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    Without energy billions of people stay cold and hungry. The main of this energy comes 

from fossil fuels which are consisted principally of carbon and hydrogen bonds such as: oil, 

natural gas, and coal. Because of the growing population in the world the amount of this fuel 

start diminishing. It may not be possible to offer the needed energy for people. As well 

known, these sources of energy caused the increasing emission of Carbon dioxide, sulfur 

dioxide emission, and greenhouses effects, the earth’s air, land, and water became polluted 

and cause global warming as well as the enlarged of the ozone hole. The consequences of 

global warming consist of the change in the climate which effected on even people, animals, 

plants and living organisms. In 1952 four thousand people died in London because of the high 

concentration of pollution [1]. Recently in 2012 the World Health Organization (WHO) 

reported around 7 million of people died because of air pollution exposure [2]. The air 

pollution became the biggest environmental health risk in the world. 

The solution to reduce this abasement of the climate as well as the global distortion of 

ecological system is to reduce the use of fossil fuels and developing the renewable energies. 

Especially, the solar conversion energy. In this context, research is focus on two areas. The 

first concerns the development of photovoltaic cells with high conversion efficiency. The 

second axis of research deals in the development of new processes and materials for the 

manufacture of low-cost photovoltaic cells. The renewable energies include the conversion of 

sunlight, wind, nuclear power and thermal earth heat into energy which could meet the most 

needs of energy in the world, the use of theses energies sources can diminish the emission of 

carbon to 60-80 % (Flavin and dawn; 123). The alternative renewable energy source such as 

geothermal, wind, hydroelectric and solar power are the extraordinary solution which donate 

electricity with little or no damaging effect to the environment. 

Among all alternative sources of energy, solar energy is the most extensively renewable 

energy used recently across the world; the conversion of solar energy can be due by either 

thermal or photovoltaic (PV) systems. The PV panels for energy conversion were started by 

the discovering of photovoltaic effect by a French scientist called Becquerel in 1839, which 

has observed the photovoltaic effect on silicon crystal [3]. The first solar cell based on silicon 

were done by Ohl in 1941 using melt grown junction with an efficiency less than 1% [4], then 

in 1952 Kingsbury and Ohl cited a junction formed using helium ion bombardment and 

present an efficiency up to 1 % [5]. After that, Bell Laboratory fabricated the first crystalline 
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silicon solar cells in 1953, achieving 4.5% efficiency. In 1954, three American researchers, 

Gerald Pearson, Calvin Fuller and Daryl Chapin, discovered the use of silicon as a 

semiconductor and designed a silicon solar cell capable of achieving a conversion efficiency 

rate of 6% [7]. The efficiency based on this material increased progressively and its record 

reach 18 % in 1983 [8], recently an efficiency about 26.3% [9] of mono-crystalline silicon 

were reported which is near to their theoretical limit (33.7 %) [10]. 

In 2011, 87% of photovoltaic installations installed in the world consisted of mono or multi 

crystalline silicon. The success of this technology is limited by some factor namely, the 

silicon can’t find in its pure state, it must extract from the silica, purified, shaped and the 

doped before being used, all of these operations increase the silicon cost, moreover this 

material have indirect band gap energy which make it not an optimal absorber for solar cells 

application. Therefore, the second generation of solar cells was emerged as the key to avoid 

the high cost production of silicon solar cells. The second generation of solar cell is called 

thin films solar cells technologies (TFSCs), in this technology the bulk material (silicon) is 

replaced by a thin film with a thickness about a micrometer, with a large choice of growth 

technique for different films composed the device, this allow the optimization of the solar cell 

stack properties for enhancing the device performances. Thin film PV is celebrated for the 

fabrication of low cost solar cells having a high efficiency record. In 1980, The Institute of 

Energy Conversion at University of Delaware develops the first thin film solar cell exceeding 

10% efficiency using Cu2S/CdS technology [11]. However, the instability due to Cu 

migration dictated the research of more stable materials. Thereafter, copper indium gallium 

diselenide (CIGS) and cadmium telluride (CdTe) have been appears as the most used and 

extensively studied in this solar cells generation. The recent recorded efficiency with these 

materials reached 20.8 and 19.6% respectively [12]. However, despite this reached 

efficiencies, these materials suffer from severe issues namely: selenium and cadmium toxicity 

and indium and gallium scarcity. Consequently, research of alternative materials composed of 

abundant and nontoxic elements is necessary and from there the apparition of kesterite thin 

films as a good alternative absorber to CIGS technology was appeared. New cells are already 

being developed in anticipation of the likely shortage of indium. However, replacing the cells 

with CIGS represents a real challenge as this absorbent is effective. 

The quaternary chalcogenide compound copper zinc tin sulfide Cu2ZnSnS4 (CZTS) has 

recently attracted much attention due to the fact that it is composed of earth-abundant and 

environmental friendly elements. Moreover, CZTS has optical and electronic properties 
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similar to that of CIGS, while having the advantage of being composed of just abundant 

elements (different to tellurium in CdTe and indium in CIGS technologies) and no one of 

their elements are toxic (unlike to cadmium in CdTe). Moreover, its basic constituents would 

be five times less expensive than those of the CIGS sector as seen in figure I.1. This confers 

to CZTS the status of a promising candidate, and a serious alternative for application as 

absorber layer in thin film solar cells.   

 

 

 

Figure.1: Abundance on earth’s crust and cost of constituent elements for CIGS, CdTe, and 

CZTS (Se) absorber materials for thin film solar cells [13] 

 

The objective of this thesis is the realization and characterization of CZTS absorber layer, 

CZTS/ZnS, and CZTS/CdS devices using a low cost and simple spray pyrolysis method. In 

the first part of this work we have tried to optimize the different deposition parameters 

leading to obtain high quality of CZTS active layers, which will use as absorber in the 

realized devices. In a second part, we have realized and characterized CZTS/ ZnS and CZTS/ 

CdS hetero-structures on which we have studied the effect of back contact nature and ZnO 

intrinsic layer on CZTS/ZnS properties and the effect of sulfurization temperature on the 

CZTS/CdS solar cell efficiency. 



Introduction 

 

iv 
 

The thesis is organized as following: 

 The first chapter is a bibliographic reminder of photovoltaic energy conversion and the 

different properties of CZTS material such as structural, electrical, optical properties, 

defects and secondary phases which can be present in kesterites system 

 The second chapter is dedicated to the description of the experiments carried out 

during the thesis work: the deposit system, the experimental conditions used for 

developing the different materials and the characterization technique used for 

analyzing films and devices properties 

 The third chapter regrouped with discussions the different results obtained by studied 

the effect of several experimental conditions on films properties such as: substrate 

temperature variation, deposition time, copper concentration, and zinc molarities 

effect. 

 The fourth and last chapter was focused on the presentation with discussions of 

the obtained   electrical properties of CZTS/ZnS and CZTS/CdS devices. 
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In this chapter, we will give an overview on the state of the art of photovoltaic energy, thin 

film solar cells history, and the different properties of kieserite’s thin films and solar cells 

efficiency limits.  

I.1 Physics of Photovoltaic 

Today, the sun is the most important and available source of renewable energy. Photovoltaic 

energy comes from the conversion of sunlight into electricity by semiconductor materials 

based on silicon or other material suitable for photovoltaic application such as CZTS, CIGS, 

CdTe, CuO, and SnS thin films. These photosensitive materials have the property of releasing 

their electrons under the influence of an external energy. Energy is provided by photons 

(components of light) that excite the electrons and release them, producing an electric current.  

I.1.1 History of photovoltaic Effect 

In 1839, Alexander Edmond Becquerel have discovered the photovoltaic effect [3], this 

phenomenon allowed the conversion of light into electricity experimentally with metal 

electrodes and electrolytes, he discovered that the conductivity increase with the illumination. 

Then, in 1873, WILLOUGHBY SMITH observed the photoconductivity phenomena of 

selenium (Se) and in 1876 with his student WILLIAM G. ADAMS have observed that the 

illumination of a junction between selenium and platinum also has a photovoltaic effect, these 

two discoveries formed a foundation for the first selenium solar cell construction. After that, 

in 1883 an American called CHARLES FRITTS developed the first solar cells with an 

efficiency about 1 %. In 1904, EINSTEIN described the phenomenon and get the Noble Prize 

in 1921.Their theory were done experimentally by ROBERT MILLIKAN in 1932. Then in 

1951, the first solar cell based on germanium was realized. later than, an American engineer 

called Charles Calvin Fuller created the first photovoltaic cell (PV) based on silicon with an 

important record efficiency equal to 6 %. In 1958, silicon solar panels were included on the 

American spacecraft Vanguard I. Hoffmann Electronics increased the efficiency to 14%. In 

the following 50 years, the global PV production has reached over 140 MW. The 21th century 

many workers were focused on the development of PV energy as well as solar panels in 

space, autonomous and regularly under illumination was a source of energy to power 

satellites. 
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I.1.2 Physics of p-n junction 

A p-n junction is the juxtaposition of n-type and p-type semiconductors, because of the 

gradient of majority carrier’s concentration the holes from the p-side diffuse to the n-side and 

the electrons from the n-side diffuse to the p-side. This gives rise to a diffusion current across 

the junction. When an electron diffuses from the n-side to the p-side, an ionized donor is left 

behind on the n-side, which is immobile. Similarly, when a hole goes from the p-side to the n-

side, an ionized acceptor is left behind in the p-side. Thus, the created zone without mobile 

carriers (ionized atoms) is called the space charge region (SCR) or depletion zone as seen in 

figure I.1. The difference of potential which formed when the two semiconductors are in 

contacts created an electric field E which opposes the diffusion of the majority carriers. This 

electric field allows the migration of the holes towards the p-doped zone in the direction of 

and the electrons towards the doped zone n in the opposite direction to the field.  

 

 

Figure I.1. Formation of the depletion zone within a p-n junction 

The diffusion of carriers doesn’t stop until the drift current balances the diffusion current, 

thereby reaching thermal equilibrium as indicated by an alignment of Fermi level (EF) which 

induces a curvature of the bands as well as a potential barrier VD as seen in figure I.2. 
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Figure I.2: Energy band diagram of a p-n junction at thermal equilibrium [4] 

I.1.3 Function of a solar cell 

A solar cell is a device in their function principal it uses photovoltaic effect to convert the sun 

radiation into electricity when it is exposed directly to light (figure I.3).  

 

Figure I.3. Illustration of a PV function [12] 

The production of electricity by PV photovoltaic system follows three mechanisms: 

i. Absorption of photons 

Solar radiation is an electromagnetic wave that can be assimilated to particles (photons) 

whose energy is inversely proportional to the associated wave length. The absorption of these 

photons is done by a semiconductor, called an absorber, having the capacity to absorb the 

energy (hν) of the incident photons of energy greater than or lower to the energy of its gap 

(Eg). The loss of energy in the absorber, known by Queisser Schottky limit is due to: 

 If hν ≥ Eg: the energy of the incident photons is enough to excite the electrons of 

the valence band and make them pass to the conduction band leaving a hole behind 



Chapter I                                                           Photovoltaic energy and thin film solar cells 

 
 

 
 4 

them. The remaining energy (hν-Eg) is lost by thermalization of the electron in the 

conduction band ~ 47%, which has the effect of heating the material as seen  

      in figure I.4. 

 If hν <Eg: the energy of the incident photons is less than the energy of the band 

gap (Eg) of the material so the excited electrons can’t jump the forbidden band and 

remain in the valence band. The transmission loss of lower photon energy ~18%.   

   

Figure I.4.Absorption of different photons by a semiconductor material 

 

ii. Separation of charges: 

 

The separation of free charges (electrons and holes) and their extraction towards the collecting 

electrodes is achieved by p-n junction as described before.      

iii. Collection of porter 

The electric field in the space charge region will separate the photo-generated carriers in this 

zone and extract them to the zone of majority carriers, where the probability of recombination 

is very low. The generated charges are collected and injected into an external circuit via the 

conductive electrodes. 

I.1.4 Current-Voltage characterization in the dark 

I-V measurements in the dark are very useful for examining the properties of the metallurgical 

junction, the diode is a p-n junction connected to two contacts, the variation of the applied 

voltage across the hetero-junction creates a current varied exponentially with the voltage as 

shown in figure I.5. The current across the hetero-junction varies exponentially with the 

applied voltage and their variation can be described by the standard Schottky diode equation 

[13]. 
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I (v) = 𝐼𝑠(exp ( 
qV

KTn
 ) − 1)     (I.1) 

Where: Is: saturation current, n is the ideality factor and V applied voltage, k is the Boltzmann 

constant, T is the absolute temperature, q is the elementary electronic charge. 

 

Figure I.5: I-V characterization of CZTS/ZnS hetero-junction and the equivalent circuit 

of an ideal diode. 

The (I-V) characterization is an important tool to studied and analyzed the electrical 

properties of the diode by the determination of the diode parameters such as: ideality factor 

(n), and saturation current (Is). 

I.1.4.1 The ideality factor  

The ideality factor “n” is an important parameter of the diode which shows how close the 

realized diode to the ideal diode of Schottky. It is used to determine the dominate transport 

mechanism of the current across the hetero-junction. In the case of n equal to unity, the 

current is dominating by diffusion mechanism, whereas if n≤2, the recombination and 

generation in the depletion layer is the dominant one [14]. Whereas, when n6 it has been 

suggested that the interface states contribute mainly in the transport [15,16 ]. The ideality 

factor (n) was calculated from the variation of the slope of the linear portion of ln (I)-V as 

shown in figure I.5 and it can be expressed as the following formula: 

n=
q

kT
(

dV

d(lnI)
)                  (I.2) 

 

 

I.1.4.2 Current saturation (Is) 

The saturation current (Is) is activated by the activation energy EA and is represent the diode 

leakage current in the absence of light. Is is due to the diffusion of minority carriers in quasi 
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neutral region (electron in the n region and holes in p region) and refer also to the generation 

of free carriers in the space charge region. Saturation current and ideality factor were 

determined from the semi logarithmic plot of the current as function of applied voltage as 

seen in figure I.6. 

n.kT/q

 

 

ln
I(

A
) 

V ( Volts )

I
s

 

Figure.I.6. Semi logarithmic scale of the current as function of applied voltage of a diode 

I.1.5 I-V characteristics under-illumination 

The illumination of a solar cells caused the generation of pairs electron-hole which give a rise 

to the photo-generated current (Iph). The generation of current can divide in two processes: 

firstly, the generation of pair’s electrons and holes by the absorption of the coming photons, if 

the photon energy is greater than the band gap energy of the semiconductor. The second 

process is the collection of these carriers by the load or the conductive electrodes of the cell. 

Figure I.7 illustrate the I-V characterization of a CZTS/ZnS solar cells and the equivalent 

circuit of an ideal solar cell without shunt and series resistance. The photo-generated current 

has the effect of shifting down the I-V characteristics as seen in Figure I.7. When a cell is 

light irradiated the output current became as the following expression: 

I (v) = 𝐼𝑠(exp ( 
qV

KTn
 ) − 1)-Iph          (I.3) 
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Figure.I.7. I-V curve of CZTS based solar cells and an ideal equivalent circuit 

I.1.5.1 Open circuit voltage (Voc)  

The first characteristic parameter of a PV cell is the open circuit voltage (Voc). Which 

represent the maximum voltage that the cell can generate when the terminals are not 

connected to any load (the current is equal to zero). 

I.1.5.2 Short-circuit current (Isc)  

The short-circuit current (Isc) is the second important characteristic parameter describing a 

photovoltaic cell. The Isc is the maximum current which passes through the cell when the 

device is short-circuited. The short-circuit current is due to the generation and collection of 

light-generated carriers. 

I.1.5.3 Fill factor (FF) 

The "Fill Factor", more commonly known by its abbreviation (FF). The fill factor is used to 

qualify the quality of the PV cell. The fill factor is calculated from (I.4). FF is the ratio 

between the maximum powers supplied by the cell to the product of Voc × Jsc. This report 

must have a value as close as possible to 1. Graphically, the FF is a measure of the 

"squareness" of the solar cell and is also the area of the largest rectangle which will fit in the 

I-V curve as seen in figure I.8.Fill factor expression in written as eq. (I.4), 

FF=Imp Vmp / Jsc Voc      (I.4) 

Imp and Vmp are the maximum current and voltage supplied by the cell respectively. 
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Figure.I.8. Current-voltage characteristics showing the method for calculating FF 

I.1.5.4 Photovoltaic efficiency (η)  

After the extraction of Voc, Jsc, and FF it is possible to determine the efficiency of the realized 

solar cell. This is the most important parameter. Since, it makes possible to evaluate the 

performance of the fabricated PV cell. The efficiency represents the relation between the 

generated power by the cell (Pmax) and the incident power (Pin) of the radiation illuminating 

the cell. It is calculated according to the following formula:  

𝜂 = 𝑃𝑚𝑎𝑥
𝑃𝑖𝑛⁄                       (I.5) 

    Where : 𝑃𝑚𝑎𝑥 = 𝑉𝑜𝑐 𝐼𝑠𝑐 𝐹𝐹 , the expression (I.6) of the efficiency became; 

𝜂 = 𝑉𝑜𝑐 𝐼𝑠𝑐 𝐹𝐹
𝑃𝑖𝑛⁄            (I.6) 

I.1.6 Losses in solar cells 

In a solar cell many reasons can cause the loss in their performance such as optical or 

electrical losses as described below: 

I. Optical losses:  Optical losses are due to non-absorption, thermalization, reflection, and 

transmission. The non-absorption happens when the energy of the incident photon is lower 

than the gap energy of the absorber material.  

1.  Thermalization: When the coming photon energy is greater than the gap energy of the 

absorber, the excess energy is dissipated as heat, this heat increases the temperature of the 

solar cell which increases the reverse saturation current due to the increase in carriers 
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concentration and diffusion length of minority carriers which caused a decrease of the open 

circuit voltage value (Voc) [17]. 

2. Reflection loss: The reflection is due to the blocking of the light by the top contact, 

reflection from the top surface and reflection from the back contact without proper 

absorption [18].  

3. Transmission loss: This is due to the small thickness of cell and the low absorption 

coefficient of the absorber layer. 

4. Area loss: This loss is due to metal grid design or by metal electrode coverage [19]. These 

type of optical losses can be reduced by using an antireflective coating (ARC) of quarter 

wavelength thick on the top surface.  

II. Electrical loss 

1. Collection losses: These losses are due to surface and bulk recombination at metal or 

semiconductor contact and recombination in depletion region. These recombination losses 

mainly affect the open circuit voltage. Impurities, crystalline defects and incomplete 

chemical bond on semiconductor acts as traps for photo-excited carriers, and 

recombination on these traps cause the reduction of photocurrent. The reduction in the 

concentration of impurities and defects can increase the diffusion length of minority 

carriers and this can decrease the recombination losses in a solar cell [20]. 

2. Recombination losses: can be reduced by creating a heavily doped metallic region which 

acts as back contact, by chemical treatment of the materials or by using a thin layer of 

passivating oxides. 

3. Series resistance (Rs): The Photovoltaic cell is never perfect. To properly translate the 

behavior of a cell PV, two resistors are added on the equivalent diagram (Figure I.6). 

 
Figure I.9. Real solar cell with the resistors Rs and Rsh 
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The first important lost in solar cells is because of the series resistance which regroups the 

back and front metal contacts resistances, the semiconductors bulk resistances and the 

interfaces resistance. To obtain a high record efficiency the series resistance must be as low as 

possible because of their negative effect on the photo-generated current. 

4. Shunt resistance (Rsh) 

The second and important loss in solar cell is due to the shunt resistance (Rsh) which is due 

mainly to the presence of defects in the bulk of semiconductors and at interfaces. It is 

estimated from the reverse bias of the I-V characteristics. Shunt resistance reduces the open 

circuit voltage (Voc). It should be as high as possible in order to prevent losses [21] which are 

recognized in parallel with the diode and the generated current as seen in figure I.6. 

I.1.7 Band discontinuity at hetero-junction interface 

In a hetero-junction the two semiconductors have different band gap energies Eg1 and Eg2, 

assuming that Eg1>Eg2. Figure I.10 shows the band diagrams of this hetero-junction, 

however the vacuum level is parallel to the band edges and is continuous, while because of 

the difference in gap energies of the two semiconductors will occur a discontinuity in 

conduction (ΔEc) and valence band edges (ΔEv). This electronic band diagrams determined 

from the band gap energies, and the affinity χ1 and χ2 of the two semiconductors [22]. 

 

Figure I.10.P-n hetero-junction band diagram [22] 

Because of the difference electron affinity χ1 and χ2 of the two materials, we can have two 

types of band discontinuities or hetero-junction interfaces as shown in figure I.11, we could 

have either type I or type II of interfaces. However, while conduction-band minimum (CBM) 

of material 1 is above that of material 2, and valence band maximum (VBM) of 
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semiconductor 1 is below that of the second, and then the band alignment is of type I. On the 

other hand, if the both of CBM and VBM for material 1 are below that of material 2, the band 

alignment is the type II. 

 

 Figure I.11. Type I and type II hetero-junction interfaces [22] 

In the equilibrium and when the voltage is applied, the band diagram will became as shown in 

figure I.12. A band bending is occurring in the depletion regions which reflecting the 

formation of an electric field because of the electrostatic potential. In equilibrium the Fermi 

level flatted and became constant through the device. The vacuum level is bending also 

because of the electric field response. The presence of band offset between two 

semiconductors leads to the formation of either a spike or a cliff depending on sign of the 

offset, as seen in figure 1.12. (a) and (b). If the band offset produces a cliff, probability of the 

recombination of majority carriers at the interface is increased, and the flat band condition is 

achieved at bias smaller than Eg/q of the absorber [22x]. Band alignment with a moderate 

spike is quite optimal, although the presence of a large spike decreases the flow of the 

minority carrier. 
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Figure I.12. Band alignment of hetero-interface considering the electrostatic potentials(a): 

type I interface. (b): type II interface [22] 

I.2 Thin-film solar cells  

A thin-film solar cell (TFSc) is the name given to the second generation of solar cells, which 

is realized by the deposition of one or more thin layers of photovoltaic material on a substrate 

(glass, plastic or metal). Thin-film solar cells are commercially used in several technologies, 

including amorphous thin-film silicon (a-Si, TF-Si), cadmium telluride (CdTe), and copper 

indium gallium selenide (CIGS). In this technology of solar cells, the film thickness varies 

from a few of nanometers (nm) to tens of micrometers (µm), different to the first generation 

of solar cell which uses silicon wafers with a thickness up to 200 µm, the other drawback of 

silicon is their indirect band gap energy, however the probability of absorption of a photon is 

much lower than the semiconductor with direct band gap energy, whereas semiconductor used 

in thin film solar cells have direct band gap energy and characterized by a high absorption 

coefficient, and low cost of fabrication. 

I.2.1 History of thin film solar cells 

In 1963, Cusano reported 6% efficiency polycrystalline thin-film solar cells consisting of  

Cu2-xTe-CdTe hetero-junctions [23]. In 1969 Andirovich et al. reported a thin-film solar cell 

consisting of a hetero-junction between n-type CdS and p-type CdTe which was deposited on 

SnO2-coated glass [24]. Even though, the efficiency of this cell was only 1% at that time. In 
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1974, Wagner et al. fabricated a heterojunction for photovoltaic application, it consisted of an 

n-type CdS window layer which was vacuum-deposited on a p-type CuInSe2 single crystal. In 

the following year, the same group reported a solar cell which had the same hetero-structure 

and exhibited a high value of efficiency about 12% [25]. In 1976 Kazmerski et al. developed 

the first thin-film solar cell consisting of CuInSe2 with an efficiency of 4–5% [26]. In 1978 

Konagai et al. developed a 13.5% efficiency solar cell consisting of an n-type (Ga, Al) As/p-

type GaAs hetero-junction [27]. Five types of thin-film solar cells achieved an efficiency 

higher than 10%, as listed in Table I.1. All of these solar cells are consisted of semiconductor 

thin films which are characterized by an optimal direct band gap energy. They were all 

invented several decades ago (except for the last one) and the first three were brought into 

commercial use after intensive research and development efforts. Recent progression CZTS-

based thin-film solar cell technology is remarkable, despite the fact that the semiconducting 

properties of CZTS and its photovoltaic effect were not known of until 1988. Gunawan and 

coworkers at IBM Thomas J. Watson Research Center have succeeded in achieving over 10% 

efficiency CZT (S, Se) thin-film solar cells using solution-based processing in this decade 

[28-29]. 

Absorber CdTe CIGSe CIGS GaAs CZTSSe 

Eg(eV) 1.5 1.12 1.5 1.43 1.13 

Efficiency(%) 20.4 20.3 12.9 28.8 12.6 

Laboratory First solar ZSW Sulfurcell, 

Shinshu U. 

Alta Device IBM Watson 

Research 

Center 

 

Table I.1: Five absorber layers that have been used for thin film solar cell with highest 

efficiency[30] 

I.2.2 Possible configuration of solar cell 

                   A thin film solar cell has two possibilities of fabrication from top to down or down to top. the 

two configurations are called superstrate and substrate as seen in figure I.10. The different 

between them is that, in superstrate configuration the light goes through the superstrate 
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material before reaching the p-n junction, while in substrate configuration the light reaches 

the p-n junction without going through the substrate so why we can use different type of 

substrate, this is the advantage of the first configuration on which we can use different types 

of substrate. 

 

Figure I.13: Possible configuration of thin film solar cells 

I.2.3 Thin film solar cells technologies 

I.2.3.1 Amorphous silicon (a-Si) 

PV cells based on amorphous silicon are the least expensive cells on the market with 

theoretical conversion efficiency about 25% whereas in laboratory their record efficiency 

reaches 10.7% at Oerlikon Solar Lab [31] with a simple junction, whereas 13.4% is achieved 

in a-Si:H/μc-Si:H/μc-Si:H triple-junction [32]. 

I.2.3.2 Cadmium Telluride (CdTe)  

Cadmium telluride (CdTe) has long been used as an optimal candidate for thin-film PV 

applications [33], because it is a chemically stable semiconductor compound with large 

absorption coefficient (>104 cm-2) and a direct band gap energy about 1.45 eV [34]. CdTe can 

be p or n type semiconductor but in solar cells it used as p type semiconductor. The first PV 

cell based on CdTe with a record efficiency equal 21.5% achieved in February 2015 [35].  

Despite the development made in the CdTe technology by achieving cost-effective, the 

toxicity of cadmium which risk to the environment and humans and the scarcity of tellurium 

are the drawback of the use of this material in solar cell, the development of this type of thin 

films solar cells is limited by the searching of abundant and no toxic material. 

 

 



Chapter I                                                           Photovoltaic energy and thin film solar cells 

 
 

 
 15 

I.2.3.3 Cu(InGa)Se2 (CIGS) 

Chalcopyrite semiconductor compounds such as copper indium diselenide (CuInSe2), copper 

indium disulfide (CuInS2) and copper gallium indium diselenide (CuGa1-xInxSe2), have direct 

band gaps energies with high absorption coefficients, making them suitable material for PV 

application. In 1976 Kazmerski et al. [26], fabricated the first thin film solar cells 

CdS/CuInSe2 with an efficiency equal to 4.5 %. After that, gallium (Ga) was incorporated in 

CuInSe2 to make Cu(InGa)Se2. The quaternary compound Cu2InGaSe4 (CIGS) is the most 

successful chalcopyrite absorber with a record efficiency of 20.8% [36]. CIGS thin films have 

been produced using different deposition methods. CIGS solar cells realized following the 

substrate configuration starting with the deposition of molybdenum layer as the back contact 

deposited on glass substrate succeeding by the deposition of the absorber p type CIGS thin 

films. Then the deposition of n-CdS buffer layer which formed the hetero-junction with 

CIGS, then, a thin ZnO intrinsic layer and finally the deposition of aluminum doped ZnO thin 

film as optical window in front contact. Similar to the CdTe technology, indium scarcity 

represents an issue in CIGS PV applications, where the high price of indium impacts cell and 

module costs. Figure I.14 show the configuration of the three technologies of thin film solar 

cells (CdTe, CIGS and, a-Si) 

 

Figure.I.14 Thin films solar cells technologies 

The high efficiency obtained by the most promise absorber material used in thin film solar 

cells are resumed in Table I.1 

I.3.Cu2ZnSnS4 solar cells 

I.3.1. Introduction 

Recently, a new material belongs to kesterite group called Cu2ZnSnS4 (CZTS) has been 

proposed to replace CIGS and CdTe which are contain toxic and scarcity elements. The CZTS 

semiconductor material has a direct band gap energy. Moreover, it’s absorption coefficient is 



Chapter I                                                           Photovoltaic energy and thin film solar cells 

 
 

 
 16 

greater than 104 cm -1 [37.38], intrinsic p doped material, contain just abundant and friendly 

elements to the environment. The different properties of CZTS are described with details in 

the following paragraphs. 

I.3.2 A material based on friendly and abundant elements in nature 

CZTS is a metallic chalcogenide composed of copper (Cu), zinc (Zn) tin (Sn), and sulfide (S). 

These elements are widely present in the earth's crust, particularly in contrast to the indium 

and gallium compounds that form the CIGS. The indium (In) is a rare element with an 

estimated abundance in the earth's crust making it a very expensive metal. Gallium (Ga) is a 

metal difficult to produce because it is only in the state of trace amounts in aluminum and 

zinc ores. Additionally, the metals composing the CZTS are between 25 and 400 times 

cheaper than indium and gallium. Beyond the price which represents only a small part of the 

cost of PV panels, these 2 elements are already widely used in the electronics industry, which 

could procurement for a very large scale PV industry development. However, the abundance 

and low prices of copper, zinc, and tin make this material very interesting for the PV 

conversion in the recent years. Figure I.15 illustrate the content and the world trading price of 

the elements used as light absorbers for thin film solar cells. 

 

Figure I.15: Relative abundance of the elements [39].  
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I.3.3 Fundamental properties 

I.3.3.1 Crystal structure and polymorphous  

 The Cu2ZnSnS4 is a quaternary compound belongs to I2–II–IV–VI4 group, derived from II-VI 

compounds such as zinc-blende (ZnS). By replacing atoms of group-II with atoms of group-I 

and one group-III atoms, we obtain a I-III-VI2 semiconductor such as the Cu-based 

chalcopyrite CuInS2 (CIS). Then, two atoms of indium are replaced by an atom of zinc and a 

tin atom whereas the copper atoms always occupy the same positions by replacing half of the 

In atoms with group-II atoms such as Zn and the other half with group-IV atoms such as Sn, 

we can produce Cu2ZnSnS4. Similarly, the Cu2ZnSnSe4 compound can be derived from 

CuInSe. FigureI.16 illustrates the derivation of CZTS from ZnS. This material can crystallize 

under either stannite [40] or kesterite structure [41]. Chen etal. [42] has reported that the 

energy between this two structure is equal to 3meV/atom.According to the theoretical 

calculations DFT showed that the kesterite phase is more stable than the stannite phase, Chen 

et al. [42] have reported that in ketsterite structure the strain energy is lower than that of 

stannite. The difference between the two structure is the location of copper(Cu) and Zinc(Zn) 

atoms in the crystallographic structure as illustrated in figure I.16.  

