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Abstract

This thesis deals with the lower level of decision in a hierarchical approach 
to the planning and scheduling of production for two-stage manufacturing facil
ities. It is concerned with the short term scheduling of the item lot sizes output 
from the higher level. The plants concerned consist of two stages of activities: 
at the first stage, the products are manufactured, at the second stage, the man
ufactured products are packed in different formats. Between the two stages, 
there are intermediate storage facilities. In the approach adopted, the problem 
is decomposed into two subproblems, solved sequentially: the first is concerned 
with the scheduling of the lot sizes on the packing lines, the second is concerned 
with the scheduling of the manufacturing units and intermediate storage and 
has as input the packling lines schedule.

At the packing lines level, the lot sizes are to be loaded onto the packing lines 
so that changeover and packing costs are minimised. Due to connectivity con
straints and shared manpower resources, the packing lines are interdependent. 
The problem is formulated as a pure integer problem and a branch and bound 
algorithm is proposed. Lower bounds are computed from a relaxation that 
decouples the problem into two subproblems: a machine loading subproblem, 
formulated as a general assignment problem «and a pure sequencing subprob
lem formulated as the problem of finding the shortest arborescence through a 
certain graph. In order to improve the bound obtained, penalties are computed.

At the manufacturing units and intermediate storage level, the demand aris
ing from the packing lines schedule is to be satisfied while minimising production 
and set-up costs. A tree search procedure that uses a Lagrangean relaxation of 
the original problem for computing lower bounds is proposed.

There is no guarantee that there will be a feasible manufacturing units 
schedule that satisfies the demand arising from the first optimal packing lines 
schedule. Thus a one pass procedure is not feasible. In this respect, a coordi
nation device is introduced that allows the user to obtain overall feasibility by 
reconsidering one or the other schedule. The method can be seen as a multi-pass 
procedure whose overall target is feasibility rather than optimality.

Computation results are first reported for the packing fines algorithm only 
and then for the overall algorithm.
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Chapter 1

Introduction

This thesis is concerned with the short term scheduling of production in a 

two stage manufacturing facility. It is part of a larger study whose aim was 

to examine possible improvements of the performance of the manufacturing 
facilities of a major producer of detergents.

The primary goal was to develop computerised approaches that the com

pany could use for its production planning and scheduling. These approaches 

must be capable of providing good solutions which take advantage of both the 

theoretical advances in the field and the advance in computers technology. In

deed, the management of the company believes that considerable savings could 
be achieved in this way.

Typically, the aim of the managers of any company that produces marketable 

goods is to try and satisfy the demand of customers at minimum operational 

costs, thus minimising waste, increasing productivity and bringing profits. The 

decisions to be taken in order to achieve this, will very often involve choosing 
among many alternatives.

Clearly, for a company manufacturing many products, the first question that 

arises is how much to manufacture of each product in the next planning horizon 

in order to satisfy the external demand, given the capacity of the factories in 

labour, machines and so on. The planning horizon is generally one year or one 
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season.

A simple policy is to produce exactly as required by the customers in each 
period. Although this policy is being applied in some cases, it involves very 

frequent changeovers of the production facilities and does not allow for safety 

storage. Moreover, in many cases, due to promotional sales and seasonal varia

tions, the demand for some products can be very high in some periods and may 

substantially exceed the capacity of a given factory. Thus, it becomes necessary 

to produce more than needed in periods of low demand in order to build stocks 

which can be used in periods of high demand. However, holding products in 
inventory is often costly and can be very expensive in the case of perishable 
goods.

It is, therefore, desirable to find a policy which gives an acceptable compro
mise between set-up costs and inventory holding costs.

On the other hand, for a company using a number of facilities in a factory, it 

is necessary to decide on the exact moment in time to start and finish production 

for every product and what resources are allocated to its production and storage. 

In other words, it is necessary to establish a detailed schedule of production. 

Commonly, the best order in which the products will be manufactured is sought.
For all the above decisions to be carried out, the mangement must have a 

good forecast of the demand of the different customers for the various products 

and a provision of raw materials which avoids shortage and waste.

Supposing that a good forecast of the demand, which in itself is a difficult 
problem, is at hand and that the purchase of raw materials has been decided 

upon, the problem for the management is to plan and schedule production for 

the next horizon. It is well known [52,11] that the overall production planning 
and scheduling problem can be formulated in a linear programming framework. 

However, due to the size of the resulting problem, such a formulation is very 

often undesirable. Indeed, for the problem considered in this work, where deci

sions are sometimes taken at the hourly level, for a planning horizon of six to 

ten weeks, a monolithic model would involve a considerable number of variables 
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and constraints.

An alternative approach [35] is to exploit the natural hierarchy in the struc

ture of the problem. In this approach, the problem is separated into a number 

of decision levels, such that the lower the level the more detailed it is and with 

each level providing data to and imposing constraints on the level below it. The 

overall problem is then tackled by solving sequentially the problems arising at 

each level.

The number of decision levels and the organisation of the hierarchy depend 
on the problem at hand. However, generally, a production planning and schedul

ing problem is separated into two problems: the aggregate planning problem 

and the detailed scheduling problem.

The aggregate planning problem is based on aggregate data and longer time 

periods. It deals with the determination of the quantity to be produced of each 

product in each time period, that is the lot sizes, so as to prevent underload or 

overload of the resources and satisfy the demand. The items may be aggregated 

into families and machines into machine centers. The decisions are taken over 

the long term, commonly one year or one season and the basic time period is, 

generally, one month or one week, depending on the horizon.
At the detailed scheduling level, given the lot sizes, the actual starting and 

finishing times of the production of each product and the resources allocated to 
produce it are determined for each time period. The decisions are taken over 

the short term, usually one month or one week, and the basic time period can 

be one week or one shift.

This thesis is concerned with the second level of this hierarchical approach, 

that is the detailed scheduling of production under resource constraints.

Although there have been many theoretical advances in the production 

scheduling field, manual scheduling practices are still predominant. In these 

cases, schedule evaluation depends on many criteria although flexibility and 

search for feasibility are the dominant features and optimality or near optimal

ity are rarely obtained.
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The work in this thesis is a contribution towards a more computerised ap

proach to the detailed production scheduling problem. The emphasis will be on 

the use of operations research methods, in particular integer optimisation. The 

aim is to develop algorithms that generate good, feasible schedules of production 

which could be used in a class of plants.

The plants considered consist of two stages of activities. At the first stage, 

the products are manufactured, at the second stage the manufactured products 

are packed in different formats. Between the two stages, there are intermediate 
storage facilities.

In the approach adopted here, the problem is split into two subproblems: 

the first is concerned with the scheduling of the packing lines while the second 

is concerned with the scheduling of the manufacturing units and intermediate 

storage and has as input the schedule of the packing lines. However, there is no 

guarantee that there will be a manufacturing units schedule that satisfies the 

demand arising at the packing lines. This is mainly due to the fact that there 

are, often, a number of products that share the same manufacturing and storage 

facilities and to the difference in the operating speeds of the packing lines and 

the manufacturing units. A coordinating device is introduced which allows the 
user to obtain overall feasibility, by reconsidering one or the other schedule. The 
method can be seen as multi-pass procedure whose overall target is feasibility 

rather than optimality. The algorithms developed for each subproblem use 
integer optimisation techniques.

The thesis is organised as follows:

Since integer optimisation methods are used extensively in this thesis, the 

second chapter presents an overview of integer optimisation methods, with em

phasis on branch and bound methods and Lagrangean relaxation as used in 

integer optimisation. Some well known results are presented for the latter.
In the third chapter a survey of the scheduling literature is presented. Be

cause of the vast body of publications, this survey is restricted to deterministic 

problems, most relevant to the purpose of this thesis. The survey is divided into 
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two parts: the first part deals, very briefly, with problems where a performance 
criteria is to be minimised; while the second, more detailed, deals with problems 
where a cost function consisting of any combination of changeover, production 

and inventory costs is to be minimised. In both cases, at most one product is 

allocated to a given machine at any moment in time.

In the fourth chapter the overall approach for tackling the short term, de

tailed scheduling for the class of plants under consideration is introduced. In 

the first part of this chapter, a description of the plants considered is presented. 
Both structural and operational features are described. In the second part, 

the overall solution methodology is introduced. In particular, the coordination 

method between the two stages is described.

In the fifth chapter, the solution procedure for the packing lines subproblem 

is introduced. In this subproblem, the lot sizes of each item, output from the 

long term scheduler, are to be loaded onto the packing lines within the required 

time horizon, while minimising changeover and packing costs. Changeover costs 

may be sequence dependent and packing costs depend on the rate a particular 

item is packed on a particular packing line and other bottleneck considerations. 

Due to connectivity restrictions and to shared manpower resources, the lines 

are interdependent. The problem is formulated as a pure integer problem and 

a branch and bound algorithm is proposed.

In the sixth chapter, the production-intermediate storage problem is consid

ered. The demand arising from the packing lines schedule is to be satisfied while 

minimising production and set-up costs. A tree search procedure that uses a 

Lagrangean relaxation of the original problem for computing lower bounds is 

proposed.

In the seventh chapter, some computational results are presented first for 

the packing lines algorithm, then for the overall procedure.
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Chapter 2

Integer optimisation

2.1 Introduction

Integer optimisation problems are optimisation problems where all variables are 

required to be integer. When only some variables are required to be integer, 

the problem is termed a mixed integer optimisation problem.

Although integer optimisation problems are not new to mathematicians from 

the theoretical point of view, they have attracted much attention when it was 
recognised that many problems arising in the applications of operations research 
required integer variables in their models.

Integer optimisation problems arise naturally in real life situations. Indeed, 

in many real life situations, it is often required to answer one of the following 

questions: how many items, trucks etc... are to be chosen or allocated in order 

to minimise or maximise a certain objective? or which machine, route etc... is 

to be used in order to minimise or maximise an objective? Both these questions 

represent integer optimisation problems; in the latter case the variables can be 

coded to take the value of zero or one, for instance, a given variable is set to 
one if a certain route is chosen; in the former the variables may represent the 

number of items, trucks etc...

Historically, the development of methods for solving i nteger optimisation 
problems followed the development of linear programming. Indeed Dantzig had 
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shown [74] that there are integer optimisation problems that can be solved 

by linear programming (in particular the transportation problem). However 

the first convergent method for integer optimisation problem was the cutting 

plane method due to Gomory [29]. This was followed by other specialised 

or general methods; the most popular and widely used being the so called 

tree search methods or branch and bound or implicit enumeration methods, 

although, generally, the latter two are not always recognised to be synonymous. 
At the same time, specialised algorithms that use one or the other method were 

developed for particular problems. This was done mainly for problems like the 

travelling salesman, the knapsack problem or the assignment problem that were 
recognised to be standard problems, in that a number of real life situations can 

be described by these problems or by combinations of them.

In this chapter, a brief review of integer optimisation methods is presented, 

with an emphasis on tree search procedures and Lagrangean relaxation. In the 

first section a categorisation of integer programming problems based on the 

standard problems is presented. Also in the same section, methods of formulat
ing integer problems are presented. In the second section, solution methods are 

briefly reviewed, while in the third a detailed description of tree search methods 

is presented. Finally the chapter ends with a section on Lagrangean methods 

as applied to integer optimisation.

2.2 Description of integer optimisation prob

lems

2.2.1 Categorisation of integer problems

There are a few standard integer optimisation problems that can describe many 

real life situations. A categorisation of integer problems on this basis, was pro

posed by Muller-Merbach [61] who divided them into three categories: sequenc

ing problems related to the travelling salesman problem, selection problems 
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related to the knapsack problem and assignment problems related to the linear 
assignment problem.

sequencing problems: in this type of problems, it is required to order all or 

a part of the elements of a set so that a certain objective is optimised. 

Among these problems one can identify the travelling salesman problem 

where it is required to find the optimal tour through a set of points starting 

from and returning to the same initial point, shortest path problems where 
it is required to find the shortest route between two different points and 

job sequencing problems where it is required to find the optimal sequence 

in which a number of jobs are processed on one or more machines.

selection problems: in these problems, it is required to select a number of 
elements from a set so that a certain return is minimised or maximised. 

These include the knapsack problem, the set partitioning problem and the 

set covering problem.

assignment problems: in this case, the elements of one set are to be assigned 

to the elements of another. These include the linear assignment problem, 

the general assignment problem and the quadratic assignment problem.

Many real life problems are combinations of these. However this categorisa

tion is not unique, in that one can describe say sequencing problems as selection 
problems or assignment problems. Nevertheless it does give a good insight into 

the morphology of integer optimisation problems.

2.2.2 Formulation of integer optimisation problems

in formulating a problem one seeks ways of solution and insight into the problem 

structure. It is a general view that integer programming formulations are of 

great help in understanding integer optimisation problems, even if they are not 

used in developing solution procedures.
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A linear integer programming formulation requires the definition of a linear 
objective function to optimise ( for instance a cost to minimise or a profit to 

maximise ) and the constraints to be satisfied by any solution to the problem. 

Among the constraints are included the integrality requirement pn the variables.

It is worth pointing out, here, that any integer optimisation problem can be 

formulated as a zero/ one problem, that is a problem where the variables take 

only the two discrete values of zero and one.

In the following some examples of zero/one formulations are given for prob
lems from the three categories introduced above.

Sequencing problems

In pure sequencing problems, the objective is to find the order of elements 

that minimises a certain cost. The constraints, generally, impose that every 
element has a predecessor, every element has a follower and no cycles exists. 
As an example, an integer programming formulation of the travelling salesman 

problem is presented here. This problem can be described simply as that of a 

person who wants to visit each of n cities exactly once, starting from a given 
city and returning to it, while minimising the total distance travelled.

To formulate the problem as an integer problem, let:

{1 if city j is visited after city i 

0 otherwise

Where is the distance between city i and city j with d^ = 00

N = {1,2, ...,n},

the problem can be formulated as

min EEdi,jxi,j 
« 3

subject to the constraints:

1. every city must have only one following city
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53*c,»j — * — 1»”">n
3

2. every city must have only one preceding city

53 j =
i

3. One way of eliminating cycles [7] is to define S as any subset of elements 
of N and impose

i£S

where

S = N — S

In the case of symmetric travelling salesman problem = dj^

Selection problems

In pure selection problems, the objective is to select items or alternatives so 

that a certain return is maximised. In addition to the integrality constraints on 

the variables, there may be constraints on the number of items to be selected. 

As an example, an integer programming formulation of the knapsack problem 
is given.

In the knapsack problem, the objective is to select a number of items from a

set to put in a limited capacity knapsack so that a certain return is maximised. 
Letting

1

0

if item i is selected 

otherwise

the knapsack problem can be formulated as

max CfXî
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subject to

52 a,*, < b 
i

Xi = {0,1}

where ct is the return accruing from selecting element i, b is the total capacity 

of the knapsack and a, is the volume of element i.

Assignment problems

In the assignment problem, it is required to assign elements of one set to the 

elements of another. Depending on the type of problem, it may be possible to 

assign any element of one set to any element of the other or possibly to assign a 
subset of elements of one set to an element of another. With every assignment 

is associated a cost. The objective is to find the assignment that minimises the 

total cost.

A typical assignment problem is the linear assignment problem. In this 

problem, a one to one correspondence is imposed, that is every element of the 

first set must be assigned to one element of the second set and every element 
of the second set must have only one element of the first set assigned to it. 

Supposing that the elements of the first set are denoted by the subscript i and 

those of the second set by j, this problem can be formulated as follow:
Let

{1 if element i is assigned to j 

n •0 otherwise

The linear assignment problem can be stated as

« j

subject to

= 1 , j = 1,—
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^21 » * — l9...,N 
3

X{tj = {0,1}

Where N is the number of elements in the sets and is the cost of assigning 
i to j.

Another assignment problem is the so called general assignment problem. In 

this case, the N elements of a set A are to be assigned to the M elements of 

a set B. To every element of the first set is associated a weight and to every 

element of the second a capacity. Here, one element of the set B can have more 

than one element of the set A assigned to it or even none at all.
This problem can be formulated as follows

min CijXij

subject to

1 ? 3 ~ V , N 
i

53 ®"id®id — Bi 5 i — 1,..., M 
3

xid ~ {0) 1}

The first constraint imposes that every element of the set A must be assigned 

to only one element of set B and the second constraint ensures that the total 
weight of the elements assigned to an element of the set B must not exceed its 

capacity.

A third assignment problem is the so-called the quadratic assignment which 

can be described as follows [47]: there are N plants and N locations, each plant 

is to be located on one location, and each location can take only one plant. The 

cost of carrying goods from location i to location j is Cij and the quantity of 
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goods to be shipped from plant k to plant I is The problem is to find the 

allocation of plants to locations which minimises the total carrying cost.

Defining the variables:

1

0
Xi,k = <

if plant k is located at i 

otherwise

The problem can be formulated as

Min EZLL 
i j k l 

subject to 

k=N 
52 =1 
t=i 

i=N 
52= i w 
1=1

The objective function imposes that the cost Cijbkj is incurred when plant 
k is located at i and plant I at j. The constraints ensure that one and only one 

plant is located at each location.

An alternative formulation for the TSP

Sometimes, because it is burdensome to formulate explicitly all the constraints 

of a problem, an implicit formulation is preferred. In the following, one such 

formulation using elements of graph theory is presented for the travelling sales

man problem. This formulation was introduced by Held and Karp in [36]. The 

travelling salesman problem can be defined on a graph of n vertices, with V 

being the set of all vertices, and with a weight (cost) allocated to every arc 

connecting two vertices.
Before introducing Held and Karp formulation , however, the following def

initions are needed.

A tree (an arborescence) is a connected undirected (directed) graph with

out cycles.
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A spanning tree (arborescence) of an undirected (directed) graph is a tree 

(arborescence) connecting all vertices of the graph.

A minimum spanning tree (arborescence) of an undirected (directed) graph 

is a spanning tree (arborescence) of minimum weight.

Clearly, the problem of finding a minimum spanning tree in V is a relaxation 
of the symmetric travelling salesman problem. Moreover, defining a one-tree 

as a tree on all N — I vertices of V, which is connected to the starting node 

by exactly two edges, a minimum spanning one-tree is also a relaxation of the 

travelling salesman problem. The symmetric travelling salesman problem can 

therefore be described as the problem of finding the minimum one tree through 

the graph with the additional constraint that each vertex must have two edges 

incident to it. This gives the following formulation:

min EEdi JxiJ 
iev j>i

subject to

52^.» + ^Xid = 2Vi 
i<k j>i

On a 1-tree.

Similarly the assymetric travelling salesman can be described using a short

est arborescence.

2.3 Solution methods for integer optimisation

In this section, methods for solving integer optimisation problems are briefly 

reviewed. Due to the discreteness of the values of the variables, the solution 

set of an integer optimisation problem is finite. Thus a straightforward solution 

procedure would be to enumerate all the feasible possibilities until the optimal 

solution is obtained. However, although this may be attractive for very small 

problems it becomes unrealistic for any real problem.
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Two alternatives to explicit enumeration are available. The first consists of 
exact procedures, mainly integer programming techniques, although dynamic 
programming may be more efficient in some cases and for this reason should 
not be discarded prima facie . The second alternative consists of heuristic 
procedures.

In the following, a brief outline of these methods, including an overview of 

cutting planes techniques, dynamic programming, heuristic procedures and a 
more detailed survey of tree search procedures, is presented.

2.3.1 Cutting planes methods

Cutting planes [29] make an elaborate use of the simplex method, by adding 

to the current continuous solution a set of constraints, each representing a cut, 

that are violated by this solution but not by a feasible integer solution. The suc

cessive application of this process eventually gives an integer optimal solution. 

The solution is obtained only at the end of the procedure and no integer solution 

is available during the process. For this reason these methods are called dual 

methods. To alleviate this disadvantage, primal methods , that give integer so

lution in the course of the process have been developed [77]. Although cutting 

plane methods are attractive theoretically, it is generally recognised that they 
are not efficient in practice.

2.3.2 Tree search methods

Basically, all tree search methods consist of an exploration of the set of solutions 

of an integer optimisation problem. This exploration is done by dividing the 

problem into subsets and attempting to discarding some subsets from further 

exploration, either by proving that they do not contain any feasible solution 
or any optimal solution to the original problem or when an optimal solution is 

found. This is continued until no subset is left for consideration.
Since tree search procedures are the most widely used for solving integer 
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optimisation problems they are presented in more details in the third section of 

this chapter.

2.3.3 Dynamic programming .

Dynamic programming was developed by R. Bellman [3]. It consists of a parallel 

enumeration of the solution set, based on what is called the optimality principle.

Optimality principle (Bellman) An optimal policy has the property that 

whatever the initial state and initial decision are, the remaining decisions 

must constitute an optimal policy with regard to the state resulting from 

the first decision.

In other words, the optimality principle states that given an optimal trajec

tory between two points A and C the portion of trajectory from any inter

mediate point B to C, must be the optimal trajectory from B to C. To be 
amenable to a dynamic programming solution, an integer optimisation prob

lem must first be formulated as a multi-stage decision problem, consisting of 

say N stages Si, S2, ...S<, ..S^, such that there are, at every stage, alternative 

states Ti, T2, ..Tp the system can take. The objective is to find the optimal path 

between the initial stage and the final stage.

The multistage decision process can be depicted as acyclic network, an ex

ample of which is shown in figure 2.1.
To find the optimal route (policy) the following recursive function is applied,

#-i(C = opti [Ft(i) 4- Ci]

where opt denotes optimise.

This recursion gives the optimal subroute for every state. It is applied from 
the final stage to the initial stage. The optimal route is found by working 
forward from the initial stage to the final and selecting the optimal subroutes 

from one stage to the next. This process of working from the final stage to the 

initial stage is termed backward procedure. An alternative mode of recursion,
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Figure 2.1: Acyclic network with 5 stages and 3 states
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called forward procedure starts from the initial stage and evolves to the final 
stage. The optimal route is found by working backward from the last stage to 

the initial stage. In this case the recursive function can be written as

#+l(%) = Opti [#(%) + Cj]

Dynamic programming is generally efficient for problems with deep and 

narrow networks, that is with few states and many stages.

2.3.4 Heuristics

Heuristic methods are often the last resort for integer optimisation problems. 
Indeed when none of the exact methods can produce a good feasible solution in 
a reasonable amount of time, one must settle for a speedily computable solution. 

However, in applying heuristics there is no assurance that the solution is optimal 

or even good, in any sense. Moreover one cannot be sure that the heuristic can 

give a feasible solution. Nevertheless because heuristic methods are fast, more 

than one method can be devised and the solutions obtained can be compared 

for selection.

There are two main classes of heuristics [61]: first feasible solution meth

ods and improvement methods. First feasible methods start with an infeasible 

solution and construct a feasible one, using priority rules. Improvement meth

ods start with a feasible solution and try and improve this solution gradually. 

Although the latter are generally preferred , it is not always possible to use 

improvement heuristics. Indeed, for some problems, it is already a difficult task 

to find a feasible solution.

2.4 Tree search procedures

Tree search techniques proceed by exploring the solution set of the problem. 

To this end, the solution set is gradually separated into smaller subsets, each 
corresponding to a subproblem of the original problem. Each time, an attempt 
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is made at discarding the subset under consideration, by showing that it does 
not contain an optimal or a feasible solution or by finding a integer feasible 

solution. If this attempt is not successful, the subset is further separated into 
smaller subsets and a new subset is selected for consideration. If the attempt is 

successful the problem is discarded and a new subset is selected. In the integer 

programming literature the process of discarding subsets is called fathoming 

and the last feasible solution called the incumbent [26].

From the above, it is apparent that the main questions which arise when 

applying tree search procedures can be summarised as follows:

a)How is the separation of subproblems carried out?

b)When is a subproblem fathomed?

c)How is the subproblem to explore next selected?

In the following, answers to these questions are proposed, based mainly on 
Hansen [34]. The integer problem is supposed to be of the form:

(P) v(P) = minx f(x)

Subject to

g(x) < b 

h(x) < d 

x integral

2.4.1 Subproblem separation

Subproblem separation is carried out using a branching rule. Given a subprob

lem Pk with a set of candidate solutions Ck, and a set of feasible solutions Fk, 

a branching rule separates the set Ck into subsets such that

19



1.

U, C^k = Ck

2. The number of the separations is finite.

3. When a subproblem can no longer be separated it must be fathomable.

Under these conditions, a branching rule is shown to converge. Generally, the 

initial problem consists of the original problem P which is separated into q 
subproblems that are stored in a list. A subproblem is then selected from this 
list and if it is not fathomed it is separated into subproblems that are added to 

the list. The process is terminated when the list of subproblems is empty.

2.4.2 Subproblems fathoming

The fathoming process is based on the concept of relaxation.

A relaxation of a problem Pk is a problem Rk defined in Tk, Ck € Tk, with 

objective r(x) and optimal solution v(Rk) such that [26]:

1. v(Rk) < v(Pk), that is the minimal value of Rk is always less than or equal 
to that of Pk.

2. If an optimal solution of Rk, v(Rk) = r(»*), is such that x* E Ck then it 

is optimal in Pk, that is:

v(Rk) = r(x*) = v(Pk) = /(x*).

Given a relaxation Rk to a problem Pk, a number of tests can be constructed 

for fathoming this problem. The most important tests are optimality tests, 
solution tests and and the feasibility tests. A description of these is given 

below.

Optimality test: given a relaxation Rk to a problem Pk and an incumbent z to 

the original problem P, if v(Rk) > z then problem Pk is fathomed.
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Feasibility test: a feasibility test is generally of the form:

Given a relaxation Rk to a problem P^, if Rk has no feasible solution then 
Pk is fathomed.

Solution test: Given a relaxation Rk

and an incumbent solution z, if v(Rk) = r(x*) , x* G Fk and v(Rk) < z, z 

is replaced by v(Rk) and problem Pk is fathomed.

Other, secondary, tests can be carried out, for instance the dominance test 
or reduction test. A dominance test is of the form:

Given two sets Ci and C%, if it can be shown that the best solution in say 

Ci is at least as good as the best solution in C2, then Ci is said to dominate 
and C2 is fathomed.

Reduction tests allow one to fix the value of some variable by showing that 

any other value they take will lead either to an infeasible solution or to a 
nonoptimal solution.

The choice of the relaxation is very important in a tree search procedure: 

the optimal value of Rk should be close enough to that of Pk and be fast to 

compute. However very often these two requirements are contradictory. Indeed, 

generally, the easier is Rk to solve, the greatest the difference between v(Rk) 

and v(Pk). A compromise, depending on the problem to be solved, must be 
sought.

The relaxations most widely used are the LP relaxation which is obtained 

by relaxing the integrality restriction on the variables and the Lagrangean re

laxation which is presented in a following section.

2.4.3 Subproblem selection

After branching, the newly created subproblems are put in a list . The ques

tion arises as to which subproblem is selected next. There are two main rules 

for problem selection: the depth first rule and the breadth first rule. In the 

former, the last created subproblem is selected while in the latter a subproblem 
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satisfying a certain criterion is chosen; generally for minimisation problems, the 
subproblem with the smallest lower bound is selected.

The depth first rule requires a relatively small amount of storage, provides 

a feasible solution quickly and is easy to program. However, .it has the dis

advantage of being tedious when a subproblem is no longer separable, since 

in this case all the newly created subproblems have to be explored very often 
unrewardingly.

The breadth first rule requires much more storage and has the disadvantage 

of providing the first feasible solution late in the search. Hence, if the process 

is stopped prematurely, there may be no feasible solution. However, this rule 
tends to generate fewer nodes than the depth first when a good incumbent is 

available and a good relaxation is constructed. Commonly, in general purpose 

tree search procedures, the two options are available; the selection starts depth 

first and is switched to breadth first when a feasible solution is found.

2.5 Lagrangean relaxation

Lagrangean methods, well established in continuous optimisation were first in

troduced into integer optimisation as they are used today by Held and Karp 

[36] in their work on the travelling salesman problem. This work was followed 

by many other successful applications of Lagrangean methods to hard integer 

optimisation problems. Geoffrion in [26] developed the first systematic theory 

for the use of Lagrangean methods in integer optimisation and he coined the 

name Lagrangean relaxation.

In the following, Lagrangean relaxation is presented. The presentation is 
based on the work of Geoffrion [26] and the reviews by Shapiro [69] and Fisher 

[18].
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2.5.1 The basic results

Let the problem be of the same form as problem P defined above. A Lagrangean 

relaxation for problem P is constructed by multiplying both sides of a subset of 

the constraints set by a non negative vector of multipliers A if the constraints 

are inequality constraints of the form g(x) <6, by a non positive vector if the 
inequality are of the form g (x) > b or by a real valued vector if the constraints 
are equality constraints. This subset is added to the objective function of prob

lem P and deleted from the set of constraints, obtaining the relaxed Lagrangean 

problem ( PRX). This process is called dualisation of the constraints. If in prob

lem (P) the constraints chosen to be dualised are g(x) < b then the Lagrangean 

problem (PPa) is: "

(PPA) v(PRx) = -Ab + minxeX (/(*) + A^x))

Where X = {&(%) < d and x integral}

The main properties of the Lagrangean relaxation are summarised in the 
following theorem:

Theorem 1 (Geoffrion) Let PRX be a relaxation of P as defined above, then:

1. v(PRx) < v(P) VA > 0

2. If for a given A a vector x* satisfies the following optimality conditions: 

i)v(PRx) = f(x*) + X(g(x*)-b)

H) g(x*) < &
Hi) X(g(x*) - b) = 0

then x* is optimal in P. If x* does satisfy i) and ii) but not Hi), it is said 

to be e-optimal with e = A(g(x*) — b).

Proof.
For the first part of the theorem, by definition 

v(PRx) < f(x) + A (g(x) -b) x G X 
then let x be the optimal solution to P then
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<PRx) < /(&) + A(X®) -6)< v(P)
since /(x) = v(P) and A(y(x) — b) < 0.

To prove the second part, let x any feasible solution to P not satisfying 
the optimality conditions i), ii), iii) and x* a feasible solution satisfying all 

optimality conditions, then for any A > 0

v(P^)</« + A(s(x)-6)
but A > 0 and (g(x) — 6) < 0 because x does not satisfy iii) thus

v(PRx) < fW,
but v(PRx) = f(z*), for x* satisfying i), hence
Rx*) < f(x) Vx.

The first result shows that RPRx) can be used as a lower bound for v(P), 

the second result that RPRx) can provide an optimal or a near optimal solution 

to P. The best bound one can obtain for P is given by the maximal value of 

RPRx) over all A. This gives the following problem D:

(P) RD) = max a RPRx)

The following is a corollary of the above theorem:

Corollary I If a pair A*, x* satisfies the optimality conditions i), ii) , iii) then 

A* is optimal in D.

Proof.

RD) = RPR( A*)) = v(P)

v(PR(A)) < v(P)

v(PR(A)) < «(D)
From this, it can be seen that an equivalent to the optimality conditions is 

RD) = u(P). This means that when the optimality conditions are satisfied, 

there is no duality gap between RD) and RP). A duality gap may occur 

that it is RD) < u(P) and there is no couple A*,x* satisfying the optimality 

conditions. This may happen because the dual problem (P) is the dual of the 

problem P* defined on the convex hull of the set X. However, Lagrangean 
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relaxation is generally used for computing bounds and there is no attempt to 

find the optimal couple A*,x*, although this may occur in the course of the 
computations. The current idea is to compute a vector of multipliers that 
provides a good v(PP(A)) in the sense of approximating v(P). ..

On the other hand, the e-optimality suggests the use of Lagrangean relax

ation for deriving good near optimal solution to P.

2.5.2 Computing the multipliers

Although the function v(PR\) is continuous and concave, it is not differentiable 

everywhere. This means that optimisation methods for differentiable functions 
cannot be used in this context. One has then to resort to the methods of 

nonsmooth optimisation, particularly subgradient methods which, in fact, were 

developed as a byproduct of Lagrangean relaxation.

A subgradient is a generalisation of the notion of gradient and is defined as 

follows:

Definition

A subgradient of a function v(PRx) at a point A is a vector s such that:

v(PP(A)) < v(PP(Â)) + (A- A)s

A function may have more than one subgradient at a point. A necessary 

and sufficient condition for local optimality (global for convex functions) at a 
point is that {0} is a subgradient at that point.

