
People's Democratic Republic of Algeria 

Ministry of Higher Education and Scientific Research 

University of the Mentouri Brothers of Constantine 

Faculty of Exact Sciences 

Department of Physics 

 

No of order: 

No of series: 

Thesis 
 

To obtain the degree of 

Doctorate Third Cycle in Physics 

 

Specialty 

Theoretical Physics 

 

Subject 

Viscous Modified Chaplygin in Classical and Loop 

Quantum Cosmology 

 

 

Presented by 

Dalel Aberkane 

 

 

Members of jury: 

President                M. A. Benslama           Professor       University of the Mentouri Brothers 

Supervisor              N. Mebarki                   Professor       University of the Mentouri Brothers 

Examiners              H. Auissaoui                 Professor       University of the Mentouri Brothers 

                                M. Boussahel                Professor       University of M‟sila 

                                S. Zaim Batna               Professor       University of Batna  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

i 

Contents  

Acknowledgements                                                                             vi 

Introduction                                                                                         v 

Chapter one: classical cosmology 

1. FRW cosmology  

1.1 The cosmological principle………………………………………………………….…2 

1.2 The Einstein field equations…………………………………………………………...2 

1.3 The Robertson walker metric……………………………………………………….....4 

1.4 The energy momentum tensor………………………………………………………....5 

1.5 Bulk and shear viscosity……………………………………………………………….7 

1.6 Cosmological models in standard cosmology…………………………………….…..8 

1.7 The big bang singularity and inflation…………………………………………….....10 

1.8 Modeling dark energy and dark matter…………………………………………….…13 

2.  Cosmological measurements 

      2.1 The commoving coordinate system and the cosmic time……………………………14 

      2.2 The proper distance and particle horizon……………………………………………..14 

      2.3 The red shift parameter…………………………………………………………….…15 

      2.4 The Hubble‟s law………………………………………………. …………………...16 

      2.5 Luminosity distance……………………………………………………………….....17 

      2.6 Distance modulus………………………………………………………………….....18 

      2.7 Critical density and the density parameter…………….……………………………..18 

 



ii  CONTENTS 
 

  

Chapter two: loop quantum cosmology 

     1.  The motivation behind loop quantum gravity 

1.1 Why we need to quantize gravity?................................................................................21 

1.2 Why loop quantum gravity?..........  ..............................................................................22 

2. The Hamiltonian formalism of GR 

2.1The Hamiltonian formalism of a classical theory…………………………………….23 

      2.2 The ADM formalism………………………………………………………………....24 

2.3 The Hamiltonian formulation of GR………………………………………………....26 

3.   The Platini formulation of GR 

      3.1 The tetrad formalism……………………………………………………….…………31 

      3.2 The ADM formalism on the tetrad…………………….……………………………..33 

3.3 The Ashtekar‟s variables………………………….………..…………………….......33 

      4.  Isotropic loop quantum cosmology 

    4.1 Why holonomies?........................................................................................................ 36 

      4.2 Holonomy-flux algebra………………………………………….……………………36 

      4.3 The modified Friedman equation ……………………………………………….…....37 

Chapter three: Modeling Dark Energy by VMCG 

     1. Viscous Modified Chaplygin Gas Model 

      1.1 Chaplygin Gas Models…………………………………………………………….....42 

1.3 A VMCG dominated universe ………………………………………………….…...44 

2.  Constraining VMCG in Standard Cosmology 

      2.1 The   test………………………………………………………………………..…....48 



 

iii 

     2.2 The Best Fit values of the EoS parameters of VMCG model……………………........50 

2.3 Cosmological parameters in terms of the Best Fit values of the EoS parameters……..56 

3.   Dynamical analysis of VMCG in LQC 

     3.1 The Dynamical analysis…………………………………………………………..…...61 

3.2 The Autonomous System of VMCG in LQC……………………………………..…...62 

3.3 Numerical analysis…………………………………………………………...………..66 

 

Conclusion……………………………………………………………………………….70 

References ………………………………………………………………………..……..72 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi  CONTENTS 

 

 

Acknowledgements  

 

First of all, I am grateful to the Almighty God for establishing me to complete this work. 

The completion of this thesis would not have been possible without the guidance, support and 

expertise of Prf. Mebarki Noureddine, my honorable thesis supervisor.  

I would also like to thank the committee members Professors:  M. A. Benslama, H. 

Auissaoui, S. Zaim, M. Boussahel, for checking this study and for oral examination who 

manifested their distinguished skills in their own fields as seen in their way of correction and 

ideas shared. 

It would not have been possible to write this doctoral thesis without the help and support of 

the kind people around me, to only some of whom it is possible to give particular mention 

here. 

I would like to express my gratitude to my parents, sister Romeissa who have given me their 

unequivocal support throughout, as always, for which my mere expression of thanks likewise 

does not suffice. 

My joy knows no bounds in expressing my cordial recognition to my best friends Boukhlouf 

Sara, and Benchikh Sara. Their keen interest and encouragement were a great help 

throughout the course of this research work. 

I‟m deeply indebted to my respected teachers and other members of Physics department in 

Batna and Constantine, for their invaluable help.  

A sincere gratitude to the Subatomic and Mathematical Laboratory of Mentouri 

University. 

I humbly extend my thanks to all concerned persons who co-operated with me in this regard. 

 

 

 

 



 

v 

 

 

 

 

 

Introduction 

 

                   One of the most intriguing questions in modern physics is the fundamental 

machinery behind the accelerated expansion of the universe. With recent observational data 

coming from Type Ia Supernovae [1,3], cosmic microwave background anisotropies[4−6] and 

large galaxy surveys[7,8] , the misleading conception of a static universe is abandoned for a 

universe that is in an accelerated motion where stuff are constantly taking away from each 

other. This discovery has shed light on a new research era in aim to explain the physics 

behind this motion. Different answers was brought to the arena and structured mainly into two 

different approaches: the first one treats general relativity as incomplete theory that needs to 

include modifications in aim to predict the accelerated expansion. In different words, the 

accelerated expansion should be inherently related, at large scale limit, to the geometry of a 

modified theory of gravity. The second one takes more seriously the Einstein‟s theory in a 

way that it should be fully trusted, so the accelerated motion is derived by adding a new 

exotic component of the universe with a negative pressure called dark energy [9,10]. If we 

follow the second path, especially that the theory is well tested at large scale, the existence of 

a new physical object filling the universe will rise several questions about its fundamental 

structure and how it couples with other stuffs in the universe. Although, different models were 

proposed involving baryonic and non-baryonic candidates [11,12], we still don‟t know which 

one describes the reality the best,  models are subject to verifications through recent 

observations. 
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One of the well accepted models are the Chaplygin gas models, they were widely scrutinized 

and modified since they were first proposed. They are combined models that unify both dark 

energy and dark matter and give a suitable negative pressure that drives the acceleration of the 

universe. The Chaplygin gas was first proposed as a dark energy model in [13]. Although, its 

equation of state was generalized [14] to fit with observational data, at high energy density the 

Generalized Chalpygin Gas (GCG) mimics dust with (    ) and suffers from instabilities at 

the perturbative level [15]. Therefore, Modified Chaplygin Gas (MCG) was proposed by 

adding a further modification to the GCG. Its EoS parameters were also constrained using 

different observational data [16-19].   

Similarly, viscous modified Chaplygin gas (VMCG) with the generalized EoS was 

investigated in Ref. [20], as it is possible to assume that the expansion process is a collection 

of states out of thermal equilibrium that gives rise to bulk viscosity. A variety of bulk 

cosmological models have been explored by several researchers [21-26]. 

Unfortunately, classical models suffer from early and late time singularities. Those can be 

avoided in the framework of loop quantum cosmology (LQC) [27-31] which is a non-

perturbative and background-independent type of quantization of gravity [32,33] used to 

probe some cosmological problems. In addition of predicting an inflationary phase of the 

early universe [34-37] and late time cosmic acceleration[38], the semi-classical approximation 

in LQC formalism can be validly used at late time and at large scale [39]. 

As the MCG was found to be consistent with the evolution of the universe over a wide range 

of epochs [40] and it is preferred by recent observational data because of its small minimum 

   value [16] and as the universe throughout its evolution might gave rise at its beginning to 

bulk viscosity, we chose VMCG with a specific bulk viscosity pressure  to model the dark 

content  of the universe and explore the model‟s behavior at present time when fitted to recent 

observational data, its fate at late time and whether it suffers from singularities or not. 

First, we constrained its Eos parameters using Union 2.1 data for a suitable model that 

describes the current universe. We also evaluate cosmological key parameters at present and 

early universe and determine their present values to deduce if the model is consistent or not 

with observational data and theoretical predictions. The values are compared to those of other 

well accepted models. Then, we probe the dynamical behavior of the model at early and late 

time in the LQC framework especially as the model suffers from the Big Bang singularity.  

 



 

v 

This thesis is organized as follows: 

In the first chapter we explore the FRW cosmology along with some cosmological models 

derived from it. The bulk viscosity is also introduced when fluids describing stuff in the 

universe are no longer perfect. This is followed by exposing some flaws within the classical 

cosmology.  Then, we define some important parameters used for cosmological 

measurements. 

In the second chapter we begin by giving an overview of the motivation behind a quantum 

theory of gravity and loop quantum gravity as a special case. Then, the mathematical 

formalism inherent to the theory is introduced and the main ideas behind every step toward 

this formalism are explained. The modifications on Friedmann equations due to loop quantum 

cosmology corrections are illustrated. 

In the last chapter, some of the Chaplygin gas models are explored briefly before introducing 

the VMCG model and the formula chosen for the bulk pressure. Then, we started by solving 

analytically the conservation equation of a VMCG dominated universe to check the behavior 

of the solution at early, present and late time. The model is constrained using recent 

observational data, we used Mathematica to calculate the best fit parameters and draw the 

contour plots of some confidence levels. The behavior of the model is then probed at small 

and present scale using the time evolution of cosmological parameters. Finally, in LQC 

framework, the dynamical analysis is conducted using  Maple and Mathematica. 
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                                                                    Chapter one:                                            

                           Classical Cosmology 

 

                                                      “We cannot solve our problems with the same  

                                                       thinking we used when we created them” 

        Albert Einstein 
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1 FRW Cosmology 

1.1 The cosmological principle 

        It states that the universe is large enough (level of clusters of galaxies) to assume that all 

points of the universe are equivalent which 

means that the universe is assumed to be 

homogeneous and isotropic around any point.  

 Homogeneous:  there is an isometry (a 

transformation that preserves distance 

relationships) that can carry any vector to a 

nearby point, so the geometry is the same at 

any point as it is at another. 

Isotropic: if you rotate around a point the 

space looks the same without any preferred 

direction. 

1.2 The Einstein field equation 

  According to Newtonian gravity, gravitational mass is the only source of the gravitational 

field           but with both energy-mass equivalence and equivalence principle, 

gravitational field couples in the same way mass and energy and they are both described by 

the same mathematical entity called the energy-momentum tensor      . The space used to 

describe the theory of general relativity is not the 3-dimensional Euclidean space of Newton 

mechanics and the second derivative in the Euclidean space is replaced by the curvature 

(Ricci) tensor in the Riemannian space so 

Newtonian Gravity General Relativity 
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In its field equation, Einstein established a relationship between the energy density content of 

the universe and the curvature of the space time  

    
 

 
                                                       (1.1) 

where    is the Ricci scalar,     the metric and   the gravitational constant. This equation 

states that the space-time geometry is dictated by the distribution of energy filling the 

universe. 

The vacuum equation used to study the gravitational field outside the source is called Vacuum 

Einstein equation and is given by  

                                                                   (1.2) 

The problem with Eq. (1.1) is that if the gravitational force (an attractive force) is the only 

active force at the present scale, the universe will eventually shrink and collapse. As Einstein 

disliked the idea of a dynamic universe, he added a fudge factor to the equation to completely 

balance the attractive force and made the universe closed, homogeneous and static.  

    
 

 
                                                            (1.3) 

Where   is the cosmological constant. 

In 1920s, Wirtz and K. Lundmark showed that Siphers‟s red shifts increased with the distance 

of the nebulae, and in 1929, Hubble established a linear relation between distances and 

velocities so the furthest objects are the fastest [41]. Therefore, the universe is not static and 

rather in an accelerated motion, this fact forced Einstein to admit that the added factor   is his 

biggest mistake. The infinite structure of the universe is no longer a problem if we assume 

that the cosmological constant is the vacuum energy. 

 

1.3 The Robertson-Walker metric 

As the universe is assumed to be homogeneous and isotropic, the metric describing how 

lengths are measured in this space should include those two conditions.  
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The geometry of such a space is spherically symmetric about a point and can be described 

using the Schwarzschild metric for a static gravitational field  

                                                               (1.4) 

The metric has no preferred angular direction and is time-independent (no mixed terms). 

Taking into account the fact that an observer at a fixed point moves only forward in time 

along a geodesic which is parallel to the time coordinate line we have  

          
                                                      (1.5) 

As the universe is dynamic the metric can be written as  

                                                                (1.6) 

Where      is the scale factor that describes how the size of the universe evolves in time. 

Using the fact that in spatially isotropic and homogeneous space the curvature of the space is 

constant and is related to the Riemann tensor [42] we find the R-W metric  

               
 

       
                                         (1.7) 

Where   is the normalized curvature constant. 

 

Positive curvature       : the surface is a two sphere (a 

closed space) where the sum of the angles of a triangle on 

this surface is greater than 180⁰. 

 

 

Negative curvature       : the surface has an infinite 

volume (an open space) where the sum of the angles of a 

triangle on this surface is less than 180⁰. 
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Zero curvature      : a flat space where the sum of 

the angles of a triangle on this surface is equal to 180⁰. 

 

1.4 The energy-momentum tensor 

               According to the general covariance principle, all invariant laws in physics under 

coordinate transformation should be stated in tonsorial form. Similarly, any distribution of 

matter or energy as a source of the gravitational field should be stated in terms of the energy-

momentum tensor as energy is an invariant quantity under coordinate transformation. 

We consider a momentum               and an energy     that are contained in an 

infinitesimal volume                  so the momentum 4-vector              is 

proportional to the volume [42] by 

                                                                      (1.8) 

Where     is the factor of proportionality, called the energy-momentum tensor. It is the flux 

of the     component of the momentum 4-vector across the surface defined by a constant    . 

   : is the energy density   defined as the flow of the energy through a surface of a constant 

time. 

   : is the energy flux defined as the flow of the energy through a surface of a constant     . 

   : is the momentum density defined as the flow of the momentum through a surface of a 

constant time.  

   : is the stress defined as the flow of the momentum through a surface of a constant 

    which is the flux of force per unit area. 
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The conservation equation: 

The conservation equation of the energy momentum tensor is given by  

   
                                                                  (1.9) 

Where    is the covariant derivative. 

Energy-momentum tensor of dust: 

Dust is defined as a perfect fluid with non-interacting and non-relativistic particles with no 

pressure, moving together with some velocity so they carry energy and momentum as a source 

of a gravitational field.  

