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Introduction

Classical and quantum mechanics are two theories that study the motion of physical objects,
the first one is stricted to macroscopic scale whereas the second describes microscopic and
macroscopic objects.

While describing the quantum mechanics of bound and unbound particles is successful
through the wave mechanical formulation, some properties though can not be represented by
a wave-like description i.e. an electron spin degree of freedom can’t be expressed as an action
of a gradient operator. Thus, the reformulation of quantum mechanics to a framework that
involves only operators is useful. A state vector or a wave function ¢ in the Dirac notation
is represented by [¢), also known as "ket", likewise, any wavefunction can be expanded as a

superposition of basis state vectors

[9) = A1 [hy) + A2 [thg) + Az [thg) + - -+ . (1)

Consequently, we define the "bra" (| that defines together with the ket, a scalar product
+o00
©@lvy= [ ¢ @@, @)

correspondingly, we deduce the identity (¢| ¥) = (1| ¢)*. The space and momentum represent-
ation of the wave function is given as ¢ () = (x| 1) and ¥ (p) = (p| ) respectively. Moreover,
B is said to be an opoerator if it maps a state vector |a) into another |3), i.e. Bla) = |3),

nevertheless, if

Bla) = bla), 3)

where b is real, accordingly, we can say that |«a) is an eigenfunction or an eigenstate of the
operator B with the eigenvalue b, it is known that for any quantum observable O there is an
operator O that acts on a wave function |¢), in which if the system is in a state characterized

by the wave function, then the expectation value is said to be

(0) = (6101¢) = [ da6" (2) 06 (). (@)

A hermitian linear operator is an observable, i.e. B (a.|a) + b.|3)) = a. (B |a))+b. (B |3)),

where a. and b. are complex numbers, hence, it is appropriate to define the adjoint or the
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Hermitian conjugate, the adjoint of a linear operator O is defined as

(@0 5) = [dwa® (05) = [dasi (0'a) = (0'a] 3), (5)

an operator O is called self-adjoint or Hermitian if O = O, where the symbol "t" denotes the
adjoint operation. The eigenfunctions of Hermitian operators form an orthonormal complete
basis, for example (i| j) = J;;, in consequence, we obtain the resolution of identity if we sum

over a complete set of states
D il =1L (6)

hence, any state function can be expanded if we use the resolution of identity

V()= (zlv) =) (eli){ilv) =) (il ¥) (), (7)

7 7
where ¢, () = (x| 7).
Since we are able to expand and develop an eigenfunction one can say that we have the
means to inspect the time evolution, thus, the wave function can evolve in time by applying

the time evolution operator, i.e. for a time-dependent Hamiltonian

[ (#) =U @) [y (), (8)

where U (t) = e~ 1S O/ and it is found by integrating the following time-dependent Schrodinger

equation
H [¢) = ihd; |4) (9)

also, the time evolution operator is unitary UUT = 1.
Correspondingly, the expectation values can also evolve through time, if we assume that

the operator O is time dependent, then we have

d
5 (91010) = 0. ({¢]) O1¢) + (4] 0.0 |¢) + (4| O (0 ]9)) . (10)
from the time-dependent Schrodinger equation and the fact that the Hamiltonian is Hermitian,
we obtain
J .
—(61016) = 16| HO ) — (6| OH|6)] + (8] 2019)
=+ (6l[H.0]]¢) + (8] 2,019). (1)

h
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if the operator O is time-independent, then we have

d i
2(61010) = 5 (6] [H,0]10), (12

the preceding relation is also known as the Ehrenfest theorem, from which we notice that when
[H,O] = 0, the expectation value of O is a constant of motion and obeys the laws of classical

mechanics. The expectation values of the position and momentum operators are respectively

%<x>:<%—;j>, %<p>:—<%—f>, (13)

these relations are the equivalent of Hamilton’s classical equations of motion. Another descrip-

given as

tion to obtain classical results is achieved with the coherent states. These states which were
introduced for the first time in 1926 [1] are related to the harmonic oscillator which is one of the
fairly small number of quantum mechanical problems that can be exactly solved, the problem
provides a foundation for our understanding of many significantly important physical prob-
lems, including molecular vibrations, the vibrational excitations of solids i.e. phonons, and the
quantization of the electromagnetic field for example the photons. Indeed, the one-dimensional
harmonic oscillator is one of the most important systems in quantum field theory.