A subgradient of the function v(PR\) is given by

s = g^t) - b

where xt — Argminx£xf(z) + A^(z)

Given a subgradient s of a function v(PR\), the so called subgradient algo

rithm for non smooth optimisation generates a sequence of A’s according to the
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rule [64] :

A*+1 = A* + tksk

This rule converges to the optimal A* if the step size tk satisfies the following:

OO 
^ = 00 

0

and

**—> — 0

The step size most widely used is of the form

where ||.|| denotes the euclidian norm and

sk = 9^ ~ &

The sequence satisfies the above conditions when z = v(Z)), 7k == 2.

However, the optimal value v(D) is not generally known and the rule is to 

choose z as a good guess of v(D) then choose 0 < 7* < 2.

Basically, the choice of 7k is heuristic and depends on the choice of z. There 

is no assurance in using the subgradient algorithm that v(PÆ*+1) > v(PRk) 

and a widely used rule is to halve the value of 7* when v(PRk) fails to increase 
for a number of iterations.

There are other recursion rules for generating a sequence of multipliers. 

Some are drawn from the theory of non smooth optimisation like the method 

of aggregated subgradients [46], which instead of using only the subgradient 

obtained at the kth iteration uses a linear combination of the subgradients ob

tained from say iteration k0 to k. However these methods need the storage of 

more information than the subgradient algorithm and are certainly more time 
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consuming. Another method developed by Shor [70] related to the ellipsoidal al
gorithm and called the space dilatation algorithm works well but it also requires 
a large amount of storage space.

A good compromise may be to use the aggregated subgradient method com

bining only few subgradients obtained during the last, say two or three, itera
tions.

Other methods have been developed for particular cases like those reported 

in [19,59].

2.5.3 Lagrangean relaxation in tree search

When Lagrangean relaxation is used within a tree search procedure for com
puting bounds, generally only a few iterations of the subgradient algorithm 

are performed. The common rule [18,23,60] is to perform a large number of 

these iterations at the first node of the tree, obtaining an initial good lower 

bound, a small number of iterations at every forward step in the search and 
when backtracking perform an average number. In order not to perform un

necessary computations in forward steps, the multipliers are initialised to those 
corresponding to the best bound obtained in the previous step.

In addition to its use for optimality tests, Lagrangean relaxation is also used 

for solution tests. Indeed, as mentioned above, a feasible near optimal or an 
optimal solution to a subproblem can be found while computing the bounds. On 

the other hand, since the infeasibility of the Lagrangean problem PR\ implies 

that of the original problem P, Lagrangean relaxation also provides feasibility 

tests.

The quality of the bounds obtained in Lagrangean relaxation depends mostly 

on the constraints dualised. Geofirion showed in [25] that if the dualised con
straints are such that the value of the Lagrangean is not increased when the 

integrality restrictions are dropped ( a property he called the integrality prop

erty) then Lagrangean relaxation cannot do better than linear programming 

relaxation, but if this integrality property does not hold then the bounds ob
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tained are sometimes very sharp and better than those obtained from LP relax

ation. However, for large scale decomposable problems Lagrangean relaxation 
is generally a better alternative than LP relaxation.
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Chapter 3

Review of the relevant literature

3.1 Introduction

In this chapter, a review of the literature on production scheduling is presented. 

Due to the vast body of the publications on the subject, this review will be 

restricted to deterministic problems where at any time period a machine can 

process at most one product. This review is based on [14,24,31,53].

Before presenting the survey, it will be helpful to describe the setting in 

which production scheduling is carried out and to define its requirements and 
objectives. This is the subject of the second section. The third section presents 

a brief overview of scheduling problems involving the optimisation of a perfor

mance criterion. In the fourth section, a survey of the literature on problems 
more relevant to the purpose of this work is presented. These include problems 

in which a cost function is to be minimised. The cost can be a set-up cost, pro

duction cost, an inventory holding cost or any combination of these. The survey 
will cover single stage single facility, single stage multi-facility and multistage 
problems.
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3.2 The production scheduling problem

Production scheduling is part of the production control system which encom
passes a number of decisions that arise in the management of a company.

In the scheduling problem, the issues involved are the specification of the 

time and place at which events should take place. Problems of this sort arise in 

many environments, here only manufacturing environments will be considered. 

Thus an event will be the manufacturing (in a broad sense) of a product (job) 

and the place, the machine used to produce it.

There is a large variety of scheduling problems. These, usually, vary ac

cording to the mode of production, assumptions, constraints, requirements and 

optimising criteria. The mode of production can be an assembly mode, as in 

the car industry, or a process mode, as in chemical industry. Assumptions, 

constraints and requirements depend on the problem at hand. The optimising 

criteria can be classified into two categories: the first category is concerned with 

the optimisation of a performance measure; the second, with the optimisation 

of a cost function. In the first category one can name, for instance, the min

imisation of the total makespan, the minimisation of the maximum tardiness or 

of the sum of tardiness, while in the second category the cost to be optimised 

can be any combination of changeover or set-up costs, production costs or in

ventory holding costs. The division adopted here will be along these lines. The 

following literature survey will be subdivided into two parts: the first part will 
be dealing with problems where a performance criterion is to be minimised and 

and the second part with problems where a cost function is to be minimised.
The approaches used for solving scheduling problems are various and in

clude graph theory, dynamic programming, linear programming, integer pro
gramming, network flows and heuristics.
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3.3 Minimisation of a performance criterion

This category of problems is known as the job shop problem. The general job 

shop problem can be described as follows:
There are n jobs l,..., j, ...n to be processed through m machines l,..., z, ...m. 

Each job has to be processed through the machines in a particular order and 

each job has its own processing order that may or may not depend on the 

processing order of the other jobs. The problem is to find a feasible schedule 

that is optimal with respect to a given optimality criterion.

Particular cases to the general job shop problem include the single machine 

problem, the parallel machines problem and the flow shop problem.
In the one machine problem, all jobs are to be processed once on one machine 

only. In the parallel machines problem, each job has to be processed once on 

any of a number of parallel machines. In the flow shop problem, all jobs are 

to be processed on the same set of machines with the same processing order 

(permutation schedules).
The jobs are usually characterised by a number of parameters. These in

clude:

A processing time which is the time job j has to spend on the machine 

i. This may or may not depend on the machine.

A release date r, on which the job becomes available for processing.

A due date dj by which the job should ideally be completed.

A weight Wj indicating the relative importance of the job.

For a given problem a number of assumptions are generally made. These, 

usually, concern the following:

1. Preemption: preemption (job splitting) is or is not allowed,

2. Precedence constraints'. there are or not precedence constraints among the 

jobs.
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3. In process inventory: a job may or may not wait in inventory for its 
machine to be free .

The performance criteria are various and are generally function of one of the 

following:

1. The completion time of each job that is the time at which the pro
cessing of the job finishes.

2. The lateness of each job Lj, that is the difference between its completion 
time and its due date

3. The tardiness of each job T^ which is the maximum between its lateness 
Lj and zero.

The most common performance criteria are:

1. Minimisation of the maximum completion time Cmax.

2. Minimisation of the maximum lateness Lmax.

3. Minimisation of the maximum tardiness Tmax.

4. Minimisation of the mean completion time Cj or the weighted mean 

completion time WjCj.

5. Minimisation of the mean lateness Lj or the weighted mean lateness 

Ej wiLi-

6. Minimisation of the mean tardiness Tj or the weighted mean tardiness

In general TmaXf Lmax^ Cmax are noted fmax

The relative difficulty of a problem depends on its category (single machine, 
parallel machine, flow shop or job shop). Within a category, the difficulty 

depends on the performance criterion. For a number of problems, especially in* 
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the one machine category, it was possible to derive a number of constructive 

algorithms, whereby the optimal schedule is obtained by application of some 
simple rules. However, in general most algorithms are based on enumerative 
schemes. These features are illustrated in the following brief overview. This 

brief survey is mainly concerned with problems with no precedence constraints 

where the criteria are functions of the completion time. The emphasis will be 
on the constructive algorithms.

3.3.1 The single machine problem

The one machine problem is the simplest of the job shop problems and as such 

has attracted much attention. The best known result [53] is due to Jackson for 

the minimisation of Lmax when all release dates are equal: the optimal schedule 

is obtained by scheduling all jobs in the order of non decreasing due dates. 

For the same criterion, when all due dates are equal, the optimal schedule is 
obtained by scheduling the jobs in the order of non decreasing release dates. 

For the minimisation of Cj, the simple shortest processing time first rule 

(SPT) gives the optimal schedule whereas for the minimisation of WjCj, the 

optimal schedule is obtained by Smith rule [71]: jobs are scheduled according 
to the non decreasing Wj/pj.

Unlike the above, there are no constructive algorithms for the WjTj cri

terion and all the procedures are enumerative. A number of relaxations were 
constructed for the computation of lower bounds. In particular, one can cite the 
linear assignment relaxation of Rinnoy Kan [66] and the Lagrangean relaxation 

of Fisher [17], where the constraint that a machine should handle one job at a 

time is dualised. However, it seems that the most successful algorithm in this 

class is a well constructed dynamic programming algorithm due to Baker and 
Schrage [1].
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3.3.2 Parallel machines

This category of problems is subdivided into the following three classes depend

ing on the relationship between the machines:

Parallel identical machines : The processing time of a given job is the same 

on all machines P, j = p3>

Parallel uniform machines : The processing time of a job on any machine 

is proportional to a certain constant: Pij = Pj/qi,

Parallel unrelated machines No relationship exits between the processing 

times.

For nonpreemptive scheduling, constructive algorithms exist only for the 

minimisation of Cj, whereas for the preemptive case there are also construc

tive algorithm for Cmax. These results are reviewed below for the case where 

there are no precedence constraints.

Minimisation of Cj

In this case, when the machines are identical, MacNaughton [57] showed that 

there is an optimal schedule in which no jobs are split. Thus, preemption is not 

an important issue for this problem. Conway et al have shown [53] that this 

problem can be solved with an algorithm similar to the shortest processing time 

rule. In this algorithm, the number of jobs is made a multiple of the number 

of machines: n = km by adding dummy jobs with zero processing time. The 

jobs are classified according to increasing processing times: p^ < p^... <pn• For 

j = 1 ,...,&, m jobs, i)m+ii i)m+2j •••» are assigned to Tin machines. 
Then, the k jobs assigned to each machine are loaded in shortest processing 

time order.
When the machines are uniform and preemption is not allowed, a gener

alisation of the above results for identical machines solves the problem. The 

problem with no preemption, when the machines are unrelated was formulated 
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as a transportation problem by Hom[38]. Defining the variable x^k to be equal 
to one when Jj is scheduled on the kth position on machine i and zero otherwise, 
the problem can be formulated as follows:

min 
« 3 k

subject to:

=1 vj 
i k 

E < iVz, k 
3

When the machines are uniform and preemption is allowed, Gonzales con
structed an algorithm where the jobs are first placed in SPT order [53]. An opti

mal schedule is then obtained by loading preemptively each job in the available 
time on the m machines so that its completion time is minimised.

Minimising Cmai

As mentioned above, the only constructive algorithms for this class are for 

problems where preemption is allowed.
MacN aught on [57] gives a simple procedure for constructing the optimal 

schedule: the jobs are loaded onto the machines successively and in any order 
and a job is split whenever the following time bound is met:

max(maxj{pj }, 1/m^Pi) 
3

When the machines are uniform, Gonzales and Sahni generalised the Mac- 

Naughton procedure by showing [53] that the optimal value to this problem 

is:

k k n m
maximax^k^m-ii^Pj/^^yZPi/ÜQi}} 

j=i i=i j=i i=i
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Finally, when the machines are unrelated, the problem can be modeled as a 

linear programming problem [53]. If Xij is defined as the time job j spendson 
machine i the problem can be formulated as:

mm Cmax

subject to

= 1 W 

t

53 j _ Cmai Vj 
«

Cmax

3
xitj > 0

Before ending this section, it is worth noting that for the problem with 

criterion WjCj and no preemption, Eastman et al. [12] derived the following 
lower bound on the optimal solution:

n 3 
minÇ^WjCj) > m + n/m(n f 1)5313 wiPk 

3 j—1 t=l
This bound was used in a number of branch and bound procedures.

3.3.3 The flow shop and job shop problems

Here, only a few milestones are cited on the very wide area of flow shop and job 

shop scheduling. In the flow shop problem, the criterion most widely optimised 

is Cmax- The only constructive algorithm for this class is for the two machines 

problem. This algorithm was developed by Johnson [42] who showed that there 

exists an optimal schedule for the two machine problem in which job Ji precedes 
job Jk if:

min{pi,j,P2,k} < min{p2tj,pitk}
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Consequently, an optimal schedule can be constructed by finding at each 

step, among the unscheduled jobs, the smallest of the pt j, i = 1,2, noted io, jo 

and loading the job j0 onto machine i0.

All other algorithms for the flow shop problem are enumerative procedures. 

In branch and bound procedures, the most commonly used relaxation relaxes the 

constraint that each machine must handle one job at a time, for all machines but 

one [39], or two [49]. In the case were only one machine is unrelaxed, the bound 

computed from this relaxation is known as the machine based bound. Generally, 

elimination rules that eliminate non optimal schedules and dominance rules are 
very helpful [49].

As far as the general job shop is concerned there are no constructive algo

rithms and all the procedure are enumerative [16] [48]. It is worth noting that 

problems with 10 jobs and 10 machines have yet to be solved.

So far, only problems where the machines are independent have been con
sidered. In real life, however, very often, this is not so. Indeed, there are scarce 
resources shared by the machines such as manpower or some special equipment. 

In such cases, generally, all machines cannot be operated simultaneously. This 

the subject of the resource constrained scheduling which, for obvious reasons, 

is more difficult than the unconstrained scheduling. Noteworthy is the work of 

Sahney [68],who considers a problem with two machines with one server and 

proposes a branch and bound algorithm for solving it and the work of Stinson 

et al. [72] who propose a branch and bound algorithm for the multiple resource 

constrained problem. Davies [9] presents a survey of these problems.

3.4 Problems with cost function

The scheduling problem that will be considered here is a deterministic, dynamic 

problem, where at most one product can be allocated to any facility at any 

time period and in which a cost function is to be minimised. The survey will be 

started with the simplest problem of one product / one facility and then extended 
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to the cases of multiproduct / one facility , one stage multi-product/multi-facility 
and finally multistage problems.

3.4.1 One product one facility

This problem can be described as that of determining the amount to be pro

duced of one product on one facility in each period, over a finite horizon so 

that a known demand is satisfied and a cost function consisting of set-up costs 

and/or production costs and/or an inventory costs is minimised. There may 
be constraints on the production and inventory capacities, in which case the 

problem is said to be capacitated. For this problem, the usual approach has 

been first to find some properties of the optimal schedule and then to examine 
only schedules having these properties. Commonly this has been done within a 

dynamic programming framework.

Such an approach, for the above model with no constraints on the capacities 

and no backlogging, was first considered by Wagner and Whitin [76]. They 

showed that in any optimal schedule, the demand, for each period, must be 

satisfied either from production or from storage but not from both. Also they 

derived the following inventory decomposition property:

Inventory decomposition property [76]
If inventory is zero at period k then it is optimal to consider periods 1, . 

. . , k — 1 by themselves.

Furthermore, they derived a planning horizon theorem which states basically 

that if it is optimal to incur a set-up in a period k when all periods up to k are 

considered by themselves, then optimality is not lost by letting production to be 

positive in k in the optimal solution for the overall problem. Thus, considering 

that it is optimal to produce at period k, it follows that it is optimal to consider 
periods from 1 to k — 1 separately.

These results allowed them to construct an algorithm that first finds the 

optimal policy for subproblems consisting of periods up to k, k = 1,..., N.
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When all these policies are determined the optimal overall schedule is obtained 

by working backwards from the last period.
Every subproblem up to k is solved as follows:
First the policies of ordering at period t, t = 1,k to fulfil the demand at 

s = t, are determined.

The cost associated with every policy is computed by adding to the cost of 
producing at t, the cost of acting optimally from l to i — 1. This latter was 

obtained by solving subproblem k = t — 1. Among all these policies the one 

with best cost is selected.

Zangwill [78] studied a similar problem with backlogging allowed and showed 
that the problem can be modelled as a single source network on which the are 

flows are the production and the inventory. He derived the following properties 

for the extreme flows:

1. If the level of inventory is positive at k — 1 then the production is zero at 

k.

2. If production is positive at k then there can be no backlog.

3. If inventory is positive at k — I then there can be no backlog at k.

Then, defining a regeneration period a as a period where inventory is zero 

and a production period 3 as the next period after a where production is 
positive, he gave a recursion formula for computing the optimal cost from the 

beginning of a regeneration period a + 1 to the last period in the horizon. He 
also derived a recursion for computing the optimal cost from the beginning of 
period 3 to the end of the last period. These recursion exploit the fact that an 

optimal schedule has the form of an extreme flow.
The calculations are performed backward from the last period, first the cost 

at a regeneration period is found. Given this cost, the cost at a production 

period is then computed.
Love [55] studied the case in which both inventory and production are ca

pacitated, with both capacities allowed to vary in time. Defining a production 
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(inventory) point as a period in which production (inventory) is extreme, that 
is zero, maximum or minimum, he showed that there exists an optimal schedule 

which has the property that between any pair of production points (i, k) there 

is an inventory point j, i < j < k. From this, he developed an algorithm for 

the inventory capacitated case based on the converse of the above result, that is 

between a pair of inventory points there can be at most one production point.

He exploited the fact that at an inventory point cumulative production can 

equal exact requirement plus extreme inventory (zero, minimum or maximum) 

and gave an expression for the cost associated with augmenting the cumulative 

production between two inventory points i and k by producing at j, i 4-1 > j < 

k, j production point.

In the case of a capacitated production problem, Florian and Klein [20] 

derived the following inventory decomposition property:

Inventory decomposition property [20]
If, for a T periods problem, at a period k inventory is zero and capacity 

is sufficient for the requirements at all t > k 4-1 then the optimal solution 

can be found by considering the first k periods and then the remaining 

k 4* 1, ...,T periods.

This property allowed them to formulate the functional equation as

/o = 0

fu — 4" /v}

where duv is the cost of following an optimal plan from u 4-1 to v with Zu = 0 
and Zy = 0, that is u and v regeneration points. For the case of constant capacity 

over time and no backlogging, they showed that dw is the cost associated with 

a shortest path through a certain network.
To do this, they first defined a constrained production sequence between two 

regeneration points as a series of time periods t = u 4-1,...» v where production 

is less than capacity in at most one period and is either at capacity or zero in 
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all others. They showed that any optimal schedule consists only of constrained 

production sequences. Thus, the search can be limited to constrained produc

tion sequences (uv) with cost duv. The network associated with duv has vertices 

corresponding to the values of cumulative production at period jxj = u+1,v. 

These values can be either 0, multiple of capacity or multiple of capacity plus 
a certain amount.

Extensions to the above basic models [76,78,55,20] were proposed by many 

authors. In particular, Swoveland [73] considered an uncapacitated problem 

with a piece-wise concave cost function, consisting of production cost and hold

ing backorder cost. He developed a dynamic programming algorithm based on 

the work of Florian and Klein and that of Love.

A capacitated constrained problem with capacity variable with time was 

considered by Lambrecht and Vander Eecken in [50]. Using an approach similar 

to that of Florian and Klein, they showed that the optimal schedule between two 

regeneration points can be determined by the evaluation of a simple formula.

A slightly different framework from all the above was adopted by Baker et al. 

[2] who proposed a tree search algorithm for the time varying capacity problem. 
They first showed there is an optimal plan such that if there is inventory carried 

over from period k — l to k, production at k must be either at capacity or zero; 

on the other hand if there is a positive production at a level less than capacity 

at k then the incoming inventory must be zero. They also showed that in an 

optimal solution, the last production quantity is either equal to capacity or to 

the sum of the remaining requirements.
Upon these results, a tree search algorithm was constructed. At every node 

of the tree the decision on which time period to place the last order is taken. 

For an N period problem, this is done sequentially as follows:
At the root of the tree the counter ki is set to N + 1. N nodes are created, 

each corresponding to placing the last order at ki = 1,..., N, thus generating 

subproblems Pi, P%, ...J\, —, Par For each node the cost and the requirement 
that is not fulfilled by this order and thus must be fulfilled during 1,..., ki — 1 

41



are computed. If for &i = 1 the complete schedule is feasible it is stored as the 
incumbent. All subproblem created are stored in the list. In the same manner, 

every node corresponding to problems fg, ...p^, ...P^, is further decomposed 

. For instance the node corresponding to = 2 generates one subproblem: 

ordering the sum of the unfulfilled requirement from subproblem P2 and the re

quirement of period 1 at period 1, generating subproblem P12. This subproblem 

giving a complete schedule, it is stored as incumbent if it is feasible and its cost 

is better than that of Pi, . Subproblem P3 is decomposed into two subproblems 

P13 and P23, corresponding to placing the last order at k\ = 1,2. Subproblem 

P13 corresponds to ordering the sum of the unfulfilled requirement from P3 and 

requirements of periods 1 and 2 at period 1. This subproblem corresponds to a 

complete schedule and again if it is feasible and its cost better than that of P12 

it replaces it as the incumbent. Subproblem P23 corresponds to ordering the 

unfulfilled requirement from problem P3 plus requirement at period 2 at period 

2, this subproblem which does not correspond to a complete schedule is stored 

in the list. Similarly subproblem P4 generates Pi4, P24, P34 •
In general every subproblem, corresponding to placing an order at k^ gen

erates a number of subproblems corresponding to ordering at t the sum of the 
unfulfilled requirement from the father subproblem and all the requirements 

from t up to — 1. Every time t = 1 a complete schedule is obtained. If it is 

feasible and its cost is better than that of the incumbent it replaces it. If the 

problem does not correspond to a complete schedule it is stored in the list for 

further decomposition.

To limit the size of the tree a number of tests are applied. These check fea

sibility, optimality and the dominance of an uncomplete schedule over another.

3.4.2 Multi-product single facility

In this case there are more than one product sharing a single facility and the 

problem consists of scheduling all products over a finite horizon. At any time 

at most one product is allocated to a given machine.
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Gilmore and Gomory [28] considered a one facility multi-products model 

with every product having one lot to be scheduled only once. The changeover 

between products were sequence dependent and it was required to find a se

quence that minimises the changeover cost. The problem was transformed into 

a travelling salesman problem by adding a dummy product. The optimal solu

tion will be given by the minimal cost tour starting and finishing at the dummy 

product.

In the approach adopted, the problem was first solved irrespective of the 

tour constraints, thus allowing an optimal solution to contain subloops. These 

subloops were eliminated by carrying out a number of interchanges. The inter
changes were chosen by finding a minimal spanning tree in a connected graph.

A one machine multi-product finite horizon model was studied by Glassey 

[30]. The planning horizon was split into equal periods. The rates of production 

were the same for all products. A unit of production was set to what the 

machine can produce in one time period. Set ups were considered to occur 
between production periods.

In the model, a vector x was defined with every component specifying the 

cumulative production for each product and a network formulation of the prob
lem was given. With each node of the network was associated a value of x. Two 

vectors xr and x2 associated with two consecutive nodes were such that:

x2 — + kei

with k integer and e, a vector with all components equal to zero except the 
ith entry which was equal to one. The length of any are (x^x2) was set to one.

This means that x2 was the state of the machine obtained by producing k 

units of product i at the cost of one changeover. The distance between two 

nodes was defined as the shortest path between them.

The algorithm proposed can be described as follows:

Starting from the last period, with the cumulative requirements for every 

product, machine time is allocated to one product at a time, each time generat
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ing a new node. At time period t, t — k consecutive time periods are allocated 
to product i, with k satisfying:

&i(t — k — 1) < di(t — k — 1)

and

Xi(t — k) = di(t — k)

where di(t) is the cumulative requirement for product i up to time period t.

In order to reduce the search, an optimality test was introduced.
Elmaghraby et al. [14] considered the scheduling of the lots of products in a 

single facility with each product to be produced only once in the horizon. The 

objective was to minimise a cost consisting of a set-up cost, an inventory cost 

and a backorder cost. The planning horizon was considered to be equal to the 

sum of set-up time and production time for all products (in the case where this 

is not true, a dummy product is added).

The problem was formulated as that of finding a shortest path through a 

network. With each node of the network was associated a state (St, h) where St 

represented the number of product yet to be scheduled and h the remaining time 

left in the horizon. Each node was decomposed into nodes corresponding to the 

production of a product in St and one node corresponding to the production of 
the dummy product.

A search algorithm similar to that of Glassey was developed. Starting from 
node when no product is scheduled, nodes were created according to
the rule described above. At each node, a lower bound was computed consisting 

of the sum of the cost of the shortest path from the root node to this node 

and, the cost of scheduling the remaining products in the best possible way, 

irrespective of interference with other products. If the incomplete schedule thus 

obtained corresponds to a similar schedule obtained at another node, then the 

one with the larger lower bound is discarded.
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To reduce the search a dominance test was constructed and precedence re
lations were derived. The dominance test was used to discard some nodes from 

further investigation by showing that they could not lie on an optimal path. 
The precedence relations were derived to show that if two products i and j 

were to be scheduled together then i must precede j.
Karmarkar and Shrage [43] considered a sequence dependent multi-product 

single facility problem with inventory, set-up and production costs. For every 

product, production was capacitated, with capacity varying from period to pe

riod. They studied a number of bounding procedures to be used in a tree search. 
First a relaxation of the coupling constraints, that is those constraints ensur

ing production only when set-up was carried out, was proposed. The problem 

was thus decomposed into two subproblems, one corresponding to the machine 
switching and the other with production and inventory, each with associated 

multipliers. However neither of this was solved; rather, they concentrated on the 

derivation of bounds for the problem with sequence independent set-up costs. 

For this they studied two Lagrangean relaxations.

The first was obtained by dualising the constraints ensuring that only one 

product is set on the machine at each time period. This allowed a decomposition 

of the original problem into dynamic single item, capacitated subproblems.

In the second, the same constraints were dualised. Then no longer consider

ing capacitated production for every item but rather, a limited shared resource, 

they expressed the constraint ensuring the non utilisation of excess resource and 

dualised it as well. They showed that

Wi < w2

where wj is the bound obtained with the first relaxation and w2 that ob

tained with the second.

Computational results using the latter relaxation were not encouraging.
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3.4.3 Multi-product multi-facility

Dorsey and al. [10] considered a multi-product multi-facility problem where the 

facilities are identical, in that a product can be processed in any facility with 

the same rate and cost, the demand is known for every period "in the horizon. 

Set up are assumed to occur between production periods.
At any time period for a given product either there is no production or 

production is a multiple of a fixed amount corresponding to what one facility 

can produce in a time period. The cost function consists of production costs 

and inventory holding costs. The production costs are time independent. The 

requirements are two fold: first, demand must be satisfied and second, a desired 

end inventory must be built for every product.

The fact that at any time period, for a given product, either there is no 

production or production is a multiple of a fixed amount, corresponding to 

what one facility can produce in a time period, allowed them to give a simple 
integer formulation of the problem.

They defined an integer parameter w,,* that determines for every period k 

and every product i the minimum number of times product i must be produced 

so that inventory at k is nonnegative and an integer variable which gives 
for every period k the number of facilities allocated to product i. They first 

expressed the total inventory cost in terms of the average inventory built in one 

time period. Then, noting that when at the end of the horizon there must be 
exactly a required amount of inventory the production cost is the same in any 

solution, they formulated the problem in terms of inventory costs only. This 

allowed them to give a network flow representation of the problem, with nodes 
k, ik and a source. Flow from source to node k indicates the total number 

of facilities used at k, with the upper bound representing the total number of 

facilities available. Flow from k to ik gives the number of facilities allocated to 

product i at k Flow from ik to ik + 1 gives the number of times product i has 

been produced up to k with lower bound w,,*.
Further, remarking that it is more economic to build the required inventory 
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in the last periods, they developed an optimal one pass procedure, based on pri
ority rules. Starting from the last period, they allocated machines to products 
such that priority is given to products with higher inventory cost.

In [56] Love and Vegumanti studied a multi-products multi facility problem 
arising in the tyre industry. The requirement was to produce at least a minimum 

amount of every product during every period of the horizon. The production 

capacities of the machines were limited. The problem was to minimise sequence 

independent set-up cost only.

They first gave an integer formulation of the problem with integer variables 

being the number of set-ups and removals for every product at each period and 
the number of product on machines at every time period. Then introducing 

a supplementary variable to account for idle machines (in their case empty 

cavities) they transformed the constraints matrix into a totally unimodular 

matrix, allowing the problem to be formulated as a minimum cost flow problem. 

Flows in arcs correspond to the number of set-up take-downs and number of 

machines on and off.
A different model, where the facilities were not identical, was considered by 

Prabakhar [65]. Every product could be produced at different rates on different 

facilities with different costs but at most once on a given facility in the horizon 

considered. The set-ups were sequence dependent and there were inventory 
limitations. The demand for every product occurs at the end of the horizon 

and the objective function to be minimised consists of set-up and production 

costs.
The problem was formulated as a mixed integer program with real valued 

variables for the quantities produced of each product on every machine and (0, 

1) variables for the changeovers between product. Only constraints preventing 

subloops of order two were included in this model, that is loops containing two 

products. The solution, therefore, was allowed to contain either a loop, one or 

more subloops or a disconnected loop.
A commercial code was used for the solution. If the solution contains loop 
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or subloops, it is reoptimised using a shortest path algorithm. The method, 

thus, gives a suboptimal overall solution. In order to improve the result the 
procedure could be repeated.

Geoffrion and Graves [27] studied a similar problem to Prabakhar, with 

demand occurring at every time period and no inventory limitation. The pos

sibility of splitting the production of a product into more than one run on the 

same machine was allowed. Assuming that the production rates on all machines 

and all changeover times were proportionally related, they introduced a quan

tisation of the model. They defined time slots and production lots. The time 
slots correspond to a partition of the scheduling horizon. The total number 

of time slots was equal the number of time slots in the horizon multiplied by 

the number of machines. The production lots correspond to a partition of the 

production orders for every product, each lots having an earliest start time and 

a latest finish time. This allowed them to express the problem as a one to 

one mapping from the lots to the slots , with the one to one correspondence 

obtained by adding a dummy product when necessary.

The cost function included a changeover cost, a production cost and a pro

hibitive penalty for scheduling a lot before its earliest start time or after its 

latest finish time. They used a quadratic programming procedure for solving 
the problem. Clearly the problem defined in this way can be too inflexible. To 

avoid this, they included a linear programming procedure for smoothing the 

production orders.
Parker et al. [63] studied a multi-product, multi-facility problem with iden

tical facilities and sequence dependent changeover costs without preemption. 

The problem was to find a feasible schedule with minimum changeover costs. 

They modelled the problem as a vehicle routing problem and used a well-known 

heuristic to solve it. Taking advantage of the speed of this algorithm, they de

veloped an iterative procedure where at every iteration a new vehicle routing 
problem with new constraints that eliminate previous solutions is solved. This 

is done until no more improvement can be achieved.
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3.4.4 Multistage models

The layout of the facilities in a multi-stage manufacturing system depends on 

the particular application.

In general a serial system is a system where each facility has one predecessor 
and one follower, except the final one which has only a predecessor and the first 

one which has only a follower. This type of model can be met in the chemical 

industry. In an arborescence system, a facility has one predecessor and one or 

more followers except the first and the final facilities. In an assembly systems, 

a facility can have any number of predecessors or followers. Typically, these 

systems are met in the car industry.

A number of optimal procedure have been proposed for one product multi

stage systems. A brief review of these is given below.

The general approach taken is akin to the single facility single stage problem, 

that is a characterisation of the optimal schedule is sought in order to limit the 

search to schedules having the properties derived.

In particular, Zangwill [78] studied a one product serial model with all fa
cilities un-capacitated, known demand and concave production and inventory 

costs for all facilities. The problem was formulated as a single source network 

flow. Using some properties of extreme flows, he showed that at any facility 

production takes place only if there is no entering inventory. Kalymon [44] ex

tended this property to the arborescence system. For a similar problem to that 

of Zangwill with non decreasing production cost over time and inventory cost 
non decreasing over the facilities, Love [54] showed that if in a given period i 
production starts at a facility j, then all successors of j produce at i. He called 

a schedule exhibiting this property, a ’’nested schedule”.
Crowston and Wagner [6] extended these two properties to general assembly 

systems.

Lambrecht et all [51] studied a model where the last facility was capacitated. 