The energy-momentum tensor for dust is given by  

                                                                   (1.10) 

Where   is the energy density of dust particles,    is the velocity 4-vector of dust particles in 

the chosen frame. 

Energy-momentum tensor of a perfect fluid: 

A perfect fluid is defined as a fluid where any region nearby a co-moving observer with the 

fluid is seen to be homogeneous and isotropic so all the directions for a co-moving frame are 

equivalent. In such a fluid there is no heat flow or viscosity and the changes within the fluid 

are only adiabatic. The energy-momentum tensor of such a fluid is given by 

                                                               (1.11) 

Where   is the pressure of the perfect fluid,   is the energy density of the fluid,     is the 

metric of the space. 

Energy-momentum tensor of a generalized fluid: 

The general form of energy-momentum tensor of a more complicated fluid  [42] is given by  

                                                       (1.12) 

 Where  : specific energy density of fluid in its rest frame,              : the spatial 

projection tensor,  : bulk viscosity,      
 :expansion or the divergence of the fluid world 
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lines,   :the acceleration tensor,  : shear viscosity,     
 

 
    

        
      

 

 
    : 

shear tensor,   : the energy flux tensor. 

1.5 Bulk and shear viscosity 

Shear viscosity of a fluid measures how strong is the couple between different layers of the 

fluid of the same velocity under a shear stress (the friction between two layers with different 

velocities) 

                                                                                                               (1.13) 

Where    is the stress tensor,   shear viscosity and      the velocity gradients. The stress in 

this case is not provoked by velocity but by the change of velocity from point to another. In 

case of incompressible fluids (flow velocities ˂˂ the speed of sound) the divergence of the 

velocity vanishes. 

Bulk viscosity deals with compressible fluids (flow velocities ≈ the speed of sound) where the 

divergence of the velocity is non-vanishing and induces an extra dynamic pressure  

                                                                (1.14) 

Where   is the bulk viscosity. As it is noticed, the dynamic pressure is negative in regions 

where the fluid expands       . The general form of the stress tensor will be given by 

             (         )                                      (1.15) 

Where   is a constant,    is the pressure of the fluid taken as the average of the three normal 

stresses     ∑        defined by 

                                                                  (1.16) 

Where   is the equilibrium pressure given by the state equation         , so the stress 

tensor can be written as  

                   (         )  
 

 
                               (1.17) 

Viscosity may arises from a number of dissipative processes in the early universe such as the 

decoupling of matter and radiation era, the inflationary phase, formation of galaxies,..etc. 
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Universes that are assumed to be isotropic and homogeneous are shearless and only bulk 

viscosity is taken into account. Bulk stress at late time may induce a negative pressure that 

drives the acceleration of the universe. This viscosity might be attributed to a fluid describing 

matter or dark energy. Eckart [43] made the first attempt to describe a relativistic theory of 

viscosity with the bulk pressure 

                                                                        (1.18) 

in which   is the bulk viscosity and   the Hubble parameter. 

1.6 Cosmological models in standard cosmology 

Standard cosmology is a class of dynamical cosmological models characterized by a 

homogeneous and isotropic distribution of stuff in the universe, such models have a universal 

time which is non-common in relativity. 

We model matter and energy by a perfect fluid energy-momentum tensor then we solve Eq. 

(1.1) using the RW metric and find the Freidmann equations [44]  

 

  
    ̇                                                             (1.19) 

 
 ̈

 
 

 

  
    ̇                                                         (1.20) 

Solving the conservation equation of the energy-momentum tensor    
     gives 

  

  
   

 ̇

 
                                                           (1.21) 

This result corresponds to the first law of thermodynamics         . 

Friedmann equations gives rise to different possible models, we only state some of them as 

the following: 

Radiation dominated universe: 

The early universe was dominated by radiation or an extremely relativistic gas with non-

interacting particles, radiations are modeled as a perfect fluid where the state equation is given 

by 

                                                                     (1.22) 
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Where    and    are respectively the density and pressure of radiations, replacing the state 

equation into the Eq. (1.21) we find                      

                                                                    (1.23) 

So as the universe is expanding, the radiation density drops faster than matter because of the 

redshift effect on photons. 

Matter dominated universe: 

Matter represents all the non-relativistic stuff of the universe considered as a source of the 

gravitational field, it is modeled by dust      . With the expansion of the universe, matter 

density decreases with a factor of  

                                                                 (1.24) 

As the density of radiation drops faster than matter within the expansion process the universe 

gets colder and becomes dominated by matter.  

In the above two models, we have a decelerated expansion but it is more rapid in a universe 

dominated by radiation with      √  as it is in a universe dominated by matter with 

        ⁄ , this is due to the pressure of the radiation. 

Vacuum dominated universe:  

When we drain the universe from its content (all matter and radiation) we are left with a 

vacuum energy that can be modeled by the cosmological constant    with 

                                                                   (1.25) 

 

or by a perfect fluid with negative pressure with equation of state 

                                                                 (1.26) 

where         is the required state parameter to drive an accelerated expansion of the  

vacuum dominated universe. 
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In FRW cosmology De-Sitter universe corresponds to a homogenous and isotropic vacuum 

dominated universe with a positive cosmological constant and a positive curvature. The 

accelerated expansion in this universe is exponential 

                                                                (1.27) 

1.7 The Big Bang singularity and Inflation 

When the early universe was dominated by radiation with        ), it was found to be in 

a decelerated expansion which means that if we keep going back in time the universe will be 

shrinking till will reach a singularity point at     called the “initial” or the “Big Bang” 

singularity.  

The idea of a singular origin of the universe was firstly proposed by Lemaitre, a catholic 

priest who worked on the theory of general relativity and the origin of the universe. 

According to his ethnic beliefs, the universe was created from a “cosmic egg”. Nevertheless, 

as he was not capable to develop further this idea, he has not been taken seriously. In the 

1940s, R. Alpher and G. Gamow assumed that the universe at its beginning was hot and dense 

enough to allow the creation of helium, lithium, deuterium and later hydrogen, and in 1960, 

the astronomer Fred Hoyle came up with the name “Big Bang”.  

From this singularity point the universe is assumed to be created, it can be predicted by the 

singularity theorems where every universe with         ) must have begun at a 

singularity. 

As     we have a density that increases and a temperature that goes to infinity      , in 

this case classical theory of relativity is not capable of describing the physics in the vicinity of 

this singularity. A quantum theory of gravity is needed to solve this problem.  

Even if the Big Bang model gave successful predictions on Cosmic Microwave Background 

(CMB) radiations, the abundance of light elements and the Big Bang nucleosynthesis, several 

problems are embodied in this model, for example dark energy and dark matter are not 

described by this model, likewise, CMB radiations have been observed in different directions, 

for points that are not in causal contact, with surprisingly uniform results. This is called the 

Horizon problem. 
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Another problem arises where recent observations set the density parameter of the present 

universe to     , this result implies the flatness of the universe as     , because any weak 

deviation from      at     implies a great deviation from unity at the present time. How 

can we explain the steadiness of this equality along the evolution of the universe?  

The prediction of the existence of magnetic monopoles created in the hot early universe is 

another problem of this model because no observational evidence of their existence has been 

made yet.  

All these problems and others were solved in the context of an inflationary theory. 

The first simple model describing an inflationary period was proposed by Alan Guth in 1981 

called the “old inflation”, it was based on an exponential expansion of the universe in a super-

cooled false vacuum state (a state without any particles or fields but with large energy 

density). This model didn‟t work and was replaced by a new inflationary model in 1981-1982, 

however, both were considered as incomplete modifications of the Big Bang model. In 1983, 

a chaotic inflation scenario was proposed to solve problems of the old and new inflation.  

We consider that the very early universe was filled with a scalar field   called “inflaton” with 

a mass   and a potential energy density       
  

 
  . The Einstein equation for a 

homogeneous universe filled with the inflaton   is given by 

   
 

   
 

 
   ̇                                                     (1.28) 

Where   is the curvature constant, the dot stands for the derivative with respect to the cosmic 

time. 

Because of the expansion of the universe the equation of motion of the scalar field coincides 

with equation for harmonic oscillator 

 ̈     ̇                                                       (1.29) 

If   is large initially then    from Eq. (1.27) and the friction term    ̇ from Eq. (1.28) are 

large too. This means that the scalar field is moving slowly and maintains an almost constant 

energy density when the universe is expanding rapidly, so we have at the very beginning   

  
 

√ 
    ̇   √

 

 
                                              (1.30) 
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This leads to a slow change in   and an exponential expansion of the universe with  

   
 

√ 
  

                                                        (1.31) 

For small values of       called also the slow-roll potential, the inflaton moves slowly down 

as a ball in a viscous liquid [45]. 

 

 

 

 

 

 

 

 

Figure 1.1: At the minimum of      , the inflationary period comes to an end and  the scalar 

field rapidly oscillates, the universe enters a  reheating period where pairs of elementary 

particles are created from the scalar field  . 

The inflation period is so rapid, for example, in one of the inflationary models it is 

approximately 10
-30

s during this time the universe expands from 10
-33

cm the Plank size to 

      
cm. Those numbers are model-dependent but the size of the universe always gain in 

many orders of magnitude compared to its initial size and compared to the actual horizon size 

    cm, that is the part of the universe that we can see now. In fact, this property is the key 

solution to both horizon and platitude problems, so even if the universe is initially closed after 

inflation the distance between  its both poles is greater than     cm which means that the 

visible universe looks flat. Similarly, neighboring points in causal contact before inflation will 

be driven apart in different directions during inflation with a speed greater than the speed of 

light which gives a plausible explanation to CMB observations and the horizon problem.
 

 

Inflation Reheating 

𝑉 𝜑  

𝜑 

Accelerated expansion 
Creation of particles 
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1.8 Modeling dark energy and dark matter 

Recently, Type Ia Supernovae observational data[1−3] with cosmic microwave background 

anisotropies[4−6] and large galaxy surveys[7,8] have shown that the universe is undergoing 

an accelerated expansion phase. The mysterious force or energy leading to the accelerated 

expansion was attributed to: 

    1- Vacuum as a vacuum energy with some exotic properties called “dark energy”. 

    2- An asymptotic behavior of a modified theory of gravity at the cosmological scale. A 

theory of a modified Newtonian dynamic (MOND) that can solve the problem of the velocity 

anomalies without the need of a concept of dark energy. 

    3- Signature of extra-dimensions. 

Following the first stream of ideas, the existence of an exotic kind of energy, called dark 

energy, with negative pressure that drives the universe to expand was proposed and is 

modeled by several candidates: 

1- The cosmological constant   with           

2- Dark energy as a perfect fluid with the equation of state         ,        

3- Dynamical dark energy with         

4- Chaplygin gas models.  

Astronomers have long known that galaxies and clusters would fly apart unless they were 

held together by the gravitational pull of much more material than we actually see. The 

argument that clusters of galaxies would be unbound without dark matter dates back to 

Zwicky (1937) and others in the 1930s. A wide range of different candidates for dark matter 

were considered. The first suggested were baryonic, consisting of three quarks , candidates in 

this category were ionized gas, very faint, low-mass stars and collapsed objects, like stellar 

black holes. Non-baryonic candidates were also proposed, like neutrinos.  MOND is another 

alternative to dark matter in which the theory of gravitation requires modification without the 

need to postulate the existence of dark matter [46].
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2 Cosmological measurements 

2.1 The comoving coordinate system and the cosmic time:  

Let us imagine in a region of space particles that are free falling carrying a coordinate system 

and a clock so the event line between two events of a moving particle will be simply seen as 

the proper time that collapses between the two events (purely temporal) 

         
                                                       (1.33) 

This means that      . We also, have a trajectory that satisfies the free falling equation  

    

   
    

    

  

   

  
    

                                               (1.34) 

which leaves us with  
    

  
  . 

The coordinate system that satisfies Eq. (1.33) and (1.34) is called Gaussian. 

In the comoving coordinate system the observer is moving with the Hubble flow, in other 

terms the observer expands with the universe expansion, for such an observer the universe is 

isotopic. 

The cosmic time is the proper time of a local observer for whom the local material of the 

universe is on the average at rest [42]. 

 

2. 2 The proper distance and particle horizon  

The distance between    two galaxies at     and      with same angle coordinate is the 

cosmic time it takes light to travel from     to       

          
  

       
 

 ⁄
                                               (1.35) 

The proper distance between two galaxies at      and   at a fixed cosmic time is 

           ∫
  

       
 

 ⁄

 

 
                                            (1.36)



2 COSMOLOGICAL MEASUREMENTS 
 

15 
 

The partical horizon is the largest value of   from which we could have received at the present 

time     a light signal emitted at the earliest possible time. 

∫
  

    

  
 

 ∫
  

       
 

 ⁄

       

 
                                            (1.37) 

2.3 The redshift parameter 

a signal emitted at    from   arrived at    

∫
  

    

  
  

 ∫
  

       
 

 ⁄

 

 
                                                (1.38) 

another signal emitted at        from   arrived at        

∫
  

    

      
      

 ∫
  

       
 

 ⁄

 

 
                                             (1.39) 

As the change in the scale factor       is very insignificant during this period we find 

   

     
 

   

     
                                                         (1.40) 

Where     and     are the period of light received and emitted. Now, we can write  

  

  
 

     

     
                                                           (1.41) 

Where   and    are the wave length of the first and the second signals. Depending on how 

space is evolving in time (expansion or contraction) during the transit of a signal of light we 

can have either a red shift result or a blue shift result. 

 Several astronomical observations in1920‟s showed that              then       which 

means a redshift result and the fractional increase in the wave length is given by the redshift 

parameter   

         
     

  
 

     

     
                                                  (1.42)   
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Figure 1.2: As the universe is expanding the wavelength of a signal of light travelling from 

(1) to (2) is stretched out. 

For nearby galaxies where   and       are small and     we have 

  
 ̇           

     
    ̇      ̇                                            (1.43) 

Where         is the proper distance and the dot stands for the derivative with respect the 

cosmic time. The redshift parameter   here is due to the Doppler shift for low relative 

velocities  ̇       between the observer and the emitter [42]. 

2.4 The Hubble’s law 

The Hubble‟s law states that the distance   of a (nearby) galaxy from us is related to its 

velocity   [41]. For nearby galaxies,                so we have 

  
 ̇           

     
 

 ̇    

     
                                                (1.44) 

From (1.40) we can write 

   ̇                                                               (1.45) 

Where    
 ̇    

     
 is the Hubble‟s constant. 

The Hubble parameter is defined as the rate of expansion of the universe and is given by 

                                                                  
 ̇   

    
                                                              (1.46)                                                              
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There is a great uncertainty on its present value    called the Hubble constant and given by 

(sec
-1

or Km/sec/Megaparsecs). 

The Hubble time   
   is a time scale for the present universe and at a given Hubble time all 

galaxies in the universe are located at the same point. 

2.5 Luminosity distance  

The luminosity   of a galaxy is defined as the total power of radiation emitted per unit time 

and is related to the flux   by 

                                                              
 

      
                                                             (1.47)                                                             

Where    is the luminosity distance and is given by 

    
      

     
   

     

  
                                                           (1.48) 

Where   and    are the time when the light signal is emitted and received from a galaxy at  , 

for nearby galaxies           . 

