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Chapter 1

Introduction

The path integral formulation of quantum mechanics is a technique that generalizes
the action principle of classical mechanics. It replaces the classical notion of a
unique trajectory by taking all the contributions over all possible paths connecting
two space-time points (2, t') and (2”,t"), it is a functional integral, over an infinity

of possible trajectories to compute the quantum amplitude.

The basic idea of the path integral formulation can be traced back to Norbert
Wiener in his attempt to solve the problems in diffusion and Brownian motion,
then in 1933 Dirac extended this idea to the use of the Lagrangian in quantum
mechanics. In 1948 Richard Feynman had completed and developed the method to
have a functional integration formula. Some preliminaries were worked out earlier,

in the course of his doctoral thesis work by John Archibald Wheeler.

The physical intuition came from the two-slit experiment. Each time an electron
hits the screen, and it is not possible to tell which slit the electron has gone
through. After repeating the same experiment several times, a fringe pattern
gradually appears on the screen, proving that there is an interference between
two waves, one from a slit, the other from the second slit. As a conclusion, it
should be a summation of amplitudes of such waves, wave for each path. The
generalization of this idea for all possible paths, which means more slits, each of

which contributing an amplitude, was the main idea of path integration.
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This formulation has proven crucial to the subsequent development of theoretical
physics because it is manifestly symmetric between time and space. Unlike pre-
vious methods, the path-integral allows a physicist to easily change coordinates

between very different canonical descriptions of the same quantum system.

The path integral also relates quantum and stochastic processes, and this provided
the basis for the grand synthesis of the 1970s which unified quantum field theory
with the statistical field theory. The Schrodinger equation is a diffusion equation
with an imaginary diffusion constant, and the path integral is an analytic contin-
uation of a method for summing up all possible random walks. For this reason,
path integrals were used in the study of Brownian motion and diffusion then it

was great to introduce in quantum mechanics.

The aim of this thesis is to illustrate the path integral technique on concrete
problems of quantum mechanics; essentially quantum systems with position-time
dependent coefficient. In recent years, the treatment of these systems becomes
very intensive because of their important applications in various areas of the ma-
terial sciences and condensed matter physics. Special applications of these models
are achieved in the study of the physical potentials of semiconductors, quantum
well, quantum dots, metal clusters and quantum liquids ..etc. Many approaches
have been used for studying these systems, the main ones are the supersymmetric
quantum mechanics, potential algebras and path integral, and the goal is obtaining

the energy spectra and/or the wave functions.

In the second chapter, we present a description of non-relativistic quantum systems
according to Feynman’s path integral and we show how can this technique be
presented in phase space as a functional integral(The propagator) related to the
Hamiltonian (The Hamiltonian form), and in configuration space as a functional
integral related to the Lagrangian (The Lagrangian form). Then, the propagator

characterized by the quadratic action is fully expressed by the classical trajectory.

In the third chapter, we present a way toward obtaining the propagator in the
framework of path integrals of general time-dependent systems. The treatment
is mainly based on the use of explicitly time-dependent transformations which

permit to transform the propagator into a new propagator.

In the fourth chapter, we present a way toward obtaining the propagator in the
framework of path integrals of a time-dependent harmonic oscillator with both

mass and frequency being arbitrary functions of time. The treatment is mainly
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based on the use of explicitly time-dependent transformations which permit to
transform the propagator for the time-dependent system to a new propagator with
constant mass and frequency. We illustrate the general procedure by considering

some models of varying mass and frequency.

In the fifth chapter, we present the problem of a particle with time-dependent mass
in coulomb potential in the framework of path integrals. The treatment is mainly
based on the use of explicitly time-dependent transformations which permit to
transform the propagator a new propagator with constant mass which is easy to
be treated.

In this sixth chapter, we present the problem of a particle with a position-time
dependent mass via path integral in phase space, where we use a point canonical
and time transformations to absorb the time dependence of the Hamiltonian. Then
by translating the momentum and performing another time transformation, this

transforms the problem to that of constant mass. Then, we present some examples.

In the seventh chapter, the problem of a particle in an infinite square well potential
will be discussed in the presence of some chosen potentials, a canonical space-time
transformation will be performed to solve such problem, where they will be reduced

to solvable ones.

The purpose of the last chapter is to find the path integral solution for a non-
relativistic particle of electric charge (-e) and mass p subjected to the influence
of a field created by a dyon whose electric and magnetic charges are () and g,
respectively. The main objective is to solve this problem for a quite general vector

potential of magnetic monopole elegantly and simply.
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Path integral

The path integral is a technique that is equivalent to the Schroedinger equation and
the other standards formulations, which offers a new manner on treating quantum

mechanical problems.

In this chapter, we will introduce some basic notions of path integration, that are
given by Feynman. We will try to find an expression of this path integration in
quantum mechanics in configuration and phase spaces. For simplicity, we will try

to find its one-dimensional version and a generalization can be easily done.

2.1 Quantum action principle

In quantum mechanics, as in classical mechanics, the Hamiltonian is the generator
of time-translations. This means that the state at the current time and the state

at a slightly later time can be related by the Hamiltonian operator H(t), for states
with definite energy.

The Hamiltonian is a function of the position and momentum at one time, where
the Lagrangian is a function, for infinitesimal time separations, is a function of the
position and velocity. The relation between the two (The Hamiltonian and The
Lagrangian) is given by a Legendre transform. To find the Legendre Transforma-
tion, we need to determine the classical equations of motion, which can be found

by looking for the conditions that make the action an extremum
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In quantum mechanics, we can not know which trajectory the particle will choose
since all the trajectories have the same probability, so there is no preferred tra-

jectory than the other one. For each trajectory, we have a corresponding action
S(path).

2.2 Feynman formulation

Feynman showed that quantum action was, for most cases of interest, simply equals
to the classical action. He proposed the following postulates to find an equivalent

version of quantum mechanics:

1— The probability for an event is given by the modulus length squared of a

complex number called the ”probability amplitude”.

2— The probability amplitude is given by adding together the contributions of all

paths in configuration space.

3— The contribution of a path is proportional to e*/" where S is the action given

by the time integral of the Lagrangian along the path.

To find the probability amplitude for a given process one adds up the amplitudes
e'S/"s for each possible path in between the initial and final states. In calculating
the probability amplitude for a single particle to go from one space-time point to
another, it is correct to include the set of all possible paths in which the particle can
take. The path integral assigns to all these paths amplitudes with equal weights
but varying phases. Contributions from paths wildly different from the classical
trajectory may be suppressed by interference since they vary quickly they cancel

each other.

Feynman showed that this formulation of quantum mechanics is equivalent to
the canonical approach to quantum mechanics when the Hamiltonian is at most
quadratic in the momentum. An amplitude according to Feynman’s principles
will also obey the Schrodinger equation for the Hamiltonian corresponding to the

given action.
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2.3 Foundation and concepts of path integral

2.4 Probability amplitude

The probability of reaching a space-time point form an initial space-time by two
possible paths is not the sum of probabilities over those paths but the sum of the
amplitudes related to those paths. It is convenience to present the amplitudes of
wave-functions by complexes numbers, and take P(q) is the absolute square of the
transition amplitude ¢(¢) form a space-time point to another. By definition the
total amplitude of ¢(q) is the sum of amplitudes over the two paths, then we can

write

P = |¢(q)]
d(q) = ¢(q)1 + 0(q)2
P =1¢(a)i (2.1)

2.5 Transition amplitude

We will see how total amplitude can be found for a particle translates from a space
time-point ¢(z,t) to another ¢/(2’,t") by considering all possible paths. In classical
mechanics, the only possible path is that of a minimal action S, but in quantum
mechanics, since we have the Heisenberg rule the meaning of path is undefined
and it is meaningless, by another word we can not say that the particle will choose
this path or the other one under any condition. We can say that all paths have
the same probability but with different actions(phase). We call the sum of those
amplitudes over all possible paths the propagator K (¢, q) for a particle going from

g to ¢ and we write

K(d',q) = > ¢(x(t)) (2:2)

over all possible paths
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2.6 The propagator

Let us recall the from Schrodinger’s point of view that the operators do not depend
on time but the wave functions are so doing. In the configuration space (The
vector space spanned by the position eigenfunctions{|z)}) and let |¥(¢)) be the

wave function that can be represented as
U(z,t) = (z|¥(1)) (2.3)

As it defined, that the evolution of the state |¥U(t)) through time can be given

using the evolution operator U (ty, ;)
(W(tp)) = Ulty, t) (), (2.4)
where
Ut t;) =Ul(ty, YU, t;). (2.5)
Since the vector space {|z)} is orthonormal, then with (2.4) one will find that
Ui, ty) = /dxi<xf|U(tf,ti)|xi>\lf(xi,ti). (2.6)

By defining the kernel (z¢|U(ts,t;)|z;) as the transition amplitude we can write
that

k(zy tyswisti) = (xp|U(ty, i) |2, (2.7)
where k(xy,ts;2;,t;) is the propagator.

The propagator (2.7) can be decomposed for small segments of time £’s, ¢ =

(ty—ti)/(N+1), where N is a natural number. Using (2.7) and (2.5) we can write

klap trwot) = (UL t)las) = (@|U(t t) Uty tyoa)
LUt t)U (L)) (2.8)

with tf = tN—i—l and ti = to.
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Using the orthogonal properties of the vector space {|z)} then

N+1

N
k(xf,tf,l'”tl) = H/dxn H k(xnvtn;xn—btn—l)? (29)
n=1 n=1

where the elementary propagator k(x,, t,; z,_1,t,—1) is expressed as a function of

the Hamiltonian H as

k(T b Tty tnt) = (@nle” 7 |2, 1). (2.10)

2.7 Path integral

Let us assume the system with the mass m subjected in the potential V(z). The

Hamiltonian that describes this system is

1
H=—p+V 2.11
5Pt (z) (2.11)

This is not the general case because m and V(z) can be time-dependent, but
for simplicity and for the calculation to go smoothly we will consider the time-
independent case.

The evolution operator, then, can be given by
U(t) = ea:p(—%Ht). (2.12)

We are interested on the propagator (or the matrix element of the evolution op-
erator U(t) ) then

7
k(g ,ty; w5, t:) =<93f\6$P(—;LHt)\%>

N+1

N
H/dmn H E(Tp, tn; Tp_1,tn_1) (2.13)
n=1 n=1
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Let us find the expression of the propagator k(x,, t,; x,_1,t,_1) which is the prop-
agator of particle moving from the point x,_; to the point z, through the in-

finitesimal time interval e, we have

1
k(xn7 bn; Tn—1, tn71> :<xn|€xp(_i_iHE)‘xnfl>

A R V@), (214)

(nleap(—7 (5

Using Campbell-Baker-Hausdorff relation one would find that

1 1
k($n7 tna Tn—-1, tn71> :<$n|€l’p(—mp2€)eﬂfp<—ﬁv<ﬂf)€)

xexp<—ﬁ[p2, V(@)]e?)|[on_1). (2.15)

We keep just those terms of order ¢ which means that

7 7
k(xp, tn; n_1,tn_1) 2<xn\exp(—mp2€)exp(—ﬁV(x)é) |zn_1)

— [ dnataalean= V@) oalesp(—5 i)

— [ dnncap(— gmre)eap(— 1 VI2)e) aallp) al o)

dp, ; ~ .
- / 27];hexp<_QT;hpig)exp(_}%V<xn)€)>exp(%pn<$n — l'nfl)&“),
(2.16)

then after some arrangements

dp, 1
k(mmtn; mn—lytn—l) = /%GZLY)(ﬁ(pn(xn - xn—l) - Hn)5)> (217)
where
Hy = — 2+ V(x,) (2.18)
"o thp” Tn)- '

Inserting this in (2.13) we will find that

k(xy, tp oz t;) = H /d:cn H /%exp(%(pn(xn —T,1) — Hp)e).  (2.19)
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This is the discrete form of the path integral. In a compact form, it can be

expressed as as

k(xy, tex,t;) /D ]e:vp(%/dt(pcj—H)). (2.20)

This expression is the expression of path integral in phase space and it is given as
a function of the Hamiltonian.

There is another expression of this in the configuration space which can be reached
by taking the expression (2.17) and completing the square and making the integral

over p

dpy, 1
k(xnatn; xn—latn—l) = / zihexp(ﬁ(pn(xn - xn—l) - Hn)g)

m ( 7m
exr _——
omihe P

h 2¢ o
m 7

SmineC PG

Sh), (2.21)

then

zm
Kop tyiat) = Jim Hw/mg [ a3 = 20 = £V (22).

(2.22)

We defined the functional integral measure to be D[z(t)] to be

1= g 11 s 22

Using this we can write our final expression of path integral in configuration space

as

i

kar.trit) = [ Dle(®lesp(;S) (2.24)

this expression explains the contribution of each possible path between the binging

point z; and the arrival point x;.



Chapter 2. Path integral 11

2.8 The quadratic action

The quadratic system is the simples systems that can be exactly evaluated by path
integral(non-time-dependent system), it is a system given by a quadratic form in
coordinates and velocities. This system is used as a first approximation for study-
ing some no exactly evaluated systems, moreover, it provides a good example to

show mathematical tools used in the path integral.