They showed that if at the last facility there is positive inventory carried from 

previous periods, then production is either zero or at capacity and if there is 

49



production at less than capacity then inventory must be zero.

Unfortunately most of the optimal procedures are too time consuming and 

thus impracticable in real life. Therefore a number of heuristic methods were 

developed. There are mainly two type of heuristics: multi stage heuristics and 

single stage heuristics.
In single stage heuristics, one stage problems are solved sequentially. Start

ing with the last stage, production schedules are determined for every stage. 

The production schedule for a given stage determines the demand for its pre
decessor. Each stage is solved either with its original cost or with a modified 

cost.

This modification is carried on the set-up cost or on the inventory cost. In 

case of the modified set-up cost, two approaches were proposed. Letting the 

set-up cost at facility j be s^, these approaches can be summarised as follows:

In the first approach, called cumulative set-up, the modified cost at facility 

j is computed as

3

1

While in the second it is computed as follows:

Sj = 8j + Asj-1

with A a constant.

In multi stage heuristics, production quantities are assigned to all facilities 

period by period. A multi stage heuristic was proposed by Lambrecht et al. 

[51]. They defined a reorder period as the last period with positive production 

at all facilities. For each facility and each time period a coefficient is computed 

indicating whether a cost reduction is possible by incorporating demand from 
a later period than the reorder period, in a lot that has already been scheduled 

in earlier period. If all coefficients are negative for a period greater than the 

reorder period, then this period is considered as the new reorder period and the 
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procedure is repeated. In the above heuristics every stage is solved once and 
no overall optimality is attempted. These heuristics are sometimes called single 
pass heuristics. Lambrecht et al. [51] present a comprehensive study of these 

heuristics.

Graves [32] proposes a more elaborate multi pass approach. In this ap

proach, the problem is solved iteratively, at every iteration the subproblems 

corresponding to all stages are solved. The solution is improved at each iter

ation and coordination is achieved using a marginal cost. For this, a variable 

cost of production is defined for each facility j at every time period t. At 

every iteration this cost is revised by incurring a marginal cost 7of increasing 

demand for production at the predecessor k of j by one unit in period t. The 

new cost p*t is given by:

Pj,t = Pj,t + Z 
kePj 

where

Pj indicates all predecessor of j,

Pk,j is the number of units that facility k must produce for each unit produced 
at j, and

7k,t = Pkj + (f - to)hk

where t0 is the last period of production for k. In other words, if demand 

in period t is increased by one unit, production in period t0 increases by one 

unit with an increased production cost at to plus a cost of holding product in 

inventory from to to t.

3.5 Summary

As is apparent from this survey, there is a wide variety of scheduling problems 
and methods for tackling them. However, due to the combinatorial nature of 

most of these problems, particularly those where preemption is not allowed, 

enumerative methods are very often the only resort. The methods developed 

51



exploit the particularities of the problem at hand in order to improve the effi
ciency of the algorithm. Most models assume the availability of all resources. 

This is not so in real life situations where there are always scarce resources. 

This, often, leads to mismatches between scheduling theory and practice.
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Chapter 4

Problem description and 

solution methodology

4.1 Introduction

In this chapter, the overall solution procedure adopted for the short term pro

duction scheduling for a class of plants which produce a series of detergents is 

presented. As mentioned earlier, the study carried out here is concerned with 

the second level of a two-level hierarchical approach.

In the methodology adopted for the production planning and scheduling 

problem, the higher level is concerned with the long term decisions while the 

lower level is concerned with the short term decisions. At the higher level, the 

long term scheduler is based on aggregate data: the items are grouped into 

families and the demand and resources are aggregated into aggregate demand 

and aggregate resources. The costs involved are set-up and inventory holding 
costs. For a long term horizon, made of say N short periods, the long term 

scheduler gives the quantities (lot sizes) to produce of each family, for each of 

the N short periods. The lower level is basically concerned with a two-fold 

disaggregation: an item disaggregation which determines lot sizes for every 

item individually (as opposed to the aggregate planning which gives the lot 

sizes for aggregate families) and a time disaggregation or short term scheduler.
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Based on actual data, for a short term made of T small time periods, the short 
term scheduler allocates machine time and other resources as raw materials and 

manpower, for the production of the lot sizes of each individual item. All lot 
sizes must be produced within the short term. -

The problem studied here is concerned only with the latter issue of the 

lower level. However before presenting the problem, the general features of the 

manufacturing plant are described in detail in the next section. In the third 

section, the short term commitment is introduced while in the fourth section 

the overall solution methodology is presented.

4.2 Description of the plants

4.2.1 General features

Most of the plants considered here are two-stage production processes: up

stream, there are parallel production facilities where base products are manu

factured; down stream, there is a number of parallel packing lines where the 

base products are packed in different formats. Between these two processes, 

there is an intermediate storage system that feeds the packing lines generally 
through a number of material handling systems. Figure 4.1 shows the topol

ogy of a typical plant with two manufacturing units, four storage silos, three 
material handling systems and four packing lines.

In the following, each of these entities is described.

4.2.2 Manufacturing units

There are, commonly, from one to four manufacturing units which can make 
from one to ten products, one at a time. After production, the products are 

either stored temporarily before packing or directly fed to the packing lines 
through the material handling system.

The units are highly automated. For the units that are dedicated to the
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Figure 4.1: A typical lay out of a two stages plant

SL

SL MHS

SL MHS

PL

SL

55



manufacturing of a single product, cleaning is not generally necessary. Cleaning 

is very important in the case of the units that make more than one product 

(general purpose units). This is mainly due to undesirable interaction between 

products, such as colour interaction and cross contamination. Cleaning time is 

of the order of one hour. Long runs are very desirable to keep the packing lines 

packing with minimum changeover and to minimise the manufacturing units 

changeover costs. In some plants, the units are operated two or three shifts of 

eight hours a day, in others they are operated one shift a day only.

4.2.3 Intermediate storage

The intermediate storage consists of silos that can either be dedicated to one 

product or flexible. Flexible silos can store any product, one at a time. In 

the latter case cleaning is necessary when changing over from one product to 

another. The capacity of the flexible silos depends on the density of the product 

stored.
The silos are fed from the manufacturing units through a series of conveyors 

or pipes. Some units may not be connected to some silos and there may be 

restrictions on the number of connections that can be active at the same time. 

There are maximum flow constraints on the connections but, usuall y, these do 

not cause bottlenecks.

The silos in turn feed the material handling systems through pipes or con

veyors and there can, also, be restrictions on the number of simultaneously 

active connections.

4.2.4 Material handling systems

The material handling systems feed the packing lines and can handle one prod
uct at a time. There can be a maximum of seven material handling systems. On 

the other extreme there can be none, that is the packing lines are fed directly 

from the silos. Again the number of simultaneous connection from the material 
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handling systems to the packing lines can be restricted. Maximum flows on the 

connections do not cause bottlenecks. The material handling systems can be 

fed directly from the manufacturing units.

4.2.5 Packing lines

There can be from five to ten packing lines that can pack one or more formats 

(sizes). Some are dedicated to packing the different formats of one product 
while others can pack different products in different formats. A combination 

size/product will be called an item. Packing rates depend on both the item and 

the line. There are no minimum or maximum packing rates, a line packs an 
item at a fixed nominal rate. Although it will be assumed throughout that the 

lines pack at their constant nominal rate once switched on for an item, start up 
rates are generally slower and a line may take several minutes if not hours to 

reach full efficiency.
There are two types of changeovers: minor changeovers and major changeovers. 

Minor changeovers occur between items of the same size, are sequence indepen

dent and do not usually require intensive labour. Major changeovers occur be
tween sizes, may be sequence dependent and require intensive labour by skilled 

fitters. They take longer to carry out than minor changeovers.

The packing lines are operated by operators whose number depends on the 

item the line is packing. This number can vary from one to forty depending on 

the line and the item considered. Usually there are from ten to twenty operators 

in the packing room. This of course limits the number of simultaneously active 

packing lines. Packing lines operations are further constrained by the incoming 

connections from the silos or/and from the material handling systems. Also, 

the number of products that can be packed at the same time in the packing 

room is restricted by the number of material handling systems, if any.

In some plants, the packing lines are operated for two shifts of eight hours 

a day, in others, due to expensive night operations only one daily shift.
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4 2.6 Planning cycle and demand

The planning cycle varies from six to ten weeks according, in particular, to 

the location of the plant and the brands produced. The ideal situation for the 

company would be to have a fixed plan of production that can be used every 

cycle. However this is not possible due to equipment breakdown, promotional 

sales and demand uncertainty.

Demand is usually made of a series of orders with earliest and latest due 

dates for delivery. The size of the demand depends on the particular item, for 

some items the seasonal demand is low whereas for others it is very high.

4.3 The short term commitment

At this level, the major costs are introduced by the packing lines operations. 

These costs are two-fold: changeover cost and packing costs. Changeover costs 
are mainly associated with the major changeovers while packing costs are as

sociated with the rates a line packs a particular item and some bottleneck 

considerations.
At the manufacturing level, long runs are very desirable to allow for long 

packing runs and to minimise the number of set-ups for the manufacturing 

units.
Finally, a good schedule should use the intermediate storage efficiently and 

also minimise the number of changeovers for the flexible silos.

In this problem, it is required that at the end of the horizon, of one or 

two weeks, the lot sizes of every item, output from the upper level, should be 

produced.

There are no black box methods for finding the optimal solution for a two 

stage multi-product manufacturing system with intermediate storage. A mono

lithic job shop formulation does not seem to be fruitful. Indeed, the resource 

constraints, the intermediate storage and the minimum run length requirements 

make the problem overconstrained. For the multistage systems the approaches 
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proposed are generally heuristic. These heuristics consider the problem stage 
by stage or period by period. Generally most heuristics are one pass [33], in 
that every stage is considered once, exceptionally they can be multipass: the 
problem is solved iteratively until a sufficiently good solution is obtained.

For these complex problems, the main issue is feasibility, specially in situa

tions where resources are scarce. Typically, scarce resources overconstrain the 

scheduling problem, making it difficult to to load all the lot sizes in the available 

time horizon.

For the problem considered here, a one pass heuristic is impracticable since 

there is no guarantee that a feasible schedule for one stage would give a feasible 
schedule for the other. This is due to the fact that, on the one hand, there are, 

generally, several products sharing the same manufacturing facility and on the 

other hand the operating speed of the packing lines is different from that of the 

manufacturing units.

As an example, consider a problem with 2 items, 2 packing lines, one man

ufacturing unit and a horizon of three periods of one hour each. The two items 

are of different base product and size, each with a lot size of three tons. The 
packing rates are, for both items, one ton per hour on both packing lines and 

the production rate is, also for both items, ten tons per hour (these figures cor
respond to a real life situation). Supposing the optimal schedule for the packing 

lines is the following:

line 1: (hour l,item l)(hour 2,item l)(hour 3,item 1),

line 2: (hour l,item 2)(hour 2,item 2)(hour 3,item 2),
it can, immediately, be seen that unless there is a sufficient initial amount of 

either of the two products in the intermediate storage there are no solutions to 

the problem at the manufacturing units. Therefore, this packing lines schedule 
has to be reconsidered. Imposing that both lines must pack the same product 

during the first period, will give, among others, the following schedule

line 1: (hour 1, item 2) (hour 2, item 1) (hour 3, item 1)

line 2: (hour 1, item 2) (hour 2, item 2) (hour 3, item 1).
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Clearly, this schedule will result in a feasible manufacturing unit schedule.
Now consider another example with 1 manufacturing unit, 3 packing lines, 

3 items of the same product with same packing rates of 4 tons/hour on all lines. 
The demands are 8, 12 and 10 tons for items 1, 2 and 3 respectively. Initial 

inventory is zero and the production rate is 10 tons/hour. Suppose that the 

optimal schedule is the following:

line 1: (hour 1, item 1) (hour 2, item 1) (hour 3, item 1)

line 2: (hour 1, item 2) (hour 2, item 1)

line 3: (hour 1, item 3) (hour 2, item 3) (hour 3, item 3),

it is readily seen that there is no feasible schedule at the manufacturing
unit level since the demand at the first period is greater than the production 

capability of the manufacturing unit. If the number of items packed in period 1 

is reduced from 3 to 2 by delaying the packing of item two, a feasible schedule 

can be obtained. These remarks will be used for developing the overall solution 

procedure.

4.4 Solution methodology

4.4.1 Overall approach

A stage by stage, multipass procedure has been adopted. As mentioned above, 

overall feasibility is the main issue.

The packing lines subproblem is solved first. The lot sizes output from the 

first level are scheduled so that a cost function consisting of a combination 

of changeover and packing costs is minimised. The basic time period can be 

anything from one shift to one hour. All the lot sizes must be packed during 

the horizon; sometimes, however, overtime is available.
The schedule obtained is then input as a demand for the manufacturing 

units. At this stage, the problem is to satisfy this demand, minimising a cost 

function consisting of set-up and production costs; the latter being either the 

costs of processing a particular product on a particular unit or the costs of 
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manufacturing at certain periods (night shifts for instance). Due to dimen
sionality considerations, the basic time period can be no less than half a shift. 
Both subproblems are solved using enumerative procedures. If there are no 

feasible solutions to the manufacturing units problem, the whole problem is 

reconsidered. But before presenting the coordinating device between successive 

iterations and in order to give some insight into how a bottleneck situation 

could be alleviated, the following considerations are introduced.

In the above examples, it is clear, that there are two possible ways of achiev
ing feasibility: reconsidering the initial inventory for one or more products or 

altering the demand at the manufacturing units level by altering the quantity 

packed at a certain time period. The second possibility may overconstrain the 

packing lines problem, leading to infeasibility, the first depends on the previous 
schedule of the manufacturing units. Infeasibility can also be alleviated either 

by introducing some overtime at the manufacturing units or at the packing lines 
level or by reducing some lot sizes. Finally it is worth noting, that due to the 

aggregate nature of the data, the lot sizes output from the long term scheduler 

may not give a feasible solution at the lower level. In such a case, it is necessary 

to alter some of the lot sizes.

4.4.2 The coordination method

The coordination device adopted is a heuristic, interactive method, in that the 
user can choose which variables to alter and how to alter them.

As mentioned above, one way of alleviating infeasibility is to alter the de

mand at the manufacturing units level. A possible way of varying the quantities 

packed by a line at a time period, and altering the demand at the manufacturing 

units, would be to associate some shadow prices on these quantities and build 

an iterative procedure based on these prices. However, here, this is not feasible 

since the packing lines are packing at fixed nominal rates. This implies that at 

any time period, a line will either pack the quantity it can pack at this time 

period or be idle. Therefore, one way of altering the total quantity packed at a 
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given period, of a given product, in the packing room, is to reduce the number 
of items, belonging to this product, that can be packed in this time period. 

Thus, forcing one or more packing lines to be idle or packing another product.

On the other hand, if the number of products to be manufactured at a given 

time period exceeds the number of manufacturing units, then the maximum 

number of products that can be packed at this time period can be reduced. 

Also adding, directly, a positive increment to the initial inventory and solving 

again the manufacturing units subproblem may improve feasibility. Since the 
overall problem is solved on a rolling horizon basis, the previous schedule of 

the manufacturing units is known and hence the maximum quantity of initial 

inventory that can be built.

The procedure developed is based on the above remarks. When it is neces
sary overtime will be added. All parameters can be input manually.

Before presenting the algorithm, the following variables are defined:

P(t): the maximum number of products that can be packed simultaneously 

in the whole packing room at period t,

I(j, 0): the initial inventory for product j,

PI(j, t): the maximum number of items belonging to the product j that can 
be packed during time period t,

PA(ty. the number of products packed at time period t in the current pack
ing lines schedule,

PIA(j, t) the number of items of product j, packed during t in the optimal 
packing line schedule.

In the following, it is supposed without loss of generality, that the length of 

the basic time period is the same in the manufacturing units subproblem as in 

the packing lines subproblem.

StepO. Initialise

r = 0, P(t) = Pa(t\ PI(j,t) = PI°UA 70,0) = I°(j, 0).

Stepl. Solve the packing lines subproblem with P^t), PP(j,t).
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If a feasible schedule is found go to step3.

Step2. The packing lines schedule is infeasible, two alternatives are offered: 

either extend the horizon by adding an increment Ot:

T = T + Ot

where Ot is fixed by the user.

and go to stepl, or alter the previous packing lines schedule to reduce 

demand on the manufacturing units.

Step3. Solve the manufacturing units subproblem, with FÇj, 0) and the de

mand arising from the packing lines schedule.

If a satisfactory, feasible schedule is found stop.

Step4. Infeasible schedule.

Update either >) or Pr(tb) and go to stepl. or

StepS. The manufacturing units subproblem is to be reconsidered with new 

initial inventory. Choose one or more products say ji, i = 1, s for which 

initial inventory is to be increased, set

ITU»-i 0) = 0) + ic VA. and go to step 3.

The total increment added should not exceed the possibility of building 
initial inventory. This possibility can easily be assessed given the previous 

manufacturing units schedule.

Remarks

1. The way PIT(jtitb) or PT(tb) will be updated will be presented in the sixth 
chapter, after introducing the solution methology for the manufacturing 

units-intermediate storage subproblem.

2. StepS. can only be performed with external intervention.

63



Chapter 5

Short term commitment for the 

packing lines

5.1 Introduction

In this chapter, the scheduling of the items lot sizes on the packing lines is 

considered.

The lot sizes of each item are to be loaded onto the packing lines so that 

changeover and packing costs are minimised. The packing lines share some 

resources in common. A branch and bound algorithm is proposed.

This chapter is organised as follows: in the second section, the packing 

lines problem is described. In the third section, the problem is formulated 

as a (0, 1) integer linear program where pre-emption is allowed. Due to the 

size of the resulting problem, a transformation is introduced, allowing a more 

tractable formulation where preemption is not allowed. In the fourth section, 

a relaxation of the new problem is proposed and bounds are computed. This 

relaxation decouples the problem into two subproblems : a machine loading 

problem, formulated as a general assignment problem, and a pure sequencing 

problem, formulated as a shortest spanning arborescence problem. Finally, in 
the fifth section, the solution algorithm together with a heuristic for computing 

upper bounds is described.
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5.2 Description of the system

The overall manufacturing system was described in chapter 3. Here, the relevant 
characteristics of the second stage of this system are recalled.

At this stage, the manufactured products are packed in various formats in 

the packing room. Some packing lines are dedicated to a particular size, some to 

a particular product and some are general purpose in that they can pack many 
products in different sizes. Packing rates vary from one pack size to another and 

for a particular product/pack combination (item) from one line to another. The 
changeovers between items may be sequence dependent but do not differ from 

line to line. The operations of the packing lines are restricted by manpower and 

structural constraints:

• Structural constraints: The lines are fed with base products either directly 

from intermediate storage or by up to ten material handling systems. 

These are, in turn, either fed from intermediate storage or are connected 

directly to the manufacturing units. Each material handling system can 

carry one product only at a time, thus restricting the total number of 

products that can be packed simultaneously by the whole packing sys

tem. The number of simultaneously active connections from one material 
handling system to the packing lines is restricted, in general, to two or 

three.

e Manpower constraints: A number of operators is usually needed for oper

ating the packing lines. For a given line, the number of operators depends, 

generally, on the item it is packing. Changeovers from one size to another 

are executed by skilled fitters, whose number varies according to the se

quence considered. Usually, minor changeovers between items of the same 

size do not need skilled fitters.

In most plants, the packing lines are generally operated for fifteen or ten 

shifts of eight hours a week.
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Due to the sometimes significantly slow start up rates, it is desirable to keep 

the lines packing a given item for a minimum number of shifts before changing 

over to another item. This constraint is usually termed the minimum run length 
constraint. -

For short term scheduling, usually over a period of one week, lot sizes are 
given by the long term scheduler, and the objective is to find a feasible combina

tion of items/packing lines so that high packing rates and minimum changeover 

times are obtained. All lots have to be produced before the end of the horizon. 
It must be pointed out, that due to the aggregate nature of the upper level, 
there is no guarantee that this would be possible. Sometimes overtime must be 
needed so that all lot size are loaded.

The problem has the features of a machine loading problem and those of 

a sequencing problem at the same time. However, a further complication is 

introduced by the fact the lines are interdependent, due both to the shared 

manpower resources and the structural constraints. Hence, not only one has to 
find the optimal items/lines combination, but also to consider the schedule at 

discrete time periods in order to handle the resource constraints efficiently.

It is clear that the choice of the length of the time step at which decisions 

are taken is critical, since this choice will determine the degree of flexibility 

and the size of the problem. If it is too small, the number of variables will be 

prohibitively large. On the other hand if it is too large, there will be a loss of 

precision.

Some authors considered a similar problem to the one described above, but 

without the resource constraints (see chapter 3). In particular, a problem with 

sequence dependent set-up costs and non identical machines was considered by 

Prabakhar in [65]. A mixed integer formulation was proposed and a branch 

and bound procedure adopted. Geoffrion and Graves [27] also studied a similar 
problem and used a quadratic assignment algorithm to solve it. Parker et al. [63] 

studied a case with identical machines and sequence dependent set-up costs and 

proposed a solution based on an algorithm for the vehicle routing problem. Love 
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and Vegumanti [56] considered a model with identical machines and sequence 

independent set-up costs and proposed a network flows formulation.

It is clear that none of the above procedures is applicable here. Indeed, the 
features that allowed one or the other formulation are lost by the introduction 

of the resource constraints. In any case, the introduction of these constraints 
in the basic model will lead to a formidable problem. To show this, in the next 

section a (0, 1) integer formulation of the unrestricted problem is introduced.

5.3 A unrestricted problem formulation

To give an idea of the complexity of the problem, in the following a (0,1) integer 

formulation is proposed. The following assumptions are introduced:

1. Any item must be packed just once on a given line during the current 

horizon.

2. A changeover is carried out within one time period. Thus, a time period 

must be at least equal to the longest changeover time.

3. The last item packed by each line during the last horizon is known. If 

in the current horizon there is demand for this item it will be numbered 

differently. A zero changeover cost will be introduced between these two 

items.

4. Start up rates are not taken into account.

The discrete formulation imposes that at any time period a line is either packing 

at full capacity, being changed over or idle. Thus, if the line is packing at a 

given time period the quantity packed is simply equal to the amount the line is 

capable of packing within one time period.

Let the lines be numbered i = 1,..., L, the items with positive demand be 
numbered j = 1,..., N (subscripts k and I are also used to identify these items) 

and the time periods in the horizon be t = 1,..., T. Defining the following 

variables
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if line i is packing item j during period t 

otherwise

if line i is being changed-over from packing -item j 

to packing item l during period t

otherwise

and given

dj Demand (lot size) for item j

ctjj cost of changeover from j to I

Pi j cost of packing item j on line i

rij packing rate of item j on line i per time period.

npj number of operators required for packing item j

nfjj number of fitters for changeover from j to 1

NO total number of operators

NF total number of fitters

MHS Number of material handling systems

MRLj Minimum run length, in time periods, for item j.

ki Last items packed on line i during the previous horizon, numbered outside 

N (fictitious items).

P Number of base products

Ci relative weight of the total changeover cost.

Ct relative weight of the total packing cost.
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the problem can be formulated as

(P)

Subject to

X 22 a^t + 22(1 - 52 a»j.O + 222222 (^i)
t 3 t j t j I

2222 rijaij,t = dj w (52)
i t

£^ + EE^<i (5.3)
3 3 I

2222^j,t - 2222^w,c* vm+i, (5 4)
t=l Æ t=1 /=1

£ a^MRL^^ V:j\to (5.5)
t=to+l *

22 22 nP3ai^ vt (5.6)
* j

Vt (5.7)
* j 1

ViJ (5.8)
3 t

E£^<1 Vm (5.9)
z t
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EEE«üa.< = o w. (5.io)

• i t

(5.11) 
j <

EEE««M = 0 (5.12)
• ; :

= {0,1} (5.13)

where

• Constraints ( 5.1) ensure that the sum of the packing time, the idle time 

and the changeover time should not exceed the total time available.

• Constraints ( 5.2) impose that the demand should be satisfied exactly for 

each item.

• Constraints ( 5.3) impose that at any time period, a line must be packing 

at most one item, idle or undergoing at most one changeover.

• Constraints ( 5.4) ensure that a line packs an item only if it has been set 

and stops packing it if it has been changed over.

• Constraints (5.5) ensure that a line packs an item at least for the mini

mum run length.

• Constraints ( 5.6) ensure that the number of operators, needed at every 

time period, does not exceed the total available.

• Constraints ( 5.7) ensure that the number of fitters, needed for executing 
all the changeovers at time period t, does not exceed the number of fitters 

available.
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• Constraints ( 5.8) impose that every item is set once on a given line

e Constraints ( 5.9) impose that an item is changed over once on a given 
line.

• Constraints ( 5.10) ensure that the fictitious items are not set on any line 

and ( 5.11) ensures that they can have at most one follower.

• Constraint ( 5.12) ensures that no item is changed over from itself.

A few remarks are in order here. Clearly, due to ( 5.4) and ( 5.11), a cycle 

containing any ki cannot occur. Constraints ( 5.4), ( 5.5), ( 5.8), ( 5.9), ( 5.11), 
( 5.12) eliminate other cycles. To see this, consider a cycle starting and ending 
at item j. Such a cycle implies:

— 1 and = 1
where t < t*

To show that this can not happen, consider the minimum run constraints 
( 5.5) for item j:

>MRLj

meaning that there must be a run for j. Due to constraint ( 5.9) and ( 5.4), 

this run cannot occur before t*. It must occur after t*. Substituting in ( 5.4) 
gives:

ow* = o vr*>r
Thus, there could not be a run after t*. Therefore when there is a cycle starting 

and ending at j, there will be no run for j, implying that constraints ( 5.4) 
and( 5.5) are violated.

On the other hand, supposing that an item satisfies the minimum run con

straints, it can readily be seen that it cannot start and end a cycle. Indeed, if a 

given item j is set at time period to, i.e.: $i,k,j,to — 1, the minimum run length 
gives

t
y S #w,t — MRLj 

to 4-1
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implying = 1 for t > t0. Substituting in ( 5.4) and using ( 5.8) and 
( 5.9) gives:

1 < ~

which means that = 1 implies to < t. In other words, if item j was set at 
to then it is changed over at t > to.

This formulation is valid only when the changeover times are all of the same 

order and small, say between 3 hours and eight hours, thus allowing one to take 

a time step of something like eight hours without a big loss in precision and 
flexibility. However, when the differences between changeover times are large, 

another formulation, where a changeover can take more than one time period, 
is necessary.

So far structural constraints have not been included. To do so, entails defin
ing a new variable

1 if any item of product jp is packed on line i

during period t

0 otherwise

Then, for example, the material handling constraints can be written as:

(5.14) 
: 3P

One can see that the problem as formulated above is intractable. Indeed, the 
large number of 0,1 variables and constraints makes it beyond the capabilities 

of any existing method for integer programming.

It is, therefore, necessary to carry out some transformation such that the 
resulting problem is feasible, tractable and its st -ution constitutes a good, near 

optimal solution to the original problem. In the following section one such a 

transformation is proposed. The new, more tractable formulation allows for 
a feasible solution to be developed speedily. The approach has the following 
features:

• The solution of the restricted problem is carried out through a specialised 

tree search scheme.
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• The computation of bounds used to limit the search is based on a re

laxation of the linking constraints, that is those constraints that link the 
sequencing part to the loading part of the problem.

e The resource constraints are handled separately.

5.3.1 A problem transformation

An important specification for the problem is that any solution must satisfy 

the minimum run length requirement. However, this specification is imposed 
explicitly on the model at the upper level of the problem (long term scheduler). 

Thus, all lot sizes are equal to a multiple of the minimum run length plus a 

certain quantity, ie:

dj = kMRL^ 4- e

Therefore, it is unnecessary to specify explicitly these constraints at the 

lower level. Instead, it would be sensible to split every lot qj into k smaller lots 
of MRLj each or k — 1 of MRLj each and one of MRLj + e. In general, each 

lot size can be split in a number of smaller lots each representing a new item to 

be considered on its own. As an example suppose that the lot size for a given 

item is approximately of five tons and the minimum run length for this item is 

of two tons. This lot could be split into two small lots, one of two tons and the 

other of three tons. Every small lot will have to be scheduled without splitting 

(nonpre-emptive scheduling). It is worth emphasising that this transformation 

is not severe in terms of optimality. In the above example, it can readily be seen 
that the feasible solutions are either one run of five tons, two runs of two tons 

and a half each or one run of three tons and the other of two. If V(Pr) is the 

optimal solution to the transformed problem Pr and V(P) the solution to the 
original problem then clearly: V(Pr) > V(P). However, because of the above 

remarks V(P)r is very close and often equal to V(P). Moreover, because it is 
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more convenient to handle the resource constraint separately, hereafter, they 

will not be included in the formal description of the problem.

5.4 Relaxation and lower bounds for the trans

formed problem

In this section, the method for computing the lower bounds for the transformed 

problem is introduced. After formulating the problem without the resource 

constraints, a relaxation is proposed and algorithms for solving the subproblems 

arising from this relaxation are constructed.

5.4.1 Relaxation

Dropping the resource constraints, introducing the tranformation proposed above 

and defining the following variables:

1 if lot 3 is packed on line i
0 otherwise

1 if lot 3 precedes lot 1 on line i 

0 otherwise

The given:

: packing time of item j on line i, 

chjti changeover time between items j and Z,

the problem can then be formulated as

(Fri) min G Et-Ejj*,j + C2 Eï E,

subject to

= 1 W (5.15)
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+ Vi (5.16)
J 3 I

®m-LA.'.3=0 Vw (5.17)
/

Vt, (5.18)
t z 

Vj (5.19)
t k

No circuits (5.20)

"w,A.)V 6 {0,1} (5.21)

Where the parameters are the same as before and subscripts i designated 
the packing lines, j, I designate the items to be scheduled in the current horizon 

and ki designate the fictitious items. Constraints ( 5.15) stipulate that an item 
is to be packed on one line only; constraints ( 5.16) ensure that the total load 

on any line must must not exceed the time available; constraints ( 5.17) ensure 
that if an item j is loaded on line i, then it must follow an item I on this 

line; constraints ( 5.18) impose that all the first (fictitious) items must have no 

predecessor and constraints ( 5.19) impose that all items can have at most one 

follower.

Clearly, the solution to Prl is a lower bound on Pr, the original transformed 

problem. However, solving Prl to optimality within a tree search algorithm is 

time consuming as this will involve the solution of a large problem at every 
node of the tree. Therefore, in computing bounds for Pr only a relaxation of 

Prl will be considered.

If the linking constraints ( 5.17) are relaxed and the changeover times ne

glected, problem Prl can be decomposed into two subproblems: a machine 

loading problem with the constraint that every lot has to be packed on one line 

only and a sequencing problem. The machine loading subproblem is given by:

(Prll) minCtEiEjPij^ij
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Subject to ( 5.15) and ( 5.16) with the changeover time neglected. However, 
in the algorithm developed, an empirical penality (which is a lower bound on 

the changeover times) is introduced to account for the changeoyer time.

The sequencing subproblem is

(Pr 12) min C2 E. Ej Ez ctjjPw

Subject to equations ( 5.18), ( 5.19), and ( 5.20), ( 5.21).

The last problem, in its general form when the last items are not known, can 
be transformed to an M-traveling salesmen and it could be solved so. However, 

instead, a relaxation of Prl2 will be constructed, leading to a lower bound (M3) 

which will be fast to compute. The computation of these lower bounds will be 

presented in subsection 1. 4. 3.

Calling the optimal solutions to (Prll), M1, that to (Prl2), M2, the above 

leads to:

LB = Ml + M3 < Ml + M2 < V(Prl) < V(Pr)

LB being a lower bound on the optimal solution of problem Pr. At every 

node of the tree developed for the solution of Pr both Prll and the realaxa- 

tion Prl2 are solved, giving the bound LB. In order to improve this bound, 

penalities will be computed. Before introducing the global algorithm developed 

for solving Pr,in the following, the methods adopted for solving Prll and the 

relaxation of Pr 12 and for computing penalities are presented.

5.4.2 The machine loading subproblem

Problem Prll corresponds to a general assignment problem and can be rewritten 

simply as:
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(Prll) min
» 3

Subject to

52 = 1 W (5.22)
«

Vi (5.23)
3

xi,j — {0) 1} (5.24)

Where T, is the time left for packing on line i at the current node of the 
search tree less a penality to account for the changeover times.