Since   is not an observable quantity and we need to replace it by an observable quantity, we 

begin by expanding the redshift parameter   in power series of         for galaxies not far 

away     we find  

      
 

  
   (  

  

 
)                                           (1.49) 

Where    is the present deceleration parameter, then we use Eq. (1.30) to expand   we find 

  
 

     
         

 

 
         

                                   (1.50) 

Hence the distance luminosity will be given by 

   
 

  
   

 

 
       

                                           (1.51) 

Therefore, the measurement of the luminosity distance and the redshift of a sufficient number 

of galaxies we can determine both    and    in a good approximation [47]. 

Different methods are used to measure the distance luminosity and every method has its own 

limits in terms of precision, type of galaxies and the range of the distance scale. One of them 
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consists of finding what astronomers call “Standard Bulbs”, objects with the same intrinsic 

brightness wherever they are. The distance luminosity in this case depends only on the 

apparent brightness; the furthest objects are the faintest.  Several suggestions were made 

including “supergiant stars, planetary nebulae, giant ellipticals and brightest member of a 

galaxy cluster”. Another interesting candidate is type Ia Supernovae, those objects all reach 

nearly the same intrinsic brightness (4.5 10
9
 Lsun) and they can be observed in all type of 

galaxies, even more,  their  range of distance scale is over the 8 billion light year.  

We recall another useful method that is however used for a range of distance scale less than 

110 million light year, in this method the astronomers use the variable stars “pulsating stars” 

to draw their light curves (the apparent magnitude as a function of time in days) and then 

deduce the luminosity and the distance luminosity. Candidates for variable stars are Cepheids 

and RR Lyrae stars. Cepheids are the brightest with a greater period (3-50 days) compared to 

RR Lyrae stars (less than a day). They were the object of measurements in 1920 by Hubble 

when discovering the expansion of the universe. 

2.6 Distance modulus 

The distance modulus      is the difference between the apparent magnitude     (How bright 

a star appears in the sky) and the absolute magnitude      (How bright a star would appear at 

10pc) given by  

                                                               (1.52) 

and is related to the luminosity distance    by 

       
  

   
                                                       (1.53) 

where                          [47] 

 

2.7 Critical density and the density parameter 

As stated before the geometry of the space is determined by the density of things in the 

universe, and the critical density    is defined as the amount of density required to have a flat 

spatial geometry of the universe 
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                                                            (1.54) 

The density parameter is the ratio between the total density of stuff in the universe   and the 

critical density 

  
 

  
                                                             (1.55) 

In case of     the universe is closed and     , in case of      the universe is flat with 

    and in case of     the universe is open with      . 
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 Loop Quantum Cosmology 

 

 

                                               “Science never solves a problem without creating ten more” 

                                                George Bernard Shaw. 
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1 The motivation behind loop quantum gravity 

1.1 Why we need to quantize gravity? 

Seventy years ago, was the golden age of new ideas for physics and all the breakthroughs 

were the result of pushing boundaries and limits of the incomplete theories of that time.  At 

the microscopic scale, a complete set of new ideas were proposed to describe the strange 

behavior of elementary brakes of matter giving birth to Quantum Mechanics. The new theory 

is background dependent, non-local and probabilistic, where particles are treated as quanta of 

fields and fields as quanta of particles and the dynamic of such fields is described through the 

time evolution of the Hilbert space functions with respect to a space background. Whereas, at 

the macroscopic scale, General relativity attempts to describe the gravitational force as the 

deformation of the space-time which means that space-time is not anymore an absolute web 

structure that witnesses the dynamic of other objects but it is treated as a dynamical object 

itself. The Einstein‟s new theory is then background independent, deterministic and local so 

both theories are giving us a schizophrenic understanding of the universe.  

May be we need again to push both theories to their limits and explore what happens?  

Quantum field theory suffers from UV or short distance divergences, the renormalization by 

introducing a short-cut off allows us to avoid infinities but also comes with price of ignoring 

the physics of extreme short distances.  

 General relativity also has its own divergences, Big Bang or black hole singularities where 

high energy density is confined in a singularity point results in a divergence of the curvature 

and a breakdown of the geometry.  

In both cases, QFT and GR are pushed beyond their limits when describing extreme short 

distances of space filled with extreme high energy density. The fabric of space-time is no 

longer continuous and high energy density requires quantum effects which call for a theory of 

quantum gravity. In this new theory, QFT and GR can coherently coexist to solve the above 

inconsistencies [48].  
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1.2 Why loop quantum gravity? 

The quantization of gravity can be treated in two different ways: 

One way is to split the metric into a background Minkowsky metric and a perturbative metric 

to restore the background notion when quantizing the theory. This approach predicts the 

existence of extra-dimensions of the space-time along with new particles and may lead to a 

unified theory of all interactions (string theory, M theory). However, the splitting of the 

metric violates the background independence, the diffeomorphism covariance and leads to the 

non-renormalizability of the theory . 

Another way to do the quantization without additional structure is the canonical quantization 

of GR where matter and geometry are unified in a non-standard sense making them both 

transform covariantly under the diffeomorphism group at the quantum level. This is a 

background independent, non perturbative type of quantization where the fundamental 

principles of general covariance and quantum mechanics are combined in a consistent 

mathematical way.  Space-time is treated as a dynamical field, interacting with other fields 

and quantized like any matter field with no need to any background structure [48-50]. 
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2 The Hamiltonian formalism of GR 

2.1 The Hamiltonian formalism of a classical theory 

The dynamic description of a system is defined by its evolution in time. This evolution is 

encrypted in the Hamiltonian function or density         , where    are the generalized 

coordinates of the phase space,    the canonical momentum of   . 

To determine the Hamiltonian density we need first to introduce the Lagrangian density 

       ̇   as a function of the generalized coordinates    and their velocities   ̇ , it is defined at 

every point (generalized coordinate) of the trajectory of the system. 

The canonical momentum    of    is then given by 

   
        ̇  

   ̇
                                                        (2.1) 

The resulting equations are used to find   ̇        . 

The Hamiltonian density is then defined by  

 (     )  ∑      ̇
         ̇                                     (2.2) 

which encodes the dynamic of the system and as a result the equations of motions are given 

by  

                      

{
 
 

 
   ̇  

  (     )

   

      ̇   
  (     )

   

  

  
  

  

  

                                  (2.3) 

For systems where       , the Hamiltonian density is the total energy of the system. 

However, if we have  (       ), the third equation of motion in (2.3) is added [51].
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For a constrained system the resulting equation of motions are 

                      

{
 
 

 
   ̇  

  (     )

   
   {       

     }

      ̇   
  (     )

      {       
     }

             (2.4) 

where     
     are the constraints of the system,    are arbitrary variables called Lagrange 

multipliers  and the Poisson brackets are defined by 

{            
     }  ∑

  

   

  

   
 

  

   

  

   
                                    (2.5) 

 

2.2 The ADM formalism 

     In aim to describe the dynamics of the gravitational field using the Hamiltonian approach 

we need first to fix a proper time from which the evolution of the system is carried out. 

However, general relativity treats space and time on the same footing, and breaking off the 

space-time into space and time may break the general covariance (the diffeomorphism) of the 

theory. 

Thanks to Geroch‟s theorem, a globally hyperbolic space-time   is diffeomorphic to a 

manifold    
    

        
                                                       (2.6) 

where    
a hypersurface of equal time   and   is a diffeomorphism mapping the space-time 

manifold   to    
  . We recall that diffeomorphism is an isomorphism on a differential 

manifold. 

A globally hyperbolic space-time contains Cauchy surfaces (spatial-like surfaces) as 

submanifolds. This is a fundamental requirement because the causality of theory is encoded in 

Cauchy surfaces where a causal time-like curve intersects the spatial slice only once. A way 

to see this is to imagine the whole universe at a constant time    as a Cauchy surface    
. 
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This feature is very important when formulating the theory as it implies that the behavior of 

the universe at any time can be derived from initial data of the system. This is dictated by the 

change of the flow of the time-like curves through space-like surfaces in accordance with 

Einstein„s field equations. 

Now as we divide the space-time into space-like slices crossed by time-like curves, the metric 

of the space-time     will be written in terms of the induced metric    of the spatial slices in 

4 dimensional indices (a, b) as 

                                                                   (2.7) 

Where    is the normal vector field to the hypersurface and  

         
   

 
                                                          (2.8) 

Where     is the induced metric of the slices in 3 dimensional indices (i, j) and  

  
  

          

                                                              (2.9) 

Are projectors from 4 dimensional representations to 3dimensional representations and 

          is the hypersurface identified by   . 

 

Now, we need to introduce the inner product of the normal vectors which represents the time 

fixing gauge, the normal vectors are normalized and defined as time –like vectors 

                                                                     (2.10) 

The time-evolution vector or the deformation vector defined as the flow of time through space 

time is then decomposed into space and time components 

                                                                   (2.11) 

Where   is called the lapse function and is defined as the rate of flow of proper time   with 

respect to coordinate time   as one moves along     

                                                                 (2.12) 
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   is the shift vector and it measures how much the local spatial coordinate system shifts 

tangential to    when moving from a hypersurface to another along    [51]. 

 

 

 

 

 

 

 

Figure 2.1: we recall that the time-evolution vector as its name indicates, links two points of 

the same coordinates of two neighboring slices which marks the evolution of time of this 

point. 

 

From Eq. (2.11) we can write  

                                                            (2.13) 

So the geometry of the space -time can be described by           rather than      

2.3 The Hamiltonian formulation of a GR 

Now, in aim to proceed with the Hamiltonian formulation of general relativity, we need first 

to rewrite the Lagrangian density in terms of the new variables           . 

 The Lagrangian density defined for vacuum space is given by 

  √  

    
                                                             (2.14) 

where             and   is the scalar curvature. 

𝑁𝑎 

𝑁  𝑛𝑎 
𝑡𝑎 

𝛴𝑥 
 

𝛴𝑥 
+∆ 𝑥  

 



CHAPTER TWO. LOOP QUANTUM COSMOLOGY 

 

27 
 

As the space-time is foliated into hyeprsurfaces crossed by a flow of time-like curves, we 

need to determine a new scalar curvature defined on the 3 dimensional hypersurfaces. This is 

possible by defining a 3 dimensional Riemannian tensor in the same way we define a 4 

dimensional Riemannian tensor through covariant derivatives  

 ̃   
 
                                                          (2.15) 

Where  ̃   
 
 is called the 3 dimensional intrinsic curvature tensor in terms of 4 dimensional 

indices,    is the 3 dimensional covariant derivative in terms of 4-dim indices on    
 and    

a spatial 1-form. By using contractions with    , we can find the intrinsic Ricci tensor and the 

intrinsic scalar curvature  ̃. The intrinsic term is used to indicate that the variable describing 

the geometry of    
 doesn‟t depend on the embedding of    

in  . 

Another important variable called the extrinsic curvature     defined by 

                                                                 (2.16) 

which describes the curvature of the hypersurface     
as seen by the 4 dimensional manifold, 

this means that it measures how the normal vector field    changes with the way neighboring 

hypersurfaces are bending that‟s why it is an extrinsic feature of the geometry of     
 [51,52]. 

Another way to define     is  

    
 

 
                                                            (2.17) 

in which    is the Lie derivative of     with respect to the normal vector   . One can see that 

both (2.16) and (2.17) are equivalent weather you choose to see it as a change of    with 

respect to the embedding of hypersurfaces or the change of the geometry of the hypersurface 

with respect to a parallel transport along the normal vector   . 

In aim to write the 4 dimensional scalar curvature in terms of the new variables            

we write it first in terms of       ̃  . Developing the Eq. (2.15) and using the projectors   
  

(from 3 dimensional variables written in 4 dimensional indices   to the 4 dimensional space-

time manifold indices  ) we find the Gauss equation 

  
   

   
     

   ̃   
 
      

       
                               (2.18) 

where     
 is the 4 dimensional Riemannian tensor. 



2 THE HAMILTONIAN FORMALISM OF GR 

28 
 

In the same way, using the definition of the 4-dim Riemannian tensor we find the Codazzi 

equation 

  
   

   
        

                                                  (2.19) 

The Ricci equation is expressed as 

      
                                                             (2.20) 

where   is the space-time covariant derivative. 

Using Eqs. (2.18), (2.19) and (2.20) the Gauss-Codazzi equation is given by 

   ̃      
                                               (2.21) 

Where        is the ADM boundary term defined by 

            
                                                (2.22) 

in which    is the normal acceleration. 

The boundary term vanishes for because we assume a sufficiently large surface so the 

boundary effects are negligible and the final Lagrangian density in ADM formulation is given 

by 

  
 √ 

    
  ̃      

                                                (2.23) 

where  √    √  is easily found when we write the line element of space-time in terms of 

           as  

       (  
      )(        )                                 (2.24)                                                                            

Equation (2.23) can be written as 

            
 √ 

    
  ̃                                           (2.25) 

The first thing to notice is that this Lagrangian density is free from terms with time 

derivatives of       , which means that the canonical momentum of those variables 

vanishes 
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{
   

            

  ̇   

  
            

  ̇
  

                                                  (2.26) 

Those two equations are the primary constraints of the system.  

The canonical momentum of     using Eq. (2.25) is given by 

    
  

  ̇  
 

√ 

    
                                                  (2.27) 

Now we can define the Hamiltonian density of the system as 

      ̇                                                        (2.28) 

Where   ,   are Lagrange multipliers and         ,        . 

From Eqs. (2.25), (2.27) and (2.28) the Hamiltonian density can be written as 

             
                                                (2.29) 

Where       is the Hamiltonian constraint given by 

      
    

√ 
(        

 

 
   )  

√ 

    
 ̃                                 (2.30) 

And   
    

 is the spatial Diffeomorphism constraint given by 

  
           

                                                       (2.31) 

 

From the primary constraints given by (2.26) we can deduce   

{
 ̇  {   }           

 ̇  {    }      
      

                                         (2.32) 

      and   
    

 are called secondary constraints and     are just Lagrange multipliers, 

those constraints are first class constraints so they generate gauge transformations that don‟t 

change the physical information. 
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            *Diffeomorphism constraint: let‟s suppose that the time-evolution vector is tangential 

to    
 (          

     ), this can be interpreted as a tangent translation of    
to itself 

through a spatial diffeomorpic mapping.  

              *Hamiltonian constraint: in case where time-evolution vector has only a normal 

component (              ), this can be interpreted as a translation of    
forwards in 

the normal direction. 

Hence, to generate time-evolution with the Hamiltonian density we need to specify both 

  and  . In aim to do this we first can notice that the constrained surfaces represent the 

physical space in which the Hamiltonian density vanishes, in another word there is no time-

evolution with respect to an absolute time which is in agreement with general relativity. This 

implies that the evolution of the system can be seen as a gauge flow that is arbitrarily 

parameterized [51,52]. 
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3 The Platini formulation of GR 

3.1 The tetrad formalism 

The basis vectors of a coordinate basis in the tangential space-time are written as 

                                                                   (2.33) 

Generally speaking, these basis vectors are not orthonormal.  

