]. Note that the condition β < 2 arose [49] in the con-

struction of of the resolving operator of the problem with the variable operator coefficient.

In the case of constant operator coefficients this condition is absent. therefore, we have

Theorem 1.4.1. Suppose that conditions

18



1- there exists a bounded inverse operator A−1;

2- there exists a semigroup U (t) Class A(α,β), and in some ω > 0, 0≤ α < 1,α+1≤ β;

3-

‖f (t+ ∆t)−f (t)‖ ≤ ct−µ |∆t|ε

for some ε ∈
(
β−1
β−α ,1

]
,µ ∈ [0,1);

4- u0 ∈D (Aρ) for some ρ ∈
(
min

{
2α, β−1

β−α

}
,1
]

if D = E, then u0 ∈D (Aρ) at ρ ∈ (α,1] .

Then the problem (1.1.1) has a unique solution u(t), is given by the formula

u(t) = U (t)u0 +
t∫

0
U (t− s)f (s)ds.
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Chapter 2

On a second-order ordinary

differential operator with integral

conditions

2.1 Introduction

Ordinary differential equations with integral boundary conditions represent a very inter-

esting and important class of problems. They arise in many areas of applied mathematics

and physics, and have been much studied by many authors [1, 2, 4]. In [1], the equation

Au+λ2u=−a0(t)u′′(t) +a1(t)u′(t) +a2(t)u(t) +λ2u(t) = f0(t) for t ∈ (0,1),

is considered with the integral boundary conditions

Biu=
1∫

0
ei(t)u(t)dt= fi for i= 1,2.

E. I. Galakhov, and A.L. Skubachevskii [1] obtained a priori estimate of the solu-

tions for sufficiently large values of the spectral parameter λ. Moreover, they proved the

Fredholm solvability of the problem. The idea was based on the method devellopped in
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[82]. In [2], K. A. Darovskaya, and A. L. Skubachevskii asume the same problem but by

changing the unknown functions in the integral boundary conditions by its derivatives i.e

:

Biu=
1∫

0
ei(t)u′(t)dt= fi for i= 1,2.

This chapter is devoted to a problem inspired from [1, 2], where the integral boundary

conditions are homogeneous, containing the unknown functions and its derivatives.

2.2 Statement of the problem

We consider the following problem

Au+λ2u=−a0(t)u′′(t) +a1(t)u′(t) +a2(t)u(t) +λ2u(t) = f(t) for t ∈ (0,1), (2.2.1)

with the integral condition
B1u=

1∫
0
e1(t)u(t)dt= 0,

B2u=
1∫
0
e2(t)u′(t)dt= 0.

(2.2.2)

Where ai (i= 0,1,2) are real-valued functions belong in the space C[0,1], a0(t)≥ k > 0

for t∈ [0,1], f ∈L2(0,1) is a complex-valued function, λ∈C is a spectral parameter, and ei

(i= 1,2) are linearly independent real-valued functions such that ei ∈ C[0,1]. Our results

obtained concern the Fredholm solvability of the problem and a priori estimate of its

solutions for sufficiently large values of the spectral parameter. This study based on the

technique of the works [1, 2].

In the next section, we present some preliminaries and introduce an auxiliary problem

with some proprties. The main results are then stated and proved in Section 3.

2.3 Preliminaries

In this section, we will establish a result that is useful to the proof of our main results.
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Let W 1
∞(a,b) be the space of absolutely continuous functions u(t), t ∈ [a,b] such that

u′ ∈ L∞(a,b).

Set,

W 1
∞,β(0,1) =

{
u ∈ C[0,1] : u ∈W 1

∞(0,β), u ∈W 1
∞(1−β,1)

}
where 0< β < 1

2 . Throug this paper, we assume that a0 ∈W 1
∞,β(0,1).

In the Sobolev space W 2(0,1) we introduce the following equivalent norm with the

parameter λ :

|||u|||W 2(0,1) =
(
‖u‖2W 2(0,1) + |λ|4 ‖u‖2L2(0,1)

) 1
2 .

Let W [0,1] = L2(0,1)×C×C, and consider the bounded linear operator

L(λ) :W 2(0,1)→W [0,1]

given by

L(λ)u= (Au+λ2u,0,0).

We also define the unbounded operator

AB :D(AB)⊂ L2(0,1)→ L2(0,1)

with the domain

D(AB) =
{
u ∈W 2(0,1) :Biu= 0, i= 1,2

}
,

by ABu= Au. Note that the operator AB is not densely defined in L2(0,1).

In order to get our main results, we study the following problem, say the model problem

2.4 Model problem

A0u+λ2u=−pu′′(t) +λ2u(t) = f(t) for t ∈ (0,1), (2.4.1)
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with 
e1(0)

1
2∫
0
u(t)dt+ e1(1)

1∫
1
2

u(t)dt= 0,

e2(0)
1
2∫
0
u′(t)dt+ e2(1)

1∫
1
2

u′(t)dt= 0,
(2.4.2)

where p > 0 is a constant, f ∈ L2(0,1). Consider the set

ωε,q = {λ ∈ C : |argλ| ≤ ε or |argλ−π| ≤ ε}∩{λ ∈ C : |λ| ≥ q} ,

where ε ∈ (0, π2 ), and let ∆e = e1(0)e2(1) + e1(1)e2(0).

Lemma 2.4.1. Let ∆e 6= 0.Then for any ε ∈ (0, π2 ), there exists q0 > 1 such that for each

λ ∈ ωε,q0 the problem (2.4.1), (2.4.2) has a unique solution u ∈W 2(0,1) and

|||u|||W 2(0,1) ≤K |λ|
1
2 ‖f‖L2(0,1) , (2.4.3)

where K > 0 does not depend on λ and u.

Proof. 1. Let q0 > 1 sufficiently large, we consider problem (2.4.1), (2.4.2) with f(t) =

ei2πst (s 6= 0), and λ ∈ ωε,q0 . Then we have

−pu′′s(t) +λ2us(t) = ei2πst for t ∈ (0,1), (2.4.4)

with 
e1(0)

1
2∫
0
us(t)dt+ e1(1)

1∫
1
2

us(t)dt= 0,

e2(0)
1
2∫
0
u′s(t)dt+ e2(1)

1∫
1
2

u′s(t)dt= 0.
(2.4.5)

Obviously, the function

us(t) = c1se
µt+ c2se

−µt+ ei2πst

4pπ2s2 +λ2 for t ∈ (0,1), (2.4.6)

where µ=
√
λ2
p , <µ > 0, is a solution of Eq. (2.4.4).

Substituting (2.4.6) into the integral conditions (2.4.5), we obtain

MCs =Bs, (2.4.7)
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where

M =


e1(0)

(
e
µ
2−1

)
+e1(1)

(
eµ−e

µ
2
)

µ

e1(0)
(

1−e−
µ
2
)

+e1(1)
(
e−

µ
2−e−µ

)
µ

e2(0)
(
e
µ
2 −1

)
+ e2(1)

(
eµ− e

µ
2
)

e2(0)
(
e−

µ
2 −1

)
+ e2(1)

(
e−µ− e−

µ
2
)


and

Cs = (c1s, c2s)T , Bs =
(

(1− (−1)s)(e1(0)− e1(1))
i2πs(4pπ2s2 +λ2) ,

(1− (−1)s)(e2(0)− e2(1))
(4pπ2s2 +λ2)

)T
.

We set

g(λ) =

∣∣∣∣∣∣∣
e1(1)eµ

µ
e1(0)
µ

e2(1)eµ −e2(0)

∣∣∣∣∣∣∣=−
∆ee

µ

µ
,

and ∆(λ) = detM . An easy computation gives

∆(λ) = g(λ) + 1
µ

[
(2e

µ
2 − e−µ+ 2e−

µ
2 −2)∆e+ (4−2e

µ
2 −2e−

µ
2 )(e1(1)e2(1) + e1(0)e2(0))

]
,

and

∆(λ) = g(λ) +o(g(λ)) as |λ| →∞, λ ∈ ωε,q0 . (2.4.8)

Therefore, if q0 > 1 is sufficiently large, then ∆(λ) 6= 0 for λ ∈ ωε,q0 . Thus, from

Cramer’s rule, the system of linear algebraic equations (2.4.7) has a unique solution :

cjs = ∆js(λ)
∆(λ) (j = 1,2), (2.4.9)

where ∆js(λ) = 0 for s= 2m and

∆js(λ) = gjs(λ) +o(gjs(λ)) as |λ| →∞, λ ∈ ωε,q0 , for s= 2m+ 1; (2.4.10)

with

gjs(λ) = (αjµ+βjs)e(j−1)µ

iπs(4pπ2s2 +λ2)µ , αj ,βj ∈ C (j = 1,2).

Combining(2.4.8), (2.4.9),(2.4.10), we obtain

cjs =− (αjµ+βjs)e(j−2)µ+o(µe(j−2)µ)
iπs(4pπ2s2+λ2)∆e

as |λ| →∞, λ ∈ ωε,q0 (j = 1,2, s= 2m+ 1).

cjs = 0 (j = 1,2, s= 2m).
(2.4.11)
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Substituting (2.4.11) into (2.4.6), we obtain

us(t) = vs(t) +ws(t) as |λ| →∞, λ ∈ ωε,q0 ,

where

vs(t) =− [(α1µ+β1s)e−µ+o(µe−µ)]eµt+[(α2µ+β2s)+o(µ)]e−µt

iπs(4pπ2s2+λ2)∆e
for s= 2m+ 1,

vs(t) = 0 for s= 2m,
(2.4.12)

ws(t) = ei2πst

4pπ2s2 +λ2 . (2.4.13)

For λ ∈ ωε,q0 , it is easy to see that

|λ|cosε
√
p
≤<µ, (2.4.14)

4pπ2s2 sin2ε≤
∣∣∣4pπ2s2 +λ2

∣∣∣ , (2.4.15)

|λ|2 sin2ε≤
∣∣∣4pπ2s2 +λ2

∣∣∣ . (2.4.16)

Then, from (2.4.12), (2.4.14), and (2.4.16), it follows that

‖vs‖L2(0,1) ≤ k1
∣∣∣4pπ2s2 +λ2

∣∣∣−1
|s|−1 (|µ|+ |s|)

(
1− e−2<µ

<µ

) 1
2

≤ k2 |λ|−
3
2 |s|−1 ,

∥∥∥v′s∥∥∥L2(0,1)
≤ k1

∣∣∣4pπ2s2 +λ2
∣∣∣−1
|s|−1 |µ|(|µ|+ |s|)

(
1− e−2<µ

<µ

) 1
2

≤ k2 |λ|−
1
2 |s|−1 ,

∥∥∥v′′s∥∥∥L2(0,1)
≤ k1

∣∣∣4pπ2s2 +λ2
∣∣∣−1
|s|−1 |µ|2 (|µ|+ |s|)

(
1− e−2<µ

<µ

) 1
2

≤ k2 |λ|
1
2 |s|−1 .

Here and further k1, ...,k4 > 0 do not depend on λ and s.

Therefore,

|||vs|||W 2(0,1) ≤ k3 |λ|
1
2 |s|−1 (λ ∈ ωε,q0 , s 6= 0). (2.4.17)
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Similarly, from (2.4.13), (2.4.14), and (2.4.15), we have

|||ws|||W 2(0,1) ≤ k4 (λ ∈ ωε,q0 , s 6= 0). (2.4.18)

2. Now, we consider problem (2.4.1), (2.4.2) with f(t) = 1, and λ ∈ ωε,q0 , where q0 > 1

is sufficiently large. Then this problem takes the form

−pu′′0(t) +λ2u0(t) = 1 for t ∈ (0,1), (2.4.19)

with 
e1(0)

1
2∫
0
u0(t)dt+ e1(1)

1∫
1
2

u0(t)dt= 0,

e2(0)
1
2∫
0
u′0(t)dt+ e2(1)

1∫
1
2

u′0(t)dt= 0.

The strong solution of eqution(2.4.19) is given by the formula

u0(t) = c1e
µt+ c2e

−µt+ 1
λ2 for t ∈ (0,1),

where µ=
√
λ2
p , <µ > 0.

In a similar manner to Part 1 of the proof, we obtain

cj = (−2λ2∆e)−1
[
γjµe

(j−2)µ+o(µe(j−2)µ)
]

as |λ| →∞, λ ∈ ωε,q0 (j = 1,2),

where γj ∈ C (j = 1,2). and u0(t) = v0(t) +w0(t), where

v0(t) = (−2λ2∆e)−1
[
(γ1µe

−µ+o(µe−µ))eµt+ (γ2µ+o(µ))e−µt
]

as |λ| →∞, λ ∈ ωε,q0 ,

and w0(t) = 1
λ2 .