This problem can be efficiently solved by a branch and bound algorithm 

using a Lagrangean relaxation [18,4,67] of constraint ( 5.22). This approach is 
followed here.

Dualising constraint ( 5.22 ), gives the Lagrangean problem:

(LRG) L(A) = min 52 52Pm®m + 52M1-52 ®m) (5.25)
» 3 3 t

Subject to ( 5.23) and ( 5.24). From now on the factor Ci will be omitted.
It is well known that:

L(A) < Ibl V A, i.e. L(A) is a lower bound on Ibl. The best lower bound 
will be

LG\ = max a £(A)

One may have LG\ = Ibl, but this is not guaranteed, due to the fact that 
LG\ corresponds to the dual of the linear program obtained from Prll by 
dropping the integrality constraints.

In the solution procedure, L( A) is used as a lower bound to the optimal value 
of the subproblem generated at a given decision node. No attempt is made at 

finding the A for which L(A) = Ibl, although this may occur, in which case the 

optimal solution to the subproblem at the current node is obtained.

Equation ( 5.25) can be rewritten as :

LW = 52 x3 + ^z.,/52 52(pm - Xj)xid)
3 « 3
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3 » 3

With Xij subject to ( 5.23), ( 5.24).
When the multipliers A are fixed, this problem decomposes into L indepen

dent single knapsack problems [67], the solution of which is used in a subgradient 

algorithm to maximise the augmented objective function over A. The new fixed 

values of A are used to update the knapsack problems.

The knapsack problems

For every packing line i, the following knapsack problem K Pi has to be solved:

max XXA, - Pi^xid
3

Subject to

X> aiJXij — ^i 
3

A branch and bound algorithm with the reduction tests constructed by 

Nauss [62] has been adopted for solving KP{. All the details on the solution of 

knapsack problem are given in appendix A.

The algorithm for solving Prll

A depth first binary tree search for the solution of Prll was implemented. At 

any node of the tree, a binary variable, corresponding to loading an item onto a 

line, is set to one and the remaining variables corresponding to loading the same 

item onto the other lines are fixed to zero. Thus, a level of the tree consists of 

a set of brother nodes representing different loadings of a given item.

In their approach to the general assignment problem, Ross and Soland [67] 

suggest that a good bound is obtained when the multipliers are set to the second 

best cost for every item. However, in the case where the minimum cost for each 
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item occurs on more than one line, the bounds thus obtained are very low. 
Indeed, suppose that for an item 3 :

miniPij = ptl j = pt2 j
then if the multiplier Xj is set to the second best cost for this item, that is: 

Xj = min^ ,j

the contribution of this item to the Lagrangean, noted Lj, might be:

Li = — Pûj) + (Xj — p^j))
and

L3 = Pild Pi2,3 ~ Xj
Thus, L can become nonpositive if Xj > 2ptlj. Of course the situation will 

become worse if there are more than two lines where the item has the best 

cost. Nevertheless, in the algorithm developed, the multipliers were set to the 

second best costs. However, as soon as the subgradient associated with an item 
becomes negative, control is transferred to the branching rule so that the item 

is loaded on one line only, thus strengthening the bound. The iterations of the 

subgradient algorithm are then resumed with the same multipliers. This is done 

until no item has the subgradient associated to it negative . The procedure is 

then repeated for the unloaded items. The multipliers are set to the second 

best among the lines where the item is still loadable. A node is fathomed if an 
item becomes unloadable.

Likewise, in a backward step, each multiplier is set to the second best cost 

among the lines where the associated item is loadable.

In the following the best feasible line, in terms of cost p,j, for item 3 is 
denoted by ij and the second best by ijj.

StepO. Initialisation

StepOa. Set t\ — where ti is the time left up to the end of the horizon, 
for line i, at the current node of the overall algorithm.

For all unscheduled items , noted j, form the sets

Ij = V I Pij < 00 and atj <
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For all these items, set j = 1, ij " G Zj.

If the solution thus obtained is feasible in Prll, then it is optimal, stop; 

otherwise

StepOb. Set the Lagrange multipliers to:

~ Pijjj V j ijj G Ij

set LG* = Pijj,j

Ibl* = 00

s = 0

Pa = Prll.

Stepl. Lower bounding

Stepla. Optimality test

Solve the Lagrangean relaxation of P, with the current vector of multipliers 

A.

If LG > Ibl* then go to step4;

Steplb. Feasiblity test

If the solution to the relaxed problem is feasible in the dualised constraints, 

update LG* and Ibl* accordingly, store the solution obtained and go to 

step 4.

Step2. Branching step

Step2a. Selecting the item

In the solution to the last Lagrangean problem, the following will occur:

! — x^j < 0 for some j
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1 — 52 — 0 for some j
i

1 — 52 = 1 for some j
i

Look for a jb such that

- EiXi,jb) = minj A/l - and 1 - < 0.

If there is none, then if there is a j such that Ij = 0 go to step4, otherwise 

initialise the vector of multipliers to Aj = and go to stepl.

Step2b. Selecting the line

Among those lines satisfying the following condition in the current Lagrangean 
solution

52 ai,jxi,j < 
3

choose the one for which is minimum, call this 4, if there is none, 

choose ib € Ijb | Pibjb = mini Pi,jb, go to step 3.

Step3. Forward step

Set s = s + 1, x#ibjb = 0 , xibtjb = 1 in P„

t'i — t’i — Oikjb and R, = (i^jb). Go to stepl.

Step4. Backward step

Step4a. If s = 0 then the incumbent is the optimal solution and stop; oth
erwise

Step4b. Extract ib and jb from R».

Set t'6 = + a^jb

Update the set Ijb : Ijb = Ijb — ib.

If Ijb + 0 then set the initial A to
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— Pijjd

go to step2\% with the extracted 3^ otherwise s = s — 1 and go to step^a.

5.4.3 The sequencing subproblem

In this section, the computation of a lower bound to the sequencing part of the 
problem is presented. As remarked above, this problem is somewhat simplified 

by the fact that the state of the fines at the end of the previous horizon is 

known.

It is worth emphasising that this is a realistic assumption because in the 
situation dealt with here, rolling horizons are considered and in any case the 

scheme developed for the solution of the overall problem allows this assumption 

to be included easily. Indeed, at every node of this scheme the state of the lines 

is known hence, the initial assumption holds at all nodes.

At any node, the sequencing problem can be modeled as a directed graph 

rooted at the state of the system at this node. The root of the graph will 

correspond to the items being packed by the lines and spanning through the 
remaining items. This can easily be seen in the following example.

Consider there are two lines and five items, and suppose that at the current 

node line 1 is packing item 2, line 2 is packing item 4, and items 1, 3, 5 are to 
be sequenced. The corresponding graph is shown in figure 5.1.

A lower bound on the changeover cost can be obtained by finding the shortest 

arborescence through the graph. Polynomial algorithms for constructing the 

shortest arborescence of a graph have been devised by Chu and Li [5], Edmonds 

[13] and Fulkerson [21]. These algorithms are basically the same. In [75], Tarjan 

gave a O(n2) version of the algorithm of Chu and Li and Edmonds. A version of 

the algorithm of Fulkerson has been implemented, since it fits in the formulation 
of the sequencing subproblem.

First, all items being packed on all lines at the current node k are grouped in 

one component Then let X be the set of vertices consisting of the items not
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Figure 5.1. Directed graph with two lines and five items

yet loaded and construct the arcs to represent the feasible changeovers. 
Finally, the graph

VW=(R u ar (6), u (&))

is formed. The shortest arborescence through the graph V(k) is then sought.The 

details of the algorithm used for finding the shortest arborescence are given in 
appendix B.

Class of items

The items to be scheduled can be grouped in classes such that the changeover 
between items of the same class are identical and sequence independent. More

over, the changeover costs (times) between classes vary only with the class and 
are sequence dependent.

In the shortest arborescence all the unscheduled items belonging to the same 

class will be connected to one another, further in the first iteration these items 
will form a cycle.
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In order to avoid unnecessary calculations in the shortest arborescence al
gorithm, the items belonging to the same class are connected in a chain and 

the arcs thus created are put in the list of edges. A graph is then created with 

only the first items in every chain (that is the unconnected item). The prob

lem becomes that of finding the shortest arborescence through the unconnected 

items. Figure 5.2 shows an example with four classes: (1,2), (3,6), (4,9,12), 
(7,11,17,21).

1

Figure 5.2: Connecting items of a same class

A

12.

17 21

5.4.4 Computing penalties on LB

In order to improve the bound obtained in the previous relaxation penalties 

based on the following proposition are computed.

Proposition 5.1 Let (j, Z) be an arc belonging to the shortest arborescence ob

tained in solving the relaxed sequencing problem and let

j = 1 and X£,j = 1 in V(Prll) with ij ii

then in any optimal solution to V(Pr) one of the following is true:
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!• = 1 or = 1

2- Pij,i = 1 i / ij i / z/

= 0 Vz

The proof is st aightforward

Proposition 5.2 Zet ZJ be an arc belonging to the shortest arborescence and 

ij and ii as defined above.

Consider

• otj^Q — Tnhn^jjf and — mmj^^jd।

• p*j and Pi2,i — mini^^pij

Define

1. pni = maz(0,p^j -p.ij)

p»2 = maa:(0,p^,z - pt,;)

Pn3 = max(0,pi,,z - Pt j)

/. p„4 = max(0, pit d -pÿj)

5. pn5 =

similarly define

Pn(j,l) = rnin^pnup^pns,^!^
and

PN = E^PnCb 0 with(j, Z) € X
wAere 7i= {(j, Z) | (j, Z) G 5 and i, 0 t/}

wztÆ S current shortest arborescence. Then

LB + PN < V(Pr)

The proof follows from propositional.

PJV is thus a valid penalty on the LB. To compute PN it is first checked 

whether the two items forming each arc in the shortest arborescence are loaded 

onto the same line, if they are not, penalties are computed.
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5.5 The overall algorithm for the packing lines

5.5.1 Introduction

As discussed before, to solve problem Pr, an enumerative tree search procedure 

is adopted. The branching is carried out on the variable indicating that 

item I follows item j on line i. Initially, the problem consists of all item lot 

sizes and the state of every line at the end of the previous horizon. The tree 
search starts at the beginning of the current horizon and evolves sequentially in 

time, setting one item on one line at every node. The relaxation to be resolved 

at each node deals only with the set of items not yet packed. A depth first 

procedure was chosen and backtracking occurs when a node is fathomed either 

by infeasibility or by optimality. The whole procedure can be seen as gradually 

building a complete schedule for the system.

A desirable property for a relaxation is to have a good chance of providing a 

feasible solution to the original problem (like for instance an LP, or a Lagrangean 
relaxation). Unfortunately the relaxation used here does not have this property. 

Thus, a feasible solution is obtained after all items have been loaded one by one.

The resource constraints are handled separately at every node. Once an 

item and a line have been selected by the branching rule, the item lot size is 
split into small sublots coresponding to what the line can pack at each time 

period. Before loading the sublots onto the line, a check is made, for each time 
period, to ensure that the resource constraints are satisfied. When they are not, 
the current time period is left idle and the next period is considered. This is 

done until all the sublots are loaded or the last time period of the horizon is 

passed with some sublots yet to be loaded, in which case the node is fathomed.

Since the resource constraints elongate a schedule, when there are ties be

tween items belonging to the same class, the one introducing the minimum idle 

time is chosen. This is done by carrying out an explicit enumeration. This is 
possible since the number of items in a given class is small. Alternatively, the 
item introducing the minimum number of products packed up to the current
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time period can be chosen. However, the choice between these two alternatives 
depends on the problem at hand.

Two feasibility tests are carried out, one is implicit in the solution of the 

machine loading subproblem and the other is described in the overall algorithm. 

It is worth stressing the importance of the feasibility tests since if they were 

not carried out the tree may develop towards an infeasible solution and due to 

the nature of the depth first selection, a great deal of effort will be spent by the 

search around a node where an infeasible solution was detected.

Finally, a heuristic solution for providing an initial upper bound to the 

problem was incorporated and is described in section 5.3.3.

5.5.2 Branching rule

The branching rule is based on priorities and starts by choosing a line, then 

choosing an item to load onto it.

Stepl. Initialisation

Let N be the total number of items to be packed on the horizon, m be the 

number of items already loaded and Ti be the time left for packing on line 

i.

Define I, as the last item set on i and
Kj = C^mini pij + Ciminictij

Ci,j = ^iPiJ 4"

For all 3 E {AT — m} find ij such that

— miriiCij

with

aij,3 < Tij
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Backtracking will occur if there is an item for which there is no such an

Step2. Selecting the line

For every line i form the set

CW = u I (W) e 3}

Where B is the shortest arborescence at this level of the tree

Choose the line it such that

|C(y| = maxi\Ci\

Step3. Selecting the item

Define

= K, -

Among all items such that ij = it choose the one that solves:

maxjF(j)

subject to

52 + 52 111 c^jJ^bJ,i — T .

at the current node while satisfying the resource constraints.

In case of ties between items of the same class, the one introducing the 

minimum number of products or the minimum idle time is chosen. Since 

there is, generally, a small number of items in a class (up to ten), this 

subproblem is solved using an explicit enumeration procedure.
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5.5.3 A heuristic solution

in an attempt to provide an upper bound to the search scheme, a simple heuris

tic algorithm has been devised. When this solution is close to the optimal, it 

reduces considerably the size of the tree.

Stepl.

As in the branching rule above, and if no ij is found, the heuristic has failed, 

stop.

Step2. Priority rule

Among all j E {N — m} find the item jh which solves:

q = maxjF(j)

where = Kj - % j

Set item jh in line ijh, where:

ctjh jh —

where is as defined in the branching rule,

if q < 0 then choose the couple (û, A) such that

c.hjh = mintminjCij

In both case the load on line ih should not exceed T{h

In case of ties between items of the same class resolve as in the step2 of 

the branching rule.

There is no guarantee that this heuristic will give a feasible solution. Indeed, 

when the problem is very tight it may fail at stepl.

89



5.5.4 An outline of the algorithm

in this section, an outline of the overall algorithm for the scheduling of the lots 
on the packing line is presented.

StepO. Initialisation

Compute an upper bound to V(Pr) using the above heuristic,

Initialise N(s) — {1,2,..., N], s = 0, Tt = T and UB to the value of the 
heuristic solution, if any, otherwise set UB = oo,

Stepl. Lower bounding

Stepla.

Solve problem Prll in N(s) with

ti = Ti — PLi

where PLi is a penality to account for the changeover, obtaining Ibl. If 
no feasible solution to Prll is found then go to step4,

Steplb.

Find the shortest arborescence on the graph consisting of the items in N(s) 

and the root consisting of items li obtaining lb3.

Steplc.

Compute PN the penalty on LB, if LB + PN >UP then go to step4,

Step2. Branching step

If N(s) 0, perform the steps in the branching rule as described above.

If no couple (i^jb) is found then go to step4,

Feasibility test:

90



Compute an upper bound to the number of time periods left in the horizon:

UT = X,(MAXL - Lt) - Bt 
t

where MAXL is the maximum number of lines that can be packing at 
a given time period, Lt is the number of lines that are packing at time 

period t and Bt is a lower bound on the changeover times which can be 

easily derived from the shortest arborescence.

Compute

BT = «.wk + E “ùj 
ieNW

where ia corresponds to the optimal loading for j in Prll, if

BT > UT

go to step4. , otherwise set

N(s + 1) = N(s) -

Ti = Ti — ciib,jb — chi, ,j

s = s + 1

if

£ <Ti~ P Li
3€lS.b

where IStb is the set of all items loaded on ib in the optimal solution to 

Prll, then update Ibl accordingly and go to steplb. , otherwise go to 

stepla.

If = 0 then

Step3. Feasible solution

Store the solution obtained and update UB

Step4. Backtracking
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If s = 0 then the incumbent is the optimal solution and stop, otherwise

If at the current node the selected variable is set to one, fix it to 
zero, update N(s) and 7;(s) and go to steplb

otherwise if it is fixed to zero backtrack to the father node: s=s-l go back 

to step4.

Remarks

1. In order to strengthen the bound lb3, the line selected for branching is 

the one where the last item has the maximum number of arcs directed 

from it in the corresponding shortest arborescence. An alternative is to 

choose the line onto which the maximum number of items was loaded in 
the machine loading subproblem.

2. Problem Prll is not solved at every node. When the line and the item 

chosen at the brandling step correspond to the same solution in the pre

vious Prll, Ibl is updated by subtracting Pibjb. This is done even when 

this is not the case and each unscheduled item can still be loaded on the 

line on which it was loaded in the solution to the previous machine loading 
problem. The lower bound is then updated accordingly.

3. At every decison node, in addition to storing the item and the line on 

which it is packed, the following are also stored:

The last item that was packed on the line before the current item.

The time periods where packing starts and ends for the current item.

The cost of the partial schedule.

4. PLi depends on the problem at hand and can be determined empirically. 

In the test problems carried out, PLi was set to

minj chiij

plus as many times the minor changeover as there are items in the class 

concerned.
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5. For every time period it is necessary to keep track of:

The number of lines that are packing.

The total number of material handling systems being used.

The total number of active connections

The number of fitters executing changeovers

The number of active operators.

6. At a backward step, when an item is fathomed, all the free items belonging 

to the same class could be fathomed without altering optimality. This can 
be done safely when the problem is not heavily constrained. However, if 

this is not the case, the search will not be exhaustive. A device has been 

introduced in the computer implementation, for chosing one or the other 

option.

7. Finally, when too many lines are dedicated to the packing of a size or a 

product, the search is not exhaustive since the order in which the lines are 
selected influences the problem feasibility. To remedy to this situation, 

a priority between the lines can be included so that a feasible solution is 

obtained quickly. In such cases, the solution becomes heuristic.

5.5.5 Handling the resource constraints

As mentioned above, in case of tie between items of the same class, the item 

which introduces either minimum number of products or minimum idle time is 

selected.
When the number of items in a class is small, this problem can be solved 

by direct explicit enumeration. In the situation considered here, generally, the 

number of items of the same format does not exceed ten, therefore an explicit 

enumeration procedure was implemented. Basically, every item in the class is 

loaded in turn, checking for every time period if the resource constraints are 

satisfied. The number of time periods of idle time introduced by the packing of 
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every item is computed. The item introducing the minimum number of periods 
of idle time is selected.

Given that the last packing period for the chosen line is and that the class 

s was chosen for this line with

Set containing the unscheduled items of class (pack size) p,p = 1,..., NC, 

the constraints to be satisfied are:

%!< Ft t — tj, (5.26)

mt < NO t = tj, ...'Tj (5.27)

< PIi,t t = tj,..., Tj (5.28)

Hn^/MCT] < MHS t = tj,..., Tj (5.29)
i

Where

NC = Number of pack sizes

MCT = Maximum number of out connections from one material handling sys

tem,

mt —Number of active men at period t,

n^t = Number of items of the same base product 1, packed at t,

Tj = Completion period for item j at the current node,

and recalling from chapter four that:

Pt =Maximum number of product that can be packed at time period t,

PIi,t =Maximum number of items belonging to the same product £ that can 

be packed at time period t

With all parameters as defined in the first section of this chapter and where 

constraints ( 5.26) ensure the number of products packed at t does not exceed 
the maximum allowed, constraints ( 5.27) ensure that the number of active men 
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does not exceed the number of men available, constraints ( 5.28) ensure that 

the number of items of product I does not exceed the number allowable and 
constraints ( 5.29) ensures that the number of active material handling systems 

does not exceed the total available and Q indicates the upper integer.

5.6 Conclusion

In this chapter, a branch and bound algorithm was developed for the packing 

lines. The bounds used were based on a relaxation of the linking constraints, 

that is those constraints linking the sequencing part to the loading part. How

ever, it was suspected that the bounds thus obtained would be low. To improve 

these bounds, penalties were computed. Though whether there will be improve

ment or not will certainly depend on the problem data. This feature is common 
to any branch and bound procedure.

The computational effort depends on the depth of the tree. Near the root, 

the effort will be function of the problem size; for a large problem, it will be 

quite substantial. When the tree evolves, the size of the subproblems becomes 
smaller and the computation effort reduces consequently.

When the current subproblem does not have a feasible solution, it will, 

generally, take a substantial amount of computing time to prove it, specially 

near the root. A maximum number of nodes could be fixed for the machine 

loading subproblem and if there is no feasible solution, the node is fathomed. 

This is not severe since if the machine loading subproblem is tight, there are 

less chances of finding a solution when the changeover times are included.

Bearing in mind that the aggregate nature of the long term scheduler will 

give constrained problems at the lower level, that is problems with few feasible 

solutions (or even problems with no solution), the search was oriented towards 

obtaining a feasible solution fairly quickly. If this is successful, the search can 

be stopped or resumed, depending on what the user thinks of the quality of this 

solution. When resuming the search, the depth of the backward move can be 
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made large so as to skip solutions close to the one obtained. Very often, though, 
the first solution is the optimal and the remainder of the search is used to prove 

its optimality. It will, then, be sensible to include some criteria for stopping 

the search. These could be a maximum number of nodes and/or a measure of 

the gap between the lower bound at the first node and the cost of the solution 

obtained.
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Chapter 6

Short term scheduling for the 

production-intermediate storage 

subsystem

6.1 Introduction

The production scheduling of the manufacturing units, with storage limitations, 

is considered in this chapter. The problem is first formulated as a mixed integer 

program. However, since a manufacturing unit produces one product at a time 

and due to the small length of the basic time period, the problem reduces to a 

(0,1) integer problem. The solution proposed uses a tree search on the integer 

variables, with bounds computed from the solution of a Lagrangean relaxation 

of the original problem.
This chapter is organised as follows: in the second section , the subsystem 

consisting of the manufacturing units and intermediate storage is described and 
the problem is presented. In the third section, a mixed integer formulation is 
introduced for the general problem. In the fourth and fifth sections, a solution 

procedure is developed, for the case where each product has its own storage 

facility. In the sixth section the solution is extended for the case where the 

intermediate storage is flexible. In the latter case a model comprising only one
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manufacturing unit is considered.

6.2 Description of the problem

6.2.1 Description of the systems

Unlike the packing lines subsystem which is basically the same in the different 
plants, the manufacturing subsystem varies significantly from one plant to an
other. However, it consists, invariably, of one or several manufacturing units 

that process one or more products and a number of intermediate storage units, 

where products are stored before packing. A manufacturing unit can either be 
dedicated to the production of one product or general purpose, in that it can 

produce more than one product, one at a time. Generally, a given product is 

manufactured at the same rate on all the manufacturing units that produce it.

The intermediate storage consists of silos which, like the manufacturing 
units, can be either dedicated to one product or flexible. Flexible silos can store 

different products, one at a time. Sometimes, however, there is no intermediate 

storage and the products are fed directly to the packing lines. The number of 

silos, if any, varies from one to ten.
In some plants, the storage facility is only introduced as a buffer between 

manufacturing units and packing lines; while in others, it is indeed used as a 

storing facility to allow for long packing runs and packing during periods where 

production is not possible.
The number of simultaneously active connections between the manufactur

ing units and the silos ( and the packing lines if such connections exist) is limited 

and the flow of product in the connections is limited. Also, some manufacturing 

units may not be connected to some silos.
There are two modes of production: in some manufacturing units the pro

duction is instantaneous, in others it is delayed. These two terms will be used 

hereafter to denote the two modes of processing. In a given plant, there could 

be one or the other type but not both.
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1. Delayed processing: In the delayed processing, the production is in dis
crete amounts, (batches), and it takes the manufacturing unit a certain 
time to process the batch. There are a lower and a upper limit on the 

amount of product manufactured by batch, the upper limit being deter

mined by the capacity of the unit, the lower limit by operational consid

eration, though sometimes processing is carried out at full capacity only.

2. Instantaneous processing: In this case, raw material in the unit reacts 

instantaneously to form the final product. There is an inflow of raw 

material and a outflow of final product without delay. There is an upper 

bound and a lower bound on the rate with which a manufacturing unit 

produces a given product. Again the amount of production is limited by 
the maximum capacity of the unit.

In both cases, when changing over from one product to another, a thorough 

cleaning is needed to avoid cross contamination. In the instantaneous mode, 

when a unit is set to a new product, it takes a certain time, generally of the 

order of one hour, to reach the full rate of production. These start up rates are 
sometimes significantly slow.

The plants operate in one, two or three shifts of eight hours a day. Some 

decisions are taken at the hourly level particularly in the plants with delayed 
process units.

6.2.2 The short term commitment

The costs involved in the operation of such systems, in the short term, are 

mainly changeover costs. However, although the products are manufactured at 

the same rate on the units where they can be produced, a production pricing can 

be introduced. This can be advantageous, when for example, one manufacturing 

unit is dedicated to one product, and another is shared by this product and 

others. In this case the cost of producing the first product on the second machine 
can be made higher than in the first.
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The changeover costs are introduced by the cleaning process and by the start 

up rates. Typically start up rates introduce a substantial loss in production. 
Inventory costs are not considered and there it is only required to use the 

intermediate storage efficiently, although cleaning cost may be significant in the 

case of flexible storage. In the case of flexible storage, a cost is allocated to 

the distribution of silos among the products. For products with high demand, 

this cost may be such that allocation of silos is encouraged, for those with low 

demand, high cost will be associated with the allocation of large number of 

silos.
Any schedule of the manufacturing unit should be consistent with the sched

ule of the packing lines, in the methodology developed in this thesis, the demand 

at the production level, for every product, arises from the packing lines sched

ule. Clearly, having determined the packing lines schedule, the objective is to 

find an optimal or a good feasible schedule for the manufacturing units which 

satisfies packing requirements at every time period.
The above problem is remotely related to the problem of lot sizing, although 

it is much simpler since there are no inventory holding costs involved but rather 

allocation of a limited storage space in the case of flexible storage. Moreover, 
in contrast to the multi-product lot sizing problem, at any time period, only 

one product can be allocated to any unit.

Without the storage space limitation, similar problems (see chapter 3), al

though more complicated, where studied in particular in [56], where the cost 

function included set-up cost only, and in [10] where there was a production 

plus an inventory holding cost to minimise and an ending inventory to build. In 

both case the machines where identical. In [55], Love studied a one facility, one 

product problem with storage limitations where production, set-up and inven

tory holding cost were to be minimised. He developed a dynamic programming 

procedure that uses a characterisation of the optimal solution.
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6.3 The basic model

in the following, a mixed integer formulation of the problem, which will serve 
as a basis for furhter developement in the following sections, is introduced. In 

this model, it is assumed that a product is processed at the same rate in all the 

machines that manufacture it. Moreover, in the case where storage is available, 

at any time period a product can be processed on at most one manufacturing 

unit . This implies that the quantity in storage and the total amount processed 

by one manufacturing unit at a time period can satisfy the demand at that 

period. Of course, this is not so when there is no intermediate storage. In 

this case either demand can be satisfied directly from the manufacturing units 

without bottlenecks or the problem is infeasible.

Let the manufacturing units be numbered i = 1, the products j = 

1,.., P and the time periods t = 1,..., T and define

yi^t — amount of product j produced by unit t at t.

0

0

if unit i is processing product j at t 

otherwise 

if unit i is set to product j at t 

otherwise

Sjtt = number of silos allocated to product j at time period t (integer), 

Ij,t— amount of product j in intermediate storage at the end of t, 

the problem can be defined as

Problem (Ps)

min 4- 4" fis5$

subject to
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Z %,1^1 Vi.t (6.1)
3

VM (6.2)
t

ZiJit zij,t—1

yi'j't^X'Zijj Vw,t (6.4)

A,* — 4,t-i + 52 y«J,t — dj,t Vj, t (6.5)
t

4, > 4<+i Vj,i (6.6)

Vt (6.7)
j

Vj,t (6.8)

to+mry

52 mr3Zi,3^Ui,3^ «0=1.....î-’nr+l (6.9)
t=to

c^,,. > Vj,t (6.10)

e {0,1} (6.11)

a;, €{0,1,2} (6.12)

Where

S Number of silos 

d^t is the demand for product j at t
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Cijtt cost of setting j, on i at t

ri,j,t cost of processing product j on i at t

Cj maximum capacity of a silo when filled with product j

mrj minimum run length for product 3 in multiples of time periods.

fj cost of silo allocation for product 3

and

• Constraints ( 6.1) impose that a manufacturing unit processes at most 

one product at any time period.

e Constraints ( 6.2) impose that at each time period at most one manufac

turing unit is processing a given product

• Constraints ( 6.3) is the set-up equation : set-up variable is equal to one 
if manufacturing unit was idle at t — 1 and is allocated to producing 3 at 

t,

e Constraints ( 6.4) ensure that production is allowed only if unit i is al

located to product 3 at t and is limited by Xa. This bound depends on 

the storage space available for product 3 at each time period. An explicit 

expression for computing X8 at each time period will be given in section 

6.4.2.

e Constraints ( 6.5) are the inventory balance equations

e Constraint ( 6.6) imposes that the inventory at the end of time period t 

must be at least equal to demand at time period t +1. This is introduced 
to cater for the time delay introduced in delayed processing, but they are 

not not valid for instantaneous processing.

• Constraints ( 6.7) ensure that the number of silos allocated to all products 

at t must not exceed the total number of silos available
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• Constraints ( 6.8) ensure that the amount in storage at the end of time 
period t should not exceed the space allocated to product j during period 
t.

• Constraints ( 6.9) impose the minimum run length constraint

• Constraints ( 6.10) ensure storage consistency: storage space allocated 

during period t should not be less than the amount in storage at the end 
of period t — 1.

The cost function contains the variables and The inclusion of the first 

variable allows minimisation the number of changeovers whereas the second 

allows minimisation of the number of time periods allocated product j. If 

only the first variable was included long run with low production level will be 

obtained. On the other hand if only the second variable was included small run 

and more changeover will be obtained. Including both variables will give small, 

compact run with high production. In order to limit the number of variables, 

the problem of storage allocation was formulated in terms of number of silos 

allocated to every product at every period . Indeed, if a schedule silo by silo is 
considered, the problem will be too large to solve. After obtaining the number 

of silos for every product, at every time period, the problem of the allocation 

of silos could be solved using a heuristic.

6.4 Dedicated storage

In a first attempt to solve problem (Ps), only the case of dedicated storage is 

considered, in section (6.5), a case with flexible storage and one manufacturing 

unit is presented. When the storage is dedicated, the last element in the cost 

function disappears, constraints ( 6.7) and ( 6.10) are discarded, the variable 

Sjit is no longer needed and constraints ( 6.8) becomes

^<Ci VM (6.13)

This problem shall be referred to as (Pd).
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6.4.1 The Lagrangean relaxation

The dualisation of constraints (6.1) gives the following Lagrangean problem:

(Pdr), min EEE+ EE /w(EZi^-1 ) 
i j t it j

subject to

( 6.2), ( 6.3), ( 6.4), ( 6.5), ( 6.6), ( 6.9) and ( 6.13). This set of constraints 

will be noted U.

When the vector of Lagrange multipliers tt is fixed the Lagrangean problem 

decomposes into P one product subproblems:

(Pdfj)K minZijtfUi J tçu 53 52 4~ (ri,j,t 4-
i t

These subproblems can be solved by a simple dynamic programming recur

sion.

6.4.2 The one product subproblem

Due the short length of the basic time period and to the fact that a manufac

turing unit processes one product at a time, when unit i is allocated to product 

j at time period t, the quantity y^t will be computed using a simulator which 

carries out a simple simulation through the time period. Thus, the one product 

problem reduces to finding the optimal sequence of z^.

This problem is solved using a dynamic programming procedure. A stage 

will correspond to a time period t. There will be M + 2 states at every stage. 
Each of the M first stage corresponds to the production of the current product 

by the relevant unit. The last two stages correspond to the situation where the
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current product is not produced at the current time period, in one case with 

positive amount in intermediate storage while in the other with zero amount. 
This is of course possible since a product is manufactured at the same rate 
on the units where it can be manufactured. At the initial stage, the storage 

corresponds to what it was at the end of the previous horizon.

The ending inventory will be limited only by the space available. This should 

not introduce major discrepancies since the size of the storage dedicated to a 

given product depends on the demand for that product. On the other hand, it 

is clear that when there is no demand for a given product in the current horizon, 

there will be no production run for it.
The recursion for a one manufacturing unit problem can be represented by 

the graph shown in figure .1 below, where

e in state (3), the manufacturing unit is producing the current product,

• In state (2), the manufacturing unit is not producing the current product 

and the amount of product in intermediate storage is positive.

e state (1), is similar to state (2) without product in intermediate storage.