The expectation values of the coordinate and momentum in the coherent states are the
same as the expectation values of the position and momentum in the classical theory of the
harmonic oscillator. The coherent states describes a state in a system from which the ground
state wave packet is displaced from the origin of the system, this state can be related to classical
solutions by a particle oscillating with an amplitude equivalent to the displacement, these states
are expressed as eigenvectors of the annihilation operator, they were familiarized by Klauder
[2, 3], and were later on presented by the work of Glauber in 1963 [4].

Coherent states are remarkable quantum states that are important in many fields of phys-
ics [2, 5], such as quantum optics where they play a particular role in laser physics. These
states were introduced for the hamonic oscillator by Schrédinger in 1926 [1]. In 1963 Glauber
[4] introduced the coherent states of the radiation field as eigenstates of the annilation oper-
ator [6], whereas Klauder [7] used coherent states to verify the relation between the quantum
system and the classical system. Squeezed states [8, 9] which are a special class of minimum

uncertainty states, have received considerable attention due to their important applications in
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optical communication, photon detection techniques, gravitational wave detection, and noise-
free amplification.

Squeezed states represent a generalization of coherent states and were introduced by differ-
ent authors [10, 11, 12, 13, 14, 15, 16, 17]: Stoler [11, 18], Lu [19, 20], Yuen [21] and Hollenhorst
[13] who originated them with the name "squeezed states".

Similarly, to the coherent states the squeezed states of the harmonic oscillator are the states
that are attained by acting on the ground state with an exponential that consists of terms of
the quadratic forms of the creation and annihilation operators. In addition, these states are
common for which AzAp = h/2, therefore reaching the saturation of the uncertainty bound.

In addition, the use of the squeezed states allow for continuous measurement improvements,
and it is now becoming widely accepted i.e. in the gravitational wave detectors tests the squeezed
states improved measurements sensitivity.

With the aim to define squeeezed coherent states for time-dependent non-Hermitian sys-
tems, we present in the first chapter, the definition of coherent and squeezed states for the
Hermitian harmonic oscillator in the stationary case then we develop their time evolution. In
the second chapter, we construct the time-dependent pseudo-squeezed coherent states by in-
troducing pseudo-squeezed bosonic ladder operators defined as time-dependent non-Hermitian
linear invariants and related to their adjoint operators via the bounded Hermitian invertible op-
erator or metric operator. As an illustration, we study in the third chapter the time-dependent
non-Hermitian displaced harmonic oscillator, in which we find interesting results that lead to

this work.



Chapter 1

Coherent and squeezed states for the

harmonic oscillator

Coherent states together with squeezed states constitute the foundation and cornerstone of
the theoretical framework of modern optics. As shown in the literature, this framework starts
from the harmonic oscillator creation and annihilation operators. In this part, we present the
definition of these states, we distinguish the different methods to obtain the coherent states as

well as the squeezed states, moreover, listing some of their properties.

1.1 Definition of the coherent states

Coherent states are quantum states that exhibit a classical behavior, i.e. the mean values of the
position and momentum operators in the coherent states have properties close to the classical
values of the position and momentum.

Furthermore, coherent states have been extensively studied by several physicists and differ-
ent definitions have emerged as a result of that process. If we ought to summarize their work,
we can keep in mind some of the distinct but equivalent methods of obtaining the mentioned
coherent states [1, 4, 22, 23, 24, 25, 26, 27, 28, 29].

These are:
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(1) The states that minimize this uncertainty relation

(Az)* (Ap)* = (1.1)

»-bl'—‘

where (Ax)2 and (Ap)2 represent the dispersions of the position and of the momentum respect-

ively

[NIE
[NIES

(1.2)

Av = ((2%) = (@)")* = (") = ())*,

and the operators of the position and momentum are given in case of the harmonic oscillator

by

x = \/h(2mw) " (a' +a), (1.3)
mw al —a
p=1i 2h(aT—a)—ih%, (1.4)

where d is a quantum length scale from the harmonic oscillator that can be built from h,m

and w

d=+/h/mw. (1.5)

Consequently, the position and the momentum expectation values are

W2

d
x olzla) = — al +a)la) = — (" +a) = e(a .
<>(H>\f<|(+)!>\/§(+)d\/§R(), (1.6)
( )1<a|(aT—a)|a> 0 Im (), (1.7)

thus,
@) 0

a = Re + 7 Im 1.8
(@) +ilm (o) = 375 i (18)
therefore, Ax and Ap are expressed as
h hmw
Ap =) — Ap =/ —— . 1.
x T p 5 (1.9)