Between tow points (z;,t;) and (xf,tf) on a manifold there excites a classical
path say x.(t). Then, a trajectory x(t) connecting these tow points can be given
as a fluctuation from the classical trajectory z(t) = zq(t) + n(t), with n(t;) =
n(ty) = 0. We can consider this as a functional variable transformation. The

Taylor development can be written as

Slx] = Slza] + dt%n(t) + % /dtdt’%n(t}n(t’) + ... (2.25)

The second term it vanished since our calculation at the classical path, which

means that

klapotyiat) e [ Dleeanly [ dat—ieimnon(®) (226

The action is chosen to have the following form
Slx] = /dt(gx'2 + b + cx® + di + exf), (2.27)

where a, b, c,d,e and f are constants. This will make the propagator to have the

following form
k(xy, b xs,t;) =enSEUF(t, — t) (2.28)

where F'(t; —t;) is a function of the interval T = t; —t; because n(ty) = n(t;) = 0.
This result is very important and its explaining implies the dependence of the

quadratic path integration on the classical trajectory.



Chapter 2. Path integral 12

2.9 Conclusion

We have presented a new description of non-relativistic quantum systems accord-
ing to the Feynman path integral technique. And we have shown that the path
integral can be put under two prescriptions. The first called the Hamiltonian
form (the integral path in the phase space), and the second is the Lagrangian
form. Moreover, we have been able to prove that the propagator characterized by

quadratic action can be completely expressed by the classical trajectory.

We conclude that the path integral technique has the following advantages:

- It is more intuitive, and its point of view is global; instead of considering ampli-
tudes of probabilities for a state at a given space-time point, we associate a proba-
bility amplitude with each possible path between tow space-time points(start-end).
- It allows certain formal manipulations, in particular the space-time transforma-

tions and the canonical quantifications.



Chapter 3

The time-dependent systems

3.1 Introduction

During the past decades so much interest has been paid to the subject of time-
dependent systems. This comes from the important of theses systems and their
applications in various areas of physics[l, 2, 3, 4] is the main reason for intensive
studies. There are various methods to solve such systems, like the time-dependent
canonical transformations method, the path integral approach, the evolution oper-
ator method, the direct integration of equations of motion, or dynamical invariant
method. In this chapter we will follow path integral technique and perform space
time transformations to the propagator, where will simplify the system under con-

sideration.

3.2 Explicitly Time-Dependent Transformation

In this section, we develop a method of calculating path integral for non-relativistic
quantum systems with time-dependent mass in general time-dependent potentials
by using explicitly time-dependent space-time transformations technique. For this

purpose, we start from the one-dimensional path integral formulation according

13
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to
K miﬂ_ z,
K(l‘”,t”,l’,,t,) _ /D[:L‘(t)]ehf( 2 V( t)>dt, (31)
N ) 1/2 ;N
- J\P—>H<1>o/ H du P (2mhe> exP(ﬁ;S(j’j B 1))’ (3:2)

where S(j,j—1) = %(% —xj_1)*— €V (x;,t;) is the short-time classical action.

Now we consider an explicitly time-dependent coordinate transformation defined
by the function x = h(q,t).

With the mid-point consideration, the action depends not only on coordinate mid-
point ¢; = g;+Aq;/2 but also on time mid-point ¢; = t;+ At;/2 due to the explicit

time-dependence of the potential.

Introducing this transformation and keeping all terms O(e), the measure trans-

forms as follows

N 1/2 N—1 1/2
m(tj) 1/2
. (27m'he) H de; = <h (a5 1)1 (gi s > <2W2h6)

Jj=1 Jj=1

N 12
X H (h' (q;,t)R (gj-1,tj-1) > H dg;. (3.3)

In the case of time-dependent transformation, the Taylor expansion around the
mid-point of functions m(t;) and h(g;, t;) is desirable because it gives a manageable

expression of the propagator:

m(t]) ~ m( ]) — J)Tj: (3.4)
and
o Agp - Aty P ON(q;, t;) Aq;  OW(q;,t;) At
W - S0 - ) (g - ) S TG
1 thI(qu )(AQJ) . (3.5)

20 g2 4
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After inserting them into Eq.(3.3) and taking into account all contributions up to

first order in €, the measure changes as

ﬁ (;(ngi)l/zjﬁdxj —( qf,tf)h/(qz»,ti)>

L) e ) e oo

j=1

also in the new variable the kinetic energy term has the form

M L . 2 ~ Zm( ) /2_ 2 ;9 — 2
exp( 2he <x] xj*l) > _exp[ e (h ( t; )qu +h (q],tJ)Athr

[)AG AL + 1 (g, 1) (4, >Aq31)]

" 12
im(t _ ) B
= exp[ 27(iej) <hl2(@j’tj)Aqa2'+h2(@j7tj)At§+
_ B B Aq4
2 (@, E)h(T, ) Ay M + 1 (@, TN (@) 75 ) -
AL j,tj)Aqg] (3.7)

Here a dot and primes denote derivatives with respect to the time and to the
coordinate ¢, respectively.

Bringing together these two relations the transformed path integral can be written

as
—12 pNZL N 7\ 2 m(t;) At
K5 ) = (Wappntae) " [TLanT] (5ar)  eon( - 221 52)
1 j=1 J
A WP(GE)  KM@E)\Y - rimity)
h/ ) 1_ J ]7_J - ]’_] J h/2 g: 1 A2
[T (- 28 (0 by o g0
im(t;) .o, - im(t;) ,,_ s, im(t;) ,,_ - __ Ag;
.2716] hz(qj'v ]) + hGJ'h/( ],t])h(qj,tj)A i+ hej h/( Jo j)hm( J’%)Té
T . o T
T an (tj)hlz( J?tJ)Aqu - ﬁv( J?tj>€]7 (3.8)
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or else

(5 B)AG — V(@ T)e), (39

where it seemed useful to replace the integration over upper positions g; by the

integration over intervals Ag; thanks to the identity

/]i;[:dqj Z/lj_:[Qd(qu)- (3.10)

According to the McLaughlin-Shulman procedure [13] we replace the terms quz-
and Aq;1 appearing in the action by making the substitutions:
2 the 4 _ h%e?
AG = e d Agp = =3 iemag )
Then the propagator admits the following continuous form

Koty = (0 ewq)) " [ oplaolen[; (M-
@iﬂ(q, £) — m(t)h(q, ) (g, 1) — 872 5 };L/;((g;) — V(g t))dt} .

(3.11)

We emphasize that the kinetic energy term in (3.11) has unconventional form.
This can be fixed up by appropriately chosen time-transformation, but instead if
the transformation x = h(g, t) is linear, other transformations will not be necessary
as in the case of the time-dependent harmonic oscillator which will be treated in
the following section. Also to reach a more convenient form of the path integral
(3.11), it is preferable to eliminate the term proportional to ¢. For this purpose,

let us define a function F'(q,t) as

F(q,t) = /qm(t)h(z, R (z,t)dz. (3.12)
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By making use of the relation

dF(q,t) _ 0F (q, t)(j N OF(q,t)

1
dt dq ot (3:.13)
we can perform the following replacement in the action
. F
[ mitaonaia = rig') - Fig) - [ @

Finally, the insertion of this result into (3.11) enables us to present the path
integral for a system with time-dependent mass and furthermore subjected to the

action of a time-dependent potential in a simpler form

k(i o) = (W ewt)) S [iaopilen(; [ (M50 @@

m(t) 72 h g(qv t) hZ h/IQ(Qa t)
) = S T S WD) V(q,t))dt], (3.15)
where
9(q; 1) = e:rp(%F(q, t))- (3.16)

Here we note that unlike time-dependent models studied by some authors, the

time-dependence of our system Eq. (3.1) is more general.

3.3 Point Canonical transformation

We consider the time dependent system defined by the following Hamiltonian

Hip,q.t) = #@ﬁ (g0, (3.17)

The propagator corresponding to this system can be written in the phase space as
Ref. [6]

K(q"p" ;¢ 0/, t) = / %l;[p(t)]eé i drtpi=H (p.a) (3.18)
T
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or in the discrete form as

n+1

dpz
K(d",p" ¢";,¢ 1) = lim H/ dq@H/
n+l
H eh p’L qi—Qqi— Qm(t) EV(q)t) (319)
where
t// _ t/
e=ti—tin =7 q=q.t' =to, ¢"=qui1,t" =tps1 (3.20)

Dealing with the problem (3.19) by a straight way and find its explicit expression is
not evident, since the mass and frequency are time-dependent. To be able to solve
this we need to make some coordinates transformations (p, q) — (P, Q)) which will
simplify the problem in order to be explicitly evaluated for many systems.

By taking the following time-dependent canonical transformations

= fHe
P
p= Tt) (3.21)
where the generating function is
_aF
F(q, P,t) = 10 (3.22)
The Hamiltonian (3.17) becomes
Q. P.t) =H(p.q.0) + 200
__ 1 1(t)
=3} (t)QPQ +V(Q,t) — 0 QP. (3.23)

Then the exponent in (3.18) is expressed in terms of the new phase-space coordi-

nates
2(/.//

/ " (i Hlap0))t - / .(PQ - s - V@

f@)
+ WQP) dt. (3.24)
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Also the measure under this transformations as Ref. [17]

dpn+1 T [ dgq;dp; i dPpi1 - /OO dQ;dP;
21h 111/00 2rh  2whf (tay1) H oo 2mh

_ AP oI H / dQudls 5 o)
2mhy/ f(tn+1)f(to 2mh

Using relations (3.24) and (3.25) and after some arrangements, the propagator

Eq.(3.18) takes the following expression

P(t)]

1 D
K 1 /! t”' / /t/ —
(Q7p7 45D, ) m/ 2mh

oH I PO P V@o ) (3.26)

At this point the system still time-dependent and more than that we have an extra

Ji0)

0 QP linear in P. To remove it we make a shift in the momentum

term

P=P+g(t)Q, (3.27)

where ¢(t) is a time dependent function. By inserting this in (3.26) we find the

following result

/T B B AT A 1 L 2 N2
K(q".p", 1" d v, 1) ——f(t,,>f(t,)ewp2h(g(t Q" —g(t) Q")

}—Z—(F)//7 QN7 t”; P/’ Q/, t/>, (328)
where the new propagator K (Q", P”,t";Q’, P',t') has the form

(DI O . Doy il D[Q(t>]D[p(t)] 1 ¢ — . 1 _
K(P7Qat7P7Q7t)_/ o1 h GZEpﬁ\/tl dt[PQ_WPQ

(2 g2(t) B f(t)g(t) + @)Qz - V(Q,t)

(
(o] 62
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Since g(t) is an arbitrary function we will choose it such that

gy
0 moro (3:30)
Then the propagator Eq.(3.29) becomes
R(p”, Q”,t”; p/’ Q/, t/) — / D[Q(g)lrl;[P(t)]exp% ; dt(PQ o mPQ
—5mOFOP R + R~ V(Q.0)

(3.31)

At this level the function f(t) can be chosen to absorb the time varying mass m(t)

or to bring the problem to solvable one.

3.4 Conclusion

In this chapter we have performed an explicitly time-dependent quantum me-
chanical transformation at the midpoint for the Lagrangian propagator, and point
canonical time-dependent transformation for the Hamiltonian propagator. There-
fore we have shown that the technique of explicitly time-dependent space-time
transformations is a necessary tool in path integral to treat explicitly time-dependent
problems or to simplify them, that they can not be in the event exactly evalu-
ated. We have obtained a general formula for the propagator for any quantum
system with time-dependent mass and potential simultaneously in both configu-
ration and phase spaces. This will be so helpful in the next two chapters where
the time-dependent harmonic oscillator and time dependent coulomb system will

be investigated respectively.



Chapter 4

The time dependent harmonic

oscillator

4.1 Introduction

A great deal of attention has been paid to the subject of time- dependent Hamil-
tonians. The main reason for intensive studies of these quantum systems is due to
their important applications in various fields of physics, such as quantum optics
[1], cosmology [2], nano-technologies [3] and plasma physics [4]. The harmonic
oscillator with time-dependent frequency, or with explicitly time-dependent mass,
or both simultaneously is the most commonly mechanical system used in this area.
These problems have received considerable interest [5-11] and have been solved by
various methods, such as the time-dependent canonical transformation method,
the path integral approach, the evolution operator method, the direct integration

of equations of motion, and dynamical invariant method.

Looking through the literature one finds that an explicit expression for the propa-
gator could not be obtained for all time varying mass-functions because the proce-
dure involves the solutions of non-linear differential equations. This is the reason
why only few cases of varying mass has been solved. As mentioned above we can
cite the following cases: the strongly pulsating mass [7], the exponentially time-
dependent mass [6], the power-low mass [8] and some other examples are given in
Ref.[12].

In this paper we will present a way toward obtaining the propagator in the frame-

work of path integrals of time-dependent harmonic oscillator with both mass and

21



Chapter 4. The time dependent harmonic oscillator 22

frequency being arbitrary functions of time. The treatment is mainly based on the
use of explicitly time-dependent transformations which permit to transform the
propagator for the time-dependent system to a new propagator with constant mass
and frequency. We illustrate the general procedure by considering some models of

varying mass and frequency.