Obviously,

|||v0|||W 2(0,1) ≤ k5 |λ|
1
2 (λ ∈ ωε,q0), (2.4.20)

|||w0|||W 2(0,1) ≡ 1 (λ ∈ ωε,q0), (2.4.21)

where k5 > 0 does not depend on λ.
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3. Finally, we consider problem (2.4.1), (2.4.2) for f(t) = FN (t) and λ ∈ ωε,q0 (q0 > 1

is sufficiently large), where

FN (t) =
∑
|s|≤N

fse
i2πst, fs =

1∫
0
f(t)e−i2πstdt.

Since ∆(λ) 6= 0 (λ ∈ ωε,q0), it follows from the Part 1, and Part 2 of the proof that

UN (t) =
∑
|s|≤N

fsus(t),

is a unique solution of problem (2.4.1), (2.4.2).

Using inequalities (2.4.18), (2.4.19), and (2.4.20), (2.4.21), and the orthogonality of

the functions ws in W 2(0,1), we obtain

|||UN |||W 2(0,1) ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|s|≤N

fsvs

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
W 2(0,1)

+

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|s|≤N

fsws

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
W 2(0,1)

≤
∑
|s|≤N

|fs| · |||vs|||W 2(0,1) +
k6

∑
|s|≤N

|fs|2


1
2

≤

 ∑
|s|≤N

|fs|2


1
2
 ∑
|s|≤N

|||vs|||2W 2(0,1)


1
2

+k
1
2
6 ‖f‖L2(0,1)

≤ k7 |λ|
1
2 ‖f‖L2(0,1) +k

1
2
6 ‖f‖L2(0,1) ≤ k8 |λ|

1
2 ‖f‖L2(0,1) (λ ∈ ωε,q0),

(2.4.22)

where k6,k7 > 0 do not depend on λ and f, k8 = k7 +k
1
2
6 .

Similarly to the proof of inequality (2.4.22), one can show that {UN} is a Cauchy

sequence in W 2(0,1). Since W 2(0,1) is complete and the limit is unique, and since

∆(λ) 6= 0 (λ ∈ ωε,q0), the problem (2.4.1), (2.4.2) has aunique solution u ∈W 2(0,1) for

any f ∈ L2(0,1) and we have |||UN −u|||W 2(0,1)→ 0 as N →∞. By passing to the limit

in inequality (2.4.22), we obtain the estimate

|||u|||W 2(0,1) ≤ k8 |λ|
1
2 ‖f‖L2(0,1) (λ ∈ ωε,q0).
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2.5 Main results

In the following, we shall give the main results of this chapter.

Theorem 2.5.1. Let ∆e 6= 0. Then for any ε ∈ (0, π2 ), there exists q > 1 such that for any

λ ∈ ωε,q and u ∈W 2(0,1) :

|||u|||W 2(0,1) ≤ C |λ|
1
2 ‖f‖L2(0,1) (2.5.1)

where C > 0 does not depend on λ and u.

Proof. 1. First, we transform the equation (2.2.1) to the form in which the coefficient of

the second derivative becoms equal to a constant in a sufficiently small neighborhood of

0 and 1. To do so, we introduce the new variable τ = d−1
t∫

0
b−1(ξ)dξ, where

d=
1∫

0
b−1(ξ)dξ,

b(ξ) =


√
a0(ξ) for ξ ∈ [0,β]∪ [1−β,1],

(1−ξ−β)
√
a0(β)+(ξ−β)

√
a0(1−β)

1−2β for ξ ∈ (β,1−β).

Since a0 ∈W 1
∞,β(0,1) and a0(t)≥ k > 0, we have

0< k1 ≤ b−1(t)≤ k−
1
2 and b−1 ∈W 1

∞(0,1),

Therefore, the function τ = τ(t) maps the interval [0,1] into itself and

dτ

dt
= (db(t))−1 ≥ k1k

1
2 > 0, dτ

dt
∈W 1

∞(0,1).

The transformation τ = τ(t) reduce problem (2.2.1), (2.2.2) to the form

−a0(τ)u′′(τ) +a1(τ)u′(τ) +a2(τ)u(τ) +λ2u(τ) = f(τ) for τ ∈ (0,1) (2.5.2)

with 
1∫
0
e1(τ)u(τ)dτ = 0

1∫
0
e2(τ)u′(τ)dτ = 0

, (2.5.3)
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where

u(τ) = u(t(τ)), f(τ) = f(t(τ)), a0(τ) = a0(t(τ))(db(t(τ)))−2 ∈W 1
∞,β0(0,1),

a1(τ) = a1(t(τ))
db(t(τ)) + a0(t(τ))b′(t(τ))

d2b3(t(τ)) ∈ L∞(0,1), a2(τ) = a2(t(τ)) ∈ C[0,1],

ei(τ) = ei(t(τ))(db(t(τ)))2−i ∈ C[0,1] (i= 1,2), and

β0 = min

d−1
β∫

0
b−1(ξ)dξ,1−d−1

1−β∫
0
b−1(ξ)dξ,

 ,

Moreover,

a0(τ) = 1
d2 , for τ ∈ [0,β0]∪ [1−β0,1].

Note that the inequality(2.5.1) is invariant with respect to the substitution τ = τ(t).

We have

∆e = e1(0)e2(1) + e1(1)e2(0) = d
√
a0(0)e1(0)e2(1) +d

√
a0(1)e1(1)e2(0).

It is easy to see that ∆e 6= 0.

Therefore, without loss of generality, we can assume that

a0 ∈W 1
∞,β(0,1), ai ∈ L∞(0,1) (i= 1,2), ei ∈ C[0,1] (i= 1,2),

a0(t)≥ k > 0, a0(t) = a0(0) for t ∈ [0,β]∪ [1−β,1], and ∆e 6= 0.

2. We obtain an a priori estimate of solutions of problem(2.2.1), (2.2.2) on the closed

interval [ δ3 ,1−
δ
3 ], where δ = δ(λ)> 0.

We consider a truncating function ζ ∈ C∞(R) such that

0≤ ζ(t)≤ 1, ζ(t) = 1 for |t|< 1
4, ζ(t) = 0 for |t|> 1

3.

For each λ ∈ ωε,q1 , we introduce the function

η(t) = ζ( t
δ

) + ζ(t−1
δ

),
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where q1 = max
{
q0,β−3

}
, δ = |λ|−

1
3−2γ and 0< γ < 1

12 .

It is easy to see that ∣∣∣η(j)(t)
∣∣∣≤ k1δ

−j for t ∈ R, (j = 1,2), (2.5.4)

where k1 > 0 does not depend on t and δ. Since |λ| ≥ q1, we obtain δ < q
− 1

3
1 ≤ β.

By virtue of the a priori estimate for solution of ”local” boundary value problems with

a parameter [3], for any ε > 0, there exists q2 ≥ q1 such that any solution u ∈W 2(0,1) of

problem (2.2.1) (2.2.2) for λ ∈ ωε,q2 satisfies the inequality

|||(1−η)u|||W 2(0,1) ≤ k2
∥∥∥(A+λ2I)((1−η)u)

∥∥∥
L2(0,1)

,

Obviously,

(A+λ2I)((1−η)u) = (1−η)(A+λ2I)u−a0(1−η)′′u−2a0(1−η)′u′+a1(1−η)′u

Then, since ai (i= 0,1,2) are bounded and using the inequality (3.4) and the Leibnitz

formula, we obtain

|||(1−η)u|||W 2(0,1) ≤ k2
∥∥∥(A+λ2I)((1−η)u)

∥∥∥
L2(0,1)

≤ k3

[∥∥∥(A+λ2I)u
∥∥∥
L2(0,1)

+ |λ|
2
3 +4γ ‖u‖L2(0,1) + |λ|

1
3 +2γ

(
‖u‖L2(0,1) +

∥∥∥u′∥∥∥
L2(0,1)

)]
≤ k4

(∥∥∥(A+λ2I)u
∥∥∥
L2(0,1)

+ |λ|
2
3 +4γ ‖u‖L2(0,1) + |λ|

1
3 +2γ ‖u‖W 1(0,1)

)
,

where k2,k3,k4 > 0 do not depend on λ and u.

Using the known interpolation inequality

|λ|‖u‖W 1(0,1) ≤ c
(
‖u‖W 2(0,1) + |λ|2 ‖u‖L2(0,1)

)
,

we find that

|||(1−η)u|||W 2(0,1) ≤ k5

[∥∥∥(A+λ2I)u
∥∥∥
L2(0,1)

+ |λ|−
2
3 +2γ ‖u‖W 2(0,1) +

(
|λ|

2
3 +4γ + |λ|

4
3 +2γ

)
‖u‖L2(0,1)

]
≤ k5

(∥∥∥(A+λ2I)u
∥∥∥
L2(0,1)

+

|λ|−
2
3 +2γ ‖u‖W 2(0,1) + |λ|2

(
|λ|−

4
3 +4γ + |λ|−

2
3 +2γ

)
‖u‖L2(0,1)

)
≤ k6

[∥∥∥(A+λ2I)u
∥∥∥
L2(0,1)

+ |λ|−
2
3 +2γ (‖u‖W 2(0,1) + |λ|2 ‖u‖L2(0,1)

)]
.
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It follows that

|||(1−η)u|||W 2(0,1) ≤ k6
(
‖f‖L2(0,1) + |λ|−σ |||u|||W 2(0,1)

)
, (2.5.5)

where σ = 2
3 −2γ > 0 and k5,k6 > 0 do not depend on λ and u.

3. Now, we obtain an a priori estimate for solution of problem (2.2.1) , (2.2.2) near

the end-points of the interval (0,1).

We introduce the operators A0 and A1 by

A0u=−a0(0)u′′(t) and A1u=−a0(t)u′′(t) for t ∈ (0,1).

We set p= a0(0) in equation (2.1). Then, applying Lemma 1, we obtain

|||ηu|||W 2(0,1) ≤K |λ|
1
2
∥∥∥(A0 +λ2I)(ηu)

∥∥∥
L2(0,1)

≤K |λ|
1
2
(∥∥∥(A+λ2I)(ηu)

∥∥∥
L2(0,1)

+
∥∥∥a1(ηu)′

∥∥∥
L2(0,1)

+‖a2(ηu)‖L2(0,1) +‖(A0−A1)(ηu)‖L2(0,1)

)
.

Similarly to the proof of (2.5.5), we obtain

|||ηu|||W 2(0,1) ≤ k7 |λ|
1
2
(
‖f‖L2(0,1) + |λ|−σ |||u|||W 2(0,1) +‖(A0−A1)(ηu)‖L2(0,1)

)
.

It follows from the definition of η(t) and inequality δ < β that suppη⊂ [0,β]∪ [1−β,1].

But a0(t) = a0(0) for t ∈ [0,β]∪ [1−β,1]. Therefore

‖(A0−A1)(ηu)‖L2(0,1) = 0.

Thus, we have

|||ηu|||W 2(0,1) ≤ k7

(
|λ|

1
2 ‖f‖L2(0,1) + |λ|−χ |||u|||W 2(0,1)

)
, (2.5.6)

where χ= 1
6 −2γ > 0.

Therefore, choosing q > q2 so that (k6 + k7)q−χ < 1, we derive the inequality (2.5.1)

from (2.5.5) and (2.5.6). The proof is complete.

31



Corollaire 2.5.1. Let ∆e 6= 0. Then the following assertions are true. a) The operators

L(λ) :W 2(0,1)→W [0,1] and AB :D(AB)⊂ L2(0,1)→ L2(0,1),

possess the Fredholm property and indL(λ) = indAB = 0 for all λ ∈ C.

b) The spectrum σ(AB) is discrete.

c) For µ /∈ σ(AB), the resolvent

R(µ,AB) = (µI−AB)−1 : L2(0,1)→ L2(0,1),

is a compact operator.

d) For any 0 < δ < π, all points of the spectrum σ(AB), except, possibly, finitly many of

them, belong to the angle |argµ| ≤ δ of the complex plane.

Proof. 1. Consider problem (2.2.1), (2.2.2) with f(t) = 0 and λ ∈ ωε,q. Then from in-

equality (2.5.1), we have u = 0. Therefore, the eigenvalues of AB do not belong to the

set

Ωδ,r = {µ ∈ C : |argµ| ≥ δ, |µ| ≥ r} ,

where δ = π−2ε, r = q2.