(2) The eigenfunctions of the annihilation operator, also called Glauber states, defined as
ala) =ala), (1.10)

where we note that the parameter « is complex, and the action of a on the state |a) can be

computed as the following

ala) = aexp (aa’ — a*a) [0) = [a,exp (aa’ — a*a)] |0), (1.11)
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and if we look at the commutation relation between the non-Hermitian ladder operators
[a,a'] =1, (1.12)

it follows that
ala) = [a, aal — a*a} exp (OzCLT — a*a) |0), (1.13)

therefore, we get (1.10), also, the normalized coherent states are given as[30]

_‘0‘2 > Oén
oy =c 5 > ), (114
= vn!
and their adjoint
(o] = 2 i @) ). (1.15)
V!

n=0

(3) Displacement-operator methods, i.e.: applying the displacement operator
D(a) = exp [(aa' — a*a)], (1.16)
on the ground state |0) as
la) = D(«) |0) = exp [(OzaT — a*a)] [0), (1.17)
The displacement operator D(«) is unitary
D' (a)=D7'(a) = D(-a), (1.18)

D' (a)D(a) =D (a) D' (a) =1 (1.19)

Introducing the Baker-Campbell-Hausdorff formula [31, 32, 33|

1
e*Be ™ = B+ [A, B] + o A A B - (1.20)
consequently, we recall the commutator identity
eATB — o3l ABlALB e%[A’B]eBeA, (1.21)

it is worth to note that A and B are two operators such that

HA7 B] >A] - HA7 B] ,B] =0, (122)
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then

A B _ AB

(A& 4

eBed.
The operator D(«) (1.16) can be expressed as
—lo? .

D(a)=e2 e “emere,

or

and therefore its action on a and af yields
D' (a)aD (o) = a + a,

D' (a)a'D (a) = a' + a*,

we can easily demonstrate that

D(a+B) =D (a)D(B) ™

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

Additionally, the formula in (1.21) implies that the coherent state form in (1.17) can be written

as the following expression

_ o9 aat |
la) =e” 27" |0).

(1.29)

1.2 Properties and time evolution of the Coherent states

The coherent states has a number of properties that can be listed as

1. The coherent states are not orthogonal between them

(Bla) = (0] D (8) D () [0),

by using (1.14), we obtain

_1812 jal?

Blay=e"2 2t

(1.30)

(1.31)

which shows that the coherent states |«) and |3) are not mutually orthogonal, and that

the squared modulus (5| ) indicates the distance measure between the coherent states.
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2. The coherent states are normalized, simply by puting S = «, we obtain
(afa) =1 (1.32)
3. Also, the coherent states form an overcomplete basis
1 2
— [ |a) (o] d®a =T, (1.33)
™

we can demonstrate this identity if we pose that o = we®, thus, d?a = ududf and by

using (1.14), we obtain

e / |a) (o] d® = i i /OO udu /% A T nmyo n) (m| (1.34)
™ 0 o T vnlm! 7 .

n=0 m=0

and thus,

%/’o& (o d*a = ZO |n>n§n| /OOO dve "™, (1.35)

in which we used fo% dfe’=m0 —= 275, the variable change u? = v, and after we use

the integration fooo dve~"v"™ = n!, we obtain the previous relation.

4. The expectation values (z),(p) and (H) in |a), remain constantly equal to their classical
counterpart. We define the time evolution of coherent states by using the Heisenberg

picture, from (1.17) we get
ja, 1) = e 18 oy = e i Higlaal=a"a) i =it HE ) (1.36)

then, we obtain the following form of the time evolution of coherent state

|, t) = exp [aa’ () — a*a (t)] exp [_Z;t} 0), (1.37)

where we have generalized the idea of a Heisenberg operator as

Oy (t) = O gy e~ (1.38)
Furthermore, we now introduce the relations a (t) = e*'a, and a (t) = e “!a’ we can
rewrite the time evolution of the coherent state (1.37) to be in the following form
—iwt , ,
la, t) = exp [ - } exp [ae ™l — a*e™'a] |0) (1.39)
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by comparing it to (1.17) and precisely the exponential, we notice that it is in fact the displace-
ment operator with a slight change where o — ae ™!, we can say that a (t) = ae ™!, thus,

the time evolution of the coherent state can be expressed also in the following form