4.2 The harmonic oscillator with time-dependent

mass and frequency in configuration space

The general time-dependent Lagrangian for a harmonic oscillator is given by
t 1
L(x,#,t) = @:&2 — Sm(tw*(t)a”, (4.1)

where m(t) = mof(t) and w(t) are well-behaved functions of time. By using ex-
plicitly space-time transformations such that = = ¢(t)q, we can write after follow-

ing the same steps given above, the propagator corresponding to the Lagrangian
Eq.(4.1) as:

K(q,,t/; q//’ t//) :(C(t//)c(t/»—l/Qé«(q//’ t//)f*(q/, tl> / D[Q(t)]
xexp{%/(?f = 002 1))t} (4.2)

where £(g,t) = exp'De Z(tqu and Q2(t) = % - 228 + w?(t). We have chosen
the function c¢(t) such that ¢*(¢)f(¢t) = 1, which reduces the problem to that of
the well-known of the harmonic oscillator with constant mass and time dependent

frequency. The propagator of this system is given by(See Ref.[65])

2(¢", "= (¢, ) img o
sin(2 () =10 " { 2hsin(7(t") — (1) Rl

A2 q)cos((t) = 1) = 24 b (43)

K(q/,t/; q//,t”) —
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2mhe(t) 2h \e(t) ' op(t)
satisfy the following coupled differential equations

N 1/2
where Z(q,t) = (mm 17(“) expime (48 4 2002 “and the functions (t) and pu(t)

fi = 3 + QP () =0
1+ 24 = 0 (4.4)

4.3 Applications

4.3.1 Example 1

We consider the problem of the harmonic oscillator that has a mass of the form
m(t) = mo(ae + Be )2 where mg is a real number, o and § are complex
numbers and A can be either pure real number or pure complex number, such that
m(t) has a physical meaning. The Lagrangian corresponding to this system is

L(x,j;,t)z%(aaw BeM)24? — 2( At Be M2 ()2t (4.5)

We choose the frequency w(t) to be a constant function of time. The propagator

of this system is given by

K(a"%,0'.¢) = [ Dla(p)eh /e, (46)

By using the transformation x = c(t)q, where c(t) = (aeM+ e )~ and following

the procedure detailed above one can write the propagator as

img (c(t "2 _ c(t )

K(SL’”, t”; ,l‘/, t/) — (c(t”)c(t'))_l/2e 2n e 4 C(t/)q )k(q”, t”; 7 q/’ t/)7 (47)

where k(q”,t"; ¢, t') is the propagator corresponding to the Lagrangian L(q, ,t) =

Mo g? — 1e0?¢? which can be exactly expressed

moS) 1mpS)
k‘ " t”' /t/ — "2
D ¢%mmmw—wfw%mMWL%WQQ+

¢ cos(Qt" —t')) — 2q”q’>, (4.8)
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where Q = Vw? — \2.

4.3.2 Particular cases

1. The exponentially changing mass m(t) = mye?"

By putting f = 0 and o = 1 we can get this case and the propagator in this

case is

1"y gt 1/2
mOQeA(t +t) ) Amg (ezxt”x/afezm’xa)

K(z" #" 2 ¢) = o
(2, 52 1) (27Tih5in(ﬂ(t”—t’ c

imOQ NN N 12
X e:vp{ st — 1) [(e U+ M ) cos(QUt" — 1))+
— 26’\(t//+t/)x"x’] } (4.9)

This result coincides exactly with that given in [6].
2. The strongly pulsating mass m(t) = mgcos*(ot + 6)
1

To get this case we put a = %ei‘;,ﬁ = 17 and A\ = io, where o and § are

2
real numbers. By replacing these quantities in Eqgs.(4.7) and (4.8), we obtain

the following expression of the propagator

K(QSH ! t/) . mOQCOS(O't” + 5)608(0’15/ + 5) 1/2
R 2mihsin(Q(t" — 1))
% e%(sin(?at”+26)m”2—sin(2at/+25)x’2)
imOQ
2hsin(Q(t" —t/
cos*(at' + 8)x")cos(Qt" —t'))—

2cos(at” + 6)cos* (ot + 5):10":10’} }, (4.10)

X exp{ ) [(0052(015” +0)a"+

which is the same result given in [7] if we choose ¢ = 0.

3. The mass m = mgcosh?(A\t + 1)
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This case by putting o = %eﬂ and = %e*’?. The propagator is

K" "2 1) = moSdcosh(A" + J)cosh(A' + ) v
U, 2mihsinh(Q(t" — t))

% e 21)‘7 0 (sinh(2Xt" +209)x"? —sinh(2\t' +-209)x'?)

’imoQ

2hsinh(Q(t" —t/

X e:r:p{ M |:(COSh2(>\t// + 92"+

+ cosh?> (At + 9)x")cosh(Q(t" —t'))—
2cosh( A" +9)cosh?( A\’ + 9)2"x } } (4.11)

4.3.2.1 Example 2

The second example will be the harmonic oscillator with the mass m(t) = mot?(ce*+

w
Be=*)? and the time dependent frequency w(t) = =0 where mg and wy are real

127
numbers, a and [ are complex numbers and A can be either pure real number or
pure complex number, such that m(t) has a physical meaning. To find the prop-
agator corresponding to this system we will follow the same procedure as before

and tack the transformation

1
— t{aeMt + ﬁe—)‘/t)q’

(4.12)

which will lead to the problem of the harmonic oscillator with a constant mass my

A /o.JOJr/\2

and a time-dependent frequency €2y = . The propagator in this case can

be expressed as

K( nogn, g 140 A/t A/t A/t =2/t 1/2
2"t ) = (' (ae™t + BeV ) (ae™t + Be )

—img (LJFL *aeA/t//+ﬂ87A/t/,) //27( 42 —aM? +667A/t )q 2
% e S5h T T N g N[ q vz M 1 ge N1

X k(q”7t”; 7q/7t/)7 (4.13)

where the propagator k(q¢”,t";, ¢, t") has the following form

0?2
kgt 1) = / Dlq(t))ezp /(%f—? 04yt }. (4.14)

To find the exact expression of the propagator (4.14) we will make another trans-

formation ¢ = ty, then follow that by a time-transformation dr = dt/t*, then
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putting everything together the propagator (4.13) will take the final form

nogn. o mQp(aeM ¥ +8e= M) (e e A1) 1/2
K([E U a1 ) = ( 27risin(Qo(t%—%/)) )

” " ’ ’
—img [ N\ —aeMt +[3€7)\/t q//27A —aeMt +ﬂef)‘/t q/2
xe 2h 112 aeA/t/,+557A/t,, 12 ae)‘/t/ +B€7)\/t/
2

i 2 "or
img Qg q” q 1 1 9 g
— U0 (L5 +L5)cos(Q(77—37)) 2457 %4
% {zhsm(no(—t},—ftl,)) |:(t//2 t/2) ( O(t” t/)) t7 17

” (4.15)

These tow examples presented here are more generalized than those given in the
literature,. The same problems with an inverse quadratic potential can be exactly

solved by the following the same steps and choosing the same transformations.
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4.4 The harmonic oscillator with time-dependent

mass and frequency in phase space

4.4.1 The propagator and the transformation

Consider a quantum problem of a harmonic oscillator in which the Hamiltonian

that explicitly depending on time

Hip,q.1) = #@ﬁ n %m(t)wQ(t)QQ. (4.16)

The propagator corresponds to this system can be written in the phase space as
Ref. [6]

K", p"t"; ¢, 0, ,t) = / weé 5 dt(pg—H (p,q;t)) (4.17)
2rh

Dealing with the expression (4.17) by a straight way and find its explicit expres-

sion is not evident and it is a problem, since the mass and frequency are time-

dependent. To be able of solving this problem we need to make some coordinate

transformations (p, ¢) — (P, Q) which will simplify (4.17) to another form which

may be explicitly evaluated for some chosen systems.

4.4.2 The canonical transformations

To treat the problem given by the Hamiltonian Eq.(4.16) we need to do some
transformations and represent it in a new phase space coordinates.

By taking the following time-dependent canonical transformations

q=f(t)Q
P

and following the same steps given in chapter 3 we can find that
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/N Y A AN 1 L N2 / 2

K(Q”? Pl/? t//; Q/J Pl? tl)? (4'19>

where the new propagator K (Q", P",t";Q’, P',t') is

K(Q”, p//7t//; Ql, p/’t/) — / D[Q(tglrl;[P@)]eajp%/tl dt(PQ _ Qm(t;f(t)Q PZ
L O O
(4.20)
To simplify this problem f(¢) will be chosen such that
) f() 0
my 7@ T T meron 2y

where w is a constant.
Following by the time transformation dr = dt/m(t)f(t)? the propagator (4.20)
will be

R(Q",P" Q' P t) = / D[Q(TQ)LI;[P(T)]QIPE

7 o 1.
dr(PQ — = P
h/T (PQ =3

/

T ()

which is the propagator of the simple harmonic oscillator and it is exactly evalu-
ated.

4.4.3 Applications
4.4.3.1 Example 1

As a first example we will treat the system described by the following time depen-

dent Hamiltonian

1

Hp.a.t) = 2mo(aeM + fe=)

1
2p2 + §m0(0ze’\t + Be )22, (4.23)
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where a and (8 are complex numbers and A can be a pure real or pure complex
number with m(t) has a physical meaning. As it seems that when « or 3 is zero the
system will be that of exponentially time dependent mass [1], or when o = § = 1/2
and A is pure complex, the system will be that os the strong pulsating mass [7].
To deal with this system we will choose f(t) such that; f(¢)*>m(t) = mg or

1
)= ———— 4.24
0 = ot 5oy (424
then the canonical transformations in this case will be
Q
=—* 4.25
4 (et + Be™) (4.25)
p = (ae* + Be ™ P, (4.26)
with the generating function
F(q, P,t) = (ae* + Be )qP, (4.27)
and clearly g(t) is
(ae* = Be™)
t) = —moA\————=. 4.28
g( ) Mo (046)‘ +5€_A) ( )
Following the same steps detailed in the last chapter we can find that
- 5 5 DQM)]D[P(t)] i /t” 5 L 5
K " P// t”‘ / P/ tl — - dt(PO — _P2
@ PPy = [ 2GR et [ PG - 5 -
1
— Smole? = 2%)Q?) (4.29)
. moQ szQ "2
- \/ Srhsin(—0) P s — ) @

+ Q% cos(Q" — 1)) — 2Q"Q), (4.30)
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where Q = v/w? — A2, Then the propagator of this system will be deduced easily

as

A R R N M) 1 INAYI2 el )2
K(q P 7t 4, D ’t) - \/27rhf(t”)f(t’)87,n(ﬂ(t” _t,))exph(g(t )Q g<t )Q )
imOQ
2hsin(Qt" —t'))

((Q//2 + Ql2>COS<Q(t” o t/)) o 2@//@/)‘
(4.31)

X exp

This will be identical to that result given in [7], when we choose v = 8 = 3 and A
as pure imaginary constant, and to that given in [6] when « or § is zero and A is

pure real.

4.4.3.2 Example 2

We present here a new system which will be exactly evaluated following the steps
presented above. This system is more general than those given in the litera-
ture,where the mass and frequency will be time-dependent as it shown in the

following Hamiltonian

1 to 2a ) 1 ) " 2(a+pB) )
H t)=— | — — — 4.32
(pu q, ) 2m0 ( t ) p + 2m0w0 <t0> q, ( )

where v and [ are constants. This example is more generalized than those given

in[ 14] . The propagator related to this problem is

Dlg(t)|Dp(t)] i / 1 ()™
K "o t”' / /tl — - - 7 — dt — = |\ 7 ?
(q Pyl 345D ) / 2h expﬁ, v (pq 2m0 t r

1 t 2(a+pB)
— §mow§ (—) 7). (4.33)
to

To deal with this problem we need to take the following Canonical transformations

_ (%) P (4.34)
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The generating function related to this transformation is

Fi(g, P,t) = (%)a qP, (4.35)
and ¢ (t) is
gi(t) = —@- (4.36)

Using all of this we can find that

! / —imna O 2)
K i) = () et - TR Q)
0

(4.37)

where K(P",Q",t"; P',Q',t') is the propagator given by

- D . t// . 1
KQ",P" t",Q', P t) / 2 h )]expi/ dt(PQ — 2—P2+
t/

h mo

28
—a?+a o [t 9
At this level the system transformed to that of a constant mass and varied fre-

quency, which is not easily evaluated. To be able of finding the exact expression

of the propagator Eq.(4.38) we need to take another canonical transformations

B t5+1t65w0 3
Q= VtJ, <W) Q

p
p— Y (4.39)
ViJu ( B+ )

(a,,)( 1+2a))
B+ (=142a) /*

The generating function for this transformation Fy(Q, P, t) is

where J,(x) is Bessel’s function of the first kind and p =

_ PQ
Fy(Q, P,t) = 7 (4.40)
? ? t6+1t BUJ Y
Vi, <(,3T01)0>
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and
1 AR N
t) = J 0 +
92() m0(2\/¥ M( (6+1)
B+14=8,
dJ, <u;0) G118
(B+1) P T wo
tJ,| ——— | . 4.41
Vi dt )\[“<(5+1)> (4.41)

Then easily we can find

i\ P , ,
(t”t/)_l/z (t_2) €$p—zmoa(6i/l2 QQ)exph( 2(25”)@”2 o g'g(t’)Q’2)
0

t//ﬁ+1t—5w0 (a—1)(—14+2a) t’ﬁ+1t_ﬁw0
\/ JH( ) I (G “a™)

(B+1)
/ D )] eh fzt’” dt(PQLf 2Ml(t)
27Th

8 2
where M (t) = motJ, (%) . Following by the time transformation dr =
TA’}O(%’ this will lead to an exact expression of the propagator (4.42), then