 

Figure. I.16: Crystal structures of zinc-blende, chalcopyrite, kesterite and stannite [45]. 
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The both structures are tetragonal. These two structures are not differentiable by X-ray 

diffraction. Further, Schorr et al. [43] has experimentally confirmed the DFT results by 

neutron diffraction. In addition, a partial disorder of zinc and copper in the plane (001) for z = 

¼ and a = ¾ has also been demonstrated. This phase is called disorderly kesterite. Scragg et 

al. have shown that the transition temperature order kesterite disorder is close to 260°C [44]. 

I.3.3.2 Secondary Phases in CZTS thin films  

Because of the constitution of CZTS material with the combination of four elements the 

probability of the formation of secondary phases is higher than in other materials. 

Experimentally, it’s difficult to grow pure and single phase of kesterire CZTS (Se), during the 

synthesizing of CZTS film must take on account the composition for avoiding the formation 

of various binary and ternary phases including ZnxS, CuxS, SnxS and CuxSnS which can form 

easily during the growth of CZTS thin films that can be refer to the complexity of this 

quaternary compound as seen in figure I.17. Those phases affect strongly on the CZTS thin 

films properties and on related devices performance. Generally, CuxS phase was detected in 

CIS alloys also as a result of Cu rich condition in the preparation of CZTS, and enhance the 

crystallization of the film [46], the enhancement of the crystallization was reported in co 

evaporated CZTS [47] but in contrary in [48], for CZTS thin film grown via sol gel and 

electrochemical deposition. Furthermore, a trend opposite to CIS was also reported by katagiri 

group [49] for CZTS grown via co-sputtered precursors in which an enhancement of the 

morphology of CZTS was observed with the decreasing of copper content. However, the two 

secondary phases Cu-S and Cu-Sn-S compound are highly conductive [50] and can create 

shunting path in the final cell and can lowering the band gap energy of CZTS thin films. 

While ZnS secondary phases have a high probability for formation under Cu-poor and Zn –

rich condition and it was observed in several works [51.52]. This secondary phase was 

observed even in best solar cells in the literature [52]. As well as the effect of this phase may 

be not detrimental of the cell performance. The other secondary phase is tin sulfide SnS phase 

which was detected and reported by some authors [53], no negative effect on the cell 

performance was reported. To reach a high performance of CZTS devices the control of these 

secondary phases is necessary, the phase diagram of the system has shown that a single-phase 

CZTS material can be formed only in a very small region as seen in figure I.17.  
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Figure I.17: Trnary phase diagrams of CZTS [54] 

I.3.3.3 Detecting secondary phases in CZTS  

X-ray diffraction (XRD) and Raman Spectroscopy are generally used for detecting the 

different phases in CZTS sample. CuxS phases, as well as SnxSy compounds (SnS, SnS2 and 

Sn2S3) can be easily identified by X-ray diffraction, showing diffraction peaks clearly 

different from those of CZTS. However, as shown in Figure I.18 [55], ZnS and CuxSnSx-1 

(CTS) phases are difficult to be distinguished from CZTS phase.  

 

Figure I.18: X-ray diffraction spectra of kesterite Cu2ZnSnS4, Cu2SnS3, and ZnS showing 

overlap of the main peaks [55]. 
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Indeed, the most probable ZnS cubic phase shows a crystal structure very similar to CZTS. 

Therefore, ZnS diffraction pattern is superimposed to the CZTS one. Among CTS 

compounds, only the orthorhombic Cu3SnS4 phase can be detected in CZTS samples by XRD, 

whereas problems similar to ZnS are found for Cu2SnS3 compounds: because of their similar 

symmetry and lattice constant with CZTS, the diffraction peaks of both cubic and tetragonal 

Cu2SnS3 are superimposed to those of CZTS phase [56]. 

The different crystallographic parameters of CZTS calculated using XRD such as interrelated 

distance, intensity, (h k l) plane, and peaks positions are reports in table I.4. 

 

d(Å) I/Io (%) (hkl) 2(degree) 

5.421 1 002 16.338 

4.669 6 101 18.205 

3.847 2 110 23.101 

3.126 100 112 28.530 

3.008 2 103 29.675 

2.713 9 200 32.966 

2.426 1 202 37.025 

2.368 3 211 37.966 

2.212 1 114 40.758 

2.013 2 105 44.996 

1.919 90 220 47.331 

1.636 25 312 56.177 

1.618 3 303 56.856 

1.565 10 224 58.969 

1.45 1 314 64.177 

1.365 2 008 69.229 

 

Table.I.2. crystallographic properties of CZTS [57] 

Raman spectroscopy is an alternative way to detect possible secondary phases present in 

CZTS material. A clear Raman spectrum of a Cu2ZnSnS4 sample (measured on a monograin 

powder) showing all the CZTS characteristic peaks is reported in [58] and it is shown here in 

Figure I.19. A list of the Raman peaks of other interest phases are reported in Table I.3. 
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Figure.I.19: Typical Raman spectrum of a Cu2ZnSnS4 monograin powder [58]. 

 

 Raman Shift(cm-1) Reference 

CZTS 338,287,351,368,257 [58.59] 

ZnS 352,75 [60] 

Cu2SnS3(tetragonal) 337,352,297 [61.62] 

Cu2SnS3(cubic) 303,356 [61.62] 

Cu3SnS4 318,295,348 [61.62] 

Cu2-xS 476 [59] 

SnS 160,190,219 [63] 

Sn2S3 307 [63] 

SnS2 215,315 [63] 

 

Table.I.3. Raman Shift of CZTS material and related secondary phases[58] 

I.3.3.4 Point defects in the CZTS  

The knowledge of defects in a semiconductor used as solar cell absorber material is very 

important for improving and controlling the efficiency of related solar cells. Density 

functional theory calculations can help to access potential defect states, and support the 

interpretation of experimental findings. In CZTS material, various intrinsic point defect can 

form including antisite defects (CuZn, ZnCu, SnZn, ZnSn, and CuSn), vacancies (VCu, VZn, VSn, 

and VS) and interstitial defects such as (Cui, Zni, Si, and Sni). These defects can be acceptor or 
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donor, can situated either in shallow or deeper level within the band gap energy, and act as 

recombination center which affected on the opt-electrical properties of the film and the 

performance of the device. Theoretical calculation of the formation of defect in kesterite 

compound where reported in [64], the value of the intrinsic defect ionization levels within the 

band gap energy of different defect which may appear in CZTS is reported by Chen et al. [65] 

are resumed in figure I.20 [55]. Further, Vcu vacancy is the shallow acceptor defect, it located 

just above the valence band, whereas CuZn antisite is situated in a level with an energy 

formation equal to 0.12 eV with the lowest formation energy, that results was confirmed 

experimentally in [66,65], Moreover, there are self-compensated defect pair complexes such 

as [CuZn
-+ZnCu

+] for Cu-rich/Zn-poor growth condition and [Vcu
-+ZnCu

+] for Cu-poor/Zn-rich 

condition in CZTS [65].  

 

 

Figure.I.20: Inonisation level of different defect in CZTS [65] 

I.3.3.5. Electrical properties 

Different to silicon which need be doped for being n or p type semiconductor, CZTS 

quaternary compound is a self-doped semiconductor, the p-type conductivity of CZTS is refer 

to the formation of accepter defect and especially CuZn antisite (Cu in Zn site) defect which 

have the lower formation energy than the other defects as we have discussed above. 

According to the publish data the resistivity of CZTS material varied in the range 10-3 to 10-1 

.cm as reported in case of best CZTS solar cells efficiency [67], and the hole concentration 
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vary between 1016 and 1018 cm-3[68-70]. The carrier’s mobility varied from 0.1 to 30 cm2/Vs. 

Tanaka et al. [71] reported in their work that the carrier concentration increase with the 

formation of Cu2Se(S) phase. That why the electrical properties of CZTS are very sensitive to 

the secondary phases and also by the presence of defects. Further, in [72] they reported a 

mobility value varied from 5 to 12 cm2/Vs for CZTS film grown by sulfurization of metallic 

precursors deposited by ion-beam sputtering. Also, Repins et al. [73] reported a high mobility 

value about 44.7 cm2/Vs, for the film deposited using reactive co-sputtering deposition of 

metallic precursors in H2S atmosphere. The highest resistivity value reported for sprayed 

CZTS was about 200 .cm [74]. Fore control the values of resistivity or conductivity we have 

to controlled the secondary phases. Therefore, the high values of the conductivity is due to the 

Cu rich condition which elevate the concentration of CuZn defect that’s reported in [75], and 

favorite the formation of copper sulfide phase, whereas under Zn-rich condition the ZnS 

phase is formed as reported in our publish work [76], when the zinc concentration increase the 

zinc sulfide is formed and the resistivity increase, some published results for the conductivity, 

mobility and carrier concentration measured by hall effect are resumed in the table below. 

 

Resistivity(.cm) Hall Mobility (cm2/V s) hole concentration (cm-3) Refs 

0.15 6.3 8.2 1018 [77] 

0.13 6 8.2 1018 [78] 

0.13 12.6 3.8 1018 [79] 

0.36 11.6 4.5 1017 [77] 

5.4 30 3.9 1016 [70] 

  

Table I.4: Resistivity, mobility and carrier concentration of CZTS thin films obtained by 

different techniques 

I.3.2.6 Optical properties  

The electronic structure of CZTS and CZTSe and other related compounds were investigated 

by first principle calculations in several works [80,81]. Details of the electronic band structure 

of CZTS (e) can be found in [81]. The results show a direct -point energy gaps for both CZTS 

kesterite and stannite structures, with energy gap values of 1.56 and 1.42 eV, respectively. 

These values agree quite well with experimental works on CZTS single-crystals [82,83], even 

though other works found slightly different values (varying from 1.4 to 1.7 eV) can be found 

in the literature for CZTS thin films [84-85].  
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I.3.4 The role of the Buffer layer in CZTS Thin Film Solar Cell 

The primary function of a buffer layer in a hetero-junction is to form a junction with the 

absorber layer while admitting a maximum amount of light to the junction region and 

absorber layer [86]. In addition, this layer should have minimal absorption losses and should 

be capable of driving out the photogenerated carriers with minimum recombination losses and 

transporting the photogenerated carriers to the outer circuit with minimal electrical resistance. 

It should have minimal resistive loss and the band gap energy should be as high as possible 

and the layer should be as thin as possible to give low series resistance. It is also important 

that any potential ‘spike’ in the conduction band at the hetero-junction interface must be as 

low as possible for minority carrier transport. The requirements of a good buffer layer are 

cited below: 

i. The material should be n-type in order to form a p-n junction with the absorber layer. 

ii. The band gap should be wide for limited light absorption. 

iii. The process for deposition should be low cost and suitable for wide area deposition.  

iv. The process and material choice of the buffer layer should provide an alignment band 

conduction with that of the absorber with a conduction offset (ΔEC) about 0 – 0.4. 

For enhancing CZTS solar cells efficiency the buffer layer should hold the previous 

properties, the possible buffer layers which can formed a p-n junction with CZTS are cited 

below: 

a. CdS buffer layer 

Cadmium sulfide material is the commonly buffer layer used in CIGS and CdTe solar cells 

and it’s extended to CZTS solar cell. The role of CdS buffer layer is the optimization of the 

band alignment between CZTS and ZnO layer, reduction of defect density at the interface and 

the increase of lifetime of free carriers, and the protection of absorber layer surface. 

b. ZnS buffer layer  

The ZnS-based buffer layer is one of the most popular candidates for replacing the CdS buffer 

layer which stayed undesirable because of the toxicity of cadmium. It can deposit by several 

of technique physical or chemical. 

c. ZnSe buffer layer 

The progress of the ZnSe-based buffer layer is dominated by the processes CBD and Metal 

Organic Vapor Phase Epitaxy (MOVPE). The CBD method was optimized at HMI (Hahn 
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Meitner Institut, Berlin, Germany) using the chemicals Zn-salt/ammonia/selenourea and 

Cu(In,Ga)(Se,S)2 absorbers from Siemens/Shell Solar. A maximum active-area efficiency of 

15.7% [87] or a total area efficiency of 14.4% [88]. 

d. ZnO buffer layer 

ZnO buffer can also be used as buffer-free cells when the ZnO window is directly deposited 

on CZTS by chemical or physical techniques. The problem with ZnO is the large band gap 

which implies a large band alignment between absorber and ZnO buffer layer which affect the 

device properties and performance.  

e. In2S3 buffer layer 

In2S3 has emerged as a promising buffer layer material, it has improved the performance of 

CIGS(Se) solar cells and ovoid the use of CdS buffer layer which is toxic. it can deposit using 

different growth methods (CBD, ALD, evaporation, and sputtering) 

I.3.5 Band alignment diagram of Cu2ZnSnS4/buffer hetero-structure 

One key issue for enhancing the CZTS solar cell efficiency is to found an optimal buffer 

layer, one of the limited reason of the performance of CZTS solar cells is the small open 

circuit voltage (around 0.6 eV), probable resulting from a non-optimal conduction band 

alignment between the p-type CZTS absorber and the n-type buffer layer. As in chalcopyrite 

CIGS solar cell, in CZTS solar cells the CdS is used as the “standard” buffer layer. 

conduction band alignment of CdS/CIGS is “spike-like” (as describe in precedent paragraphs) 

with a desired band offset of 0.2–0.3 eV, which facilitates the high efficiency of a CIGS solar 

cell, especially for high Voc [89]. However, the type of conduction Band Offset (CBO) is still 

unresolved when it comes to the case of CdS/CZTS based cells. Theoretically, the CBO of 

CdS/CZTS has been calculated to be negative (i.e., cliff-like), while the reported experimental 

values vary widely. For example, Richard et al. report a spike-like CBO of 0.41 eV [90], 

whereas others studies have measured cliff-like CBO value of -0.06 eV [91], -0.33 eV, [92] , 

and -0.34 eV [93]. As the band alignment has been found to be very sensitive to the interface 

of CdS/CZTS, the differences in the reported experimental CBO of CdS/CZTS could be due 

to the variation in the surface of the CZTS absorber and/or any treatment prior to the CdS 

buffer deposition. Further investigation is required to resolve this issue. On the other hand, if 

the CBO of CdS/CZTS is indeed cliff-like, it is imperative to identify alternative buffer 

materials which yield an optimal band alignment with CZTS (small spike-like CBO of 0.1–

0.2 eV). However, very few experimental attempts have been made to measure band 

alignment at the interface of CdS free buffer layers and CZTS (pure sulfide). Yan et al [94] 
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have measured the band alignment of three buffer layers (CdS, Zn(O,S), and In2S3) with 

CZTS. The valence band maximum (VBM) and Valence Band Offset (VBO) are determined 

by X-ray Photoelectron Spectroscopy (XPS). The CBO between CdS and CZTS is confirmed 

to be cliff-like, whereas those at Zn (O, S)/CZTS interface and In2S3/CZTS interface are 

spike-like as seen in figure I.21.  

  

 

 

Figure.I.21: The band alignment of different buffers and CZTS values of the VBO, CBO, and 

Eg are indicated [94].  

The measured device parameters show that the device with an In2S3 buffer layer has higher 

open circuit voltage Voc than that using CdS and Zn (O.S). The difference in conduction band 

offset (CBO) types of In2S3/CZTS and CdS/CZTS could cause the Voc change. According to 

p-n junction band alignment simulation by Minemoto et al.[95] the convincingly small CBO 

spike (0–0.4 eV) prevents interface recombination, especially recombination between 

electrons in the conduction band of the buffer and holes in the valence band of CZTS. In 

contrast, the cliff-like CBO facilitates this kind of recombination, especially in the presence of 

interface defects and/or a high interface recombination velocity, resulting in a considerably 

decreased Voc. Yan et al [94] find that the CBO between CZTS and Zn(O,S) and In2S3 are 

spikes while between CZTS and CdS is a cliff, the devices were tested under illumination. 

The In2S3 buffer layer with a CBO equal to 0.41 eV showed the best Voc value (590 mV) 

while CdS (470 mV) and no photogenerated current for the device with Zn(O,S) buffer layer 

because of the large CBO (0.9 eV) which block the photo-generated carriers.  
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As a result a reasonable spike-like CBO enabled improvement of Voc compared to a cliff-like 

CBO. However, may the hybridation of CdS with such Zn(O,S) or In2S3 will allow to 

achieve an optimum spike like CBO value(0-0.3), that may enhance the Voc and the 

performance of CZTS solar cells. 

I.3.6 Diffusion length of carriers in CZTS 

Different to CIGS thin film solar cells which have a long diffusion length (Ld) more than 1 

m as reported in [96]. However, B.Shine et al. [4] reported a  value of  Ld=350 nm with an  

efficiency around 8.4%, also the declared work on CZTSe with an efficiency equal to 12.6 %  

show a value of Ld = 750 nm [5], whereas, Courel et al.[59] reported low minority diffusion 

length of sprayed CZTS which vary in the range 100–171 nm. The lifetimes of carriers and 

their diffusion lengths depend strongly on the morphological properties of the thin film and 

the crystalline quality which must be taken in account for enhancing the transport properties 

of free carriers. Further the long minority carrier lifetime is due to the low band gap energy as 

in CIGS and CZTSe and contrary to CZTS. For enhancing CZTS efficiency we must improve 

the different properties such as, the film morphology, the compositional homogeneity, and 

phase purity of the absorber should be controlled in order to increase the power conversion 

efficiency. 

I.3.7. Progression of kesterite solar cells 

In 1988, Nakazawa et al [98] observed for the first time the photovoltaic effect on CZTS 

material deposited by atom beam sputtering. Where, they fabricated a CZTS hetero-junction 

with n type transparent cadmium-tin oxide thin film and reported an open circuit voltage 

value equal to 160 mV this value was improves soon by the same group to 265 mV [99]. 

After that, in 1997 Katagiri et al.[100]  built the first pure CZTS solar cell with a PCE about 

0.66% where CZTS absorber formed a hetero-junction with n type CdS buffer layer, 

Molebdnum (Mo) and ZnO:Al (AZO) are used  as back and front contacts respectively. Same 

group in 1999, fabricated CZTS solar cells by two-step sulfurization process from 

electrodeposited of Cu/Sn/Zn precursors and set a new PCE record of 2.62% [101] which was 

the first reported result for two-step sulfurization with vacuum deposited precursors. New 

records were established when they optimized the sulfurization process (5.4% PCE) in 2003 

[102], discovered how to etch remaining metal oxides on the surface of the absorber at the 

end of the annealing process (6.7% PCE) in 2008 [103]. By 2010, Todorov et al. reported 

efficiency for CZTSe devices equal to 9.6 % [104]. This record survived till for the first time 
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chalcogens intermixing is introduced in the alloy forming CZTSSe. Mitzi and his group at 

IBM reported 9.7% PCE CZTSSe solar cells by using a hybrid particle solution approach 

[59]. The CZTSSe absorber layers for these devices were deposited using two-step approach 

where precursors are dissolved in hydrazine and spin-coated on Mo coated glass followed by 

annealing [59]. In 2010 the group of Agrawal at Perdue 34 University (USA) introduced for 

the first time germanium in the alloy forming CZGeTSSe leading to a 8.4% PCE [105]. In the 

two years following (2011-2012), Todorov et al. pushed the PCE to 10.1% and 11.1% then 

still using hybrid particle-solution method [106]. Nowadays the world record efficiency for 

CZTSSe solar cells is at 12.6% set at IBM Watson [107] the evolution of the conversion 

efficiency of CZTSSe solar cells is illustrated in Figure I.22. 

 

Figure I.22: Evolution of the conversion efficiency of thin film solar cells using CZTS as light 

absorber layer. 
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In the first part of this chapter, we will present the different deposition techniques of CZTS 

thin film, and specially the system used in my PhD thesis. The experimental condition used 

for the deposited of CZTS thin films and the stack of layers composed the device are reported. 

In the second part, we will cite the characterization techniques used for studding the different 

properties of CZTS samples and the realized devices.  

II.1 Deposition techniques of CZTS 

 

CZTS (Se) thin film can be realized using different deposition methods either physical or 

chemical. The main goal of the use of different deposition method is for finding an economic 

and suitable route for deposition a good quality of the active layer, generally those techniques 

can be classified in two categories, vacuum which consisted on physical method and no 

vacuum which included chemical ones. 

 II.1.1 Physical Vapor Deposition (PVD) 

Physical deposition technique requires high vacuum and present best properties, it                                     

including: thermal evaporation, RF/DC magnetron, atom beam sputtering, hybrid sputtering, 

and pulsed laser deposition. This various PVD techniques are explained in details in the 

following paragraphs.  

 II.1.1.1 Evaporation 

Different types of evaporation technique were used for the deposition of high quality of 

kesterite such as: thermal evaporation and electron beam evaporation, figureII.1 represent the 

schematic of the two processes. Katagiri et al. [100] has used an electron beam evaporation 

method to deposit a Cu/Sn/Zn stack layer sequentially on a SLG substrate at 150°C in high 

vacuum. The fabricated solar cell has an efficiency about 0.66% and a Voc= 400mV and a 

short current density = 6mA/cm2 which was the first CZTS solar cell, after that Friedlmeier et 

al. [108] have fabricated CZTS solar cell under high vacuum using thermal evaporation with 

2.3% of solar efficiency. Later on, Katagiri et al.[66] have improve the efficiency by replacing 

the Zn precursor by ZnS layer and elevate the substrate temperature to 400°C with a variation 

of the absorber thickness from 0.95 to 1.63 m, the enhancement by replacing Zn with ZnS 

were observed by an increase of the efficiency to 2.62 % and in 2003 it was improved to 

5.45% with a Voc=582mV and JSC=15.5 mA/cm2 using evaporation technique[102]. After 

that, the researches for the enhancement of CZTS efficiency continued with years and in 2012 
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Shin et al. [105] have reported a high record efficiency of CZTS solar cell by evaporation 

technique about 8.4% in 2012 and 12.6 % for CZTSSe solar cells [107].                                                                                                                                                                                                                                                

 

 

Figure II.1. Beam evaporation technique in the left and thermal evaporation in the right 

[108x] 

 II.1.1.2 Sputtering technique 

Another deposition technique which need high vacuum is called sputtering method, it gives 

high quality of absorber thin film. Sputter technique include argon beam sputtering, DC/RF 

magnetron, and reactive sputtering [109-112]. The first report of sputtering CZTS solar cell 

was by Ito and Nakazawa [98] in 1988, with a Voc=265 mV and Jsc=0.1mA/cm2. In 2003 

Seol et al. [113] have prepared CZTS by RF sputtering with the use of Cu2S, ZnS, and SnS2 

powders as targets, whereas the hybrid sputtering was employed by Tanaka et al. [114].  

II.1.1.3 Pulsed laser Deposition 

Pulsed Laser deposition (PLD) is a newer technique deposition compared to sputtering and 

evaporation, it gives also a high quality and crystalline thin films under high vacuum level 

with great reproducibility [115]. In this deposition technique, a pulsed laser beam with high 

power is used in a vacuum chamber to strike a material target, causing material evaporation 

from the surface of the target as seen in figure II.2. The evaporated material is then deposited 

as a thin film on a substrate, Cu2S, ZnS and SnS2 powders are used as a target to deposit 

CZTS compound. By the use of this technique we can study various deposition parameters 

such as laser power, substrate temperature, duration, distance between target and substrate, 

and pulse rate. There are few reports concerning the deposition of CZTS thin film solar cell 

using this technique because of the small area of film deposited which is not enough for 
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commercial manufacturing which need large area of cells. In 2006, Sekiguchi et al. [116] 

reported the epitaxial growth of CZTS thin film on n-type oriented GaP substrate using 

(PLD). The first solar cells using this technique was in 2007 by Moriya et al. [117]. 

 

 

 

Figure.II.2: Illustration schema of Pulsed Laser Deposition system [115] 

II.1.2 Chemical Vapor Deposition (CVD)  

Different to physical technique, this type of methods is not expensive and do not need 

vacuum, it suited technique for manufacture of PV system with low cost of PV module which 

is the core of any technology, various chemical routes were employed for the fabrication of 

CZTS thin films and related devices such as: electro-deposition, sol gel, spray pyrolysis, and 

chemical bath deposition technique. 

II.1.2.1 Electro-deposition  

Scragg et al. [118] was the first who realized CZTS solar cells by electro-deposition 

technique, they have used copper, tin, and Zinc chloride as precursors dissolved separately in 

a mixture solution containing NAOH, the deposition was at room temperature on a conductor 

substrate with the order of metals Cu, Sn, Zn using 3 electrodes with a platinum counter 

electrode and Ag/AgCl as reference electrode as seen in figure II.3. The growing films were 

sulfurized at 550 °C; the realized solar cell exhibit an efficiency equal to 0.8 %. In 2009, the 

efficiency increase to 3.4% by Ennaoui et al. [119] and 7.3% in 2012 by Ahmed et al. [120] 

using 3 step method: firstly, metal stacks of either Cu/Zn/Sn or Cu/Sn/Zn were 
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electrodeposited, then they did annealing at 210-350°C under N2 gas and finally CuZn and 

CuSn alloys were annealed at 550-590 °C in sulfur vapor for 5 to 15 min and a single and 

highly crystalline film were obtained. 

 

Figure.II.3. Basic electrode-position system with three electrodes  

II.1.2.2 Sol-Gel  

The sol-gel solution was prepared by dissolving of copper(II) acetate monohydrate, zinc(II) 

acetate dehydrate and tin(II) chloride dehydrate in mixture solution of 2-methoxyethanol(2-

metho), deionized water then, the solution was  spin coated on Mo-coated soda lime glass 

substrate followed by drying at 300°C on a hot plate [121] the films were annealed at 500 °C 

in an atmosphere of N2+H2S (5%), then a  buffer layer of CdS was grown on CZTS film by 

chemical bath deposition(CBD) ,the final solar cell has given an efficiency equal to 

1.61%.Later on, the efficiency of CZTS solar cell using sol gel method was enhance by 

Tanaka et al.[122] and reach 2.23 % next, several works were done using this technique and 

the best efficiency was about 5.1 % [123]. 

II.1.2.3 Spray pyrolysis 

Spray pyrolysis technique including its different types (ultrasonic, pneumatic, and 

electrostatic) became an attractive deposition method due to its simplicity, low cost, not 

require high-quality of substrates, and the possibility for deposition large area which required 

for industry application. Spray pyrolysis was used widely for the fabrication of thin film 

devices such as: solar cells, antireflection coating, thermal coating, solid oxide fuel cells, 

sensors, and others. Various works on spray pyrolysis techniques have been published such as 

Moony and Radding have reported in their work the spray pyrolysis method, properties of the 

deposited films in relation to the conditions, specific films (particularly CdS), and device 
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application [124]. Tomar and Garcia have discussed the preparation and the properties of 

sprayed films as well as their application in solar cells, anti-reflection coatings, and gas 

sensors [125]. Albin and Risbud presented a review of the equipment, processing parameters, 

and optoelectronic materials deposited by the spray pyrolysis technique [126]. Pamplin has 

published a review of spraying solar cell materials as well as a bibliography of references on 

the spray pyrolysis technique [127]. Recently, thin metal oxide and chalcogenide films 

deposited by spray pyrolysis and different atomization techniques were reviewed by Patil 

[128]. Furthermore, the first report in sprayed CZTS was reported by Nakayama et al.[129] 

in1996, spray pyrolysis became an interesting technique and it used widely for kesterite 

deposition, many works were reported in sprayed CZTS thin films [130-131], and several 

parameters were studied for eg : the effect of tin precursors were studied by Rajeshmon et 

al.[132] who tested SnCl2 and SnCl4 precursors and found that both tin sources give kesterite 

structure with the better crystallization for the film prepared  using SnCl2 precursor. The 

advantage of spray technique is the possibility of controlled many conditions, including 

solution conditions and system parameters, schema below shows the different parameters 

which can be study using this technique. 

  

Figure II.4 schematic of different spray pyrolysis (SP) parameters [133] 

Figure II.5 shows a typical spraying system. It mainly consists of spray nozzle, precursor 

solution, substrate heater, temperature controller and air compressor or gas propellant. To 
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measure the flow of precursor solution and air, liquid and gas flow meters are used. The spray 

head movement is also controlled by stepper motor driven linear stages in X and Y directions.  

 

 

Figure.II.5 Simplified schematic of Spray pyrolysis system 

The properties of the prepared film depend on spray rate, substrate temperature, ambient 

atmosphere, carrier gas, droplet size and also the cooling rate after deposition. The film 

thickness depends upon the distance between the spray nozzle and substrate temperature, the 

concentration of the precursor solution and the quantity of the solution sprayed. The film 

formation depends on the process of droplet landing, reaction and solvent evaporation, which 

are related to droplet size. An ideal deposition condition is when the droplet approaches the 

substrate just as the solvent is removed completely. The three principal processing steps for 

spray pyrolysis deposition are: 

 Atomization Procedure 

  Aerosol Transport of Droplets 

  Precursor Decomposition 

The high efficiency obtained using various deposition techniques (CVD and PVD) is reported 

in Table II.1. 
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Method Precursor Efficiency(%) Year References 

Evaporation Cu,Zn,Sn,S 8.4 2011 [105] 

sputtering Cu,SnS,ZnS 6.77 2008 [103] 

electrodeposition Cu(II)ion,Zn(II)ion,Sn(iV)ion 7.3 2012 [120] 

Sol gel Cu(II),Zinc(II) acetate 

dehydrate,SnCl2,2H2O 

2.23 2011 [123] 

Pulsed Laser 

Deposition 

In_house fabricated CZTS 

pellet 

3.14 2011 [ 134] 

Spray pyrolysis Not availbale 1.15 2011 [135] 

Np-based 

method 

Cu(II)acetylacetonate,zinc 

acetate,SnCl2,2H2O,Sulfure 

0.23 2009 [136] 

Screen –printing CZTS microparticle 0.49 2010 [51] 

CBD-ion 

exchange 

SnCl2,2H2O,zinc acetate 

dehydrate,aqueuse Cu+2 

0.16 2011 [137] 

 

 Table II.1Highest of CZTS efficiency obtained by different methodes  

 

II.1.3 Thin films preparation and device fabrication 

In our experimental work, firstly we have consisted to study the different parameters of the 

active layer which is a quaternary compound named Cu2ZnSnS4 (CZTS). The goal of this 

study is to deposit and enhance the different properties of the absorber layer and their related 

devices using spray pyrolysis technique. CZTS thin films, hetero-junction, and solar cells 

have been investigated. 

II.1.3.1 CZTS thin film deposition 

The goal of the present study is the deposition of CZTS thin films by spray pyrolysis 

technique. Influence of different parameters related to this technique will be investigated. 