l, £) = exp [_;‘”t} le"#10) = exp [_2'2“’1 a(8)), (1.40)

this interprets time evolution of a coherent states |a), up to an irrelevant phase the state
remains a coherent state with a time changing parameter e~ also the state is represented
by a vector that rotates in the clockwise direction with angular velocity w in the complex
plane « that can be represented with two axis, the first one is a real axis that gives (x) up
to a proportionality constant, and the second one is an imaginary axis that gives (p) up to a
proportionality constant. This can be interpreted as a phase space and the evolution regarding

any state is represented by a circle, as demonstrated in the next figure

V2d

Figure 1.2.1 represents the time evolution of the coherent state |a) .



Chapter 1: Coherent and squeezed states for the harmonic oscillator 11

The figure (1.2.1) states that the real and the imaginary parts of o determine the expect-
ation values (x) and (p) respectively. Noticeably, throughout the time evolution the parameter
a of the coherent state rotates clockwise with an angular velocity w.

In an alternative way, there is a conventional calculation of the time evolution by expanding
the exponential in (1.29), where we know that the coherent states refer to a set of vectors in
the Hilbert space and refer to a special kind of quantum mechanical state of light field that is
defined in (1.14) and its definition is also known as the coherent state in the n-representation,
which implies that there is a coherent state in the xz-representation that will be mentioned later

on. By using the action exp [—iHt/h], we thus obtain

e [ £y exp [ 2L

la, t) = exp [—iHt/h] |a) = N In), (1.41)
where we find
—iwt 2] D202, (exp [—iwt] a)”
_ _ n= 1.42
|, t) = exp [ 5 } exp [ 5 } i In), (1.42)
we note that
le”“"a]* = |of?, (1.43)

therefore, the time evolved coherent state can be written in the following form

o, 1) = exp {—%} le ™ a), (1.44)

this confirms our previous result in (1.40).

1.3 (Generalized coherent states: linear invariants ap-
proach

We introduce the non-Hermitian invariant linear operator as

b
—~
~
SN—
I

f(t)g+ig(t)p, (1.45)

AT@t) = fr(t)g—ig (t)p. (1.46)
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where f (t) and g (t) are time-dependent complex functions. An operator [ (¢) is said invariant

if it satisfies the Von-Neumann equation

OIPH(t) i - py
=5 U@ HD)] (1.47)

The generalized coherent states can be defined with the invariant operators A (¢) and

AT (t), as they can be considered as the annihilation and creation operators, respectively, where
[A(t),AT(t)] =1, as

A(t)|a,ty = ala,t), (1.48)

the eigenstates of the operator A (t) are the generalized coherent states, also the number op-
erator can be written as N (t) = A (t) A(t). The generalized coherent states |a,t) can be ob-
tained from the action of the displacement operator D (v, t) on the vacuum state |0,t) defined
by A(t)]0,t) =0 as

la, t) = D (a, 1) 10, 1), (1.49)

where the displacement operator is given by
D (a,t) = exp [@A'(t) — a*A(t)] (1.50)

we emphasize that the generalized coherent states have the same properties as the ones men-

tioned before.

1.4 Definition of the squeezed states

Squeezed states [8, 9] are a special class of minimum-uncertainty states, have received consider-
able attention due to their important applications in optical communication, photon detection
techniques, gravitational wave detection and noise-free amplification.

Squeezed states represent a generalization of coherent states were introduced by different
authors [10, 11, 12, 13, 14, 15, 16, 17]: Stoler[11, 18], Lu[19, 20], Yuen|[21] and Hollenhorst [13]
whom originated them with the name "squeezed states".

Similar to the coherent states, the squeezed states can be defined by some distinct but

equivalent ways:
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1. To obtain squeezed states [34, 35, 36, 37|, one applies both the squeeze and displacement

operators on the ground state

D()5(£)|0) = |a, &) - (1.51)

We find in the literature different squeeze operators introduced for obtaining squeezed

states that are given as [8, 11, 18, 38, 39, 40|

516 = el [ea - &a”), (1.52)
5:(6) = el [era” —ea?)), (1.53)
556 = el [ea? — ca®)), (1.54)
516 = el [ea” —a?)), (1.55)

where ¢ = rexp [if] is an arbitrary complex parameter and a and a' are the lowering and
raising operators, which satisfy the commuation relation (1.12), the numbers  and 0 are
real and known as the squeezed factor and the squeeze angle, respectivly, and they are

defined in the intervals 0 < 7 < oo and - < 6 < 7, we notice that 51 () = S1(€) and
S3(§) = Sl (€)-