<2Wiht”t, v modt>1/2 e " *lmoa " 2 q"? t 2 q'?
’ —5 erp—— — - — _ -
(// /1 4, /) o ¢ M@ t% p tO t tO t
K" p",t";q,pt) =
J t//ﬁ+1t0_/8wO J t/5+1t0_6w0
AN CESY) v\ "B
2a . 2a
cerp o BA) (PO g l0) (L
h " M(t") \to M) \t
2
X img (t"> ¢ ( v ) “q
erp——— - (v .
h tf 7z\r?(fel)t to) /M) to M(t)

(4.43)

K(q//,p//,t”; ql,pl,t/> —

P, (4.42)
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4.5 The propagator for the harmonic oscillator
with time-dependent mass and frequency in

phase space using delta functional

4.5.1 The harmonic oscillator and the propagator

let suppose the following time dependent Hamiltonian

H(p,q,t) = %(t)pQ + %m(t)wQ(t)qQ. (4.44)

The propagator corresponds to this system can be written in the phase space as

K(q".p" 1" d,p,t') = / wewu Hot-Hat), (4.45)
T

This propagator is not exactly evaluated for any arbitrary time dependent mass or
frequency, because this will lead to non-linear differential equations. To deal with
this system firstly we will absorb the quadratic term of ¢, by taking the following

transformation
p=P+ f(t)g, (4.46)

where f(t) is an arbitrary function. The propagator (4.45) under this transforma-

tion will have the following form
K(q",p”, t”; q/7p/7 t/) _ eﬁ(f(t”)q’a—f(t’)q’?)K(Pu’ q//7 t”; P,, q/7 t/), (447)

where K (P",q",t"; P',¢,t') is the propagator that has the following expression

- Dlg(t)|DIP(t)] i s ]

and the new Hamiltonian H(P, q,t) is

H(q,Pt) = il + )

2m(t) WPH%(f(t)?/m(t)+f(t)+m(t>w2<t>>q2- (4.49)
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Since f(t) is an arbitrary function we will chose it such that the quadratic term

in the new Hamiltonian disappears

F)?/m(t) + f(t) +m(t)w?(t) = 0. (4.50)

Then f((P”,q”,t”; P’ ¢, t) will be

R e e A L CE)
m

To deal with this propagator we will take the following canonical transformations

¢=9t)Q
P

with the generating function F(P,q,t)
F(P,qt) = L. (4.53)

Then (4.51) will be

K(q,/,P,/,t//;q,,P,7t,) —

varall DIQNIDIP(1)] 3 1t arPar- B2 8+ S
T90) 2h

(4.54)

Since g(t) is an arbitrary function it will be chosen such that the second term in

the Hamiltonian will be zero or
L = (. (4.55)

In the exponent by integrating the first term by part and do the functional integral

over g we get the following condition

5(P), (4.56)
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which implies that P should be a constant. Then the propagator Eq.(4.54) will
take the form

. 'L D ~ D ~ _ 2
P (P”Q”—P/Q/"Fft/ 2m(t§’g<t)2 )

f((q”,P”,t";q',P’,t

) = m/ 27Th
HPQ-Q)-P? i) 4.57
m / 2mh ¢ B

+oo 2
/ e Ot gy — \/Eeia, (4.58)
o a

Using the identity

one can find that

1 i (Q// _ Q/)2

f((q" P t”'q' P’ t’) — n erPp—F—Fr——— - (4-59)
y by g, ; . " d 2 d
2rhig(t")9(t) Ju miewe 2h [, TOTOE

By plugging this into Eq.(4.47) we will find the expression of the system Eq.(8.4)

K(¢", P",t".q P t) = \/ - ! v e (a2 = ()a%)
2mhig(t")g(t') /., m—
i (Q"-Q)
X expﬁW, (460)

' m(t)g(t)?

which is the desired result

4.5.2 The Models

We would like to present a class to time dependent Harmonic oscillator with con-
stant mass and varied frequency, and we will follow the way that given above
to find the exact propagator of the related system. Let us present the following

Hamiltonian.

H(p,q,t) = %pQ + % (%) 7 (4.61)

where k(t) is an arbitrary function, a and b are constants. We will deal with
those systems such that function (b — ak(t))™2 has a definite integration. Toward

finding the exact propagator related to this system we will chose the function f(t)
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Eq.(4.46) to be

—ak(t)

10=—0m (4.62)

Then the propagator related to this system can has the following expression

—ak(t") 2 _—ak(t) 2)

K(q”,p//, t/l; q,,p,, tl) :e%ﬁ(fak(t”)+bq 77ak'(t’)+bq
/D[Q(t)]D[P(t)]e;fﬁ" dt(qugf%Pq)dt. (4.63)
2mh

Then we will present the following canonical transformations

q = (—ak(t) +b)Q

P

N

- T (4.64)

This will lead to a new expression to the propagator Eq.(4.63)

e2h\ Zar( 157 Zak(t+b?
V (=ak(t”) + b)(—ak(t') + b)
=, - ” , 5,2 " d
/dP eﬁ(Pl(—akt(It”)er_7ak((1t’)+b)_P ft’ (—ak(tt)+b)2)

i —ak(t') 2 —ak(t") /2)

K(q",p" t";q" 0, t) =

21h
o3 e )
= . t/l
\/27rhz(—ak(t”) +O)(—ak(t') + ) f) s
i (= k((];i')er = k((]z:’)+b)2
epr_h ! dt (465)

' (—ak(t)+b)2

From here it is clear why we have toke the condition (b — ak(t))™2 has a definite

integration.

4.5.3 Examples

wo
\@cosh(wot)
The related function for this frequency is k(t) = tanh(wot) + 2.

o W —

_—_—
The related function for this frequency is k(t) = = + 2.
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t
rt
® W= wpe

The related function for this frequency is k(t) = Bessel J(0, &

A\
0(,{):&)0(%)

. The related function for this frequency is k() = v/t Bessel.J (555 %)—l—

b, This example (b—ak(t))~2does not has a definite integration for all values

r
0 towo)
- .

of r.

Where r, v and t; are constants with ¢, has the dimension of time those are some

examples that can be exactly evaluated following the steps given above.

4.6 Conclusion

The study of harmonic oscillators with time-dependent mass has assumed because
it is very important in different areas of physics like plasma physics, cosmology,
quantum optics etc. Looking through the literature one can notice, in this context,
that the path integral method has been used to solve exactly some problems with
specific time-dependent mass like exponentially varying mass, strongly pulsating
mass, growing mass ...etc. In this work we have used a space-time transformations
in phase and configuration spaces to treat the problem and find the propagators
of new generalized examples. In this chapter, we have studied a general model of
explicitly time-dependent quantum problems by path integrals. The treatment is
based on the use of some time-dependent transformations. The problem treated
in both configuration and phase space, we used space-time transformations in
configuration space and point canonical transformations in phase space, that leads
to a considerable simplification in computation and gives unambiguous results in
comparison with already existing methods. We have derived the wave functions,
expressed in terms of the Hermite polynomials, by simply use of the Mehlers
formula. We also have considered interesting explicitly solvable cases where we
have presented some new examples of harmonic oscillators with time-dependent
mass and frequency for which exact propagators have could be evaluated providing

us normalized wave functions.



Chapter 5

Particle with time-dependent

mass in coulomb potential

5.1 Introduction

The exact expression of the propagator for the time-dependent systems of Har-
monic oscillator has been studied by many [5, 6], but looking through the litera-
ture, one would find that such problem, in fact, is evaluated just for few examples
[5-11]. The difficulty to find the exact propagator for the time-dependent systems
is that the calculation, in fact, involves solutions of non-linear differential equa-

tions.

Generally, time-dependent quantum problems, in fact, have been studied by
many; in Ref. [15] Sobhan and Hassanabadi investigate Bohr Hamiltonian in the
presence of time-dependent Manning—Rosen, harmonic oscillator and double-ring
shaped potentials using Lewis—Riesenfeld dynamical invariant method. Using the
same method, the authors could treat Davydov—Chaban Hamiltonian in the pres-
ence of time-dependent potential [16], which is one of the most important topics in
physics; Grosch in Ref. [17], by using path integral technique, could find the exact
solution of some systems; in Ref. [18], Lew is—Riesenfeld dynamical invariant and
time evolution operator methods (to evaluate the quantum many-body systems

in presence of time-dependent potential and electric fields) have been used. The

38
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time-dependent Coulomb problem has also been studied [17, 19, 20] Here, via path
integral [17], we find a generalization to class of time-dependent potentials where

a space-time transformations transforming the system to the stationary one is used.

In this work, we will focus on the problem of a particle with a time-dependent
mass subjected to the Coulomb and the inverse quadratic potentials in two dimen-
sions via path integral. We will use a linear space-time transformations to reduce
it to a stationary problem then treat it in polar coordinates, which finally leads
(as it will be clear later) to the corresponding wave and Green’s functions and the

related energies

5.2 The space-time transformations

The problem with a particle with an arbitrary time-dependent varying mass does
not has an exact solution via path integral yet, this come from the difficulties of
finding an exact propagator using the direct treatment or the way of the transfor-
mations. We will propose the problem with an exponential time-dependent mass
which is very important and can represents many physical systems. The related

Lagrangian is

L(z, 1) :%m(t)(jcQ—i-g'ﬂ)_ kg

Jrrg mOEE gD
G <I€(/€—1) +/\()\—1)> (5.1)

2m(t) x? y?

M with o and mg are constants. With the conditions

Where the mass m(t) = mge
K, A > 1

The propagator related to this system in configuration space is
a2 T) = [ Dla(e)let S Heso (5.2)

As it mentioned that the exact expression of this propagator may not be evaluated
directly since it is time-dependent. To deal with such system and remove this
difficulties it would be better if we take a transformation to absorb the time from

the problem and make it stationary. The relevant transformation that may be
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chosen is

y=eN¢ (5.3)
Then

7;6)\1‘/]‘
exp( P (z; —xj_l)z) ~ exph(70 _’\tJAf + —)\2 _)‘tjﬁ +

A - >\ Y
— mgze_ tjngfj + moge AL Agf) (54)

and the same for the variable (. for the measure we have

N m(t ) N-1 N
5D s —(E.0 —1/2 A(ti+ty) —2Mt;
IT (5i) T =tecsp e T
J=1 Jj=1 1
N-—1

At
x H (?m ) a0 [T g, (59

then using the correction Aq? — Lﬁ— this will lead to following expression of
moe

the propagator

moe At; N
k(z", 2", T) =£GEsCy) HRA) H ( Sinhie ) xp(ATJ) H dg;d¢;
j=1 1

DI (0 A ]+m° AZe M i&2e—moXe” j{jASj_;Mmel))E)

I3 2 =2
J

X e &

i N (Mg~ ;8¢ ]+m0)\2 —XEj AN E A PPOG-1)

72 j=1(3"¢€ CJE moAe GAG— amge )\]<2 €)
X e

— LN _k e+ 9 €

h J=1 —Xt; =2 2 —At; =0 =2

X e e TUNEHG moe TIEHG) (5.6)

using the same trick given above in equation (3.15) we have, F(q,t) = \/2e ¢,

and g(q,t) = exp(L3e*¢?). Then the propagator (5.6) will have the following
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form

A
k(o a's T) = (§G:€7¢) ™2 Deap(£ 2 (e (6 + () = e (& + ()

_ 2
A N-1 i N (mOE—Atj ALY B2 (k(k—1) e)
moe d d . h j=1\"2 € 2m0€ tJ 52
X 2imhe §idese
_ AC ;
N mo )\t h2 (/\(>\ 1)) i N k g
I 5559 Th2i=l T S =t T o 5 5. €
e = 2mge ch e TN [BE moem M (@348

A
= (6GiE7Cy) PN Deap(5 2 (e (6 + () — e (E + D))

1 Mo s, . k
[ Preniceeny [ Gl ) -
Y Rk(k—1) hBAA\=1))
T @) 2me e 2mgei2 ) (5.7)

At this step the problem is still time dependent, and to deal with that we need to

make time transformation t — s
eMdt = ds (5.8)

where we have that eMie = 7;, then under this transformations the propagator
(5.7) will be

i\
Ko, T) = 6ty Cp) 2N eap(p 5 (e (€ + () = e (€ + ()
N N-1 N
? myg Af? + Ag? k
= (mmj) 1:[ dé;dGiexply j:1(7 T = Tt
g R (k(k — 1)) RO - 1))
@+ )7 T T 2me2 T 2mel? 7] (5.9)

Then the problem transformed to that of a particle with a constant mass mg

subjected in a Coulomb and inverse quadratic potentials.

5.3 Propagator in polar coordinates

The evaluation of the propagator (5.9) is not easy, the difficulties come from the
non-separation of the variables ¢ and ¢ in Coulomb and the inverse quadratic
potential terms, so thinking of treating the problem in polar coordinate (r,0) it

may make it somehow simpler because the variables r and 6 will be related by a
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multiplication in both of the mentioned potential terms.