Experimental details of films preparation by this technique will be presented. The most 

important parameters have been studied namely: substrate temperatures, duration, and 

precursor salt molarities. Flow rate, solvent and precursor nature were fixed. The steps of 

deposition process are as follow: 

1. Substrate preparation: in this work, we have used glass as substrate. Firstly, the glass 

substrate was cleaned ultrasonically in acetone to remove impurities (grease or dust) present 

in the surface of the substrate for 10 min. Then, the glass substrates were cleaned 
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ultrasonically in distilled water to remove any trace of the acetone for 10 min and finally, the 

cleaned glass substrates are dried and became ready for the use. 

2. The preparation of the solution: the preparation of the solution is not complicate it based on 

the mixing of four salts: copper acetate or copper chloride (CuCl2, 2H2O) as source of copper 

(Cu), Zinc acetate as source of Zinc (Zn), tin chloride (SnCl2, 2H2O) for tin (Sn), and 

thiourea (CS (NH2)2) as source of sulfur (S), the solution was agitated through magnetron 

stirring until a transparent solution is obtained. The variation of solution color’s with adding 

of precursors is illustrated in figure II.6. 

 

 

Figure II.6: The variation of solution color with adding different precursors 

3.Thin film deposition: After the preparation of the substrates and the solutions, we start the 

deposition procedure which follow several stages: In the first, we start by replacing the well 

cleaned substrate on a heated substrate holder at the desirable temperature, when the 

temperature is reached droplets of 40 μm diameter are sprayed onto heated substrates. The of 

the temperature is to cause the pyrolysis activation of the chemical reaction leading to the 

layer formation, while the other elements volatilize after reaction. Finally, the deposition 

process is finish and the thin film is formed, we stop the heating and let the substrates cool 

down slowly above the substrate holder at room temperature to avoid the thermal shock. Then 

the samples will be ready for the various characterizations.  

The deposition of the whole films with various deposition condition and the layers composed 

the realized device were done using spray pyrolysis technique (HOLMARC) as seen in figure 

II.7 
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Figure II.7 System used for CZTS film deposition 

In the following paragraphs we have summarized the deposition conditions of the different 

studied parameters in this thesis which can divided in two parts: the first one is a focused on 

the study of CZTS thin film properties, while in the second part, we had described in details 

the realization of CZTS hetero-structures. 

Part. I. The studied parameters of CZTS thin films 

1. Effect of substrate temperature  

For obtained the optimal temperature for CZTS thin films deposition we have fixed all 

parameters and varied the substrate temperature from 300 to 390 °C with a step of 30 °C with 

the use of distilled water as solvent (40 ml). The used parameters are resumed in table II.2 

precursors molarities Flow rate(ml/h) Duration(min) 

CuCl2,2H2O 0.02  

 

10 

 

 

30 
Zn[CH₃COO]₂·2H₂O 0.01 

SnCl2,2H2O 0.01 

CS(NH2)2 0.12 

 

Table II.2 parameters used for the deposition of CZTS films with various substrate 

temperatures (Ts). 
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 2. Deposition time  

In this part we have studied the effect of time deposition on different properties of CZTS thin 

films. The deposition time was varied from 15 to 45 minute with take all other parameters 

fixed. 

precursors molarities Flow rate(ml/h) Temperature(°C) 

CuCl2,2H2O 0.02  

 

10 

 

 

350 

Zn[CH₃COO]₂·2H₂O 0.01 

SnCl2,2H2O 0.01 

CS(NH2)2 0.12 

 

Table II.3 Experimental condition of CZTS with the variation of deposition time 

3. Copper salt concentration  

Copper concentration was varied from 0.01 to 0.03 M with fixed the other precursors 

molarities and parameters. 

precursors Molarity(M) Flow rate(ml/h)  Temperature(°C) Duration(min) 

CuCl2,2H2O 0.01-0.03  

 

10 

 

 

350 

 

 

       30 

Zn[CH₃COO]₂·2H₂O 0.01 

SnCl2,2H2O 0.01 

CS(NH2)2 0.12 

 

Table II.4 Experimental condition of CZTS films with the variation of copper salt 

concentration 

3. Effect of zinc molarities 

In this part we have studied the effect of zinc acetate salt molarities on CZTS properties, in 

which zinc molarity varied from 0.01 to 0.025 M. The experimental conditions are resumed in 

table II.5 
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precursors molarities Flow rate(ml/h) Temperature(°) Duration(min) 

CuCl2,2H2O 0.02  

 

10 

 

 

350 

 

 

30 

Zn[CH₃COO]₂·2H₂O 0.01-0.025 

SnCl2,2H2O 0.01 

CS(NH2)2 0.12 

 

Table II.5 Experimental condition of CZTS with the variation of zinc salt concentration 

Part. II :  CZTS device fabrication 

1. Effect of back contact   

CZTS/ZnS hetero-junction was realized from of a stack of layers such as: Fluorine doped tin 

oxide (FTO) which used as the front contact, ZnS as buffer layer, CZTS as the active layer, 

and three metals back contacts were tested: aluminum (Al), silver (Ag), and gold (Au). The 

experimental condition used are resumed in the previous tables and paragraphs. 

a. CZTS absorber layer: The experimental conditions for the deposition of absorber layer 

are resumed in Table II.6 

precursors molarities Flow rate(ml/h) Temperature(°C) Duration(min) 

CuCl2,2H2O 0.02  

 

10 

 

 

350 

 

 

30 

Zn[CH₃COO]₂·2H₂O 0.01 

SnCl2,2H2O 0.01 

CS(NH2)2 0.12 

 

Table II.6 The experimental condition for absorber layer deposition 

b. ZnS buffer layer  

The deposition of zinc sulfide (ZnS) buffer layer was done using spray pyrolysis technique 

with the experiment condition as resumed in Table II.7 
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precursors molarities Flow rate(ml/h) Temperature(°C) Duration(min) 

Zn[CH₃COO]₂·2H₂O 0.01 5 350 5 

CS(NH2)2 0.05 

 

Table II.7 The experimental condition for buffer layer deposition 

c. Fluorine doped tin oxide 

FTO thin film is used in this structure as the front contact and the deposition conditions are 

resumed in Table II.8 

precursors molarities Flow rate(ml/h) Temperature(°C) Duration(min) 

NH4F F/Sn=12%  

5 

 

450 

 

3 
SnCl2.2H2O 0.1 

 

Table II.8 The experimental condition for FTO layer deposition 

d. Back contact deposition (Ag, Al, and Au) 

Silver and aluminum back contact were deposited using thermal evaporation technique 

whereas gold were deposited using cathodique sputtering (Edward sputter coter S 150B) with 

a thickness about 100 nm. The final realized device is illustrated in figure II.8 

 

Figure II.8. realized CZTS/ZnS hetero-junction 
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2. Effect of i-ZnO intrinsic layer  

Same conditions are used for the deposition of CZTS, ZnS, FTO and gold(Au), the difference 

is that in this work we have added an intrinsic layer to the fabricated device which is ZnO 

intrinsic layer. 

* Deposition of zinc oxide (ZnO): for the preparation of ZnO solution we have dissolved 

0.1M of zinc acetate in 40 ml of distilled water, the solution sprayed on a heated substrate at 

350 °C and the flow rate was fixed at 5ml/h for 3 minutes of time deposition. The realized 

hetero-structure is illustrated in figure II.9 

 

Figure I.9: Realized CZTS/ZnS/(ZnO) device 

3. The effect of sulfurization temperature on CZTS/CdS solar cells performance 

In this part of work, we have studied the effect of sulfurization temperature on CZTS solar 

cell efficiency, the fabricated solar cell is formed by the multi-junction: 

ZnO:Al/ZnO/CdS/CZTS/Mo as reported in figure II.10. Molybdenum coated glass were used 

as substrate with a thickness about 1 m, then the absorber layer (CZTS) was deposited on 

Mo coated glass using ultrasonic spray pyrolysis. Mo/CZTS was annealed at different 

temperatures (450, 500, and 550°C) in H2S: Ar gas (30 sccm) gas mixture atmosphere for 30 

minutes. After annealing, 50 nm thickness of cadmium sulfide (CdS) layer was deposited onto 

CZTS using DC sputtering at 175 °C, followed by DC sputtering deposition of an intrinsic 

ZnO layer and ZnO:Al thin film as window layer with a thicknesses  of 50 nm. Finally, the 

device structure was completed by silver grids deposition on the top of the cell by thermal 

evaporation technique. 
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Figure II.10 Realized CZTS/CdS solar cell 

    II.2 Analysis techniques 

For understand the properties of the deposited CZTS thin film, characterization at both 

material and device stage are obligatory. In particular, it is essential to observe the 

compositions and elemental distribution of CZTS absorber, since it is not often 

homogeneously distributed and since these elemental distributions may affect the electrical 

characteristics of the CZTS solar cell. 

II.2.a Films Characterization 

II.2.a.1 X-Ray Diffraction (XRD) 

X-ray diffraction is a non-destructive technique that is widely used to analyze crystal structure 

of materials. When an X-ray beam strikes a crystal at an angle θ (figure II.11), constructive 

interferences and a peak in the intensity of reflection are observed if Bragg's law is verified 

and gives by the relation (II.1) 

                            2dsin(θ) = n λ                                      (II.1) 

With: n is the order of diffraction, λ is the wavelength of the X-ray beam, d is the spacing 

between consecutive parallel planes, and θ is the incident angle.                                                                                              
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Figure II.11: Illustration of X-rays diffraction on crystallographic planes 

Because the diffraction pattern of any given substance is unique to the atoms and structure of 

that substance, the angles and intensities of the diffracted X-Rays can be measured to produce 

a three-dimensional picture of the electron density within the substance. The compounds 

present within a substance can be determined by comparing its diffraction pattern to known 

diffraction patterns using JCPD cards (Joint Committee on Powder Diffraction Standards 

card). Our Measurements were made using Philips X Pert system with Cu-kα radiation of 

wavelength λ = 1.5418 Å. The diffract meter reflections were taken at room temperature and 

the 2θ values were varied from 10 to 80°. The X Ray Diffraction is a useful technique which 

provides information on: 

 The crystalline phase or phases (position of the peaks); 

 The size of the crystallites and / or the internal stress (width of the peaks at 

mid-height); 

 Orientation of the crystallites (absence or presence of reflections). 

II.2.a.2: Raman spectroscopy 

 Raman spectroscopy uses the Raman Effect to characterize the chemical composition and 

structure of materials. Raman spectroscopy is used in this work as a complementary technique 

for XRD to identify secondary phases in the CZTS compound and it is used to observe the 

vibration modes of materials. It is based on Raman scattering (inelastic scattering) of 

monochromatic light, usually from a laser in the visible, near-infrared, or near-ultraviolet 

range.  
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A. Principle of Raman spectroscopy 

When monochromatic radiation is incident upon a sample then this light will interact with the 

sample. It may be reflected, absorbed or scattered. It is the scattering of the radiation that 

occur which gives information about molecular structure, the scattering of the incident light 

has two possibilities when interact with the molecules of the material:  

 If the incident radiation is being elastically diffused without change of                                   

energy in this case, we are speaking about Rayleigh scatter.  

 If a small portion of the incident light can interact with the material. It absorbs 

(or gives) energy to photons incidents thus producing Stokes (or anti-Stokes) 

radiation (Figure II.12).  

The variation of energy observed on the photon informs us about the energy levels of rotation 

and vibration of the concerned molecule. As part of the Raman spectrometry, we are 

interested in vibration and rotation energies, very weak compared to incident photons.  

 

 

Figure II.12: Illustration of the energy-level diagram for Rayleigh scattering, 

Stokes Raman scattering, and anti -Stokes Raman scattering . 

B. Given Information by Raman spectroscopy 

The information provided by Raman spectroscopy is relatively extensive: 

 Identification of phases or chemical compounds. 

  Characterization of materials. 

  Determination of the molecular structure. 

  intermolecular interactions of the studied material 
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II.2.a.3 The UV-visible spectrophotometer 

 The optical properties of the growing thin films were analyzed by UV-Visible transmittance 

Spectroscopy by means of Shimadzu 3101PC double beam spectrophotometer in the 190-

1000 nm wavelength range for CZTS thin films. From transmittance data various parameters 

were extracted such as: the optical band gap, the refractive index and the absorption 

coefficient was also determined from transmittance data using the giving expressions:  

 The absorption coefficient (α): in the spectral region of the light’s absorption, was 

deduced from the Beer-Lambert law using the following expression [138]: 

α = - (1 / d) ln (100/T (%))                                     (II.2) 

With: α is absorption coefficient (cm-2), d is the film thickness (cm), and T is the 

transmittance. The thickness d was estimated from Hebal optic code which simulate the 

transmittance spectra of the film.  

The value of the forbidden band energy of the CZTS material was determined from 

transmittance data. Indeed, the "law" of Tauc allows to link absorption coefficient(α) and 

bandgap energy according to the formula: 

(αhν) = A (hν − Eg)n                                                            (II.3) 

  With                    A = (4πσ / n c Ec)                                             (II.4)  

While Eg is the optical energy gap of the material, n is the parameter which characterizes the 

transition process, c is the speed of light, σ is the minimum metallic conductivity 

(extrapolated dc conductivity at T=∞), Ec is a measure of the width of the tail states 

distribution and n is the refractive index. In semiconductors there exist two types of band to 

band transitions (i) allowed and (ii) forbidden (forbidden transition take into account the small 

but finite momentum of photon these transitions are less probable). The allowed transition can 

occur in all values of k but forbidden transition can only occur at k ≠ 0. n =2 and 2/3 for direct 

allowed and forbidden transitions respectively. In indirect semiconductor, a phonon is 

involved in the transition in order to conserve momentum. In the indirect transitions, n = 1/2 

and 1/3 for indirect allowed and forbidden transitions, respectively. 

Thus the plot of (αhν) 2 as a function of hν allows determining the value of Eg to the 

intersection of the tangent to the curve in its linear part and the abscissa axis as shown in the 

figure II.13 
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Figure II.13 (a) and (b) graphs represent a typical transmittance and gap energy of CZTS 

II.2.a.4 Atomic force microscopy(AFM) and scanning electronic microscopy(SEM) 

The morphological properties of CZTS thin films were studied using Atomic Force 

Microscopy, it provides a high resolution 3-D topographic profile of the surface.AFM was 

used for the measurement of film thickness, RMS roughness, and percent roughness of the 

films which calculated from the AFM software, Ambios. The morphology of the thin layers 

was observed also using scanning electron microscope (SEM). The sample is subjected to a 

bombardment of electrons emitted by a gun in a column maintained under vacuum. These so-

called "primary" electrons are focused on the surface of the sample. The electron-matter 

interaction causes the emission of secondary electrons from the surface of the sample, the 

images presented in this thesis are secondary electron images. Their emission depth is in the 

order of few tens of nanometers. The yield of secondary electrons depends on the composition 

and topography of the surface. As the analyzed layers are fine and conductive, no prior 

treatment of the samples has been performed. SEM images of CZTS films and the cross 

section of the device, have been done at the CNST@PoliMI – IIT (IIT polimi,Italy). 

II.2.a.5 Hall effect measurement 

 Hall effect phenomena was discovered in 1879 by Edwin Hall. Hall effect can be observed 

when a semiconductor device (eg. thin films: CZTS, ITO, FTO,) set into a magnetic field 

which caused by the Lorentz Force. It can be observed when the combination of a magnetic 

field through a sample and a current along the length of the sample creates an electrical 

current perpendicular to both the magnetic field and the current, which in turn creates a 

-a- -b- 
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transverse voltage that is perpendicular to both the magnetic field and the current. Hall effect 

system is generally used for determination of electrical properties of material such as: Hall 

voltage (Vh), carrier mobility, carrier concentration(n), Hall coefficient (Rh), resistivity, and 

the conductivity type (N or P).  

II.2.b. Device characterization 

II.2.b.1 Current-Voltage measurements 

The dark and illuminated current versus voltage (I-V) characteristics of a photovoltaic (PV) 

were used for the determination of the different electrical parameters of the hetero-junction 

and solar cells. The I-V characterization in the dark of the first hetero-junctions were done 

using Tektronix tracer (diodoscope) (figure II.14) whereas the power conversion of realized 

cells determined using a simulated solar cell at room temperature with an intensity equal to 

100 mW/cm2 connected with keithly as seen in figure II.15 (a-c). 

 

 

Figure II.14. Tektronics meter for the I-V measurement 

When a solar cell is illuminated under solar spectrum, additional electron-hole pairs are 

created giving rise to the so-called photogenerated current (Iph). The major parameters that 

characterize the performance of a solar cell as mentioned in chapter I are: the open circuit 

voltage (Voc), the short circuit current (Isc), power maximum (Pmax), the fill factor(FF), and 

the efficiency.  
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Figure II.15. I-V system used for solar cells efficiency measurement (Dicle University, 

Diyarbakir, Turkey) 

II.2.b.2 Conductance-Capacitance-frequency measurement 

Among other capacitance based techniques such as capacitance-voltage and deep level 

transient spectroscopy. Admittance spectroscopy is commonly used to characterize majority-

carrier trapping defects in PV materials and devices. The capacitance-conductance versus 

frequency. It is an important analysis for study the interfacial properties of devices. The 

admittance measurements were performed in a homemade cryostat in dark condition with 

temperatures ranging 298 K to 375 K, using LCR METER (type Agilent 4284A Precision 

Impedance Analyzer) and an Oxford ITC4 temperature controller. The samples to be tested 

are placed in a dark chamber connected to the LCR METER by coaxial cables (Figure II.16). 

The voltage of the Ac signal or their amplitude was about 0.3 V and the analyzed frequency 

range from 1000 KHZ to 1MHZ.This technique was already used on CZTS based hetero-

structure grown by co-evaporation methods and also on CdTe and CIGS solar cells [139.140]. 

In this technique an AC response equivalent circuit was proposed and from the resulting 

model several parameters were extracted, allowing the characterization of the CZTS/CdS 

hetero-junction, and the Mo/MoS2/CZTS back contact interfaces.Admittance spectroscopy 

analyzed or show the response of a device to small Ac bias voltage and its dependence on 

frequency and temperature which due to the capture and emission of active defect 
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Figure.II.16. Impedance meter used for C-G-f measurement  

The Admittance spectroscopy is a provable method to extract defect parameters such as 

activation energy capture, cross-section, and density of states. The frequency ɷr of the 

resonant peak (as seen in figure II.17) is expressed by the following relation [141]: 

ωr (T) = 2et(T)=A. T2 exp (-Ea/KT             (II.5) 

Where: ωr is the inflection frequency et is the emission rate of trapped charges and Ea is the 

activation energy. 

The interface state density (Nss) can be deduced from the conductance peak by using the 

following relation [142]:  

Nss =                      (II.6) 

Where q is the electronic charge and S is the diode area.  

The time constant (τ) for electrons exchange between interface states and valence band can be 

calculated using the relation τ =1/ωr [143].  
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Figure II.17. Illustration of a typical G/w and capacitance as function of pulsation of 

CZTS/ZnS hetero-junction 
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In this chapter, different experimental conditions were investigated. Four parameters were 

tested such as, substrate temperature, deposition time, copper concentration salt, and zinc 

molarities for finding the optimal condition to obtain high quality of CZTS thin films which 

are required for application in thin film solar cells. The results are presented with discussions 

in the following paragraphs.  

 

Copper chloride (CuCl2, 2H2O), zinc acetate (CH3COO)2Zn.2H2O), tin chloride (SnCl2, 

2H2O) and thiourea (CS(NH2)2) were used as precursors of Cu, Zn, Sn and S respectively. 

The deposition conditions are mentioned with details in chapter II. The effect of substrate 

temperature was investigated, it varied from 300 to 390°C with a step of 30 °C for 30 minutes 

of time deposition and with a flow rate about 10 ml/h. 

III.1.1 structural properties  

a. X Ray Diffraction 

The XRD measurements were carried out at room temperature with a diffraction angles varied 

between 10 to 80 degree. XRD patterns of different deposition temperature are regrouped in 

figure III.1. The influence of substrate (Ts) on the films can be clearly seen and suggests that 

the films structural proprieties are very influenced by this parameter. The formation of 

kesterite CZTS with tetragonal structure was confirmed according to JCPDS (# 26-0575) 

cards. The peaks position were observed at 2 = 28.6°, 32.9°, 47.5° ,and 56.5° corresponding 

to the crystal planes (112), (200),(303),and (312) respectively with a preferential orientation 

along(112) plane. We note that the same observation was obtained in [37,48]. The intensity of 

the main peak was increased with the increase of Ts. However, a similar variation was 

observed by M. Sun et al. [144]. As seen in figure III.1, as the temperature increase, the 

probability of secondary phases formation is increased. On other hand, we noted that the 

variation in substrate temperature leads to the appearance and the disappearance of some 

peaks. At lower deposited substrate temperature, we do not observe the formation of 

secondary phases. However, at Ts=330 °C we noted the appearance of ZnS phase at 31.9° 

position according to (#010677) card and no change for the other peaks. At higher substrate 

temperature (360 °C), we remark the disappearance of ZnS phase and the appearance of 

Cu7S4 phase at 43.6° (#720617), and CuS at 46.5° (#850620) which are conductive phases 

III.1 The effect of substrate temperature 
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with a decrease in the main peak intensity. While, the film deposited at 390 °C shows the best 

crystallinity of the film with a high intensity of the preferential orientation. Thereafter, we can 

conclude that the (112), (200), (303), (332), and (312) orientations emerge at low and high 

substrate temperature 
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Figure III.1: XRD patterns of CZTS thin films deposited at various Ts 

The average crystallite size (D) was calculated using Debye Scherer's formula (III.1) [145], 

 




cos).2(


K
D                            (III.1) 

with: 

D: is the average size of crystallites. 

λ: Wavelength of X-rays. 

Δ (2θ) = β:  the full width at half the maximum (FWHM) in radians of the X-ray diffraction 

peak. 

K: crystallite shape factor a good approximation is 0.9. 

The distances are expressed in (Å) and the angles in radian. 

Lattice strain was calculated from deformation formula, the deformation "ε" is linearly 

proportional to the strain as seen equation (III.2) [ 146]: 



 C(III.2) 


Each component of the homogeneous deformation εij is related to the component σij by the 

linear relation (equation III.2). Since the values of these constants are not always available in 
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the literature (Cij off CZTS), other approaches have been used to estimate the strain of the 

film, as the ratio of the deformation ε = Δd / d0.

Knowing that (Δd) is the offset of the inter plane with respect to its initial value (d0) in the 

case of a monocrysalline. This difference is estimated from the position of the diffraction 

peak. The average  microstrain was calculated using the following expression (eqt.III.3) [147] 

                                                =
 𝑐𝑜𝑠

4
                                    (III.3) 

The calculated values of strain (), crystallites size (D) and FWHM are resumed in table III.1. 

As seen, when the substrate temperature increases the crystallites size increase and became 

larger which is an advantage for photovoltaic application, by reducing the recombination rate 

as well as the reduction of grain boundaries [148]. The increase of crystallites size with 

substrate temperature was observed also in [149-150]. It is generally accepted that the 

increase in substrate temperature is always accompanied by an increase in the crystallites size. 

However, during the growth of the films under a high substrate temperature, the species in 

growth have greater surface mobility which gives them the opportunity to form 

agglomerations of crystallites of large sizes. The diminution of crystallites size for the film 

grown at 330°C may be due to the presence of disorder in the film network. 

 

 

 

 

 

Table III.1: FWHM, crystallite size and lattice strain of CZTS with different growth 

temperature 

In figure III.2, we have illustrated the variation of strain and crystallites size with the variation 

of growing temperature. we can observe clearly the correlate between crystallites size and 

lattice strain, the increase of the last one is lead to a decrease in crystallites size, we can 

conclude that the crystallites size is controlled by the presence of strain in film network. 

 

 

Ts(°C) 300 330 360 390 

FWHM [°2TH.] 0.165 0.259 0.165 0.1 36 

Crystallite size(nm) 51 33 54 60 

Strain() 0.0028 0.0044 0.0025 0.0020 
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Figure III.2: variation of strain and crystallites size as function of substrate temperature 

Figure III.3 (a, b), shows the XRD shifted of the preferential peak of CZTS thin film as 

function of substrate temperature and the shifted of peak position due to lattice strain. We can 

see evidently the shifted of the preferential peak towards the higher angles, the shifted of 

XRD peaks with the variation of substrate temperature was seen in various works as reported 

in [151], the shift is due to the variation of the intercross distance d which shifted the position 

of the peaks. 

. 

Figure III.3: (a) XRD shift of the preferential peak of CZTS as function of Ts.(b): Shift of 

the peak 

 

 

 



Chapter III Films results and discussions 

 
 55 

b. Raman analysis 

Figure III.4 depicted the Raman spectra of CZTS thin film elaborated at a different 

temperature,Raman shows the vibration mode and provide the confirmation of CZTS phase 

formation. Two Raman position peaks at 335 and 373 cm-1 were observed and associated both 

to CZTS phase,the position of the  peaks are in agreement with the reported ones cited in  [58] 

which confirms the presence of a single phase CZTS with tetragonal structure. The Raman 

peak position at 473 cm-1 is attributed to CuxS phase. However, an identical peak was cited 

by Fernandez et al. and Wang et al. [58.152]. This peak appears at a low and high temperature 

only whereas the films deposited at Ts=360 and 330 °C show pure CZTS phase.  

The insert graph in figure III.4 shows the shifted of Raman peaks as function of substrate 

temperature as we have seen in the case of XRD. It’s evident that, as the temperature increase 

the shifted of the position toward high wavelength number is occurred. This shift may due to 

the apparition of CuxS film at 300 °C then it was hidden at 330 and 360 °C. While, this phase 

was appeared again at high temperature (390 °C). 
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Figure III.4: Micro Raman spectra of CZTS thin films deposited with various substrate 

temperatures. 

 Figure III.5 regrouped Raman and XRD shift value of the main peak with network strain as 

function of substrate temperature. As seen in the figure the shift of Raman and XRD have 

same trend, as the substrate temperature increase the shift of Raman toward the high 

wavelength number occurs and the shift XRD toward high angle was observed also. 

Nevertheless, the structural properties of CZTS thin film are affected by substrate temperature 
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and we can say that XRD and Raman peaks position are controlled by the presence of micro 

strain in film network.  
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Figure III.5: lattice strain variation with: (a) Raman shifted and (b) XRD peak position shift 

of CZTS thin film as function of Ts. 

III.2. Morphological analysis 

Surface morphology and roughness were carried out using Atomic Force Microscopy (AFM). 

The AFM images (figure III.6.a-d) show that films morphology changes with deposition temperature. 

The variation of the surface roughness is estimated from the 3D AFM images which are reported in 

figure III.6.(a-d), the size of the scanned area was (2x2) μm2. With increasing the growing 

temperature, CZTS thin films became rougher. Regardless, we can remark with the increase of 

substrate temperature, the surface roughness has increased with increasing the substrate temperature 

from 330 to 360 °C then the roughness increase by a factor of (2) for the film grown at 390 °C from 48 

nm to 99 nm.  The obtained results are in agreement with the results recorded by Kamoun et al [150], 

they reported a roughness value varied from 76 nm to 202 nm with increasing of substrate 

temperature. Thus, they explained the obtained results by the agglomeration at higher temperatures of 

the micro-crystallites observed at lower temperatures. 
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                                     -a- 

 

-b- 

-c- 

 

-d- 

 

Figure III.6: a-d ,3D AFM image of CZTS thin film deposited at various Ts(300-390°C) 

III.3. Optical properties 

a. Transmittance 

The transmittance spectra of sprayed CZTS thin films have been measured using UV-Vis 

spectrometer are shown in Figure III.7.  
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Figure III.7: Transmittance spectra of CZTS thin film deposited at various Ts 
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The shape of transmission spectra of CZTS thin films deposited at various substrate 

temperatures is the same; we can distinguish two distinct domains of transmission according 

to the wavelength: 

 A range of transparency located between 500 and 900 nm (visible range), the 

transmission decreases sharply and tends to values between 12 and 5% for the values 

of lambda higher than 500 nm.  

  Then, the transmittance decrease rapidly and reach a value less than 1%. for the value 

of lambda less than 500 nm (<500 nm) 

 The decrease of transmittance with the increase of growing temperature can be due to 

the increase of film thickness. The same variation was observed in several works 

[149.150]  

b. Absorption 

In figure III.8 we have reported the variation of absorption coefficient (α) as function of the 

wavelength.  
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Figure III.8: Absorption coefficient (α) of CZTS films grown at various Ts 

It can be seen that all the films have relatively high absorption coefficients with a value 

highest than 104cm-1 in the visible range of the wavelength. The calculated absorption 
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coefficient is in agreement with the theoretical value and the experimental ones as reported in 

[37,48], which indicates the increase of the probability of the occurrence of direct transitions. 

It is also noted that the absorption coefficient increases with growing substrate temperature, 

film shows the highest absorption which can be attributed to the stoichiometry and the 

thickness of the elaborated film. 

However, the films deposited at 390 °C show the highest absorption coefficient about 8x104 

cm-1. The optimal optical proprieties of deposited CZTS films revealed that are strong 

candidate as a new absorber layer in thin film photovoltaic solar cells.  

c. Band gap energy 

Gaps energies were deduced from transmission data by using Tauc’s formula for direct band 

gap semiconductors (III.4) [20]: 

(αhυ) 2 = B (Eg-hυ)         (III.4) 

where α is a absorption coefficient, B is a constant, h is Planck constant, Eg is the band gap 

energy, and  h is the incident photon energy. 

The optical band gap (Eg) of CZTS films is deduced from the plot of (h) 2 vs. h, by 

extrapolation the straight line part of the graph (h=0) as seen in figure III.10. The direct band 

gap energy for CZTS thin films was determined and their variation is showing in the insert 

figure of figure III.9.  
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Figure III.9: Gap energy determination of CZTS thin film deposited at various Ts 

From the graph, the band gap is found to decrease from 1.6 to 1.38 eV as the substrate 

temperature increase that can explain by the increase of the thickness of films. However, 
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Kahraman et al. [153] and Touati et al. [154] had reported the same behavior of the gap 

energy of CZTS with the variation of deposited temperature. The extracted value of CZTS 

gap energy is near to the theoretical value of 1.5 eV [149] and the reported values using 

experimental work as cited by Sheng et al. [155]. Shined et al. [156] has reported that the 

change of the gap energy with the temperature can be due to a change in homogeneity and 

crystallinity of the films. The change in thickness is as a result of a change in particle sizes 

resulting in a change in band gap as cited by Lydia and Reddy [157]. The band gaps of our 

films are quite close to the optimum band gap energy required for a solar cell, indicating that 

CZTS thin film is very promising material for thin film solar cell applications. 