The dynamic programming recursion is

W) = o

Ij,o = Ij

= minateU(Flt(t - 1) + ^(at))

where Ij is the storage at the end of the previous horizon for product j • 
and

The solution of this problem can be time consuming. However, as will be 

shown below, the simplicity of the cost function allows the search to be limited to

106



Figure .1: Network for a one manufacturing unit problem

a few schedules. Consider the one product subproblem when no unit is allocated 

(in the tree search) to a particular product. Suppose that silo capacity is greater 

than the minimum run length, allowing for a production run without demand. 
Due to the form of the cost function, it is clear that if the first period where 

demand is positive is tn, then on a given manufacturing unit and prior to in 

the following policies are feasible and have the same cost:
Produce from ti, the first period, to 4- mrj and do not from t1 -f mrj to 

tn •
Do not produce at produce from 12 to <2 + mrj and do not from <2 + mrj 

to tn.
And in general, do not produce prior to tk, produce from t^ to t^ 4- mrj and 

do not from tk 4- mrj to tn where k = 1, ...,tn — mrj and tn — mrj > 1.
There is no loss of optimality in discarding all policies that allow for pro

duction prior to tn — mrj. Moreover, among all the above policies, the policy 

that starts production at tn — mrj minimises the waiting time in intermediate 

storage.
Therefore, instead of considering all the time periods in the horizon for the
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one product subproblem, the recursion is started at max(tit ta — mrj). The 

recursions are then carried out normally until period where there is no de

mand and the minimum run length constraint is satisfied. All periods from te 

to ta2 — mrj, tai the next period with positive demand, can be skipped, the 

state of the units remaining stationary from te until tai — mrj. This procedure 

is repeated until there is no more demand.

In the case where any of the periods tab with positive demand is allocated 

to a particular product, in the tree search, the beginning of the recursion is 
shifted backward. This is done until a feasible solution is found or the initial 

time period or the last period of the previous production run has been reached 
without finding a feasible recursion, in which case there is no feasible solution.

The simulator

As mentioned above, due to the structure of the system and to the mode of 

processing, a simulator which computes the quantity to produce is employed. 

Basically the simulation through the time period takes into account the mode 

of process, the storage space available at the beginning of the time period, the 

demand and the flows.
At any time period, the policy will be to produce as much as the storage 

space allows. This is possible and should not lead to infeasibility due to unre- 

solvable bottlenecks since the length of the basic time period is small enough, 

of the order of four hours.
Ideally, the demand is taken out of storage at a steady flow and production 

is made at constant rate during the whole time step. However, this is not the 

case here. Indeed, in the schedule for the packing liness, packing was allowed 

during a time period where minor changeovers are executed. This means that 

demand for product to pack is not uniform during the time period. Nevertheless, 

this constraint is ignored and it is assumed that whenever there is demand, it 

is uniformly distributed ( of course, to take this into account a smaller time 

period must be considered, thus increasing the size of the problem).
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On the other hand, due to the start up times, production rates are not 

constant, at least during the first hours or so of manufacturing a given product. 
During these start up times, the production rate is supposed to evolve linearly 

in time until it reaches its nominal value.

Two simulators are introduced, one for each mode of processing.

Instantaneous processing In this case, the following is supposed:

1. The rate of production evolves linearly during the start up time

2. The start up time is less than the length of the time period

3. demand is either taken from storage or directly from the manufac

turing units.

The maximum amount of product j that manufacturing unit i can produce 

in a given time period is

Vn = ((%% + (#- ty

where

• t^j —start up time of unit i for product j

$ v, j=speed of unit i in reaching nominal rate of product j

e rnij=nominal rate of production of unit i when producing product 

i

• H=length of a time period in hours

Given that the storage available at the beginning of time period i is 

Cj — Ijj-1 if the demand is taken into account, the upper bound on the 

production of j at t is

Xs — Cj w djtt)

Thus the amount of product j produced by unit i is
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yijf = min(Xa, yn)

A lower bound can be imposed on

Delayed processing In this case the following is assumed:

1. There are no start up rates.

2. At the end of a time period, a unit has to be empty.

3. There is a minimum production by batch.

4. The length of a time period is greater than the sum of the time to 

process full batch and the time to empty the unit.

5. If the unit cannot be emptied during the time period then production 

has to be decreased.

6. A unit can be connected to only one silo at a time.

Let

• j/t;max=Maximum capacity of unit i,

• fmax—maximum flow out of a unit to storage,

e Y6=amount produced in batch b,

• tb =time to empty batch 6,

• trb = time to produce batch 6,

• ymin =minimum production allowable by batch,

• Ybinc= increment of production,

• Xa as defined above.

The simulation is carried out as follows

0. = 0

1. if, = 0, Yi, = 0
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2. Fix the batch size to the maximum possible: either the full capacity 
of unit j or the maximum space available

Yb — minÇyi  ̂max^

If Yb < ymim stop production for this time period, 

otherwise

3. compute the time to empty unit

l)If the batch size is greater than the space available empty at max

imum outflow i.e.

* . _ ‘ - 1 %b = Yb/ fmax

2)If the batch is smaller and there is a demand, empty, at maximum 

flow until there is no more space then adjust flow out of unit to flow 

out of storage i.e.

u tb — Xs( fmax + (Yb — Xg)/dj't

3)If there is no space, adjust flow out of unit to flow out of storage 

i.e.

'b = Yb/d^t

4. Time elapsed is tp = tp + tTb + 4

If (H — tp) > 0 then total produced in period t so far is:

yi,j,t = yi^t + Yb

and the amount in storage is:

= Ij.t-i — djj + Yb + Ij)t

6 = & + 1 go to 1,

if (H - tp) < 0 , then

b = b,

tp — tp trb tb

Yb — Yb — Ybinc go to 3.
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6.5 The solution procedure

6.5.1 Overview

In order to solve problem (Pd), a binary depth first tree search procedure on 

the variables corresponding to the decision to allocate manufacturing unit 

i to product j at time period has been adopted. At a given node of the tree, a 

number of variables is set to zero or one and the remainder is free. An attempt 

at fathoming the node is made by computing the Lagrangean dual. Fathoming 

occurs when the lower bound obtained is greater than the incumbent and when 

the subproblem has no feasible solution. When fathoming is successful, a back
ward step is carried out; when it is not, a forward step is carried by selecting 

the next variable to set to one or zero, according to the following branching 

rule.

6.5.2 Branching rule

At first the couple (ip> tp\ i.e. machine and time period, for which

*j.t ITXzu.t — 1)
5

is maximum, is selected.

After constructing the set

Jp = Ï3 I zWp = 1}

the product jp E Jp for which

— tp)

is selected where

tj is such that dj^. > 0 

with
tj > tp, djit = 0 Vt | tp < t < tj j E Jp
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In other words, the most overloaded line, for all time periods, is selected 
and the product for which the next demand, after the time period where the 
overload has occurred, is the closer is selected.

Then set

Z ip.jp,— 1

^pJ^p = 0 W € «4, 3 / 3p

and store the subproblems

zipJP.tp = 0

zipJJP = 1 Vj € Jp, 3 / jp

in the list of subproblems.

6.5.3 The first node

At the first node of the tree, the relaxation of problem (Prd), with all variables 

free, is considered, the vector of Lagrange multipliers is initialised to zero, and 

a large number ( >15)of iterations of the subgradient algorithm is performed. 

To update the Lagrange multipliers, the following formula is used,

j i,t 3

with V(Pd)• being an approximation to V(Pd)

0 < 7 < 2 7 is initialised to 2 and halved when the lagrangean fails to 

increase after 5 iterations.

and V^Pdr)* is the solution to the Lagrangean problem with the current 

multipliers.
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If, at any iteration, the solution to the current Lagrangean problem satisfies 

the complementary slackness conditions, that is

3

it is optimal and feasible in the original problem and the procedure stops. 

If, on the other hand, it happens (which is very unlikely here) that the solution 

is feasible but does not satisfy the complementary slackness that is:

-1) < 0 vu
3

the solution is stored and the search may be stopped. When the maximum 

number of iterations is reached, the best VÇPdr),, the corresponding multipliers 

are stored and the tree search is started.

6.5.4 General node

First, one variable is set to one while others are set to zero according to the 

branching rule. A lower bound is then computed for the subproblem thus ob

tained, by performing a small number of iterations of the subgradient algorithm. 

The Lagrange multipliers and 7 are initialised to the best obtained at the father 

node and updated as in the first node. If at any iteration, the lower bound is 

greater than the best solution so far or any of the one product subproblem is 

infeasible, the node is fathomed. The node is also fathomed when the solution 

satisfies the complementary slackness, in which case it is stored as incumbent. 

On the other hand, if the solution is feasible but does not satisfy the comple
mentary slackness, it is also stored as incumbent. In this latter case and in case 

where no feasible solution is obtained and the node is not fathomed a forward 

step is carried out.
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6.5.5 Backtracking

The last subproblem stored in the list is selected, the Lagrange multipliers are 

set to the best multipliers obtained at the first node, the number of iterations is 

fixed to an average number (>8). If the variable defining the current subproblem 

is set to one, it is fixed to zero and another ,free, variable, corresponding to 

loading an alternative product on the same line, at the same time period is 

set to one, creating a brother node. If no such variable can be found, all the 

variables that were fixed at this level are freed and backtracking to the father 

node occurs. If the list is empty the procedure is stopped. The incumbent 

corresponds to the optimal solution.

6.5.6 Updating parameters of the coordination process

The updating of the parameters P(t)and Plfat) of the coordination device, 

discussed in chapter 4, can now be presented. Recalling the following:
P(t): maximum number of products that can be packed simultaneously in 

the whole packing room at period t,

PlÇj^t): maximum number of items belonging to the product j that can be 

packed during time period t,
PA(t): number of products packed at time period t in the current packing 

lines schedule,
PIA(j,t): number of items of product j, packed aduring t in the optimal 

packing line schedule,
and that when at Step 4. of the coordination algorithm no feasible solution 

is obtained at the manufacturing units level, a new pass r has to be carried 

out. For this PT(t) and PP^j^t) are to be updated so that a new packing 

lines solution satisfying them is sought. When there is no feasible solution 

to the manufacturing units subproblem two situations may occur: either the 

search stopped prematurly because a one product subproblem is infeasible or 

the search ended without finding a feasible solution. For each of these two cases, 
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the updating will be different:
1) The search stopped at time period tb for product j. In this case, PIr(jt, tb) 

is updated as follows:

pr(ji,tb) = PiA(jt,tb)-pM

where pid is fixed by the user.

In other words, the maximum number of items belonging to product j that 

can be packed at time period tb is decreased in order to reduce the demand for 

this product at that time period.
2) The search ended without finding a feasible schedule. In this case, tb can 

be chosen as one of the time periods where branching was carried out in the 

manufacturing units subproblem. Here, the vector PQ&) is updated as follows:

P^-PA^-Pd

where pd is fixed by the user. The maximum number of products that can 

be packed in the packing room at time period tb is decreased in an attempt to 

alleviate the bottleneck provoked by product competing for the same machine 

at time period tb. This procedure is of course applicable whatever the mode of 
production or the silos type, flexible or dedicated.

6.6 A case with flexible storage

6.6.1 Extension of the basic model

In this section, a problem with flexible storage is considered. For reasons of 
dimensionality, a case with only one manufacturing unit is considered. More 

manufacturing units can, of course, be considered by requiring that the variable 

Sj,t takes only two values, thus limiting the sizing of the dynamic programming 

procedure. To keep the generality, the variable will be left with the sub

script i.
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The mathematical model given in the third section is again taken as basis. In 

order to simplify the silos allocation, total production during the time horizon 

will be forced to equal the cumulative requirement, thus imposing that ending 

inventory for all products to be zero:

Iij = 0 Vj- (6.14)

In order to avoid allocation of silos that will stay unused during the whole 
time period, a supplementary constraint is introduced. A convenient way of 

expressing this constraint is to impose that

if for any t,j

sj,t - > 0

and

s5,t — > 0

then the corresponding state is infeasible. Th&f constraints will be referred 
to as 6.16.^ /

These constraints ensures that a state is infeasible if the number of empty 

silos is positive at its beginning and at its end.

6.6.2 The Lagrangean relaxation

As in (Pdr), a search tree with Lagrangean relaxation is developed. However, 

in addition to dualising constraints ( 6.1) with multipliers constraints ( 6.7) 

are also dualised with multipliers &, obtaining the new Lagrangean problem:

Problem (Psr)^)

+ (ru,, + ~ S)
3 t 3 * * 3

Subject to ( 6.3), ( 6.4), ( 6.5), ( 6.6), ( 6.7), ( 6.8), ( 6.9), ( 6.10), (6.11), 
( 6.12) ( 6.141 and (6.16). These constraints will be referred to as CR. Again, 
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the Lagrangean problem decomposes into P subproblems when the multipliers 

7r and £ are fixed, giving:

(Psrj)^ minZijttUijttSjtecR 52 cVi,t + (riJ,t + + (6 +t
6.6.3 The solution procedure

As in the dedicated storage case, the quantity to produce in one time period is 

computed using the simulator.
The mode of processing in this case is instantaneous, the simulator for the 

instantaneous mode is used. The formula for computing the space available is 

altered to take into account the variable Sj#. Thus:

X, = CjSjtt - 1 — ij,t)
On the other hand, since the ending inventory is forced to be zero for all products 

the equation for computing the variable becomes:
t—T 

yi,j,t = min {X„ y„ 52 t=t
Each of the resulting P integer subproblems is solved using a dynamic program

ming procedure. In this case, each state corresponds to one of the two states 

(on or off) of the manufacturing unit together with the number of silos allocated 

to the product. As mentioned above the number of silos can be zero, one or 

two. This gives the acyclic graph shown in figure 6.2, where:

• In state(6) the manufacturing unit is producing the current product and 

two silos allocated to this product.

• state(5) as state(6) with one silo

e state(4) as state (6) but no silo.

e In state(3) the manufacturing unit is idle and two silos are allocated to 

the current product.
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• state (2) as state (3) with one silo

• state (1) as state (3) with no silo.

Figure 6.2: Network for the flexible storage problem

161

(3)

UI

The considerations introduced for the dedicated storage case are still valid 

here. The dynamic programming recursion will be the same as above except 

that

Fît = rnin^cR^Flt^t - 1) + g (st))

g (st) = g(st) 4- (f, + £t)sj,t
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The solution procedure is the same as before but the branching rule is 

slightly altered to account for the silos allocation.

6.6.4 Branching rule

As long as the solution of the relaxed problem does not satisfy ( 6.1) , the 
same branching rule as in problem Pd is invoked. When these are satisfied and 

constraints on the number of silos, ( 6.7), are not, branching is again carried 

out on the variable but according to the following rule

1. Find the first t for which — S > 0, call this t(s)

2. Let J, = {j | > 0} then

For all j € J» find the products with a run greater than the minimum 
run length, prior to tm, if there are none, fathom the node, otherwise,

3. choose the product with the longest run, say j5, and the last period of 

this run, tg, and set

, = 0

The motivation behind the above rule is that instead of trying to reallocate the 

silos for the time period where the constraint was violated, the longest run is 

shortened, hoping that this will force feasibility by reducing the storage needed 

by the product concerned. This is done until either feasibility is obtained or 

no run is longer than the minimum run length while the storage space limit is 

violated, in which case the node is fathomed.

6.7 Conclusion

In this chapter, a solution methodology was proposed for the production-storage 

stage. A tree search procedure based on a Lagrangean relaxation was adopted. 

The small length of the basic time period and the fact that a manufacturing 
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unit can produce at most one product at a time period allowed the real valued 

variable, here the amount to produce in one time period, to be calculated us

ing a simple simulation procedure. The minimum run length constraint was 

formulated in terms of multiple of time periods. However for problems where 

the length of the time step is relatively large, this can no longer be possible. It 

can be argued that the minimum run length constraint is not important since 

it is sufficient to minimise the number of set-up to satisfy it. When this is not 

so, there are no feasible solutions that satisfy the minimum run length and the 

packing line schedule must be perturbated.

The simplicity of the cost function allowed a reduction of the effort needed 

for solving the one product subproblems by considering only some particular 

schedules.
For the flexible silos case, the silos allocation was formulated in terms of 

number of silos allocated to a particular product in each time period. The 

silo allocation was priced so that high demand product would be allocated 
more space than low demand products. It is possible not to include the silos 

allocation explicitly in the cost function, rather in the dynamic programming 

procedure priority will be given to one or another value of s^t. In this way, silos 

allocation can be seen as heuristic. This version was actually implemented.
Here as in the packing lines subsystem, due to the tightness of the problem, 

a feasible solution is often sufficient.
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Chapter 7

Results

7.1 Introduction

In this chapter, some experiments carried out on a number of test problems are 

described.
In the first section, computational results involving only the packing lines 

are presented. In particular, the behaviour of the algorithm under the variations 

of structural and operational constraints is analysed. The data were generated 

randomly.
In the second section, two-stage problems are considered. The data for these 

problems were gathered form real life manufacturing facilities. The lot sizes are 

output from a long term scheduler.
Full data for all problems are given in appendix C for the problems consid

ered in the first section and in appendix D for those considered in the second 

section. The program was written in FORTRAN77 and run on a PRIME 9955.

7.2 Packing lines algorithm

It is not easy to generate data to test the algorithm, particularly when it comes 

to testing a particular problem for feasibility. Indeed, there is a risk that the 

problem generated may be too easy, in this particular case, a problem with 
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too slack a demand. In this respect, for each structure, demand was gradually 
increased until it was impossible to obtain a feasible solution after 3000 nodes.

The problems tested here have a number of characteristics in common. 

These characteristic are based on a real life situation. The pack sizes are divided 

into two or three groups: small, large and medium (if any). Similarly, the pack

ing lines are divided into two or three subgroups, according to the sizes they 
can pack. In particular, the lines that pack a particular group cannot pack any 

item of any other group. An item can be packed on all the lines of the group to 

which it belongs, with different rates. The best packing cost is allocated to the 

line corresponding to the best packing rate. Change over cost between items 

sharing the same best line are low whereas higher changeover costs are incurred 

between items which do not share the same best line.

The horizon is of ten shifts of eight hours each, the length of the basic time 

period is always one hour. Results are reported for four basic structures, a five 

lines problem (P5), a six lines problem (P6) and two seven lines problem (P71) 

and (P72). The behaviour of the algorithm is analysed under variation of the 

demand. Also, the effects of the distribution of items between the products for 
problem (P5) and the effect of varying the operational and structural constraints 

for the other problems are analysed.

7.2.1 Problem (P5)

In this structure, the seven silos are dedicated and feed directly the packing 

lines. A silo can feed one packing line at a time, thus at each time period only 

one item of each product can be packed. There are seven products, twelve sizes 

and twenty three items.
Results are shown in table 7.1. Three size/product distributions were tested. 

In the first, (P5i), the number of sizes per product does not vary too much with 

the products; in the two other (P5g), (P5a), some products have a high number 

of items while others have just one. Two demands were analysed; one small, 

Pl, and the other large, P2. P5i was tested with both Pl ( P510) and P2 
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(-P5ii). (P52) and (P5a) were tested with D1, (PSzo) and (P5ao). These last 
two problems were also run with the possibility of packing two items of the 
same products at a time period, (PSai) and (P5si). As can be seen in the table 
although problem (P5i) was relatively easy to solve for demand DI, the search 

did not terminate for problems (P5î) and (P5s) with the same demand. This 

is due to the fact that for these product distributions the lower bounds are too 

far from the optimum and thus are no longer of any help.

7.2.2 Problem (P6)

In this problem, the silos are flexible and feed the packing lines through six 

materiel handling systems. There are seven products, fourteen sizes and twenty 

five items.

Results are shown in table 7.2 Five demand distribution were tested. The 

optimal solution for problems with slack demand (P64) and (P65) was found 

early in the search. This was not the case for problems with higher demand. In 

particular, for problem (P63) the algorithm did not find a better solution than 

the heuristic. This latter problem was rerun with a higher level of manpower. 
In this case, two solutions were found and the search ended after 2945 nodes 

and 65s. The lower bound at the first node was the same in all problems.

7.2.3 Problems (P71) and (P72)

In problem (P71) there are seven packing lines fed by three material handling 

systems. There are eight product^ fifteen sizes and thirty items.

Results are shown in table 7.3. Again low and high demand were tested 

and the same features as above were observed.

All problems were rerun with a precision of 5% within the optimum, i.e. 
fathoming was allowed if the lower bound was greater or equal to 95% of the 

incumbent. In this case, problems (P71i) and (P71j) ended after 57 nodes and 

97 nodes respectively while problem (P7I3) did not end after 3275 nodes. The 
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lower bound at the first node is slightly higher for problems (P71i) and (P7I2) 
than for the other two problems.

Problem (P72) consists of seven packing lines fed by four material handling 

systems. There are ten products, sixteen sizes and thirty items. Globally, the 

same results (table 7.4) as before were obtained.

The following abréviations are used in the tables:

• HS: heuristic solution,

e LB1: lower bound at the first node,

• Nsol: Number of solution obtained,

e F sol: first solution obtained,

• Lsol: last solution obtained,

e Opt: Optimality: if Yes, the optimum was found, if No it was not,

• CPU time: total CPU time elapsed before either the optimum was found 

or the search was stopped,

• Nodes: total number of nodes generated,

e Node: node at which the solution was obtained,

e Cost: cost of the solution.

7.3 Computational results for two-stage sys

tems

In this section, some experimental results concerning the detailed scheduling of 

production for two production-storage-packing facilities are presented. The two 

facilities correspond to two plants operated by a major producer of detergents. 
The two plants studied were chosen because they are typical of many others and
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Table 7.1: Results for problems series P5

Problem PS LB1 Nsol F»ol Lsol Opt CPU Time Nodes

Node Cost Node Cost

P5 w 52 1 24 60 Yes 8s 310
P5U 52 2 28 63 1986 62 No 90s 3000

PÔ20 52 1 306 72 No 80s 3200

P52i 62 52 1 24 61 No 60s 3000

P53o 52 1 100 79 No 70s 3000
P53i 62 52 1 24 61 No 60$ 3000

Table 7.2: Results for problems series P6

Problem PS LB1 Nsol Fsol Lsol Opt CPU Time Nodes

Node Cost Node Cost

P6i 80 66 1 26 79 No 50s 2400

P63 66 1 170 72 Yes 32s 1545
P63 81 66 0 No 3000

P64 75 66 1 106 71 Yes 12s 461

P65 74 66 2 26 71 194 69 Yes 10s 385
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Table 7.3: Results for problems series P71

Problem HS LB1 N sol Paol Lsol Opt CPU Time Nodes

Node Cost Node Cost

Pili 82 2 31 112 87 103 No 120s 3000

P712 82 2 31 114 124 106 No 80s 1000

P713 80 5 65 123 1347 110 No 100s 3280

P714 80 2 619 116 681 101 Yes 25s 790

Table 7.4: Results problems series P72

Problem HS LB1 Nsol PsoZ Opt CPU Time Nodes

Node Cost Node Cost

P72i 84 79 3 31 83 331 81 Yes 12s 409

P722 81 97 Yes ils 24

P723 79 2 51 100 743 99 Yes 13s 847

P724 79 2 43 108 49 102 No 90s 3500

P725 81 2 43 119 173 102 No 122s 3600
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are, structure-wise and operations-wise, very dissimilar. The first plant will be 
referred to as PS PI, the second as PSP2.

Although the lot sizes are output from the long term scheduler, due to the 
aggregate nature of the model at this level, there is no guarantee that an overall 

feasible solution exists. Therefore,

it will be necessary, sometimes, to alter the lot sizes in order to obtain 
feasibility. For this reason, in the following, overall feasibility, rather than 
optimality, will be analysed. Coordination was carried out by the user. In 

order to be acquainted with each system, a number of small problems, not 

reported here, were tested. In all test problems, only the first packing lines 
solution was considered. In the charts giving the packing lines schedules, the 

first number indicates the product,while the second indicates the pack size.

7.3.1 Computational results for PS PI

Full data for this problem are presented in appendix O, here only the main 

characteristics are presented. The facility consists of:

a) One manufacturing unit of the continuous type operated three shifts a 
day. It manufactures four products.

b) Four small capacity silos, each dedicated to one product and acting mainly 

as buffers.

c) Three high capacity, general purpose silos.

e) Two material handling system. This implies that only two products can 

be packed simultaneously.

d) Six packing lines operated two shifts a day. Packing rates are relatively 

high, compared to the manufacturing unit rate. Changeover times are not 

sequence dependent. Major changeovers are of eight hours each and minor 

changeover times are of one hour each. There is a pool of thirty five operators.

The long term horizon consists of four weeks, the short term of one week, 

that is ten shifts of eight hours. Four tests (Til, T12,T13, T14 ) were carried 
out on a rolling horizon basis, each corresponding to a basic time period of the 
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long term horizon. For all the tests, the length of the basic time period for the 

manufacturing unit was four hours whereas that for the packing lines was one 
hour. . Since every day the manufacturing unit operates one shift more than 

the packing lines, the last shift for the manufacturing unit of the preceding 

horizon was allocated to building initial storage for the current horizon. Due 

to low rates at the manufacturing unit, the maximum quantity that can be 

packed of a given product at any time period (hour) was fixed to 40 tons. The 

minimum run length constraint was expressed in terms of the minimum quantity 

to produce at the time period where the set up was carried out. This quantity 

was set to 20 tons for all four problems.

Test Til

The initial packing lines schedule is shown in figure 7.1, and the resulting 

demand for base products is shown in Table Al. This demand did not give a 

feasible schedule. Infeasibility occurred for product 1 at time period 4, which 

correspond to time periods twelve to sixteen at the packing lines level. At these 

time periods four items of product 1 were packed. The maximum number of 

items packed for this product at time period 16 was decreased from four to three. 
On the other hand product 3 was delayed, ie packing of any item of this product 

was forbidden from period 27 to 36, because there is likely to be a bottleneck 

at these periods due to heavy demand for product two. The new packing lines 

schedule is not shown, again it did not give a feasible schedule. Infeasibility 

this time occurred for product 3 at time period 16. The maximum number of 

items of this product that can be packed was decreased from 4 to 3 for hour 40 

to 47. Two more iterations were carried out before infeasibility occurred at the 

packing lines (no solution was found after 2000 nodes). The last packing lines 

schedule is shown in figure 7.2 and the corresponding product demand in table 

A2. The altered demand is shown in table A3. The production schedule and 

the silos allocation are shown in tables 7.5 and 7.6 Initial inventories were: 

110 tons for product 1 and 68 tons for product 4. Feasibility was achieved at
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100% for products 1 and 2, at 97.4% for product 3 and at 93% for product four.

Test T12

The demand (table Bl) arising from the initial packing lines schedule ( 7.3) 

gave no solutions. This demand is too scattered, in order to ”lump’ it, packing 

of product 2 was forbidden from period one to period 16 and that of product 
four was forbidden from period 1 to 48. This gave the packing lines schedule 

shown in figure 7.4 and the demand shown in table B2. There was no feasible 

schedule at the manufacturing unit but this was due to the minimum run length 

constraints: there were small isolated demands for products 1 and 2 at periods 

13 and 19 that could not be satisfied from storage. Eliminating these two 

negligible lots gave the demand shown in table &3. The production schedule 

and silos allocation are shown in tables 7.3 and 7.4 Initial inventories were: 

117 tons for product 1 and 68 tons for product 3. Feasibility was achieved at: 
98% for product 1,98% for product 2 and 100% for product 3 and 4.

Test T13

Again, the initial packing lines schedule ( 7.5) did not give any solution at the 

manufacturing unit level. Here, too, the demand (table Cl) is too scattered, 

and in order to lump it, packing of product 3 was forbidden from time period 

1 to 34 and that of product 1 form 20 to 30. Also, only packing of one item 

of product 1 was allowed from period 33 to 45 since it seems that there will 
be bottleneck at these periods due to heavy demand for product 3. Two other 

iterations were carried out in order to resolve bottleneck involving product 1 

and 3. Before that however the schedule was frozen, ie packing of product 2 
was forbidden from period 36 to 80 and that of product 4 form 34 to 80. The 

last schedule is shown in figure 7.6 and demand in table C2. This demand was 

altered as in table C3. Initial inventories were 72 tons for product 1 and 68 

tons for product 4. Feasibility was achieved at 94% for product 1, at 100% for 

product 2, at 96% for product 3 and at 93% for product 4.
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Test T14

The strategy employed is as before: try to lump the product demand: this 
was done mainly for product 3. Then bottleneck involving product 1 and 2 

at periods 1 to 4 was resolved by decreasing the number of items packed for 

product 1 to one from period 1 to 8 and to zero from period 8 to 16. The final 

packing lines schedule is shown in figure 7.8 and the products demand in table 

DI. The altered demand, production schedule and silos allocation are shown in 

tables D3, 7.9 and 7.10 respectively. Initial inventories were: 118 for product 

1 and 72 for product 2. Feasibility was achieved at 99% for product 1, and at 

100% for products 2, 3 and 4.

7.3.2 Computational results for PSP2

As for problem PSP1 complete data are in appendix. The plant consists of: a) 
Four manufacturing units of the batch type: unit 1 is dedicated to product 1 

unit 2 makes product 1,2,3,4,5; unit 3 is dedicated to product 6 and unit 4 is 

dedicated to product 7.
b) Seven silos, all dedicated to a particular product. There are no material 

handling systems. At any time there may be at most one connection from one 

silo to the packing lines, thus simultaneous packing of items of the same product 

is not possible.
c) Four packing lines. Packing line three is dedicated to packing product 6 

and 7. Changeovers are not sequence dependent. Major changeover times are 

of eight hours, minor changeover times were less than one hour and not taken 

into account.
There are eight weeks in the long term horizon and every short term is 

made of two weeks. The length of the basic time period for the packing lines 

subproblems is of two hours and that of the manufacturing units is of four hours. 
Again, only the first solution at packing lines was considered and as before four 

test problems ( T21, T22, T23, T24) corresponding to time periods of the long 
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term horizon, were carried out. For every horizon, initial storage was taken as 

the ending storage at the previous horizon.

Test T21

The initial packing lines schedule and the corresponding demand are shown 

in figure 7.9 and table El. No feasible solution solution was obtained. The 

following perturbations were introduced:

1. Do not pack product 1 from period 1 to 6.

2. Do not pack product 2 from 1 to 4.

3. Do not pack product 3 from 1 to 20.

4. Do not pack product 5 from 1 to 50.

The reminder of the perturbations was to introduce delays, particularly for 

product 1 which production rate is relatively low. Feasibility was achieved at 
100% for all products. Initial storage of 10 tons was introduced for product 7.

Tests T22, T23 and T24

For all these tests, perturbations concerned mainly product 1, and were carried 

out in order to introduce delays in the packing of this product. Feasibility was 

achieved at 100% for all products. All results are shown in the corresponding 

tables and figures. Initial storage were the accumulated storage from previous 

horizon.