The propagator in this coordinates where £ = rcosfl and ( = rsinf reads as

N—)oo

k(7, 7;T) = lim <2mh7'j) / H ridr;df;exp(— - ZS( J.j—1)) (5.10)
the short time action in this case is

. m k
S(j. = 1) =5 (Ar? +2rm;1 (1 = cos(A)))) = =75 — —5 7+

j Tj moTj
2morcos®(6;) a 2m07’ sm2(0]) '
we may therefore write at the mid-point
S(j,7—1) :@(Arz + 72A0? — 1A 2A92 — —~2A04) — E7' I +
’ 2r;0 7 T4 12'7 R
R (k(k — 1)) (AN — 1))
— T~ YA (5.12)
2myo7icos®(0;) 2mo7ssin®(0;)
and the measure
N-1 ;X N-1
I ridriao; = [ T drjde,
j=1 VI i =1
1 N 2\ N-—1

N
1 .
= Hfje 8”2' H d’l‘jd@j (513)

We insert (5.12)and (5.13) in (5.10), to arrive at the correct time-sliced form of

the propagator in polar coordinates

7= i T1 () [ T vt = oot
J
m 1 z' N
0 2 A 02 2 A pd 22 A 02
— ——(Ar A A A A
Sth( 0; + 37“] 9 ))exp(— JEZI o, T+ A )+
k h? —1 h2(\
ko9 o Welk=1) o FAG-) ), (5.14)

77 mery 2mq73 cos?(0;) ’ 2mo7ssin?(0;)
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To make this propagator in a useful form we will follow McLaughlin Schulman

procedure which leads to the replacement

A’I“JZ — ih/Tj
AO? —— (il /m) 7,2

AG} — 3 (ihr;/m)* (5.15)

then we get the polar form of the discretized propagator

k(7,7 T) =(r'r") /2 lim. <2mm) / Hdmde Hw
J

Pk —=1)  RQAA-1) T.) (5.16)

2m0r2 s2(6;) "’ 2mofjgsin2(éj) ’
5.4 Green’s function

The propagator (5.16) can not be evaluated directly since the radial and the angu-
lar part are not separated, to separate them we need to make time transformation,
for that we need to make the energy appear in our expression. To do so we need

to define the Green’s function which is the Fourier transform of the propagator
G(7}, 7 E) = / dSexp(%ES)k(Ff, 7: S) (5.17)
0

In order to be able to separate angular part from the radial we change the time

from s to s
ds' = r~2ds (5.18)
which is equivalent to

J

s
Tj = rjrj_1T, with S’z/ r~2ds (5.19)
0
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Then
Ar?
7 = 772 (1 - l) (5.20)

if we insert the condition ryr; [° dS'6(S — fOS/ r?(s')ds’) = 1, with the above
transformation in (5.17) one would find that the Green function would be written

as follow
00 S’
G(Ff,ﬁ-;E)—/ dS’(S(S—/ r?(s")ds")p(7y, 7; S)
0 0
00 S’
:/ ds’ (rf,n,/ r2(s')ds") (5.21)
0 0

with p(7, 7; fosl r?(s')ds’) is given by

p(f},f};S) Trf / J\ll_l}loo (2#2717’)/Hdr?d0 H IR (1+_~2)

7=1

|~ Mo ATJQ' AT? 2 =2/ ~

X exp(ﬁZ— 1—1-4—7;]2‘ (f—?—l—AGj)—i—Eroj—k’rjaﬂ—
n*/8 — h? -1 2N —1

JRa, Bio1), ROOD)

mo 2mocos?(0;) 2mosin?(6;)

using the corrections

A
At = 37 (Z TJ) (5.23)
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that will make (5.22) have the following form

N
p(7y, 75 5') =(riry) J\}l—rgoj <2mh7' ) / H dr;df; H

h?/8 + g
—L 4+ AG?) + EF?r, — k7 ——7
X exp(— ;T 7“] + 7))+ ET; TJ] Mo Tj
_Pels=1) R - }))T{)
2mocos? (0 ) 2mosin?(6;) ’
= pr(’l“f,T’Z, ) (Qf,Qz,S’) (524)
where
N
. 1/2
pr<rrf7 T'is S) (Tlrf) ]\P_rgo (277.@}17_ ) / H drr]
myg AT ~ h2/8 +g
x exp(— Zl 771—2 + EFT) — kT — e T (5.25)
and

N 1/2
mo 2
pu-0.:8) = i 1 (575 ) / Hd@ew Zz A%

Rlss—1), ROG- D), (5.26)
2m00032(§j) ! 2m05in2(5j) ’ |

The last expression is just the propagator of a particle subjected in Poschel-Teller
potential Refs. [22,23] which is exactly evaluated that has the form Ref. [22]

= h
py(0y,0:,8') =Y eap(—i— (20 + k + \)’S)(2 + £ + )
0

P 2m

" AN+ kK +1)
T(k+1+1/2T(A+1+1/2)

x PMHETUR(1 9gin?(0,) P21 — 25in2(6,))  (5.27)

(Sin(ai)Sin(9f>)/\(COS(Gi)COS(Qf))H

Using the same result that given in Ref. [22] where py(fy,6;,S") will be written

as a summation

Py (0. 0:,5') qun 07)bn(0;)e i T0nS (5.28)
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using this relation one would find that the energy spectrum of this system will be

given by

h2
Eppn="—2l+r+\)? (5.29)
mo

The normalized wave functions corresponding to this case can be directly deduced

B T+ k+1) 12
9nl6) = (2@ MRS v ey v pra 1/2))
x (sin(8)) (cos(8))*) P22 (1 — 25in2(0)) (5.30)

To find the Green’s function (5.17) we still have to find the exact expression of the
radial propagator (5.25), and to do so we need to make the transformation s — ¢
defined by

ds' =r~*(s)ds (5.31)
which means
2
/ 7j 7j Arj
= =114+ —L .32
TJ Tﬂ”j—1 sz < * 4f]2> (5 3 )

then

12 N-1
D, (1,72, 8) =(riry) ?ei S Jim H (2mh¢ ) J 1L
J j=1
. N
mo k h?/8 — g — moEgn
X exp(— Z 2— ]2 E T; + mof]? ;) (5.33)

The last expression is the propagator of a particle subjected in Coulomb and an
inverse quadratic potential in one dimension, to find the exact expression of it we
will make a space-time transformation. The suitable space time transformation

that can be chosen in this case is

ds — A (t) (5.34)
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which will simplify the problem to that of an Harmonic oscillator with an inverse
quadratic potential.

The discrete version of this transformation can be given by

ri = U?, yTj—1 = U§71
sl = e (1 B4 (5.35)
7j = d€uju; o = 4€'u; 4/&? .
this will leads to a quantum effective potential V = 832 ZQ. Then the Green’s
J

function will take the form

(e 9]

2 Z NN+ + 120+ Kk + N)
(upui)/? = T(k +14+1/2)0(A+1+1/2)

X (605(91»)cos(Gf))“Pl’\_l/Q’H_l/Q(1 2sin*(6;))
x PR 2sm2(ef))/ dT'e —W/D
0

7 mo .2 h2 2 2 2 /
— — 1— — E 4F
X exp(h/( 5 U + 2m0u2( 8g/h* — 8moEp,/h°) + 4Eu”)dt’)

G(ry, 7 E) = (sin(&i)sin(ﬁf))’\

e}

AN+ K+ D)2+ K+ N)
Z Fk+14+1/2) (A +1+1/2)

(sin(ei)sin(ef))’\(cos(ﬁi)cos(ef))”

=0

x PRI 9gin?(6,)) PPV (1 - 2sin?(04)) / AT e~ +4kT’

0

mow imow MW fU;
— (W) oo | ——~
8 <z’hsm(wT’)> (- 2h (1 + wi)eot(@T") 1o (iﬁsin(wT’))

(5.36)

2mo By, ¢
72

with 4F = —%m0w2, o= Z—g + . In the next step we will make the following

change of variables

mow

y=——1u (5.37)
L (5.38)
h
z = exp(—2iwT") (5.39)
with
-1/2 1 — —-1/2 1
sin(wT") = %, cos(WT") = # (5.40)
i
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taking this into account then

=L 2IT( 2
22 IMA+r+DR2I+E+A)

(e [+ UDTO 3 13 172) S 00sin(0n)) (eos(Br)cos(0;))"

G rf7TZa

x BT (1 9sin?(0,)) BT (1 — 2sin?(6))) / AT e~ F(Ak+I) T
0

X (;m—ow)) exp (—lw(x + y)) Toa (M) (5.41)

(1-= 2(1-2) 1—2

Using Hille-Hardy [24]

2(1—z 11—z

1—-

Z anel’p(—l/Q(x + ) (zy2)“ L2 (z) L2 (y) (5.42)

n=0

with |z| < 1, and L?**(z) are Laguerre polynomial functions. After replacing all of

this in the Green’s function we will have

G rfarzv

L2ATAN+ R +D21+ K+ X)) fmowy 20+
)=4
ZZFH+Z+1/2) ()\+l+1/2)< )

x (sin(6;)sin(0,))(cos(6;)cos(8,))" B} *" 712 (1 — 25in?(6;))

« Pl)\*l/lﬁfl/?(l . 2sm2(9f)) /OO dT/ef%(4k+(l+2a+2n)hw)T’
0

h

X exp(— oo (12 4 ul) ) L2 (T 2 L2 (T ) (5.43)

2h

5.5 The energy spectrum and the wave functions

To find the energy spectrum and the related wave functions, we need to look for
the poles of our Green function and to do so we will perform the integration with

respect to the variable T’
/ dT/e—E(4k+(1+2a+2n)ﬁw) (4]€ + ( + 20 + Qn)hw)_l (5'44)
0

after some arrangement it is clear that

2m0k2

B, =—
R2(1 4 2a + 2n)?

(5.45)
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The wave functions can be deduced for the residue of the Green function then

EF—-F,
\Pn,l (Uf7 Qf)\Dfl’l(ui, 91) = lim

E—FE, /3

G(ry, 73 E) (5.46)

which means that

| 1/2 a+1/2
W, )(u, ) =232 ITA+rk+DQ20+ K+ N (m0w>
’ T(k+1+1/2T(A+1+1/2) h
x sin(0) cos(0)* P52 (1 — 25in?(9))
mowu2

0 - )

x exp(— 2 (u? + u2)) L2

o (5.47)

5.6 Conclusion

Then, using the path integral technique we were able to exactly solve the prob-
lem of a particle with the time dependent mass m = mgexp(at), subjected to a
Coulomb potential in two dimensions, by preforming suitable transformations. We
have also obtained the corresponding eigenfunctions and energy spectrum. The
problem can be evaluated in three dimensions following the same way done here,
and an extra phase term will appear in the wave functions.

We remark that we can reach the stationary results by putting a = 0, which is
the same results found by authors. This is feel good about the way and the tech-
nique we have chosen which make us tray to generalize it to the problem with a
time-position dependent mass in other works.

Through the formulation and the results given above and the obtained wave func-
tions and energies we conclude that the path integral is a powerful technique to

study quantum dynamics of particles in non-relativistic theory.



Chapter 6

Position-time-dependent mass

6.1 Introduction

In recent years, the study of quantum mechanical systems with position-dependent
effective masses has received considerable attention[25-32]. They constitute inter-
esting and useful models for the description of several physical problems in different
areas of the material sciences and condensed matter physics, especially in the case
of many- body problems|[33], electronic properties of semi-conductors[34], quan-
tum dots[35], quantum liquids[35] and metal clusters[37],...etc. This wide range
of applications has led to the development of methods and techniques for stud-
ding such systems. Among them, we can cite the point-canonical transformation
method[30,31,32], the algebraic methods[36,40] and the supersymmetric quantum
mechanics[41]. Note that in all of theses methods, the common procedure is to
convert the position-dependent mass problem into that of constant mass and the
main aim is to get energy spectra and/or the wave functions for theses systems

ones the position-dependent mass is given.

The problem of variable mass can also be formulated by the path integral ap-
proach. Some examples have been treated in configuration space [42,43,44] where
in [40] the Green’s function of position-dependent mass has been related to that

of constant mass according to a direct calculation.

50
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In this chapter we are interested in developing a systematic procedure to study
one-dimensional path integral in phase space for a class of position-time dependent
masses and time-dependent potentiates. This later can provide not only many ex-

act results known in the literatures but also a various new ones.

By using an explicitly time-dependent canonical transformation as well as a time
transformation, we were able to absorb the time dependence of the path integral.
Then by shifting the momentum and performing sn other judicious time trans-
formation, we reduced the problem with position-time dependent mass to that

relating to a constant mass and stationary potential.

As application, we have considered two different mass distributions each of which
being relative to a chosen potential so that the corresponding path integral be

exactly resolved.

6.2 Hamiltonian and path integral

There is an ambiguity in writing the quantum Hamiltonian for systems with
position-dependent mass. This ambiguity arising from the fact that £ and p do not
commute. There are several forms for the hermitian Hamiltonian with a position
dependent mass, all of them have the same classical limit but they differ in the

quantum level. In general we can write
~ 1 ~
H= Z(m“ﬁm%ﬁm” +m'pmPpm® +V(2,t), with a+p+y=—-1 (6.1)

This formulas is the most general one that can save the hermiticity of Hamiltonian.
The parameters «, 5 and v will be chosen such that the condition given in Eq.(6.1)
is holds. In our case we will choose the Hamiltonian with parameters a = —1,
and § = v = 0, because it has many applications. Also we will be interesting with
the time dependent potentials of the form V (2,¢) = f2(t)V(f(t)&) and our chosen
time dependent mass has the form m(z,t) = m(f(t)z), where f(t) is an arbitrary

time-dependent function. By reordering the Hamiltonian this will produces an
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effective potential term (See Ref. [45])

1,1 1 m” 9f2m
= (=921 p2—) _ £2
4<mp tp m) ! 8m 32 m

V(f#), (6.2)

here the primes denote the derivatives with respect to the coordinate x.
The propagator related to the system Eq.(6.1) can be given in phase space by the

following relation

K(:L‘”,t”;I,,t,) ( (f// // 1/4/D ]

m’  9f%m
8m2 32 m3

X exp(i /dt(px——— + f? V(fx)). (6.3)

This is the propagator of a position-time dependent mass particle subjected to
the time-dependent potential f2(¢)V (f(¢)z). Th problem is time-dependent and
it may not be easy to be evaluated directly unless we find procedure to transform
it to a time-independent problem which is more easier to be evaluated. To do so

we preform the following canonical transformation

=9()@Q
P
p prmng — 64
g(t) (04
with the generating function
xP
F(x,Pjt) = —, 6.5
(@, P) = 2 (6.5
where ¢g(t) is a real function.
The propagator (6.3) will be after this transformations
K(Q// Pl/ t//.Q/ Pl t/) _( (f” //Q//) f/g/Q/ 1/4 / D )]
Y Y Y Y Y g(t//
v 1 P2 m"  9fm
dt(PQ — =— + f?
x expli /t/ (PQ 2mg? * 8m2 32 md
- V(9@ + 2PQ)). (6.6)

Since ¢(t) is an arbitrary function we will choose it such that g(t)f(t) = 1, to
make the potential V(x,t) and the mass functions m(z,t) time-independent.
At this level, we notice that the kinetic term does not have the standard form.