Let us consider the unitary squeeze operator defined by
1 12 * 2
S(€) = exp i(fa —&a) |, (1.56)
whose properties are summarized as

(a) Unitarity
SHE) =571(€) =5(-¢). (1.57)

(b) S(&) acts upon the lowering and raising operators, a and its adjoint a', i.e.

b=S(&)aS ' (¢) =cosh|¢| a — %sinh €] al,
£

b = S(€)a'S™(€) = cosh [¢] af — 7] sinh [£]a , (1.58)

which is known as the Bogolyubov transformation [41].
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(c) If the squeeze parameter £ is null, £ = 0, we obtain the coherent states that we
defined above
D()5(0)[0) = D() [0) = |, 0) = |av) . (1.59)

Noticeably, since D («) and S(€) are both unitary operators, then
(a,€la, §) = 1. (1.60)

An equivalent form of defining the two-photon coherent state [34] reverses the order

of the D(«) and S(§) such that

D(a)5(€) = S(6)D(), (1.61)
v(a, &) = acosh|£] — a*é—| sinh [¢] . (1.62)

2. The annihilation- (or, more generally, ladder-) operator method. Using a Bogolyubov
transformation (1.58), the operator D(a)S(£)aS™(£)D~!(a) can be expressed as a lin-
ear combination of a and af, this transformation provides an eigenvalue relation for the
squeezed coherent states,

§ .
(coshlef a = & sinilela ) a,6) = (0, ©) o, ©), (1.63)
with v(a, €) given in Eq. (1.62).

3. Minimum-Uncertainty Method, in which the squeezed states can be obtained as states
which satisfy, rather than the Heisenberg uncertainty relation, the Schrodinger-Robertson

uncertainty relation

AAAB > @, where [A, B] =iC. (1.64)

A squeezed state is obtained if the variance in one of the latter observables met the condition

(AA)* < @ or (AB)? < @ (1.65)

if the condition (1.65) is verified and, in addition, the relation (1.64) is found to be an
equality, i.e.

aanp = 9L (1.66)
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then the state is called an ideal squeezed state.
As an illustration, A and B can be expressed in the dimensionless position and momentum

operators form X and P of (1.3) and (1.4), respectively, where

1

—— T — (g —af
X 2(a+a ) P 2i(a a'), (1.67)
thus, from (1.64), we obtain
1
AXAP > T where [X, P] = (—2i)*, (1.68)

furthermore, the squeezed states are obtained if (1.65) is verified, also, an ideal squeezed

state is obtained if in addition to (1.65) the relation in (1.68) is found to be an equality i.e.

AXAP = i. (1.69)

1.5 Time evolution of the squeezed states

We define the time evolution of squeezed coherent states using the Heisenberg picture and from
(1.51) we get

|, €,t) = exp [—%Ht} la, &), (1.70)
it follows that

ja,&,1) = el THI) D (a) etfltem g (6) et Mte= It |0) (1.71)
by replacing D («) and S (£), we obtain
. . ) 1 2 .2\ )
|Oé, 57 t> _ 6[—%Ht]e[aaT—a*a]e%Hte—%Hte[g(5(‘”) —&"(a) )]e%Hte—%Ht |0> 7 (172)

then by using the Baker-Campbell-Hausdorff formula (1.20), we now have the time dependent

squeezed coherent states, defined as

—wt

0,6.1) = exp [ } Do (1) e (1) [0) (1.73)

where
D, () = explaal(t)—a*a(t)], (1.74)

Se(t) = exp B (5&T (1) al (t)—E&a(t)a (t)) , (1.75)



Chapter 2

Time-dependent pseudo-squeezed

coherent states

2.1 Time-dependent non-Hermitian systems

PT -symmetry and pseudo-Hermiticity are two notions that have emerged widely in the liter-
ature showing that non-Hermitian systems may have real energy spectrum.