Instead, orthonormal basis are of great interest in physics because working in such basis 

vectors means working in the local frame of the observer. The attempt to rewrite the theory of 

general relativity in terms of a new orthonormal coordinate basis called non-holonomic basis 

leads to the Platini action. 

The non-holonomic basis vectors  ̃  are defined by the inner product 

 ̃  ̃                                                                  (2.34) 

where    is the Minkowski metric and     are called 4-dim internal indices. 

We have      
  ̃  then 

           
  ̃   

   ̃    
    

                                        (2.35) 

and equivalently for   ̃    
    we have 

     ̃  ̃    
     

      
    

                                       (2.36) 

Both  ̃  and   
 are called tetrads, they hold all the information contained in     and hence can 

describe the geometry of the space-time instead of the metric    . It is important to state that 

under Lorentz transformations of the tetrad, the metric     doesn‟t change, this gauge 

freedom is called internal gauge. 

In aim to reformulate the Largrangian density given by Eq. (2.14) using the tetrad formalism 

we need to define first the covariant derivative    in such a frame, which is given by  

   
     

     
                                                 (2.37) 
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in which    is a vector field in the orthonormal frame and    
  is the connection 1-form given 

by 

   
                                                               (2.38) 

This can be seen as a parallel transport of the tetrad through the space-time manifold. 

In aim to preserve     under the covariance derivation (   is everywhere the same when a 

parallel transport is conducted via 1-forms connections), connection 1-forms have to be anti-

symmetric on their internal indices 

                                                                  (2.39) 

This requirement implies that the metric    is also preserved and the connection 1-form is 

called Lorentz connection. 

Now, we need to define the internal Riemannian tensor  

        
   

   
   

                                                      (2.40) 

Where       is the space-time Riemannian tensor defined on the tangent space, it is given by 

the covariant derivative as 

        
   

   
                                                    (2.41) 

By contractions we can find both internal Ricci tensor and the internal scalar curvature. 

The curvature of the connection    
  is defined by 

   
       

       
   [     ]

                                    (2.42) 

The imitation Riemannian on the tangent space then is given by 

   
      

    
   

                                                    (2.43) 

By contractions we can find both the imitation Ricci tensor and the imitation scalar curvature, 

so the Platini action reads 

 [   ]  
 

    
∫    | |    

       
   

 
 

                                  (2.44) 

This formalism is called “first order formalism”, where   is the determinant of the tetrad   
 . 
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When differentiating the action with respect to the tetrad we find Einstein equations in the 

vacuum with the imitation Ricci tensor and the imitation curvature scalar. However, when 

differentiating with respect to the connection we find the compatibility equation that shows 

the covariance of the tetrad with respect to a covariant derivative defined by the connection  .  

The constraints of this action are not closed under the Poisson brackets which may 

complicates the quantization of the theory, a solution for this problem is to modify the Platini 

action to 

 [   ]  
 

    
∫    | |    

      
       

   
 

 
                               (2.45) 

this modified action is called Holst-Platini action, where    
     

[ 
  

 ]
 

 

  
   
  

 with    
  

 the 

Levi-Cevita tensor and   as the Immirzi-Barbero parameter. 

 3.2 The ADM formalism on the tetrad 

As we did previously we split the tetrad into spatial and normal components then with a gauge 

fixing we define the normal component as the time component. 

We define the spatial component   
  as  

  
    

                                                            (2.46) 

Where    is the unit normal vector to the spatial surface  and       
     the normal internal 

vector to the internal spatial surface with    
      . 

 Now, we need to fix the time component which is called the time gauge, we define the   as 

the unit internal time-like vector      
  and then   

    
      . This means that we are 

working in the local frame of an Eulerian observer. We should mention that this gauge fixing 

doesn‟t affect the symmetry of the theory. 

3.3 The Ashtekar’s variables 

We define the spatial tensor called the densitized triad [53] by 

  
   

√ 

    
  
                                                        (2.47) 
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Introducing this new variable to the Holst-Platini action and using Eqs. (2.45), (2.46) and 

(2.11) one can find after some calculations and integration by part that the variable 

canonically conjugate to   
  called Ashtekar-Barbero connection is given by 

  
     

      
                                                         (2.48) 

where   
  is the spin connection defined through the covariant derivative in the tetrad 

formalism over spatial vector fields,   
  is related to the exterior derivative by 

      
                                                               (2.49) 

  
 ,   

  are called Ashtekar‟s variables, their Poisson brackets are given by  

{  
           

        }       
    

                                      (2.50) 

{  
           

        }  {  
           

        }                       (2.51) 

Now, we introduce the curvature of the   
  

   
      

      
      

   
   

                                          (2.52) 

This is called also the strength field of   
 . 

The constraints in the tetrad formalism with the Ashtekra‟s variables of the Holst-platini 

action are then 

{
 
 

 
        

                          

  
       

    
                                     

            
  
   

 

√ 
   

 (   
          

    
   

 )                          

(2.53) 

 

The Gauss constraint generates gauge transformations as it implies gauge invariance in phase 

space. This is means that this constraint underlies a gauge symmetry under SU (2) group, 

which allows to adopt quantization methods used for Yang-Mills models.  

It is also important to mention that Ashtekar connections (with complex Immirzi parameter) 

are simpler to manipulate then the real ones. For instance, the second term in the Hamiltonian 

constraint vanishes which simplifies the constraint. Ashtekar connections are associated to 

SU(2) group of gauge transformations. This is not the case for real connections; they are 
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associated with a group of transformations that is not a subgroup of the Lorentz group which 

means that working with real connections under diffeomorphism is a difficult task.          

However, in loop quantum gravity it is much easier to quantize real connections then complex 

ones especially from Eq. (2.47), which means that the geometry is determined by   
  and as a 

consequence the immirzi parameter needs to be real. Another problem arise from the fact that 

LQG works only with compact groups which is not the case for complexified SU(2) groups 

and it is much more complicated to find reality conditions for a quantized theory in a complex 

phase space [53].
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4 Isotropic loop quantum cosmology 

4.1 Why holonomies? 

Wilson loops were first introduced in the study of the strong confinement between quarks, 

they can be used to describe quantum states with quarks at ending points where they represent 

lines of non-Abelian electric fluxes and they turn out to be Eigen states of the Hamiltonian in 

the strong coupling limit. 

The canonical quantization of gravity can induce some anomalies when writing the canonical 

commutation relations of the canonically conjugate variables of the phase space, for instance 

       
   , where we expect a commutation relation of the form 

 [ ̂  ̂]                                                             (2.54) 

where  ̂ is seen as the generator of q-translation. However, the scalar product in the Hilbert 

space is not invariant under those translations; this implies that the commutation relations 

need to be replaced. As a consequence, another approach was proposed by Rovelli and 

Smolin based on the quantization of the holonomy-flux algebra. 

To introduce the definition of the holonomy, we need first to remind that Ashtekar 

connections are elements of SU(2) group and the parallel transport of those connections along 

a curve   is called holonomy 

           ∫   
    

                                            (2.55) 

Where   is the path operator,     
 

 
   are the generators of the algebra of SU(2) groups and 

   are Pauli matrices [52].  

4.2 Holonomy-flux algebra 

The hypersurface    
is divided into faces   delimited by edges  , the idea introduced by 

Rovelli and Smolin is to use the holonomies along all the possible edges e of the hypersurface 

   
 , and fluxes on all the possible faces   of the hypersurface    

 as the new variables of the 

phase-space. Holonomies are already defined in (2.55), fluxes can be defined in the same way 

by smearing   
  in two dimensions: given a 2-dim surface  ,       is defined as 
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      ∫     
     

 
                                                      (2.56) 

being   and   coordinates on the surface   and    the normal vector. 

The Poisson brackets between holonomies and fluxes are 

[            ]                                                        (2.57) 

[             ]                                                        (2.58) 

Where        is the sign of the scalar product   
   

  
. 

4.3 The modified Friedman equation 

As the universe is not static, the geometry of the spatial hypersurface can be described by the 

metric 

                                                                 (2.59) 

where    is the spatial metric independent of time and     is the scale factor. 

Now, we write the triad associated to the metric     as  

  
        

                                                       (2.60) 

where   
  is the triad associated  to the metric    . 

The next step will be to write Friedmann equations in terms of the real connections and their 

densitized triads. First, from Eq. (2.60) the densitized triad [50] can be written as  

  
  √ 

    
      

                                                  (2.61) 

Where | |    . Similarly, we find the connection  

  
        

                                                         (2.62) 

Where      ̇ and the dot denotes the derivative with respect to the cosmic time. 

We can notice that the new variables   and   are canonically conjugate and can be taken as 

the new coordinates of the phase-space.  
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Their Poisson brackets are given by 

{   }  
    

   
                                                         (2.63) 

Where   is the coordinate volume of the spatial hypersurface defined as 

   ∫    
 

                                                       (2.64) 

Now, we rewrite the Hamiltonian density in terms of the new variables. We find that both 

diffeomorphism and Gauss constraints vanishe because they are both solved by Eqs. (2.61) 

and (2.62) and we are left with the Hamiltonian constraint. The total Hamiltonian density 

including matter is then reduced to 

                    
 

    
∫       
 

                           (2.65) 

Where       is the Hamiltonian density for matter defined by 

      ∫         
 

             
 

 ⁄                                (2.66) 

in which   is the energy density. 

The total Hamiltonian density then reads 

         
 

 ⁄  
 

       
 

 ⁄                                           (2.67) 

As the physical space is constrained by a vanishing Hamiltonian density     we find that 

  
 

       
                                                     (2.68) 

and when squaring the Hubble parameter,  it gives 

    
 ̇

 
   

  

   
 

    

 
                                             (2.69) 

which is the Friedmann equation. This is expected since we are still working in the classical 

limit. Now, to introduce loop quantum corrections we need to work with holonomies and 

fluxes. 
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Substituting Eq. (2.62) in Eq. (2.55) we find 

   
     |  |       (

 

 
|  | )      (

 

 
|  | )                           (2.70)                                                                  

where    
    is the holonomy along a curve   in the coordinate direction   . The simplest 

loop (the holonomy along a closed graph) can be constructed from a square as 

    
    

   
   

     
                                                  (2.71) 

Using Eq. (2.55) and the fact that the coordinate lengths of the sides of the square are equal 

we can write 

    
       (

 

 
| | )

 

     | |   (         )      (
 

 
| | )    (

 

 
| | )

 

        

(2.72) 

The strength field of the connection is defined on a closed loop as 

   
       | |  

  *       
   +

| | 
                                         (2.73) 

From Eq. (2.72) we find 

   
     | |  

    | |   

| | 
   
                                             (2.74) 

As the area operator has a non-vanishing minimum value in LQG, the coordinate length | | 

has also a minimum value |    | so we can write 

   
  

    |    |   

|    | 
   
                                                 (2.75) 

The new modified Hamiltonian is given by 

         
 

 ⁄  
 

      
    |    |   

|    | 
 
 

 ⁄                                  (2.76) 

The minimum coordinate length needs to be replaced by a fixed physical length   

|    |  
 

 
 

 

√ 
                                                       (2.77) 
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This is due to the fact that the coordinate length depends on the coordinate choice which 

makes our Hamiltonian dependent on the coordinate choice.    is usually defined as the square 

root of the minimum area gap of LQG [54]. 

As the Hamiltonian vanishes we find 

   (
 

√ 
 )

 

 
       

 
                                                 (2.78) 

To find the modified Friedmann equation we need to calculate the Hubble parameter, that is 

  
 ̇

 
  

 ̇

  
                                                           (2.79) 

Then, we use the Hamiltonian equations of motion to get 

 ̇  
 

 
{   }  

  

  
   (

 

√ 
 )    (

 

√ 
 )                                       (2.80) 

Now, we replace this result in Eq. (2.79) and square  

   
 

    
   (

 

√ 
 )

 

   (
 

√ 
 )

 

                                            (2.81) 

Using Eq. (2.78) we find the modified Friedmann equation expressed as  

   
   

 
    

 

  
                                                        (2.82) 

In which  

   
 

       
                                                             (2.83) 
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                        Chapter three: 

                        Modeling Dark Energy 

                        By VMCG  

                         “Not only is the universe stranger than we think, 

                                                  It is stranger than we can think” 

                                                  Werner Heisenberg 
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1 Viscous Modified Chaplygin Gas Model 

1.1 Chaplygin Gas Models  

In 1904, S. Chaplygin proposed, in the context of an aerodynamic research [55], a gas model 

with the equation of state 

   
 

 
                                                               (3.1) 

where   a positive constant, this model is also obtainable from Nambu-Goto action for d-

branes moving in a (d+2) dimensional space-time. This fluid has the property of the only 

known fluid to admit a supersymmetric generalization. 

From the conservation equation (1.21) of a universe filled with Chaplygin gas we find  

  √  
 

                                                                 (3.2) 

where   is an integration constant chosen to be positive and   is the scale factor.  

At early times , we have a matter like behavior with 

  √                                                                 (3.3) 

At large scale     and 
 

     , we have a mixture of cosmological constant and stiff 

matter (     like behavior with 

  √  
 

√  
             √  

 

 
                                       (3.4) 

At late time 
 

      and we have a cosmological constant like behavior with 

  √     √                                                        (3.5) 

The Chaplygin gas model behavior evolves in time from matter like behavior to a mixture of 

cosmological constant and stiff matter like behavior to finally a cosmological constant like 

behavior [13]. 
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The generalized Chaplygin gas with equation of state 

   
 

                                                                   (3.6) 

in which       is a constant, is obtainable from Born-Infeld action [15].  

In a universe filled with generalized Chaplygin gas, the conservation equation (1.21) gives  

     
 

        
 

                                                          (3.7) 

in which   is an integration constant. 

At early times    , we have a matter like behavior with 

                                                                   (3.8) 

At large scale, we have a mixture of cosmological constant and perfect fluid         like 

behavior with 

   
 

                         
 

                                       (3.9) 

where   
 

   
 

  

   . 

At late time, we have a cosmological constant like behavior with  

   
 

                
 

                                                  (3.10) 

The generalized Chaplygin gas model behavior evolves in time from matter like behavior to a 

mixture of cosmological constant and perfect fluid like behavior to finally a cosmological 

constant like behavior. 

The modified Chaplygin gas with the equation of state is given by 

  

     
 

                                                           (3.11) 

where   is a constant.. 
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In a universe filled with modified Chaplygin gas, the conservation equation (1.21) gives 

   
 

   
 

 

             
 

                                                (3.12) 

where   is an integration constant. 