It is easy to see that if µ = −λ2 is not an eigenvalues of AB, then problem (2.2.1),

(2.2.2) has a unique solution for any f ∈ L2(0,1). This fact, together with the inequality

(2.5.1), implies that the operator L(λ) : W 2(0,1)→ W [0,1] admits a bounded inverse

L−1(λ) :W [0,1]→W 2(0,1) for λ ∈ ωε,q. Therefore, the operator

µI−AB :D(AB)⊂ L2(0,1)→ L2(0,1),

has a bounded inverse

(µI−AB)−1 : L2(0,1)→W 2(0,1),

for µ ∈ Ωδ,r. Since W 2(0,1) is compactly embeded in L2(0,1), it follows that the

spectrum σ(AB) is discrete. Note that

σ(AB)⊂ {µ ∈ C : |argµ|< δ}∪{µ ∈ C : |µ|< r} .
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2. Let λ0 ∈ ωε,q. Then, we have

L(λ) =
[
I+ (L(λ)−L(λ0))L−1(λ0)

]
L(λ0)

for each λ ∈ C, where I is the identity operator in W [0,1]. It is easy to see that

(L(λ)−L(λ0))u= ((λ2−λ2
0)u,0,0).

Since W 2(0,1) is compactly embeded in L2(0,1), the operator

(L(λ)−L(λ0))L−1(λ0) :W [0,1]→W [0,1]

is a compact operator. Thus, it follows that L(λ) :W 2(0,1)→W [0,1] is a Fredholm op-

erator and indL(λ) = 0Similarly, we can prove that the operator AB :D(AB)⊂L2(0,1)→

L2(0,1) is a Fredholm operator and indAB = 0.
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Chapter 3

On a coupled system of differential

equations with nonlocal conditions

3.1 Introduction

This chapter is devoted to the study of the system

∂u

∂t
− ∂

2u

∂x2 + ∂v

∂x
− z = 0,

∂u

∂x
+v = 0,

∂2z

∂x2 = f(t,x),

where t ∈ [0,1] and x ∈ [0,1], u = u(t,x), v = v(t,x), z = z(t,x) are unknown functions,

and f(t,x) is a given function. This system is supplemented with the mixed nonlocal

boundary conditions

u(t,0) = 0,
1∫

0
u(t,x)dx= 0, and z(t,0) = 0,

1∫
0
z(t,x)dx= 0,
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and the condition
∂2u(0,x)
∂x2 = u0(x)

at t= 0, where u0(x) is a given function.

We consider this problem in the Banach space E = Lp(0,1)×Lp(0,1)×Lp(0,1) (with

respect to x ) of elements w = (u,v,z) for some p, 1≤ p <∞.

The case of regular boundary conditions was studied by Yu. T. Silchenko [19, 20].

We study a system of coupled differential equations with mixed nonlocal boundary

conditions. We transform this system to an abstract Cauchy problem, and we obtain the

existence and uniquness solution of this problem with the use of an infinitely differentiable

semigroup that has a singularity at zero.

3.2 Formulation of the problem

In Banach space E = Lp(0,1)×Lp(0,1)×Lp(0,1) (1≤ p <∞), we consider the problem

∂u

∂t
− ∂

2u

∂x2 + ∂v

∂x
− z = 0, (3.2.1)

∂u

∂x
+v = 0, (3.2.2)

∂2z

∂x2 = f(t,x), (3.2.3)

with the integral boundary conditions

u(t,0) = 0,
1∫

0
u(t,x)dx= 0, and z(t,0) = 0,

1∫
0
z(t,x)dx= 0, (3.2.4)

and the condition at t= 0
∂2u(0,x)
∂x2 = u0(x). (3.2.5)

Here u= u(t,x), v = v(t,x), z = z(t,x) (0< t≤ 1,0≤ x≤ 1) are unknown functions, and

f(t,x), u0(x) are given functions.
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Note that for w = (u,v,z) ∈ E,‖w‖ = ‖u‖+ ‖v‖+ ‖z‖ and we associate to problem

(3.2.1)-(3.2.5) the operators

A=


d2

dx2 − d
dx 1

− d
dx −1 0

0 0 − d2

dx2

 , B =


1 0 0

0 0 0

0 0 0

 , C = d2

dx2

with domains

D=D(A) =

w ∈W 2
p ×W 1

p ×W 2
p , w = (u,v,z), u(0) =

1∫
0
u(x)dx= 0, z(0) =

1∫
0
z(x)dx= 0

 ,

DB =D(B) =E, and D(C) =

z ∈W 2
p (0,1), z(0) = 0 and

1∫
0
z(x)dx= 0

. Then problem

(3.2.1)-(3.2.5) can be transformed to the abstract Cauchy problem

Bw′t−Aw = F (t), Bw(0) = w0, (2.6)

where F (t) = (0,0,f(t, .)) and w0 =
(
C−1u0,0,0

)
.

After the elimination of z, this problem take the form

Bw′t−Aw =BA−1Φ(t), Bw(0) =BA−1w1 (3.2.6)

in the subspace Lp(0,1)×Lp(0,1) of elements w = (u,v)T with norm ‖w‖ = ‖u‖+ ‖v‖,

where

A=

 d2

dx2 − d
dx

− d
dx −1

 , B =

 1 0

0 0

 ,
with the corresponding domains, Φ(t) = (2f(t, .),0)T , and w1 = (2u0,0)T .

3.3 Statement of the Main Result

In order to formulate the conditions that should be satisfied for the matrix operators A

and B, we consider the estimate∥∥∥B (λB−A)−1∥∥∥≤M (1 + |λ|)−r . (3.3.1)
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Problem (3.2.6) is studied in this paper with the use of an infinitely differentiable semi-

group that has a singularity at zero, to the construction of this semigroup, we make the

main assumption : for each λ in the sector S = {λ ∈ C : |argλ|< π− δ} and for some

δ ∈
(
0, π2

)
,


the generalized resolvent λB−A has a bounded inverse

the operators B (λB−A)−1 is bounded, and its norm satisfies condition (3.3.1) for some r > 0.
(3.3.2)

Theorem 3.3.1. Let the function f(t,x) satisfy the Hőlder condition

‖f(t+ ∆t, .)−f(t, .)‖LP ≤ C |∆t|
ν

with respect to t for some ν ∈ (0,1]. Let u0 ∈ LP . Then problem (3.2.1)-(3.2.5) has a

unique solution.

Theorem 3.3.2. Let the operator A and the closed operator B satisfy condition (3.3.2)

with some r ∈ (0,1], and let the function Φ(t) satisfy the Hőlder condition

‖Φ(t+ ∆t, .)−Φ(t, .)‖ ≤ C |∆t|ν

with some ν ∈ (0,1]. Then problem (3.2.6) has a unique solution for each w1 ∈ E.

3.4 Existence of solutions of the abstract Cauchy prob-

lem

To prove Theorem(3.3.2), we first study the homogeneous problem

Bw′t−Aw = 0, 0< t≤ 1, (3.4.1)

Bw(0) =BA−1w1. (3.4.2)
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Lemma 3.4.1. Let the operators A and B satisfy condition (2.5.2). Then for t > 0, there

exists an operators function T (t) ∈ L(E) with the following properties:

(1) T (t) : E→D;

(2) T (t+ s) = T (t)AT (s), t,s > 0;

(3) if t > 0, then the operator function T (t) is continuously differentiable in the norm of

the space L(E) and BT ′(t) = AT (t);

(4) limBT (t) =BA−1 in the norm of the space L(E) as t→ 0+;

(5) ‖T (t)‖ ≤M2tr−1, ‖T ′(t)‖ ≤M2tr−2, ‖BT ′(t)‖ ≤M2tr−1, and ‖AT (t)‖ ≤M2tr−1.

Proof. Let Γ = Γ1∪Γ2 the contour lying in the sector S such that

Γ1 =
{
λ ∈ C : λ= |λ|e−iϕ or λ= |λ|eiϕ, |λ| ≥R

}
,Γ2 =

{
λ ∈ C : λ=ReiΨ, |Ψ| ≤ ϕ

}
,

for some ϕ ∈
(
π
2 ,π− δ

)
, and we set

U(t) = 1
2πi

∫
Γ

eλtB (λB−A)−1 dλ, (3.4.3)

Obviously, from the estimate (2.5.1), we have the inequality

∥∥∥B (λB−A)−1∥∥∥≤M |λ|−r
is valid on the contour Γ. And the integral in (3.4.3) admits the estimate

∥∥∥eλtB (λB−A)−1∥∥∥≤Me|λ|tcosϕ |λ|−r , cosϕ < 0.

Therefore, we obtain the absolute convergence of the integral (3.4.3) at infinity and

‖U(t)‖ ≤ 2M
∞∫
R

e−|λ|t|cosϕ| |λ|−r |dλ|+
∫
Γ2

e|λ|tcosϕ |λ|−r |dλ| .

The second integral is bounded by some constant M1. And for r < 1, we set |λ| t |cosϕ|= s.

Then

‖U(t)‖ ≤ 2Mtr−1
∞∫
0
e−ss−rds+M1 ≤M2t

r−1
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. If r ≥ 1, we have

‖U(t)‖ ≤ 2M

tr−1
∞∫

Rt|cosϕ|

e−ss−rds+
|cosϕ|∫

0
e−Rt|cosΨ|R1−rdΨ


. For small t, one can take R = 1

t . Then

‖U(t)‖ ≤ 2M

tr−1
∞∫

|cosϕ|

e−ss−rds+ tr−1

≤M2t
r−1.

Similarly with the preceding considerations, we obtain the existence of the integral

U ′(t) = 1
2πi

∫
Γ

λeλtB (λB−A)−1 dλ,

and the estimate ‖U ′(t)‖ ≤M2tr−2. Obviously, the operator function U(t) is infinitely

differentiable for t > 0.

With the use of the generalized resolvent identity

(λB−A)−1B (µB−A)−1 = 1
µ−λ

(
(λB−A)−1− (µB−A)−1) ,

we can prove that the operator function U(t) has the semigroup property U(t)U(s) =

U(t+ s), t,s > 0.

Now, with the use of the identity

λB (λB−A)−1 = I+A(λB−A)−1 , (3.4.4)

we obtain

U ′(t) = 1
2πi

∫
Γ

eλtdλI+
∫
Γ

eλtA(λB−A)−1 dλ

= 1
2πi

∫
Γ

eλtA(λB−A)−1 dλ.

By applying the bounded operator BA−1 to both sides of the last relation, we obtain

BA−1U ′(t) = 1
2πi

∫
Γ

eλtB (λB−A)−1 dλ= U(t).
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Since A−1 is bounded, we have

B
[
A−1U(t)

]′
= U(t).

By setting A−1U(t) = T (t), we have BT ′(t) = AT (t).

With the use of identity (3.4.4) and to clarify the behavior of the operator function

U(t) at zero, we transform the integral in (4.3) :

U(t) = 1
2πi

∫
Γ

λ−1eλtdλI+
∫
Γ

eλtλ−1A(λB−A)−1 dλ

 .
Here the first integral is equal to unity. Therefore

U(t) = I+ 1
2πi

∫
Γ

eλtλ−1A(λB−A)−1 dλ.

By applying the bounded operator BA−1 on the left and by passing to the limit as t→ 0+,

we obtain

lim
t→0+

BA−1U(t) =BA−1 + 1
2πi

∫
Γ

λ−1B (λB−A)−1 dλ,

since the last integral is absolutely convergent. Moreover, it is zero. Indeed, consider the

circle σ2 + τ2 = ρ2 (ρ > R). By Γρ we denote the part of this circle lying in the sector

S; we have λ = ρeiΨ, |Ψ| ≤ ϕ, on this circle. By Γ0ρ we denote the part of the contour

Γ lying inside the circle of radius ρ. Then the integral of the function λ−1B (λB−A)−1

over the closed contour Γρ∪Γ0ρ is zero. Now we consider this closed contour as ρ→∞.

Then ∥∥∥∥∥∥∥
1

2πi

∫
Γρ

λ−1B (λB−A)−1 dλ

∥∥∥∥∥∥∥≤
1

2π

ϕ∫
−ϕ

1
ρ

M

ρr
ρdΨ≤ 4

ρr
,

since ϕ∈ (π2 ,π−δ) by construction. The last expression tends to zero as ρ→∞. It follows

that the above-mentioned integral is zero and limBA−1 [U(t)− I] = 0 as t→ 0+.

Finaly, from the corresponding properties of the operator function U(t) and the bound-

edness of the operator A−1, we obtain The properties of the operator function T (t) men-

tioned in the lemma.
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The item (3) and (4) in Lemma1 implies that the function w(t) = T (t)w1 for some

w1 ∈ E is a solution of the homogeneous problem (3.4.1)-(3.4.2).

Lemma 3.4.2. Let condition(2.5.2) be valid for the operators A and B. If B is a closed

operator, then for each w1 ∈ E problem (3.4.1)-(3.4.2) has a unique solution.