Abbreviations used in the tables

Pr: Product

Tp: time period

Pi: Product number i,

Amt: Amount produced of the current product during the current time period
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Mi Manufacturing unit i

When Pr, the product number, is equal to zero, the coresponding manufacturing 

unit is idle. In all tables showing the demand arising from the packing lines 

schedule, the first column indicates the time period. In the second column, the 

number 1 indicates that the packing line can pack in the coresponding time 

period, ** indicates that it cannot pack. All the other columns corespond to 

the demand for the products, in tons (column 3: demand for product 1, column 

4: demand for product 2,etc...).
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Figure 7.1: Til: First schedule for the packing lines

1 I'» JI <2 | |__ 3,2 II 2,2 |
1 4,1 II 1.1 II 2.1 _ ___ Il 3.1 1
1 1.2 1 Lm c 3,2

1 1.4 II 2,4 1II 3'4 || 3.4 |

1 13 ] |___ El II 3,4 || 3,4 |
1 1,5 ZU 1 2'5 II 3.5 | |_____4,3 |

Table Al Til: Demand coresponding to the first packing lines schedule

29
30

n n ri H 
H H H H 

cj C
d 

C
d C

d G
J 

C
d 

C
d C

d 
C

d

1 113. 4000 0. 0000 0. 0000 6. 0000 0. ODDO 0. ODDO
1 151. 2000 0. 0000 0. 0000 6. 0000 0. ODOO 0. 0000 0. ODD3
1 131. 3600 0. 0000 0. 0000 0. 0003 0. ODDO 0. 0000 •D. DODO
1 131. 3600 0. 0000 0. 0000 14. 8000 0. ODDO 0 DODD D. DOD:

0. 0000 0. 0000 0. 0000 0. 0000 0. ODDO 0. 0003 D. ODDO
0. 0000 0. 0000 0. 0000 0 0300 0. ODDO 0. 0000 O. DODO

1 69. 1600 0. 0000 0. 0000 29. oOOO 0. ODDO 0. DODO J. DOD3
1 55. 7600 38. 1000 0. 0000 14. 8000 0. ODDO 0. ODDO O. ODDO
1 12. 20001 32. 4000 24. 8000 0. 0000 0. ODOO 0. 0000 3. 5ODD
1 0. 00001 46. 9000 49. 6000 0. 0000 0. DODO 0. 0000 O. ODDO

-a# 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0003 O. ODDO
a# 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. DODD

1 0. 0000 83. 4000105. 6000 0. 0000 0. ODDO 0. ODOO 3. or: :
1 0. 0000 32. 6000133. 0000 0. 0000 0. ODOO 0. 0003 o. oc" :
1 0. 0000 35. 2000134. 4000 0. 0000 0. ODOO 0. DODD o dog:
1 0. 0000 29. 8000137. 6000 0. 0000 0. ODDO 0. DODD D DO 3 3

-%* 0. 0000 0. 0000 0. 0000 0. 0000 0. ODOO 0. 0030 D. ODOO
*•* 0. 0000 0. 0000 0. 0000 0. 0000 0. ODOO 0. 0000 0. DODD

1 0. 0000 14.0000118.4000 0. 0000 0. ODOO 0. 0003 O. ODOO
1 0. 0000 0. 0000 84. 8000 0. 3000 0. ODDO 0. DODD
1 0 0000 0. 0000 81. 6000 15. 603'3 D. ODDS 0. DODD
1 0. 0000 0. 0000 89. 6000 0. ODOO 0. 0003

** 0. 0000 0. 0000 0. 0000 0. 0000 0. ODOO 0. GOOD
## 0. 0000 0. 0000 0. 0000 0. 0000 0. ODOO 0. DODD v . J L I 2

1 0. 0000 0. 0000 89. 6000 37. 2000 0. ODDO 0. ODDO 3. 3333
1 0. 0000 0. 0000 67. 2000 37. 2D D O G. ODDO 0. 0000 O. 0033
1 0. 0000 0. 0000 22. 4000 18. 6000 0. ODDO 0. 0030 0. GOOD
1 0. 0000 0. 0000 0. 0000 0. DODO 0. 0330 0. DODD

-K-» 0. 0000 0. 0000 0. 0000 D. 0000 0. 0000 0. 0000 3. 0033
0. 0000 0. 0000 0. 0000 0. ODOO 0. ODOO 0. 0030 0. GOOD
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Figure 7.2: TU: Last schedule for the packing lines

| 1,2 || 4.2 11^| FÎT] | 3,2 |
t 4,1 11 1,1 II 2,1 I I 3,1 I

I L2 I QQ B $ I 3,2 I
F 1*4 || 2^4 || 3,7 || 3,4 |

I 1*4 I I 2,4 | | 3,4 | | 3,4 | ["3^1
I 1*5 | | 2,5 | | 3,5 || 3,5 | | 4,3 |

Table A2 Til: Demand coresponding to the last packing lines schedule

1 1 112. 4COO 0. 0000 0. 0000 6. OOOO 0. ocoo 0. oooo 0 0000
2 1 151. 2000 0. 0000 0. oooo 6. OOOO 0. 0000 0. oooo 0 COOC
3 1 131. 3600 0. oooo 0. oooo 0. OOOO 0. oooo 0. 0000 c ocoo
4 1 124. 6600 0. 0000 0. 0000 14. 8000 0. 0000 0. coco c
5 a# 0. 0000 0. 0000 0.0000 0. OOOO 0. oooo 0. oooo 0 0000
6 ## 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 o coco
7 1 75. 8600 0. 0000 0. oooo 29. 6000 0. oooo 0. ocoo c oooo
8 1 55. 7600 45. 1000 0. 0000 14. 8000 0. 0OOG 0. oooo 0 oooo9 1 12. 2000146. 4000 0.oooo 0. COOC 0. oooo 0. 0000 0 ÛOCÛ

10 1 0. 0000153. 9000 0.oooo 0. OOOO 0. oooo 0. cooo 0 ocoo
11 4Mb 0. 0000 0. 0000 0. oooo 0. oooo 0. 0000 0. 0000 c 0000
12 ** 0. 0000 0. 0000 c.oooo 0. oooo 0. 0000 0. coco 0 coco
13 1 0. 0000111. 4000 0. oooo 0. oooo 0. 0000 0 oooo 0:co
14 1 0. 0000 46. 6000 97.OOOO 0. oooo 0. oooo 0. 0000 o 0000
15 1 0. 0000 7. 2000134. 4000 0. 0000 0. OOOO 0. 0030 c
16 1 0. 0000 1. 8000123. 2000 0. oooo 0. OOOO 0. oooo 0 9030
17 * * 0. 0000 0. oooo 0.0000 0. oooo 0. OOOO 0. 0000 oooo
18 #4* 0. coco 0. oooo 0. oooo 0. oooo 0. OOOO 0. 0003 0 coco
19 1 0. 0000 0. 0000145. 4000 0. oooo 0. OOOO 0. oooc 0 ocoo
20 1 0. 0000 0. 0000130. ECCO 0. oooo 0. oooo 0. oooo oooo
21 1 0. 0000 0. 0000 89.6000 0. oooo 0. 0000 0. 0000 0

1 0. 0000 0. 00001 23.4000 0. oooo O. 0000 0. 0000 0 ocoo
23 a# 0. 0000 0. oooo 0.0000 0. 0000 0. 0030 0. oooo 0 0000
24 a* 0. 0000 0. oooo 0.0000 0. 0000 0. oooo 0. 0000 0 coco
25 1 0. 0000 0. 00001 14. 4000 37. 2000 0. 0000 0. 00'00 o OQCO
26 1 0. 0000 o. oooo 73 4000 37. 2000 0. oooo 0. oooo 0 coco

1 0. 0000 0. 0000 67. 2000 37 2000 0. oooo 0. COOC 0 coco
28 1 c coco 0. oooo 44 8000 37. 2000 0. 0000 0 COOO o:co
29 aa 0. 0000 o. oooo 0 0000 0. oooo o coco 0. coco c
30 ■a a 0. 0000 0 oooo 0. 0000 0 0000 0. 0000 0 000'0 0. ocoo
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Table A3 Til: Altered demand

1 1 113. 4000 0. 0000 0. 0000 6. 0000 0 0000 0. 0000 0. 0000
2 1 151. 2000 0 0000 0. 0000 6. 0000 0. 0000 0. 0000 0. 0000
3 1 131.3600 0 0000 0 0000 0 0000 0. 0000 0 0000 0. 0000
4 1 124. 6600 0. 0000 0 0000 14. 0000 0. 0000 0. 0000 0. 000D
5 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
6 ** 0. 0000 0. 0000 0.0000 0 0000 0. 0000 0. 0000 0. 0000
7 1 75. 8600 0 0000 0 0000 28. 0000 0. 0000 0. 0000 0. 0000
8 1 55. 7600 45. 1000 0 0000 14. 0000 0 0000 0. 0000 0. 0000
9 1 12 2000146. 4000 0 0000 0 0000 0. 0000 0. 0000 0 0000

10 1 0. 00001 53. 9000 0.0000 0 0000 0. 0000 0. 0000 0. 0000
11 a* 0. 0000 0. 0000 0 0000 0. 0000 0. 0000 0 0000 0. 0000
12 a a 0 0000 0. 0000 0.0000 0 0000 0. 0000 0. 0000 0. 0000
13 1 0. 0000111. 4000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
14 1 0.0000 46. 6000 97. 0000 0. 0000 0. 0000 0. 0000 0. 0000
15 1 0 0000 7. 20001 30.0000 0. 0000 0. 0000 0. 0000 0. GOOD
16 1 0. 0000 1. 8000 98.0000 0. 0000 0 0000 0. 0000 0. ooco
17 aa 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
18 aa 0. 0000 0. 0000 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
19 1 0. 0000 0 00001 45. 4000 0. 0000 0 0000 0. 0000 0. 0000
20 1 0. 0000 0. 00001 30. 8000 0. 0000 0. 0000 0 0000 0. 0000
21 1 0. 0000 0. 0000 89 6000 0. 0000 0 0000 0 0000 0. 0000
22 1 0. 0000 0. 00001 23. 4000 0. 0000 0 0000 0 0000 0. 0000
23 aa 0. 0000 0. 0000 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
24 aa 0. 0000 0. 0000 0 0000 0. 0000 0. 0000 0. 0000 0 0000
25 1 0. 0000 0. 00001 14.4000 34. 0000 0. 0000 0 0000 0. 0000
26 1 0. 0000 0. 0000 73.4000 34. 0000 0. 0000 0 0000 0. GOOD
27 1 0. 0000 0. 0000 67.2000 34. 0000 0. 0000 0. 0000 0. 0003
28 1 0. 0000 0. 0000 44. 8000 34. 0000 0. 0000 0. 0000 0 0000
29 aa 0. 0000 0. 0000 0 0000 0. 0000 0 0000 0. 0000 0. 0000
30 aa 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
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Table 7.1: TU: Production schedule

Tp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Pr 1 1 1 1 1 2 1 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 0 0

Amt 104. 104. 104. 104. 56.62 72. 71 72 104. 104. 104. 58. 56.4 58. 96. 96. 59 46.5 96. 96. 96. 96. 68. 68. 96. 32.5 68. 40. 0. 0.

Tabk 72; Til: Silos allocation
Pr ___________________ Number of silos per time period

Pl 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 1 1 2 2 1 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 2 2 1 1 1 0 2 2 1 1 0 0 0
P4 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
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Figure 7 3: T12: First schedule for the packing lines

I Il 1,2 Jl 4,2 IR 2,2 | §
I 3,1 | Ml 1,1 I I U I I U I

I 2,4 ir^—II 2,4 || 23 II 3,4 ~|| 3,4 |
I 3,4 | f~33~| Q | 1,4 | | 4,3 ]

i 1,5 irâTirrm i

Table Bl T12: Demand coresponding to the first packing lines schedule

1 0. 0000 38. 1000 57. 0000 0. oooo 0. oooo 0. oooo 0. oooo
1 0. 0000 50. 8000 76. 0000 0. oooo 0. oooo 0. oooo 0. oooo
1 68. 9000 38. 1000 12. 8000 0. oooo 0. oooo 0. oooo 0. oooo
1 126. 1400 0. 0000 48. 0000 0. oooo 0. oooo 0. oooo 0. oooo

** 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo
** 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo

1 131.3600 0.0000 22.4000 0. oooo 0. oooo 0. oooo 0. oooo
1 111. 2600 0. 0000 0. 0000 14. 8000 0. oooo 0. oooo 0. oooo
1 0.0000101.6000 0.0000 29. 6000 0. oooo 0. oooo 0. oooo
1 0. 0000101. 6000 0. 0000 29. 6000 0. oooo 0. oooo 0. oooo

** 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo
** 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo

1 55. 7600 97. 2000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo
1 55. 7600129. 6000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo
1 15. 6800 91. 5000 22. 4000 0. oooo 0. oooo 0. oooo 0. oooo
1 5. 2200 19. 7000 67. 2000 0. oooo 0. oooo 0. oooo 0. oooo

** 0. 0000 0. 0000 0. 0000 o. oooo o. oooo 0. oooo 0. oooo
#* 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo 0. oooo

1 6. 9600 0. 0000 89. 6000 0. oooo 0. oooo 0. oooo 0. oooo
1 0. 0000 0. 0000 67. 2000 37. 2000 0. oooo 0. oooo 0. oooo
1 0. 0000 0. 0000 44. 8000 37. 2000 0. oooo 0. oooo 0. oooo
1 0. 0000 7. 0000 33. 6000 37. 2000 o. oooo 0. oooo 0. oooo

** 0. 0000 0. 0000 0. 0000 0. OOOO 0. oooo 0. oooo 0. oooo
** 0. 0000 0. 0000 0. oooo 0. OOOO 0. oooo 0. oooo 0. oooo

1 0. OOOO 0. OOOO 44. 8000 37. 2000 0. oooo 0. oooo 0. oooo
1 0. OOOO 0. OOOO 44. 8000 18. 6000 0. oooo 0. oooo 0. oooo
1 0. OOOO 0. OOOO 33. 6000 0. OOOO 0. oooo 0. oooo 0. oooo
1 O. OOOO 0. OOOO 0. OOOO 0. OOOO 0. oooo 0. oooo 0. oooo

*♦ 0. OOOO 0. oooo o. oooo 0. OOOO 0. oooo 0. oooo 0. oooo
♦* 0. OOOO 0. oooo 0. oooo 0. OOOO 0. oooo o. oooo 0. oooo
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Figure 7.4: T12: Last schedule for the packing lines

1 1,2 J L 2,2 | L 4,2 |
1 3,1 II U 1
I 3,2 |
| 1,4 J L 33 II 33 || 33 II 3,4 II 3,4 |

1 M 1 rm c 3,4 4,3 |

L 1,5 II 3.5 II 3,S II 3.5

Table B2 T12: Demand coresponding to the last packing lines schedule

1 1 93. 3000 0. 0000 23. 4000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
2 1 124. 4000 0. 0000 31. 2000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
3 1 124. 4000 0. 0000 4. 8000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
4 1 111. 2600 0. 0000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
5 ** 0. 0000 0. 0000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
6 *♦ 0. 0000 0. 0000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
7 1 55. 7600 59. 1000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
8 1 43. 5600 78. 8000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
9 1 6. 9600116. 9000 0.0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO

10 1 6. 9600115. 6000 0.0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
11 ** 0 0000 0. 0000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
12 ** 0. 0000 0. 0000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
13 1 6. 9600 88. 9000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
14 1 3. 4800 88. 9000 22. 4000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
15 1 0 0000 63. 5000 67. 2000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
16 1 0. 0000 50. 8000 89.6000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
17 ## 0. 0000 0. 0000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
18 ♦* 0. 0000 0. 0000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0.OOOO
19 1 0. 0000 12.7000112.0000 22. 2000 0. OOOO 0. OOOO 0. OOOO
20 1 0. 0000 0. 0000 67. 2000 29. 6000 0. OOOO 0. OOOO O. OOOO
21 1 0. 0000 0. 0000 44. 8000 22. 2000 0. OOOO 0. OOOO 0. OOOO
22 1 0. 0000 0. 0000 44. 8000 37. 2000 0. OOOO 0. OOOO 0. OOOO
23 ** 0. 0000 0. 0000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
24 0. 0000 O. OOOO 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
25 1 0. 0000 0. 0000 33. 6000 37. 2000 0. OOOO 0. OOOO 0. OOOO
26 1 0. 0000 0. 0000 44. 8000 37. 2000 0. OOOO 0. OOOO 0. OOOO
27 1 0. 0000 0. 0000 44. 8000 37. 2000 0. OOOO 0. OOOO 0. OOOO
28 1 0. 0000 0. 0000 33. 6000 18. 6000 0. OOOO 0. OOOO O. OOOO
29 ♦# O. 0000 O. 0000 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
30 #* 0. 0000 0. OOOO 0. 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
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Table B3 T12: Altered demand

1 93. 3000 0. 0000 23. 4000 0. OOOU ü. ÜUUU U. uuuu U. uuuu
1 124. 4000 0. 0000 31.2000 0. 0000 0. 0000 0. 0000 0. 0000
1 124. 4000 0. 0000 4. 8000 0. 0000 0. 0000 0. 0000 0. 0000
1 111. 2600 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000

** 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
a# 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000

1 55 7600 59. 1000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
1 43. 5600 78. 8000 0.0000 O. 0000 0. 0000 0. 0000 0. OOOO
1 6. 9600116. 9000 0.OOOO 0. 0000 0. 0000 0. 0000 0. 0000
1 6. 9600115. 6000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000

** 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
** 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000

1 0. 0000 88. 9000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
1 0. OOOO 88. 9000 22.4000 0. 0000 0. 0000 0. 0000 0. 0000
1 0. 0000 63. 5000 67. 2000 0. 0000 0. 0000 0. 0000 0. 0000
1 0. 0000 50. 8000 89. 6000 0. 0000 0. 0000 0. 0000 0. 0000

** 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
a* 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000

1 0 0000 0.0000112. 0000 22. 2000 0. 0000 0. 0000 0. 0000
1 0. 0000 0. 0000 67. 2000 29. 6000 0. 0000 0. 0000 0. 0000
1 0. 0000 0. 0000 44.8000 22. 2000 0. 0000 0. 0000 0. 0000
1 0. 0000 0. 0000 44.8000 37. 2000 0. 0000 0. 0000 0. 0000

aa 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
aa 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000

1 0. 0000 0. 0000 33. 6000 37. 2000 0. 0000 0. 0000 0. 0000
1 0. 0000 0. 0000 44.8000 37. 2000 0. 0000 0. 0000 0. 0000
1 0. 0000 0. 0000 44.8000 37. 2000 0. 0000 0. 0000 0. 0000
1 0. 0000 0. 0000 33. 6000 18. 6000 0. 0000 0. 0000 0. 0000

aa 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
aa 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
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Table 7.3: T12: Production schedule

Tp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 3C
Pr 1 1 1 1 1 3 2 2 2 2 2 2 2 2 3 3 4 4 3 3 3 3 3 3 4 4 3 0 0 0

Amt 94.8 104. 104 104 42.8 53.4 72. 104 104 104 58.4 46.5 38.$ 84.7 58 96 58 47. 58 79 44.8 44.8 46.5 46.5 55.4 71. 38.3 0. 0. 0.

Table 7.4: T12: Silos allocation

P Number of silos per time period

Pl 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P2 0 0 0 0 0 0 0 1 1 0 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P3 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 2 2 2 1 1 0 0

P4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 1 1 0 0 0 1 1 0 0 0
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Figure 7.5: T13: First schedule for the packing lines

Table C1 T13: Demand coresponding to the first packing lines schedule

1 1 20. 1000 0. OOOO 0.OOOO 56. 1000 0. OOOO 0. OOOO 0. OOOO2 1 26. 8000 0. OOOO 0. OOOO 74. 8000 0. OOOO 0. OOOO 0. OOOO3 1 13. 4000 52. 6000 0.OOOO 54. 1000 0. OOOO 0. OOOO 0. OOOO4 1 O. 0000108. 8000 0. OOOO 66. 8000 0. OOOO 0. OOOO 0. OOOO5 O. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO6 ## 0. 0000 0. OOOO 0.OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO7 1 O. 0000108. 8000 0. OOOO 66. 8000 0. OOOO 0. OOOO 0. OOOO8 1 O. OOOO 89. 9000 17.4000 18. 6000 0. OOOO 0. OOOO 0. OOOO9 1 0. OOOO 78. 8000 69. 6000 0. OOOO 0. OOOO 0. OOOO 0. OOOO10
11

1 24. 4000 71. 8000 34.8000 0. OOOO 0. OOOO 0. OOOO 0. OOOO## 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO12 ## 0. OOOO 0. OOOO 0.OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO13 1 100.OOOO 12. 7000 52. 2000 0. OOOO 0. OOOO 0. OOOO 0. OOOO14
15

1 
1
1

75. 6000 0. 0000103. 2000 0. OOOO 0. OOOO 0. OOOO 0. OOOO55. 5000 0. 0000103. 2000 0. OOOO 0. OOOO 0. OOOO 0. OOOO16 36. 6000 0. 0000108. 2000 0. OOOO 0. OOOO 0. OOOO 0. OOOO17 ## 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO18 ## 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO19
20

1 48. 8000 0. 0000103. 2000 0. OOOO 0. OOOO 0. OOOO 0. OOOO1 48. 8000 0. 0000103. 2000 0. OOOO 0. OOOO 0. OOOO 0. OOOO21 1
1

36.6000 0. 00001 14.4000 0 OOOO 0. OOOO 0. OOOO 0. OOOO22 48. 8000 0.0000108.2000 0. OOOO 0. OOOO 0. OOOO 0. OOOO23
24

## 0. OOOO 0. OOOO 0.OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO## 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO25 1 48. 8000 0. OOOO 44.8000 0. OOOO 0. OOOO 0. OOOO 0. OOOO26 1 
1
1

48. 8000 0. OOOO 22.4000 0. OOOO 0. OOOO 0. OOOO 0. OOOO27 
28
29 
30

0. OOOO
0. OOOO

0. OOOO
0. OOOO

0. OOOO
0. OOOO

0. OOOO
0. OOOO

0. OOOO
0. OOOO

0. OOOO
0. OOOO

0. OOOO
0. OOOO*# 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO 0. OOOO
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Figure 7.6: T13: Last schedule for the packing lines
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Table C2 T13: Demand coresponding to the last packing lines schedule

1 1 20. 100 0. 000 0. 000 56. 100 0. 000 0. 000 0. 000
2 1 26. 800 0. 000 0. 000 74. 800 0. 000 0. 000 0. 000
3 1 13. 400 52. 600 0. 000 54. 100 0. 000 0. 000 0. 000
4 1 0. 000 108. 800 0. 000 66. 800 0. 000 0. 000 0. 000
5 ** 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
6 ** 0. 000 0. 000 0. 000 0 000 0. 000 0. 000 0 000
7 1 0. 000 108. 800 0. 000 66. 800 0. 000 0. 000 0. 000
8 1 0. 000 89. 900 0. 000 18 600 0. 000 0. 000 0. 000
9 1 0. 000 78. 800 0. 000 0. 000 0. 000 0. 000 0. 000

10 1 24. 400 71. 800 0. 000 0. 000 0. 000 0. 000 0. 000
11 ** 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
12 ** 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
13 1 48. 800 12. 700 28. 600 0. 000 0. 000 0. 000 0. 000
14 1 26. 800 0. 000 84. 600 0. 000 0. 000 0. 000 0. 000
15 1 26. 800 0. 000 159. 200 0. 000 0. 000 0. 000 0. 000
16 1 6. 700 0. 000 159. 200 0. 000 0. 000 0. 000 0. 000
17 ** 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
18 ** 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
19 1 0. 000 0. 000 136. 800 0. 000 0. 000 0. 000 0. 000
20 1 12. 200 0. 000 114.400 0. 000 0. 000 0. 000 0. 000
21 1 43. 800 0. 000 108.200 0. 000 0. 000 0. 000 0. 000
22 1 49. 800 0. 000 114.400 0. 000 0. 000 0. 000 0. 000
23 ** 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
24 ** 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
25 1 61. 000 0. 000 36. 000 0. 000 0. 000 0. 000 0. 000
26 1 97. 600 0. 000 24. 800 0. 000 0. 000 0. 000 0. 000
27 1 97. 600 0. 000 18. 600 0. 000 0. 000 0. 000 0. 000
28 1 73. 200 0 000 0. 000 0. 000 0. 000 0. 000 0. 000
29 ** 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
30 ** 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
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Table C3 T13: Altered demand

1 1 20. 1000 0. 0000 0. 0000 56. 1000 0. oooo 0. oooo 0. oooo2 1 26. 8000 0. 0000 0.0000 74. 8000 0. oooo 0. oooo 0. oooo3 1 13. 4000 52. 6000 0. 0000 54 1000 0. oooo 0. oooo 0. oooo4 1 0. 0000108. 8000 0.0000 60. 5000 0. oooo 0. oooo 0. oooo5 0. 0000 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo6 ** 0. 0000 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo7 1 0. 0000108. 8000 0.0000 68. 0000 0. oooo 0 oooo 0. oooo8 1 0. 0000 89. 9000 0. 0000 0. 0000 0. oooo 0 oooo 0. oooo9 1 0. 0000 78 8000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo10 1 24. 4000 84. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo11 ** 0. 0000 0 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo12 ** 0. 0000 0 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo13 1 48. 8000 0. 0000 28. 6000 0. 0000 0. oooo 0. oooo 0. oooo14 1 26. 8000 0. 0000 84. 6000 0. 0000 0. oooo 0. oooo 0. oooo15 1 26. 8000 0. 0000130. 0000 0. 0000 0. oooo 0. oooo 0. oooo16 1 6. 7000 0. 0000130. 0000 0. 0000 0. oooo 0. oooo 0. oooo17 a# 0. 0000 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo18 #» 0. 0000 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo19 1 0. 0000 0.0000136.8000 0. 0000 0. oooo 0. oooo 0. oooo20 1 12. 0000 0. 0000114. 4000 0. 0000 0. oooo 0. oooo 0. oooo21 1 30. 0000 0. 0000108. 2000 0. 0000 0. oooo 0. oooo 0. oooo22 1 30. 0000 0. 0000 96. 0000 0. 0000 0. oooo 0. oooo 0. oooo23 a# 0. 0000 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo24 aa 0. 0000 0. 0000 0 0000 0. 0000 0. oooo 0. oooo 0. oooo25 1 61. 0000 0. 0000 36. 0000 0. 0000 o. oooo 0. oooo 0. oooo26 1 97. 6000 0. 0000 24.8000 0. 0000 0. oooo 0. oooo 0. oooo27 1 97. 6000 0. 0000 18. 6000 0. 0000 0. oooo 0. oooo 0. oooo28 1 73. 2000 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo29 aa 0. 0000 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo30 aa 0. 0000 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo
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Table 7.5: T13: Production schedule

Tp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Pr 4 4 2 2 2 4 2 2 2 1 1 0 3 3 3 3 3 1 3 3 3 3 3 0 1 1 1 1 0 0

Amt 96. 81.9 72. 104. 103.9 57.6 72. 104. 67. 72. 59.2 0. 58. 96. 96. 96. 96. 96. 52.6 68. 96. 96. 96. 75. 0. 72. 104. 104. 19.4 0. 0.

Table 7 6: T13: Silos allocation

p Number of silos per time period

Pl 1 1 0 0 0 0 0 0 0 1 2 2 2 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

P2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P3 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 2 2 2 1 0 0 2 2 2 1 0 0 0 0

P4 2 2 2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 7.7: T14: First schedule for the packing lines
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Table DI T14: Demand coresponding to the first packing lines schedule

1 1
2 1
3 1
4 1
5
6 **
7 1
8 1
9 1

10 1
11 **
12 **
13 1
14 1
15 1
16 1
17 **
18 **
19 1
20 1
21 1
22 1
23 **
24 #*
25 1
26 1
27 1
28 1
29 ##
30 ♦*

98. 5200
131. 3600
70. 36001
82. 5600

0. 0000
0. 0000

55. 7600
40. 0800
48. 8000
48. 8000

0. 0000
0. 0000

12. 2000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0. 0000
0 0000 
O. 0000 
O 0000

59. 1000 
78. 8000 
04. 2000 
57 8000

0. 0000 
0. 0000 

25. 4000
0. 0000 
O. 0000 
0. 0000 
O. 0000 
0. 0000 

25. 4000 
50. 8000 
50. 8000

O. 00001 
0. 0000 
O. 0000 
O. 00001 
O. 0000 
O. 0000 
O. 0000 
0. 0000 
O. 0000 
O. 0000 
O. 0000 
O. 0000 
O. 0000
O. 0000 
0. 0000

0. 0000 
O.0000 
o oooo 
0. 0000 
0. 0000 
0. 0000 
0. 0000 

11. 2000
O. 0000
O. 0000 
0. 0000 
0 0000 

45. 8000 
77. 6000 
84. 8000 
48.0000

0. 0000 
0. 0000 

23. 2000 
78. 4000 
78.4000 
89.6000

0. 0000 
0. 0000 

78. 4000 
22.4000

O. 0000 
O.0000 
O. 0000 
0 0000

0. 0000 
0. 0000 
0. 0000 
O. 0000 
0. 0000 
0. 0000 

16. 7000 
66. 8000 
66. 8000 
66. 8000

0. 0000 
0. 0000

33. 4000 
0. 0000 
O. 0000 
O. OOOO 
0. OOOO 
0. oooo 
o. oooo 
o. oooo 
0. oooo 
o. oooo 
0. oooo 
o. oooo 
0. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo

o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
o. oooo 
o. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
o. oooo 
o. oooo 
0. oooo 
o. oooo 
o. oooo 
o. oooo

0. oooo 
0. oooo 
o. oooo 
o. oooo 
0. oooo 
0. oooo 
o. oooo 
0. oooo 
o. oooo 
o. oooo 
0. oooo 
0. oooo 
0. oooo 
o. oooo 
o. oooo 
0. oooo 
o. oooo 
0. oooo 
o. oooo 
o. oooo 
o. oooo 
o oooo 
0. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o oooo

o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
0. oooo 
o. oooo 
0. oooo 
0. oooo 
o. oooo 
o. oooo 
o. oooo 
o. oooo 
0. oooo 
o. oooo 
o. oooo 
0. oooo 
0. oooo

146



Figure 7.8: T14: Last schedule for the packing lines
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Table DI T14: Demand coresponding to the last packing lines schedule

1 1 61. 9200 97. 2000 0.0000 0. oooo 0 oooo 0. oooo 0. oooo2 1 61. 9200129. 6000 0.0000 0. oooo 0. oooo 0. oooo 0. oooo3 1 0. 0000 91. 5000 0.0000 0. oooo 0. oooo 0. oooo 0. oooo4 1 0. 0000 7. 0000 0.0000 0. oooo 0. oooo 0. oooo 0. oooo5 ** 0 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo6 ** 0. 0000 0. 0000 0 0000 0. oooo 0. oooo 0. oooo 0. oooo7 1 119. 1600 0. 0000 0.0000 0. oooo 0. oooo 0. oooo 0. oooo8 1 119.1600 0. 0000 0.0000 0. oooo 0. oooo 0. oooo 0. oooo9 1 62. 4600 0. 0000 0.0000 52. OOOO 0. oooo 0. oooo 0. oooo10 1 41. 8200 0. 0000 0.0000 66. 8000 0. oooo 0 oooo 0. oooo11 ** 0. 0000 0. 0000 0.0000 0. oooo 0. oooo 0. oooo 0. oooo12 ** 0. 0000 0. 0000 0.0000 0. oooo 0. oooo 0. oooo 0. oooo13 1 48. 8000 0 0000 0. 0000 66. 8000 0. oooo 0. oooo 0. oooo14 1 48. 8000 0. 0000 0.0000 57. 5000 0. oooo 0. oooo 0. oooo15 1 24. 4000 0. 0000 0.0000 7. 4000 0. oooo 0. oooo 0. oooo16 1 0. 0000 50. 8000 50. 0000 0. oooo 0. oooo 0. oooo 0. oooo17 ** 0. 0000 0. 0000 0.0000 0. oooo 0. oooo 0. oooo 0. oooo18 ** 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo19 1 0. 0000 50 8000116.2000 0. oooo 0. oooo 0. oooo 0. oooo20 1 0. 0000 25. 4000101. 8000 0. oooo 0. oooo 0. oooo 0. oooo21 1 0. 0000 0 0000123. 2000 0. oooo 0. oooo 0. oooo 0. oooo22 1 0. 0000 0. 0000100. 8000 0. oooo 0. oooo 0. oooo 0. oooo23 ** 0. 0000 0. 0000 0.0000 0. oooo 0. oooo 0. oooo 0. oooo24 ** 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo 0. oooo25 1 0. 0000 0.0000148.0000 0. oooo 0. oooo 0. oooo 0. oooo26 1 0. 0000 0. 0000108. 2000 0. oooo 0. oooo 0. oooo 0. oooo27 1 0. 0000 0. 0000 44 8000 0. oooo 0. oooo 0. oooo 0. oooo28 1 0. 0000 0. 0000 44. 8000 0. oooo 0. oooo 0. oooo 0. oooo29 ** 0. 0000 0. 0000 0 oooo 0. oooo 0. oooo 0. oooo 0. oooo30 ** 0. 0000 0. oooo 0. oooo 0. oooo 0. oooo 0. oooo 0. oooo
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Table D3 T14:Altered demand

1 1 59. 0000 97. 2000 0.0000 0. 0000 0. 0000 0. oooo o. oooo
2 1 59. 0000129. 6000 0 0000 0. oooo 0. 0000 0. oooo 0. oooo
3 1 0. 0000 91. 5000 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo
4 1 0. 0000 7. 0000 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo
5 ** 0. 0000 0 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo
6 a# 0. 0000 0. 0000 0. 0000 0. 0000 0. oooo 0 oooo 0. oooo
7 1 119.1600 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo
8 1 119. 1600 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo
9 1 62. 4600 0. 0000 0.0000 52. 0000 0. oooo 0. oooo 0. oooo

10 1 41. 8200 0. 0000 0.0000 66. 8000 0. oooo 0. oooo 0. oooo
11 ** 0. 0000 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo
12 0. 0000 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo
13 1 48. 8000 0. 0000 0. 0000 66. 8000 0. oooo 0. oooo 0. oooo
14 1 48. 8000 0. 0000 0. 0000 57. 5000 0. oooo 0. oooo 0. oooo
15 1 24. 4000 0. 0000 0.0000 7. 4000 0. oooo 0. oooo 0. oooo
16 1 0. 0000 50. 8000 50. 0000 0. 0000 0. oooo 0. oooo 0. oooo
17 a# 0. 0000 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo
18 *» 0. 0000 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo
19 1 0 0000 50. 8000116. 2000 0. 0000 0. oooo 0. oooo 0. oooo
20 1 0. 0000 25. 4000101. 8000 0. 0000 0. oooo 0. oooo 0. oooo
21 1 0. 0000 0. 0000123. 2000 0. 0000 0. oooo 0. oooo 0 oooo
22 1 0. 0000 0. 0000100.8000 0. 0000 0. oooo 0. oooo 0. oooo
23 *a 0. 0000 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo
24 *» 0. 0000 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo 0. oooo
25 1 0. 0000 0. 0000148. 0000 0. 0000 0. oooo 0. oooo 0. oooo
26 1 0. 0000 0.0000108.2000 0. 0000 0. oooo 0. oooo 0. oooo
27 .4 0. 0000 0. 0000 44.8000 0. 0000 0. oooo 0. oooo 0. oooo
28 1 0. 0000 0. 0000 44.8000 0. 0000 0. oooo 0. oooo 0. oooo
29 ** 0. 0000 0. 0000 0.0000 0. 0000 0. oooo 0. oooo 0. oooo
30 a* 0 0000 0. 0000 0. 0000 0. 0000 0. oooo 0.oooo 0. oooo
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Table 7#: 714: Production schedule

Tp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pr 2 2 2 1 1 4 1 1 1 4 4 4 4 1 3 2 2 3 3 3 3 3 3 3 3 3 3 0 0 0

Amt 72. 104. 95.8 72. 46.5 58. 72. 104. 104. 58. 51.3 16.5 16.7 56.1 68. 72. 36.5 54. 96. 96. 96. 96. 96. 8.5 96. 96. 35.3 0. 0. 0.