III.4 Electrical properties 

The electrical parameters such as: conductivity, carrier concentration, and hole mobility were 

measured by Hall effect in the dark and at room temperature, the whole deposited films 

indicate that’s CZTS compound is a p-type semiconductor, the conductivity of the films was 

increase with the increase of deposited temperature, the value of the films conductivity is 

higher than 100 (cm.)-1 and it can be due to Cu rich composition as reported by Tanaka et 

al.[71], whereas the carrier concentration was varied from 1016 to 1018cm-3, which is in 

agreement with reported value by Fernandez et al. [68]. Own films characterized by a high 

mobility compared to the cited one in [72]. The high mobility can refer to the presence of CuS 

and Cu7S4 phases in the film which are characterized by a high conductivity and large 

crystallites size. The conductivity (σ), carrier concentration(ρ), and Hall mobility (µ) values 

are regrouped in table III.2 

Ts(°C) ρ/cm3 µ (cm2/vs) σ(cm.)-1 

300 1.26  10 18 7.8  10 2 1.5 10 2 

330 8.85  10 16 2.75  10 3 3.9 

360 2.59  10 16 7.09  10 2 2.94 

390 2.35  10 16 1.57 1.8 

 

Table III.2: The Conductivity, carrier concentration and Hall mobility as function of growing 

temperature of CZTS films 



Chapter III Films results and discussions 

 
 61 

 Figure III.10 reported the variation of the measured electrical parameters of CZTS thin films, 

as seen the carrier concentration and the conductivity follow faithfully the trend of the strain, 

it’s clearly that the conductivity is controlled by the number of free carriers in the bulk, and 

both parameters decrease with the increase of Ts which can due to the apparition of secondary 

phases in the film, whereas the mobility increases and reaches a highest value equal to 2.102 

cm2/Vs then decreases with the substrate temperature until 1.57 cm2/Vs at 390 °C. 
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Figure III.10: Carrier concentration and (a) mobility :(b) the conductivity as function of 

substrate temperature 

 

The effect of deposition time on CZTS thin films properties was studied in the following 

paragraphs. Deposition time was varied from 15 to 45 minutes without change on the other 

experimental conditions. 

III 2.1 structural properties 

a. X Ray Diffraction 

In figure III.11, XRD diffraction patterns of CZTS films elaborated with different deposition 

time are regrouped. We can clearly observe the reliance of the structural properties with 

III.2 Deposition time effect 
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deposition time. The whole prepared films show a dominate peak with strong orientation 

along (112) plane situated at 2 theta equal to 28.6 ° and two other small peaks associated to 

(200) and (312) planes which are all related to kesterite CZTS films and suggested that our 

films are polycrystalline. The prepared films have indeed tetragonal structure according to 

(#26-0575) card.  
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Figure III.11: XRD patterns of CZTS thin film deposited at various Deposition time 

 

With further increasing deposition time, the peak related to the plane (112) became more intense. 

When, the deposition time increase, we observed the emergence of zinc sulfide (ZnS) phase 

along (203) and (110) planes according to (#010677) card which is appeared in the film 

growing for 45 minute, knowing that the energy formation of ZnS phase is about -1.9 eV 

which is relatively high, that’s why this phase need more time to be formed, whereas CuS 

secondary phases has grown along (119), (108), and (110) planes according to 

(PDF#850620). Therefore, CuS thin film characterized by a low formation energy as equal as 

to -0.51 eV, CuS phase has appeared in the whole prepared films with an important intensity 

along (110) plane. While, the quaternary compound CZTS material has the higher formation 

energy with a value about -4.59 eV [158], meaningful that as the constituent elements in the 

compounds increases their formation energy increase and as results the possibility of the 

formation of this phase became hard. Further, CuS secondary phases generally appears during 
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the growing of CZTS thin films and generally refer to Cu rich condition as reported by 

Tanaka et al. [71], the intensity of CuS phase along (110) plane increase with the increase of 

deposition time. We can conclude that the film deposited for 30 minute presented the better 

structural properties with lower number of secondary phases. 

b. Raman analysis  

Raman spectroscopy conducted to distinguish the secondary phases which are not detected 

using X Ray Diffraction. Figure III.12 regrouped the Micro-Raman spectra of CZTS films 

coated on glass substrate for different deposition duration such as 15, 30, and 45 minutes.  
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Figure III.12: The Raman spectra of CZTS elaborated at various deposition times. 

The Raman spectrum of the whole films are characterized by a strong peak position located at 

335 cm-1 which confirmed the formation of CZTS films with tetragonal structure according to 

a variety of work reported in [57-58]. While, the additional peak at 472 cm-1 is attributed to 

the Cu2S binary phase, the same results were reported in [58,152]. The formation of cupric 

sulfide secondary phase is due to the excess of copper in the starting solution by comparison 

to zinc, no ternary phase such as Cu2SnS3 (318 cm-1) which reported by Fernandes et al [61] 

was detected in our films. The intensity of the main peak decreases with the increases of 

deposition time which can due to the apparition of Cu2S secondary phase.  

III.2.2 Morphological properties 

The morphology of the films (CZTS) was analyzed by Scanning Electron Microscopy (SEM). 

SEM imaging makes it possible to study the morphology of the studied materials surface. 
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Figure III.13 shows SEM images of CZTS layers deposited on glass at various deposition 

times.  

  

  

  

Figure III.13:  a, b, and c, SEM images of CZTS thin film deposited at 15 min ,30 min, and 

45 min. 

From these images, it is obvious that the increase in the deposition time leads to a quiet 

change of the morphology and the structure of the films.  We noticed that the surface of the 

layer is regular with a low roughness. It is also clear that the size of the grains is very small. 

According to the figure, it is clear that the films has a non-uniform distribution of 

-a- 

-b- 

-c- 
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agglomerated particles with well-defined limits. We can see also the appearance of large flat 

grains (lamella). From this study it can be concluded that the morphology of CZTS thin film 

surface is highly dependent on deposition time. 

III.2.2. Optical properties 

a. Transmittance 

Figure III.14 shows the transmittance spectra of CZTS thin film deposited at various 

deposition time in UV-Vis range, the films transparency decrease from 80 to 10% with 

increasing of deposition time for the wavelength over 600 nm, then the transmittance decrease 

rapidly for the wavelength lower than 600 nm and reached value less than 10 % for the whole 

films. However, the transmission can express as 𝑒−𝛼𝑑 with d is the thickness and α is 

absorption coefficient. Hence, the decrease of transmittance values with the increase of 

deposition time is referring to the increase of film thickness.  
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Figure III.14 Transmittance spectra of CZTS films deposited at various deposition times 

b. Absorption 

Figure.III.15 displays the variation of the absorption coefficient as function of wavelength, it 

evident from absorption spectra that CZTS material is a good absorber of light radiation for 

application in solar cells, thus as seen in figure III.15, the absorption coefficient of the whole 

deposited films is higher than 104 cm-1. The obtained values of CZTS absorption coefficient 

are in agreement with the reported values by several authors [37-48]. Knowing that, an 

increase in deposition time allows more materials to be deposited onto substrates as well as 
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thicker films will be formed and as result the increase of absorption coefficient. The high 

absorption of our films is one of required properties for the use of this material as an absorber 

layer in thin film solar cells. 
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Figure III.15: Absorption coefficient of CZTS films deposited at various deposition times 

as function of lambda 

c. Band gap energy 

Fig III.16.Presents the variation of (h) 2as function of deposition time. As can be seen from 

the figure, the gap energy varied slightly with deposition time, it decreases with the increases 

of substrate temperature from 1.6 to 1.3 eV.  
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Figure III.16 : (h) 2vs.h variation as function of deposition time 
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The variation of the gap energy of the film is referring to variation of film composition with 

the increase of deposition time. The reduction of the band gap energy for the film deposited 

for 45 min may due to the presence of CuS secondary phase which have low band gap energy. 

The extrapolated optical band gap values are in suitable rang for photovoltaic application. 

 III.2.3 Electrical properties 

The electrical properties of CZTS thin film were studied using Hall effect in the dark and at 

room temperature with a current equal to 0.1 A. The whole samples show p-type 

conductivity according to positive sign of Hall coefficient. The conductivity (σ), mobility (µ), 

and holes concentration (ρ) are resumed in Table III.3, It is well known that the conductivity 

is related strongly to the composition of the film.  

 

Dt(min) 

 

ρ/cm-3 

 

µ(cm2/vs) 

 

σ (cm.)-1 

15 5.10 18 9.18 7.3 

30 1.6 10 18 2.3 102 6.4 

45 1.49 10 18 5.2 10 2 1.24 102 

 

Table III.3: Electrical parameters of CZTS thin film with different deposition time. 

The CuZn intrinsic defect is the responsible one of the p-type conductivity of kesterite which 

due to their lower formation energy compared to the others intrinsic defects such as VCu,Vs, 

ZnCu ,SnCu ,…etc. The increase of the conductivity with deposition time can be explained by the 

filmcomposition variation in one hand and to the surface roughness increase in the other hand. 

Fig III.17 shows the variation of both carrier concentration and mobility as function of growth 

duration, the carrier concentration values are in the order of 1018 cm-3 which is in accord with 

the reported values by Lui et al [69] and Fernandes et al [68].   
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Figure III.17: The variation of carrier concentration and mobility as function of deposition 

time 

Holes nobilities of CZTS varied from 9 to 520 cm2/VS for the film deposited at 45 minutes 

whereas the film deposited for at 15 minutes shows an optimal value of mobility which 

reported generally for CZTS film [72], we know that the mobility of free carriers in film 

network is controlled by the number of carriers and the grain size of the film. The films 

deposited at 30 and 45 minutes show high value of mobility which can refer to the presence of 

CuS conductive phase which characterized by large crystallites size. Further, the mobility of 

free carriers increases with the decrease of carrier concentration and the increase of the 

conductivity for the samples deposited for 45 minutes, since the film conductivity was always 

found to be higher than the typical values reported in the literature, this increase can refer to 

presence of conductive secondary phases such as CuS and to the Cu rich: Zn poor condition. 

III.3 Copper concentration effect 

In this part, we have studied and discussed the results obtained in the study of copper salt 

concentration effect on the structural, optical, and electrical properties of CZTS thin films. 

The samples are denoted as (C1, C2, C3 and C4) corresponding to the preparation molarities 

0.01, 0.15, 0.02 and 0.25 M respectively. 
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III.3.1 Structural properties 

 The XRD diffraction patterns of CZTS thin films prepared with different copper 

concentration salt are shown in Figure III.18, the dependence of the structural properties on 

copper salt concentration is observed clearly from the evolution of phases with copper 

molarity. The intense peak position at 2theta=28.6 ° along (112) plan confirmed the phase 

formation of kesterite CZTS according to (JCPDS 26-0575) card with the apparition of other 

peaks associated to CZTS with lower intensity at (200) and (312) planes.  
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Figure.III.18. XRD patterns of CZTS thin film with various copper 

concentrations 

As seen in figure III.18, as the copper molarities increase the intensity of the preferential 

orientation along (112) increase, the same results were observed by Mkawi et al. [159]. 

Furthermore, as the copper molarity increase the emergence of secondary phases increase, 

such as CuS (PDF#850620), Cu2S (PDF#722276), Sn2S3 (PDF#301378) Cu4SnS3 

(PDF#7290584) and annilite phase Cu7S4 (PDF#720617) the same secondary phases was 

reported by Mbhosel et al. [130]. The presence of the CuS (or Cu2S) and annilite phase Cu7S4 

in CZTS thin film is likely to be related with the Cu-rich condition in CZTS as reported by 

Lin Sun et al. [160]. Mkawi et al.observed the effect of copper concentration on the properties 

of CZTS films deposited by electrochemical method and found that the formation of such 
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undesired secondary compounds is due to incomplete conversion of sulfides [159]. The 

presence of  

Cu2-xS phases is very detrimental to the performance of the absorber layer and especially the 

solar cell performance, since they are degenerate semiconductors, but they may be removed 

by chemical etching in aqueous cyanide. 

The crystallites sizes (D) were calculated from XRD data using (III.1) formula, while  the 

average lattice microstrain was calculated using (III.3) formula ,the calculated values are 

resumed in Table III.4. 

  
Crystallite size(nm) 

 
Strain 

C1 33.48 0.0044 

C2 83.74 0.0018 

C3 83.76 0.0017 

C4 51 0.0028 

 
Table III.4. Crystallites size and strain of CZTS thin films as function of copper salt 

concentration 

From table III.4, we can see that as the copper concentration increase the crystallite size 

increase and reach a maximum value of 83.76 nm then it decreases for the sample C4 which 

refer to apparition of many secondary phases. The sample C3 with 0.02 M of copper salt 

shows the best crystallinity of the film, it can be seen that the increase of copper molarity 

enhances the structural properties by increasing crystallites size but for a certain value 

undesirable conductive phase will appear such as Cu-S and Cu-Sn-S phases which have 

negative effect on the film properties and on solar cell performance which will create shunting 

paths through the solar cell or the absorber layer. Camara et al. [161] have synthesized CZTS 

nano-particles with different copper concentration and the best result were found for the one 

with Cu rich condition but for a high value of copper concentration the film became 

amorphous and the structure of the film was degraded. M.Bhosele et al. [130] was studied the 

effect of copper concentration on CZTS solar cells and reveal that the efficiency increase with 

the increase of copper salt. Thus, the enrichment of the Cu concentration leads to formation of 

faster crystal growth and enhance the density of nucleation for a single crystal as result the 

increase in film thicknesses 
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Figure III.19.a, illustrate the shifted of the preferential peak position with the increase of 

copper concentration, as seen, as the copper concentration increase the shifted of (112) peak 

position increase toward the high angles because of the formation of secondary phases and the 

presence of internal lattice strain in the films. While, figure III.19.b displays the variation of 

both XRD shift and lattice strain as function of copper concentration. 
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(a)                                                                         (b) 

Figure III 19: (a) The variation of (112) peak position in XRD pattern of CZTS films as a 

function of Cu molarity and ( b) their variation with lattice strain. 

As seen in figure III.19.b, the sample C1 show the high strain value, which are probably a 

result of the Cu poor composition of the layer and it is associated to the presence of a 

disordered kesterite phase in the film [162]. Then lattice strain decrease steeply for the sample 

C2. After that, the strain increase slightly for the sample C3 with a strain value equal to 

0.0017. The sample C4 show the lower values of XRD shift and a considerable value of 

lattice strain. Hence, lattice strain in film network is related to crystallites size and the 

disorder in film network. The sample C3 and C2 have the large crystallites size and lower 

strain values whereas samples C1 and C4 show the worst crystallographic properties. The 

increase of copper concentration lead to the appeared of many secondary phase as seen in 

XRD pattern of C4 sample. Further, in quaternary compound the composition of the film 

plays an important role and affect strongly on the film properties. Hence, we can conclude 

that the choice of a moderate copper concentration is important for gotten good properties of 

CZTS thin film which are required to enhance CZTS solar cell’s efficiencies. 
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III.4.3 Optical properties 

a. Transmittance 

Figure.III.20. Shows the transmittance spectra of CZTS thin films with varied copper 

molarities in UV-Visible range wavelength (200-1000 nm), the whole films exhibit a low 

transmittance in the UV-visible range (less than18 %) for the high wavelength and less than 4 

% for the range of lambda lower than 600 nm which is decrease with the increase of copper 

content and as consequence the increase of film thickness.  
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Figure III.20: Transmittance spectra of CZTS thin with different copper concentration. 

The films are characterized by high absorption coefficient more than 104 cm-1 and near 105 

cm-1 for the film with high copper concentration which is in agreement with the reported work 

in [37, 48]. We can resume that the molarity of copper salt affect strongly on the optical 

properties of CZTS and especially in the transparency of the film, the film deposited with a 

copper concentration equal to 0.025 M show a value about 0 % of transparency. 

b. Band gap energy 

The optical band gaps of CZTS thin films have been determined, as shown in Figure.III.21, 

from the fitting of transmission data, the extracted of gap energy has been done using Tauc’s 

formula for direct band gap semiconductors (III.4). The obtained values of the optical band 

gap energy were found equal to 1.9, 1.7, 1.5 and 1.2eV when the copper concentration equal 

to: 0.01,0.015,0.02, and 0.025 M. 
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Figure III. 21: Tauc’s plot of CZTS thin film with different copper molarities 

The decrease in the band gap energy with the increase of copper concentration may refer to 

many reasons: the increase of films thickness, increase in the crystallinity (table.III.4) and 

also apparition of secondary phase (CuS) which has narrow ban gap energy. It should be 

noted that the disorder between Cu and Zn cations is occurs generally in CZTS network with 

the variation of the film compositions which affect the band gap energy as cited by Scragg et 

al [163]. The moderate gap’s values are required for a good absorber layer and match well 

with solar spectrum and specially the sample contain 0.02 M of copper salt. 

III.3.3. Electrical properties 

The electrical conductivity, hole concentration and mobility were measured using Hall Effect 

measurement. The p-type conductivity of CZTS thin film is confirmed from the positive signe 

of hall coefficient. Table.III.5 resumed the obtained values for CZTS thin film with different 

copper concentration. As can be observed the electrical properties is largely sensitive to 

copper salt concentration. It has to be pointed out that the excess of Cu in the film favorite the 

formation of different defects and especially Cuzn and Vcu intrinsic acceptor defects. As 

seen, as copper molarity increase the conductivity increased from 180 to 400 (Ω .cm)-1, the 

conductivity of our films is higher than the reported values in [70,77]. The high values of the 

conductivity can refer to the Cu rich condition, the high concentration of holes in film 

network and the presence of CuS conductive phase as cited by tanaka et al. [71], whereas the 

carrier concentration varied in the range 1020-1021Cm-3 which as higher than the reported 

value which are in the range 1016-1018 cm-3. [ 67-69]. 
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Table III.5: Carrier concentration, mobility and conductivity of CZTS thin film. 

Figure III.22.a reported the variation of the carrier concentration and mobility as function of 

copper molarities, these two parameters are varied in contracted way.  

 

Figure III.22. (a, b) Variation of carrier concentration and conductivity with mobility as 

function of copper concentration 

 

As the carrier concentration augment, the mobility increases which due to the high number of 

free carriers which limit their movement in the film network. Whereas in figure. III.22.b we 

have reported the variation of both conductivity and carrier concentration as function of 

copper concentration. In chalcopyrite thin films, it is generally observed that conductivity of 

films can be improved by increasing the concentration of copper. We speculate with 

increasing Cu concentration in the starting solution the number of CuZn defect increase which 

 
ρ(Cm-3) µ(cm2/v.s) σ (Ω .cm)-1 

C1 1.22 1020 9.4 1.8 102 

C2 1.6 10 21 0.53 1.9 102 

C3 1.1021 0.8 2.102 

C4 9.94 10 20 2.67 4. 102 
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caused the increase of free carriers as seen in Table III.5. It’s evident that the conductivity 

increase with the increase of free carrier’s mobility. 

 

 

Kesterite thin films with different zinc content have been prepared by varying the zinc acetate 

molarity as discussed in chapter II. Films are noted CZTS1, CZTS2, and CZTS3 for zinc 

concentration values 0.01, 0.015, and to 0.025 M. Their related results with discussions are 

presented in the following paragraphs 

III.4.1Structural properties 

 X-Ray Diffraction 

The XRD patterns of CZTS thin films obtained at different zinc concentration are shown in 

figure.III.23 the diffraction angles varied from 20 to 80 °.  
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Figure III.23: XRD patterns of CZTS thin films prepared under different zinc salt 

concentration 

Actually, it is well known that it is hard to clearly detect secondary phases [164,165]. Due to 

the negative influence of secondary phases on CZTS based solar cell performances, one of the 

III.4 Zinc molarity effect 
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major challenges for these solar cells is the growth of single phase material. In the case of 

films prepared at low Zn concentration, no secondary phases were detected, while, as the zinc 

acetate concentration in the solution increases the tendency of undesired phases formation 

increases. CuS is the first formed secondary phase (according to (JCPDS-85-0620).  CuS 

phase formation in this sample is due to the fact that the film is prepared in Cu rich condition 

since the Zn source precursor molarity is lower than Cu one. While, with Zn molarity 

increase, ZnS phase (JCPDS-01-0677) is formed in the detriment of CuS one. The same 

observation of the effect of Zn in the composition of CZTS thin films prepared by sequential 

reactive sputtering have been outlined by Sing et al [166] with varying the Zn thickness layer, 

at low Zn content, secondary CuS is formed, while with increasing Zn concentration the ZnS 

phase appears then. 

 In a theoretical calculation of the defect formation and stochiometry of CZTS thin films, 

Chen et al. [63] have climbed that chemical-potential control is very important in growing 

good-quality crystals with no secondary phase formation and low-defect density. The 

chemical-potential control is very important for growing good-quality Cu2ZnSnS4 crystals. In 

particular, due to the strong binding between Zn and S, Zn content control should be taken 

very carefully. Thus, perfect Cu2ZnSnS4 crystals are thermodynamically unstable when Zn is 

rich. It is experimentally observed that under Cu poor and Zn-rich conditions, the secondary 

phase segregation of ZnS may occurs [118, 167]. Actually, CZTS thin films deposition is 

usually accompanied by secondary phase formation. The most formed one is CuS due to its 

low formation enthalpy -0, 45 eV. However, due to its larger formation enthalpy -1.47 eV, 

ZnS is inevitably formed in high Zn rich condition. This explains the formation of ZnS with 

increasing Zn concentration in the solution. Berg et al [168] have proved that the presence of 

ZnS secondary phase in CZTS thin films causes the (112) peak position shift towards the 

higher angles. This is consistent with observed peak shift as depicted in figure III.24.  
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Figure III.24 The shift of (112) peak position as function of Zn concentration 

As seen the peak (112) position is shifted with increasing Zn concentration due to the 

formation of ZnS phase.   

The crystallites sizes (D) were deduced from XRD data using III.1 formula. The values of 

FWHM and the determinate crystallites size are resumed in Table III.6.  

 

 

Sample CZTS1 CZTS2 CZTS3 

Zinc concentration 0.01 0.015 0.025 

FWHM (2 °) 0.2303 0.2326 0.2814 

Crystallite size(nm) 29.23 35.46 133.51 

 

Table III.6: The FWHM values of (112) orientation and crystallites size of the CZTS thin 

films obtained at different zinc concentrations. 

The crystallites size of the film increases from 28 to 133 nm with increasing zinc 

concentration in the starting solution. Thereafter, increasing zinc salt concentration improves 

the crystallite size of CZTS thin film. This could be due to the formation of ZnS phase with 
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increasing Zn salt in the starting solution. The same conclusion has been reported by Berg et 

al in a study of detection limit of secondary phase in CZTS thin films [168] and they 

concluded that increasing Zn composition in the starting solution used for CZTS deposition 

by electro-deposition technique enlarges enormously the crystallite size. Singh et al [164] 

have prepared CZTS by sequential sputtering of metallic targets they investigated Zn 

influence and concluded that sample with higher Zn content have better crystallinity. 

III.4.2 Morphological properties  

AFM measurement are performed at room temperature, AFM 3-dimensional micrographs 

obtained in different films are depicted in (figure.III.25).  

 
(a) 

 
(b) 

 
 

(c) 

 

Figure III.25:3D AFM images of CZTS thin films deposited with various zinc salt 

concentrations. 

The films are dense and continuous; the surface is well covered with a relatively large grains 

and pinholes free. The surface films roughness increases with zinc concentration, the 

roughness values are resumed in table.III.7  

As can be deduced from table III.7, film crystallites size is larger in films prepared with 

higher zinc molarity, this is in good agreement with the crystallites size enlargement deduced 

from DRX measurement.  

 

 

 

 

 

Table III.7.RMS values of CZTS thin films deposited with various zinc concentration 

Figure III.26. Shows the variations of both crystallites size and surface roughness as function 

of zinc salt concentration, we observed clearly the dependence between these two parameters 

Zinc concentration RMS(nm) 

CZTS1 

CZTS2 

CZTS3 

146.36 

215.95 

248.50 
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as the crystallites size increase the surface of the films became rough which can refer to the 

apparition of multiple sites of nucleation in CZTS thin films.  
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Figure III.26: Crystallites size and roughness as function of zinc concentration 

III.3.4. Optical properties 

a. Transmittance 

The transmission spectra of sprayed CZTS films deposited at different zinc concentrations 

were investigated using UV-Visible spectrophotometer in spectral range of (400-900) nm. 

The variation of the transmittance as function of wavelength is depicted in figure III.27.  
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FigureIII.27: Transmittance spectra of CZTS thin film with the variation of zinc salt molarity 
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As can be seen, the whole films have very low transmission coefficient (<2%), consequently, 

with an absorption coefficient larger than 104 cm-1, which is in agreement with those reported 

in literature [167,42]. This large absorption coefficient is highly recommended for application 

as absorber layer in thin films solar cells. The concentration of zinc acetate reduces films 

transmittance; this is due to the increase in film thickness. 

b. Band gap energy 

The band gaps energy (Eg) of CZTS films were estimated from the analysis of the optical 

transmission using tauc’s formula (III.4). As explained earlier, the band gap energy is 

determined from the variation of (h)2Vs (h).  Eg is determined by extrapolating the linear 

portion of the spectrum to h = 0, as shown in figure III.28. The obtained energy gap values 

are in the range of 1.3 to 1.37 eV which are in good concordance with the reported gap values 

of CZTS [81]. The gap energy decreases slightly with zinc concentration. The same behavior 

of optical band enlargement has been reported by Malbera et al [40] with increasing tin 

concentration and Zn concentration [164]. 
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Figure III.28: Tauc’s plot of CZTS films elaborated with various zinc salt molarities 

From ab initio calculations Chen et al. [170,171] has climbed that a reduction in Zn or Sn 

content introduces a large density of acceptor defects such as Vzn, Cuzn, VSn, CuSn, and ZnSn 

anti-sites. These defects may create shallow acceptor levels responsible for the change in 

material absorption edge and optical band gap shrinking. This variation can be also explained 

in term of the disorder as depicted in the drawing insert in figure III.29. While, the optical gap 
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broadening of sample (CZTS3) can be related to the apparition of ZnS secondary phase as 

suggested from XRD analysis. It is well argued [164,172] that ZnS secondary phase is 

responsible for optical band gap enlargement.  

c. Urbach energy 

The disorder in the film network is described by the band tail width which is called       

Urbach tail and expressed as [173]. 

𝜶 = 𝜶₀𝒆𝒙𝒑 (
𝒉𝝂

𝑬𝒖
)                          (III.4) 

Where α0 is the pre-exponential factor, hν the photon energy and Eu is the Urbach tail 

The Urbach tail (Eu ) can be estimated from the inverse slope of the linear plot of ln() versus 

photons energyThe both energy gap and Urbach tail as function of photon energy are plotted 

in figure III.29. From the graphs we can see that the variation is in contradiction and here we 

can say the disorder in the film network affect strongly the optical band gap energy. 
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Figure III.29: Band tails width and gap energy variation as function of zinc molarity 

III.4.3 Electrical properties 

The electrical properties of sprayed CZTS thin films are performed by Hall Effect at room 

temperature, the carrier concentration, hall mobility and electrical conductivity values are 

reported in Table III.8  
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Table III.8. Electrical parameters of CZTS thin films at different zinc concentration 

The whole prepared films have p-type conductivity according to Hall constant sign. Several 

authors found the same order of conductivity in CZTS thin films [174, 175]. In figure.III.30: 

we have presented the variation of both carrier concentration and conductivity as function of 

zinc molarities. As well known that, the conductivity variation is controlled by the free carrier 

concentration.  
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Figure III.30. Conductivity and carrier concentration of CZTS film as function of zinc salt 

concentration 

The carrier concentration decreases with Zn molarity, this can be due to reduction of acceptor 

defects responsible for free carrier p type carriers. It is well known that intrinsic point defects 

in CZTS play a major role and may control CZTS electrical properties. Several authors have 

calculated the formation energies of defects in CZTS, based on first-principle theory [122,63-

65,171,42,176-177]. It has been climbed that copper vacancies (VCu) and CuZn can be easily 

formed and are the dominant acceptor defects in CZTS material [65,171,176-177]. They form 

shallow acceptor levels in CZTS lead to p-doping. Thereafter, we speculate that with 

increasing Zn concentration in the starting solution the CuZn defect is reduced causing the 

Carrier concentration (cm-3) Conductivity (×cm)-1 

CZTS1 

CZTS2 

CZTS3 

1.082 1022 

3.36 10 23 

3.32 1016 

14.35 

12.44 

2.2 
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decrease in the free carrier as shown in figure III.30. It is well known that lattice mismatch 

between CZTS and the secondary phase give rise to interface states within the band gap (due 

to the dangling bonds), hence a shorter carrier lifetime and carriers loss at the 

CZTS/secondary phase interfaces leading to free carrier’s concentration reduction. On the 

other hand, the resistive ZnS secondary phase that appears with increasing Zn concentration 

could be the cause of conductivity reduction of the obtained CZTS film. This is consistent 

with Mitzi et al conclusion [176] where they inferred that ZnS is responsible for the high 

series resistance observed in CZTS based solar cells. While the relative high conductivity 

measured in film prepared with low Zn molarity may originate from the segregation of 

conductive CuxS phases. 
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In this chapter, we will present and discuss the electrical properties of some realized devices, 

in which we have studied the effect of back contact nature in CZTS based hetero-junction, the 

effect of ZnO intrinsic layer, and the effect of sulfurization temperature on CZTS solar cells 

performance. 

 

In this section of chapter IV, we will present with discussions the obtained results concerning 

the effect of back contact metals nature (Al, Ag, and Au) on CZTS/ZnS properties, such as on 

current-voltage (I-V) and capacitance (conductance)-frequency (C-G-f) characterizations. 

IV.1.1. Films properties 

The structural, optical, and electrical properties of the layers composed our devices are 

presented and discussed in details in the following paragraphs. 

IV.1.1.1 Structural properties 

In figures IV.1 (a, b) and c we have reported the Raman and XRD patterns of CZTS thin film. 

The XRD pattern (figure IV.1.a) of CZTS layer matches well with the Kesterite CZTS phase 

JCPDS ≠No°. 26-0575 card.  
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Figure.IV.1. a: XRD and b: Raman spectra of CZTS thin films 

As can be seen, five clear diffraction peaks corresponding to the (112), (200), (220), (312) 

and (224) planes of kesterite CZTS structure are detected with the direction (112) as 

preferential orientation. No other peaks, in XRD pattern, related to any secondary phase are 

IV.1 Back contact study of CZTS/ZnS heterojunction 
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observed.  It is generally reported that CZTS regardless the deposition technique is usually 

accompanied with a binary secondary phases [152,71]. However, it hard to asses from XRD 

analysis that CZTS is pure this is due to the fact that the lattice constants of CZTS are similar 

to Cu2SnS3 (CTS) and ZnS, the obtained peaks could be related to either CZTS or CTS or 

ZnS phases [168].  

Thereafter to confirm the secondary phase’s formation we further analyzed the film by Raman 

spectroscopy since it is a very sensitive tool for phase identification.  

As shown in figure IV.1. b the existence of kesterite phase is confirmed with Raman 

scattering spectroscopy by the presence of intense Raman peak at 337cm-1 and the shoulder 

peaks at 282 and 362cm-1. The same results have been reported by several authors [178-180]. 