Proof. We have the existence of solution from the preceding considerations. Let us prove

the uniqueness. By Lemma 1, ‖w(t)‖ ≤Mtr−1 (r > 0). We introduce the function

gε(λ) =

1
ε∫
ε

e−λtw(t)dt for Reλ > 0, ε > 0

, where w(t) is a solution of problem (3.4.1)-(3.4.2) with w1 = 0. Obviosly, gε(λ) has the

limit

g(λ) =
∞∫
0
e−λtw(t)dt as ε→ 0+

. And

Agε(λ) =

1
ε∫
ε

e−λtAw(t)dt=

1
ε∫
ε

e−λtBw′(t)dt

= e−
λ
εBw(1

ε
)− e−λεBw(ε) +λ

1
ε∫
ε

e−λtBw(t)dt

By passing to the limit as ε→ 0, we obtain

Ag(λ) = λB

∞∫
0
e−λtw(t)dt= λBg(λ)

. Therefore, Ag(λ) = λBg(λ) and (λB−A)g(λ) = 0. Since λ belongs to the generalized

resolvent set, it follows that g(λ) = 0 for Reλ > 0. This is possible only if w(t) = 0.

Now, consider the the abstract Cauchy problem (3.2.6)Let

h(t) =
t∫

0
T (t− s)f(s)ds,
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where f(t) is a function defined on [0,1] and satisfying the Hőlder condition

‖f(t+ ∆t)−f(t)‖ ≤ c |∆t|ν (3.4.5)

for some ν ∈ (0,1]. Let r ∈ (0,1]. We set hε(t) =
t−ε∫
0
T (t− s)f(s)ds, ε > 0. Obviously,

hε(t)→ h(t) uniformly (with respect to t > 0) as ε→ 0; it is continuously differentiable,

and

h′ε(t) =
t−ε∫
0
T (t− s)f(s)ds+T (ε)f(t− ε). (3.4.6)

Since B is a closed operator and the Hőlder condition (3.4.5) we can prove the existence

of the integral
t∫

0
BT ′(t−s)f(s)ds with the use of methods in [2,3]. Then by applying the

operator B to the relation (3.4.6), and let ε→ 0 on the right-hand side, we have Bh′ε(t)

converges uniformly with respect to t to Bh′(t) as ε→ 0. Consequensly,

Bh′(t) =
t∫

0
BT ′(t− s)f(s)ds+BA−1f(t).

Since BT ′(t) = AT (t), it follows that

Bh′(t) =
t∫

0
AT (t− s)f(s)ds+BA−1f(t) = Ah(t) +BA−1f(t).

This implies that the function h(t) satisfies the nonhomogeneous equation

Bh′(t) = Ah(t) +BA−1f(t),

and h(t)→ 0 as t→ 0+. Therefore, the function

w(t) = T (t)w1 +
t∫

0
T (t− s)f(s)ds (18)

is a solution of problem (3.2.6) for Φ(t) = f(t).
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3.5 Proof of main result

Consider the generalized resolvent equation (λB−A)w = Φ, Φ = (f,g)T , w = (u,v)T , by

the construction of the operators A and B, this equation take the form

−u′′xx+λu+v′x = f(x), u′x+v = g(x), x ∈ [0,1],

u(0) = 0,
1∫

0
u(x)dx= 0.

We have v(x) = g(x)−u′x and v′(x) = g′(x)−u′′x , then we obtain the problem

−2u′′xx+λu= f(x)−g′(x), (3.5.1)

u(0) = 0,
1∫

0
u(x)dx= 0. (3.5.2)

The strong solution of equation (3.5.1) is given by the formula

u(x) = 1
4ρ

 x∫
0
e(s−x)ρf(s)ds+

1∫
x

e(x−s)ρf(s)ds
+ 1

4

 x∫
0
e(s−x)ρg(s)ds−

1∫
x

e(x−s)ρg(s)ds


+ 1
4ρ

(
g(0)e−ρx−g(1)eρ(x−1)

)
.

(3.5.3)

Substituting (3.5.3) into the condition (3.5.2), we obtain

g(0) =

1∫
0

(
2e−ρ− eρ(s−2)− e−ρs

)
f(s)ds−ρ

1∫
0

(
eρ(s−2)− e−ρs

)
g(s)ds

(e−ρ−1)2

g(1) =

1∫
0

(
2− eρ(s−1) + e−ρ(s+1)−2e−ρs

)
f(s)ds−ρ

1∫
0

(
e−ρ(s+1) + eρ(s−1)−2e−ρs

)
g(s)ds

(e−ρ−1)2 .

Therfore, for the functions u and v, we have the closed-form expressions

u(x) = 1
4ρ

 x∫
0
e(s−x)ρf(s)ds+

1∫
x

e(x−s)ρf(s)ds
+

1∫
0
G1(x,s,ρ)f(s)ds

+ 1
4

 x∫
0
e(s−x)ρg(s)ds−

1∫
x

e(x−s)ρg(s)ds
+

1∫
0
G2(x,s,ρ)g(s)ds,

v(x) = g(x)−u′x = g(x)−G3(x,ρ).
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Where G1(x,s,ρ),G2(x,s,ρ), and G3(x,ρ) are some functions, and ρ =
√
λ
2 . Further, we

note that (λB−A)−1 (f,g)T = (u,v)T . Therfore, by virtue of the structure of the matrix

B,

B (λB−A)−1 (f,g)T = (u,0)T

. Since the function u(x) is represented in closed form, by straightforward computations

we can obtain the estimate
∥∥∥B (λB−A)−1∥∥∥≤ c |λ|− 1

2 in the sector |argλ|< π.

Let us now return to the the abstract Cauchy problem (3.2.6). We note that the

matrix operators A and B satisfy the assumptions of theorem 2.

Further, by simple computations, we obtain

BA−1

 2f(t,x)

0

=


x∫

0
(x− s)f(t,s)ds−x

1∫
0

(s−1)2 f(t,s)ds

0

=

 C−1f(t,x)

0

 .
(3.5.4)

Therefore, by matching (3.5.4) in (3.2.6), we obtain

∂u

∂t
− ∂

2u

∂x2 + ∂v

∂x
= C−1f(t,x)

∂u

∂x
+v = 0.

Now, by setting z=C−1f, we find that the functions u,v, and z satisfy equationsqs (3.2.1),

(3.2.2) and (3.2.3). Similarly, one can verity the validity of condition (3.2.5). The proof

is complete.
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Chapter 4

On the solvability of the parabolic

equation with a nonlocal conditions

4.1 Introduction

In this chapter, for a linear parabolic equation with the principal part in divergence form, a

boundary value problem with nonlocal(irregular) conditions of integral type is considered.

Sufficient conditions of the unique solvability are found for the above mentioned problem.

We consider a boundary value problem for one dimensional parabolic equation with

integral conditions as boundary conditions and instead of the initial value condition.we

imposed the nonlocal condition of integral type. Boundary value problems for parabolic

equations in which one local classical condition is replaced by an integral condition were

studied in.[30] by various methods. Integral conditions are much wider used as overde-

termination conditions in the analysis of inverse problems for parabolic equations [36].

The problems with integral conditions for partial differential equations were considered

in numerous works in the recent years, since such problems have important practical ap-

plications. The integral conditions are used, in particular, in models of heat conduction

[38, 30, 60] and humidity transfer [39], in demographic models [43], and in inverse models
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of the theory of heat conduction [36].

The models with integral conditions for ordinary differential equations and partial

differential equations in bounded and unbounded domains are conditionally well posed.

Therefore, the determination of conditions for the proper solvability of such problems

arose the interest of many researchers (see, e.g., works [44, 45, 40, 42, 37] and references

therein).The idea of using two integral conditions instead of boundary conditions was sug-

gested in [36]. The study of this type of boundary value problems goes back to [34]. [31].

In this paper we obtain sufficient conditions for the unique solvability of the considered

problem. in Lp (1≤ p <∞) space. Note that a similar problem was considered in [49]

in L2 space with local classical condition and integral conditions as boundary conditions

and the nonlocal condition of integral type.

4.2 Statement of problem

Consider the parabolic equation

∂u(t,x)
∂t

= ∂2u(t,x)
∂x2 + b(x)u(x) +f (t,x) , (4.2.1)

where t ∈ (0,1] , x ∈ [0,1] , b(x) , and f (t, x) are given functions, and b(x)≤−b0 for some

b0 sufficiently large. We seek a solution u = u(t,x) to (4.2.1) satisfying the boundary

conditions
1∫

0
ϕ1 (x)u(t,x)dx= 0,

1∫
0
ϕ2 (x)u(t,x)dx= 0, (4.2.2)

and the condition
1∫

0
Φ1 (t)u(t,x) + Φ2 (t)u′ (t,x)dt= v0 (x) , (4.2.3)

where ϕi (x) , i= 1,2 are given functions linear independent, Φ1 (x) ,Φ2 (x) , and v0 (x) are

given functions. Note that conditions (4.2.2) are not regular. The heat equation under

similar conditions (for ϕi (x) = 1 and Dirichlet conditions) was considered in [60] and by

[36]. The nonlocal conditions (4.2.3) is imposed on the function u(t,x) instead of the

46



initial value condition. Generally speaking , the problem with such a condition is not

well defined [31, 34]. In the present paper, we study problem (4.2.1)-(4.2.3) and establish

sufficients conditions of the unique solvability of the problem.

4.3 Reducing problem

The above mentioned problem is considered in the space Lp(with respect to x ∈ [0,1]).

A function u(t,x) is siad to be a solution of the problem if all of the terms of equation

(4.2.1) belong to Lp, the differentiation with respect to t beig understood in the norm of

Lp for t > 0, and conditions 4.2.2)-(4.2.3) are fulfilled. Introduce the following operators

acting in Lp :

Au(x) =−d
2u

dx2 − b(x)u, (4.3.1)

with the domain

D (A) =

u(x) ∈W 2
p (0,1) :

1∫
0
ϕ1 (x)u(t,x)dx=

1∫
0
ϕ2 (x)u(t,x)dx= 0

 ,
and the operator

Φ(t)u(x) = Φ1 (t)u(x) + Φ2 (t)u′ (x) , (4.3.2)

with the domain

D (Φ(t)) =W 1
p (0,1) .

Thus, the problem (4.2.1)-(4.2.3) is reduced to the abstract problem

du

dt
+Au= f (t) ,0< t≤ 1, (4.3.3)

1∫
0

Φ(t)u(t)dt= u0 (4.3.4)

in the space E = Lp, where A and Φ(t) are given operator valued functions, f (t) is a

given function taking values in E, and u0 is a given element from E. A similar problem
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in the case of the homogeneous equation (4.3.3), a constant operator coefficient A, and

a scalar function Φ(t) is considered in [34]. Note that here we use a class of semigroups

(different from the one in [34]) that allows us to work with operators having nondense

domains.

4.4 Solvability of reducing problem

We investigate the solvability of the problem (4.3.3)-(4.3.4) in arbitrary Banach space E.

Let us make fundamental assumptions (for brevity, they are not too general) and cite

some facts needed for the sequel. Suppose that the operator A has a bounded inverse

A−1, and for every t, there exist the operator function U (t) = exp(−tA) satisfying the

following conditions:

1. U (t) is a bounded linear operator from E to D, t ∈ (0,∞) ,

2. U (t)U (s) = U (t+ s) , t,s > 0,

3. lim
t→+0

U (t)v = v for v ∈D,

4. U (t) is differentiable with respect to t > 0 and dU(t)
dt =−AU (t),

5. U (t) commutes with A on D,

6. the estimates

‖U (t)‖ ≤Mt−α exp(−wt) ,
∥∥∥U ′ (t)∥∥∥≤Mt−β exp(−wt) (4.4.1)

are valid for some M > 0,w > 0,α≥ 0,β ≥ 1.

The operator function U (t) is called the semigroup (of class A(α,β)) generated by the

operator A. If D = E,α = 0, and β = 1, then this the calss of analytical semigroups.

Theorem 4.4.1. Suppose that the conditions
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1. there exists a bounded inverse operator A−1,

2. there exists a semigroup U (t) of class A(α,β) generated by A, estimate (4.4.1) are

satisfied and for some ω > 0, 0≤ α < 1,1 +α≤ β,

3. u0 ∈D (A).

Then the homogeneous problem (4.3.3)-(4.3.4) has a unique solution u(t), is given by

the formula u(t) = U (t)u0.

Note that under the conditions of Theorem 4.4.1, we have the limit relation

lim
t→0

A−1U (t)v = A−1v,v ∈ E. (4.4.2)

In the right hand side, f (t) of (4.3.3) satisfies the Holder condition

‖f (t+4t)−f (t)‖ ≤ c |4t|ε (4.4.3)

for some ε∈
(
β−1
β−α ,1

]
, then [49] the function g (t) =

t∫
0
U (t,s)f (s)ds belongs to D and the

estimate

‖Ag (t)‖ ≤ ct−α ‖f‖ε (4.4.4)

is valid. Here

‖f‖ε = max
0≤t≤1

‖f (t)‖+ sup
0≤t≺t+4t≤1

‖f (t+4t)−f (t)‖
(4t)ε .