Table 7.10 T14: Silos allocation

P Number of silos per time period

Pl 2 1 0 2 2 2 1 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0

P3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 2 2 2 1 1 1 0 0

P4 0 0 0 0 0 1 1 1 1 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 7.9; r2h First schedule for the packing lines

7,1 7,3

5,3 2,3 4,3 3,3 | 6^ 2,2

1,6 6,6 2,4

1,5 15,5 6,5

Table El T21: Demand coresponding to the first packing lines schedule
1 15. c x : C 0000 0 0000 0. 0000 11. 2500 0. 0000 4.5000

1 20 X00 0 0000 0. 0000 0 0000 15 0000 0. 0000 6. 0000
3 1 20 0000 11 2500 0 0000 0 0000 0 0000 0. 0000 6. 0000
4 1 15 0000 0 0000 0. 0000 0. 0000 0. 0000 6. 0000
5 1 10 * X 0 12 5000 0 0000 3. 7500 0. 0000 0. 0000 6. 0000
6 1 10 0000 0 0000 1 5. 0000 0. 0000 5. 0000 6. 0000

1 O 0000 0.0000 15 0000 0. 0000 20.0000 6. 0000
8 1 11 2500 0 0000 0. 0000 0. 0000 0. 0000 20. 0000 6. 0000
9 1 1 5 -X X* 0. 0000 0 0000 0. 0000 0. 0000 20. 0000 6. 0000

10 1 15 -XX- O 0000 0 GOOD 0. 0000 0. 0000 20. 0000 6. 0000
11 1 7 XX 0. 0000 3. 7500 0. 0000 0. 0000 20.0000 6. 0000
12 i 15 0000 0. 0000 0. 0000 20. 0000 6. 0000
1 3 i 0. 000 J 15. 0000 0. 0000 0. 0000 20. 0000 0. 0000
14 0. GOOD 15 0000 0. 0000 0. 0000 20. 0000 0. 0000
1 5 1 0. 0000 0. 0000 15 0000 0. 0000 0. 0000 20. 0000 7. 5000
16 i 0. GOOD O 0000 12 5000 0. 0000 0. 0000 20.0000 7. 5000
17 1 0 0000 0. 0000 20 0000 0. 0000 0. 0000 11. 2500 7. 5000
IB 1 0 0 " C 0 0 0000 20 0000 0. 0000 0. 0000 15. 0000 7. 5000
19 1 0 0X0 17. 5000 0 0000 0. 0000 0. 0000 15. 0000 7. 5000
20 1 IX 5000 0 0000 0 0000 0. 0000 15. 0000 7. 5000
21 1 5:00 0 0000 0. 0000 0. 0000 7. 5000 7. 5000

i 17. 5000 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
23 i 20. 0000 15 2500 0. 0000 0. 0000 0. 0000 0. 0000 7. 500024 1 20 0000 13. 0000 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
25 1 cX. JJI J 13 0000 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
26 1 20 OSLO 13 0000 0 0000 0. 0000 0. 0000 0. 0000 7. 5000

1 20 00 00 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 3. 7500
* 0. 0030 0 0000 0. 0000 0 0000 0. 0000 0. 0000
1 10. 00 0 0 O 0000 0 0000 0. 0000 5. 6250 0. 0000 0. 0000

30 1 0 OO-O-j 0. 0000 0 0000 0. 0000 22. 5000 0.0000 0. 0000
31 1 o. oooo 0. 0000 0 0000 0. 0000 22. 5000 0. 0000 0. 0000
32 1 o oo:o 0 0000 0 0000 0. 0000 0. 0000 16.8750 0. 0000
33 1 o. oooo 0 0000 0 0000 0. 0000 0. 0000 22. 5000 0. 0000
34 1 c. oooo 0. 0000 0 0000 0 0000 0 0000 22. 5000 0. 0000
35 1 0. GOOD 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
36 1 0 0000 0 0000 0 0000 0 0000 0. 0000 0. 0000
37 1 O 0000 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
33 1 o ox:' 0 0000 0. 0000 0. 0000 0 0000 0. 0000 0. 000039 1 0. 0X00 0. 0000 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
40 1 0 00 30 0. 0000 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
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Figure 7.10: T21: Last schedule for the packing lines

Table E2 T21: Demand coresponding to the last packing lines schedule
3. 00 00 0. 0 L u 0 0. 0000 0. 0000 0. 0000 4. 5000

— - - - - - 0. 0009 11.2500 0. 0000 0. 0000 6. 0000
1 0. 0000 0. 0000 15. 0000 0. 0000 0. 0000 6. 0000
1 1 5. COCO o o o o û o.coco 7. 5000 0. 0000 0. 0000 6. 00005 20. o:co 11 2500 0.0000 0. 0000 0. 0000 0. 0000 6. 0000

6 1 15. 0000 0. 0000 0. 0000 0. 0000 0. 0000 6. 0000
7 1 20. 0300 7. 5000 0. 0000 0. 0000 0. 0000 0. 0000 6. 00008 i 13. 7500 5 0000 0. 0000 0. 0000 0. 0000 0. 0000 6. 00009 1 15. 0000 10. 0000 0 0000 0. 0000 0. 0000 5. 0000 6. 0000

If? 1 15. 0000 0 0000 0. 0000 0. 0000 0. 0000 20. 0000 6. 000011 1 0. 0000 0. 0000 0. 0000 0. 0000 20. 0000 6. 0000
12 1 ü. 0000 0. 0000 11.2500 0. 0000 0. 0000 20. 0000 6. 0000
13 1 0. 0000 0. 0000 15. 0000 0. 0000 0. 0000 20. 0000 0. 000014 1 0. 0000 0. 0000 15. 0000 0. 0000 0. 0000 20. 0000 0. 0000
1 5 1 0. 0000 0. 0000 15. 0000 0. 0000 0. 0000 20. 0000 7. 5000
16 i 0. 0003 0. 0000 15. 0000 0. 0000 0. 0000 20. 0000 7. 500017 0. 0000 0. 0000 15. 0000 0. 0000 0. 0000 20. 0000 7. 5000
18 0. 0000 0. 0000 20. 0000 0. 0000 0. 0000 20. 0000 7. 5000
19 1 5. 0030 0 0000 10. 0000 0. 0000 0. 0000 20. 0000 7. 5000

1 0 0000 0. 0000 0. 0000 0. 0000 11. 2500 7. 5000
1 20. 0000 0. 0000 0. 0000 0. 0000 0. 0000 15. 0000 7. 5000

0. 000'0 17. 5000 0. coco 0. 0000 0. 0000 15. 0000 7. 5000
1 0 0000 17. 5000 0.0000 0. 0000 0. 0000 15. 0000 7. 5000i 17 5000 0. coco 0. 0000 0. 0000 7. 5000 7. 5000

17. 5000 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
26 a. 7530 0. 0000 0. 0000 0. 0000 0. 0000 7. 5000

20. 0000 0. 0000 0 0000 0. 0000 0. 0000 0. 0000 3. 7500
2o 10. 0000 0. 0000 0. 0000 0. 0000 11. 2500 0. 0000 0. 0000

0. 0000 0.0000 0. 0000 15. 0000 0. 0000 0. 0000i 10. 0000 0 0000 0. 0000 0. 0000 5. 6250 0. 0000 0. 0000
31 1 0. 0000 0.coco 0. 0000 22. 5000 0. 0000 0. 0000

0. 0000 13. 0000 0 0000 0. 0000 22. 5000 0. 0000 0. 0000
33 1 0. 0300 13 0000 0.0000 0. 0000 0. 0000 16. 8750 0. 0000
34 1 0. oooo 13 0000 0.0000 0. 0000 0. 0000 22. 5000 0. 0000
35 0. 0000 6. 5000 0.0000 0. 0000 0. 0000 22. 5000 0. 0000
36 1 0. ocoo 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
37 0 0000 0. 0030 0. 0000 0. 0000 0. 0000 0. 0000 0. 000039 1 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000

1 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
40 1 0. 0000 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
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T21: Production schedule
Tp VII M2 M3 W4

Pr Amt Pr Amt Pr Amt Pr Amt
1 1 15. 4 15. 0 0. 7 7.5
2 1 15. 4 25. 0 0. 7 7.5
3 1 5. 0 0. 0 0. 7 7.5
4 1 15. 2 15. 0 0. 7 7.5
5 1 15. 2 25. 0 0. 7 7.5
6 1 15. 2 25. 6 15. 7 7.5
7 1 15. 2 25. 6 25. 7 7.5
8 1 15. 2 10. 6 5. 7 7.5
9 1 15. 2 10. 6 5. 7 7.5
10 1 15. 0 0. 6 20. 7 7.5
11 1 15. 3 15. 6 20. 7 7.5
12 1 10. 3 25. 6 20. 7 7.5
13 0 0. 3 18.25 6 20. 0 0.
14 0 0. 3 15. 6 20. 0 0.
15 0 0. 3 15. 6 20. 7 7.5
16 0 0. 3 15. 6 20. 7 7.5
17 0 0. 3 15. 6 20. 7 7.5
18 0 0. 3 20. 6 20. 7 7.5
19 1 8.75 3 10. 6 20. 7 7.5
20 1 15. 0 0. 6 10. 7 7.5
21 1 15. 0 0. 6 16.25 7 7.5
22 0 0. 2 15. 6 15. 7 7.5
23 1 10. 2 20. 6 15. 7 7.5
24 1 10. 2 18.25 6 7.5 7 7.5
25 1 15. 2 17.5 0 0. 7 7.5
26 1 15. 2 8.75 0 0. 7 7.5
27 1 15. 5 15. 0 0. 7 3.75
28 1 15. 5 25. 0 0. 0 0.
29 1 15. 5 17.25 0 0. 0 0.
30 1 15. 5 5.625 0 0. 0 0.
31 1 10. 5 20. 0 0. 0 0.
32 0 0. 5 25. 0 0. 0 0.
33 0 0. 0 0. 6 15. 0 0.
34 0 0. 0 0. 6 20. 0 0.
35 0 0. 0 0. 6 25. 0 0.
36 0 0. 0 0. 0 0. 0 0.
37 0 0. 0 0. 0 0. 0 0.
38 0 0. 0 0. 0 0. 0 0.
39 0 0. 0 0. 0 0. 0 0.
40 0 0. 0 0. 0 0. 0 0.
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Figure 7.11 7*22: First schedule for the packing lines
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Table Fl T22: Demand coresponding to the first packing lines schedule
1 . - 0 0000 0. 0000 0. OOOO 16. 8750 0. OOOO

*
- . _ 0 000G 0 0000 0. OOOO 22. 5000 0. OOOO0 0300 0. 0000 1 5. OOOO 0. OOOO 6. OOOO

5 - 3 ’ i . ‘ 7 O 0000 0. 0000 7. 5000 0. OOOO 6. OOOO
6
7

J
8 r: ‘ 0 0000 0. 0000 0. OOOO 11. 2500 6. OOOO

♦ 0 V J 0 0300 0. 0000 0 OOOO 11. 2500 6. OOOO
g i. u :- o: O O-OOO 0. ODDO 0. OOOO 0. OOOO 6. OOOO
g 0. 0000 0. 0000 0. OOOO 0 OOOO 6. OOOO

1 C
1 1
2 c.

:Û . ?" w. j
o : :O0
O 0 000

0 0000
0. ODDO

0 OOOO
0. OOOO

0 OOOO
0. OOOO

6. OOOO
6. OOOO

* 0 0000 0. 0000 0. OOOO 0. OOOO 6. OOOO
1 3

• 0. 0000 0. OOOO 0. OOOO 6. OOOO
1 4

• . :j0 J 0 O 0 000 0. 0000 0. OOOO 0. OOOO 6. OOOO
1 5 
16
1 7

o? :03 o O 3000 0 0000 0. OOOO 0. OOOO 6. OOOO5 0 000 0. 0000 0. OOOO 0. OOOO 0. OOOO
* 15 0333 20 OOOO 0. 0000 0 OOOO 0. OOOO 0. OOOO

18
1 9

*

20 0000)
0 C 000

0. ODDO
0. 0000

0. OOOO
16. 8750

0. OOOO
0. OOOO

0. OOOO
0. OOOO

* 0 0000 0. OOOO 22. 5000 0. OOOO 0. OOOO
21

• • - o 3:00 0. OOOO 11. 2500 0. OOOO 0. OOOO
J • - o : ooo 0. OOOO 0. OOOO 0. OOOO 0. OOOOX O 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO

* - - ---- O 0000 0 OOOO 0. OOOO 0. OOOO 0. OOOO
25

* 0 0000 0 OOOO 0 OOOO 0 OOOO 0. OOOO
26

* - • - - 0. C000 0 OOOO 0. OOOO 0. OOOO 0. OOOO
- _ . _ 0. OOOO 0. OOOO 0. OOOO 0. OOOO

28
W - - - • 0 L v o : Goo 0 OOOO 0. OOOO 0. OOOO 0 OOOOX / 3 00 3 0 -3000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
*- • - ■ - - 0. 3000 0 OOOO 0. OOOO 0. OOOO O. OOOO

31
* • • • - - . : :oo 0. ocoo 0. OOOO 0. OOOO 0. OOOO

32
- o coco 0 OCOO 0. OOOO 0. OOOO 0. OOOO

33
. uC3 : 0 0000 0. OOOO 0. 0000 0. OOOO 0. OOOO

34 •0. 00 03 0 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
35

• - - - * O 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
■ • - - O 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO

* - - - • • O OOOO 0. OOOO 0 OOOO 0. OOOO 0. OOOO0. 0300 0. OOOO 0. OOOO 0. OOOO 0. OOOO0 C 0 C 3 0 GOOD 0. OOOO 0. OOOO 0. OOOO 0. OOOO
40

o Doo 0 OOOO 0. OOOO 0. OOOO 0. OOOOGv J J 0 0000 0. OOOO 0. OOOO 0. OOOO 0. OOOO
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Figure 7.12 ; T22: Last schedule for the packing lines

2,6
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2 1
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4 1
5 1
6 1
7 1
8 1
9 1

10 1
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12 1
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15 1
16 1
17 1
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19 1
20 1
21 1
22 1
23 1

25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
33 1
39 1
40 1

Table F2 T22: Demand coresponding to the last packing lines schedule 
0 C000 13 1250 0 0000
0. CO00 17. 5000 0 0000
0. 0000 17.5000 0. C000
3. 7500 

15. COCO 
15. DC00 
12. 5000 
20. 0000
20. 0200 
10. 0200 
20. OCOO 
10. 0000 
20. 0200 
10. 0000
20. 0000 
20. 0000 

0 0000 
0. 0000

1

10. 0002
20 OCOO 
20 0000
20 0000

20. 0000
22. 0020 
20 0000
1 w* 7^03 
15. 0000
15. 0000 
0 0000 
0. ODDO 
O 0000

0 CO03 
D 0000 
0 3033

û. 0000
G GOOD

0. 0000 
0. 0000 
0. 0000 
0. 0000 
0 0000 
0. 0000 
0.0000 
0. 0000 
0 0000 
0. 0000 
0. 0000 
G. 0000 
0. 0000 
0. 0000 
0. 0000 
0 0000 
0. 0000 
0 0000 
0. 0000 
0. 0000

DODO 
cooo 
3300 
3000 
0000 
0000 
GOOD 
0000 
cooo 
0 300 
cooo 
cooo 
0300 
0000 
OCOO 
cooo

0. 0000 
0. cooo 
0. cooo 
0. 0030 
0. 0000 
0. 0000 
0 0030 
0. 0000 
0. 0030 
o. 0000 
0. 0000 
0. 0300 
0. 0000 
0. 0300 
0. cooo 
0. 0000 
0. cooo 
0. 0000 
0. 0000 
0. cooo 
0. cooo 
0. 0000 
0. 0000 
0. 0330 
0 0030 
o cooo 
0. 0300 
0. 0330 
0. 0000 
0. ODDO 
0. ODDO 
0 0000 
0. cooo 
0. 0030 
0. 0000 
0. 0030 
0 0000 
0. ODDO 
0. 0000 
0. cooo

0. 0000 
0. 0000 

15. 0000
7. 5000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
5. 6250 

22. 5000 
22. 5000

0. 0000 
0. 0000 
0. 0000 
O. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000

16. 8750 
22. 5000

0. 0000 
0. 0000 

11. 2500 
11.2500
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
O. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
O. 0000 
O. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
O. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000

0. 0000 
0. 0000 
6. 0000 
6. 0000 
6. 0000 
6. 0000 
6. 0000 
6. 0000 
6. 0000 
6. 0000 
6. 0000 
6. 0000 
6. 0000 
6. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000
0. 0000 
0. 0000 
O. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
O. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000 
0. 0000
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Table 7.12

Tp Ml M2
sen^4 ।

Pr Amt Pr Amt Pr Amt Pr Amt
1 0 0. 2 15. 6 18.75 0 0.
2 0 0. 2 25. 6 20. 0 0.
3 0 0. 2 25. 0 0. 7 5.
4 0 0. 2 25. 0 0. 7 7.
5 1 15. 0 0. 0 0. 7 5.
6 1 15. 2 15. 0 0. 7 7.
7 1 15. 2 20. 0 0. 7 5.
8 1 15. 2 20. 0 0. 7 7.
9 1 15. 2 20. 0 0. 7 5.
10 1 15. 2 20. 0 0. 7 7.
11 1 15. 2 20. 0 0. 7 5.
12 1 15. 2 20. 0 0. 7 7.
13 1 15. 2 20. 0 0. 7 5.
14 1 15. 2 20. 0 0. 7 7.
15 1 15. 2 18.625 0 0. 0 0.
16 1 15. 2 15. 0 0. 0 0.
17 1 15. 2 15. 0 0. 0 0.
18 0 0. 0 0. 0 0. 0 0.
19 0 0. 0 0. 0 0. 0 0.
20 0 0. 0 0. 0 0. 0 0.
21 0 0. 0 0. 0 0. 0 0.
22 0 0. 0 0. 0 0. 0 0.
23 0 0. 0 00. 0 0. 0 0.
24 0 0. 3 15. 0 0 0 0.
25 0 0. 5 15. 0 0. 0 0.
26 0 0. 5 10 0 0. 0 0.
27 0 0. 5 25. 0 0. 0 0.
28 0 0. 5 20. 0 0. 0 0.
29 0 0. 0 0 0 0. 0 0.
30 0 0. 0 0 0 0. 0 0.
31 0 0. 0 0. 0 0. 0 0.
32 0 0. 0 0. 0 0. 0 0.
33 0 0. 0 0. 0 0. 0 0.
34 0 0. 0 0. 0 0. 0 0.
35 0 0. 0 0. 0 0. 0 0.
36 0 0. 0 0. 0 0. 0 0.
37 0 0. 0 0. 0 0. 0 0.
38 0 0. 0 0. 0 0. 0 0.
39 0 0. 0 0. 0 0. 0 0.
40 0 0. 0 0. 0 0. 0 0.
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Figure 7.13: First schedule for the packing lines

Table G1 T23: Demand coresponding to the first packing lines schedule
1 1 0. 0000 11 2500 0. 0000 0. 0030 0. 0000 16. 8750 4. 5000
2 1 0. 0000 15 0030 0. 0000 0 0000 0. 0000 22. 5000 6. 0000
3 1 0. 0000 12. 5033 0. 0000 3 7500 0. 0000 11. 2500 6. 0000
4 1 0. 0000 10 0033 0 0000 15. 0000 0. 0000 11. 2500 6. 0000
5 1 15. 0000 0. 3030 0. 0000 15. 0000 0. 0000 0. 0000 6. 0000
6 1 20 0000 0. 0030 0. 0000 15. 0000 0. 0000 0. 0000 6. 0000
7 1 20 0000 0 0030 0. 0000 0. 0000 11. 2500 0. 0000 6. 0000
e i 20. 0000 0. 0030 0. 0000 0. 0000 15. 0000 0. 0000 6. 0000
9 1 20. 0000 0. 0000 0. 0000 0. 0000 15. 0000 0. 0000 6. 0000

10 1 20. 0000 0 0000 0. 0000 0. 0000 15. 0000 0. 0000 6. 0000
1 1 1 20. 0000 0 0000 0. 0000 0. 0000 0. 0000 11. 2500 6. 0000
12 1 0 0000 0. 0030 0 0000 0. 0000 0. 0000 15. 0000 6. 0000
13 1 15. 0000 0. 0003 0.0000 0. 0300 0. 0000 15. 0000 0. 0000
14 1 20 0000 0. 0030 0.0000 0. 0030 0. 0000 15. 0000 0. 0000
15 1 20. 0000 0. 0000 0 0000 0. 0000 0. 0000 15. 0000 7. 5000
16 1 20. 0000 0. 0000 0 0000 0. 0000 0. 0000 15. 0000 7. 5000
17 1 20. 0000 0 0000 3. 7500 0. 0000 0. 0000 7. 5000 7. 5000
IS 1 20 0000 0. 0030 15. 0000 0. 0030 0. 0000 0. 0000 7. 5000
19 1 10. 0000 0. 0000 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
20 1 0. 00OO û. 00 33 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
21 1 0. 0000 8. 7500 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
22 1 0 0000 17. 5003 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
23 1 0. 0000 17. 5000 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
24 • 17. 5000 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
25 1 o coco 17. 5030 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
26 1 Û. 0000 0 0003 0. 0000 0. 0030 0. 0000 0. 0000 7. 5000
27 1 0. coco 13. 0033 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
28 1 0. 0000 13. 0000 0. 0000 0. 0000 0. 0000 0. 0000 7. 5000
29 1 0. 0000 13 0000 0. 0000 0. 0000 0. 0000 0. 0000 7. 5000
30 1 0. 0000 13. OO0O 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
31 1 0. 0000 13 0030 0. 0000 0. 0000 0. 0000 0. 0000 7. 5000
32 1 0 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 7. 5000
33 1 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 3. 7500
34 1 D. 0000 0. 0003 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
35 1 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
36 1 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
37 1 0. 0000 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0000
33 1 0. 2003 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
39 1 0. 0000 0. OOO0 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
40 1 0. 0000 0 0000 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
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Figure 7.14: T23: Last schedule for the packing lines
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Table G2 T23: Demand coresponding to the last packing lines schedule
1 1 u. C03G 0. 0000 0. 0000 0. 0000 16.8750 4. 5000
2 1 0 GCOO 1: 0000 0 0000 0. 0000 0. 0000 22.5000 6. 0000
3 1 0 0000 3. 7500 0. 0000 11.2500 6. 0000
4 1 1 O GOGO 0 C GOO 1 5. 0000 0. 0000 11. 2500 6. 0000
5 1 15 0'30 O 0300 0 GOOD 15. 0000 0. 0000 0. 0000 6. 0000
6 1 20 0000 0 0000 0. 0000 15. 0000 0. 0000 0. 0000 6. 0000
7 1 ocoo G 0000 0. 0000 11. 2500 0. 0000 6 0000
8 1 10 00GO 0 0000 0 0000 0 0000 1 5. 0000 0. 0000 6. 0000
9 1 0 3000 0 0000 0. 0000 15. 0000 0. 0000 6. 0000

10 1 10. 0000 0 0003 0 0000 0. 0000 15. 0000 0. 0000 6. 0000
11 1 20. 0000 O 0000 0. GDOO 0. 0000 0. 0000 11. 2500 6. 0000
12 1 io 00:0 0. 0000 0. 0000 0. 0000 0. 0000 15. 0000 6. 0000
13 1 20.0000 O GOOD 0. 0000 0. 0000 0. 0000 15. 0000 0. 0000
14 1 1 5. GOOD 0. 0003 0. GOOD 0. 0000 0 0000 15. 0000 0. 0000
15 1 10. 0000 0. 0000 0. 0000 0. 0000 0. 0000 15. 0000 7. 5000
16 1 20 0000 0 0000 0 0000 0. 0000 0. 0000 15. 0000 7. 5000
17 1 20 0000 0. GOOD 3 7500 0. 0000 0. 0000 7. 5000 7. 5000
18 1 10. GOOD 0 0000 15 0000 0. 0000 0. 0000 0. 0000 7. 5000
19 1 10. 0000 0. 0000 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
20 1 20. 0000 0. 0000 15.0000 0. 0000 0. 0000 0. 0000 7. 5000
21 1 10. 0000 0 0000 15 0000 0. 0000 0. 0000 0. 0000 7. 5000
22 1 20. 0000 0. GOOD 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
23 1 0 0000 0. 0000 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
24 1 0. 0000 0. 0000 15. 0000 0. 0000 0. 0000 0. 0000 7. 5000
25 1 0. 0000 17. 5000 0. 0000 0 0000 0. 0000 0. 0000 7. 5000
26 1 0 0000 17. 5000 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
27 1 0 0000 13 0000 0. 0000 0. 0000 0. 0000 0. 0000 7. 5000
28 1 0 0000 13 0000 0. 0000 0. 0000 0.0000 0. 0000 7. 5000
29 1 0 0000 13 0000 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
30 1 0. 0000 13 0000 0. 0000 0. 0000 0. 0000 0. 0000 7. 5000
31 1 0. coco 13 0000 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
32 1 0. 0000 17. 5033 0 0000 0. 0000 0. 0000 0. 0000 7. 5000
33 1 0. 0000 17. 5003 0. 0000 0. 0000 0 0000 0. 0000 3. 7500
34 1 0 0000 S. 7500 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
35 1 0. 0000 0. 0000 0.0000 0. 0000 0 0000 0. 0000 0. 0000
36 1 0 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000
37 1 o. coco G 0000 0. 0300 0. 0000 0. 0000 0.0000 0. 0000
38 1 0. 0000 : coo: O 0000 0 0000 0. 0000 0. 0000 0. 0000
39 1 0. 0000 G. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0 0000
40 1 o oooo G 0003 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000

157



Table 7.13 T23; Production schedule
Tp -Ml Ml Ml Ml

Pr Amt Pr Amt Pr Amt Pr Amt
1 0 0. 0 0. 6 16.875 7 4.5
2 0 0. 0 0. 6 20. 7 5.
3 0 0. 0 0. 6 10. 7 7.
4 0 0. 4 15. 6 15. 7 5.
5 1 15. 4 18.75 0 0. 7 7.
6 1 15. 4 15. 0 0. 7 5.
7 1 15. 5 10. 0 0. 7 7.
8 1 15. 5 19. 0 0. 7 5.
9 1 15. 5 15. 0 0. 7 7.
10 1 15. 5 15. 0 0. 7 5.
11 1 15. 0 0. 6 10. 7 7.
12 1 15. 0 0. 6 16.25 7 5.
13 1 15. 0 0. 6 15. 0 0.
14 1 15. 0 0. 6 15. 0 0.
15 1 15. 0 0. 6 15. 7 7.5
16 1 15. 0 0. 6 15. 7 7.5
17 1 15. 0 0. 6 7.5 7 7.5
18 1 15. 3 15. 0 0. 7 7.5
19 1 15. 3 18.75 0 0. 7 7.5
20 1 15. 3 15. 0 0. 7 7.5
21 1 15. 3 15. 0 0. 7 7.5
22 1 15. 3 15. 0 0. 7 7.5
23 1 15. 0 0. 0 0. 7 7.5
24 0 0. 2 15. 0 0. 7 7.5
25 0 0. 2 25. 0 0. 7 7.5
26 0 0. 2 25. 0 0. 7 7.5
27 0 0. 2 25. 0 0. 7 7.5
28 0 0. 2 19.75 0 0. 7 7.5
29 0 0. 2 10. 0 0. 7 7.5
30 0 0. 2 16. 0 0. 7 7.5
31 0 0. 2 10. 0 0. 7 7.5
32 0 0. 2 20. 0 0. 7 7.5
33 0 0. 2 18. 0 0. 7 4.75
34 0 0. 2 8.75 0 0. 0 0.
35 0 0. 0 0. 0 0. 0 0.
36 0 0. 0 0. 0 0. 0 0.
37 0 0. 0 0. 0 0. 0 0.
38 0 0. 0 0. 0 0. 0 0.
39 0 0. 0 0. 0 0. 0 0.
40 0 0. 0 0. 0 0. 0 0.
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1 Figure 7.15: 7*24: First schedule for the packing lines

Table H1 T24: Demand coresponding to the first packing lines schedule
1 1 0 0000 13 1250 0.0000 0. 0000 0. 0000 0. 0000 0 0000

1 0 0000 17 5000 0 0000 0. 0000 0. 0000 0 0000 0. 0000
3 c. 0000 15 0000 0 0000 0. 0000 0. 0000 0. 0000 6. 0000
4 ? e 0000 0 GOOD 0. 0000 0. 0000 0. 0000 6. 0000
5 1 0 2500 0. 0000 0. 0000 0 0000 0. 0000 6. 0000
6 1 0 0300 17. 5000 0 0000 0 0000 0. 0000 0. 0000 6. 0000
7 1 0 1 7 5000 0 0000 0. 0000 0. 0000 0. 0000 6. 0000
8 1 0 0000 0. 0000 0 0000 0. 0000 0. 0000 0. 0000 6. 0000
9 1 0. 0000 M OCDO 0 0000 0. 0990 0 0000 0. 0000 6. 0000

10 1 0. 0000 0 9000 0. 0000 0. 0000 22. 5000 6. 0000
11 1 G GOGO 0 0000 0. cooo 0. 0000 22. 5000 6. 0000
12 1 V 0009 0 0000 0 0900 0. 0000 22. 5000 6 0000
13 1 1 G. 0000 0000 0 0000 0. cooo 0. 0000 0. 0000 6. 0000
14 1 0000 0. 0000 0 0000 0. 0090 0. 0000 0. 0000 6. 0000
15 1 0000 0 0000 0.0900 0. 0000 0. 0000 0. 0000 0. 0000
16 1 oooo 0. 0000 0 0000 0. cooo 0. 0000 0. 0000 0. 0000
17 1 u 03 G 0. 0000 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
18 1 0000 0. 9000 0. 0000 0 0000 0. 0000 0. 0000
19 1 20. 000 3 j 0009 0 0900 0. 0900 0. 0000 0. 0000 0. 0000
20 1 20 o OC'GO 0.0000 0. cooo 0. 0000 0. 0000 0. 0000
21 1 0 0. 0000 0 0000 0. 0090 0. 0000 0. 0000 0. 0000