At early times, we have a perfect fluid        like behavior with 

                                                               (3.14) 

At large scale, we have a mixture of cosmological constant and perfect fluid of state equation                        

              like behavior with  

  (
 

   
)

 

     
 (

 

   
)

  

      

   
                                         (3.15) 

   (
 

   
)

 

     
         (

 

   
)

  

      

   
                           (3.16) 

  At late time, we have a cosmological constant like behavior with 

   
 

   
 

 

               
 

   
 

 

                                              (3.17) 

1.2 A VMCG dominated universe 

         The VMCG model is investigated in the framework of the standard cosmology, first we 

solve the conservation equation of a universe dominated by Viscous MCG to find the energy 

density in terms of the scale factor and the EoS parameters, then we probe its stability 

condition at large scale. At small scale, the energy density can describe a matter dominated 

universe with a specific choice of the EoS parameters.    

 The EoS of the Viscous MCG is given by 

           
 

    
          

   
                                          (3.18)                                        

where      is the energy density of MCG,     is a positive bulk viscosity coefficient and 

  
 ̇

 
 is the Hubble expansion parameter. The dot stands for the derivative with respect to the 

cosmic time. 
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  We consider a flat Robertson-Walker universe filled with VMCG, the conservation equation 

and the Friedmann equation are given by 

 ̇      (         )                                                   (3.19) 

    
    

 
                                                              (3.20) 

 The effective pressure of the VMCG is given by 

           
 

    
          

   
                                          (3.21) 

Using the above definition of the effective pressure     , the conservation equation can be 

written as 

 ̇      (           
 

    
          

   *                            (3.22) 

We substitute by   
 ̇

 
 and   

    
   

√ 
 to find 

 ̇     
 ̇

 
(          

 

    
  √       *                           (3.23) 

 ̇     
 ̇

 
(     √         

 

    
 *                               (3.24) 

We move all the terms that depend on the scale factor to the left-hand side and those 

depending on the energy density at the right-hand side of the equality 

     

     √              
     

  

 
                                            (3.25) 

    
       

     √        
     

   
  

 
                                                (3.26) 

We multiply by (    √   )      and integrate 

∫
(    √   )         

       

     √        
     

   ∫(    √   )     
  

 
                 (3.27) 

We find 

  [     √        
     ]    (    √   )                     (3.28) 



CHAPTER THREE. MODELING DARK ENERGY BY VMCG 

 

46 
 

where C an integration constant. Finally we obtain the energy density of the Viscous MCG in 

term of the scale factor   

       
 

       (    √   )
 

 

    √   
 

 

                                     (3.29) 

with K an integration positive constant. As the energy density varies with its parameters, we 

consider the qualitative behavior of the solution of Eq. (3.19) as the parameters            

vary using the bifurcation theorem. The dynamical stability of Eq. (3.19) depends on its 

equilibria and their stability.  

Using both Eqs. (3.19) and (3.21) of a universe filled with viscous modified Chaplygin gas, 

we can write 

 ̇       (           
 

    
          

   *                        (3.30) 

Then, the equilibria point          is found by solving the equation 

 (    )             
 

    
          

   
                                       (3.31) 

and we obtain 

          
 

    √   
 

 

                                                (3.32) 

To probe the stability of this point we solve 

    (    ) 

     
|
        

                                                      (3.33) 

We find that the equilibria point is only stable if       and     √       which 

means that at late time the energy density is only stable for a positive choice of   and is given 

by       
 

    √   
 

 

    corresponding to dark energy dominated universe.  

At the early universe, we have a perfect fluid    (  √   )   like behavior with  

         (    √   )                                                    (3.34) 

If we take   √   , the energy density becomes            which corresponds to matter-

dominated universe.  
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At large scale, we have 

  (
 

    √   
)

 

     
 (

 

    √   
)

  

      

   
        (  √     )                            (3.35) 

   (
 

    √   
)

 

     
  (  √   )        (

 

    √   
)

  

      

   
        (  √     ) 

(3.36) 

a mixture of cosmological constant and perfect fluid      (  √   )           like 

behavior. The latter also corresponds to stiff matter used in cosmology to model dark matter 

when it is made of  relativistic self-gravitating Bose-Einstein condensates (BECs) [56]. 

The deceleration parameter is given by 

     
 ̇

                                                           (3.37) 

Now, using Eq. (3.20) we can write 

 ̇

    
 

 
 (    √   )  

 

    
                                      (3.38) 

Then, the deceleration parameter of the VMCG can be written as 

     
 

 
[(    √   )  

 

    
   ]                                  (3.39)   

The effective state parameter is given by 

     
    

    
   √    

 

    
                                  (3.40) 

A small non-negative sound speed        for matter component is necessary for forming 

the large scale structure of our Universe,   reduces to 

   
     

     
   √     

 

    
                                               (3.41) 

At large scale the values of deceleration parameter, effective state parameter and the sound 

speed are the following  

                     (  √   )                          (3.42) 
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2 Constraining VMCG in Standard Cosmology 

2.1 The   test 

The collected observational data in cosmology are getting larger and more accurate. This 

requires statistical tools to combine and analyze those data in a way where “accuracy” and 

“precision” are achieved to derive plausible cosmological models and conclusions that are in 

the best way consistent with those data. 

When dealing with statistics we are dealing with probabilities and cosmologists interpret 

probabilities as the measure of the degree of belief in hypothesis. The probability that a 

random variable   can take a specific value is the probability distribution     , and it has the 

following properties: 

1- It is a positive defined real value         

2- It is normalized over the spectrum of all possible values of the random variable   such 

as ∫          for continuous values of   or ∑       for discrete values of  . 

3- For two independent events   and  , the probability that   or   to happen        is 

the sum of individual probabilities       and      . 

                                                               (3.43) 

4- The probability of   and   to happen        is the probability of   times the 

conditional probability    |   of   given    

               |                                                (3.44) 

In cosmology, every proposed cosmological model has to predict at least most of the collected 

observational data with the minimum bar of errors. This means that the parameters describing 

the cosmological model need to be fitted to the observational data, and statistically speaking 

those parameters are the hypothesis that we need to measure the degree of belief (their 

consistency with the data) so we define 

   |   
       |  

    
                                                    (3.45) 

where    |   is the posterior defined as the conditional probability of hypothesis   given a 

set of data   ,      the prior,    |   the likelihood and        (we assume that the data 

are already collected). 
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Given a set of observational data we want to define a function that can measure the agreement 

between the cosmological model and the data and then maximize it. As the model is described 

by a set of parameters, if we set         and ignore the prior we can maximize the 

likelihood    |  , the probability that the observational data   occurred given a set of 

parameters  , by adjusting the parameters to find the most likely hypothesis. The problem 

with this procedure is that we ignore both      and the prior which does not provide a 

goodness of fit or an absolute probability of the model and because of that cosmologist 

adopted another way to fit their models using the least squares    analyses [57]. 

We assume that we have a set of observational data    and a model to provide those data 

        that depends on a set of parameters    the least squares    is defined as 

   ∑
            

 

  
                                                      (3.46) 

in which   is the error on the data   . The best fit parameters are those that minimize the   . 

The Chi-by-eye rule states that the minimum value of    should be roughly equal to the 

degree of freedom (number of data - number of the fitted parameters). From this, 

  
           .                                                  (3.47) 

Errors should be associated to the best fit parameters, if we move away from the best fit 

values the    will increase with    . The contour of a constant     draws the boundary of a 

confidence region where the values of the parameters (a phase space defined by the values of 

just two parameters) are defined within a certain interval of error called the “confidence 

interval “ [57]. 

p 𝜈=1 𝜈=2 𝜈=3 

68.27% 1 2.3 3.53 

90% 2.71 4.61 6.25 

95% 4 6.18 8.02 

 

Table 3.1:    as a function of the confidence level p and the number of the fitted parameters 

𝜈. 
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If the number of the fitted parameters is large and if we know the probability distribution of 

all the parameters         regardless the values of one of them     then we can marginalize 

over this parameter and we have  

      ∫                                                           (3.48) 

 

2.2 The Best Fit values of the EoS parameters of VMCG model 

           we constrain the EoS parameters of the VMCG model using Supernovae Type Ia 

observational data that consists of 580 data points and belong to Union 2.1 (2012) data [58], 

the best fit values of the parameters are obtained by the minimization of the    function. 

The luminosity distance       determines the dark energy density and is defined in a flat 

universe by 

  (        ́     )         ∫
  ̀

   ̀       ́      

 

 
                                  (3.49) 

Where z is the redshift parameter,     the speed of light and   is the present Hubble 

parameter. The distance modulus for Supernovas is given by 

 (        ́     )        [
           ́      

    
]                          (3.50) 

The  -square function     measures the goodness-of-fit of the model to the data and is 

defined by 

         ́       ∑
           ́                    ́       

 

  
                   (3.51) 

Where         is the observed distance modulus at redshift   and    
  its variance. 

Using the field Eq. (3.2) in the presence of a baryonic matter  

 ̇      (           
 

    
          

   *                        (3.52) 

We substitute by   
 ̇

 
  

 ̇     
 ̇

 
(          

 

    
          

   *                          (3.53) 
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(          

 

    
          

   *                        (3.54) 

We divide by    

     

  
 

 

 
(          

 

    
          

   *                            (3.55) 

We substitute by   
 

   
  and      

  

      
 

       
     

  
       (          

 

    
          

   *             (3.56) 

Then we have 

     
     

  
  (          

 

    
          

 

 +                   (3.57) 

We divide by    
  and substitute      

    

   
  

     
     

  
  (          

 

   
     

  
        

 
 

√   
,                   (3.58) 

     
     

  
  (          

 

    
         

  
√        

 
 

  
,              (3.59) 

     
     

  
  (           ̀    

   
√        

 
 

  
,                    (3.60) 

Where  ̀  
 

    
      and the Hubble parameter is defined by the field equation in the presence 

of a baryonic matter as 

   
    

 
 

 

 
                                                     (3.61) 

We divide by   
  

  

  
  (       )                                                 (3.62) 
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where     is the present value of the baryonic matter density.  

The Hubble parameter then can be defined in term of the redshift parameter by 

       [              ]
                                         (3.63) 

 We substitute the above result in Eq. (3.63) we obtain 

     
        

  
  (           ̀    

   √       

 

                       
   +    

(3.64) 

This equation need to be solved numerically in order to minimize the Chi-square function.  

To reduce the number of the free parameters we marginalize assuming a constant prior over 

  ; we construct a probability density function for the only parameters     ́        

 (   ́     )  ∫          ⁄                                         (3.65) 

where        is the prior probability density function of the present Hubble constant   . 

First, we write the dimensionless luminosity distance  ̃  that doesn‟t depend on    

 ̃ (     ́     )      (        ́     )        ∫
  ̀

   ̀       ́      

 

 
         (3.66) 

where  ( ̀       ́     )     ̀       ́́         . 

Then, the distance modulus can be written as 

 (        ́     )        [
 ̃ (     ́́     )  

        
]                         (3.67) 

We define the dimensionless Hubble parameter   ̃     
   

 
 , the Eq. (3.70) becomes 

 (        ́     )         [ ̃ (     ́́     )]            [   ̃ ]          (3.68) 

Where we put   ̃(     ́     )        [ ̃ (     ́́     )]     as the distance modulus 

free from   ̃. The new    function is given by 

         ́       ∑
  ̃      ́                  [   ̃ ] 

 

  
                        (3.69) 
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This can be rewritten as 

 

  (      ́     )  ∑  
  ̃      ́            

 

  
           [   ̃ ] ∑  

  ̃      ́            

  
 

       [   ̃ ] 
 ∑  

 

  
                                                           (3.70) 

We put    ∑  
  ̃      ́            

 

  
 ,   ∑  

  ̃      ́            

  
,   ∑  

 

  
  and         [   ̃ ] 

We have then  

  (      ́     )                                           (3.71) 

We substitute this result in Eq. (3.65) we find 

 (   ́     )  ∫                   ⁄     (  ̃)    ̃
  

  
                   (3.72) 

The integration is over all the possible values of    ̃. We choose the prior to be constant 

which means that any value for   ̃ has the same probability of being. After changing 

variables in Eq. (3.75) we obtain  

 (   ́     )  ∫     
       

 
         (  

      

 
)     ⁄    

  

  
                   (3.73) 

 

This can be developed to  

 (   ́     )      
       

 
   

 ́ 

 
    ⁄

∫        
 ́

 
   ⁄    

  

  
                  (3.74) 

Where   ́    
      

 
 . The integral has the form of a Gaussian distribution so we find  

 (   ́     )      √
  

 
 
       

 
   

 ́ 

 
    ⁄         ̃  ⁄                    (3.75) 

where  ̃  is the new    function free from    given by 

 ̃     ́        (   ́     )  
      ́             ⁄

 

 
                     (3.76) 
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As the number of free parameters is still large we first fix the viscous coefficient that is 

assumed to be positive, then we constrain the EoS parameters    ́   . We find that only 

small values of    corresponding to       are consistent with the observational data. The 

best fit values of EoS parameters in this case are listed in Table 3.2 where we find that  ́ and 

  have approximately the same values for different choices of    . The counter plot of the best 

fit values of both (  ,  ́  corresponding to the confidence levels 68.27%, 90% and 95.45% are 

shown in Figure 3.1. 

 

.EoS 

parameters 

        ́    
     

      ⁄  

Best 

fit 

values 

0.01 0.551 -0.167 0.543 562.191 0.974 

0.02 0.548 -0.149 0.543 562.191 0.974 

0.0001 0.549 -0.186 0.543 562.191 0.974 

 

 

Table 3.2: Summary of the best estimates of the EoS parameters for the Viscous MCG. The 

best fit values are computed using Union 2.1 SNe Ia data, d.o.f denotes the degrees of 

freedom. 
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(a)                                                                          (b) 

                                      

                                                                         (c) 

Figure 3.1: Contour plot of 68.27 % CL (black), $90\%$ CL (dashed) and 95.45 % CL (gray) 

regions for VMCG parameters A and   ́ when (a)          , (b)           and (c)  

          .  
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2.3 Cosmological parameters in terms of the Best Fit values of the EoS             

parameters 

     We explore the behavior of the deceleration parameter, the state parameter, the adiabatic 

sound speed and the curvature scalar as functions of the redshift parameter till the present 

epoch at the best fit values of VMCG EoS parameters summarized in Table 1. 

The Hubble parameter is defined by the field equation 

   
    

 
                                                          (3.77) 

we differentiate    with respect to the cosmic time then we divide by     

 ̇

   
 ̇   

     
 

   ((       )      )   
 

 
   

    

                (3.78) 

by substituting  
 ̇

   in   given in Eq. (3.37)we find 

        
 

 
[  

(        )

     
]                                       (3.79) 

The effective state parameter is given by 

      
    

    
      

    

√    
 

 

    
                               (3.80) 

The sound speed parameter is given by 
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 )         
     

     
        (3.81) 

We differentiate the Hubble parameter with respect to      we find 

  

     
 

 

√ 

 

     
             

 

 √ 
              

 

 
             (3.82) 

Then, the sound speed parameter will be given by 

     
 

 
  

    

√    
 

 

 
  

√    

    
  

 

    
                                   (3.83) 
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The energy density      is solved numerically and used to plot the above cosmological 

parameters at the best fit values of the EoS parameters shown in Table 3.2. The curves are 

plotted using Mathematica software.  