We also assume that the operator Φ(t) is subordinate to the operator A for all t, i.e.,

‖Φ(t)v‖ ≤ c‖Av‖ as v ∈Dt,

where the positive constant c does not depend on t. In particular, this means that D ⊂

D (Φ(t)) and the operators Φ(t)A−1 are bounded for all t. We assume that the operators

Φ(t)A−1 are continuously differentiable in the norm of the space E and the operator

Φ(0) has a bounded inverse Φ−1 (0). Turn to equation (4.3.3) with condition (4.3.4). the

solution of this equation is written in the form

v (t) = U (t)v0 +g (t) (4.4.5)
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with v0 = v (0) to be determined and g (t) =
t∫

0
U (t− s)f (s)ds. In order to find v0, we

use Condition (4.3.4) and integrate equality (4.4.5) with respect to t from 0 to 1 after

applying the operator Φ(t) to it. We get

v1 =
1∫

0
Φ(t)v (t)dt=

1∫
0

Φ(t)U (t)v0dt+
1∫

0
Φ(t)g (t)dt. (4.4.6)

By virtue of estimates (4.4.1) and (4.4.4) with α < 1, the latter integral exists (it can be

written in the form
1∫

0
Φ(t)A−1Ag (t)dt). Further, using property (4) of the semigroup

operator, we integrate by parts the first term on the right hand-side of formula (4.4.6),

substituting (4.4.2) for the lower limit

1∫
0

Φ(t)U (t)v0dt=−
1∫

0
Φ(t)A−1U ′ (t)v0dt=

(
Φ(0)A−1−Φ(1)A−1U (1)

)
v0 +

1∫
0

(
Φ(t)A−1

)′
U (t)v0dt.

Since the operator
(
Φ(t)A−1

)′
is bounded, the integral on the right hand side exists;

therefore, the integral (understod as an improper integral) on the left hand-side exists.

Hence,

v1 =
(
Φ(0)A−1−Φ(1)A−1U (1)

)
v0 +

1∫
0

(
Φ(t)A−1

)′
U (t)v0dt.+

1∫
0

Φ(t)g (t)dt. (4.4.7)

Let the operator Φ(0)A−1Φ(t)A−1 and its derivative be bounded (uniformly with respect

to t) ∥∥∥Φ(0)A−1Φ(t)A−1
∥∥∥≤ q, ∥∥∥∥Φ(0)A−1

(
Φ(t)A−1

)′∥∥∥∥≤ p. (4.4.8)

Then the operator AΦ−1 (0) can be applied to the right hand sides in (4.4.7). Hence, v1

belongs to D
(
AΦ−1 (0)

)
and

AΦ−1 (0)v1 =
(
I−AΦ−1 (0)Φ(1)A−1U (1)

)
v0

+A(0)Φ−1 (0)
1∫

0

(
Φ(t)A−1 (t)

)′
U (t)v0dt.+AΦ−1 (0)

1∫
0

Φ(t)g (t)dt.
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Introduce the bounded operators

K = AΦ−1 (0)Φ(1)A−1U (1) , L= AΦ−1 (0)
1∫

0

(
Φ(t)A−1

)′
U (t)dt.

In terms of these operators, the latter relation can be rewritten as

AΦ−1 (0)v1 = (I−K)v0 +Lv0 +AΦ−1 (0)
1∫

0
Φ(t)g (t)dt. (4.4.9)

Estimate the norms of the operators K and L, using inequalities (4.4.1) and (4.4.8)

‖K‖ ≤ q‖U (1)‖ ≤Mq exp(−ω) ,

‖L‖ ≤ p
1∫

0
‖U (t)‖dt≤ p

1∫
0
Mt−α exp(−ωt)dt≤ pM

∞∫
0
t−α exp(−ωt)dt= pM

Γ(1−α)
ω1−α ,

where Γ is the Gamma function. If qM exp(−ω) < 1, then the operator I −K is conti-

nously invertible. Therefore, it follows from (4.4.9) that

(I−K)−1AΦ−1 (0)v1 = v0 + (I−K)−1Lv0 + (I−K)−1AΦ−1 (0)
1∫

0
Φ(t)g (t)dt.

Estimate the norm of the operator (I−K)−1L

∥∥∥(I−K)−1L
∥∥∥≤ 1

1−Mq exp(−ω)pM
Γ(1−α)
ω1−α .

Take

ω >max
{

ln(2qM) ,(2pMΓ(1−α))
1

1−α
}
. (4.4.10)

Then ∥∥∥(I−K)−1L
∥∥∥< 1

and the expression written before v0 can be inverted. Thus,

v0 =
(
I+ (I−K)−1L

)−1
(I−K)−1AΦ−1 (0)

v1−
1∫

0
Φ(t)g (t)dt

 .
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This relation defines the element v0 uniquely. Substituting the obtained espression for v0

in (4.4.5), we get the solution of the original problem

v (t) = U (t)
(
I+ (I−K)−1L

)−1
(I−K)−1AΦ−1 (0)

×

v1−
1∫

0
Φ(t)

t∫
0
U (t− s)f (s)dsdt

+
t∫

0
U (t− s)f (s)ds. (4.4.11)

Thus, we have established the following theorem.

Theorem 4.4.2. Let the following conditions be fulfilled:

1. the operator A has a bounded inverse A−1,

2. the the operator function Φ(t) is subordinate to the operator A, there exists the

bounded operator Φ−1 (0) , the operator function Φ(t)A−1 is continuously differentaible,

and condition (4.4.8) hold,

3. the operator A generates a semigroup of class A(α,β) with 0≤ α < 1, α+ 1≤ β,

4. the number ω in estimates (4.4.1) satisfies condition (4.4.10), where q and p obeys

inqualities (4.4.8),

5. the function f (t) satisfies the Hölder condition (4.4.3) with some ε ∈
(
β−1
β−α ,1

]
,

6. v1 ∈D
(
AΦ−1 (0)

)
.

Then problem (4.3.3), (4.3.4) has a unique solution given by (4.4.11) and the solution

of the probblem is estimated by

‖v (t)‖ ≤Mt−α exp(−ωt)(‖v1‖+‖f‖ε) .

Let us verify that the operator A and Φ(t) introduced in Sec.2 and acting in the space

Lp satisfy the conditions of Theorem 4.4.2.
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4.5 An example

Consider the resolvent equation for the operator A in the simplest case where b(x) =−b0,

and ϕ1 (0)ϕ2 (1)−ϕ1 (1)ϕ2 (0) 6= 0(for example ϕ1 (x) = 1,ϕ2 (x) = x). We have

−v′′+ b0v+λv = f (x)

with the conditions

1∫
0
v (x)dx= 0,

1∫
0
xv (x)dx= 0.

The solution of this problem can be written out explicity

v (x) = −2exp−ρ(x+ 1)
∆(ρ)(1− exp(−ρ))2

1∫
0
f (s)ds+ expρ(x−1)

∆(ρ)(1− exp(−ρ))2

1∫
0
f (s)ds

+ exp(−ρ(x+ 1))(exp(ρx)−1)
∆(ρ)(1− exp(−ρ))2

1∫
0

exp(−ρs)f (s)ds

− exp(ρ(x−1))(1− exp(−ρ))
∆(ρ)(1− exp(−ρ))2

1∫
0

exp(−ρs)f (s)ds

+ exp(−ρ(x+ 1))
∆(ρ)(1− exp(−ρ))2

1∫
0

(exp(−ρs) + exp(−ρ(1− s)))f (s)ds

− exp(ρ(x−1))
∆(ρ)(1− exp(−ρ))2

1∫
0

(exp(−ρs) + exp(−ρ(1− s)))f (s)ds

− 1
∆(ρ)

x∫
0

exp(−ρ(x− s))f (s)ds− 1
∆(ρ)

1∫
x

exp(−ρ(s−x))f (s)ds,
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whereρ=
√
λ+ b0 and ∆(ρ) =−2ρ.

v (x) = exp(−ρx) 2(exp(ρ)−1)
∆(ρ)K(ρ)ρ2

1∫
0
sf (s)ds− exp(−ρx) (exp(ρ)−1)

∆(ρ)K(ρ)ρ
1∫
0

exp(ρ(s−1))f (s)ds

+ exp(−ρx) (exp(ρ)−1)
∆(ρ)K(ρ)ρ3

1∫
0

(exp(−ρs)− exp(ρ(s−1)))f (s)ds− exp(−ρx)
2 exp(ρ)

ρ +2 (1−exp(ρ))
ρ2

∆(ρ)K(ρ)
1∫
0
f (s)ds

+ exp(−ρx)
exp(ρ)
ρ + (1−exp(ρ))

ρ2
∆(ρ)K(ρ)

1∫
0

(exp(−ρs) + exp(−ρ(1− s)))f (s)ds

+ exp(ρx)
−2 exp(−ρ)

ρ +2 (1−exp(−ρ))
ρ2

∆(ρ)K(ρ)
1∫
0
f (s)ds− exp(ρx)

− exp(−ρ)
ρ + (1−exp(−ρ))

ρ2
∆(ρ)K(ρ)

1∫
0

(exp(−ρs) + exp(−ρ(1− s)))f (s)ds

+ exp(ρx) 2(exp(−ρ)−1)
∆(ρ)K(ρ)ρ2

1∫
0
sf (s)ds− exp(ρx) 2(exp(−ρ)−1)

∆(ρ)K(ρ)ρ2

1∫
0

exp(−ρ(1− s))f (s)ds

+ exp(ρx) (exp(−ρ)−1)
∆(ρ)K(ρ)ρ2

1∫
0

(exp(−ρs)− exp(−ρ(1− s)))f (s)ds

− 1
∆(ρ)

x∫
0

exp(−ρ(x− s))f (s)ds− 1
∆(ρ)

1∫
x

exp(−ρ(s−x))f (s)ds,

where

K (ρ) = −ρ(exp(ρ)− exp(−ρ)) + 2(exp(ρ) + exp(−ρ)−2)
ρ3

while v1 (x) joins the other terms of the expression for the solution. Calculating the norm

of this function, we obtain the estimate
∥∥∥(A+λI)−1∥∥∥≤ C 1

|λ+ b0|
1
2 + 1

2p
,Reλ >−b0.

in the general case, this estimate can be established by methods of [27, 33, 35]. The

estimate allows one to construct see [35] the corresponfing semigroup of operators. For

this semigroup, one has

α = 1
2 −

1
2p,β = 3

2 −
1
2p,

and ω≥ b0 in estimates (4.4.1). Show that the operator A has a bouded inverse. Consider

the equation

−d
2v

dx2 − b(x)v = f (x)

with the conditions
1∫

0
ϕ1 (x)v (x)dx= 0,

1∫
0
ϕ2 (x)v (x)dx= 0.
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For simplicity, suppose that b(x) =−b0,ϕ1 (x) = 1 and ϕ2 (x) =x. Put z (x) =
x∫

0
(x− s)u(s)ds

then we come to the problem

z′′′′− b0z′′ =−f (x) ,

z (0) = 0, z (1) = 0, z′ (0) = 0, z′ (1) = 0

for the function z (x). Since the boundary value conditions are regular [71], and the unique

solution of the homogeneous problem is zero, then there exists the green function G(x,s),

which allows us to prersent the solution of this problem as follows:

z (x) =
1∫

0
G(x,s)f (s)ds.

Hence,

v (x) = A−1f = z′′ (x) =
1∫

0
G′′xx (x,s)f (s)ds, v′ (x) =

1∫
0
G′′′xxx (x,s)f (s)ds.

Consider the operator Φ(t)A−1. From formula (4.3.2), we get

Φ(t)A−1f (x) = Φ1 (t)v (x) + Φ2 (t)v′ (x)

= Φ1 (t)
1∫

0
G′′xx (x,s)f (s)ds+ Φ2 (t)

1∫
0
G′′′xxx (x,s)f (s)ds.

Therefore,
∥∥∥Φ(t)A−1f

∥∥∥≤ c‖f‖ for any function f (x) ∈ Lp, which implies that the oper-

ator Φ(t) is subordinate to the operator A. Now we are ready to formulate conditions

ensuring the solvability of problem(4.2.1), (4.2.3).

Theorem 4.5.1. Let the following conditions be fulfilled:

1. the function b(x) is continuous, b(x) ≤ −b0 for sufficiently large b0 > 0 (chosen

according to the data such that (4.4.10) holfs),

2. the functions Φ1 (t) ,Φ2 (t) , and ϕ1 (x) ,ϕ2 (x) are continuous and ϕ1 (0)ϕ2 (1)−

ϕ1 (1)ϕ2 (0) 6= 0,
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3. the function v1 (x) belongs to D,

4. the function f (t,x) satisfies the Holder condition in the norm of the space Lp with

p ∈ [1,∞[ : ‖f (t+4t, .)−f (t, .)‖ ≤ c |4t|ε for some ε ∈
(

1
2 −

1
2p ,1

]
.