For this reason we carry out the time-transformation dt = ¢*(t)dr in order to
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eliminate g~2(t) in the kinetic term and to absorb the explicit time-dependence of

the path integral. The time rescaled path integral is

( (f” HQ”) f/g/Q/ —1/4 D )]
g(t” t//

1"

T 2 " 2
<eapli [ dr(PQ = e+ g = 3%”7; ~V(Q) - 99PQ))
(6.7)

K(Q”, P// /l, Q P/ )

The propagator (6.7) is time independent except for the term ggPQ). Then the
function f(¢) is chosen to satisfy the condition f f3(t) = g¢g = k. Moreover,
shifting the momentum by mk@, or P = P — mkx(@), will cancel the PQ)’s term

K(Q”, P”7 t”;Q/, Pl,t/) —

(m@Im@) " - [ DIQEIDP()
ana

1

T X 2 "
X exp(i/ T(PQ — li m ) m” Q)+

, 8m2 32 m3

- 7771@2)), (68>

where the function G(z) obeys the relation

0G(z)
0z

G.(z) = =m(z)z. (6.9)

The term % is nasty since it’s related factor m(Q) is position-dependent function.
To achieve a more convenient form of the path integral (6.3) we will perform the

following time transformation defined as

§(Q(7))dr = ds, (6.10)
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This will lead to a new expression of the propagator (6.3)

K(Q// P// pp Q P/ ) ( (Q”)g(Q”)Q (Q/>5(Q/)2)_1/46—m'( G(Q")-G(Q")

g(t//
/ dE —zET/ dS/ )]
1 P2 12
X exp(i/ds(PQ ~omE %%Q — 85n§3+
m'¢’ 1. m 9 m'?

LVO)+ D) (6.11)

“iee i s T mm ¢

Since ¢ is an arbitrary function we will choose it such that ém = 1 to obtain the

following standard expression of the propagator

" / 4 oo
K(Q// P// Py Q P/ ) ( (Q) (Q ))1/ e—m( Q"— (Q’))/ d_EefiET

(t") t") 2T
/ dS/D )]exp(i/ds(PQ— %P2+
—%m@ gmﬁ+§%—mW@+mm.mm

Then the problem is transformed to that of constant mass but with different
potential.
There are other choices of ¢ such that the problem can be evaluated, for example

Em = %, Em = %, the choice depends on the system that we have.

6.3 Applications

6.3.1 Example 1

We will be interested into the system of the mass m(z) = 2 and the potential
Vi) =Vo+ L + %, 0 ==£2.
This system is stationary, it is the case where k = 0. The function f(¢) is chosen to

be 1. Then after the transformations given above one can find that the propagator
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related to this problem [23]

K(Q P 5 Q ) =yt [ SEet [Tasess [ plats)pip(s)
0

oo 2T
. 1 1 o(c+4 "
ceapti [[dspi — 37— 35 7O (8- v - 1)
:f(x/a+2xua+2)1/4 /OO d_Ee—iET /oo ds e'hs
i oo 2T 0 sin(wS)
1w

1% (22 +x'?)cot(wS) '
X 2 I v —_— 6.13

‘ 2 (wzsm(wS)) (6.13)

with v = \/%0(04—4)—1—%4—% and w? = —2(E —V,) for 0 =2 and v =

\/éa(a +4) — 2% + L and w? = 2y, for ¢ = —2. The integral over S in (6.13)

can be performed using the formula

/OO dx exp(2px — Peoth(x))cosech(x) o (acosech(x))
0

_ 112 - p+7M,pM/a2+52 BYW,.(\/a2 + B2 — B) (6.14)

I'2y+1)

Thus (6.13) will be

K(Q// P// . Q/,P/,S/> :(_1)u+1<x/ax//a)1/4 /oo d_EefiETF(l/Q —p+ V)

o 2T I'2v+ 1w
W o w2
X M_p,,,(gx )Wpﬂ,(gx ), (615)
with p = 2=. The Energies related to the bound state of this system are given by
the relatlon
1/2—p+v=-n, neN. (6.16)

By inserting the value of p in (6.16) we will find that the energies are

e LFor o =2

_ B/8
E”__(1/2+n+y)2 Vo, (6.17)
e For o = -2
E,=—2(—n+ % —1/2)2 = 7/8 + V4. (6.18)



Chapter 6. Position-time-dependent mass 56

6.3.2 Example 2

T

We will be interested to the system of The mass m(x) = e’ and the potential
V(z) = Vo + Be ™ + ye
For this system the mass grows exponentially m = e, where X is a real constant.

Following the steps given above one can find that

K(Q' P!, 8" Q, P, o) =ed ) / ) ZE e [T dse s
T 0

/ DL Dlp(lesnti [ asipi — 577

(B = Vp)e — 7e*). (6.19)

Thus we see the solution reduced to the path integral of Morse potential[23].
Following [46,47] one can find

27

y / dEMefiEMS (=1 (N —p+1/2)
27 idwexp(3(z” +a')) TN +1)

A
2

K(Q”,P”,S”;Q/,Pl,sl) :e%(x//_l,_x/) /OO @e—iET/ dSe— 22 +325$
oo 0

X M,p,,\/(—we%xl)W,pw(—we

where p = 25510 = /8y/A2 and X = \/—2E);/\2.

Preforming the S and E); integrals we find that E), = —)‘zg—g’w, then

¥, (6.20)

K(Q', P, s"Q, Ps) = / T e CUTH T —p /2
oo 2m idwexp(7(x" + 2N +1)

X M_py,\/(—wegrl)W_p,,\/(—we v ) (621)

v 8
S

S~—

S~—

The discrete energy levels can be found from the poles of the I' function in the

numerator
N—p+1/2=-n, neN. (6.22)

Replacing X', and p by their values one can find that

= 2(\/1/16+26/>\2+1/2+n)+%. (6.23)
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We have presented two examples here, but using the method that have been
presented in this chapter one can find many systems that can have exact solu-
tions, for example the system with the mass m(x) = mg/z, and the potential
V(z) = a/x + Px where the problem will be reduced to the system of a free

particle in Coulomb and an inverse quadratic potentials in one dimension.

6.4 Conclusion

In the present work we reduce the phase space path integral with position-dependent
mass and time-dependent potential to that with constant mass and stationary po-
tential, simply by using explicitly time-dependent canonical transformation and
appropriate time transformations. The general form of the propagator is given and
closed expressions are deduced for tow specific mass functions particles moving in
familiar physical potentials, together with their energy spectra and corresponding
wave functions.

We should point out that that our result can provide solutions for systems with
different mass functions and typical potentials frequently used in the literatures
and can also be extended to get solutions for systems with more complicated time-
dependent mass distributions combined with other potentials to model interesting

physical phenomena.



Chapter 7

Path integral for a particle in an

infinite square well

The problem of a particle in an infinite square well potential is a simple problem
in quantum mechanics and is known as the simplest bound-state problem. The
system has been solved by Schroedinger equation exactly but via path integral the
problem was one of the great puzzles for a long time. After by introducing the
image point method equivalent to the sum over all classical paths[48] the author
was able to solve it. Then Sokman [46] using a point canonical transformation on

the coordinate, he could find the exact solution of such problem.

The propagator is not invariant under any change of variables, which means that
the change should taken such that it will lead to the same quantum theory as the
original one. In [46] a general method to compute the exact propagator under a
point canonical transformation accompanied by a new time-transformation, where

the problem reduced to that of a particle in a Rosen-Morse potential.

We aims in this work to find the exact propagator of a particle in infinite square
well, in which the will be constrained in the interval 0 < x < 1 with some poten-

tials.

58
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7.1 The propagator

Let us first present the Lagrangian of this problem which has the following form
. m .
L(z,z,t) = 5= V(z)—U(x) (7.1)

where the potential V(x) is defined by

0 h 0<z <l
Viz) = { where x (7.2)
%) elsewhere,
and U(x) will be given latter(It will be chosen).
The propagator expressed in phase space as
K" p' A" o p,t) = / DlaOIDPOL ¢ 5" arps-st2-v(o)-vto) (7.3)
9 ) ) ) ) 27Th * M

This propagator may not be evaluated directly because that we will transform it
to another one that has a known exact solution. To deal with such problem we
need to make a point canonical transformation, a transformation that saves the

system quantum mechanically. The chosen transformation will be

x = f(q) = arctanh(—cos(7q))

p =7 ‘sin(7q)P, (7.4)

where P is the conjugate momentum of the variable ¢. As shown in [45] that an

effective potential will be created and giving by the following expression

_ 99 9 (7.5)

with the function g(q) is given by

™

12 = (q) = 7.6
9(q) f'(q) sin(ra)’ (7.6)
which means that
5 1
Velq) = geos™(mq) — o, (7.7)
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Then the propagator related to this system will be

Dlg()}D[P(?)]
K@ o' 0. 2. ) = 1/4/
(", 2", ", 2" 1) =(9(¢ 27rh

ehft, dt(Pg— 575 P* U ()~ Ve(q)) (7.8)

The factor of kinetic part is some how nasty, because it is position-dependent and
we may not be able to find the path integral of this problem easily in this case.

We will make a time transformation [45] ¢ — s

© -7y (7.9)

which means that the propagator after this transformation is

(/AN R A A d& e ! D
K" 2" t"p 2 ") =(g9(¢")g(q ))1/4/ ET/dS/ 27rh we
Eg(q Lz

eﬁf’ ds(Pg—"2P?—g(q)U(q)—g a)—
dE
— [ oGt i) (7.10)

With G(q”,q’; FE) is the Green’s function related to this system, which has the

expression

G(q" ¢ E) z/dS/D[Q(S;ﬁ[P(S)]

i s c_m p2_ 7r2 2 cos (7rq) 2—8F
eh, fs/ ds(Pq 2 P sinQ(ﬂq)U( )+ 9“12(7”1) )

(7.11)
At this stage we see that the problem taking a form that we can deal with for
some chosen potentials. Using the transformation we were able to transform the
problem of a particle in an infinite square wall subjected in the potential U to that

of a particle subjected in the potentials V' m and #@T(])U (q).
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7.2 Examples

7.2.1 U(x) = Uy = constant

In this case the particle will be subjected in a constant potential Uy, here the

Green’s function we will be

G(d", ¢ E) = / Se i /D %h Pls)]

i ff/ s(Pg—m P2 L8580y )

e 5 ) (7.12)

7.2.2 U(z) = Uptanh?(x)

In this case the particle will be subjected in the Rosen-Morse potential U(z) =
Ustanh?(x), after the point canonical transformation that has been chosen it is

clear that the expression of this potential will be changed to take the form
U(q) = Uycos*(mq) (7.13)

Then inserting this in the Green’s function given above one would find that

Dlq(s)|D[P(s)]
"o B = (Uo—1/8)S /
G d: E) /dSen )=

=2 1+8E+8Ug )
8 sin2(7q)

GE fs/ ds(Pg— 2 P?—

(7.14)

7.2.3 U(x) = Uptanh(x)
The potential U(z) will be
U(q) = Uycos(mq) (7.15)

Then the Green’s function will be

_iz2g [ Dlg P(s)]
"o, E) = S
G(q 43 ) / Sen / 27Th

2 14+8E+8U, cos(mq)
_ﬂ 2 7" 0
fL I/ dS(Pq pP=— ban(ﬂ.q) )

(7.16)
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Using the relations

1 1 1 1
sin?(2x) T4 (sinQ(m) + cosQ(x)) (7.17)

and

le( L L ) (7.18)

sin?2(2z) 4 \sin2(z)  cos?(z)

Then one will find that the Green’s function will be

G(q", ¢ E) I/dseé”SQS/D[Q(S;]z[P(S)]

i s’ . 2 148E+8U, 2 148E—8U,
ifs _mp2_x° 148E+8Uy n= 1+ 0
eh fs, dS(Pq 2 P 32 sin2(w/2q) 32 6052(‘11'/211>)

(7.19)

7.2.4 U(z) = -2

T tanh?(x)

This is the case of a particle on a infinite square wall with an inverse Rosen-Morse

potential. Under the transformation that has been taken this potential will take

the form
Ui
U=—2_ (7.20)
cos?(mq)
Inserting this in Green’s function it will be
_iz2g [ Dlg(s)|D[P(s)]
G(q".¢;E) = | dSe™n S/
(¢",d; E) / e ns Sy
I e

7.3 Conclusion

In this chapter we have seen the problem of a particle in an infinite square wall
with some chosen potentials, where we used a point canonical transformation to
relate the problem to another one that has an exact solution, for many cases.
Using the Schrodinger equation it may be difficult to find the solution for each

case, but via path integral technique we were able to find the exact propagators.