In figure 3.2, the sound speed is plotted in terms of the redshift parameter using the best fit 

data listed in Table 3.2. In the early universe, the sound speed has negative values introducing 

fast exponential growth of instabilities, this anomaly can be explained by the fact that VMCG 

is an effective coupled dark energy/ dark matter fluid, in such models instabilities can occur 

when the coupling strength is strong compared to gravitational strength [59]. Moreover, when 

the coupling becomes moderate in the transition from a matter dominated universe to a dark 

energy dominated universe, the sound speed     changes sign to take positive values and the 

perturbations grow much slower until the universe is dominated by dark energy. At large 

scale, the sound speed takes a positive value near zero leading to stable oscillating 

perturbations and structure predictions consistent with observations. 

                       

Figure 3.2: The sound speed    as a function of the redshift z at best fit values of Table 3.2 

for         (gray line),         (black line) and            (dashed line). 
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Figure 3.3: The evolution of the effective state parameter      at best fit values of Table 3.2 

        (gray line),         (black line) and            (dashed line). 

                   

Figure 3.4: The variation of the deceleration parameter q at best fit values of Table 3.2 for  

        (gray line),         (black line) and            (dashed line). 

Figure 3.3 and figure 3.4, show respectively the variation of the effective state parameter and 

the deceleration parameter with redshift z at the best fit values of Table 3.2, it is obvious that 

the current value of       varies between       and       for different values of 

  admitting an accelerated universe . At matter dominated era,        takes values of the 

range           permitting a deceleration phase. The effective state parameter is slightly 

negative in this era due to the transition between the two epochs of matter dominated universe 

and dark energy dominated universe. When the deceleration parameter crosses the zero to 
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negative values, the      takes values less than       and the VMCG behaves like 

quintessence scalar field. 

In figure 3.4, for all best values of Table 3.2, the current deceleration parameter value varies 

between       and       which is consistent with               ) given by the standard 

ΛCDM cosmology [60] . Moreover, a transition from decelerated   
 

 
 to accelerated 

universe     is realized when   crosses the zero, and thus the universe passes from matter 

dominated universe to dark energy dominated universe. When the deceleration parameter 

crosses the zero (q=0) the universe passes from matter dominated universe where (   ≈ 

       ) and undergoes an accelerated phase. The crossing happened at        for both  

        and            and at        for         . 

To probe the behavior of the model in the early universe, where    , we calculate the 

curvature scalar    in a flat universe, defined by 

    
 ̈

 
                                                                     (3.84) 

where the dot stands for the derivative with respect to the cosmic time and 
 ̈

 
  ̇     

     ̇                                                                    (3.85) 

We substitute by  ̇  
 ̇   

  
 

        
 

 
                   

 

                                       (3.86) 

Where    
    

 
 

        
 

 
   

 

 
               

 

                                      (3.87) 

Then   

                    

 

                                                 (3.88) 

In figure 3.5, the curvature scalar evolution is plotted in terms of the redshift parameter at the 

best values of Table 1. At         which corresponds to the Big Bang Singularity.
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Figure 3.5: The evolution of the curvature scalar at best fit values of Table 3.2 for         

(gray line),         (black line) and            (dashed line). 
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3 Dynamical analysis of VMCG in LQC 

3.1 Dynamical system 

We call a dynamical system any system with variables evolving in time.  Since most of the 

phenomena we observe in nature evolve in time it seems clear that the study of dynamical 

systems is of great interest. The evolution of the dynamical system [61] is very sensitive to the 

initial conditions of the system where a small variation on the initial state of the system can 

change significantly the evolution of the system.  

Systems with equations of the form 

   

  
                            

   

  
                            

                                                                      (3.89) 

   

  
                            

 

Where    are the dynamical variables of the system,    are the parameters of the system that 

we keep constant and   the time as an independent variable. If the right hand side of the 

equations doesn‟t depend explicitly on time, the system is said to be autonomous. Whether the 

right hand side of the equations is linear or nonlinear the system is called linear or nonlinear 

dynamical system. The entire future course and the entire past of the system are uniquely 

determined by its state at the present instant of time. 

\ 

The stability of a solution       depends on the behavior of nearby solutions at a given time 

and at late time. So if nearby solutions remains close to        at a given time and at late time 

the solution is said to be (Lyapunov) stable. If the solution is stable and the nearby solutions 

converge to       at late time then it is asymptotically stable. 

The dynamical behavior of a dynamical system is determined through the stability of its fixed 

points or equilibrium points    (solutions that don‟t change in time) 

                                                                      (3.90) 

This means that the first step toward the dynamical analysis is to find the fixed points 

                 of the system by solving Eqs. (3.90). 
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Then, one computes the Jacobian matrix of the system given by 

  

(

  
 

   

   

   

   
     

   

   

   

   

   

   
     

   

   
      

   

   
    

   

   
         

   

   )

  
 

                 

                                (3.91) 

to find the eigenvalues corresponding to each fixed point and finally checks the stability of the 

fixed points. 

The stability of the fixed points depends on the nature and the values of the eigenvalues: 

Node: corresponds to a fixed point with distinct real eigenvalues with the same sign. The 

node is said to be stable if all eigenvalues are negative otherwise it is unstable. 

Improper node: corresponds to a fixed point with a real eigenvalue with multiplicity „n‟. It is 

stable if the eigenvalue is negative and unstable if positive. 

Saddle: corresponds to a fixed point with real eigenvalues with opposite signs and it is an 

unstable fixed point. 

Focus: corresponds to a fixed point with complex eigenvalues. It is stable if all the real parts 

of the eigenvalues are negative and unstable if positive or with opposite signs. 

Center: corresponds to a fixed point with pure imaginary eigenvalues.  

  

3.2 The Autonomous System of VMCG in LQC 

          We investigate the model behavior at large scale within the LQC framework through 

the dynamical analysis of an autonomous system of equations. The system then is solved 

numerically using Mathematica software. 

In the LQC frame work, the modified flat Friedmann equation [62] is given by  

   
    

 
   

    

  
                                                        (3.92) 

Where      is the total energy density,    
√ 

         
 is the critical density in LQG and γ is 

the dimensionless Barbero-Immirzi parameter. The quantum correction is negligible when 

ρtot   ∼   but it dominates dynamics when ρtot∼ρc. We assume a universe filled with 

Viscous MCG and baryonic matter, the conservation equations for both are expressed as 
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 ̇      (         )                                                  (3.93) 

 ̇                                                                   (3.94) 

To analyze the dynamical behavior of the above system, we introduce the following 

dimensionless variables: 

  
    

     ,  
    

    ,  
    

  
                                                     (3.95) 

The phase space is bounded by             and a negative   (a negative pressure is 

needed to generate accelerated expansion), the modified Friedmann equation in term of the 

new variables is given by  

(  
  

   )                                                                (3.96) 

We differentiate Eq. (3.92) with respect to the cosmic time and we insert the new 

dimensionless variables given by Eq. (3.95) to obtain 

 ̇

    
 

 
(  √    

  ⁄  
 

   
)                                              (3.97) 

We differentiate   with respect to the cosmic time 

 ̇  
 ̇   

    
 

 

 ̇

                                                                  (3.98) 

Using the conservation equation of VMCG energy density we find 

 ̇   
 

 
                   

   
   

 ̇

 

    

                                     (3.99) 

We differentiate   with respect to the e-folding number       and we denote the derivative 

as  ́ 

 ́  
 ̇

 
  

 

                     
   

   
 ̇

  

    

                                  (3.100) 

We substitute by the dimensionless variables 

 ́         √    
       

 ̇

                                             (3.101) 

We differentiate    with respect to the cosmic time  
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   ̇  
 

 
 ̇   (  

    

  
)  

 

 
 ̇   

    

  
                                         (3.102) 

   ̇  
 

 
 ̇   (   

    

  
)                                                       (3.103) 

We substitute by the conservation equation of the total energy density and we divide by     

 ̇

    
 

                         
   

 (   
    

  
)                         (3.104) 

Using the dimensionless variables the above equation can be written as 

 ̇

    
 

 
       

 

  
 

   
                                               (3.105) 

We substitute this result in  ́ we obtain 

 ́              (  √    
  ⁄ )     

 

   
                               (3.106) 

Now we differentiate   with respect to the cosmic time 

 ̇  
 ̇   

    
 

 

 ̇

                                                                (3.107) 

We have 

 ̇      ̇     
 

    
    ̇                                                       (3.108) 

 ̇        
 

    
     ̇                                                          (3.109) 

We add and abstract     

 ̇              
 

    
     ̇                                             (3.110) 

We obtain  

 ̇             
 

 
  ̇                                                  (3.111) 

Then 

 ̇  (        
 

 
*

 ̇   

     
 ̇

 

    

                                              (3.112) 

 



3 DYNAMICAL ANALYSIS OF VMCG IN LQC 

65 
 

Now, we differentiate   with respect to the e-folding number       and we denote the 

derivative as  ́  

 ́         √    
    (        

 

 
*    

 ̇

                            (3.113) 

We substitute by 
 ̇

   found earlier 

 ́    (    √    
 

 ) (        
 

 
*           

 

  
 

   
                (3.114) 

We obtain 

 ́                  (        (     
 

 
)* (  √    

 

 )     
    

   
     

(3.115) 

Now, we differentiate   with respect to the cosmic time 

 ̇  
 ̇   

  
                                                                       (3.116) 

Using the conservation equation of the total energy density we find 

 ̇    
 

  
                   

   
                                            (3.117) 

We differentiate   with respect to the e-folding number       and we denote the derivative 

as  ́  to obtain 

 ́      
 

  
              

   
                                             (3.118) 

We have 

   
  

 

    

  
   

    

  
                                                        (3.119) 

We substitute by the dimensionless variable   

   
  

 
                                                                    (3.120) 

then 

 

  
 

      

                                                                      (3.121) 



CHAPTER THREE. MODELING DARK ENERGY BY VMCG 

 

66 
 

We substitute the last result in  ́ we find 

 ́                √    
  ⁄                                              (3.122) 

 

 the autonomous system then is defined as 

 ́              (  √    
  ⁄ )     

 

   
  

 ́                           (     
 

 
) (  √    

  ⁄ )     
    

   
  

 ́                √    
  ⁄                                               (3.123) 

 

3.3 Numerical Analysis 

This autonomous system does not depend on the EoS parameter  , and its critical points 

             are found numerically at the best values of Table 3.2. Their properties are 

determined by the sign and nature of the eigenvalues 𝜈         of the Jacobi matrix  , 

  

(

 
 

  ́

  

  ́

  

  ́

  

  ́

  

  ́

  

  ́

  

  ́

  

  ́

  

  ́

  )

 
 

          

                                                   (3.124) 

 

When we fix the values of both   and  , the critical points are the same and independent of 

the choice of   as listed in Table 3.3. For                            and     

                       the only physical and stable critical points    with negative 

eigenvalues describe an accelerated VMCG dominated universe with         exactly as 

predicted in the classical case. Moreover, the values of the critical points corresponding to an 

accelerated VMCG dominated universe change only with   . However, those describing a 

decelerated matter universe and a decelerated VMCG dominated universe depend on both 

      . For                  the critical points are               a stable critical point 
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because it has negative eigenvalues as       and it corresponds to an accelerated VMCG 

dominated universe,                     and           unstable saddle points due to the 

opposite signs of their eigenvalues corresponding respectively to a decelerated matter 

dominated universe and a decelerated VMCG dominated universe. 

 

 Critical points Eigenvalues      

                                                            

                                               

                                                            

                                              

                                                       

                                        

                                        

 

Table 3.3: The eigenvalues of the Jacobian matrix around given critical points    for the 

autonomous system Eq. (3.123) 

This means that according to the constrained VMCG model and before the decoupling the 

universe was dominated by a VMCG describing a mixture of dark energy and dark matter but 

where this latter dominates. The model in this era behaves mostly like a perfect fluid 

describing dark matter leading to a decelerated expansion. This phase is only transitive 

corresponding to an unstable fixed point so the universe will finally become dark energy 

dominated. 

From Fig. (3.6) the universe undergoes an accelerated expansion till a final de Sitter universe. 

In classical cosmology, the model suffers from the Big Bang singularity.  This problem does 

not occur in the loop quantum cosmology scenario. From Fig. (3.7) and (3.8), when      
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    , the Hubble parameter takes a maximum value and when      takes its maximum value 

  , the Hubble parameter vanishes, thus the universe undergoes a contraction then enters the 

bounce. 

 

Figure 3.6: The evolution of   with time. Parameters are set at the best fit values of Table1 

for          with          ,        ,            ,             

 

 

Figure 3.8: The evolution of the Hubble parameter   with time. Parameters are set at the best 

fit values of Table1 for          with       ,               
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Figure 3.7: The evolution of the total energy density   with time. Parameters are set at the 

best fit values of Table1 for          with         
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Conclusion 

In this thesis, we have investigated the model of VMCG. The observational data of Union2.1 

constrained the viscous coefficient to     , otherwise the perturbation instabilities at 

present time will grow exponentially leading to non-consistent model.  With small values of 

  , the model is found to be suitable to describe the current universe and gives good 

predictions at present time for both state and deceleration parameters 

     
               ,                 . The value of the state parameter is in 

agreement with              
      at (68% C.L.; SN Ia+SALT2 fitter+ BAO/CMB) given by 

Ref. [63] and              
      at (68% C.L.; SN Ia + BAO/CMB + H(z) + uniform prior with  

qf = -1 ) given by Ref. [64]. The present value of the effective state parameter of VMCG is 

also consistent with                 
       at (95\% C.L.; Planck+WP+BAO) for dynamic state 

parameter estimated in Ref. [65],             
       (SNLS3 team) of Refs. [66,67]. 

The perturbation instabilities, at the matter dominated era, are dropped down in present and 

late time as the coupling between dark energy and dark matter is decreasing. At large scale, 

the VMCG has no future singularities and its equation of state is nearly equivalent to 

cosmological constant (    = -1), while the sound speed takes a constant value different from 

zero as a difference between a dynamical fluid model and an inert cosmological constant 

model. The VMCG discussed here reproduces the main results of the standard model without 

assuming a priori the existence of cosmological constant, the problem related to fine-tuning is 

solved as the model is dynamical so it allows the energy density describing dark energy to 

decrease slowly to very small values and meets the observational data . In addition, the 

coincidence problem is solved too, according to our model the decoupling between dark 

energy and matter where             ) happened for both         and           at  z 

= 0.75 which means a very recent past. This value is in agreement with               
      given 

by Ref. [63]  for models with final de Sitter phase,                  of ΛCDM model of  
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Ref. [60],                  given by Ref. [68] and     at (more than 68% C.L.;SN Ia + 

BAO/CMB(WMAP9) + H(z) + uniform prior with  qf = -1 ) of Ref. [64]. 

 

At LQC background and at large scale the results found are the same as those of classical 

background and at small scale the Big Bang singularity problem is solved and replaced by a 

bounce. The universe in its evolution will undergo a decelerated expansion when dominated 

by dark matter modeled by VMCG before the decoupling dark energy/dark matter, the model 

then changes to behave like dark energy and the universe enters a phase of an accelerated 

expansion. At large scale the stability of the model does not depend on the EoS parameter   

and VMCG universe solutions depend only on   . ا   

 

 

 

 

 

 

 

 

 

 



 

72 
 

 

 

 

 

 

References: 

Introduction  

[1] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. 