While, the additional peak at 472 cm-1 is   attributed to the CuxS phase, the same results were 

reported by Fernandes et al. [58]. The formation of sulfide cupric secondary phase is due to 

the excess Cu in the used starting solution by comparison to Zn. 

In figure IV.2.a, we have reported the DRX spectrum of ZnS film. The obtained diffraction 

pattern suggests the evidence of   Zn (O.S) thin film formation rather than pure ZnS. Peaks 

assigned to ZnO and ZnS phases are present. As shown in figure IV.2.b, the plane (101) of 

hexagonal ZnO Wutrzite structure is clearly visible along with the planes (220), (311) and 

(204) of the hexagonal ZnS cubic According to JCPDS card N° 77–2100. 
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Figure IV.2: (a, b). XRD patterns of ZnS and FTO thin films 

Actually, in contrary to PVD deposition (Sputtering, thermal evaporation), chemical route 

techniques such as: spray pyrolysis, chemical bath, SILAR and sol gel techniques yield to 
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ZnS formation mixed with ZnO phase. This is due to the fact that in these techniques films are 

achieved in air or in aqueous solution [181-183] which favors oxygen contamination. 

The performances of CZTS based solar cells is lowered by different causes such as MoS2 

layer formation at the back contact [184], the presence of secondary phases in the bulk [185], 

and especially the alignment lack of conduction bands at the absorber/buffer interface [186]. 

Recently Ericson et al. [187] have investigated Zn (O, S) system as buffer layer in CZTS solar 

cell, they have shown that conduction band gap offset can be tailored through the conduction 

band variation   by controlling the ratio of oxygen to sulfur [188], and that the optimum 

conduction band alignment for CZTS lies in between the ZnO and the ZnS values. This has 

been experimentally observed [189]. It has been claimed also that ZnOS film is more 

preferable partner than ZnS to form an ideal hetero-junction due the lower conduction band 

offset at the interface with SnS absorber layer [190].  

The XRD diffraction of FTO film is shown in figure IV.2.b. Several peaks assigned to the 

tetragonal rutile SnO2 phase such as (110), (101) and (111) are present, indicating the 

formation of polycrystalline SnO2 with (110) as preferential orientation, the same results are 

recently reported in SnO2 thin films prepared by spray pyrolysis [191,192] and Sol gel 

deposited SnO2 thin films [193]. 

IV.1.1.2 Optical and electrical properties 

a. Transmittance 

Figure IV.3 shows the transmittance spectra of different layers CZTS, ZnS and FTO in the 

visible range.  
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Figure IV.3: Transmittance spectra of CZTS, ZnS, and FTO thin films 
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Both FTO and ZnS layer exhibit large transmittance spectra due to the fact that they are large 

gap semiconductors. For application in thin film solar cells, these two layers should be 

transparent, since they are used as windows for visible wavelength to allow the incident 

photons to reach the CZTS absorber layer. While, as shown in insert figure IV.3, CZTS layer 

is highly absorbent with an absorption coefficient higher than 104 cm-1. 

Moreover, FTO layer should be also a highly conducting. The fluorine is introduced in SnO2 

in order to enhance its conductivity since the two requirements for FTO use as transparent 

electrode is a high transparency and a large conductivity. The measured conductivity of the 

deposited FTO is equal to 102 (.cm)-1, the efficiency introduction of fluorine as donor is also 

assed from the transmittance spectrum in the UV visible near infrared range as shown in 

figure IV.4, the reduction in the transmittance in the near infrared range is caused by the 

reflection due the large free carriers concentration which is equal   3x10 19 cm-1 as reported in 

table VI.1.   
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Figure IV.4: Transmittance spectra of FTO in UV-Visible-IR range 

b. Gap energy 

The optical gap energies of CZTS, ZnS and FTO were calculated from the plot of (h) 2 vs 

h, where h represent the energy of incident photon and  is the absorption coefficient 

estimated from the transmittance values.  

 Figures IV.5 a, b and c  show the plots of  (h) 2 vs h plots of the three thin films, the 

values of  optical band gaps measured of CZTS, ZnS and FTO are 1.6, 3.3 and 3.9 eV 

respectively.  
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Figure IV.5. (a-c): (h) 2 vs h of(a): CZTS,(b): ZnS and(c): FTO thin films 

c. Electrical properties. 

The electrical properties of the film are measurement used Hall effect in the dark, CZTS film 

mobility exhibit a high value of mobility more than 800 (cm2/Vs) which due to the low value 

of carrier concentration compared to the values reported in various work [168] and has a 

conductivity in the order the 10-2 (cm)-1. The deposited FTO thin film show a good 

conductivity about 102 (cm)-1 and a carrier concentration about 1019 cm-3. Whereas, ZnS film 

characterized by a low value of conductivity which was about 10 -4 (cm  )-1, ZnS pure film has in 

general resistive behavior with a large band gap energy (3.9 eV). The calculated optical band gap 

and film thickness (d) together with electrical properties free carrier concentration, mobility 

and dark conductivity of different films deduced from Hall Effect measurements are reported 

in Table IV.1 

(b) (a) 

(c) 
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δ (cm-3) 

 

(cm2/Vs) 

 

σ(cm)-1 

 

Eg (eV) 

 

d(nm) 

CZTS 4x 1013 8.15 x 103 5.2 x 10-2 1.6 1400 

FTO 3,3x 1019 19.42 102 3.9 50 

ZnS - - 10-4 3.3 100 

 

Table IV.1 Electrical parameters and gap energy of CZTS, ZnS, and FTO 

 

IV.1.2. Device properties 

IV.1.2 .1 Current-Voltage characterization 

The device current–voltage (I-V) characteristics are done using Tektronix tracer (diodoscope) 

(figure II.4) and yields to important information about junction electrical properties such as: 

series resistance (Rs), diode ideality factor (n), saturation current (Is) barrier height (b) and 

for knowing the major conduction mechanisms through the junction. In figure IV.6.a we have 

reported the I-V characteristics of CZTS/ZnS hetero-junction with different back contact 

aluminum(Al), silver (Ag), and gold (Au) measured in the dark and at room temperature, 

whereas figure IV.6. (c-d) shows the I-V characterization of CZTS/ZnS hetero-junction with 

different back contact measured at a variable temperature from 25 to 90 °C. 
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Figure.IV.6: Characterization of heterojunctions (a)-CZTS/ZnS with different back contact in 

the dark and at room temperature and (b) CZTS/Al;(c)- CZTS/Ag; (d)- CZTS/Au hetero-

junctions at different measurement temperature 

As can be seen in Figure IV.6.a there is no noticeable difference between the three 

characteristics. All hetero-structure exhibit a rectifying behavior. Moreover, the reverse 

voltage characteristics show no saturation, indicating that defect-assisted generation or 

tunneling mechanism occur [43]. Their characteristics can be described by equation (I.1): 

The ideality factor determined from the slope of the linear region of forward bias ln (I)–V plot 

and defined as mentioned in equation (I.2)  

 The barrier heights were calculated from the variation of current saturation (Is) as function of 

the temperature, it can be described and expressed as (IV.1): 

Is~ T2exp (
−qb

KT
  )              (IV.1) 

Where: T is the temperature; q is elementary charge, K Boltzmann constant. 

The barrier height was calculated from the variation of saturation current with measurement 

temperature (fig.IV.5.c-d), is thermally activated, the barrier height was estimated according 

to the relation (IV.2) from the slope of the Arrhenius plot of ln(Is/T2) as function of 103/T.   

The deduced values of ideality factor, saturation current, series resistance, and barrier height 

of heterojunctions are resumed in Table IV.2. 
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Structure CZTS/Al CZTS/Ag CZTS/Au 

n 11.4 10.5 5.9 

Is x 10-6(A) 18.57 30 1.27 

Rs(k) 2.1 1.42 2 

b(eV) 0.38 0.29 0.28 

 

Table.IV.2 Electrical parameters of CZTS/ZnS hetero-junction with different back contacts. 

As reported in table IV.2, The lower saturation current and barrier height are measured in the 

hetero-junction using Au as a back contact. Whereas, the ideality factors calculated in the 

realized hetero-junctions are large and depend on the nature of the used metal contact, they 

are respectively equal to 11.4, 10.5 and 5.9 for Al, Ag and Au.  Several authors have reported 

anomalous ideality factor values in different hetero-junction and p-n junction [193-196] where 

an ideality factor (n> 5) is reported. 

The origin of the large value of n may be due to the metal /CZTS contact. Indeed, when the 

contact is not ohmics, the hetero-junction can be modeled as a series of diodes and resistors in 

series, according to Shah–Li–Schubert [197] the ideality factor is the sum of ideality factors 

of each diode. Jing-Jing et al [198] have explained the measured 18,8 ideality factor in 

ZnO(Al)/ (p)Si hetero-junction in terms of metal contact nature. The same reason has been 

proposed by Shah et al. [199] to explain the anomalous ideality factor of 6.9 measured in the 

hetero-structure p-type AlGaN/GaN.   

To assess the nature of contact between CZTS and the used contact metal one should compare 

the work functions of the metalM and S of the semiconductor as seen in figure IV.7 which 

illustrate de band diagram of ohmic and schottky contacts. 

. 
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Figure.IV.7: band diagram of ohmic and Schottky contact of metal/sc (p) diode [x] 

The optical gap of the prepared CZTS film is equal to 1.6 eV, the conductivity activation 

energy (which equal to the difference EF-EV) is equal to 250 meV. Thereafter, knowing that 

CZTS affinity is given equal to 4.21 eV, the work function of CZTS is then equal to 5.57 eV. 

It is well known that in the case of M<S, the metal semiconductor contact is ohmic if the 

semiconductor is n type and if Schottky contact is p type. Thereafter, since CZTS is a p type 

semiconductor and according of the work function of the used metals (4.26, 4.28 and 5.1 eV 

for Ag, Al and Au respectively), Al and Ag are candidates to yield a Schottky contact with 

CZTS, in contrary in the case of Au, where the contact with CZTS could be ohmic.  This can 

explain then the large ideality factor measured in the hetero-junction obtained when using Al 

and Ag as back contacts. While, the large value measured in the structure obtained with Au 

back contact (n=5.9) can be due to the defects located at the interface. Similar results (n > 20) 

were reported by Raddy et al. [200] in the n-ZnO nanorods /p-Si devices; they suggested that 

the large value of n is probably due to the presence of defect states in ZnO lattice and/or the 

presence of traps at the interface [201].  Actually, the large value of ideality factor could be 

also due to numerous reasons such as recombination of electrons and holes in depletion 

region, the presence of interfacial layer [202,203] the trap-assisted tunneling [204,205] and 

carrier leakage [205] and the in-homogeneities in junction barrier heights [206,207]. 

Tables IV.3. (a-c): resumed the electrical properties of CZTS/ZnS hetero-junction with Ag. 

Al. and Au back contact respectively, measured at different temperature. It clear that the 

series resistance decrease and the saturation current increase with the temperature.  

 



      Chapter IV                                                       Device properties, results and discussions                    

 
 93 

T(k) n Is(A) 10-6 Rs(k) 

293 10.5 3.4 1.42 

323 6.24 1.5 2.42 

348 4.4 1.86 1.55 

373 4.1 4.6 1.18 

 

Table.IV.3. a Ag/CZTS diode parameters determined from I-V plots 

T(k) n Is(A)10-6 Rs(k) 

298 11.4 9.13 2.1 

323 6.2 5.6 1.91 

348 4.8 2.71 2.06 

373 3.87 3.35 1.8 

 

Table.IV.3. b Al/CZTS diode parameters determined from I-V plots 

 

T(k) n Is(A) 10-6 Rs(k) 

293 5.9 1.27 2 

323 6.4 6.14 2.3 

348 4.6 6.79 2.05 

373 3.7 7.3 1.65 

 

Table.IV.3.c Au/CZTS diode parameters determined from I-V characteristic 

The value of ideality factor of devices measured at different temperatures is found to be 

sensitive to the measurement temperature, it decreases with increasing temperature. This 

phenomenon, commonly referred as “To-effect”, was first proposed by [208].  The variation 

of n with T has been explained by several authors [209-210].  According to the proposed 

model, the temperature dependence of n suggests that the carrier generation-recombination 

involves defect states. The temperature dependence of n may be modeled as [xx]: 

n = n0 +T0/ T               (IV.2) 

Where n0 and T0 are constants which are independent of temperature and voltage 

 

The variation of n with temperature is shown in figure IV.7, the variation of n as function of 

reverse temperature (insert figure IV.7) firsts to a straight line as predicted from eq.IV.2. This 
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suggests the involvement of several defect levels in carrier generation-recombination 

processes and also the tunneling effects contribution in carrier transport [211]. 
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Figure IV.8: Ideality factor variation as function of measured temperature of CZTS/ZnS with 

different back contact metals 

IV.2.2 Conductance-frequency characteristic 

IV.2.2.a Conductance-frequency at room temperature 

The capacitance and conductance versus frequency are important techniques to extract the 

interface state properties in hetero-junction or homo-junction devices [212]. However, the 

conductance technique determines the interfaces state with more accuracy than capacitance 

technique [213], this is due to the fact that conductance comes only from the interface states 

[214]. Capacitance-conductance measurements were carried out in dark with a frequency 

range varied from 1.2 KHZ to 1 MHZ and voltage about V=0.3 V at ambient and variable 

temperature. In figures IV.9 and IV.10 we have reported the measured capacitance (C) and 

conductance (G) as function of measurement frequency for the different structures 

Au/CZTS/ZnS/FTO, Ag/CZTS/ZnS/FTO and Al/CZTS/ZnS/FTO in the dark and at room 

temperature.  
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Figure IV.9: C-ω variation of CZTS/ZnS hetero-junction with different back contact 

The high value of capacitance measured at low frequency (figure IV.9), is due to the fact that 

the trapped electrons at the interface can follow the ac signal at low frequency. With further 

frequency increase, trapped electrons cannot follow the high frequency signal [215] and the 

capacitance decreases to reach its smallest value at 1MHZ. Therefore, the capacitance at high 

frequency (ωr) represents the free-carrier response. Whereas, at low frequency (lower than 

the thermal emission rate of deep level) the defects can be charged and discharged, which 

allow them to contribute in the total junction capacitance. Thereafter, the capacitance 

represents the response of both free carriers and traps [216, 217], it can be then described as: 

[218]. 

C=Csc+Css   (at low frequency ω<ωr) 

Whereas,                               C= C sc         (at high frequency ωωr  ) 

Where: Csc is the capacitance of space charge region Css: is the interfacial capacitance 
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 The presence of interfacial state in a hetero-junction is accompanied by a flexion in the C–f 

curve and by a resonant peak in conductance (G/w) versus angular frequency, as can be seen 

in figures IV.9.  
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Figure.IV.10: G-ω variation of CZTS/ZnS with different back contact  

The resonant peak in G/ω(ω) occurs when the trapped carriers emission rate (ωr) is the same 

order than the angular frequency of the ac signal (ω= ωr). The angular frequency ωr of the 

resonant peak is expressed by the following relation [141] eq. (IV.3): 

ωr (T) = 2et(T)=A.T2 expo (- 
𝐸𝑎

 𝐾𝑇
)      (IV.3) 

Where: ωr is the inflection frequency   et   is the emission rate of trapped charges and Ea is the 

activation energy. 

The interface state density (Nss) can be deduced from (G/ω) max using the following relation 

[142] eq. (IV.4): 
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 Nss =
(G/ω)max

0.402qS
     (IV.4) 

Where q is the electronic charge and S is the diode area.  

The time constant τ for electrons exchange between interface states and valence band can be 

calculated using the relation τ =1/ωr [143].  

The interface state densities of the hetero-structures were found in the order of 1010cm-2. eV-1 

and the trap time constant about 10-7 s for the two structures prepared with Al and Ag as back 

contact, while in the case of the hetero-junction prepared with Au contact, we have measured 

a defect interface density lower by one order of decade (table IV.4). The larger measured 

interface states in the devices prepared with Al and Ag back contacts can be associated to the 

contribution of the depletion layer formed between the metal and CZTS due to the Schottky 

contact nature as suggested by the ideality factor values. Thereafter, Au metal can be used as 

back contact in CZTS based solar cell, this is consistent with the Aaron et al. [219] recent Us 

pattent where they succeeded in improving the efficiency of CZTS/CdS and CZTS /ZnS solar 

cells by using Au or Pt as back contact due to their   relative large work function. 

The calculated value of state density (Nss) and life time are resumed in table IV.4. 

Structure Nss x1010(eV1.cm2) τ  x10-7 (s) 

Al/CZTS/ZnS/FTO 1.39 2.64 

AG/CZTS/ZnS/FTO 3.48 2.65 

Au/CZTS/ZnS/FTO 0.28 1.9 

 

Table.IV.4: Density of state and life time of carriers of CZTS /ZnS hetero-junction with 

different back contact at room temperature 

IV.2.2.b. Conductance -Frequency-Temperature 

The interface state density characterization using capacitance–conductance–frequency 

measurements in CZTS/ZnS structures with different back contact (Al, Ag, and Au) were 

carried out in the dark with various measurement temperatures. The Ac voltage amplitude 

kept to 0.3 V and the frequency varied from 1.2 KHz to 1 MHz. Figure IV.11.b shows the C-f 

characteristics of CZTS/ZnS hetero-junction with different back contacts and at various 

measurement temperature, we can see clearly a decrease in capacitance with the increase of 
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frequency and with a decrease of measured temperature which referred to the generation of 

additional charge carriers at the interface when the measurement temperature increases. As 

known that the total capacitance of the hetero-junction consists of the free carrier’s 

capacitance across the space charge region and the additional capacitance contribution from 

charging and discharging of the defects located at the interface of the junction (hetero-

junction).  

 The conductance measurements yield more exact and reliable results to determine the 

interface state density distribution. The variation of G/ –with measurement temperature is 

shown in figure IV.11.a; the whole structure hve the same trend of G/, with the increase 

of measurement temperature and frequency. Knowing that the presence of state defect in the 

rectifying junction is determined by a peak in G/ vs  graph, no shift in G/ vs  plots were 

seen with the increase of temperature which suggest that the emission rate stay constant 

(et=
1

2𝜏
 ) and didn’t affect by the temperature. The effect of measurement temperature on 

interface state density were calculated from the variation of (G/)- it has been seen that 

interface state density ( Nss) value augment with increasing of the temperature from 3.48 1010  

to  3.76 1010 eV-1.cm-2 for CZTS/ZnS  hetero-junction with Al back contact and from 1.22 

1010 to 1.52 1010 eV-1.cm-2  for the one with Ag back contact while for Au back contact the 

Nss was varied from 0.28 to 0.86 1010 eV-1.cm-2 which present the lower interface state 

density. Same variation was reported by A. Turut et al. [ 220] who has calculated the density 

of state in Au/Ni/n-GaN structures and observed the increase of state density with the increase 

of measurement temperature and explain this increase of state density by the increase of 

active charge in the interface with the increase of measurement temperature and same 

observation was reported in Ni/n-GaP structure in [221]. Few (or no) works were reported in 

the literature related to the study of interfacial defect in CZTS/ZnS device which is an 

important part of the device and affect strongly on the solar cell performance. A density of 

defect in the order of 10 10 eV-1cm-2 is an import value, these states present in the forbidden 

gap as recombination (generation) of free carriers which may cause short circuited path in the 

solar cell. 
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Figure.IV.11 (a) G/ω - ω and (b): C-ω variation of CZTS/ZnS hetero-junction with Al, Ag, 

and Au back contacts at different temperature 
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The activation energy of defect was calculated from the Arrhenius plot ln(ωr/T
2) vs. 1000/T, 

where, Ea correspond to the slope of the linear part as seen in figure IV.12. 
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Figure IV.12: Arhenuis plot of CZTS/ZnS hetero-junction 

The calculated values of interface state density, time constant and activation energy are 

resumed in table IV.5 

 

Structure 

 

Nss.(eV-1.cm-2)1010 
 

τ (s)10-7 

 

Energy level(eV) 

Al/CZTS/ZnS 3.48-3.76 2.65 0.62 

 

- 

 

- 

Ag/CZTS/ZnS 1.22-1.58 2.64 

Au/CZTS/ZnS 0.28-0.86 1.9 

 

Table IV.5: Density of state, life time and energy level of CZTS/ZnS hetero-junction with 

different back contacts 
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IV.2.1 I-V characteristic in the dark  

Figure IV.13 report the I-V characteristic measured at room temperature of the both devices 

with i-ZnO (a) and without i-ZnO (b). As shown, the I-V characteristic of the realized hetero-

structures can be described by eq. (I.1). 
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Figure IV.13:  I-V characteristic in the dark and at room temperature of CZTS/ZnS hetero-

junction (a) with ZnO and (b) without ZnO layer. 

I-V graphs of CZTS/ZnS/(ZnO) hetero-junctions show rectification behavior, which confirms 

the junction formation. The series resistance (Rs) was calculated directly from the I-V plot, as 

seen in table IV.6, the device with ZnO layer shows lower series resistance than the 

CZTS/ZnS hetero-junction. Knowing that ZnO thin film is characterized by a high resistivity 

as reported in [222]. The same conclusion was reported by Obahiagbon [223] who have 

reported the decrease of series resistance with the addition of ZnO intrinsic layer in the 

realized device. However, no clear explication was understood yet about the origin of the 

series resistance reduction with the addition of ZnO layer. The ideality factor decreases when 

ZnO layer add in the fabricated devise which can refer to the reduction of interface state 

between CZTS and ZnS buffer layer. Further, those interface states are origin from the band 

alignment which caused their apparition. The electrical characterization such as ideality factor 

(n), series resistance (Rs), and saturation current (Is) are resumed in table IV.6. 

IV.2 The effect of i-ZnO intrinsic layer and measurement temperature  
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T(°C) n Rs() Is(A) 

CZTS/ZnO/ZnS 

 

8 1330 0.47 

CZTS/ZnS 11 3917 0.4 

 

Table IV.6. Eelctrical characterization of CZTS hetero-junction with ZnO and without ZnO 

layer. 

IV.2.2 I-V-T characteristic in the dark 

Figure.IV.14 shows the effect of measurement temperature on the electrical parameters of 

CZTS/ZnS/ZnO hetero-junction. Different parameters such as series resistance (Rs), 

saturation current (Is), ideality factor (n), and activation energy of the saturation current (Ea) 

were extracted from the I-V data at different measurement temperature. 
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Figure.IV.14: The I-V characteristic of CZTS/ZnS/ZnO hetero-junction in the dark at 

different temperature 

The series resistance (Rs) decreases with the increases of substrate temperature accompanied 

with an increase of the saturation current, this was explained by the thermal activation of 

carriers, the same behavior was reported by Guitouni et al. [224]. The increase of saturation 

current with the temperature come from the recombination of free carriers at interface state 

which caused the diminution of (Isc). The relation of saturation current with the temperature 

is expressed as the following expression (IV.5) [225]. 
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𝐼𝑠 exp ( 
−Ea

KT
 )

                     
 (IV.5) 

The activation energy of the saturation current (Ea) was extracted from the variation of the 

saturation current with 1000/T, as shown in figure.IV.15. 
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Figure IV.15: saturation current as function of 1000/T 

From the variation of the saturation current with temperature we have determined the 

activation energy of the saturation current, its value was equal to 0.46 eV. This is attributed to 

the presence of Sn vacancies deep acceptor defects which have the same activation energy, as 

reported by Courel et al. [226]. The activation energy of saturation current is closely related to 

the presence of defects at the interface of CZTS/ZnS hetero-junction, the ideality factor (n) is 

calculated from equation (IV.3) which is represent the slope of the plot ln(I) as function of the 

applied voltage. The calculated ideality factor is reported in table IV.7. As can be seen, n is 

depending on the measurement temperature, as the temperature increases the ideality factor 

decreases from 7 to 1,8. At high measurement temperature, the generation and recombination 

on the space charge region is the dominant transport mechanism, whereas at low temperature 

as mentioned above, Brotzmann et al. [15] suggest the presence of amorphous interface at the 

junction. 
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T(°C) 

 

n 

 

Rs() 

 

Is(A) 

   30 8 1330 0.47 

50 3.7 776 0.58 

70 2 636 0.6 

90 1.5 702 0.75 

 

Table IV.7: Electrical properties of realized devices at various measurement temperatures 

IV.2.3 I-V characteristic under illumination  

The realized devices were tested under illumination and the photovoltaic effect was observed 

on a cell area equal to 0.16 cm2. Figure IV.16 illustrated the semi-logarithmic of the I-V 

curves of the cells. 
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Figure IV.16: semi-log plot of I-V characteristic under-illumination  

The different parameters of the solar cell were extracted such as open circuit voltage (Voc), 

short circuit current (Isc), file factor (FF), and the efficiency are resumed in table IV.8. 

 

 

  

 

Table IV.8: Electrical parameters of the fabricated solar cells 

 Voc (mV) Isc (uA) FF(%) η(%) 

ZnS/ZnO 43 1.2 22 7.10-3 

ZnS 34 3.16 20 5.10-3 
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As seen in table IV.8, the best efficiency was obtained for the cell with ZnO with a value 

equal to 7.10-3 % and a Voc=43mV, and FF=0.2. These values are low compared to the ones 

obtained by other process and especially the physical routes in which we can cite: Zhi et al. 

[227] who reported an efficiency about 3.6 % and a Voc = 629 meV by sputtering and 

Katagiri et al. [102] who reported in 2003 a value of 5.45% with a Voc=582mV and Jsc=15.5 

mA/cm2 of by thermal evaporation. The low efficiency reported by Bhosale et al. [180] and 

Vigil-Gal et al. [131] of CZTS solar cells using spray pyrolysis is generally due to the low 

value of open circuit voltage (Voc). This is due to the presence of interface states which act as 

recombination centre of the free carriers. The presence of these states was confirmed by 

admittance spectroscopy in our previous work.  However, we have reports a density of state in 

the order of 1010 cm2/eV [228] and Patel et al. [229] reported a value about 109 cm2/eV. 

Furthermore, Courel et al. [230] have studied the poor performance of spray CZTS solar cells. 

They declared that beside the low value of Voc, sprayed CZTS material is characterized by a 

low value of length diffusion of minority carriers which is related to the crystallites size 

which don’t exceed 300 nm.  Indeed, Emrani et al.[231] report a grain size up to 2.5  m by 

sputter and 0.4m was reported by Shin et al.[105] using thermal evaporation. Also another 

factor who limit CZTS performance is the cliff like band alignment between absorber/buffer 

(CZTS/ZnS) because of the difference band gap energy (CZTS=1.5 eV and 3.7 for ZnS), the 

deposition of an intrinsic layer may cause a reduction in the band offset between CZTS and 

ZnS layers. The deposing of a ZnS/ZnO buffer layer can be retrieve the loss in CZTS solar 

cells efficiency. In this work the best efficiency was obtained for the cell with ZnO layer. This 

value still low and need more work to understand and enhance sprayed CZTS solar cell 

efficiency.  

 

In this section of chapter IV, we will discuss the obtained results concerning the effect of 

sulfurized temperature on the properties of sprayed CZTS thin films and related devices. The 

annealing temperature was varied from 450 to 550 °C. 

 

 

IV.3 Effect of sulfurization temperature 
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III.3.1 Films properties 

Films properties were studied using XRD and Raman spectroscopy for the structural 

properties, Atomic Force microscopy for morphological properties and UV-Visible for the 

study of the optical properties and Hall effect for the electrical properties. 

III.3.1.1 Structural properties 

a. X Ray Diffraction 

The XRD patterns of CZTS thin films annealed at different sulfurization temperatures are 

shown in figure IV.17, the observed peaks are related to (112), (220), and (312) planes, they 

are assigned to CZTS kesterite tetragonal phase (according to #27-0575 card), (112) plane 

exhibits the higher intensity indicating the preferential orientation the same peaks position 

were observed in [37,48]. Generally, CZTS thin films deposition is accompanied by the 

formation of several secondary phases such as SnS, SnS2, Sn2S3, ZnS, and Cu3SnS4 [232-233]  
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Figure.IV.17: XRD patterns of CZTS films sulfurized at different temperatures 

It is interesting to note that no peaks related to any secondary phase has been detected. The 

absence of secondary phase can be a result of the thermal sulfurization, which is a good 

solution for the reduction of undesirable phases as mention. The same observation has been 

reported after CZTS sulfurization in [234,235]. Moreover, according to XRD patterns Mo2S 

phase is not formed during sulfurization step. While, it is reported that sulfurization yields to 

the formation of undesirable Mo2S phase [236,79]. With increasing the annealing sulfurization 

temperature, XRD peaks intensities are reduced, the sample sulfurized at 450 °C exhibits the 

most intense and sharp peak. This indicated that high temperature sulfurization degrades 

CZTS sprayed films microstructure. 
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The crystallites sizes were calculated from the most intense peak along (112) plane using 

Debye Scherer’s equation [145] according to (III.2) formula. The lattice strain () was 

calculating using: equation (III.3).   

The calculated values of D, FWHM, and strain are regrouped in table IV.9. As can be seen, 

increasing the sulfurization temperature yields to the reduction of the crystallites size in one 

hand and the increase in films strain in the other hand.  This confirms the microstructure 

deterioration in films annealed at temperatures above 450 oC. 

 

Table IV.9. FWHM, crystallites size, and strain of CZTS films sulfurized at various 

temperatures 

The variation of crystallites size and strain as function of sulfurization temperature is 

presented in figure IV.18, as seen in the graph their variation are opposite, the low value of 

strain yield to a large crystallite size whereas the high value of strain yield to small values of 

crystallites size. Knowing that the strain is related to the presence of the disorder in film 

network, 
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Figure IV.18: Crystallites size and strain as function of sulfurized temperature. 

 

 

Annealed T(°C) 

 

FWHM(°) 

 

Crystallite size(nm) 

 

Strain 

450 0.5117 16.7 0.0088 

500 0.624 13.7 0.0108 

550 0.614 13.9 0.0107 
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b. Raman analysis  

Raman spectra of CZTS are shown in figure IV.19. The single Raman intense peak located at 

330 cm-1 is assigned to bulk CZTS [238- 241]. As can be seen no peaks related to any 

secondary phases is observed confirming CZTS monophase formation. The single phase 

formation may two origins: (i) the used spray pyrolysis technique, since similar results have 

been reported by several authors in films prepared by spray pyrolysis method [242-243].  (ii) 

The sulfurization temperature, Xu et al have investigated the post sulfurization of CZTS thin 

deposited by sputtering they concluded that after sulfurization pure CZTS without significant 

amount of secondary phases is obtained after sulfurization at temperatures above 400oC [244]. 

It is important to note that film annealed at 450°C present the most intense peak. This 

suggests that increasing sulfurization temperature reduces the film crystallinity as concluded 

from XRD analysis. 
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Figure.IV.19: Raman spectroscopy of CZTS at various sulfurized temperature 

IV.3.1.2 Morphological properties 

CZTS thin films surface morphology was characterized by using AFM images, as shown in 

Fig.IV.20.  
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Figure IV.20.3D and 2D AFM images of CZTS thin films(a)as deposited, (b-d) annealed at 

450,500, and 550°C respectively. 