1 0. 0009 0.0000 0. 0000 0. 0000 0. 0000 0. oooo
23 i 0. 0 cooo 0. cooo 0. 0000 0. 0000 0. 0000
24 1 0 0000 GOOD 0 0000 0. 0090 0. 0000 0. 0000 0. 0000
25 1 0000 0. 0000 0. 0000 0 0000 0. 0000 0. 0000
26 1 0. 030 2 Ô. OCOO 0 0000 0. 0000 0. 0000 0 0000 0. 0000
27 1 0. 20 0000 0. 0900 0. 0000 0 0000 0. 0000 0. 0000
28 1 c 000 O : 0000 0 cooo 0. 0000 0.0000 0 0000
29 1 ceo : 0 0900 0. 0090 0 0000 0. 0000 0. 0000
30 1 0. 0000 20. GOOD 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
31 1 0. 0000 0 GOOD 0 0000 0 0900 0 0000 0. 0000 0. 0000
32 1 0. 0 GOOD 0 0000 0. cooo 0. 0000 0. 0000 0. 0000
33 1 0. 0:00 0 0000 0 0000 0. cooo 0 0000 0. 0000 0. 0000
34 1 0. 0000 0 GOOD 0 0000 0 0000 0. 0000 0.0000 0. 0000
35 1 0. C'vG G 0000 0 0000 0. 0000 0. 0000 0. 0000 0. 0000
36 1 0 C O O O 0. 0000 0 cooo 0. cooo 0. 0000 0. 0000 0. 0000
37 1 0 0000 GOOD 0 0000 0. 0090 0. 0000 0. 0000 0. 0000
38 0 0 0000 0.0000 0. 0090 0. 0000 0. 0000 0. 0000
39 1 0 000 O 0 cooo 0. 0090 0. 0000 0. 0000 0. 0000
40 1 0. 0000 0 cooo 0. 0000 0. 0000 0. 0000 0. 0000
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Figure T.16: T24: Last schedule for the packing lines

7.1

24

Table H2 T24: Demand coresponding to the last packing lines schedule
1 1 0 0000 13 1250 0 0000 0. 0000 0 0000 0 oooo 0. oooo
2 1 0. 0000 17. 5003 0 0000 0. 0000 0. 0000 0. oooo 0. oooo
3 1 0. 0000 15 GOOD 0 0000 0 0000 0 0000 0. oooo 6. OOOO
4 1 0 0000 15 0000 0. 0000 0. 0000 0. 0000 0. oooo 6. OOOO
5 1 0 0000 16 2503 0 0000 0. 0030 0. 0000 0. oooo 6. OOOO
6 1 0. 0030 17. 5000 0. 0000 0. 0030 0. 0000 0. oooo 6. OOOO
7 1 0. 0000 1 ? 5COO 0 0000 0. 0030 0. 0000 0. oooo 6. OOOO
8 1 0. 0000 0 0003 0. 0000 0. 0000 0. 0000 0. oooo 6. OOOO
9 1 0. 0330 0. ocoo 0. 0000 0. 0000 0. 0000 0. oooo 6. OOOO

10 1 0. 0000 0 GOOD 0. 0000 0. 0000 0. 0000 22. 5000 6. OOOO
11 1 0 0000 0 0030 0. 0000 0. 0000 0. 0000 22. 5000 6. OOOO
12 1 0 0000 0 0003 0 0000 0. cooo 0 0000 22. 5000 6. OOOO
13 1 15 ODDO 0. GOOD 0. 0000 0. 0000 0. 0000 0. oooo 6. OOOO
14 1 20 0030 0 GOOD 0 0000 0 0030 0 0000 0. oooo 6. OOOO
15 1 20. 0300 0 0000 0 0000 0. 0000 0. 0000 0. oooo 0. OOOO
16 1 10. 0000 0. 0003 0 0000 0. 0000 0. 0000 0. oooo 0. OOOO
17 1 20 0030 0 GOOD 0 0000 0. 0000 0. 0000 0. oooo 0. oooo
18 1 10. 0000 0 DODD 0. 0000 0. 0000 0. 0000 0. oooo 0. oooo
19 1 20 ODDO 0 0000 0 0000 0. 0300 0. 0000 0. oooo 0 oooo
20 1 10. 0000 û 0030 0 0000 0. 0030 0. 0000 0. oooo 0 oooo
21 1 23. 0:00 0 GOOD 0. 0000 0. 0030 0. 0000 0. oooo 0. oooo
22 1 10. 0030 0. 0033 0. 0300 0. 0030 0 oooo 0. oooo 0. oooo
23 1 0. 0330 0 0033 0 0000 0. 0030 0. oooo 0. oooo 0. oooo
24 1 0. 0000 10 0000 0. 0000 0 0000 0. oooo 0. oooo 0. oooo
25 1 0. 0000 20. 0003 0. cooo 0. 0000 0. oooo 0. oooo 0. oooo
26 1 0 0'00 23 GOOD 0 0000 0 0030 0. oooo 0. oooo 0. oooo
27 1 O. :ooo 0 cooo 0. 0000 0. oooo 0. oooo 0. oooo
28 1 0 0003 23 CODD 0 0000 0. 0000 0. oooo 0. oooo 0. oooo
29 1 0 3330 20 DODD 0. 0300 0 0030 0. oooo 0. oooo 0. oooo
30 1 o. 0:00 20 GOOD D COOO 0. 0000 0 oooo 0. oooo 0. oooo
31 1 0 03'0 20 0030 0. 0000 0. 0000 0. oooo 0. oooo 0 oooo
32 1 0 coco 10 CO33 0 0000 0. 0000 0. oooo 0 oooo 0. oooo
33 1 0 0000

Q
 

Q
 

o
 

C
i 

o

0. 0000 0. cooo 0. oooo 0. oooo 0. oooo
34 1 0. 0000 0. 0003 0 0000 0 0000 0. oooo 0 oooo 0. oooo
35 1 0 GOOD 0 GOOD 0 0000 0. 0300 0 oooo 0. oooo 0. oooo
36 1 0 0000 0. 0033 0.0000 0. 0000 0. oooo 0. oooo 0. oooo
37 1 0. GOOD 0 0030 0.0000 0. cooo 0. oooo 0. oooo 0. oooo
38 1 0 0000 0 0003 0 0000 0. 0030 o oooo 0. oooo 0. oooo
39 1 0 0330 0 0033 0 0300 0. cooo 0. oooo 0. oooo 0. oooo
40 1 C. €000 0 GOOD 0 3000 0. 0030 0. oooo 0. oooo 0. oooo.
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Table 7.14,
Tp Ml Ml Ml Ml

Pr Amt Pr Amt Pr Amt Pr Amt
1 0 0. 2 10. 0 0. 0 Ô.
2 0 0. 2 2. 0 0. 0 0.
3 0 0. 2 15.625 0 0. 7 5.
4 0 0. 2 15. 0 0. 7 7.
5 0 0. 2 16.25 0 0. 7 5.
6 0 0. 2 17.5 0 0. 7 7.
7 0 0. 2 17.5 0 0. 7 5.
8 0 0. 0 0. 0 0. 7 7.
9 0 0. 0 0. 0 0. 7 5.
10 0 0. 0 0. 6 15. 7 7.
11 0 0. 0 0. 6 25. 7 5.
12 0 0. 0 0. 6 25. 7 7.
13 1 15. 0 0. 0 0. 7 5.
14 1 15. 0 0. 0 0. 7 7.
15 1 15. 0 0. 0 0. 0 0.
16 1 15. 0 0. 0 0. 0 0.
17 1 15. 0 0. 0 0. 0 0.
18 1 15. 0 0. 0 0. 0 0.
19 1 15. 0. 0 0. 0 0 0
20 1 15. 0 0. 0 0. 0 0.
21 1 15. 0 0. 0 0. 0 0.
22 1 15. 0 0. 0 0. 0 0.
23 1 6.25 0 00. 0 0. 0 0.
24 0 0. 3 15. 2 10. 0 0.
25 0 0. 5 15. 2 20. 0 0.
26 0 0. 5 10. 2 20. 0 0.
27 0 0. 5 25. 2 20. 0 0.
28 0 0. 5 20. 2 20. 0 0.
29 0 0. 0 0 2 20. 0 0.
30 0 0. 0 0 2 20. 0 0.
31 0 0. 0 0. 2 20. 0 0.
32 0 0. 0 0. 2 10. 0 0.
33 0 0. 0 0. 0 0. 0 0.
34 0 0. 0 0. 0 0. 0 0.
35 0 0. 0 0. 0 0. 0 0.
36 0 0. 0 0. 0 0. 0 0.
37 0 0. 0 0. 0 0. 0 0.
38 0 0. 0 0. 0 0. 0 0.
39 0 0. 0 0. 0 0. 0 0.
40 0 0. 0 0. 0 0. 0 0.
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Chapter 8

Conclusion

In this thesis, the short term production scheduling for a two stage manufactur

ing system was considered. The system consists of a number of manufacturing 

facilities followed by a number of packaging facilities. Before packing the prod

ucts may be stored temporarily (in process inventory) in a number of silos. The 

problem was to minimise packing and changeover costs at the packing lines and 

the number of set ups at the manufacturing units. The minimum run length and 

the efficient use of the intermediate storage facilities were significant constraints 

at the manufacturing level.

A review of the literature did not reveal a wealth of publications on the 

subject, therefore a novel approach had to be investigated.

A stage by stage multipass method was developed. The multipass procedure 

is interactive, in that it is conducted by the user. The packing lines schedule 

is first built, then the manufacturing units schedule is determined with the 

packing lines schedule as demand.
The packing lines system consists of a number of interdependent machines. 

The interdependence is introduced by shared resources among the lines. The 

problem was to minimise changeover and packing costs. Due dates for all items 
fall at the end of the horizon. In a first attempt, the problem was formulated 

with preemption as a linear integer problem. However, due to the size of the 

resulting model, this formulation was considered infeasible. New avenues had 
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to be explored. A new formulation whereby the demand for each item was split 
in smaller sublots was considered. The problem was to schedule these sublots 

without preemption.

A branch and bound algorithm was constructed. In a first step, the resource 

constraints were dropped and a relaxation of the resulting problem was proposed 

for computing lower bounds. This relaxation decouples the problem in two 

problems: a machine loading, formulated as a general assignment problem and 

a sequencing problem, formulate as a shortest arborescence problem. In order 
to strengthen the bounds, penalties were computed.

Since the resource constraints elongate a schedule, at every node of the tree, 

among the items belonging to the same class, the one introducing the minimum 

idle time while satisfying the resource constraints is selected. This selection 
is carried out within an explicit enumeration procedure. The method worked 

well for problems with an even distribution of products among the sizes, that 

is where the number and quality of items are approximatively the same for all 
classes. The computational effort depends on the depth of the tree, near the 

root, particularly for large problems, it is quite heavy, the deeper the search, 

the lighter it is. As the resource constraints become tighter, the gap between 

the lower bound and the optimal solution widens. This is confirmed by the 

computational results. Nevertheless, in general, feasible solutions were obtained 

quickly. However, although these solutions seemed to be optimal in a number 

of cases, optimality was not proved after a substantial number of nodes. This 

is a general feature of tree search with poor bounding. In this respect, it is 

worthwhile investigating more the use of the penalties.

On the other hand, better feasibility tests should be constructed to ensure 

that the search does not drift away from the direction of feasible solutions. 

Sometimes, near the root, the assignment problem takes a long time to solve to 

optimality or to prove infeasibility. To alleviate this disadvantage, it would be 

better to limit the machine loading subproblem to finding a first feasible solution 

after a number of nodes. The coresponding node in the overall algorithm is 
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fathomed if no solution is found after the limit.

When the packing lines are dedicated to packing the format of one product, 

the search becomes no longer exhaustive. For this a priority rule was introduced 

that makes the procedure more of a heuristic.

As a possible extension of the model, the introduction of due dates can be 

considered. These can be introduced either in the cost function, by including a 

high cost of packing a particular item after its due date or in the constraints, 
by forbidding its packing after its due dates.

A branch and bound algorithm with lagrangean relaxation was developed 

for the manufacturing units-intermediate storage subproblem. At first, only the 

case with dedicated storage was considered. The constraints imposing that a 

machine can produce one product in one time period were dualised. In the 
resulting one product subproblems, the quantity to produce in one time period 

was computed using a simple simulator. This was possible since a manufacturing 

unit can handle at most one product at a time. A dynamic programming 
procedure was used to find the optimal allocation of the manufacturing units 

to the products. The procedure was made faster by taking advantage of the 

simplicity of the cost function.
The formulation was extended to the flexible storage case. In this case, the 

constraints ensuring that the number of silos allocated to all products, at a 

given time period, should not exceed the number of silos available, was dualised 

as well. The same solution procedure was used.

In the experiments carried out, the minimum rut» length constraint was 

expressed in terms of the quantity produced during the period where the man

ufacturing unit is set up to the current product. For the flexible storage case, 

instead of pricing silos allocation, it was introduced in terms of priority in the 

dynamic programming procedure. A number of priorities were tested and the 

best results were obtained when priority was given to allocating silos rather 

than not to.

It was rare that overall feasibility was obtained at the first pass, except for 

164



very simple problems not reported in this thesis. Coordination was always con

ducted by the user. The higher the demand, the more difficult overall feasibility 

was to achieve. For some problems however, it seems that infeasibility was due 
to overcapacity demand imposed by the long term scheduler.

As long as the packing lines subproblem was not overconstrained, the method 

gave good results since it was possible to carry out more passes before infeasi

bility was encountered. Optimality of the packing lines schedule obtained at the 

first iteration was conserved and it was rather a matter of delaying the pack

ing of some products to allow for production and resolve bottlenecks. When 

the packing lines subproblem is tightly constrained and the demand is high, 

infeasibility was obtained early and it was necessary to alter the lot sizes.

Except in two or three instances, the minimum run length constraints for 

the manufacturing units was always satisfied. In these cases, this was due to 

small isolated demands that could not be satisfied from storage. To alleviate 
the infeasibility, these demands were simply deleted since they were negligible.

An area worth exploring is the automatisation of the coordination device. 
The work could be based on the expertise acquired by the user of the interactive 

device. It should be done separately for every plant. Indeed, as it may have 

been noticed, the coordination procedure depends very much on the structure 

and operational data of the plant. It was easier for the second plant where 

there were four manufacturing units, dedicated silos and a few packing lines. 

We believe, though, that a degree of interaction should be introduced at some 

stage, allowing for flexibility and robustness. Indeed, for some very constrained 

problems, it may very quickly degenerate and will diverge from any feasibility 

path.
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Appendix A

The knapsack problem

For every packing line i, the following knapsack problem KP, has to be solved:

max j-pi^Xij
i

Subject to

ai,3xiJ —
It is well known [8] that when the variables are ordered such that the coeffi

cients (Aj — Pi,j)/ai,j are in decreasing order, the solution to the linear program 

KPLi obtained by dropping the integrality constraint is given by :

xi,j = 0 V j such that (Aj — p^j) < 0

= 1 Vj | (A, - Pi^/atj > (Ar - p,v)/a,,r

xij = 0 V j | (Aj - Pi^Ja^ > (Ar - Pi,r)/at>

xi,r — (Pi ^2
id^h

Where r is the last j such that

ai,j Pi-
In other words, the items are loaded in the above defined order, until either 

there is overload or an exact fit, in both cases the last item loaded is r.

A = {j kw = 1}
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Jo = {j = 0}
The value of the optimal solution to KPLi is then

V(KPLi) = Pij + P.>**>
V(KPLi) thus gives an upper bound on V(KP{) which can be used in a 

branch and bound algorithm for solving KPi. However one can do better. 

Ingargiola and Korsh [40] have shown that it is possible to reduce the dimension 

of the problem considerably, using inexpensive tests based on V(KPLi) which 

allow one to determine the values of a number of variables in the optimal solution 

of KP{. Having determined these values, a process that was termed “pegging” 

in [62], it remains to find the values of the non-pegged variables using a tree 
search scheme, with LP relaxation.

R. Nauss proposed [62] a somewhat faster test based on a Lagrangean re
laxation of KPi.

The Lagrangean problem associated with KPi is:

(KPGi) V(KPG), = max E/A, - p. J + 5(7; -

with Xij = 0,1 The solution to KPGi is known to be

= 1 if ^5 ~ Pm - aij6 > 0

= 0 if Xj - pij - aitj6 < 0

For the optimal multiplier 6

V(KPGi) = V(KPLi) < V(KPi)

It is apparent that if in the optimal solution to V(KPGi\ = 1, then 

the solution to KPGi with Xij = 0 will correspond to a decrease in V(KPG) of 

Xj — pij — a^jb. In the same way, if in the optimal solution to KPGi, = 0,

then the solution with x^ — I will correspond to an increase in V(KPGi) with 

the same value. Now let Xij = 1 in V^KPLi) and let a known solution to KPi 

be V(KPi)*. From the above,

V(KPG.)kj=o = K(KP£i)-(A,-p.j-a.„-5)
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It is easily seen that if

VlKPG^^o < V(KP^

then Xij must equal one in any optimal solution to KP^.

Similarly, let x^ = 0 in V(KPLi). Then if

V(KPGi)Xi.=1 = v(KPLi) + (Aj - PiJ -

x^j must be equal to zero in any optimal solution to KP.

The following - branch and bound algorithm with reduction tests con

structed by Nauss [62] has been adopted for solving KPi.

Stepl. Vj| Aj-pij < 0 set Xij = 0 and define

Jt = {j|Aj -pitj > 0)}.

step2. Solve KPLi for the variables in Jt to obtain an upper bound V(KPLi) 

and a fractional variable XitT. If V(KPLi) is feasible in problem KP, then 

stop; otherwise

step2’. Compute a lower bound V(KP{)* to KPi, using a heuristic or

where J\ and Jo are defined as above, and set the optimal multiplier

Initialise = {0} , Io = {0}

Step3. Pegging the variables:

Vj € Ji if V(KPLi) - Xj +pij + aitj6* < V^PKiY then x^ is pegged 
to one :Ii = 1^ U j

V j e Jo if V(KPLi) + A, - pitj - aij^ < V(PKiY then xy is pegged 
to zero : IQ = Io U j
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stepS’ Pegging by infeasibility:

W E Jo if aid > Ti - EjeJi then Jo = Io U ;

step4. Z/Jt — Ji U Jo = 0, then the optimum is found, stop; otherwise

StepS. Solve the reduced problem

Tnax 52 Jt - Ji U Jo ( j ” Pij)xit3

Subject to

52 < ïi - 53 aM (A l)
jjE Jt—Ji UJ0 J*€ Ji U Jo

using a branch and bound algorithm with LP relaxation and depth first 
search.
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Appendix B

Algorithm for the shortest

arborescence

StepO. Initial step

StepOa. Group all items being packed on all lines at the current node k in 

one component 1Z and let A(&) set of vertices consist of the items not yet 

loaded and U(k) the feasible changeovers.

Form the graph

V(k)=(TZ U X (&), U (&)) and the graph

g(k>(X(k),

StepOb. For every vertex l in X(k) select the arc (j0, Z) among all arcs (j, Z) 

with cty, Z) < oo such that 

ct(jo, Z) = minjct(j, Z) 

reduce the weight of all arcs (j, Z) as follows 

ctTÜi 0 = cttj, Z) - ct(j0, Z) V 3 

store the selected are in the list of arcs LIST and

update

Y = Y + ct(jOll)

set p=l
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At the end of this process, a set of arcs Wp is obtained.

Stepl

Stepla If there are no cycles in Wp then go to step 3, 

otherwise

Steplb Contract every cycle in into a single new vertex, form a new 

directed graph 0( & ) ^consisting of the new vertices and the unchanged 

old. The arcs of Q(k)p have weight ctp

step2. For every new vertex Zin ^(p) find jo such that

cp(jo, Z) = minjCtPfj, Z)

and reduce to obtain new weights:

^0,1) = - ^(,0,1)

The new set of arcs Wp is obtained, set p = p 4-1 and goto stepl

Step3. the weight of the shortest arborescence is Y.

The shortest arborescence is found by working backwards from £(p) and replac

ing each vertex created at p by the cycle it replaced. In each of these cycles, 

the arc that is directed toward the same vertex as one of the old arcs is deleted.
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Appendix C

Data for packing lines problems

In this appendix and in the next, the following abbreviations will be used:

Bi : manufacturing unit processing is of the batch type

Con: manufacturing unit processing is of the continuous type

CNT: number of connections out of Silos (or material handling systems) to 
the packing lines.

Dd: Dedicated to a particular product.

D : demand.
Fl: Flexible silo.

h: hour.

H: Short term horizon.
MHS: Material handling system.

Mn: Men.

Prd: Product.

PI: Packing line.

Sr. Size.

t. ton.
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Table C.l: Parameters for problems series P5

Parameter Value

Packing lines 5
Silos 7
CNT 1

Sizes 12

Products 7
Items 23

Operators 14

Fitters 10

Table C. 2: Parameters for problems series P6

Parameter Value

Packing lines 6

MHS 6

CNT 1

Products 7
Sizes 14

Items 25

Operators 24

Fitters 10
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Table C.3: Data for problems series P5

Item Product Size Men Lines Demand in tons
P5% P5a D1 D2

1 1 1 1 1 3 1,2,3 140 160
2 2 2 2 1 3 1,2,3 140 140
3 3 3 3 1 3 1,2,3 100 100
4 4 4 4 1 3 1,2,3 100 150
5 1 1 1 2 3 1,2,3 140 110
6 2 2 2 2 3 1,2,3 110 140
7 6 3 3 2 3 1,2,3 110 110
8 1 1 1 3 3 1,2,3 65 70
9 2 2 2 4 3 1,2,3 82 50
10 6 6 6 5 3 1,2,3 82 60
11 5 5 5 6 3 1,2,3 100 80
12 7 2 2 6 3 1,2,3 60 75
13 2 2 2 7 3 1,2,3 50 40
14 7 7 7 7 3 1,2,3 50 45
15 1 1 1 8 3 4,5 70 70
16 4 1 1 9 3 4,5 60 60
17 1 1 1 10 3 4,5 40 34
18 3 3 3 10 3 4,5 45 48
19 2 2 2 11 4 4,5 34 58
20 3 4 4 11 3 4,5 90 60
21 1 1 1 12 4 4,5 10 15
22 3 3 3 12 4 4,5 32 32
23 7 7 4 12 3 4,5 20 20
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Table C.4: Data for problems series P6

Item Prd Sz Mn PL Demand
Pl D 2 D 3 D4 D5

1 1 1 7 1,2,3 250 200 150 220 150
2 2 1 7 1,2,3 150 150 110 110 130
3 3 2 7 1,2,3 150 150 80 140 80
4 4 2 5 1,2,3 130 130 80 100 80
5 5 3 6 1,2,3 130 130 80 80 100
6 6 4 6 1,2,3 150 120 90 90 90
7 7 4 6 1,2,3 120 150 150 120 150
8 3 5 6 1,2,3 190 150 100 80 100
9 4 5 5 1,2,3 190 130 110 130 110
10 1 6 6 1,2,3 90 90 140 110 130
11 2 7 5

co 
of 70 120 90 70 90

12 5 7 5 1,2,3 70 80 110 80 100
13 6 7 3 1,2,3 45 45 100 55 100
14 3 8 3 1,2,3 25 29 46 49 25
15 7 8 3 4,5 30 35 20 35 45
16 2 9 3 4,5 25 25 30 25 30
17 5 10 3 4,5 45 45 45 30 45
18 6 10 3 4,5 22 22 14 14 14
19 1 11 3 4,5 14 18 10 18 10
20 4 11 3 4,5 

6
24 24 16 16 15

21 3 12 6 2.3 2.3 7 5.3 4.3
22 1 13 5 6 6.4 4.4 9 6.4 4
23 4 13 6 6 4.8 4.8 4.8 4.8 3
24 2 14 6 6 3. 6. 7 3 5
25 7 14 6 6 3. 3. 3 3 3
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Table C.5: parameters for problems series P71

Parameter Value

Packing lines 7
MHS 3

CNT 2

Products 8
Sizes 15
Items 30

Operators 25

Fitters 10

Table C.6: Parameters for problems series P72

Parameter Value

Packing lines 7

MHS 4

CNT 2

Products 10
Sizes 16
Items 30

Operators 28
Fitters 12
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Table C.7: Data for problems series P71

Item Prd Sz Mn PL demand
D1 m 2)3 D 4

1 1 1 7 1,2,3 320 280 200 320
2 2 1 7 1,2,3 150 150 200 150
3 3 1 9 1,2,3 150 170 80 170
4 6 1 5 1,2,3 150 150 200 80
5 4 2 5 1,2,3 130 100 80 80
6 5 2 6 1,2,3 130 130 100 130
7 7 2 6 1,2,3 130 140 80 80
8 8 2 6 1,2,3 130 110 70 90
9 3 3 5 1,2,3 70 80 80 120
10 5 3 5 1,2,3 70 50 200 120
11 1 4 3 1,2,3 60 60 60 90
12 2 5 3 1,2,3 120 60 60 120
13 6 5 3 1,2,3 64 80 80 80
14 7 5 3 1,2,3 50 70 40 50
15 8 6 3 1,2,3 70 70 60 100
16 4 7 3 4,5 55 65 90 78
17 3 8 3 4,5 70 70 50 50
18 7 8 3 4,5 40 60 40 40
19 1 9 3 4,5 60 60 60 90
20 6 10 3 4,5 70 70 100 100
21 5 11 3 4,5 50 50 70 50
22 2 12 7 6,7 16 20 18 12
23 3 12 7 6,7 15 25 20 15
24 1 13 7 6,7 14 19 14 14
25 2 13 6 6,7 15 18 18 10
26 4 14 6 6,7 3 3 3 5
27 5 14 7 6,7 3.4 4.4 4.4 5.4
28 6 15 6 6,7 3.4 5.4 5.4 6.4
29 7 15 6 6,7 7 4 6 3
30 8 15 6 6.7 5 4 5 3
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Table C.8: Data for problem series P72

Item Prd Sz Mu PL demand
D1 D2 D3 D4 D5

1 1 1 7 1,2,3,4 260 260 160 260 160
2 2 1 7 1,2,3,4 100 200 150 200 200
3 3 1 7 1,2,3,4 100 130 200 130 200
4 6 2 7 1,2,3,4 100 130 90 130 150
5 9 2 7 1,2,3,4 150 150 220 120 220
6 1 2 9 1,2,3,4 90 120 150 140 120
7 4 3 7 1,2,3,4 90 90 200 110 200
8 7 3 7 1,2,3,4 80 100 90 100 50
9 8 3 7 1,2,3,4 90 90 90 50 50
10 10 4 8 1,2,3,4 100 90 100 100 80
11 5 4 7 1,2,3,4 60 100 100 50 100
12 3 5 7 1,2,3,4 90 90 150 150 90
13 1 6 5 1,2,3,4 40 80 80 100 100
14 6 6 6 1,2,3,4 40 70 50 50 80
15 2 7 6 1,2,3,4 80 80 80 80 80
16 4 7 5 1,2,3,4 50 50 50 50 40
17 7 8 7 1,2,3,4 60 60 30 30 90
18 8 9 8 1,2,3,4 30 55 30 50 80
19 9 9 5 1,2,3,4 50 80 40 60 67
20 1 10 7 1,2,3,4 45 45 30 40 45
21 10 10 4 1,2,3,4 45 45 45 45 60
22 3 11 5 1,2,3,4 30 50 40 40 50
23 6 11 4 1,2,3,4 32 42 30 50 40
24 5 12 4 1,2,3,4 24 24 45 24 35
25 1 13 4 1,2,3,4 30 35 26 30 40
28 3 14 3 1,2,3,4 20 20 30 23 35
27 4 14 5 1,2,3,4 15 20 25 20 20
28 7 15 3 1,2,3,4 3 3 8 4 5
29 10 16 3 1,2,3,4 5 3 6 6 6
30 2 16 3 1,2,3,4 7 5 9 4 2
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Appendix D

Data for two-st age problems

Table D.1: Parameters for em PSP 1
Parameter value

Manufacturing units 1

Packing lines 6
Silos 7

Material handling systems 2

Sizes 5

Products 4
Items 15

Operators 35

Fitters 10

Table D. 2: Manufacturing unit characteristics for PSP1

Manufacturing units char act.

Unit Type Max rates in tons per hour

1 Con.

Prdl Prd2 PrdS Prd4
26 26 24 24
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Table D.3: Data for problem PSP 1

Item Mn PZ Ri Hl H2 HS H4
Prd Sz D Sbl D Sbl D Sbl D Sbl
1 1 3 2 1.74 27 1 45 1 0 36 1
1 2 5 1,3 6.7 145 2 80 1 125 2 100 1
1 4 7 4,5 12.2 290 2 250 2 430 3 330 3
1 5 7 6 12.2 180 1 180 1 70 1 80 1
2 1 3 2 1.8 36 1 0 21 1 0
2 2 5 1,3 7 70 1 90 1 70 1 80 1
2 4 7 4,5 12.7 290 2 360 3 400 3 250 2
2 5 7 6 12.7 90 1 200 2 0 110 1
3 1 3 2 1.6 18 1 16 1 0 17 1
3 2 5 1,3 6.2 150 1 40 1 215 2 75 1

3 4 7 4,5 11.2 725 4 475 3 475 3 525 4
3 5 7 6 11.2 200 2 125 1 270 2 00 2
4 1 3 2 2 11 1 0 18 1 0
4 2 5 1,3 7.4 55 1 70 1 125 1 125 1
4 3 7 5,6 9.3 145 1 160 2 170 1 135 1

Table D.4: Silos characteristics for PSP 1

Silos charact.

Silo Type Capacity m tons

1,2,3,4 Dd

Prdl Prig PrdS Prd4

25.5 25.5 22.5 22.5

5,6,7 Fl 46.5 46.5 46.5 46.5
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Table D.5: Parameters for problem PSP2

Parameter Value

Manufacturing units 4

Packing lines 4

Silos 7

Material handling systems 0

Sizes 6

Products 7
Items 18

Operators 10

Fitters 10

Table D.6: Manufacturing units characteristics for PSP2

Manufacturing units char act.

Unit Type Rates

1 Bt.

Prdl PrdS PrdS PrdJ Prd5 Prd6 Prdl

10t/2.4 h

2 Bt 10t/2.4 h 10t/1.5h 10t/1.5h 10t/1.5h 10t/1.5h

3 Bt 10t/1.5h

4 Bt 5t/2h

189



Table D.7: Silos characteristics for problem PSP2

Silos charact.

Silo Type Capacity in tons

1,2,3,4,5,6,7 Dd

Prdl Prd2 PrdS Prdj P5 P6 Prdl

35t 62 32 32 31 45 29

Table D.8: Data for problem PSP2

Item Àfn Pl Rt Hl H2 HS H4

Prd Sa D Sbl D Sbl D Sbl D Sbl

1 3 3 1 3.75 45 1 40 1 0 0
1 5 3 2,4 5 150 1 150 1 150 1 150 1

1 6 3 2,4 5 80 1 0 60 1 60 1

2 2 3 1 3.25 63 1 0 63 1 0

2 3 3 1 3.75 30 1 30 1 30 1 30 1

2 4 3 1,2,4 4.375 70 1 70 1 70 1 70 1

2 6 3 2,4 5 15 1 15 1 15 1 15 1

3 3 3 1 3.75 68 1 0 60 1

3 5 3 2,4 5 45 1 40 1 0 1 0

4 3 3 1 3.75 30 1 0 1 45 1 0

4 5 3 2,4 5 0 1 0 1 0 1 0

5 3 3 1 3.75 20 1 14 1 51 1 0

5 5 3 2,4 5.625 45 1 40 1 0 1 0

6 3 3 1 3.75 60 1 0 90 1 0

6 5 3 2,4 5.625 60 1 60 1 60 1 60 1

6 6 3 2,4 5 200 1 0 0 0

7 1 3 3 1.5 70 1 70 1 70 1 70 1

7 3 3 3 1.875 90 1 0 135 1 0
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