L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut,M. M. Phillips, D. Reiss, B. P. 

Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. 

Tonry, Astron. J. 116 1009 (1998). 

[2] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. 

Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. 

Lee,N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin,R. 

G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. 

Matheson,A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and The Supernova 

Cosmology Project, Astrophys. J. 517 565 (1999). 

[3] A. G. Riess, L. G. Strolger, J.Tonry, S.Casertano, H. C. Ferguson, B.Mobasher, P. 

Challis, A. V. Filippenko,S.Jha, W. Li, R.Chornock, R. P. Kirshner, B. Leibundgut, M. 

Dickinson, M.Livio, M.Giavalisco, C. C. Steidel,N. Benitez, and Z. Tsvetanov, Astron. J. 

607 665 (2004). 

[4] D. N. Spergel, R. Bean, O. Doré, M. R. Nolta, C. L. Bennett, J. Dunkley, G. Hinshaw, N. 

Jarosik, E. Komatsu, L. Page, H. V. Peiris, L. Verde, M. Halpern, R. S. Hill, A. Kogut,M. 

https://arxiv.org/find/astro-ph/1/au:+Riess_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Strolger_L/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Tonry_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Casertano_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Ferguson_H/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Mobasher_B/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Challis_P/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Challis_P/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Filippenko_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Jha_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Li_W/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Chornock_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Kirshner_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Leibundgut_B/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Dickinson_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Dickinson_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Livio_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Giavalisco_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Steidel_C/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Benitez_N/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Tsvetanov_Z/0/1/0/all/0/1


 

73 
 

Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, 

Astrophys. J. Suppl. Ser. 170 377 (2007). 

[5] C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik , A. Kogut, M. Limon, S. S. Meyer, L. 

Page, D. N. Spergel, G. S. Tucker, E. Wollack, E. L. Wright, C. Barnes, M. R. Greason, R. S. 

Hill, E. Komatsu, M. R. Nolta, N. Odegard, H. V. Peirs, L. Verde, and J. L. Weiland, 

Astrophys. J. Suppl. Ser. 148 1(2003). 

[6] S. Masi, P. De Bernardis, G. De Troia, M. Giacometti, A. Iacoangeli, F. Piacentini, G. 

Polenta, P. A. R. Ade, P. D. Mauskopf, J. J. Bock, J. R. Bond, C. R. Contaldi, D. Pogosyan, S. 

Prunet, J. Borrill, A. Boscaleri, E. Pascale, K. Coble, and G. Romeo, Prog. Part. Nucl. Phys. 

48 243 (2002). 

[7] M. Tegmark, M. A. Strauss, M. R. Blanton, K. Abazajian, S. Dodelson, H.Sandvik, X. 

Wang, D. H. Weinberg, I. Zehavi, N. A. Bahcall, F. Hoyle, D. Schlegel, R. Scoccimarro, M. 

S. Vogeley, A. Berlind, T. Budavari, A. Connolly,  D. J. Eisenstein, D. Finkbeiner, J. 

A. Frieman, J. E. Gunn, L. Hui, B. Jain, D. Johnston, S. Kent, H. Lin, R. Nakajima, R. 

C. Nichol, J. P. Ostriker, A. Pope, R. Scranton, U. Seljak, R. K. Sheth, A. Stebbins, A. 

S. Szalay, I. Szapudi, Y. Xu, J. Annis, J. Brinkmann, S. Burles, F. J. Castander, I. Csabai, J. 

Loveday, M. Doi, M. Fukugita, B. Gillespie, G. Hennessy, D. W. Hogg, Z. Ivezić, G. 

R. Knapp, D. Q. Lamb, B. C. Lee, R. H. Lupton, T. A. McKay, P. Kunszt, J. A. Munn, 

L. O'Connell, J. Peoples, J. R. Pier, M. Richmond, C. Rockosi, D. P. Schneider, C. Stoughton, 

D. L. Tucker, D. E. vanden Berk, B. Yanny, and D. G. York, Phys. Rev. D 69 103501(2004). 

[8] R. Scranton, A. J. Connolly, R. C. Nichol,  A. Stebbins, I. Szapudi,  D. J. Eisenstein, N. 

Afshordi, T. Budavari,  I. Csabai, J. A. Frieman, J. E. Gunn,  D. Johnston,  Y. S. Loh, R. H. 

Lupton,  C.  J. Miller, E. S. Sheldon, R. K. Sheth,  A. S. Szalay, M. Tegmark, Y.  Xu,  S. F. 

Anderson,  J. Annis, J. Brinkmann, N. A. Bahcall, R.  J. Brunner, M. Fukugita, Z.  Ivezi´c, S. 

Kent, D. Q. Lamb, B. C. Lee, J. Loveday, B. Margon, T. McKay, J. A. Munn, D. Schlegel, D. 

P. Schneider, C. Stoughton, and M. S. Vogeley, Phys. Rev. Lett. (submitted) (2003). 

[9] S. Tsujikawa, Astrophys. Space Sci. Library 370 331(2010). 

[10] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, Astrophys. Space Sci. 342 155 

(2012). 

[11] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15 1753 (2006). 

https://arxiv.org/find/astro-ph/1/au:+Bennett_C/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Halpern_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Hinshaw_G/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Jarosik_N/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Kogut_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Limon_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Meyer_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Page_L/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Page_L/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Spergel_D/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Tucker_G/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Wollack_E/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Wright_E/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Barnes_C/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Greason_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Hill_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Hill_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Komatsu_E/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Nolta_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Odegard_N/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Peirs_H/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Verde_L/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Weiland_J/0/1/0/all/0/1
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S014664100200131X?via%3Dihub#!
http://adsabs.harvard.edu/cgi-bin/author_form?author=Tegmark,+M&fullauthor=Tegmark,%20Max&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Strauss,+M&fullauthor=Strauss,%20Michael%20A.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Blanton,+M&fullauthor=Blanton,%20Michael%20R.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Abazajian,+K&fullauthor=Abazajian,%20Kevork&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Dodelson,+S&fullauthor=Dodelson,%20Scott&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Sandvik,+H&fullauthor=Sandvik,%20Havard&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Wang,+X&fullauthor=Wang,%20Xiaomin&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Weinberg,+D&fullauthor=Weinberg,%20David%20H.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Zehavi,+I&fullauthor=Zehavi,%20Idit&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Bahcall,+N&fullauthor=Bahcall,%20Neta%20A.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hoyle,+F&fullauthor=Hoyle,%20Fiona&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Schlegel,+D&fullauthor=Schlegel,%20David&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Scoccimarro,+R&fullauthor=Scoccimarro,%20Roman&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Vogeley,+M&fullauthor=Vogeley,%20Michael%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Berlind,+A&fullauthor=Berlind,%20Andreas&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Budavari,+T&fullauthor=Budavari,%20Tam%c3%a1s&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Connolly,+A&fullauthor=Connolly,%20Andrew&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Eisenstein,+D&fullauthor=Eisenstein,%20Daniel%20J.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Finkbeiner,+D&fullauthor=Finkbeiner,%20Douglas&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Frieman,+J&fullauthor=Frieman,%20Joshua%20A.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Gunn,+J&fullauthor=Gunn,%20James%20E.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hui,+L&fullauthor=Hui,%20Lam&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Jain,+B&fullauthor=Jain,%20Bhuvnesh&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Johnston,+D&fullauthor=Johnston,%20David&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Kent,+S&fullauthor=Kent,%20Stephen&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Lin,+H&fullauthor=Lin,%20Huan&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Nakajima,+R&fullauthor=Nakajima,%20Reiko&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Nichol,+R&fullauthor=Nichol,%20Robert%20C.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Ostriker,+J&fullauthor=Ostriker,%20Jeremiah%20P.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Pope,+A&fullauthor=Pope,%20Adrian&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Scranton,+R&fullauthor=Scranton,%20Ryan&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Seljak,+U&fullauthor=Seljak,%20Uro%c5%a1&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Sheth,+R&fullauthor=Sheth,%20Ravi%20K.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Stebbins,+A&fullauthor=Stebbins,%20Albert&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Szalay,+A&fullauthor=Szalay,%20Alexander%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Szapudi,+I&fullauthor=Szapudi,%20Istv%c3%a1n&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Xu,+Y&fullauthor=Xu,%20Yongzhong&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Annis,+J&fullauthor=Annis,%20James&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Brinkmann,+J&fullauthor=Brinkmann,%20J.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Burles,+S&fullauthor=Burles,%20Scott&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Castander,+F&fullauthor=Castander,%20Francisco%20J.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Csabai,+I&fullauthor=Csabai,%20Istvan&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Loveday,+J&fullauthor=Loveday,%20Jon&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Doi,+M&fullauthor=Doi,%20Mamoru&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Fukugita,+M&fullauthor=Fukugita,%20Masataka&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Gillespie,+B&fullauthor=Gillespie,%20Bruce&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hennessy,+G&fullauthor=Hennessy,%20Greg&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hogg,+D&fullauthor=Hogg,%20David%20W.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Ivezic&fullauthor=Ivezi%c4%87,%20%c5%bdeljko&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Knapp,+G&fullauthor=Knapp,%20Gillian%20R.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Lamb,+D&fullauthor=Lamb,%20Don%20Q.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Lee,+B&fullauthor=Lee,%20Brian%20C.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Lupton,+R&fullauthor=Lupton,%20Robert%20H.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=McKay,+T&fullauthor=McKay,%20Timothy%20A.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Kunszt,+P&fullauthor=Kunszt,%20Peter&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Munn,+J&fullauthor=Munn,%20Jeffrey%20A.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=O%27Connell,+L&fullauthor=O%27Connell,%20Liam&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Peoples,+J&fullauthor=Peoples,%20John&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Pier,+J&fullauthor=Pier,%20Jeffrey%20R.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Richmond,+M&fullauthor=Richmond,%20Michael&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Rockosi,+C&fullauthor=Rockosi,%20Constance&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Schneider,+D&fullauthor=Schneider,%20Donald%20P.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Stoughton,+C&fullauthor=Stoughton,%20Christopher&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Tucker,+D&fullauthor=Tucker,%20Douglas%20L.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=vanden+Berk,+D&fullauthor=vanden%20Berk,%20Daniel%20E.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Yanny,+B&fullauthor=Yanny,%20Brian&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=York,+D&fullauthor=York,%20Donald%20G.&charset=UTF-8&db_key=AST
https://arxiv.org/find/gr-qc/1/au:+Bamba_K/0/1/0/all/0/1
https://arxiv.org/find/gr-qc/1/au:+Capozziello_S/0/1/0/all/0/1
https://arxiv.org/find/gr-qc/1/au:+Nojiri_S/0/1/0/all/0/1
https://arxiv.org/find/gr-qc/1/au:+Odintsov_S/0/1/0/all/0/1


 

74 
 

[12] T. Padmanabhan, Curr. Sci. 88 1507 (2005). 

[13] A. Yu. Kamenshchik, U. Moschella and V. Pasquier, Phys. Lett. B511  265 (2001). 

[14] A. Kamenshchik , Phys. Lett. B 487 7 (2000). 

[15] M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D 70 0433507 (2004). 

[16] J. B. Lu, L. Xu, J. Li, B. Chang, Y. Gui, and H. Liu, Phys. Lett. B 662 87 (2008).  

[17] B. C. Paul, and P. Thakur, J. Cosmol. Astropart. Phys.2013 052 (2013). 

[18] S. Chakraborty, U. Debnath, and C. Ranjit, Eur. Phys. J. C 72 2101(2012).  

[19] H. B. Benaoum, Adv. High Energy Phys. 357 802 (2012). 

[20] H. B. Benaoum, Int. J. Mod. Phys. D 23 10 (2014). 

[21] N. I. Singh, and S. R. Devi, Astrophys. Space Sci. 334 231(2011). 

[22] J. D. Barrow, Phys. Lett. B 180 335 (1986). 

[23] T. Padmanabhan, and S. M. Chitre, Phys. Lett. A 120 433 (1987).  

[24] D. Pavon, J. Bafaluy and D. Jou, Class. Quantum Grav. 8 347 (1991). 

[25] R. Maartens, Class. Quantum Grav. 12 1455 (1995). 

[26] S. Benchikh, N. Mebarki, and D. Aberkane, Chin. Phys. Lett. 33 059501(2016). 

[27] M. Bojowald, Living Rev. Relativ. 8 11 (2005). 

[28] M. Bojowald, Living Rev. Relativ. 11 4 (2008). 

[29] A. Ashtekar, J. Phys.: Conf. Ser. 189 012003 (2009). 

[30] P. Singh, J. Phys.: Conf. Ser. 140 012005 (2008). 

[31] M. Sami, P. Singh, and S. Tsujikawa, Phys. Rev. D 74 043514 (2006). 

[32] T. Thiemann, Lect. Notes Phys. 631 41(2003). 

[33] A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv. Theor. Math. Phys. 7 233 268 

(2003). 

https://arxiv.org/find/astro-ph/1/au:+Lu_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Xu_L/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Li_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Chang_B/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Gui_Y/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Liu_H/0/1/0/all/0/1


 

75 
 

[34] M. Bojowald, Phys. Rev. Lett. 89 261301 (2002). 

[35] M. Bojowald, and K. Vandersloot, Phys. Rev. D 67124023 (2003). 

[36] S. Tsujikawa, P. Singh, and R. Maartens, Class.Quantum Grav. 21 5767 (2004). 

[37] M. Bojowald, and M. Kagan, Phys. Rev. D 74 044033 (2006). 

[38] M. A.  Gorgi, Phys. Lett. B 760 769 (2016). 

[39] M. Bojowald, Class. Quantum Grav. 18 L 109 (2001). 

[40] U. Debnath, A. Banerjee, and S. Chakraborty, Class. Quantum Grav. 21 5609 (2004). 

Chapter one 

[41] E. Hubble, Proceedings of the National Academy of Sciences 15 (1929). 

[42] W. D. McGlinn, Introduction to Relativity, The Johns Hopkins University press (2003). 

[43] C. Eckart, Phys. Rev. 58(10) 919 924 (1940). 

[44] A. Friedmann, Z. Phys. 21 326 (1924). 

[45] A. Linde, Lect. Notes Phys.738 1 54 (2008). 

[46] Jalal Abdallah, Phys. Dark. Univ. 9-10 8-23  (2015). 

[47] S. Weinberg, Gravitation and cosmology: Principles and applications of the general 

theory of gravity, John Wiley and sons Inc. (1972). 

Chapter two  

[48] M. Bojowald, Rep. Prog. Phys. 78  023901 (2015). 

[49] C. Rovelli, Quantum Gravity, Cambridge University Press, Cambridge (2004). 

[50] T. Thiemann, Modern canonical quantum general relativity, Cambridge university press 

(2007). 