As can be seen, annealing temperature increasing results in films grains size enlargement and 

in films surface roughness increase, as reported in Table IV.10  

 

Table IV.10.RMS values of CZTS films annealed at various temperatures 

Figure IV.21 (a and b) show the variation of both crystallite size and lattice strain with film 

roughness of CZTS thin films sulfurized at different annealing temperatures, these two 

parameters lattice strain and roughness have an inverse variation, as the surface of the film 

became rough, lattice strain became small, whereas the crystallites size became large. 

Generally, the surfaces roughness increase with the increase of grain (crystallites) size, the 

surface roughness depends on many conditions such as substrate type, deposition temperature 

and the thickness of the film or deposition time. Knowing that, the rough surfaces have more 

nucleation sites, and as a result many crystallites will appear. We can say that the roughness 

may be depending on the size of grain and also on the shape and the orientation of the grains. 
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(T°C) 

As deposited 450 500 550 

RMS (nm) 23 98 80 53 

-d- 



      Chapter IV                                                       Device properties, results and discussions                    

 
 111 

440 460 480 500 520 540 560

8,5x10
-3

9,0x10
-3

9,5x10
-3

1,0x10
-2

1,1x10
-2

1,1x10
-2

A

s
tr

a
in

50

60

70

80

90

100

 r
o

u
g

h
n

e
s
s

u                                                (a) 

440 460 480 500 520 540 560

13,5

14,0

14,5

15,0

15,5

16,0

16,5

17,0

T(°C)

c
ry

s
tt
a

lit
e

 s
iz

e
 (

n
m

)

50

60

70

80

90

100

 r
o

u
g

h
n

e
s
s

                                                (b) 

 

Figure IV.21:(a) Lattice strain and (b) crystallite size variation with surface roughness as 

function of sulfurized temperature 

IV.3.1.3 Optical properties 

a. Transmittance 

The transmittance spectra of CZTS thin films at different annealing temperature are depicted 

in figure IV.22.  
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Figure IV.22: Transmittance spectra of CZTS film as function of sulfurized temperature 

As seen, the whole films exhibiting low transmission in the visible range (400-800nm) lower 

than 20 %. While, the transmission is enhanced with increasing sulfurization temperature, this 

can be explained by the reduction of the films thickness. Films annealing tends to the films 
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densification by reducing its thickness, the same results were reported in CZTS films prepared 

by sol-gel method [245] and in sputtered CZTS films after sulfurization at 450°C [244]. 

The absorption coefficient of CZTS thin film was calculated from transmission data. The 

measured low optical transmittance and large absorption coefficient (higher than 104 cm-1) of 

CZTS films after sulfurization implies that the obtained films are suitable candidates for 

application as absorber in thin film solar cell technology.  

b. Gap energy 

The optical band gap energy was extracted from transmission data fitting, their values were 

estimated from the extrapolation of the linear section of (h) 2 plot as function of photon 

energy (h), as illustrated in figure.IV.23.  
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Figure IV.23: Tauc’s plot of CZTS thin film sulfurized at various temperatures 

The measured gap energies are reported in table IV.11. They are in concurrence with the 

reported band gap energy of sprayed CZTS thin film [81,153-154]. As seen, films optical gap 

is enlarged with increasing the sulfurization temperature; it varies from 1.38 eV at 450 oC to 

1.45 eV at 550 oC. The same results were reported in electrodeposited CuIn (Se, S)2 sulfurized 

at a temperature varied between 450-550 °C [246]. The optical band gap broadening may 

originate from the films densification and disorder reduction in films network as a 

consequence of thermal annealing. Indeed, the film thickness is reduced from 1420 nm to 

1220 nm with increasing annealing temperature. Actually, the network disorder reduction 

yields to films optical band gap enlargement as observed in various thin film semiconductors 
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[247]. Higher band gap values up to 1.7 eV have been reported this was referred to the 

presence of secondary phases which enlarges the gap energy and specially ZnS given that this 

phase has a large band gap energy about 3.7eV.  

IV.3.1.3 The electrical properties  

The electrical properties of CZTS thin films at different annealing temperatures were carried 

out in the dark and at room temperature using Hall Effect. The p-type conductivity of CZTS 

semiconductor was assessed by the positive Hall coefficient. The measured values of carrier 

concentration, conductivity and mobility are resumed in Table IV.11. The measured mobility 

is in agreement with the reported values lying between 0.1 and 10 cm2/Vs [248-249]. While, 

film conductivity and mobility are reduced after thermal sulfurization due to the reduction in 

the crystallites size as concluded from XRD analysis. The reduction in the crystallite size 

increases the number of grain boundaries that may cause larger electrons scattering during 

their transport.  

 d (nm) Eg (eV) ρ(cm-3 ) µ(cm2/V s) σ(.cm)-1 

450 °C 

 

1420 1.38 7.23x 1015 

 

9.16 

 

10.61x 10-3 

 

500 °C 1260 1.42 8.58x 10 14 

 

0.41 

 

0.56x 10 -3 

 

550 °C 1220 1.45 8.78x1016 0.18 

 

2.52x 10 -3 

 

Table IV.11: Film thickness, band gap, carrier concentration, Hall mobility and conductivity 

of CZTS thin film sulfurized at different annealing temperature 

IV.3.2 Characteristic of the devices 

IV.3.2.1. Current-Voltages characteristic 

The realized devices are tested under illumination using a simulator solar cell with a halogen 

lamp using a light source with intensity equal to 100mW/cm2, the cell area is equal to 0.16 

cm2.  
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Figure.IV.24: Images of CZTS thin film, solar cell, and the cross section of our device. 

The silver grid was deposited by thermal evaporation on the top (n-) contact is also visible as 

seen in figure IV.24 which show the images of CZTS film with related device and the cross 

section of the cell using scanning electronic spectroscopy.   

Figure IV.25 shows the semi-logarithmic plot of current-voltage measurement of different 

CZTS/CdS hetero-junctions in the dark at room temperature and under illumination.  
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Figure IV.25: semi log plot of CZTS/CdS solar cells sulfurized at various annealing 

temperatures 

The values of rectification ratio (RR) were varied between 8 and 5 with the large rectification 

ratio for the device annealed at 450 °C. The current across the hetero-junction varies 

exponentially with the applied voltage and their variation can be described by the standard 

Schottky diode equation III.3. The ideality factor was found equal to 2.2 in the device realized 

with non-annealed CZTS layer.                      

However, in treated CZTS films the obtained ideality factor lays between 1.6 and 1.8 when 

the temperature varied between 450 and 550 °C. This implies that generation-recombination 

process at the depletion layer is the dominate transport mechanism through the hetero-

junction. This suggests also the presence of interface states and defect in the space charge 

region which is act as charge carriers traps. Mali et al. [250] reported an ideality factor in the 

range of 2.2-2.9 for CZTS solar cells by SILAR method, they claimed that current transport in 

CZTS solar cell is controlled by recombination at high defected grain boundary region. In a 

previous work, we measured an ideality factor more than 5 in CZTS/ZnS hetero-junction; this 

was explained by the presence of interfacial state defects with a density about 1010 cm-2 eV-1 

[228]. Patel et al. [229] reported a value of interfacial states equal to 109 cm-3 at CZTS/CdS 

interface. 
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The saturation current (Is) was calculated from the semi-log plot is reported in table IV.12. 

The saturation current increase from 291 A to 587 A with the increase if sulfurization 

temperature indicates clearly the defects enhancement due to the grain boundary number 

increases as a consequence of crystallite size reduction with sulfurization temperature. The 

series resistance varies between 11-8 , it  decreases with sulfurization temperature increase. 

Amerani et al. [231] has observed the same trend, they reported a decrease in Rs from 48 to 

14  when the sulfurization temperature increases from 500 to 575 °C. Actually, the series 

resistance regroups the back and front metal contacts resistances, the semiconductors bulk 

resistances and the interfaces resistance [251]. Thereafter, it is hard to assess the origin of Rs 

variation. Despite that the film annealed at 450 oC exhibits the highest conductivity, it has the 

largest series resistance, this is due the film thickness, as shown in table IV.11, the film 

annealed at 450o C is the thicker one. The drawback of the series resistance is the short 

current circuits reduction and consequently the cell efficiency.  

The other parameter affecting the solar cell performance is the shunt resistance (Rsh) which is 

due mainly to the defects presence in the bulk of semiconductors and at interfaces. It is 

estimated from the reverse bias I-V characteristics branch.  Shunt resistance reduces 

drastically the open circuit voltage Voc. It should be as high as possible in order to prevent 

losses [21]. The measured Rsh values are reported in table IV.12. The highest Rsh value  was 

found for the cell annealed at 550°C (304) and 120 for the one annealed at 450°C, 

whereas the low value is measured in  the cell annealed at 500°C, therefore , the latter 

presents the low efficiency and Voc values (tableIV.12).  

As seen in Figure.IV.24, all devices exhibit photovoltaic behavior except the un-annealed 

device. The cell annealed at 450°C exhibits the best Voc equal to 161 mV and Isc equal to 

1.56 mA with a fill factor of 28 % and an efficiency of 0.43 %. This is due to the good 

crystallinity of the film sulfurized at 450 °C compared to the other films. The film annealed at 

500 °C leads to the lower efficiency, this is can be attributed to the its inferior crystalline 

quality according to XRD and Raman analysis. This is consistent with the measured high 

series resistance, low shunt resistance and high current saturation in this cell (table IV.12).  
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Table. IV.12: The calculated parameters of the realized solar cells. 

In table IV.13 we have compiled parameters of CZTS based solar cells reported by several 

authors working with different deposition techniques and CZTS films treatments.  

T(°) Voc(meV) Jsc(mA.cm-2) Rs() n Rsh() FF 

(%) 

PCE 

(%) 
Is(A) 

450 161 9.73 11.48 1.7 120 28 0.43 291.6 

500 25.3 4.25 10.77 1.8 37 25 0.02 587 

550 156 1.41 8.5 1.6 304 31 0.06 336 

As 

deposited 
- - 11.83 2.2 - - - 120 

CZTS preparation technique and 

treatment 

Voc   

(mV) 

Is  

(mA/cm2) 

FF  

(%) 

 

η(%) 

Rs 

() 

Rsh 

() 

 

ref 

Thermal evaporation + annealing in 

air  at 570oC 

661 19.5 65.8 8.4 4.5 - [105] 

Thermal evaporation  +sulfurization at 

520oC 

629 12,53 58 4.53 8.5 428 [252] 

Thermal co- evaporation + 

sulfurization at 550oC 

633 21.5 60.1 8.27 5.85 2.2 

104 

[253] 

Evaporation + sulfurization  550 oC 400 5.8 45 1.05 - - [254] 

Dc rf co-sputtering  of Cu , Sn, and 

ZnS target annealing at 250oC in N2 

+sulfurization at 600 oC 

629 13.14 42 3.6 126 189 [227] 

Multi target magnetron sputtering 

+sulfurization at 570oC 

600.4 11.82 40.4 2.87 25.1 144.
5 

[255] 

Dc and Rf sputtering of Cu ,Zn ,Sn 

targets +sulfurization at 575 oC 

593 20.5 48 5.75 19 620 [236] 

Electrodeposition + sufurization at 

590oC 

673 18.7 44 5.5 68 1101 [256] 

Sol gel sulfurization at 500oC 390 7.81 33 1.01   [257] 

SIlAR + sulfurization  at 575 0C 400 8.27 52 1.06 - - [258] 

Spray pyrolysis at 500 oC substrate 

temperature 

390 7.31 30 0.86 190 400 [180] 

Spray heated in Air + Sulfur and tin 

atmosphere at 550oC 

173 10 28 0.5   [131] 
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Table IV.13: The electrical parameters of CZTS solar cells calculated by several authors. 

The most important conclusions that can be retained are:  the results are too spread; best 

results are achieved by the physical deposition methods namely thermal evaporation and 

sputtering. While, spray pyrolysis technique yields to inferior solar cell performances, even 

though the sulfurization treatments are applied, Thereafter, despite that spray pyrolysis, 

technique is considered as one of the most appropriate growth methods to develop low-cost 

devices, it yields to low solar cell efficiency.  As can be seen, our result remains in the range 

of efficiency achieved by spray pyrolysis. This discrepancy may originate from the films 

microstructure differences. We speculate that the major reason of spray pyrolysis inferiority is 

due to the achieved low material grain sizes. Indeed, grain size up to 2.5-1 m [252, 255] and 

0.4 m [4] were reported in sputtered and thermally evaporated CZTS thin films respectively. 

While in sprayed films the grain size does not exceed 300 nm [257, 131] in our case, we have 

measured a crystallite size of 16 nm. Grain boundaries introduce additional defects acting as 

recombination centers. The same conclusion has been outlined by Courel et al. [230], they 

explained that the inferiority of spray pyrolysis solar cells is originated from the low mobility 

of electron and recombination that may reduce drastically the open circuit, which is in 

concordance with our conclusion. It has been reported that this problem is particularly more 

detrimental in CZTS-based devices, than in chalcopyrites (CuInGsa) Sn-based ones [260]. 

Any reduction in the grain size is accompanied by the increase in the grain boundaries and 

consequently a recombination enhancement, reduction in carrier’s mobility due to the 

scattering and the photo-generated carrier’s lifetime reduction. In fact, low mobility values are 

usually reported in CZTS thin films, particularly in samples deposited using spray pyrolysis 

technique due to the microstructure [261, 262]. Both these effects concur to Voc, FF and cell 

efficiency reduction. Courel et al. had studied the loss mechanism in sprayed CZTS solar cells 

Spray in Ar  + Sulfur and tin 

atmosphere 

At 550oC 

361 7.5 37 1.0   [131] 

Spray pyrolysis at 500 oC substrate 

temperature 

510 8.88 23 1.09 278.

5 

250 [180] 

Spray pyrolysis at Ts 450 oC with Ar 

carrier gas 

246 3.9 39 0.4 14 95 [259] 

Spray pyrolysis + sulfurization at 

450oC in H2S+Ar 

161 9.73 28 0.43 11.5 120 This 

work 



      Chapter IV                                                       Device properties, results and discussions                    

 
 119 

and find that CZTS is characterized by a low minority carrier lifetime and defects in CZTS 

bulk [71]. This is in concordance with several authors conclusion claiming that spray 

pyrolysis technique produces low efficiency solar cells [131,180,259]. 
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Conclusion 
 

The main objective of this PhD thesis was the realization and the electrical characterization of 

hetero-junction and related solar cells from a stack of different layers such as (Cu2ZnSnS4, 

ZnS, CdS, FTO, ZnO, and ZnO: Al)  

To tackle this task, the first step of own project is to enhance and establish the moderate 

experimental condition for synthesizing high quality of CZTS film which used in this work as 

the active layer of the realized photovoltaic devices. Fourth parameters were studied namely 

substrate temperature, deposition time, copper and zinc salt molarities. After the elaborated 

CZTS layer, several characterization techniques were adapted for analyzed their properties 

such as X Ray Diffraction and Raman spectroscopy for the structural properties, Atomic 

Force microscopy for the morphological properties, UV-Visible and Hall effect for study the 

optical and electrical properties.  

The study of the effect of substrate temperature (Ts) on the structural properties of CZTS film 

revealed that the whole films crystallize in tetragonal structure (Kesterite) with a preferential 

orientation along (112) plan, the increase of substrate temperature yield to an increase of 

crystallite size from 33 to 60 nm. The peak position at (112) plane shifted with the increase of 

Ts toward the high angles because of the presence of lattice strain in film network. With the 

increase of temperature, the number of secondary phases increase such as CuS, Cu7S4 and 

ZnS. The Raman spectroscopy analysis show an intense and sharp peak at 335 cm-1 position 

and a little shift with the increase of Ts because of the presence of micro strain and the 

increase of film’s thickness whereas the presence of CuS phase was observed for the film 

elaborated at 300 and 390 °C. The whole films exhibit a high absorption coefficient with a 

direct band gap energy lie between 1.61.4 eV. Hall Effect confirms the p-type conductivity 

of kesterite films with a high mobility, the conductivity was varied between 1 and 150 

(cm.)-1. These results reveal that CZTS material is eco-friendly candidate absorber layer for 

solar energy application, however, their properties are depending on growing temperature. 

From the investigation of deposition time (Dt) effect, we see that the whole grown films have 

tetragonal structure with a preferential orientation along (112) plane. With the increase of 

deposition time (15-45 min), we observed the emergence of zinc sulfide (ZnS) for de sample 

grown for 45 min with the increase of secondary phases number. The Raman spectrum of the 

whole films are characterized by a strong peak position located at 335 cm-1 with a peak 
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position at 472 cm-1 attributed to the CuxS binary phase. The film deposited at 15 min show 

pure kesterite CZTS phase then this phase appeared in the film grown for 30 and 45 min. The 

optical analysis show a high absorption coefficient more than 104 cm-1 which increase with 

deposition time and referred to the increase of film thickness, the gap energy decrease from 

1.6 to 1.3 eV with the increase of Dt. Hall effect confirm the p-type conductivity of CZTS 

film with the increase of conductivity with Dt from 7 ,3 to 124 (cm.)-1accompaned by an 

increase of carriers mobility from 9 to 520 cm2/vs and the carrier concentration was in the 

order of 1018 cm-3.  

Copper concentrations salt effect on CZTS thin films revealed a strong influence of this 

parameter on CZTS properties. XRD patterns indicated the formation of CZTS films with a 

preferential orientation along (112) plane with an increase of the intensity with the 

augmentation of Cu molarity. Furthermore, as the copper molarity increase the emergence of 

secondary phases increase, such as CuS, Cu2S, Sn2S3, Cu4SnS3 and annilite phase Cu7S4. The 

crystallite size increases and reaches a maximum value of 83,76 nm then it decreases for the 

sample C4 which refer to apparition of many secondary phases at high concentration of 

copper salt. Hence, the transmittance spectra reveal a strong absorption of the films with a 

band gap energy decrease with the increase of copper salt concentration from 1.9 to 1.3 eV. 

Hall Effect measurement confirms the p-type conductivity of the film with a high carrier 

concentration in the order of 1021 cm-3 whereas the film conductivity varies from 180 to 

400(cm.)-1 wich refer to the high concentration of Cu and the possibly of formation of 

several acceptor defect such as CuZn antisite which related to Cu rich composition of the film.  

The whole films grown with various zinc content crystallize in tetragonal structure with a 

preferential orientation along (112) plan. Films are composed of secondary phases such as 

CuS at low Zn molarity and ZnS phase when film is deposited with higher zinc precursor 

molarities. Film’s crystallites size increase from 29 to 133 nm with the increase of zinc 

content. Atomic Force Microscopy images show that the film roughness increases with Zinc 

concentration from 146 to 248 nm. Increasing the Zn molarity improved the film crystallinity 

and the optical band gap broadening due to the presence of disorder in the network. Due to the 

presence of ZnS phase the electrical conductivity is lowered from 14.2 to 2.4 (.cm)-1 due to 

the reduction of free carrier concentration 

In the second part which is the main of this work, we have realized various structure such as 

CZTS/ZnS with different back contacts, Au/CZTS/ZnS/ZnO/FTO for studying the effect of 



Conclusion 

 

 
 121 

ZnO layer on the electrical properties of the fabricated device, and CZTS/CdS solar cells in 

which we have studied the effect of sulfurization temperature on the solar cells performance. 

Three different back metals contact (Al, Au and Ag) were tested to investigate the influence 

of metal contact nature on device properties in order to found an alternative metal of the 

commonly used Molybdenum.  CZTS and ZnS layers were prepared by a simple pneumatic 

spray pyrolysis technique. The electrical characterization of the devices was achieved by  

(I-V) at ambient and at different temperatures and C-G–f measurements. The whole IV 

characteristics exhibit a rectifying behavior.  The ideality factor of all devices were found to 

be large, it is found equal to 5.9 when using Au contact and equal to 10.5 and 11.4 in 

heterojunction prepared with Ag and Al back contacts respectively. The anomalous ideality 

factors greater than unity are explained in terms of the Schottky contact nature between 

CZTS, Al and Ag in one hand and by the presence of interface states and the series resistance 

on the other hand. The high value of the ideality factor suggests that the current transport 

mechanism in the devices is achieved by tunneling assisted by interface states emission- 

recombination rather than by the thermionic emission. The capacitance and conductance 

versus frequency characteristic reveals the presence of defects in CZTS/ZnS interface with a 

density in the order the 1010 cm-3 when using Al or Ag as back contacts, while it is found one 

order of decade lower when using Au metal contact. The defects time constant is found equal 

to 10-7s.  Finally, we inferred that Au metal can be use as back contact for based CZTS 

heterojunction solar cells as alternative to Mo. The effect of the intrinsic layer (i-ZnO) and the 

measurement temperature on the electrical behavior of the realized devices reveal that Zn 

(O.S) can be a viable buffer layer for CZTS solar cells which present better electrical 

properties of the realized devices. Further, we have observed the dependence of the electrical 

parameters on the measurement temperature, the ideality factor decreases from 7 to 1.8 when 

the temperature varied between 30 and 90°C, a decrease of the series resistance with the 

increase of the saturation current was obtained. The activation energy of the saturation current 

is about 0.46 eV and attributed to the presence of Sn vacancies acceptor defect. The 

photovoltaic effect was observed on the fabricated cells with a best efficiency equal to 7.10-3 

% and a Voc equal to 0.043V for the cells with Zn (O, S) buffer layer, the low efficiency of 

sprayed CZTS solar cells can be explained by the low diffusion length of minority carriers 

and the cliff like band alignment buffer/ absorber layer which allows the formation of 

interface state defect at absorber/buffer interface. CZTS cells were sulfurized at various 

temperatures (450-550 °C). The sample sulfurized at 450°C show the best crystallinity of the 

film with a high absorption coefficient and low band gap energy. All the realized devices 
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Mo/CZTS/CdS/ZnO/ZnO: Al show rectification behavior with an ideality factor varied 

between 1.6 and 1.8 which implies that the electron-hole or interfacial recombination is the 

dominant transport mechanism at the hetero-junction. Nevertheless, the solar cell sulfurized at 

450° C shows an efficiency about 0.43 % whereas the cell annealed at 500 and 550 show an 

efficiency about 0.02 and 0.06 % respectively, the low efficiency of CZTS by spray pyrolysis 

compared to other routes is due mainly to the low Voc because of the recombination in the 

CZTS bulk and at interfaces whereas the fabricated cell with the best efficiency give a current 

density equal to 9.8 mA/Cm2. 
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a  b  s  t  r  a  c  t

In the present  work,  we  have  studied  the  effect  of  metal  back  contact  nature  on  the  electrical
properties  of  CZTS/ZnS  based  heterojunction  prepared  by  spray  pyrolysis.  Three  different
back  contact  metals  (Al,  Au  and  Ag)  were  tested  as  alternative  of the  commonly  used  Molyb-
denum.  Structural  and  optical  properties  of different  layers  are characterized.  The  electrical
devices  characterization  were achieved  by  (I–V) at  ambient  and  at different  temperatures
and  capacitance-conductance  vs  frequency  (C-G–f)  measurements.  The  realized  structures
exhibit  a rectifying  behavior.  The  ideality  factor of  all devices  were  found  to be large,  it
is found  equal  to 5.9  when  using  Au  contact  and  equal  to  10.5  and  11.4  in  heterojunction
prepared  with  Ag and  Al  back contact  respectively.  The  anomalous  ideality  factor  is due
to the  Schottky  contact  between  Al,  Ag  and  CZTS  and  to the  presence  of density  of  defect
at  the  interface  CZTS/ZnS.  The  latter  was  estimated  from  conductance  measurement  as  a
function  of frequency  and  found  equal  to  1010 cm−2 eV−1.  From  this  study  we  inferred  that
Au  contact  can  be an alternative  of  Mo as  back  contact  of  CZTS  based  solar  cell.

© 2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Thin films solar cells technologies has emerged earlier in 1960 with Cu2S/CdS cell, the achieved efficiency with this
heterostructure was about 10% [1]. However, the instability due to Cu migration dictated the research of more stable mate-
rials. Thereafter, copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) have been used and extensively
studied. The recent recorded efficiency with these materials are equal to 20.8 and 19.6% respectively [2]. However, despite
this reached efficiencies, these materials suffer from severe issues namely: selenium and cadmium toxicity and indium
scarcity. Consequently, research of alternative materials composed of abundant and non toxic elements is necessary. In this
research activity, the quaternary chalcogenide compound copper zinc tin sulfide Cu2ZnSnS4 (CZTS) has recently attracted
much attention due to the fact that it is composed of earth-abundant and environmental friendly elements. Moreover, CZTS
is a p type semiconductor with direct band gap energy between 1.2 and 1.6 eV, and an absorption coefficient greater than
104 cm−1. This confers to CZTS the status of a promising candidate, and a serious alternative for application as absorber
layer in thin film solar cells. During the current decade, several studies on the quaternary chalcogenide CZTS for solar cell
application have been carried [3–10] .The theoretical predicted efficiency of CZTS based solar cell is larger than 30% [11–13].
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Fig. 1. Schematic drawn of the realized CZTS based heterojunctions.

CZTS solar cell is formed of a stack of two layers mainly CZTS as absorber layer and a buffer layer to form an heterojunction
and two electrodes. Cadmium sulfide (CdS) thin film is the most used buffer layer. While, Mo  film is the commonly used
back contact. However, concerns are stressed about Cd due to its toxicity and Mo  back contact due to the formation of MoS2
at the interface [14,15]. Few studies have been devoted to less hazardous buffer layer such as ZnS and to the effect of metal
back contact nature. The only compiled papers dealing with back contact metal are Vigin-Galan et al. paper [16] where they
carried a preliminary study in the specific contact resistance on sprayed CZTS thin films and Altamura et al. paper [17], they
studied several alternative back contact in CZTSSe solar cells such as (Au, W,  Pd, Pt, and Ni).

To date the highest efficiency achieved with CZTS based solar cell is 9.2% with a large deficit in the open circuit voltage
(708 mV)  [18]. This is due to the interface recombination due to the cliff like band alignment [19] in one hand and to the
lattice misfit between CZTS and buffer layer on the other hand [20]. This results in the appearance of a large density at the
interface causing a minority carrier recombination at the heterojunction interface [21]. Few experimental studies have been
devoted to the determination of the interface density of states in CZTS heterojunction based.

In the present study we investigated the electrical properties of Cd free CZTS based heterojunction using ZnS buffer layer
in replacement of CdS. The investigated structure is formed with FTO/ZnS/CZTS/Au(Ag,Al). The advantage of the present
work is that all active layers are deposited by the same system using spray pyrolysis technique. Three different metals (Au,
Ag and Al) are tested as back contact instead of commonly used Mo.  The interface state density is also determined using the
conductance measurements.

2. Experimental details

The studied heterojunctions are formed with the heterostructure FTO/ZnS/CZTS/Metal on glass substrate (as depicted
in Fig. 1). Both FTO (fluorine doped tin oxide), ZnS and CZTS layers are deposited with the same ultrasonic spray pyrolysis
deposition system. FTO used as transparent front contact layer was  prepared by dissolving 0.1 M tin chloride (SnCl·2H2O) in
distilled water with NH4F with the ratio F/Sn = 12%. Whereas, ZnS film was  prepared from a solution composed of dissolved
0.1 M zinc acetate (Zn(CH3COO)2-2H2O) in distilled water and 0.05 M of thiourea. The active layer CZTS was  prepared from
a solution composed with a mixture: copper chloride (0.03 M),  zinc acetate (0.01 M),  tin chloride (0.01 M)  and thiourea
(0.12 M).  The solutions were thoroughly mixed by magnetic stirring (during 10 min), until an homogeneous transparent
solutions were obtained. The deposition temperature was fixed at 350 ◦C. Three metals are tested as back contact namely
gold (Au), aluminum(Al) and silver(Ag), the former was deposited by DC sputtering, while Al and Ag contacts are prepared
by thermal evaporation. The contacts are deposited successively of the top surface of the device (as shown in Fig. 1) in order
to have the same heterojunction.

The structural characterizations of different layers were achieved using high resolution X-ray diffractometer (XRD, X’pert
Pro) with Cu K� line to confirm films formation and structure. The optical properties were studied by means of UV–vis
spectrometry. The electrical characterization was achieved by Hall Effect measurements. The heterojunctions electrical
properties were studied using current-voltage characteristic in the dark and at different temperatures ranged from ambient
to 100 ◦C. While the interface properties between (CZTS/ZnS) study were investigated using the Conductance-Capacitance
versus frequency technique.

3. Results and discussion

3.1. Films properties

In Fig. 2a–c we have reported the XRD patterns of different layers. The XRD pattern (Fig. 2a) of CZTS layer matches well
with the Kesterite CZTS phase JCPDS No. 26-0575 card. As can be seen, four clear diffraction peaks corresponding to the
(112), (200), (22 0), (312) and (224) planes of kesterite CZTS structure with the direction (112) as preferential orientation.
No other peaks, in XRD pattern, related to any secondary phase are observed. It is generally reported that CZTS regardless the
deposition technique is usually accompanied with a binary secondary phases [22–24]. However, it hard to asses from XRD
analysis that CZTS is pure this is due to the fact that the lattice constants of CZTS are similar to Cu2SnS3 (CTS) and ZnS, the
obtained peaks could be related to either CZTS or CTS or ZnS phases [25]. Thereafter to confirm secondary phases formation
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Fig. 2. XRD diffraction pattern of different layers deposited by spray pyrolysis (a) CZTS (b) ZnS and (c) FTO.

we further analyzed the film by Raman spectroscopy since it is a very sensitive tool for phase identification. As shown in Fig. 3
the existence of kesterite phase is confirmed with Raman scattering spectroscopy by the presence of intense Raman peak
at 337 cm−1 and the shoulder peaks at 282 and 362 cm−1.The same results has been reported by several authors [26–28].
While, the additional peak at 472 cm−1 is attributed to the CuxS phase, the same results was reported by Thiruvenkadam
et al. [29]. The formation of sulfide cupric secondary phase is due to the excess Cu in the used starting solution by comparison
to Zn.

In Fig. 2b, we have reported the DRX spectrum of ZnS film. The obtained diffraction pattern suggests the evidence of
Zn(OS) thin film formation rather than pure ZnS. Peaks assigned to ZnO and ZnS phases are present. As shown in Fig. 2b,
the plane (101) of hexagonal ZnO Wutrzite structure is clearly visible along with the planes (220), (311) and (204) of the
hexagonal ZnS cubic According to JCPDS card N 77-2100.

Actually, in contrary to PVD deposition (Sputtering, thermal evaporation), chemical route techniques such as: spray
pyrolysis, chemical bath, SILAR and sol gel techniques yield to ZnS formation mixed with ZnO phase. This is due to the fact
that in these techniques films are achieved in air or in aqueous solution [30–32] which favors oxygen contamination.