Then problem (4.2.1), (4.2.3) has a unique solution.
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Chapter 5

Approximation of astract first order

differential equation with integral

condition

5.1 Introduction

Let B (E) denote the Banach algebra of all linear bounded operators on a complex Banach

space E. The set of all linear closed densely defined operators in E will be denoted by

C (E). We denote by σ (B) the spectrum of the operator B; by ρ(B) the resolvent set of

B; by N (B) the null space of B and by R(B) the range of B.

Let A be a generator of analytic C0-semigroup U (t), defined on a Banach space E, which

means that A :D (A)⊆ E→ E is a closed linear operator, such that

∥∥∥(λI−A)−1∥∥∥
B(E)

≤ 1
1 + |λ| , for any Reλ≥ 0. (5.1.1)

Consider in a Banach space E the equation

u
′
(t) = Au(t) , t ∈ [0,T ] (5.1.2)
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Definition 5.1.1. The vector fonction u(t) = U (t)f ; 0 ≤ t ≤ T , corresponding to some

element f ∈ E is called a generalized solution of (5.1.2). If, in addition, f ∈D (A), then

the solution u(t) = U (t)f is said to be classical.

Remark 5.1.1. In the case, when f ∈D (A) obviously f coincides with the initial state

u(0) of the corresponding solution u(t).

Suppose that the initial state f is unknown, and consider the additional relation

T∫
0
w (t)u(t)dt= g; (5.1.3)

where g ∈E is a given element in E and w (t) is scalar measurable function of bounded

variation on the segment [0, T ]

Remark 5.1.2. The integral occurring in (5.1.3) is well-defined in the sense of Bochner

for any function u(t) = U (t)f .

Definition 5.1.2. A generalized solution of the problem (5.1.2), (5.1.3) is defined to be

a function u(t) = U (t)f ; 0 ≤ t ≤ T , corresponding to some element f ∈ E and reducing

relation (5.1.3) to a valid identity. If, in addition f ∈ D (A), then the corresponding

solution u(t) = U (t)f of the problem (5.1.2), (5.1.3) is called a classical solution.

From Definition 1, the solution of (5.1.2) is given in the form u(t) =U (t)f . Therefore,

the function u(t) = U (t)f satisfies the condition (5.1.3) if and only if f satisfies the

equation

T∫
0
w (t)U (t)fdt= g. (5.1.4)

So, for f ∈ E, we have the operator equation Bf = g, where,

Bf =
T∫

0
w (t)U (t)fdt.
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Lemma 5.1.1. ([25]). The operator B maps E into D (A).

Remark 5.1.3. If g ∈ E\D (A), then the problem (5.1.2), (5.1.3) is unsolvable in the

sense of the Definition 5.1.2.

Now applying the operator A in (5.1.4) and integrating by parts, we get the Fredholm

second order equation in the form

(I−K)f =G, (5.1.5)

where,

Kf =

w (T )
w (0) U (T ) + 1

w (0)

T∫
0
U (t)d(−w (t))

f, (5.1.6)

and,

G=− 1
w (0)Ag. (5.1.7)

In such settings one would say that the problem (5.1.2), (5.1.3) is well posed if the element

g is given in the space D (A) and the unknow element f is considered as an element from

the space E. From (5.1.1) it follows that the resolvent (λI−A)−1 exists for λ = 0 and

is positive operator, and therefore A−1 exists, which implies equivalence of the problem

(5.1.2), (5.1.3) to the Fredholm second order equation (5.1.5). Using ideas from [10] the

aim of this paper is the construction of an algorithm for the approximation of an element

f , which solves the problem (5.1.2), (5.1.3) or, in other words, we want to solve equation

(5.1.5). We present the algorithm as a general approximation scheme, which includes

finite element methods and finite difference methods and projection methods.

The main question is a solvability of the problem (5.1.2), (5.1.3). It is clear that in the

case of compact operator K the operator (I−K) is Fredholm operator of index 0. Most

of the results on the existence of solution of the problem (5.1.2), (5.1.3) are concerned

to compactness or positivity property of resolvent of operator A. So the existence of

bounded inverse operator (I−K)−1 follows practically from condition N (I−K) = {0}
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and compact convergence of resolvent, see Theorem 5.2.2 and Step 4 of the proof of

Theorem 5.5.1. There are some theorems proved, say, in [25, 26], which guarantee that

condition N (I−K) = {0} holds. Namely, let us list some results which could be applied

here.

Consider in a Banach space E the problem of finding an element f from relations

u
′
(t) = Au(t) , t ∈ [0, T ] , (5.1.8)

with

T∫
0
w (t)u(t)dt= g, (5.1.9)

where g ∈E is a given element in E and w (t) is scalar measurable function of bounded

variation on the segment [0, T ].

Theorem 5.1.1. ([25, 26]). Let w (t) be a nonnegative non increasing function for t ∈

[0,T ] such that w (t)> 0 as t→ 0+, and let the semigroup U (t) generated by the operator

A satisfy the estimate ‖U (t)‖ ≤M exp(−βt) with constants M ≥ 1, β > 0. Then the

problem (5.1.8)-(5.1.9) is well-posed.

If E is a Banach lattice. We recall that an order set (E,�) is called a lattice if for any

pair of elements x,y ∈ E the elements sup(x,y) and inf (x,y) exist in E. Moreover, for

any x ∈ E we define x+ = sup(x,0), x− = inf (−x,0) which called positive and negative

parts, respectively. The following relation is valid, x= x+−x−.

Definition 5.1.3. Let B be a linear operator on E. The operator B is called positive if

Bx� 0 for all x� 0.

Definition 5.1.4. A C0- semigroup exp(tA) , t ≥ 0, is called positive in a Banach space

with a cone E+ if exp(tA)E+ ⊆ E+ for any t≥ 0.
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Definition 5.1.5. A C0- semigroup exp(tA) , t≥ 0, is positive iff resolvent

(λI−A)−1E+ ⊆ E+ for any λ > w (A).

Definition 5.1.6. A linear A : D (A) ⊆ E → E is said to have the positive off-diagonal

(POD) property if 〈Au,φ〉 ≥ 0 whenever 0� u ∈D (A) and 0� φ ∈ E∗ with 〈u,φ〉= 0.

Theorem 5.1.2. ([25, 26]). Let w (t) be a nonnegative non increasing function for t ∈

[0,T ] such that w (t)> 0 as t→ 0+, and let the semigroup U (t) generated by the operator

A be positive and compact for t > 0. Assume that the spectrum of A lies in the half-plane

{λ ∈ C : Reλ < 0}. Then the problem (5.1.8)-(5.1.9) is well-posed.

5.2 General approximation scheme

Now we give the algorithm on general approximation scheme which includes finite element

and finite difference methods and projection methods.

The general approximation scheme, due to [7, 15, 17] can be described in the following

way. Let En and E be Banach spaces and {pn} be a sequence of linear bounded operators

pn : E → En,pn ∈ B (E;En) ,n ∈ IN = {1,2, ...}, with the property: ‖pnx‖En → ‖x‖E as

n→∞ for any x ∈ E.

Definition 5.2.1. The sequence of elements {xn} ,xn ∈ En,n ∈ IN ; is said to be P-

convergent to x ∈ E iff ‖xn−pnx‖En → 0 as n→∞ and we write this P
xn→ x.

Definition 5.2.2. The sequence of bounded linear operators Bn ∈B (En) ,n ∈ IN , is said

to be PP-convergent to the bounded linear operator B ∈B (E) if for every x ∈ E and for

every sequence {xn} ,xn ∈ En,n ∈ IN ; such that P
xn→ x one has

P
Bxn→Bx. We write

then
PP

Bn→B.

For general examples of notions of P-convergence see for instance [14].
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Remark 5.2.1. If we put En = E and pn = I for each n ∈ IN , where I is the identity

operator on E, then Definition 5.2.1 leads to the traditional pointwise convergent bounded

linear operators which we denote by Bn→B.

Definition 5.2.3. A sequence of elements {xn} ,xn ∈En,n∈ IN , is said to be P-compact

if for any IN
′ ⊂ IN there exist IN ′′ ⊂ IN ′ and x ∈ E such that P

xn→ x, as n→∞ in

IN
′′.

Definition 5.2.4. A system {pn} is said to be discrete order preserving if for all sequences

{xn} ,xn ∈ En, and any element x ∈ E, the following implication holds:

P
xn→ x implies

P
x+
n → x+.

It is know [8] that {pn} preserves the order iff
∥∥∥pnx+− (pnx)n

∥∥∥
En
→ 0 as n→∞ for

any x ∈ E. If
PP

Bn→B and Bn � 0 for n ≥ n0 and the system {pn} is order preserving,

then [12] B � 0. However, the inverse statement does not hold in general and we need to

assume positiveness of Bn � 0.

Definition 5.2.5. A sequence of operators {Bn} ,Bn ∈ B (En) ,n ∈ IN , converges com-

pactly to an operator B ∈B (E) if
PP

Bn→B and the following compactness condition holds:

‖xn‖En =O (1) ,{Bnxn} is P− compact.

Let us mention that the last implication could be writtten as µ({Bnxn}) = 0 as

‖xn‖≤constant for mesure of noncompactness µ(.). The main property of µ(.) is thatµ({yn}) =

0 iff {yn} is P-compact. It is also easy to check that µ({xn+yn}) ≤ µ({xn}) +µ({yn})

and µ({Dnxn}) ≤ limn→∞ ‖Dn‖‖xn‖ for any operators Dn ∈ B (En) and any sequences

{xn} ,{yn}.

Definition 5.2.6. A sequence of operators {Bn} ,Bn ∈B (En) ,n∈ IN , is said to be stably

convergent to an operator B ∈ B (E) iff
PP

Bn→B and
∥∥∥B−1

n

∥∥∥
En

= O (1) ,n→∞. We will

write this as:
PP

Bn→B stably.
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Definition 5.2.7. A sequence of operators {Bn} ,Bn ∈B (En), n∈ IN , is called regularly

convergent to the operator B ∈ B (E) iff
PP

Bn→B and the following implication holds:

‖xn‖En =O (1) and {Bnxn} is P-compact, {xn} is P-compact. We write this as:
PP

Bn→B

regularly.

Theorem 5.2.1. ([17]). Let Cn,Qn ∈B (En) ,C,Q ∈B (E) and R (Q) = E.

Assume also that Cn PP→ C compactly and Qn
PP→ Q stably. Then Qn+Cn

PP→ Q+C con-

verge regularly.

Theorem 5.2.2. ([17]). For Bn ∈ B (En) and B ∈ B (E) the following conditions are

equivalent.

(i) Bn
PP→ B regularly, Bn are Fredholm operators of index 0 and N (B) = {0};

(ii) Bn
PP→ B stably and R(B) = E;

(iii) Bn
PP→ B stably and regularly;

If one of conditions (i)–(iii) holds, then there exist B−1
n ∈ B (En), B−1 ∈ B (E), and

B−1
n
PP→ B−1 regularly and stably.

Definition 5.2.8. The region of stability ∆s = ∆s ({An}) ,An ∈ C(En), is defined as

the set of all λ ∈ C such that λ ∈ ρ(An) for almost all n and such that the sequence{∥∥∥(λIn−An)−1∥∥∥}
n∈N

is bounded. The region of convergence ∆c = ∆c ({An}) ,An ∈ C(En),

is defined as the set of all λ ∈ C such that λ ∈ ∆s ({An}) and such that the sequence of

operators
{

(λIn−An)−1}
n∈N

is PP− convergent to some operator S (λ) ∈B (E) .

Definition 5.2.9. A sequence of operators {Ln} ,Ln ∈ C(En), is said regularly compat-

ible with an operator L ∈ C(E) if (Ln,L) are compatible and, for any bounded sequence

‖xn‖En = O (1) such that xn ∈D (Ln) and {Lnxn} is P-compact, it follows that {xn} is

P-compact, and the P- convergence of {xn} to some element x and convergence of {Lnxn}

to some element y as n→∞ in N′ ⊆ N imply that x ∈D (L) and Lx= y.
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Definition 5.2.10. The region of regularity ∆r = ∆r ({An} ,A), is defined as the set of

all λ ∈ C such that (Ln (λ) ,L(λ)) are regularly compatible, where Ln (λ) = λIn−An and

L(λ) = λI−A.

The relationships between these regions are given by the following statement.