Chapter 8

Charged particle in a field of
Dayon

The problem of a particle with an electric charge —e interacting with an electro-
magnetic field of Dirac monopole with a positive electric charge ¢ and a magnetic g
has been considered via path integral. The Green function and the discrete energy

spectrum and its correspond eigenfunctions have been calculated exactly

A great deal of attention has been paid to the subject of existence of monopole
and dyons [49,50] and the problem has become a challenging new frontier and the
object of more interest in high energy physics. Dirac proved [49] that the quantum
mechanics of an electrically charged particle of charge e and a magnetic charge ¢
is consistent only if 7 = 27n, where n being an integer. Then a generalization has

been made by Schwinger-Zwanziger [50] shows that for two particles of electric and

magnetic charges (e, g) and (¢, ¢') the relations eg;;/g/ = 27n for the consistence
of quantum mechanics. Then a great attention and generalization in the context

of quantum field theory has been mad.

In this job we will find the propagator and the eigenfunctions for the non relativistic
problem of a charged particle —e with mass m interacting with electromagnetic
field of a Dirac monopole of charge ¢ and magnetic g

A magnetic monopole of charge g at the origin produces a radial field B= g%.

One possible vector potential can be chosen in spherical coordinate is

o+ Beos(8) + yeos? ()
rsin(6) c

A=y (8.1)
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where «, [ and 7 are constants, with § 4+ /2 = —1, in the simple case where
a =1, f=—1and v = 0,we will be in the case given in [51,52]. We have chosen
the potential A to have this form for the sake of being in a general case. The

Lagrangian related to our problem in general can take the form
L(7,7) = %fg e (8.2)
c

Where A is the vector potential, which in this case will be considered to have the

following form

8.1 Green’s Function

The Lagrangian describing the system is given in spherical coordinates (r, 6, ¢) by

(8.3)

Following the path integral approach, the discrete expression of the propagator is

explicitly defined in the post-point prescription by

K(7f,r;T) = lim (——— 3N/2/ H r2sind;dr;df;de;

N—oo 27r7,he
exph Z ( 7“ + r _1(cosBjcost;_1 + sinb;sinb;_1cosA¢;)+

ecg(oz—l—ﬂcose + ycos® 20 )Agzﬁj GTQ ) (8.4)
j

with the standard notation:

e=t;—tj1,T=Ne=t;—t;,7y =7ty =T),7 =7(ro =0).

We note that adopting the post-point prescription, a simplification arises in the
computation of the elementary action. However, owing to the Coulomb’s attractive
term, this action presents a singularity at the origin. It is therefore essential to
stabilize the path integral(8.4) by first introducing the energy E by means of

Green’s function, which is the Fourier transform of the propagator.
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G (7,7 E) = / dTe "I K (7,7 T) (8.5)
0
Then we use a time transformation t — s with a regulating function f(r)[53]
dt = f(r)ds = fr(r)fr(r)ds, (8.6)
(8.7)

its discrete version is

€ = esz<Tj)fL(rj—1)7 €g — Sj — Sj—l; S = NES.
Taking into account the constrain d1' = dSg(rs) fr(r;), the Green’s function (8.5)

is rewriting following Ref.[19] as
G(7, 7 E) = / dS Py (7,733 S), (8.8)

0

where the promoter P (7}, 7;9) is given formally by the path integral

N 3/2
. . 1
Py (7¢,73;5) =fr(rs) fr(r;)lim OO/ ( - )
E( f ) R( f) L( ) N— jl;[l QﬂlhESfR(Tj)fL(ijl)
N-1 N ;
L1 73 sin(9;)dr;do;d, Hea?p(ﬁAg(j,j - 1)), (8.9)
j=1 j=1
with the pseudo-time sliced action,
= T
AN(j. i —1) = 2 + 12, (cosb;cosh;_1+
E(j J ) ; <2€sz(rj>fL(rj—l)( J J 1( J 7—1
sinbjsind;_1cosAg;)) — @(a + Beosh; + 70082§)A¢j+
c
(8.10)

— (<= Byeufrlry) fulrsa) ).

j
The path integral(8.9) is too complicated for explicit calculation. Then in order

to make it manageable, we use the approximation

cosA¢ =~ cosA¢ + ce + ceAd + 1/2c*€ (8.11)
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and the Fourier expansion[24]

exp(2cosAG) = k;@(i)l/zexp(z _ %(1{2 Cja))etae (8.12)
Then we can find that
i 4N T efnlri) (i) ciop
exp(ﬁ;AE(],j - 1)) Jl_[lkaoo S, eavp(ii(2 (7" —i—?"] 1+
— 2rjrj_1cosA0;) — (i—f — E)es fr(r;) fo(rj-1)+
=SS (g — g = ), (813)
2u; 4
where
m

riri—18tnb;sind;_y

e ihes fr(ri) fo(rj-1)

o+ cos§~+ cosQé—J
py = —c9 at Peost; +rcosTy (8.14)

me riri_q, sindjsind;_y

which leads to the following expression of the promoter

N i 3/2
Nz =.G)_— )l
Py (7, 73;8) =fr(re) frri)limy_ e /E (QWiHGSfR(Tj)fL(le))

N-1 N

L1 r2sin(0;)dr;do;do, Hea:p(%Ag (4,5 = 1))
7=1 Jj=1
N +oo ;
Z \/€sz TQJSTJ;L(T] l)e:cp(%(%(r? + 77y — 2rjrj_1cos(A6;))
j=1 J_— J
. (i_q ~ E)es fr(r) fo(rs1) — 22((/@]- —iuyvp)? — 1/4))>eikja¢j.

J J

(8.15)

Then we will perform the integral over ¢, where we have

2
/ e KR p = 276y 4, (8.16)
0
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then

o2 N—1

/ H dgbjeiZ;‘V:l kjA®; _ (27T)N_1@ik(¢N_¢0), (8.17)

which means that promotor (8.15) will have the following expression

N p 3/2
PR (7,7 S) ZfR(Tf)fLO”i)”mN%O/H (27rihesf}z(7“j)fL(7“j—1))

N-—1
L1 r2sin(8;)dr;de; qujHe:Bp - 5,7 —1)
7=1 j=1

oo gik(en—do)

o 2m)N

= fr(ry) fo(r)limy_s
kj=—o00
3/2 N—1

/H (QWZhESfR (75) fr(rj- 1)) H rjsindddb;

Jj=1

N
H €sSr(r) fu(r)- 1)e$‘p(i(ﬂ(7"2~ + 72 | — 2r1;_1cosAb;)
27mu; h 27 77 7 ’
eq

(O Byefulr) fulryr) - LML)

T’j 2u]‘

I pik(en—o)

> T/ﬁ(Qﬂih%fR(ﬁj)fL(le))

kj=—o00 j=1

(k= duyo;)? = 1/4)))

= fr(ry) fr(ri)limy o

N-1

N .
| ! o
H r?sanjdrdej H - - 6951?(%(%(7"]2' + r12'71+
Jj=

ey riri—18tnb;sinbd;_

— 201 1c05M) — <i—q — B)eufalr;) fulr)+

e fr(r;) fu(rj—1)

2'U,j

((k — i) — 1/4))). (8.18)
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After some simplification this will be

Falr) fu(re) i
P 73 5) = >
E( re,T ) \/TOTNS’H’LQOSZTLQN ~ :Z—oo
T
= 2mihes fr(r;) fr(rj-1) j=1 hoae

€
+ r]2._1 — 2TjTj_lCOSAOj) — (T_q - E)esz(Tj)fL(rj—1>+

j
hes fr(r;) fr(ri—1) e
_ e )
Sty asinsind, 5 kT gelet feostit

+c0s20,))? — 1 /4))). (8.19)

In order to separate the variables r» and €, we first turn to throw the singularity
at r = 0 to the infinity with the spacial transformation »r — ¢ defined by the

equation:
r=e’l —oco<qg<oo, and o>0. (8.20)
In parallel we have to take the following choice for the regulating functions|53]

f(r) =¢e*%and fr = 1. (8.21)

With these new variables, the promotor (8.18) is then rewritten as

N 2040 . +oo etk(dn—co)
Py (Tf,7335) = limpy_ oo -

V/eolan+a0) sinfysinf v Bt 27
=

N N-1 ‘
L 20q; . ) (i % 20q;
/]1;[1 (QWihesezaqj) 3131 o dg;db;exp h(zeseggqj (7% +
+ e209-1 — 271 o5 AG.) — ( 4 _ E)e %
j e s
h2e e e
((k + Ia + Beosb;+

B 2ue” (9 +9-1) sinf;sinb; hc(

+~c0520;))2 — 1/4))). (8.22)
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In addition, it is useful to replace the integration over the upper-position ¢; and

6; by one over intervals Ag; and Af;, thanks to the identity

N-1 N
/ I dajdo; = / [ dAq;ane;, (8.23)
j=1 =2

with the result that the measure also changes as

N-—1 N
H Oezoqjdq]'dgj = H 620qj71d0qudA9j, (8.24)
Jj=1 j=2
which will lead to
I k(¢n—a0)
PN (7,7 S) = li N
E(rfaras) \/mZmN*} kz_:oo /H(Qﬂ_lhe )
H 6—20A€U H dAaqjdAejexp<ﬁ 265 (1 + 6—20’A‘]j+
Jj=1 j=2
_ —oAgj o eq B 20%
2e cosAD; (egqa E)e,
h2e e20%
N 5 k 0.
2Meg(qj+qj71)SinejSinej_l (( T ﬁc(a + 5608 J+
+ ~vc0s*0;))? — 1/4))). (8.25)

From the other part we have at the post-point
e 278 1 — 20Aq; + 20°Aq; (8.26)
and

1 1
cosAf; ~ 1 — §A032~ + ﬂAH?, (8.27)
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then inserting this in (8.25) one find that

I ik(on—¢o)
Lo e I
PY (7, 72 8) = 1limpy o0 / :
5 (7 )= \/smeosmeN N Z o j[[l <2mhes)

P (14 (1= 200g; + 20°Ag>+

N
]-1:[1 (14 Ches) H dAoq;dA0; exp(h 2

7j=2
4

2 4
— §U3qu3 + §04qu) —2(1 —o0Ag; + 502qu2-—l—

ey
€4 2usindjsing;_q he

+ 7c0s%0;))? — 1/4))), (8.28)

((k+ —=(a+ Bcost;+

where
Crnes = —20Aq; + 2025(]]2-. (8.29)

Taking into account all contributions up to first order in €, the promotor (8.22)

can be put in the form

Foo etk(on—2o)
PY (7, 7: 8) = li 00
7 (77.73:5) = Z /H (2mh€ )

szn(@o)sanN

N .
[1C +Cunes) H dAaqﬂA@eatp(%(%(aQAqf + AG%) + AAN+

j=1 j=2
(e - T 0 feosty+

€99 ° 2usinbjsing;_q he !
+ 7c05%0,))2 — 1 /4))), (8.30)

where AAX represent the correction terms which is

N __ M 3A 3 2 1 4y 7 o 2 A 2 2
and the exponent of it will be
i Ny 4 N 1 N
6$p(7_1AAE) ~1+ ﬁAA 57 —(AAL ) (8.32)
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which leads

1 oo eik((bN*QSO) N lu
PY (7,7 8) =———=1lim _ :
e (77,75 5) Vv sinbysinty N_mkz 2m e <27T’Lh65>
j=— =

N N :
H(l + C7) H dAaqﬂA@emp(%(%((ﬁAq? + AGY)+
j=1 j=2 s
h2e,

2psint;sintd;_q

€g
he

+c0s20,))? — 1 /4))), (8.33)

—( cq _ E)ese%‘“ —

€99

(k4 —=(a + Pcosh;+

where Cr is the total correction given by

l 1 l
Cr :ﬁAAg - ﬁ(AAgf + Cmes(l + ﬁAAg)
- 2
:%AA% — 8:;712 (06qu6~ + 204Aq;-1A6’]2- + O'QA(]JZAQ?> + Crnes+
2
+ 22 (' Ag + AP A, (8.34)

2€,

To simplify this expression of path integration we will use the procedure given by

McLaughlin-Shulman [21]. Using the integral

* 2n — 1)!!
/0 IQ”e];p(—Oéq;Q)d]} = %\/g (835)

This will lead to a pure quantum effective potential by simply making the substi-

tutions:

1he ihes\ 2 ihes ) 2
Ag? — ==, A6 — S,Aq;*%i%( S>,A9§*%3( )
o2p It

o2
(ihes ) 3
ILL Y

ihes \*
Aq§—>15( ) (8.36)
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and the contribution of the impair terms is 0. By replacing that in (8.33) one
would find that Cy, = 0, which means that P} (7, 7;; S) will be

pN(7, 7§ 1 I’ oo etk(én—do)
E(Tfﬂ"i, )—\/m 1MN -0 Z —/H <2mhe)

k=—o00

N .
HdAO'deAejexp<%<%(o-2Aq]2' +A8]2) _( €q B E)€S€2C7'Qj+
Jj=2 s

€99

h2e, eg
- m((k: hc(oz + Beosb; + ycos®0;))? — 1/4)))
1 I pik(on—o0)
——————limN e Y /H ( )
\/sznﬁosm@N k_ioo 2mihe
N-1 i eq
H dq;do; exp(h(QES (U2qu2. + AQJZ.) — <€aqj — B)e,e® 9+
hZe, eg 9n 12
= Srusinag ((F 3 (a+ Beost +1c05°0;))* = 1/4)))
j
I ik(on—do)
, e
=lIMN o0 Z TPg(qf,qi;S)Pg(Gf,Qi;S) (8.37)
k=—00
with
| X 9 \ 1/2N-1 eq
—_ 2 o 204,
P (qf7qlv o /]1;[1 (271’27:&63) H dQJ€33p< Aq (e"%‘ E)ese >
(8.38)
and
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1/2 N—1
= do; A02
\/smﬁosmG / (27rzhes) H exp(h(z

e (it
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With v = k2 =} + 5+ 5 +7) + (52)" (0 +5+7)% and k= k2 — ] + %2 (o -
g\ 2

B)+ (52) (o= B)*

It is obvious that the kernel PX (qy, ¢;;S) describes the motion of a particle with
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mass po? subjected to Morse like potential(MP) which has been solved by different
methods(23,53].
Then, after taking the Fourier transform of the kernel (8.38)

dE )
P (qr,4:5) = / QWMexp(—EEMS)GMpy (8.40)

h

we obtain the familiar result expressed in term of the standard Whittaker functions

4 1/2 F(A—p—&-l /
= 2 2 o1 oas)2
Grr <a2h2w2eﬂ(w+q¢)> T(A+1) Mp/Q,A/Q(/uLO' wh e )

Wojaj2(no’wh™te7®/2), (8.41)

where A2 = —(8u/h?)Eyy, w = [8(—E)/uc*]Y/?, p = —4deq/ohw.
On the other hand, the path integral(8.39) is recognized as the propagator for
particle of mass p in Poschl-Teller potential which has spectral representation in

terms of the associated Legendre polynomials P,,(cosf) [22]

P}{?V<0f’ ei; S) = Z 6_%En9590;::,n9 (Qi)(pk,ne (Hf)a (842)

ne

where ¢y ,,(0) is the angular wave function and are of the form

1 1 L/1+4v, i /1+4k
ka,ne(9> _ CkaSZ-n(e)Zx/1+411608(9)Z\/1+4n+1/2p7£; 1+4v,3v144 )(COS(Q)), (843)

with the normalization constants

- A /TT;EHG F(, /W;Ene

_ ne)

Crny = | 23/? = = , (8.44)
NG n; Y —ng — VT4 4)I( ”w; 2 —ng— V1 +4k)
and the following formula for energy spectrum
En, = —(8ng +2vV4k + 1+ Vdv + 1+ 4)°. (8.45)

Ap
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After (8.40) and (8.42) are substituted in (8.37) the Green’s function (8.8) relative

to out problem is found to be

I gik(dn—do) [0 dE ;
- e i
G(ry, 733 E) = Z T/o dS/ QWMexp(—?_L(EM+En9)S)

k=—o00

4 1/2 I‘()\—12)+1) , 1 ,
(U2h2w2€a(Qf+Qi)> T\ + 1)Mp/2,>\/2(,u0' wh™'e?1/%)

Wopzaa(po®wh™ e 2)pp o (0:)rmy (0r)- (8.46)

8.2 Energy spectrum and wave functions

In order to determine the bound states energy levels of the system and its cor-
responding wave functions, we perform the integration with respect to S and
Eyrsuccessively.  After some straightforward calculation, we easily get the final

expression for the Green’s function.

G772 B) = 4 VL) R et
TF, T4 = 0_2h2w260'(qf+(1i) F()\ + 1) ke —o0 2

My o j2 (o wh™ €792 YW,y g 3 o (o wh™ %) o (0;)prmg (),
(8.47)

with A2 = 2(8ng + v4rx + 1+ VAv + 1+ 4)%

The energy spectrum and the wave functions can be obtained from the poles and
from the residues of the Green’s function (8.46),respectively. These poles occur
when the argument of the Gamma function in the numerator in negative integer
n or

A—p+1

5 -n n=0,1,2... (8.48)

after solving this equation with respect to E we find the following formula for the
energy levels
—2ueq? /K2
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From the residues of the function G(7%,7;; E) at E = E,, we can write the nor-

malized wave functions as

Pn(F) = (W%)lﬂ MO0 it My s (M em). (850)
" 2rh VIl (p — 2n) kano 7 ' '

IS

We notice that the wave function ¢, () is single valued. Moreover, the vector

a+-Beos(0)+vycos?(0/2

rsin(0) ) has a singularity at § = 7. This can be avoided

potential A= g

by making the change @ = 6 + 7. Then we will have another vector potential A
which is singular at § = 0, such that

o — Beos(0) + ysin?(0/2)
rsin(6)

A=y (8.51)

The corresponding Green’s function G(7f,; E) will differ form the obtained one

(8.46) just by the phase exp(iV(A — [I)) = exp(ied (2o + v) (¢ — ¢;)). In other
words, the wave functions will differ from the old ones (8.50) by the phase factor
ieq

exp(*F(2a+ 7) ¢). The wave function will be single valued before and after the

transformation if and only if the following condition

9

e—h(2a + 7) = integer, (8.52)
c

is satisfied.

Since 2e 4 is integer [49], a4 /2 should be an integer or half-integer.

8.3 Conclusion

In this research we calculated the path integral for an electrically charged parti-
cle in orbit around a dyon by connecting it to Morse potential and Poschl-Teller
potentials problems.

We have given a parametric form to the vector potential associated with the mag-
netic charge.

We have shown that the Green’s function can be simply and naturally constructed
in spherical coordinates with the post-point consideration.

As we have seen, after we have applied a coordinate transformation to Lagrangian
path integral we have suitably chosen regulating functions so that the Green’s

function has become entirely defined by a stable promotor. Then we have exactly
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extracted the bound states energies and the corresponding wave function.
Compared to the methods given in Refs.[51,52], it seems to us that our method
leads most directly to exact solution without any need for cumbersome artifices
and the advantage to significantly simplify the calculation and avoid the prolifer-
ation of unnecessary detail.

For the set of parameters (¢« = 1,5 = —1 and 7 = 0), the obtained energy spec-
trum agrees with the result of the Refs. [51,52] which proves that our extended
result is without doubt the correct propagator for a charged particle moving in
the field od dyon.



Conclusion

We have presented a new description of non-relativistic quantum systems according
to the Feynman path integral formalism. And we have shown that the path integral
can be put under two explicit notions. The first called the Hamiltonian form (the

integral path in the phase space), and the second is the Lagrangian form.

The study of harmonic oscillators with time-dependent mass has assumed in the
second chapter and we have used space-time transformations in the phase and
configuration spaces to treat the problem and find the exact propagators of new

generalized examples.

We have studied a general model of explicitly time-dependent quantum prob-
lems by path integrals using some time-dependent transformations. The problem
treated in both configuration and phase space, we used space-time transformations
in configuration space and point canonical transformations in phase space, that
leads to considerable simplification in computation and gives unambiguous results

in comparison with already existing methods.

Using the space-time transformations to path integral we were able to exactly solve
the problem of a particle with the exponentially time-dependent mass subjected to
a Coulomb potential in two dimensions. We have also obtained the corresponding
eigenfunctions and energy spectrum. The problem can be evaluated in three di-
mensions following the same way done here, and an extra phase term will appear

in the wave functions.

We considered in the phase space the path integral with position-dependent mass
and time-dependent potential and we reduced it to that of constant mass and sta-
tionary potential, simply by using explicitly time-dependent canonical transforma-

tion and appropriate time transformations. The general form of the propagator is

7
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given and closed expressions are deduced for tow specific mass functions of parti-
cles moving in familiar physical potentials, together with their energy spectra and

corresponding wave functions.

The problem of a particle in an infinite square well with some chosen potentials
was solved also, where we used a point canonical transformation to relate the
problem to another one that has an exact solution, for many cases. Using the
Schrodinger equation it may be difficult to find the solution for each case, but via

path integral technique we were able to find the exact propagators.

Lastly, we calculated the path integral for an electrically charged particle in orbit
around a dyon by connecting it to Morse and Poschl-Teller potentials problems.
We have given a parametric form to the vector potential associated with the mag-
netic charge. We have shown that the Green’s function can be simply and naturally
constructed in spherical coordinates with the post-point consideration. We have
applied a coordinate transformation to Lagrangian path integral where we have
suitably chosen regulating functions so that the Green’s function has become en-
tirely defined by a stable promotor. Then we have exactly extracted the energies

of the bound states and the corresponding wave functions.

In future work, we will use path integral technique to solve more problems and

even use it to build some artificial intelligence models.
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Utilisation de I’intégrale de chemin dans I’étude des mouvements quantiques

RESUME :

Cette these est consacrée a l'étude des systémes quantiques non relativistes avec des coefficients
dépendant explicitement du temps et aussi dépendant de la position et du temps simultanément dans
le cadre du formalisme des intégrales de chemin de Feynman.

Nous avons présenté une méthode systématique pour construire le propagateur de systémes
dépendant du temps dans les espaces de configuration et de phase. Comme application, nous avons
considéré le probleme de l'oscillateur harmonique dont la masse et la fréquence sont des fonctions
arbitraires du temps. Le traitement a été basé sur l'utilisation des transformations spatiales
explicitement dépendantes du temps ainsi que des transformations temporelles, qui permettent de
réduire le propagateur a celui dont la masse et la fréquence sont constantes. Nous avons illustré le
résultat général en choisissant des modeles de masse et de fréquence variables.

D'autre part, nous avons étendu la technique des transformations spatio-temporelles pour ramener le
probléme d'une particule avec masse dépendante du temps se déplacant dans un espace
bidimensionnel et soumise au potentiel de Coulomb plus un potentiel quadratique inverse a un
probléme stationnaire. Ensuite, les coordonnées polaires étaient adéquates pour évaluer la fonction
de Green et déduire exactement les niveaux d'énergie du spectre discret et les fonctions d'onde
associées.

Nous nous sommes également intéressés au développement d'une procédure systématique pour
étudier l'intégrale du chemin unidimensionnel dans l'espace des phases pour une classe de masses
dépendant de la position et du temps et des potentiels dépendant du temps. Grace a une
transformation canonique explicitement dépendante du temps, nous avons pu absorber la
dépendance temporelle de I'hamiltonien. Comme application, nous avons considéré deux
distributions de masse différentes, chacune associée a un potentiel choisi de sorte que l'intégrale de
chemin correspondant soit exactement résolue

Nous avons également obtenu des propagateurs exacts pour une particule confinée dans un puits
carré infini et soumise en outre a certains potentiels. La fonction de Green a été construite pour
chaque situation grace a une transformation canonique ponctuelle appropriée.

Enfin, nous avons évalué I’intégrale de chemin pour une particule chargée électriquement sur une
orbite autour d'un dyon. Des fonctions régulatrices judicieuses ont permis d'exprimer le promoteur
comme un produit de deux noyaux partiels qui sont les problemes des potentiels de Morse et de
Poschl-Teller.

Mots-clés: Intégral de chemin; Propagateur; Espace de configuration; Espace des phases;
Transformations canoniques; Transformations temporelles; Systemes dépendant du temps; Masse
dépendante du temps; Masse dépendante de la position; Oscillateur harmonique dépendant du
temps; Potentiel de Coulomb; Monopdle magnétique; Spectre d’énergie; Fonctions d'onde.



ABSTRACT:

This thesis is devoted to the study of non-relativistic quantum systems with explicitly time and
position-time dependent coefficients in the framework of the Feynman's path integrals formalism.

We have presented a systematic method for constructing the propagator of time-dependent systems
in both configuration and phase spaces. As application, we have considered the problem of
harmonic oscillator with both mass and frequency being arbitrary functions of time. The treatment
has been based on the use of explicitly time-dependent coordinate transformations as well as of time
transformations, which permit to reduce the propagator to that with constant mass and frequency.
We have illustrated the general result by choosing some models of varying mass and frequency.

On the other hand, we have extended the space-time transformations technique to bring the problem
of a particle with time-dependent mass moving in two- dimensional space and subjected to
Coulomb plus inverse quadratic potential to a stationary problem. Then, polar coordinates were
adequate for evaluating the Green's function and exactly deducing the discrete spectrum energy
levels and the relating wave functions.

We have been also interested in developing a systematic procedure to study one-dimensional path
integral in phase space for a class of position-time dependent masses and time dependent potentials.
Thanks to an explicitly time dependent canonical transformation, we have been able to absorb the
time dependence of the Hamiltonian. As application, we have considered two different mass
distributions each associated with a chosen potential so that the corresponding path integral have
been exactly solved.

We have also obtained exact propagators for a particle confined in infinite square well and further
subjected to some potentials. The Green's function have been constructed for each situation thanks
to an appropiate point canonical transformation.

Finally, we have found the path integral solution for an electrically charged particle in orbit around
a dyon. Judicious regulating functions have permitted to express the promotor as a product of two
partial kernels that are the problems of Morse and Pdschl-Teller potentials.

Keywords: Path integral; Propagator; Configuration space; Phase space; Canonical
transformations; Time transformations; Time-dependent systems; Time-dependent mass; Position-
dependent mass; Time-dependent harmonic oscillator; Coulomb potential; Magnetic monopole;
Energy spectrum; Wave functions.
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