The performances of CZTS based solar cells is lowered by different causes such as MoS2 layer formation at the back
contact [33], the presence of secondary phases in the bulk [34], and especially the alignment lack of conduction bands at the
absorber/buffer interface [35]. Recently Ericson et al. [36] have investigated Zn(O,S) system as buffer layer in CSTZ solar cell,
they have shown that conduction bang gap offset can be tailored through the conduction band variation by controlling the
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Fig. 3. Raman spectrum of CZTS layer.

Fig. 4. Optical transmittance spectra of different layers in the Uv visible range.

Table 1
Majority carrier concentration, electrical conductivity, optical band gap and mobility measured in different layers.

concentration(cm−3) �(cm2/Vs) �(cm�)−1 Eg (eV)

CZTS 4 × 1013 8.15 × 103 5.2 × 10−2 1.6
FTO  3.3 × 1019 19.42 102 3.3
ZnS  – – 10−4 3.9

ratio of oxygen to sulfur [37], and that the optimum conduction band alignment for CZTS lies in between the ZnO and the
ZnS values. This has been experimentally observed [38]. It has been claimed also that ZnOS film is more preferable partner
than ZnS to form an ideal heterojunction due the lower conduction band offset at the interface with SnS absorber layer [39].

The XRD diffraction of FTO film is shown in Fig. 2c. Several peaks assigned to the tetragonal rutile SnO2 phase such as
(110), (101) and (111) are present, indicating the formation of polycrystalline SnO2 with (110) as preferential orientation,
the same results is recently reported in SnO2 thin films prepared by spray pyrolysis [40,41] and sol gel technique [42].

Fig. 4 shows the transmittance spectra of different layers CZTS, ZnS and FTO in the visible range. Both FTO and ZnS layer
exhibit a large transmittance spectra due to the fact that they are wide band gap semiconductors. For application in thin
film solar cells, these two layers should be transparent, since they are used as windows for visible wavelength to allow the
incident photons to reach the CZTS absorber layer. While, as shown in insert Fig. 4, CZTS layer is highly absorbent.

Moreover, FTO layer should be also highly conducting. The fluorine is introduced in SnO2 in order to enhance its con-
ductivity since the two requirements for FTO use as transparent electrode is a high transparency and a large conductivity.
The measured conductivity of the deposited FTO is equal to 102 (� cm)−1, the efficient introduction of fluorine as donor
is also assed from the transmittance spectrum in the uv visible near infrared rang as shown in Fig. 5, the reduction in the
transmittance in the near infra red range is caused by the reflection due the large free carriers concentration which is equal
3 × 1019 cm−1 as reported in Table 1.

The optical gap energies of CZTS, ZnS and FTO were calculated from the plot of (�h�)2 vs h�, where h� represent the
energy of incident photon and � is the absorption coefficient estimated from the transmittance values.

Fig. 6a–c shows the plots of (�h�)2 vs h� plots of the three layers, the value of band gap energy are deduced from the
linear extrapolation of the plot (�h�) 2 versus h� with h� axis, the values of optical band gaps measured of CZTS, ZnS and
FTO are 1.6, 3.3 and 3.9 eV respectively.
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Fig. 5. Optical transmittance spectrum of FTO layer in visible and near infrared wavelength region.

Table 2
Electrical parameters of heterojunctions prepared with different metal back contact measured in dark and ambient temperature. n ideality factor, Is
saturation current Rs series resistance and �b junction barrier height.

Structure CZTS/Al CZTS/Ag CZTS/Au

n 11.4 10.5 5.9
Is  × 10−6(A) 18.57 30 1.27
Rs(k�)  2.1 1.42 2
�b(eV) 0.38 0.29 0.28

The calculated optical band gap together with electrical properties (free carrier concentration, mobility and dark conduc-
tivity) of different films deduced from Hall Effect measurements are reported in Table 1. The FTO thin film deposition show
a good conductivity about 102 (cm�)−1 and a carrier concentration about 1019 cm−3 whereas CZTS film has a conductivity
in the order the 10−2 (cm�)−1.

3.2. Device properties

The device current–voltage (IV) characteristics yields to important information about junction parameters such as: series
resistance (Rs), diode ideality factor (n), saturation current (Is), barrier height (�b) and the major conduction mechanisms
through the junction. In Fig. 7 we have reported the IV characteristics of different heterojunctions obtained with the three
studied back contact. As can be seen there is no noticeable difference between the three characteristics. All heterostructure
exhibit a rectifying behavior. Moreover, the reverse voltage characteristics show no saturation, indicating that defect-assisted
generation or tunneling mechanism occurring [43].

Their characteristics can be described by the following equation:

I (V) = Is
(

exp
(

qV
KTn

)
− 1

)
(1)

Where k is the Boltzmann constant, T is the absolute temperature, q is the elementary electronic charge and n is the ideality
factor. Is is the saturation current, it can be expressed as:

Is∼T2exp
(−qϕb

KT

)
(2)

The ideality factor is determined from the slope of the linear region of forward bias ln (I)–V plot and defined as:

n = q
kT

(
dV

d (lnI)

)
(3)

In Table 2 we have reported the calculated values of the ideality factor. The ideality factor indicates how closely the
structure IV characteristic follows the ideal diode equation. The diode-ideality factor is directly related to the carrier transport
mechanisms. According to Sah–Noyce–Shockley theory [44], it is equal to1 if the forward current is dominated by the
recombination in the quasi-neutral regions. While, recombination in the space charge region yields to an ideality factor
equal to 2, as reported in Table 2, the ideality factors calculated in the realized heterojunctions are large and depend on the
nature of the used metal contact, they are respectively equal to 11.4, 10.5 and 5.9 for Al, Ag and Au contact. Several authors
have reported anomalous ideality factor values in different heterojunction and pn junction [45–47] where an ideality factor
(n > 5) is found.

The origin of the large value of n may  be due to the metal/CZTS contact. Indeed when the contact is not ohmic, the
heterojunction can be modeled as a series of diodes and resistors in series, according to Shah-Li-Schubert [45] the ideality
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Fig. 6. Tauc plots used for optical band gap calculation of different layers: (a) CZTS, (b) ZnS and (c) FTO.

factor is the sum of ideality factor of each diode. Jing-Jing et al. [47] have explained the measured 18.8 ideality factor in
ZnO(Al)/(p)SI heterojunction in terms of metal contact nature. The same reason has been proposed by Shah et al. [45] to
explain the anomalous ideality factor of 6.9 measured in the heterostructure p-type AlGaN/GaN.

To assess the nature of contact between CZTS and the used contact metal one should compare the work function �M of
the metal to �S of the semiconductor. The optical gap of the prepared CZTS film is equal to 1.6 eV, the conductivity activation
energy (which equal to the difference EF-EV) is equal to 250 meV. Thereafter, knowing that CZTS affinity is given equal to
4.21 eV, the work function of CZTS is then equal to 5.57 eV.

It is well known that in the case of �M < �S, the metal semiconductor contact is ohmic if the semiconductor is n type and
is Schottky contact if p type. Thereafter, since CZTS is a p type semiconductor, and according of the work function of the used
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Fig. 7. IV characteristics of different CZTS/ZnS heterojunctions prepared with various back contact metals.

metals (4.26, 4.28 and 5.1 eV for Ag, Al and Au respectively), Al and Ag are candidates to yield a Schottky contact with CZTS,
in contrary in the case of Au, the contact with CZTS could be ohmic. This can explain then the large ideality factor measured
in the heterojunction obtained when using Al and Ag back contact. While, the large value measured in the structure obtained
with Au back contact (n = 5.9) can be due to the defects located at the interface. Similar results (n > 20) were reported by
Raddy et al. [48] in the n-ZnO nanorods/p-Si devices, they suggested that the large value of n is probably due to the presence
of defect states in ZnO lattice and/or the presence of traps at the interface [49]. Actually, the large value of ideality factor
could be also due to numerous reasons such as recombination of electrons and holes in depletion region, the presence of
interfacial layer [50,51], the trap-assisted tunneling [52,53] and carrier leakage [53] and the non-homogeneities in junction
barrier heights [54,55].

In Fig. 8 we have reported the variation of IV characteristics measured at different temperatures. The reverse saturation
current (Is) derived from the straight line intercept of log (I) at V = 0. The saturation current is thermally activated, the barrier
height was estimated according to the relation (3) from the slope of the Arrhenius plot of ln(Is/T2) as function of 103/T. In
Table 2 we have reported the estimated saturation current at the ambient temperature and the barrier height. The lower
saturation current and barrier height are measured in the heterojunction using Au as a back contact.

The value of ideality factor of devices measured at different temperatures is found to be sensitive to the measurement
temperature, it decreases with increasing temperature. This phenomenon, commonly referred as “To-effect”, was first pro-
posed by [56]. The variation of n with T has been explained by several authors [57,58]. According to the proposed model,
the temperature dependence of n suggests that the carrier generation-recombination process involves defect states. The
temperature dependence of n may  be modeled as [59]:

n = n0+T0/T (4)

where n0 and T0 are constants which are independent of temperature and voltage.
The variation of n with temperature is shown in Fig. 9, the variation of n as function of reverse temperature (insert

Fig. 9) fits to a straight line as predicted from Eq. (4). This suggests the involvement of several defect levels in carrier
generation-recombination processes and also the tunneling effects contribution in carrier transport [59].

The series resistances were calculated from I–V curve at high bias, their values are in the order of K� as reported in
Table 2, and these values can explain the obtained large ideality factor as mentioned above. The resistance series is lower
when using Ag as back contact this can be due to the low work function of Ag by comparison to other metals.

3.2.1. Conductance-frequency characteristic
The capacitance and conductance versus frequency are an important techniques to extract the interface states properties

in heterojunction or homojunction devices [60]. However, the conductance technique determines the interface states with
more accuracy than capacitance technique [61], this is due to the fact that conductance comes only from the interface states
[60].

Capacitance and conductance measurements are carried out in dark with a frequency range varied from 1.2 KHZ to
1 MHZ  and voltage about V = 0.3 V at ambient temperature. In Fig. 10 we  have reported the measured capacitance (C)
and conductance (G) as function of measurement frequency in different structures Au/CZTS/ZnS/FTO, Ag/CZTS/ZnS/FTO and
Al/CZTS/ZnS/FTO. The high value of capacitance measured at low frequency is due to the fact that the trapped electrons at the
interface can follow the ac signal at low frequency. With further frequency increase, trapped electrons cannot follow the high
frequency signal [62] and the capacitance decreases to reach its smallest value at 1MHZ. Therefore, the capacitance at high
frequency (� > �r) represents the free-carrier response. Whereas, at low frequency (lower than the thermal emission rate
of deep level) the defects can be charged and discharged, which allow them to contribute in the total junction capacitance.
Thereafter, the capacitance represents the response of both free carriers and traps [63,64], it can be then described as: [65].

C = Csc + Css(atlowfrequency� < �r)
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Fig. 8. IV characteristics measured at various temperatures of different CZTS based heterojunctions using different back contact metals: (a) Ag, (b) Al and
(c)  Au.

Whereas, C = Csc(athighfrequency�  > �r)

Where: Csc is the capacitance of space charge region Css: is the interfacial capacitance
The presence of interfacial state in a hetero-junction is accompanied by a flexion in the C–f curve and by a resonant

peak in conductance (G/w) versus angular frequency, as can be seen in Fig. 11. This resonant peak occurs when the trapped
carriers emission rate (�r) is the same order than the angular frequency of the ac signal (� = �r). The frequency wr of the
resonant peak is expressed by the following relation [66]:

�r (T) = 2et (T) = A.T2expo
(

− Ea

KT

)
(4)

Where: �r is the inflection frequency et is the emission rate of trapped charges and Ea is the activation energy.
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Fig. 9. variation of the ideality factor n of different heterojunction as a function of temperature, insert variation of n as a function of temperature reverse.

Fig. 10. Capacity dependence on frequency measurement recorded in the prepared heterojunctions with various back contact metals.

The interface state density (Nss) can be deduced from the conductance peak by using the following relation [67]:

Nss =
(

G/ω
)

max

0.402qS
(5)

Where q is the electronic charge and S is the diode area.
The time constant � for electrons exchange between interface states and valence band can be calculated using the relation

� = 1/�r [68].
The interface states densities of the hetero-structures were found in the order of 1010 cm−2 eV−1 and the trap time

constant about 10−7 s for the two structures prepared with Al and Ag as back contact, while in the case of the heterojunction
prepared with Au contact, we have measured a defect interface density lower by one order of decade (Table 3). The larger
measured interface states in the devices prepared with Al and Ag back contacts can be associated to the contribution of the
depletion layer formed between the metal and CZTS due to the Schottky contact nature as suggested by the ideality factor
values. Thereafter, Au metal can be used as back contact in CZTS based solar cell, this is consistent with the Aaron et al. recent
US pattent [69] where they succeeded in improving the efficiency of CZTS/CdS and CZTS/ZnS solar by using Au or Pt as back
contact due to their relative large work function.
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Fig. 11. Conductance dependence on frequency measurement recorded in the prepared heterojunctions with various back contact metals.

Table 3
Interface density of states and their time constant estimated from G-f measurement in heterojunctions prepared with different metal back contact.

Structure Nss × 1010 (ev1 cm2) � × 10−7 (s)

Al/CZTS/ZnS/FTO 1.39 2.64
Ag/CZTS/ZnS/FTO 3.48 2.65
Au/CZTS/ZnS/FTO 0.28 1.9

4. Conclusions

In the present work, the electrical properties of CZTS/ZnS based heterojunctions were studied. ZnS layer is used as
alternative of CdS buffer layer. Three different back metals contact (Al, Au and Ag) were tested to investigate the influence of
metal contact nature on device properties in order to found an alternative metal of the commonly used Molybdenum. FTO,
CZTS and ZnS layers were prepared by a simple pneumatic spray pyrolysis technique. The electrical devices characterization
were achieved by (I–V) at ambient and at different temperatures and C-G–f measurements. The whole IV characteristics
exhibit a rectifying behavior. The ideality factor of all devices were found to be large, it is found equal to 5.9 when using
Au contact and equal to 10.5 and 11.4 in heterojunction prepared with Ag and Al back contact respectively. The anomalous
ideality factors greater than unity are explained in terms of the Schottky contact nature between CZTS, Al and Ag in one
hand and by the presence of interface states and the series resistance on the other hand. The high value of the ideality factor
suggests that the current transport mechanism in the devices is achieved by tunneling assisted by interface states emission-
recombination rather than by the thermionic emission. The capacitance and conductance versus frequency characteristic
reveals the presence of defects in CZTS/ZnS interface with a density in the order the 1010 cm−3 when using Al or Ag as back
contact, while it is found one order of decade lower when using Au metal contact. The defects time constant is found equal
to 10−7 s. Finally we inferred that Au metal can be use as back contact for based CZTS heterojunction solar cells as alternative
to Mo.
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Abstract
In the present work,  Cu2ZnSnS4 (CZTS) thin films were deposited by spray pyrolysis, the effect of zinc molarity on films 
structural, optical and electrical properties was investigated. CZTS films were grown by pneumatic spray pyrolysis with 
various zinc salt molarities. The structural properties reveal that all prepared CZTS films have a kesterite structure with a 
preferential orientation along (112) plan with the presence of secondary phases. Film composition and structural property 
vary with Zn molarity: at relatively low Zn molarity CuS secondary phase is formed, while with increasing Zn molarity ZnS 
secondary phase is formed. The crystallite size increases from 25 to 125 nm with increasing Zn molarity. Films transmission 
spectra show low transmission in the visible range, whereas the band gaps varies slightly with Zn salt molarity, it lies between 
1.3 and 1.37 eV. Hall Effect measurements were employed to determine the electrical properties of CZTS films. The films 
conductivity is a p type, it is reduced with increasing Zn molarity due to the reduction of free carriers concentration caused 
by carriers loss at ZnS/CZTS interface and the presence of the resistive ZnS phase.

1 Introduction

Among quaternary semiconductors,  Cu2ZnSnS4 compound 
has drawn much interest due to its application in thin films 
based solar cells. This material belongs to the  I2–II–IV–VI4 
class, CZTS has similar optical and electronic properties 
as compared to CIGS (copper indium gallium selenium). 
CZTS is composed of abundant, non-toxic and cheaper ele-
ments, in contrast to indium high cost and cadmium toxicity 
encountered in CIGS and CdTe materials.

The first report dealing with CZTS thin films was by 
Ito and Nakazawa, they have prepared CZTS thin films by 
sputtering technique [1]. CZTS material has a p-type elec-
trical conductivity with a direct band gap energy around 
1.5 eV and a high absorption coefficient in the visible range 

(α > 104 cm−1) [2]. The efficiency of CZTS based solar cell 
exceeds 12% with films deposited by physical technique 
[3]. While, for chemical technique, Ahmed et al. [4] have 
reported a conversion efficiency about more than 7.3% in 
CZTS based solar cell prepared by electrodeposition route. 
However, the experimental record efficiency of CZTS based 
solar cells is still far from the theoretical value 32% [5]. 
Actually, thin films solar cell efficiency is greatly influenced 
by the absorber layer deposition technique. Beside this, the 
other CZTS solar cell efficiency limiting factor is the for-
mation of secondary phases that could be present in CZTS 
network such as: ZnS,  CuxS, SnS,  Cu2SnS3. Actually, ZnS 
secondary phase can absorb the shorter wavelengths which 
causes the photocurrent reduction; whereas,  CuxS phase acts 
as recombination centre and thereafter reduces the device 
open circuit voltage [6]. Bhosale et al. investigated copper 
concentration effect under Cu rich-Zn poor condition and 
inferred that efficiency and open circuit rise with copper 
concentration increasing [7]. Therefore, well understanding 
of CZTS properties, investigation of deposition parameters 
influence upon device performances are still open studies 
and ambitious tasks. Till now, there is no general agreement 
and unanimity about which are the ideal conditions to obtain 
efficient devices from CZTS films: Zn-rich Cu-poor [8, 9] or 
Zn-poor Cu-rich [10–12].
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Several deposition techniques were employed to prepare 
CZTS thin films namely: electron beam evaporation [13], 
pulsed laser deposition [14, 15], sputtering [16], electro-
deposition [17], sol gel method [18], photochemical deposi-
tion [19] and spray pyrolysis [20–22].

Among these techniques, spray pyrolysis appears as an 
interesting technique for preparing  Cu2ZnSnS4 thin films 
[23]. This technique is very attractive because it is simple, 
inexpensive and non vacuum based technique, it is suitable 
for homogeneous thin films production on large surface.

In spray pyrolysis technique, several parameters that may 
alter the post deposited films properties can be controlled 
such as: substrate temperature, precursors salts source 
nature, flow rate solution molarities. Nakayama and Ito [24] 
studied the effect of ethanol and zinc concentration in the 
starting solution on the properties of spray deposited CZTS 
films using  N2 as the carrier gas. Films grown from aqueous 
solution are near stoichiometric CZTS films were obtained 
with a solution containing 30% ethanol. Subsequent anneal-
ing of the films in sulphur ambient was found to be nec-
essary. Madara et al. [25] deposited CZTS films by spray 
pyrolysis using thiourea complexes. Kamoun et al. [20], 
Kishore et al. [21] and Darenfed et al. [21] have investigated 
the effect of substrate temperature and the spray duration on 
CZTS films growth.

Regardless the deposition technique, the major concern 
with CZTS thin films preparation is the difficulty of sto-
chiometry control due the inevitable presence of secondary 
phases, ,their formation depend on the experimental condi-
tions. Several studies revealed that the conditions to obtain 
a stochiometric quaternary CZTS films are too narrow due 
to its stability limit region regarding the composional ratios 
of different constituents [26, 27].

Moreover, CZTS electrical properties are extremely sen-
sitive to the Zn and Cu amount in film network. Few reports 
were devoted to study the effect of precursor molarities on 
the properties of CZTS thin films prepared by spray pyroly-
sis. In the present paper we have studied the effect of zinc 
molarity on CZTS thin films properties. CZTS films were 
grown by a pneumatic spray pyrolysis technique, the con-
centration of Zn is varied with a fixed concentration of Cu in 
order to vary their relative composition in the film.

2  Experimental details

CZTS films were grown onto well cleaned glass substrates 
by pneumatic spray pyrolysis technique. The solution was 
prepared by dissolving four precursors, cupric chloride 
 CuCl2·2H2O (0.02  M), tin chloride (0.01  M), thiourea 
SC(NH2)2 (0.12 M) and zinc acetate [Zn(C2H3O2)2·2H2O] 
with a varied molarities ranged from 0.01 to 0.025 M. All 
precursors were dissolved in distilled water. The obtained 

solutions were thoroughly mixed by magnetic stirring dur-
ing 10 min, until homogeneous transparent solutions are 
obtained. The solution was sprayed on heated glass sub-
strates at 350 °C for 30 min. The used carrier gas is air with 
a flow rate of 10 l/min. The samples are denoted as (CZTS1, 
CZTS2 and CZTS3) corresponding to the preparation molar-
ity 0.01, 0.015 and 0.025 M respectively. Film thicknesses 
are respectively 1.14, 1.45 and 1.75 µm.

Structural, morphological, optical and electrical proper-
ties of films were analyzed. The structural properties were 
determined using Philips X’Pert system with Cu Kα radia-
tion (λCu = 0.154056 nm) at room temperature with 2θ var-
ied in the range 20°–80°. The films surface morphology is 
studied by using the Atomic Force Microscopy AFM. The 
optical properties were studied by Shimadzu UV-3101 PC 
spectrophotometer transmissions in the UV–visible range 
(400–900 nm). Films thickness, gaps energy were calculated 
from the fitting of transmission data. Finally carriers con-
centration, mobility and electrical conductivity were deter-
mined from Hall effect measurement performed at home 
temperature.

3  Results and discussion

3.1  Structural properties

The XRD patterns of CZTS thin films obtained at differ-
ent zinc concentration are shown in Fig. 1. The diffraction 
angles varied from 20° to 80°. For the whole samples, peaks 
assigned to (112), (220), (321), (224) and (332) planes are 
present, indicating the formation of kesterite type CZTS 
according to (JCPDS cards-26-0575). As seen, the increase 
in zinc concentration improves CZTS films crystallinity with 
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Fig. 1  The XRD patterns of CZTS films prepared at different zinc 
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emerging the preferential orientation along (112) direction. 
This preferential orientation is commonly observed in CZTS 
thin films regardless the deposition technique [28, 29].

It is generally reported that CZTS, regardless the deposi-
tion technique, is usually accompanied with a binary second-
ary phases such as: CuS,  Cu2SnS3 (CTS) and ZnS [22–24]. 
However, it is hard to clearly detect these secondary phases, 
this is due to the fact that the lattice constants of CZTS are 
similar to CTS and ZnS, the obtained peaks could be related 
to either CZTS or CTS or ZnS phases [29, 30]. Due to the 
negative influence of secondary phases on CZTS based solar 
cell performances, one of the major challenges for these 
solar cells is the growth of single phase material.

In the case of films prepared at relatively low Zn concen-
tration, CuS phase was detected; it is confirmed by the pres-
ence of the diffraction peak assigned to the (101) plane of 
CuS phase [according to (JCPDS No. 65-3928)]. While, as 
the zinc acetate concentration increases in the solution, ZnS 
phase is formed. The presence of ZnS phase is confirmed by 
the presence of two diffraction peaks assigned only to (200) 
and (222) plane related to ZnS phase (JCPDS No. 05-0566).

CuS phase is the first formed secondary phase, this is due 
to the fact that the film is prepared under Cu rich condition 
since the Zn source precursor molarity is lower than Cu one. 
While, with Zn molarity increase, ZnS phase is formed in 
the detriment of CuS one. The same observation of Zn effect 
in the composition of CZTS thin films prepared by sequen-
tial reactive sputtering have been observed by Sing et al. [31] 
with varying Zn thickness layer. They reported that at low 
Zn content, secondary CuS is formed, while with increasing 
Zn concentration the ZnS phase appears then.

In a theoretical calculation of the defect formation and 
stochioemetry of CZTS thin films, Chen et al. [27] have 
claimed that chemical-potential control is very important 
in growing good-quality crystals with no secondary phase 
formation and low-defect density. The chemical-potential 
control is necessary for growing good-quality  Cu2ZnSnS4 
crystals. In particular, due to the strong binding between 
Zn and S, Zn content control should be taken very care-
fully. Thus, perfect  Cu2ZnSnS4 crystals are thermody-
namically unstable when Zn is rich. It is experimentally 
observed that under Cu poor and Zn-rich conditions, the 
secondary phase segregation of ZnS is more likely to 
occur [32, 33]. Thereafter, CZTS thin films deposition is 
usually accompanied by secondary phase formation. The 
most formed one is CuS due to its low formation enthalpy 
− 0.45 eV. However, due to its larger formation enthalpy 
− 1.47 eV ZnS is inevitably formed in high Zn rich con-
dition. This explains the formation of ZnS with increas-
ing Zn concentration in the solution. Berg et al. [34] have 
proved that the presence of ZnS secondary phase in CZTS 
thin films causes the (112) peak position shift towards the 
higher angles. This is consistent with observed peak shift 

as depicted in Fig. 2. As seen the peak position is shifted 
with increasing Zn concentration due to the formation of 
ZnS phase.

The crystallites size (D) in the films has been deter-
mined from the XRD data using the Scherer’s formula 
[35]. 

where λ is the wavelength of the X-ray used, Δ(2θ) is the full 
width at half maximum of the peak and θ is the Bragg angle.

The value of FWHM and the calculated crystallite size 
are summarized in Table 1. The crystallites size increases 
from 28 to 133 nm with increasing zinc concentration in 
the starting solution. Thereafter, one can conclude that 
increasing zinc salt concentration improves the crystallite 
size of CZTS thin films. We speculate that Zn atoms acts 
as nucleation center. Thereafter, increasing Zn molarity 
may enhances the nucleation step during film formation 
and then the crystallite size. The same conclusion has been 
reported by Berg et al. in a study of detection limit of 
secondary phase in CZTS thin films [34], they concluded 
that increasing Zn composition in the starting solution 
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Fig. 2  The variation of (112) peak position in XRD pattern of CZTS 
films as a function of Zn molarity

Table 1  The FWHM values and grains size of (112) orientation of 
CZTS thin films obtained at different zinc concentrations

Sample CZTS1 CZTS2 CZTS3

Zinc concentration 0.01 0.015 0.025
FWHM (2θ°) 0.2303 0.2326 0.2814
Crystallite size (nm) 29.23 35.46 133.51
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used for CZTS deposition by electrodeposition technique 
enlarges the crystallite size. Singh et al. [29] investigated 
Zn influence in CZTS films prepared by sequential sput-
tering of metallic targets, they investigated Zn influence 
and concluded that sample with higher Zn content have 
better crystallinity .

3.2  Morphological properties

AFM 3-dimensional micrographs obtained in different 
films are depicted in (Fig. 3). The AFM measurements are 
performed at room temperature. The films are dense and 
continuous, the surface is well covered with a relatively 
large grains and pinholes free. The surface films roughness 
increases with zinc concentration, the roughness values are 
summarized in Table 2. As can be deduced from Table 2, 
film gains size is larger in films prepared with higher zinc 
molarity, this is in good agreement with the crystallites size 
enlargement deduced from XRD measurements.

3.3  Optical and electrical properties

The transmission spectra of sprayed CZTS films depos-
ited at different zinc concentrations were investigated 
using UV–visible spectrophotometer in spectral range of 
(400–900) nm. The variation of the transmittance as func-
tion of wavelength is depicted in Fig. 4. As can be seen, the 
whole films have low transmission (< 2%) with an absorp-
tion coefficient larger than  104 cm−1, which is in agreement 
with that reported results in the literature [33, 36, 37]. This 
large absorption coefficient is highly recommended for 
application as absorber layer in thin films solar cells. The 
concentration of zinc acetate reduces films transmittance, 
due to the increase in film thickness.

Fig. 3  AFM images of CZTS thin films prepared at different zinc 
molarities: a 0.01 M, b 0.015 M and c 0.02 M

Table 2  RMS values as function 
of zinc concentration

Zinc concentration RMS (nm)

CZTS1 146.36
CZTS2 215.95
CZTS3 248.50
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Fig. 4  Optical transmission spectra in the visible range of CZTS thin 
films deposited with different zinc molarities
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The band gaps energy (Eg) of CZTS films were estimated 
from the analysis of the optical transmission. The relation 
between the absorption coefficient α and the photon energy 
hν is given by (2): 

where B is a constant, Eg the band gap energy which is 
determined from the variation of (αhν)2 vs. (hν). Eg is deter-
mined by extrapolating the linear portion of the spectrum 
to �h� = 0 , as shown in Fig. 5. The band gap energy calcu-
lated values are reported in Fig. 6, they vary in the range of 
1.3–1.37 eV which is in good concordance with the reported 
gap values of CZTS [38].

The gap energy decreases slightly with zinc concentra-
tion. The same behavior of optical band enlargement has been 
reported by Malbera et al. [39] with increasing tin and Zn 
concentration [29].

From ab initio calculations Chen et al. [40, 41] has climbed 
that a reduction in Zn or Sn content introduces a large density 
of acceptor defects such as  Vzn,  Cuzn,  VSn,  CuSn, and  ZnSn anti-
sites. These defects may create shallow acceptor levels respon-
sible for the change in material absorption edge and optical 
band gap shrinking. This variation can be also explained in 
terms of the disorder as depicted in the drawing insert in Fig. 6. 
The optical gap broadening of sample(CZTS3) can be related 
to the apparition of ZnS secondary phase as suggested from 
XRD analysis. It is well argued [29, 42] that ZnS secondary 
phase is responsible for optical band gap enlargement.

The disorder in the film network is described by the band 
tail width which is called Urbach tail and expressed as [43]. 

(2)(�h�)2 = B(h� − Eg)

(3)� = �0 exp
(

h�

Eu

)

where α0 is the pre-exponential factor, hν the photon energy 
and Eu is the Urbach tail.

The Urbach tail (Eu) can be estimated from the inverse 
slope of the linear plot of ln(α) versus photons energy. Βoth 
energy band gap and Urbach tail are plotted as function of 
photon energy in Fig. 6. From this figure, we observe that 
the variations of band gap and Urbach energies have oppo-
site trends. Hence one can conclude that the disorder in film 
network controls the optical band gap energy variation .