Proposition 5.2.1. ([16]). Suppose that ∆c 6= ∅ and N (S (λ)) = {0} at least for one

point λ ∈∆c, so that S (λ) = (λI−A)−1. Then (An,A) are compatible and

∆c = ∆s∩ρ(A) = ∆s∩∆r = ∆r ∩ρ(A) .

Definition 5.2.11. The region of compact convergence of resolvent,

∆cc = ∆cc (An,A), where An ∈C(En) and A∈C(E) is defined as the set of all λ∈∆c∩ρ(A)

such that (λIn−An)−1 PP→ (λI−A)−1 compactly.

Theorem 5.2.3. ([6]). Assume that ∆cc 6= ∅. Then for any µ ∈∆s the following impli-

cation holds:

‖xn‖En =O (1) and ‖(µIn−An)xn‖En =O (1)⇒{An} is P− compact (5.2.1)

Conversely, if for some µ ∈∆c∩ρ(A) implication (5.2.1) holds, then ∆cc 6= ∅.

Corollaire 5.2.1. ([6]). Assume that ∆cc 6= ∅. Then ∆cc = ∆c∩ρ(A).

Theorem 5.2.4. ([6]). Assume that ∆cc 6= ∅. Then ∆r = C.

In the case of unbounded operators, and we know in general infinitesimal generators

are unbounded, we consider the notion of compatibility.

Definition 5.2.12. The sequence of closed linear operators {An} ,An ∈ C(En),n ∈ IN ,

are said to be compatible with a closed linear operator A ∈ C (E) iff for each x ∈ D (A)

there is a sequence {xn}, xn ∈D (An) ⊆ En,n ∈ IN , such that xn P→ x and Anxn
P→ Ax.

We write (An,A) are compatible.
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Note, that (An,A) are compatible if resolvent converge

(λIn−An)−1 PP→ (λI−A)−1. Usually in practice Banach spaces En are finite dimensional,

although, in general, say for the case of a closed operator A, we have dimEn→∞ and

‖An‖B(En)→∞ as n→∞.

5.3 Discretization of semigroups

Let us consider the well-posed Cauchy problem in the Banach space E with operator

A ∈ C (E)


u
′ (t) = Au(t) ; t ∈ [0;∞),

u(0) = u0 ∈ E,
(5.3.1)

where operator A generates C0-semigroup U (t). It is well-known that the C0-semigroup

gives the solution of (5.3.1) by the formula u(t) = U (t)u0 for t ≥ 0. The theory of well-

posed problems and numerical analysis of these problems have been developed extensively,

see [6, 9]. Let us consider on the general discretization scheme the semidiscrete approxi-

mation of the problem (5.3.1) in the Banach spaces En,


u
′
n (t) = Anun (t) ; t ∈ [0;∞),

un (0) = u0
n ∈ En,

(5.3.2)

with the operators An ∈ C (En), such that they generate C0-semigroups, which are

consistent with the operator A ∈ C (E) and u0
n
P→ u0.

5.4 The simplest discretization schemes

We have the following version of Trotter-Kato’s Theorem on general approximation scheme.

Theorem 5.4.1. ([14, Theorem ABC]). Assume that A ∈ C (E) ;An ∈ C (En) and they

generate C0-semigroups. The following conditions (A) and (B) are equivalent to condition
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(C).

(A) Consistency. There exists λ ∈ ρ(A)∩∩nρ(An) such that the resolvents converge

(λIn−An)−1 PP→ (λI−A)−1;

(B) Stability. There are some constants M ≥ 1 and ω; which are not depending on n and

such that ‖Un (t)‖ ≤M exp(ωt) for t≥ 0 and any n ∈ N;

(C) Convergence. For any finite T > 0 one has

max
t∈[0;T ]

∥∥∥Un (t)u0
n−pnU (t)u0

∥∥∥→ 0 as n→∞; whenever u0
n
P→ u0 for any u0

n ∈ En;

u0 ∈ E.

Remark 5.4.1. The condition (A) in the contents of these Theorems is equivalent to

compatibility of operators (An,A).

Theorem 5.4.2. ([6]) Let operators A and An generate analytic C0-semigroup. The

following conditions (A) and (B1) are equivalent to condition (C1).

(A) Consistency. There exists λ ∈ ρ(A)∩∩nρ(An) such that the resolvents converge

(λIn−An)−1 PP→ (λI−A)−1;

(B1) Stability. There are some constants M1 ≥ 1 and ω1 independent of n such that for

any Reλ > ω1,
∥∥∥(λIn−An)−1∥∥∥≤ M1

|λ−ω1| for all n ∈ N;

(C1) Convergence. For any finite µ> 0 and some 0<θ< π
2 we have max

η∈Σ(θ,µ)

∥∥∥Un (η)u0
n−pnU (η)u0

∥∥∥→
0 as n→∞ whenever u0

n
P→ u0.

Here Σ(θ,µ) = {z ∈ Σ(θ) : |z| ≤ µ} and Σ(θ) = {z ∈ C : |argz| ≤ θ}.

Definition 5.4.1. An element e ∈ E+ is said to be an order unit in a Banach lattice E

if for every x ∈ E there exists 0≤ λ ∈ R such that −λe� x� λe. For e ∈ intE+ we can

define the order unit norm by

‖x‖e = inf {λ≥ 0 :−λe� x� λe} .
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An order Banach space E is callad an order unit space if there exists e ∈ intE+ such

that ‖.‖E = ‖.‖e.

The following version of the Trotter-Kato’s Theorem for positive C0- semigroup holds.

Theorem 5.4.3. ([12]) Let the operators An and A from (5.3.1) and (5.3.2) be compatible,

let E,En be order unit spaces, and let en ∈D (An)∩ intE+
n . Assume that the operators An

have the POD property and Anen � 0 for sufficiently large n. Then exp(tAn) PP→ exp(tA)

uniformly in t ∈ [0,T ].

We can assume that conditions (A) and (B) for the corresponding C0- semigroups case

are satisfied without any restriction of generality if any discretization processes in time

are considered.

We denote by Tn (.) a family of discrete semigroups as in [9], i.e.

Tn (t) =Tn (τn)kn , where kn =
[
t
τn

]
, as n→ 0, n→∞. The generator of discrete semigroups

is defined by
`
An = 1

τn
(Tn (τn)− In) ∈ B (En) and so Tn (t) =

(
In+ τn

`
An

)kn
; where t =

knτn.

Theorem 5.4.4. ([14, Theorem ABC- discr]). The following conditions (A) and (B0)

are equivalent to condition (C0): (A) Consistency. There exists λ ∈ ρ(A)∩∩nρ
(

`
An

)

such that the resolvents converge
(
λIn−

`
An

)−1
PP→ (λI−A)−1, (B0) Stability. There are

some constants M2≥ 1 and ω2 ∈R such that ‖Tn (t)‖≤M2 exp(ω2t) for t ∈ IR+, n∈ IN ,

(C0) Convergence. For any finite T > 0 one has max
t∈[0;T ]

∥∥∥Tn (t)u0
n−pn exp(tA)u0

∥∥∥→ 0 as

n→∞, whenever u0
n
P→ u0 for any u0

n ∈ En, u0 ∈ E.

Theorem 5.4.5. ([14]). Assume that A ∈ C (E) ,An ∈ C (En) and they generate C0-

semigroup. Assume also that conditions (A) and (B) of Theorem 5.4.1 holds. Then

the implicit difference scheme

Un (t+ τn)−Un (t)
τn

= AnUn (t+ τ) ,Un (0) = u0
n, (5.4.1)
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is stable, i.e.
∥∥∥(In− τnAn)−kn

∥∥∥≤M2 exp(ω2t), t= knτn ∈ IR+; and gives an approxima-

tion to the solution of the problem (5.3.1), i.e. Un (t) ≡ (In− τnAn)−kn u0
n
P→ exp(tA)u0

n

P-converges uniformly with respect to t = knτn ∈ [0;T ] as u0
n
P→ u0, n→∞, kn →∞,

τn→ 0.

Theorem 5.4.6. ([6]). Assume that conditions (A) and (B1) of Theorem 5.4.2 hold and

condition

‖τnAn‖ ≤
1

(M + 2) ,n ∈ IN, (5.4.2)

is fulfilled. Then the difference scheme

Un (t+ τn)−Un (t)
τn

= AnUn (t) ,Un (0) = u0
n, (5.4.3)

is stable and gives an approximation to the solution of the problem (5.1.2), i.e. Un (t) ≡

(In+ τnAn)kn u0
n
P→ u(t) discretely P-converge uniformly with respect to t = knτn ∈ [0;T ]

as u0
n
P→ u0, n→∞, kn→∞, τn→ 0.

Let us introduce the following equivalent conditions:

(B′1) Stability. There are constants M ′ , ω′ such that

‖exp(tAn)‖ ≤M
′
exp

(
ω
′
t
)
,‖An exp(tAn)‖ ≤ M

′

t
exp

(
ω
′
t
)
, t ∈ IR+ .

(B′′1 ) Stability. There are constants M ′′ , ω′
′

and τ∗ > 0 such that

∥∥∥(In− τnAn)−k
∥∥∥≤M ′′

exp
(
ω′
′
kτn

)
,∥∥∥kτnAn (In− τnAn)−k

∥∥∥≤M ′′ exp
(
ω′
′
kτn

)
for 0< τn < τ∗,n,k ∈ IN.

Theorem 5.4.7. The conditions (A) and (B′1) are equivalent to the condition (C1).

Proof. See ([14]).

Remark 5.4.2. Conditions (B1), (B′1) and (B′′1 ) are equivalent, see ([13])
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5.5 Main results

Let An be a generator of compact analytic C0-semigroup Un (t). Consider in a Banach

space En the equations

u
′
n (t) = Anun (t) , t ∈ [0,T ] (5.5.1)

with the integral conditions

T∫
0
wn (t)un (t)dt= gn. (5.5.2)

The solution of the problem (5.5.1), (5.5.2) is given by the formula un (t) = Un (t)fn,

where fn = (I−Kn)−1Gn and corresponding second order Fredholm equation can be

written in the form:

(In−Kn)fn =Gn, (5.5.3)

where

Knfn =

wn (T )
wn (0) Un (T ) + 1

wn (0)

T∫
0
Un (t)d(−wn (t)) t

fn, (5.5.4)

and

Gn =− 1
wn (0)Angn

Before we formulate our main results just recall that condition N (I−K) = {0} could be

obtained from Theorems in Section 2.

Theorem 5.5.1. Let w (t) be a nonnegative non increasing function for t ∈ [0,T ] such

that w (t)> 0 as t→ 0+, wn (t) be a nonnegative non increasing function for t∈ [0,T ] such

that wn (t) > 0 as t→ 0+, and they converge wn (t)→ w (t) uniformly in t ∈ [0;T ]. Let

conditions (A); (B01) be satisfied and Gn→G. Assume also that N (I−K) = {0}; oper-

ator (λI−A)−1 is compact and (λIn−An)−1→ (λI−A)−1 compactly. Then solutions of

the problems (5.5.3) exist and converge to the solution of the problem (5.1.5); i.e. fn→ f .
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Proof. The proof is done in four steps.

Step 1. First, let us show that the com

pact convergence of resolvents R (λ;An)→ R (λ;A) is equivalent to the compact conver-

gence of C0-semigroups Un (t)→ U (t) for any t > 0. Let ‖xn‖ = O (1). Then from the

estimate ‖AnUn (t)‖ ≤ M
t exp(ωt); which is exactly condition (B′1), we obtain the bound-

edness in n of the sequence {(An−λIn)Un (t)xn} for any fixed t > 0. Because of the

compact convergence of resolvent, we obtain the compactness of the sequence {Un (t)xn}.

The necessity will be proved if for the measure of noncompactness µ(.) (for the def-

inition, see [17]), we establish that µ
({

(λIn−An)−1xn
})

= 0 for any ‖xn‖ = O (1).We

have

µ
({

(λIn−An)−1xn
})

= µ

(
∞∫
0

exp(−tλ)Un (t)xndt




≤ µ

(
q∫

0
exp(−tλ)Un (t)xndt




+µ

(
∞∫
p

exp(−tλ)Un (t)xndt




+µ

Un (ε)
p∫
q

exp(−tλ)Un (t− ε)xndt


 .

Two first terms can be made less than ε by the choice of q,p. The last term is equal to

zero because of the compact convergence Un (ε)→ U (ε) for any 0< ε < q.

Step 2. Consider the operators K and Kn defined by (5.1.6) and (5.5.4) on the spaces

E and En. The operator K defined by (5.1.6) is compact in E. Indeed, we obtain that

the

Kε =

w (T )
w (0) U (T ) + 1

w (0)

T∫
ε

U (t)d(−w (t))


is a product of compact and bounded operators. Moreover ‖Kε−K‖ ≤ Cε, where
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K =

w (T )
w (0) U (T ) + 1

w (0)

T∫
0
U (t)d(−w (t))


and ε > 0. Then it follows that the operator K : E→ E is compact.