[51] F. Cianfrani, O. M. Lecian, M. Lulli, and G. Montani, Canonical quantum gravity, World 

Scientific Publishing (2014). 

https://arxiv.org/find/gr-qc/1/au:+Debnath_U/0/1/0/all/0/1
https://arxiv.org/find/gr-qc/1/au:+Banerjee_A/0/1/0/all/0/1
https://arxiv.org/find/gr-qc/1/au:+Chakraborty_S/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Abdallah_J/0/1/0/all/0/1


 

76 
 

[52] A. Ashtekar, Lectures on non-perturbative canonical gravity, World Scientific Publishing 

(1991). 

[53] C. Rovelli, Class. Quantum Grav. 8  1613 1675 (1991). 

[54] L. Linsefors. „Consistency and observational consequences of loop quantum cosmology‟, 

thesis (2017). 

 

Chapter three 

[55] S. Chaplygin, Sci. Mem. Moscow Univ. Math. Phys. 21, 1 (1904). 

[56]  P. H. Chavanis, Phys. Rev. D 92 103004 (2014). 

[57] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 

3rd edition, H. William Press (2017). 

[58] http://supernova.lbl.gov/union/figures/SCPUnion2.1_mu_vs_z.txt (2012). 

[59] R. Bean, É. É. Flanagan, and M. Trodden, Phys. Rev. D 78 023009 (2008). 

[60] J. B. Lu, J. High Energy Phys. 1502 071 (2015). 

[61] N. Chan, „Dynamical systems in cosmology‟, PhD thesis, University College London 

(2012). 

[62] A. Ashtekar, Gen. Relativ. Gravitation 41 707 (2009). 

[63] R. Giostri, M.Vargas dos Santos, I. Waga, R. R. R. Reis, M. O. Calvão, and B. L. Lago, 

J. Cosmol. Astropart. Phys. 1203 027 (2012). 

[64] S. M. Vargas dos, J. Cosmol. Astropart. Phys. 1602066 (2016). 

[65] Plank Collaboration, Astron. Astrophys. Manuscript 571 A16 (2013). 

[66] A. Conley, J. Guy, M. Sullivan, N. Regnault, P. Astier, C. Balland, S. Basa, R.G. 

Carlberg, D. Fouchez, D. Hardin, I.M. Hook, D.A. Howell, R. Pain, N. Palanque-

Delabrouille, K.M. Perrett, C.J. Pritchet, J. Rich, V. Ruhlmann-Kleider, D. Balam, S. 

Baumont, R.S. Ellis, S. Fabbro, H.K. Fakhouri, N. Fourmanoit, S. Gonzalez-Gaitan, M.L. 

http://supernova.lbl.gov/union/figures/SCPUnion2.1_mu_vs_z.txt
https://arxiv.org/find/astro-ph/1/au:+Giostri_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Santos_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Waga_I/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Reis_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Calvao_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Lago_B/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Conley_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Guy_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Sullivan_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Regnault_N/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Astier_P/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Balland_C/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Basa_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Carlberg_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Carlberg_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Fouchez_D/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Hardin_D/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Hook_I/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Howell_D/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Pain_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Palanque_Delabrouille_N/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Palanque_Delabrouille_N/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Perrett_K/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Pritchet_C/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Rich_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Ruhlmann_Kleider_V/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Balam_D/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Baumont_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Baumont_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Ellis_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Fabbro_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Fakhouri_H/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Fourmanoit_N/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Gonzalez_Gaitan_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Graham_M/0/1/0/all/0/1


 

77 
 

Graham, M.J. Hudson, E. Hsiao, T. Kronborg, C. Lidman, A.M. Mourao, J.D. Neill, S. 

Perlmutter, P. Ripoche, N. Suzuki, and E.S. Walker, Astrophys. J. Supp. 192 1 (2011). 

[67] M. Sullivan, J. Guy, A. Conley, N.Regnault, P. Astier, C. Balland, S. Basa, R. G. 

Carlberg, D. Fouchez, D. Hardin,I. M. Hook, D. A. Howell, R. Pain, N. Palanque-

Delabrouille, K. M.Perrett, C. J.Pritchet, J.Rich, V. Ruhlmann-Kleider, D. Balam, S. 

Baumont, R. S. Ellis, S.Fabbro, H. K.Fakhouri, N.Fourmanoit, S.González-

Gaitán, M. L.Graham, M. J. Hudson, E.Hsiao, T.Kronborg, C. Lidman, A. M. Mourao, J. D. 

Neill, S. Perlmutter, P. Ripoche, N. Suzuki, andE. S.Walker, Astrophys. J. 737 102 (2011). 

[68] O. Farooq, and B. Ratra, Astrophys. J. Lett. 325 L7 (2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://arxiv.org/find/astro-ph/1/au:+Graham_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Hudson_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Hsiao_E/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Kronborg_T/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Lidman_C/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Mourao_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Neill_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Perlmutter_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Perlmutter_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Ripoche_P/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Suzuki_N/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Walker_E/0/1/0/all/0/1
http://adsabs.harvard.edu/cgi-bin/author_form?author=Guy,+J&fullauthor=Guy,%20J.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Conley,+A&fullauthor=Conley,%20A.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Regnault,+N&fullauthor=Regnault,%20N.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Astier,+P&fullauthor=Astier,%20P.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Balland,+C&fullauthor=Balland,%20C.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Basa,+S&fullauthor=Basa,%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Carlberg,+R&fullauthor=Carlberg,%20R.%20G.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Fouchez,+D&fullauthor=Fouchez,%20D.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hardin,+D&fullauthor=Hardin,%20D.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hardin,+D&fullauthor=Hardin,%20D.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Howell,+D&fullauthor=Howell,%20D.%20A.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Pain,+R&fullauthor=Pain,%20R.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Pain,+R&fullauthor=Pain,%20R.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Palanque-Delabrouille,+N&fullauthor=Palanque-Delabrouille,%20N.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Perrett,+K&fullauthor=Perrett,%20K.%20M.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Pritchet,+C&fullauthor=Pritchet,%20C.%20J.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Rich,+J&fullauthor=Rich,%20J.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Ruhlmann-Kleider,+V&fullauthor=Ruhlmann-Kleider,%20V.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Balam,+D&fullauthor=Balam,%20D.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Baumont,+S&fullauthor=Baumont,%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Ellis,+R&fullauthor=Ellis,%20R.%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Fabbro,+S&fullauthor=Fabbro,%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Fakhouri,+H&fullauthor=Fakhouri,%20H.%20K.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Fourmanoit,+N&fullauthor=Fourmanoit,%20N.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Gonzalez-Gaitan,+S&fullauthor=Gonz%c3%a1lez-Gait%c3%a1n,%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Gonzalez-Gaitan,+S&fullauthor=Gonz%c3%a1lez-Gait%c3%a1n,%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Graham,+M&fullauthor=Graham,%20M.%20L.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hudson,+M&fullauthor=Hudson,%20M.%20J.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hsiao,+E&fullauthor=Hsiao,%20E.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Kronborg,+T&fullauthor=Kronborg,%20T.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Lidman,+C&fullauthor=Lidman,%20C.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Lidman,+C&fullauthor=Lidman,%20C.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Neill,+J&fullauthor=Neill,%20J.%20D.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Perlmutter,+S&fullauthor=Perlmutter,%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Ripoche,+P&fullauthor=Ripoche,%20P.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Suzuki,+N&fullauthor=Suzuki,%20N.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Walker,+E&fullauthor=Walker,%20E.%20S.&charset=UTF-8&db_key=AST


 

Abstract  

                In this thesis, we chose VMCG with a specific bulk viscosity pressure as a toy 

model for our universe to explore its behavior at present time, when fitted to recent 

observational data, and at late time to check whether it suffers from singularities or not. 

The Eos parameters are constrained for a suitable model that describes the current universe. 

We also evaluate the evolution of the state and deceleration parameters at present and early 

universe and determine their present values to deduce if the model is consistent or not with 

observation data and theoretical predictions. The values are compared to those of other well 

accepted models. Then, we probe the dynamical behavior of our toy model at early and late 

time in the LQC framework especially as the model suffers from the Big Bang singularity.  

The model is found suitable to describe the current universe with consistent present values of 

both state and deceleration parameters�����
∈ (−0.76, −0.74) , �� ∈ (−0.60, −0.57). At 

large scale, the VMCG has no future singularities and its equation of state is nearly equivalent 

to cosmological constant (����= -1). The sound speed takes a constant value different from 

zero as a difference between a dynamical fluid model and an inert cosmological constant 

model. The VMCG discussed here reproduces the main results of the standard model without 

assuming a priori the existence of cosmological constant, the problems related to fine-tuning 

and coincidence problems are solved and the value of the redshift where (��� ≈ �������) for 

both  �� = 0.01and �� = 0.0001 is  z = 0.75. 

At LQC background and at large scale the results found are the same as those of classical 

background and at small scale the Big Bang singularity problem is solved and replaced by a 

bounce, at large scale the stability of the model does not depend on the EoS parameter � and 

VMCG universe solutions depend only on ��. 

Key words: Loop Quantum Cosmology, Dark Energy, Chaplygin Gas, Dark 

Matter, Bulk Viscosity.  

 

 



Le Gaz Modifié et Visqueux de Chaplygin dans 

la Cosmologie Classique et La Cosmologie 

Quantique des Boucles 

Résumé 

         Dans cette thèse, on a choisi le gaz modifié et visqueux de Chaplygin avec une 

spécifique pression de seconde viscosité comme modèle pour notre univers afin d’explorer 

son comportement à l'heure actuelle, lorsqu'il est adapté aux données d'observation récentes, 

et à un moment tardif pour vérifier s'il souffre de singularités ou non. 

Les paramètres de l’équation d’état sont estimés pour un modèle approprié qui décrit l'univers 

actuel. On  évalue également l'évolution des paramètres d'état et de décélération au début de 

l’univers et au présent et on détermine leurs valeurs actuelles pour en déduire si le modèle est 

cohérent ou non avec les données d'observation et les prédictions théoriques. Les valeurs sont 

alors comparées à celles d'autres modèles bien acceptés. Ensuite, on étudie le comportement 

dynamique de notre modèle au début et à la fin de son évolution dans le cadre de la 

cosmologie quantique des boucles, surtout que le modèle souffre de la singularité du Big 

Bang. 

Le modèle est jugé approprié pour décrire l'univers actuel avec des valeurs actuelles 

cohérentes des paramètres d'état et de décélération�����
∈ (−0.76, −0.74) , �� ∈

(−0.60, −0.57). À grande échelle, le gaz modifié et visqueux de Chaplygin n'a pas de 

singularités au future et son équation d'état est presque équivalente à la constante 

cosmologique (����= -1). La vitesse du son prend une valeur constante différente de zéro ce 

qui marque la différence entre un modèle de fluide dynamique et un modèle de constante 

cosmologique inerte. Le gaz modifié et visqueux de Chaplygin discuté ici reproduit les 

principaux résultats du modèle standard sans supposer a priori l'existence d'une constante 

cosmologique, les problèmes liés aux réglage fin et coïncidence sont résolus et la valeur du 

décalage vers le rouge où (��� ≈ �������) pour �� = 0.01et �� = 0.0001 est  z = 0.75. 

Dans le contexte de la cosmologie quantique des boucles et à grande échelle les résultats 

trouvés sont les mêmes que ceux trouvés dans le cas classique et à petite échelle le problème 

de la singularité de Big Bang est résolu et remplacé par un rebond, à grande échelle la stabilité 



du modèle ne dépend pas du paramètre � et  les solutions qui correspondent à un univers de 

gaz modifié et visqueux de Chaplygin ne dépendent que de ��. 

 

Mots clés: Cosmologie Quantique des Boucles, Energie Noir, Gaz De 

Chaplygin, Matière Noir, Seconde Viscosité. 

 
 
  
  
  
  
  
  
  
  
  
  
  
  
 
 
  
  
  
  
  



  و ةالكلاسیكی الكوزمولوجیا في غاز شابلیجین المعدل و اللزج

  الكوزمولوجیا الكونتیة الحلقیة

 ملخص
 

السائبة  تم اعتماد غاز شابلیجین المعدل و اللزج مع عبارة ضغط محددة لللزوجة في ھذه الأطروحة،

،  مع بیانات الرصد الحدیثةتكییفھ  عند،  كنموذج لوصف الكون بھدف معرفة سلوكھ في الوقت الحاضر

 أم لا. ط شاذةنقاوفي وقت متأخر للتحقق مما إذا كان یعاني من 

 كما تم تقییم تطور الحالة للحصول على نموذج مناسب لوصف الكون الحالي. معادلة  اتمعلمتم تقیید  

ان الحالة و التباطؤ في الوقت الحالي و في وقت مبكّر و تحدید قیمھا الحالیة لاستنتاج ما إذا ك متغیرات

ت الرصد الحدیثة و التنبؤات النظریة. تمت مقارنة ھذه القیم مع قیم لنماذج النموذج متسقا ام لا مع بیانا

وقت متأخرو في وقت مبكّرا في إطار بعدھا، تمت دراسة السلوك الدینامیكي للنموذج في . مقبولة جیدا

   الانفجار الأعظم. تفردالكوزمولوجیا الكونتیة الحلقیة، خاصة و أن النموذج یعاني من 

 الحالة و التباطؤ متغیراتوجد أن النموذج مناسب لوصف الكون الحالي مع قیم حالیة مقبولة لكل من  

�����
∈ (−0.76, ��  و  (0.74− ∈ (−0.60, لا یعاني النموذج نطاق واسع،  . على(0.57−

إن  .(1- =����) مستقبلیة و معادلة الحالة الخاصة بھ تعادل تقریبا معادلة الثابت الكوني نقاط شاذةمن 

الدینامیكیة ونموذج ثابت  ائعالموسرعة الصوت تأخذ قیمة ثابتة مختلفة عن الصفر كفرق بین نموذج 

 كوني خامل.

دون القیاسي  إن نموذج الغاز المعدل واللزج لشابلیجین المعتمد في الدراسة یعطي نتائج مقاربة لنموذج

 الانحراف نحو الأحمرصدفة یتم حلھا وقیمة الو یةالمثالب ، المشاكل المتعلقة  افتراض وجود ثابت كوني

���) عند ≈ �� لكل من (������� = ��و 0.01 =   .z = 0.75ھي  0.0001

وعلى نطاق واسع النتائج التي تم العثور علیھا ھي نفسھا تلك  الحلقیة الكونتیة الكوزمولوجیافي إطار 

 نطاق، على ادرتدباواستبدالھا الانفجار الكبیر  تفردالخلفیة الكلاسیكیة وعلى نطاق صغیر یتم حل مشكلة 

الغاز المعدل واللزج یھیمن علیھ  كونل ةقالمواف حلولالو  �واسع استقرار النموذج لا یعتمد على المعلمة 

 . ��تعتمد فقط على لشابلیجین

 

المادة ،  غاز شابلیجین ،الطاقة المظلمة،  الكوزمولوجیا الكونتیة الحلقیة :مفتاحیةالكلمات ال

 .للزوجة السائبةا ،المظلمة
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