The electrical properties of sprayed CZTS thin films are 
performed by Hall effect at room temperature, the carriers 
concentration. Hall mobility and electrical conductivity are 
tabulated in Table 3. The whole prepared films have p type 
conductivity according to Hall constant sign. Several authors 
found the same order of conductivity in CZTS thin films 
[44, 45]. In Fig. 7 we have presented the variation of both 
carrier concentration and conductivity as function of zinc 
molarities. According to Fig. 7, the conductivity variation is 
not only controlled by the free carriers concentration. Since, 
despite that the film prepared at 0.015 M enjoys the higher 
carrier concentration, its conductivity is not the higher one. 
It is well known that intrinsic point defects in CZTS play 
a major role and control CZTS electrical properties. Sev-
eral authors have calculated the defects formation energies 
in CZTS, based on first-principle theory [27, 41, 46–49]. 
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Table 3  The electrical parameters of CZTS thin films at different zinc 
concentration

Carrier concentration  (cm−3) Conduc-
tivity 
(Ω×m)−1

CZTS1 1.082 × 1022 14.35
CZTS2 3.36 × 1023 12.44
CZTS3 3.32 × 1016 2.2
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It has been claimed that copper vacancies  (VCu) and  CuZn 
can be easily formed and are the dominant acceptor defects 
in CZTS [41, 48, 49]. They form shallow acceptor levels 
in CZTS leading to p-doping. Thereafter, with increasing 
Zn concentration in the starting solution,  CuZn defects are 
reduced causing the decrease in free carriers concentration 
as shown in Fig. 7.

The films conductivity is also controlled by the secondary 
phases present in film network. It is well known that lattice 
mismatch between CZTS and the secondary phase give rise 
to interface states within the band gap (due to the dangling 
bonds). Hence a shorter carrier lifetime and carriers loss at 
the CZTS/secondary phase interface cause the conductivity 
reduction. On the other hand, the resistive ZnS secondary 
phase that appears with increasing Zn concentration could 
be the cause of conductivity reduction of CZTS film. This 
is consistent with Mitzi et al. conclusion [50] where they 
inferred that ZnS is responsible for the high series resist-
ance observed in CZTS based solar cells. While the relative 
high conductivity measured in film prepared with low Zn 
molarity may originate from the segregation of conductive 
 CuxS phase.

4  Conclusion

CZTS thin films were successively deposited by a sample 
and economic spray pyrolysis technique. The effect of zinc 
salt molarity on films properties was investigated. The XRD 
patterns confirm the formation of kesterite structure of the 
obtained CZTS thin film with a preferential orientation 
along (112) plan. Films are composed of secondary phases 
such as CuS at relatively low Zn molarity and ZnS phase 
when film is deposited with higher Zn precursor molarities. 

Atomic Force Microscopy images shows that the film rough-
ness increases with zinc concentration. Increasing the Zn 
molarity improved the film crystallinity and the optical band 
gap broadening. Electrical characterization reveals that films 
conductivity is a p type. Due to the presence of ZnS phase 
the electrical conductivity is reduced due to the reduction of 
free carriers concentration. Thereafter, we concluded from 
the obtained results that in order to avoid the negative ZnS 
phase, it is recommended to use a relatively low Zn salt 
molarity concentration.
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Abstract
Cu2ZnSnS4 (CZTS) thinfilmswere successfully deposited by a simple and inexpensive technique such
as ultrasonic spray pyrolysis. The effect of sulfurization temperature onCZTSfilms properties and on
Mo/CZTS/CdS/ZnO/ZnO:Al solar cell performances were studied. The investigated sulfurization
temperatures were ranged from450 °C to 550 °C.X-ray-diffraction pattern andRaman scattering
spectroscopy confirmed the formation ofmonophase kesterite CZTS, the best crystallinity was
obtained in the sample sulfurized at 450 °C.Atomic forcesmicroscopy images indicated that
annealing temperature increase yields to roughfilmswith large grain size. UV–visible optical
transmittance spectroscopy reveals thatfilms enjoy a strong absorptionwith an absorption coefficient
as high as 104 cm−3.Whereas, the optical band gap energywas found to decrease with sulfurization
temperature. Hall effectmeasurements confirm thefilms p-type conductivity; the carriers concentra-
tion varies between 1014 and 1016 cm−3 when the sulfurization temperature changes from450 °C to
550 °C. The I–V characteristics of the realizedMo/CZTS/CdS/ZnO/ZnO:Al cells indicated that all
the devices show a rectification behavior with an ideality factor ranged from1.6 to 1.8. The current
transport is dominated by the interfacial recombination process. The photovoltaic effect was observed,
the best performance was achieved in the device preparedwithCZTS sulfurized film at 450 °C, the
recorded characteristics are: 0.43% efficiency, 9.8mA cm−2 short circuit current, 161mVopen circuit
voltage and 28%fill factor. A comparison between the reported results obtained by different
techniques reveals the superiority of the cells preparedwithCZTS deposited by physical deposition
technique such as thermal evaporation or sputtering.

1. Introduction

During the last two decades, CZTS thinfilms has emerged as promisingmaterial for thin films solar cells
production as an alternative of CuIn(Ga)Se andCdTe solar cells due to the scarcity of In and toxicity of Se. CZTS
is composedwith abundant and environmental friendlymaterials. Besides this, CZTSfilm is characterized by a
large absorption coefficient (α∼104 cm−1) in theUV–visible range and an optical band gap of 1.5 eV, thus
makingCZTS thinfilms suitable for application as an absorber layer in solar cell [1, 2]. Furthermore, CZTS
based solar has a theoretical Shockley–Queisser conversion efficiency limit as high as 32.2% [3]. The best
recorded efficiency of CZTS solar cell prepared by non-vacuum route was about 7.4% reported byAhmad et al
[4], whereas Cu2ZnSnS4SeCZTS(Se)material achieved an efficiency about 12.6% [5]. Actually, the formation of
p–n rectifying hetero-junction responsible for the photo-generated carriers separation is achieved byCdS/
CZTShetrostructure. Cadmium sulfide (n-type semiconductor) layer, themost popular buffer layer this buffer,
provides the best performance due to themoderate CdS gap energy of (2.4 eV) [6–10].

CZTS thinfilms can be prepared by severalmethods, either vacuumor no vacuumprocesses. The reached
efficiency in laboratory is about 8.4% in the case of CZTS based solar cell deposited by vacuumprocess such as
sputtering technique [11], while, 4.13%of efficiencywas achieved by pulsed laser deposition [12]. Katagiri et al
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[13] reported an efficiency of about 6.48% and 6.7%by usingmagnetron sputtering and co-sputtering technique
of Cu, SnS, andZnS targets [14]. However, in the case of non-vacuum techniques, Ahmed et al [4] had reported
the best record efficiency using chemical route as equal as 7.4%. An efficiency of 5.1%was reported inCZTS spin
coating coated soar cell [15].

Among chemical route techniques, spray pyrolysis is themost suitable one for films deposition on large area.
Moreover, it is inexpensive and simple. Several authors have used this technique for CZTS thin films deposition
and solar cells production [16–19]. Bhosale et al [19] have studied the effect of copper concentration onCZTS/
CdS solar cells performance and found an efficiency ranged between 0.2% and 1.09%when the copper
concentration change from0.15 to 0.25, suggesting that CZTS thin films deposition underCu-rich Zn-poormay
enhance the solar cell efficiency. Vigil-Gal et al [20] had studied the effect of gas carrier onCZTS solar cell
performance, they found an efficiency of about 1%under argon gas and 0.5%using air as carrier gas. Up to date,
less studies are devoted toCZTS solar cell compared toCIGS technology even they have similar properties.
Additionally, the lowperformance of CZTS solar cell is generally due to its low open circuit voltage (Voc) [21].
Lowering the open circuit voltage ismainly due to the carriers recombination at CZTS/CdS interface [22–24]
because of the cliff-like band alignment betweenCZTS andCdS layers. Courel et al [25] have studied the loss
mechanisms in sprayed-CZTS solar cells; they inferred that CZTS thin film device low performance is due to the
lowminority carriers diffusion length values that affects strongly the short circuit current density.

The drawback of spray pyrolysismethod is the lack of sulfur due to its volatility, thereafter; generally, CZTS
films prepared by spray pyrolysis are subsequently post-annealed inH2S atmosphere to improve the film
stoichiometry. Thermal sulfurization of CZTSwaswidely used [26–29]; since his benefit in CZTS solar cells
efficiency enhancement has been proved.However, the best CZTS solar cell was produced by co-sputtering
continuedwith vapor phase sulfurizationmethod; efficiencies of up to 5.74%were reached [30].

In the present workwe have investigated the effect of sulfurization temperature on the properties of sprayed
CZTS thin film and on the electrical parameters ofMo/CZTS/CdS/ZnO/ZnO:Al solar cells.

2. Experimental

Ultrasonic spray pyrolysis systemwas used for CZTS thin film deposition onmolybdenum coated glasses
substrates. Glass substrates were cleaned firstly in a bath of acetone after rinsing in distilledwater and drying
underN2 gas. The starting solution used for CZTS depositionwas prepared by dissolving 0.01 Mof zinc acetate
and tin chloride 0.04 Mof copper acetatemonohydrate and 0.12 Mof thiourea. All precursors were dissolved in
distilledwater and stirred for 15 min until transparent solution obtained, then the solutionwas sprayed onMo-
coated glass heated at 350 °C, nitrogenwas used as carrier gas. TheMo/CZTS structure was annealed at different
temperature (450 °C–550 °C) inH2S:Ar gas (30 sccm) gasmixture atmosphere for 30 min. After annealing,
50 nm thickness cadmium sulfideCdS) layer was deposited ontoCZTS usingDC sputtering at 175 °C, followed
byDC sputtering deposition of an intrinsic ZnO layer andZnO:Al layer as window layerwith thicknesses of
50 nm. Finally, the device structure (figure 1)was completed by silver grids deposition on the top by thermal
evaporation technique. The structural properties of CZTS filmswere studied using x-ray diffraction (XRD) and
Raman scattering spectroscopy. Filmsmorphologywas studied bymeans of atomic forcesmicroscopy (AFM).
2D and 3DAFM topographywere obtainedwith scanning in area of 20×20 μm2 size using contactmodewith
0.65 Hz scan rate in air and at room temperature. The optical properties were characterized bymeans of optical
transmittance spectrophotometry in theUV–visible wavelength range. CZTSfilms electricalmeasurements
were carried out usingHall effectmeasurements. The I–V characteristics of the realized solar cells were analyzed
in dark and under illumination by a simulator solar with lamp intensity about 100 mW cm−2.

Figure 1. Schematic drawn of the realizedCZTS solar cells.
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3. Results and discussions

3.1. Films properties
TheXRDpatterns of CZTS thin films annealed at different sulfurization temperatures are shown infigure 2, the
observed peaks are related to the planes (112), (220) and (312) planes, they are assigned toCZTS kesterite
tetragonal phase (according to#27-0575 card), (112) plane exhibits the higher intensity indicating the
preferential orientation the same peaks positionwere observed in [31, 32]. Generally, CZTS thin films
deposition is accompanied by the formation of several secondary phases such as SnS, SnS2, Sn2S3, ZnS, and
Cu3SnS4 [33–36]

It is interesting to note that no peaks related to any secondary phase has been detected; this is confirmed by
Raman analysis, as show infigure 3. The absence of secondary phase can be a result for the thermal sulfurization,
which is a good solution for the reduction of undesirable phases asmention. The same observation has been
reported after CZTS sulfurization [37, 38].Moreover, according toXRDpatternsMo2S phase is not formed
during sulfurization step.While, it is reported that sulfurization yields to the formation of undesirableMo2S
phase [39–41].With increasing the annealing sulfurization temperature, XRDpeaks intensities are reduced, the
sample sulfurized at 450 °C exhibits themost intense and sharp peak. This indicated that high temperature
sulfurization degrades CZTS sprayed filmsmicrostructure.

The crystallites sizes were calculated from themost intense peak along (112)plane byDebye Scherer’s
equation [42].

Figure 2.XRDpatterns of CZTSfilms sulfurized at different temperatures.

Figure 3.Raman scattering of CZTS thinfilms sulfurized at different temperatures.
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The calculated values ofD, FWHMand strain are regrouped in table 1. As can be seen, increasing the
sulfurization temperature yields to the reduction of the crystallites size in one hand and the increase infilms
strain in the other hand. This confirms themicrostructure deterioration infilms annealed at temperatures
above 450 °C.

The structural properties were analyzed also via Raman scattering spectroscopy. Raman spectroscopy gives
the vibrationalmodes of bulkCZTS, it is a powerful tool for secondary phases detectionwhich is not evident by
XRD analysis. Raman spectra of CZTS are shown infigure 3. The single Raman intense peak located at 330 cm−1

is assigned to bulkCZTS [43–46]. As can be seen no peaks related to any secondary phases is observed
confirmingCZTSmonophase formation. The single phase formationmay two origins: (i) the used spray
pyrolysis technique, since similar results have been reported by several authors infilms prepared by spray
pyrolysismethod [32, 47]. (ii)The sulfurization temperature, Xu et alhave investigated the post sulfurization of
CZTS thin deposited by sputtering they concluded that after sulfurization pureCZTSwithout significant
amount of secondary phases is obtained after sulfurization at temperatures above 400 °C [48]. It is important to
note thatfilm annealed at 450 °Cpresent themost intense peak. This suggests that increasing sulfurization
temperature reduces thefilm cristallinity as concluded fromXRDanalysis.

CZTS thinfilms surfacemorphologywas characterized by using AFM images, as shown infigure 4. As can be
seen, annealing temperature increasing results infilms grains size enlargement and infilms surface roughness
increase, as reported in table 2.

The transmittance specters of CZTS thin films at different annealing temperature are depicted infigure 5. As
seen, thewholefilms exhibiting low transmission in the visible range (400–800 nm) smaller than 20%.While,
the transmission is enhancedwith increasing sulfurization temperature, this can be explained by the reduction
of the films thickness. Films annealing tends to the films densification by reducing its thickness, the same results
were reported inCZTSfilms prepared by sol–gelmethod [49] and in sputteredCZTSfilms after sulfurization at
450 °C [48].

The absorption coefficient of CZTS thinfilmwas calculated from transmission data. Themeasured low
optical transmittance and large absorption coefficient (higher than 104 cm−1) of CZTSfilms after sulfurization
implies that the obtained films are suitable candidates for application as absorber in thin film solar cell
technology. The optical band gap energy was extracted from transmission data fitting, their valueswere
estimated from the extrapolation of the linear section of (αhν)2 plot as function of photon energy (hν), as
illustrated infigure 6. Themeasured gap energies are reported in table 1. They are in concurrence with the
reported band gap energy of sprayedCZTS thinfilm [16, 50–52]. As seen,films optical gap is enlargedwith
increasing the sulfurization temperature; it varies from1.38 eV at 450 °C to 1.45 eV at 550 °C. The same results
were reported in electrodeposited CuIn(Se,S)2 sulfurized at a temperature varied between 450 °C and 550 °C
[53]. The optical band gap broadeningmay originate from the films densification and disorder reduction in
films network as a consequence of thermal annealing. Indeed, the film thickness is reduced from1420 to
1220 nmwith increasing annealing temperature. Actually, the network disorder reduction yields tofilms optical
band gap enlargement as observed in various thin film semiconductors [54]. Higher band gap values up to 1.7 eV
have been reported this was referred to the presence of secondary phases which enlarges the gap energy and
specially ZnS given that this phase has a large band gap energy about 3.7 eV.

The electrical properties of CZTS thinfilms at different annealing temperatures were carried out in the dark
and at room temperature usingHall effect. The p-type conductivity of CZTS semiconductor was assessed by the
positiveHall coefficient. Themeasured values of carrier concentration, conductivity andmobility are resumed
in table 3. Themeasuredmotilities are in agreement with the reported values laying between 0.1 and

Table 1.The FWHM, crystallite sizes and strain values of CZTSfilms
annealed at different temperatures.

AnnealedT (°C) FWHM (°) Crystallite size (nm) Strain

450 0.5117 16.7 0.0088

500 0.624 13.7 0.0108

550 0.614 13.9 0.0107
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10 cm2 V−1 s−1 [55, 56].While, film conductivity andmobility are reduced after thermal sulfurization due to the
reduction in the crystallites size as concluded fromXRDanalysis. The reduction in the crystallite size increases
the number of grain boundaries thatmay cause larger electrons scattering during their transport.

Figure 4. 3D and 2DAFM images of CZTS thinfilms: (a)non-annealed, (b)–(d) annealed at 450 °C, 500 °C, and 550 °C respectively.
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3.2. Characteristic of the devices
3.2.1. Current–voltages characteristic
The realized devices are tested under illumination using a simulator solar cell with a halogen lamp using a light
sourcewith intensity equal to 100 mW cm−2, the cell area is of 0.16 cm2. Figure 7 shows the semi-logarithmic
plot of current–voltagemeasurement of different CZTS/CdS hetero-junctions in the dark at room temperature

Table 2.Rms values of CZTS thinfilms at different condition.

Annealing (T °C) As deposited 450 500 550

Rms (nm) 23 98 80 53

Figure 5.Transmission spectra of sulfurized CZTSfilms at different temperatures.

Figure 6.Tauc’s plot of annealedCZTS thin films used for optical band gap calculation.

Table 3.Carrier concentration, Hallmobility and conductivity of CZTS films annealed at different temperatures.

Film thick-

ness (nm)
Band

gap (eV)
Carrier concentration

(cm−3)
Hallmobility

(cm2 V−1 s−1) Conductivity (Ω cm)−1

450 °C 1420 1.38 7.23×1015 9.16 10.61×10−3

500 °C 1260 1.42 8.58×10 14 0.41 0.56×10−3

550 °C 1220 1.45 8.78×1016 0.18 2.52×10−3
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and under illumination. Thewhole devices exhibit a rectification behavior. The rectification ratio (RR)was
calculated at a direct and reverse voltage value atV=±1. The values of RRwere varied between 8 and 5with the
large RR for the device annealed at 450 °C.The current across the hetero-junction varies exponentially with the
applied voltage and their variation can be described by the standard Schottky diode equation [57].

= -⎜ ⎟
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where: Is: saturation current; n is the ideality factor andV applied voltage, k is the Boltzmann constant,T is the
absolute temperature, q is the elementary electronic charge.

The ideality factor (n)was calculated from the variation of the slope of the linear portion of ln(I)–V and it can
be expressed as the following formula:
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The ideality factor n is an important parameter characterizing the diode behavior. It is used to determine
which transportmechanism across the hetero-junction is the dominant. In the case of n equal the unity, the
diffusion is the dominantmechanism,whereas if n�2, the recombination and generation in the depletion layer
is the dominant one [58].Whereas when n>6 it has been suggested that the interface states contributemainly
in the transport [59, 60]. The ideality factorwas found equal to 2.2 in the device realizedwith non annealed
CZTS layer.However in treated CZTSfilms the obtained ideality factor lays between 1.6 and 1.8when the
temperature varied between 450 °Cand 550 °C. This implies that generation-recombination process at the
depletion layer is the dominate transportmechanism through the hetero-junction. This suggests also the
presence of interface states and defect in the space charge regionwhich is act as charge carriers traps.Mali et al
[61] reported an ideality factor in the range of 2.2–2.9 for CZTS solar cells by SILARmethod, they claimed that
current transport inCZTS solar cell is controlled by recombination at high defected grain boundary region. In a
previouswork, wemeasured an ideality factormore than 5 inCZTS/ZnS hetero-junction; this was explained by
the presence of interfacial state defects with a density about 1010 cm−2 eV−1 [62]. Patel et al [63] reported a value
of interfacial states equal to 109 cm−3 at CZTS/CdS interface.

The saturation current (Is)was calculated from the semi-loge plot and equation (3) and reported in table 4.
The saturation current increase from291 to 587 μAwith sulfurization temperature indicates clearly the defects

Figure 7. Semi-log current density–voltage as function of voltage in the dark and under illumination.

Table 4.The extracted electrical parameters of realized solar cells.

T (°) Voc (meV) Jsc (mA cm−2) Rs (Ω) n Rsh (Ω) FF (%) PCE (%) Is (μA)

450 161 9.73 11.48 1.7 120 28 0.43 291.6

500 25.3 4.25 10.77 1.8 37 25 0.02 587

550 156 1.41 8.5 1.6 304 31 0.06 336

As deposited — — 11.83 2.2 — — — 120
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enhancement due to the grain boundary number increases as a consequence of crystallite size reductionwith
sulfurization temperature.

The series resistances (Rs)were calculated directly from the linear portion of I–V curve plot in the dark. The
obtained values are reported in table 4. The series resistance varies between 11 and 8Ω, it decreases with
sulfurization temperature increase. Amerani et al [64] has observed the same tend, they reported a decrease inRs

from48 to 14Ωwhen the sulfurization temperature increase from500 °C to 575 °C. Actually, the series
resistance regroups the back and frontmetal contacts resistances, the semiconductors bulk resistances and the
interfaces resistance [65]. Thereafter, it is hard to assess the origin ofRs variation. Despite that the film annealed
at 450 °C exhibits the highest conductivity, it has the largest series resistance, this is due the film thickness, as
shown in table 3, the film annealed at 450 °C is the thicker one. The drawback of the series resistance is the short
current circuits reduction and consequently the cell efficiency.

The other parameter affecting the solar cell performance is the shunt resistance (Rsh)which is duemainly to
the defects presence in the bulk of semiconductors and at interfaces. It is estimated from the reverse bias I–V
characteristics branch. Shunt resistance reduces drastically the open circuit voltageVoc. It should be as high as
possible in order to prevent losses [66]. ThemeasuredRsh values are reported in table 4. The highestRsh value
was found for the cell annealed at 550 °C (304Ω) and 120Ω for the one annealed at 450 °C,whereas the low
value ismeasured in the cell annealed at 500 °C, thereof, the latter presents the low efficiency andVoc values
(table 3).

Figure 8 depicts the I–V characteristics of CZTS thin film solar cells under illumination. All devices exhibit
photovoltaic behavior.While the photovoltaic effect was not observed in the un-annealed device (figure 7). The
cell annealed at 450 °C exhibits the bestVoc equal to 161 mVand Isc equal to 1.56 mAwith afill factor of 28% and
an efficiency of 0.43%.

This is due to the good crystallinity of the film sulfurized at 450 °C compared to the otherfilms. Thefilm
annealed at 500 °C leads to the lower efficiency, this is can be attributed to the its inferior crystalline quality
according toXRD andRaman analysis. This is consistent with themeasured high series resistance, low shunt
resistance and high current saturation in this cell (table 4).

In table 5we have compiled parameters of CZTS based solar cells reported by several authors workingwith
different deposition techniques andCZTSfilms treatments. Themost important conclusions that can be
retained are: the results are too spread, best results are achieved by the physical depositionmethods namely
thermal evaporation and sputtering.While, spray pyrolysis technique yields to inferior solar cell performances,
even though the sulfurization treatments is applied. Thereafter, despite that spray pyrolysis, technique is
considered as one of themost appropriate growthmethods to develop low-cost devices, it yields to low solar cell
efficiency. As can be seen, our result remains in the range of efficiency achieved by spray pyrolysis. This
discrepancymay originate from the filmsmicrostructure differences.We speculate that themajor reason of
spray pyrolysis inferiority is due to the achieved lowmaterial grain sizes. Indeed, grain size up to 2.5–1 μm
[64, 67] and 0.4 μm [4]were reported in sputtered and thermally evaporatedCZTS thin films respectively.While
in sprayedfilms the grain size do not exceed 300 nm [20, 68] in our case, we havemeasured a crystallite size of
16 nm.Grain boundaries introduce additional defects acting as recombination centers. The same conclusion has
been outlined byCourel et al [25], they explained that the inferiority of spray pyrolysis solar cells is originated
from the lowmobility of electron and recombination thatmay reduce drastically the open circuit, which is in
concordancewith our conclusion. It has been reported that this problem is particularlymore detrimental in

Figure 8.Current–voltage characterization of CZTS solar cells annealed at 450 °C, 500 °Cand 550 °C.
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CZTS-based devices, than in chalcopyrites (CuInGsa) Sn-based ones [69]. Any reduction in the grain size is
accompanied by the increase in the grain boundaries and consequently a recombination enhancement,
reduction in carriersmobility due to the scattering and the photo-generated carriers lifetime reduction. In fact,
lowmobility values are usually reported in CZTS thinfilms, particularly in samples deposited using spray
pyrolysis technique due to themicrostructure [17, 70]. Both these effects concur toVoc, FF and cell efficiency
reduction. Courel et al had studied the lossmechanism in sprayedCZTS solar cells and find that CTZS is
characterized by a lowminority carrier lifetime and defects inCZTS bulk [28]. This is in concordancewith
several authors conclusion claiming that spray pyrolysis technique produces low efficiency solar cells
[52, 71, 72].

4. Conclusion

In the present work, the effect of sulfurization temperature on sprayedCZTS thin films and on solar cells
performancewas investigated. XRD analysis andRaman spectroscopy reveal that after sulfurizationCZTS films
aremonophasic exempt from any secondary phases. Increasing the sulfurization temperature reduces slightly
the crystallite size and enhances thefilms strain. Films conductivity andmobility are reduced after thermal
sulfurization due to the reduction in the crystallites size. Films optical gap is enlargedwith increasing the
sulfurization temperature; it varies from1.38 eV at 450 °C to 1.45 eV at 550 °C.All the realized devicesMo/
CZTS/CdS/ZnO/ZnO:Al show a rectification behaviorwith an ideality factor varied between 1.6 and 1.8. The
best results are achieved in the cell preparedwithCZTS sulfurized at 450 °C, the obtained characteristics are:
0.43% efficiency, 161 mVopen circuit, 9.8 A cm−2 short circuit and 28%fill factor. A comparisonwith the
reported results, in the literature, by different authors and techniques indicates clearly that spray pyrolysis
technique yields to lower cell efficiencies due to the small crystallites size of CZTSfilms prepared by the latter
technique.
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Réalisation  et caractérisation électrique d’ hétérojonctions en 

couches minces pour application photovoltaïque 

RESUME 

 

L'objectif de ce travail porte sur la réalisation et caractérisation électrique des hétérojonctions 

en couche mince par une technique simple et bon marché en l'occurrence la méthode de dépôt 

par Spray pyrolyse (SP). Dans la première partie de ce travail nous avons élaboré des séries de 

films avec différentes conditions de déposition en vue d’une optimisation du procédé dans le 

but d'obtenir de films avec de bonnes propriétés optoélectroniques pour être appliqués  en 

photovoltaïque. Les paramètres étudiés sont la température de la température du substrat, le  

temps de dépôt, la moralité de cuivre et de zinc. La caractérisation structurale des films a 

révélé que ces derniers ont une structure tétragonale (kesterite)  avec une préférentielle 

orientation vers (112) qui est indépendant de condition étudié. La présence de phase 

secondaire et lié fortement à la composition de film et  les concentrations des précurseurs dans 

la solution de départ. Les caractérisations optiques et électriques ont montré que les films 

CZTS déposés par spray ont de bonne propriétés optoélectroniques, une assez bonne 

absorbance dans le visible avec une conductivité élevée.les hétérojonctions fabriquer montrent 

un comportement redresseur, les caractérisation G-f révèlent la présence des états d’interface 

entre la couche absorbante (CZTS) et la couche tampon (ZnS) avec une densité d’ordre 1010 

ev-1cm-2 ,avec l’amélioration des propriétés électriques avec l’addition de couche ZnO entre 

CZTS et ZnS.La cellule solaire CZTS/CdS trompé à 450 °C montres  un rendement égale à 

0.43 % et un courant de courte circuit égale a 9.8 mA/Cm2 .  

 

Mots clés : couches minces, CZTS, spray pyrolyse, hétérojonction, cellules solaire 

 



  

 لأغشية الرقيقةانطلا قا من   للوصلات غير المتجانسة ةالكهربائي الخصائص دراسةز و اانج

 ضوئية كهرولتطبيقات الا لاستعمالها في

 

 ملخص

بائية للوصلات الغيرمتجانسة و المكونة ودراسة الخصائص الكهر انجاز,موضوع الرسالة يتناول تحضير

باستعمال تقنية سهلة و بسيطة و التى تتمثل فى تقنية الرش الحرارى   اغشية رقيقة وذلك انطلاقا من

(spray pyrolysis SP)  .الاول من هذا العمل قمنا بتحضير سلسلة من العينات باستعمال  ءفى الجز

خصائص ذات  CZTSشرائح  للحصول علىمختلف شروط تجريبية من اجل ايجاد افضل الشروط 

لى : الوسائط التى قمنا بدراستها كانت على التو خلايا شمسية.حيث يمكن استعمالها في  الة كهروضوئية جيد

. الدراسة البنيوية وضحت ان تركيب  ملح النحاس و الزنك , تركيز مدة التحضيردرجة حرارة المسند,

اتجاه المستوي  في  بينما الاتجاه البلورى المفضل Tetragonaleكان ذو تركيبة  البلورى للشرائح

المحضرة خلال هذا العمل تمتاز  CZTS .الدراسة الضوئية و الكهربائية وضحت ان شرائح(112)

بخصائص جيدة والتى تتمثل فى امتصاص عال للضوء و ناقلية كهربائية جيدة مما يرشح هذه الشرائح 

وصلات الغير لل  I(V) دراسة الخصائص الكهربائلة باستعمالضوئية . الكهروالتطبيقات  للاستعمال فى 

نيات يلها خاصية التقويم.دراسة العيوب بين البالوصلات  نبينت ا و CZTS/ZnS سة المنجزةالمتجان

ev1--cm  في حدودقيمتها  CZTS / ZnS في السطح البيني  وجود كثافة عيوب اثبتت (f-Gبالستعمال )

 في حين أن الخلايا الشمسيةتحسن في الخصائص الكهربائية للبنية  , ZnOكما بينت اضافة طبقة من .  1010

 CZTS / CdSدرجة مئوية تحت غاز 450عند  الملدنة S2H  لخلايا الشمسيةاعطت افضل مردود ل 

 2ي أمبير / سملم 9.8تساوي و كثافة تيار٪  0.43حوالي  المجزة

 

  الخلايا الشمسية ,وصلة غير متجانسةالرش الحرارى,,CZTS ,قةشرائح رقي:  الكلمات المفتاحية



ABSTRACT 

 

The present work deals with the deposition of CZTS thin films and related devices by a 

simple and cheap technique such as Spray Pyrolysis (SP). For this purpose, a set of CZTS thin 

film was prepared using various deposition conditions in order to optimize the deposition 

conditions allow us to prepare suitable films devoted to the photovoltaic applications. The 

studied deposition parameters were the substrate temperature, deposition time, and copper and 

zinc salt concentrations. The structural analysis shows that the obtained films are 

polycrystalline; they exhibit a tetragonal structure with a preferential orientation along (112). 

However, the structural properties and secondary phases were affected by the deposition 

conditions. From the optical and electrical characterization results, we inferred that the 

deposited films have suitable optoelectronic properties for the photovoltaic applications, since 

they present a good absorption in the visible range coupled with a higher conductivity. 

Finally; the fabricated CZTS heterojunction with various back contacts show a rectification 

behavior, the G-f characterization reveals the presence of interface state at CZTS/ZnS 

interface with a state density in the order of 1010 eV-1cm-2. The addition of ZnO intrinsic layer 

enhances the heterojunction device properties. Whereas, the solar cells based CZTS/CdS 

annealed at 450 °C under H2S gas show the best solar cell efficiency about 0.43 % and a 

current density equal 9.8 mA/cm2. 

 . 

 

Key Words: thin films; CZTS; spray pyrolysis; hetero-junction; solar cells. 
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