Step 3. It is easy to see that Kn→K. To show that Kn→K compactly, we assume

that ‖fn‖En =O (1). Now {Knfn} is P-compact because of representation

Kε,n =

wn (T )
wn (0) Un (T ) + 1

wn (0)

T∫
ε

Un (t)d(−wn (t))


and one can easy verify the vanishing of the noncompactness measure µ({Knfn}) = 0 for

all n ∈ N, taking into an account that ‖Kε,n−Kn‖ ≤ Cε.

Step 4. Now In→ I stably and Kn→K compactly. Hence it follows from Theorem

5.2.1 that In−Kn→ I−K regularly. Moreover, the nullspace N (I−K) = {0} and the

operators In−Kn are Fredholm of index zero. Then it follows from Theorem 5.2.2 that

In−Kn→ I−K stably, i.e. (In−Kn)−1→ (I−K)−1.

Since Gn → G, one gets fn = (In−Kn)−1Gn → (I−K)−1G = f . The Theorem is

proved.

One can find that solution of the problem (5.5.3) according to Theorem 5.5.2, and

under the assumption that functions wn (t) ,w (t) ∈C1 ([0;T ]) and they converge wn (t)→

w (t) uniformly in t ∈ [0;T ].

Theorem 5.5.2. Let C0-semigroups Un (t) be positive and compact for t > 0. Assume

that the spectrum of An lies in the half-plane {λ ∈ C : Reλ < 0} and wn (t) ≥ 0,wn (0) >

0;w′n (t)≤ 0 for any t ∈ [0;T ]. Define the operator Kn as in (5.5). Then r (Kn)< 1.

We are recalling that r (A) is the spectral radius of A ∈ B (E). The spectral radius

of A, denoted by r (A), is the radius of the smallest disk centered at zero that contains

σ (A),

r (A) = {|λ| : λ ∈ σ (A)} .
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It is well known that for every A ∈B (E), we have

r (A) = lim
n→∞‖A

n‖
1
n , and r (A)≤ ‖A‖ .

Proof. The proof of the Theorem 5.5.2 is similar to the proof of the Theorem 5.5.4.

As a consequence of the Theorem 5.5.2, we have the following

Theorem 5.5.3. Let C0-semigroup Un (t) be positive and compact for t > 0. Assume

that the spectrum of An lies in the half-plane {λ ∈ C : Reλ < 0} and wn (t) ≥ 0,wn (0) >

0;w′n (t) ≤ 0 for any t ∈ [0;T ]. Then for any g ∈ D (An), there is unique solution of the

problem (5.5.1), (5.5.2).

Since r (Kn)< 1, could be organized as follows

fn,j+1 =Knfn,j−
1

wn (0)Angn, n,j = 0;1..., (5.5.5)

with initial condition fn,0 = 0. The value Knfn,j is nothing else as a solution of Cauchy

problem

v′n (t) = Anvn (t)− w
′
n (T − t)
wn (0) fn;j , vn (0) = wn (T )

wn (0) fn;j

at the point T ; i.e.

Knfn,j = vn (T,fn,j) = wn (T )
wn (0) Un (T )fn,j + 1

wn (0)

T∫
0
−w

′
n (t)Un (t)fn,jdt.

So (5.5.5) could be written in the form, starting from

fn,0 = 0, fn,j+1 = vn (T,fn,j)−
1

wn (0)Angn, n,j = 0;1; ......

Moreover, fn,j → fn as j→∞ since r (Kn)< 1.

There are different ways how one can calculate vn (T,fn,j) One can use directly The-

orems 5.4.5, 5.4.6 or maybe some higher order difference schemes for approximation of

Un (T );
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say as in [6, 11], and then apply some quadrature formula for approximation the term

1
wn (0)

T∫
0
−w

′
n (t)Un (t)fn,jdt

In this paper we consider just the simplest way which comes from Theorem 5.4.5. In

case of Theorem 5.4.6 we have to assume stability condition, but the other considerations

are the same. So following the scheme (5.4.1) we consider approximation of the equation

(1) by

Un (t+ τn)−Un (t)
τn

= AnUn (t+ τ) ,

and approximation of the condition (5.5.2) by
k−1∑
j=0

wn (jτn)un (jτn+ τn)τn = gn. (5.5.6)

The solution of the scheme (5.5) can be written in the form

Un (t) = (In− τnAn)−k u0
n; t= kτn

To construct approximation of operator Kn in (5.5.4),we just consider the simplest

formula (T = knτn):

`
Kn = (In− τnAn)−kn wn (T )

wn (0)

− 1
wn (0)

kn−1∑
l=0

(In− τnAn)−l wn (lτn+ τn)−wn (lτn)
τn

τn.

Theorem 5.5.4. Let C0-semigroup Un (t) be positive and compact for t > 0. Assume

that the spectrum of An lies in the half-plane {λ ∈ C : Reλ < 0} and wn (t) ≥ 0,wn (0) >

0;w′n (t)≤ 0 for any t ∈ [0;T ]. Define the operator
`
Kn as in (5.5). Then r

(
`
Kn

)
< 1.
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Proof. The operator
`
Kn is positive and compact, so by Krein-Rutman Theorem there are

λ0 ≥ 0 and 0≤ f0
n 6= 0 such that

`
Kn f

0
n = λ0f0

n, and moreover,

r

(
`
Kn

)
= λ0. Assume now in contradiction that λ0 ≥ 1.

Substutting Un (t) = (In− τnAn)−k fn in

k−1∑
l=0

wn (lτn)un (lτn+ τn)τn. (5.5.7)

with fn = f0
n. One gets that

k−1∑
l=0

wn (lτn)(In− τnAn)−l−1 f0
nτn. (5.5.8)

is positive for positive f0
n. Putting

ϕn =
k−1∑
l=0

wn (lτn)(In− τnAn)−l−1 f0
nτn. (5.5.9)

So, applying the operator An to (5.5), and using the formula of summation by parts.

τn
k−1∑
l=0

vl+1−vl
τn

yl = (ykvk−y0v0)− τn
k−1∑
l=0

vl+1
yl+1−yl
τn

. We obtain that Anϕn = −wn (0)f0
n +

wn (0)K̃nf
0
n = −wn (0)fn +wn (0)λ0fn = wn (0)(λ0−1)f0

n ≥ 0, since wn (0) > 0, λ0 ≥ 1,

and f0
n ≥ 0. So, if we apply (−An)−1; then because of positiveness of C0-semigroup Un (t),

the resolvent (−An)−1 is also positive and (−An)−1Anϕn ≥ 0; which means that 0≥ ϕn.

From the other hand from (5.5) it follows that ϕn ≥ 0 for f0
n ≥ 0. This means that ϕn = 0;

which means that wn (lτn)(In− τnAn)−l−1 fn = 0 for all l = 0, .....k− 1, in particular for

l= 0 we have wn (0)(In− τnAn)−1 fn = 0, because Ker (In− τnAn)−1 = {0} , and wn (0) 6=

0, one gets that f0
n. But this contradicts to f0

n 6= 0. The Theorem is proved.

From Theorem 5.5.4 it follows that one can organize the process
`

fn,j+1 =
`
Kn

`
fn,j −

1
wn(0)Angn, n;j = 0;1, which converges

`
fn,j →

`
fn as j→∞; where

`
fn is a solution of the

problem
`
fn =

`
Kn

`
fn− 1

wn(0)Angn.

Theorem 5.5.5. Let C0-semigroups Un (t) be positive and analytic. Assume also that

functions wn (t) ,w (t)∈C1 ([0;T ]) and they converge w′n (t)→w
′ (t) uniformly in t∈ [0;T ].
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Let conditions (A); (B01) be satisfied and Gn→ G. Assume also that N (I−K) = {0},

operator (λI−A)−1 is compact and (λIn−An)−1→ (λI−A)−1 compactly and wn (t) ∈

C3 ([0;T ]) and
∣∣∣w′′′n (t)

∣∣∣ ≤constant; t ∈ [0;T ]. Then solutions of the problems (5.5) exist

and converge to the solution of the problem (5.1.5); i.e.
`
fn→ f as n→∞.

Proof. If
`
Kn→K compactly, then the statement of the Theorem 5.5.5 follows the same

way as in the Step 4 of Theorem 5.5.1. So, we are going to show that
`
Kn→K compactly.

To do this it is enough to prove that
∥∥∥∥∥ `
Kn−K

∥∥∥∥∥→ 0 as n→∞; since the statement Kn→K

compactly is already proved in Theorem 5.5.1. One can write

Kn−
`
Kn = wn (T )

wn (0) Un (T )− (In− τnAn)−kn wn (T )
wn (0) + 1

wn (0)

T∫
0
−w

′
n (t)Un (t)dt−

1
wn (0)

kn−1∑
l=0

(In− τnAn)−l−1 wn (lτn+ τn)−wn (lτn)
τn

τn

where knτn = T . In [5], it is proved under condition (B1) that

∥∥∥Un (t)− (In− τnAn)−kn
∥∥∥≤ C τn

t
exp(ωt)

as kn→∞ and t= kτn.Let us consider now the difference

kn−1∑
l=0

1
wn (0)

(l+1)τn∫
lτn

−w
′
n (t)Un (t)dt

− 1
wn (0)

kn−1∑
l=0

(In− τnAn)−l−1 wn (lτn+ τn)−wn (lτn)
τn

τn.

To finish with the demonstration we have to use

±
kn−1∑
l=0

−1
wn (0)

(l+1)τn∫
lτn

Un (t) wn (lτn+ τn)−wn (lτn)
τn

τndt
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terms.Indeed, it is easy to show that difference

kn−1∑
l=0

1
wn (0)

(l+1)τn∫
lτn

−w
′
n (t)Un (t)dt

−
kn−1∑
l=0

−1
wn (0)

(l+1)τn∫
lτn

Un (t) wn (lτn+ τn)−wn (lτn)
τn

τndt

converge to zero as kn→∞ and T = knτn; since

−1
wn (0)

(l+1)τn∫
lτn

Un (t)
(
w
′
n (t)− wn (lτn+ τn)−wn (lτn)

τn
τn

)
dt

is estimated by

C
1

wn (0)

(l+1)τn∫
lτn

Un (t)
∣∣∣∣∣
(
w
′
n (t)− wn (lτn+ τn)−wn (lτn)

τn

)∣∣∣∣∣dt=O
(
τ2
n

)
.

The second term from ± construction could be estimated as

∥∥∥∥∥∥∥
kn−1∑
l=0

−1
wn (0)

(l+1)τn∫
lτn

Un (t)− (In− τnAn)−l−1dt
wn (lτn+ τn)−wn (lτn)

τn

∥∥∥∥∥∥∥

≤ C
kn−1∑
l=1

1
wn (0)

(l+1)τn∫
lτn

‖Un (t)−Un (lτn+ τn)‖dt+Cτn

+C
kn−1∑
l=0

∥∥∥Un (lτn+ τn)− (In− τnAn)−l−1∥∥∥τn
≤ C

kn−1∑
l=1

τn
l

+
kn−1∑
l=0

τn
l+ 1

+ τn.

Where we used the fact that for any t ∈ [jτn,(j+ 1)τn] ,1≤ j ≤ kn−1,

‖Un (t)−Un (jτn+ τn)‖ ≤ C τn
jτn

.

The Theorem is proved.
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Abstract. In this work, we are interested to the study of boundary val-

ues problems with integral boundary conditions. We obtain the existence

and uniqueness of solutions with a priori estimate, and prove the Fredholm

solvability of the problem. Finally, we apply an iteration approximation

method to approximate an initial condition of a boundary value problem

for an abstract first order homogeneous linear differential equation with an

integral boundary condition on a Banach space.

Key words. Abstract Differential Equation, Integral condition, Analytic

semigroup, Semigroup with singularity Fredholm property, Ill-posed Prob-

lem.

Résumé. Dans ce travail, on s’intéresse a l’étude des problèmes aux

limites avec des conditions aux limites intégrales. On obtient l’existence

et l’unicité de la solution du problème avec une éstimation a priori, et on

démontre la solvabilité de Frédholm du problème. Enfin, on applique une

méthode d’approximation par itération pour approximer une condition ini-

tiale d’un problème aux limite pour une équation différentielle linéaire ho-

mogène abstraite du premier ordre avec une condition aux limites intégrale

sur un espace de Banach.

Mot clés. Equation Différentielle Abstraite, Condition intégrale , Semi-

groupe analytique, Semi-groupe à singularities, Propriété de Fredholm,

Problème mal posé.
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