PT -symmetry that was developped in 1998 by Bender and Boettcher [42] signifies the
symmetry parity-time, where P is a linear operator and it represents the parity, or an in-depth
definition, it represents the space reflection, while the time reversal 7 is an anti linear operator.
The two operators commute [P, 7] = 0 but not known to be equal, their square is the identity
(PT)?> = I, where P2 = T2 = I. The action of P and T on the operators of position z,

momentum p and the imaginary number ¢ are given as

P{xr— -z , p——p , i—i}, (2.1)

T{x—z , p—>—-p , i— —i}, (2.2)

we find in some literature, the authors define the operator 7 as time changing also ¢t — —t

[43, 44, 45, 46, 47, 48]. A Hamiltonian H is P7-symmetric if it satisfies
[H,PT] =0, (2.3)

the notion of P7 -symmetry was generalized by Mostafazadeh when he introduced the notion
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of pseudo-Hermiticity [49, 50, 51]. The Hamiltonian H is said to be pseudo-hermitian if it
satisfies the following

HY = nHny™! (2.4)

where H' is the adjoint of H, and 7 is a Hermitian bounded invertible operator. Writing the

eigenvalues equations of H and H' as

H{y,) = Enlt,), (2.5)
H'|,) = E;lo,). (2.6)

where the eigenvectors |¢,,) and |¢,) form a biorthonormal basis

<¢m |¢n> = Omn. (2‘7)

The closure relation reads

Do) (Bal = D 1) (0l =1, (2.8)

therefore, H and HT, are given as
H=Y E,|¢.) (0],  H = Erlo,) (W,]. (2.9)
The pseud-Hermicity connects also the Hamiltonian H to a Hermitian one h as
h=pHp*, (2.10)

where the Dyson transformation operator p is linear, bounded and invertible. In fact, from the

preceding relation we can obtain (2.4), therefore,
pHp ' = (p~4) 1t (2.11)
we multiply it from the left by p', and from the right with (pT)fl, noting that n = pfp
ppHp™ (o) =iyt = HY, (2.12)
now, we consider the eigenvalues of the hermitian Hamiltonian h

hXa) = En|Xa) - (2.13)
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the transformation p allows us to pass from the eigenfuctions of h to the eigenfunctions of H

Xn) = Pl - (2.14)

The eigenfunctions of |y,,) form an orthonormal basis in which the inner-product is pre-

served, i.e.
X [Xn) = Oman, (2.15)

by using (2.14), we obtain

Xm [Xa) = Wl 270 1900) = Wl 1100) = (Wl Y1), = S (2.16)

the latter is known as the pseudo-inner product or the n-inner product.

The study of time-dependent non-Hermitian Hamiltonian systems has led to a controversial
between physicists: Mostafazadeh [52, 53, 54| said that the evolution of a pseudo-Hermitian
Hamiltonian H (¢) is unitary only if the metric operator is time-independent. Znojil [55, 56, 57]
demonstrated the unitary evolution of a time-dependent system does not necessitate a time-
independent metric operator, it can be obtained with a time-dependent one. Whereas Fring
and Moussa [58, 59] established a time-dependent quasi-Hermiticity relation.

We summarize the three different points of views in what follows:

1) Ali Mostafazadeh point of view: Let U¥ (¢) be the time-evolution operator associated

to the non-Hermitian Hamiltonian H (t)

H @)U (t) = z’h%UH (), (2.17)

where U (0) = I, and 1 (¢),¢ (t) are eigenstates with U* (¢) defining their time evolution

as

Y (t) =U" ()¢ (0), ¢ (1) =U"(t)¢(0), (2.18)

the time independence is given to the scalar product (¢ (t), ¢ (t)),,) by the unitary evol-

ution. The pseudo scalar product (.,.), ) is also valid for 7 (¢) i.e. (2.16)

n(t

W), 0@)yy = @@ nE)e@)
= (@ OIT™ @) n ) U" ()| (0)) = (¥ (0)[n(0) ¢ (0)), (2.19)
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it follows that

-1 1

U () (O U () =0 (0) = () = [0V 0] 0O U7 @0] . (220)
thus, we obtain
7 ) = UM @ (0) U7 (1), (221
by using the latter relation, the relation in (2.17) gives
HY (1) = (6) H (007 (8) — ihn (1) oo™ (1) (2.22)

the preceding equation demonstrates that H (¢) is n-pseudo-Hermitian only if 7 is time

independent (2.4).

2) Milozlav Znojil point of view: Znojil states that the time evoution of the quasi-
Hermitian quantum systems is generated by the time evolution of non observable gener-
ator He, different than H. The associated Schrodinger time dependent equation of the

hamiltonian h (t) is
h(t) e () = Zﬁ% o (1)), o (8)) = U" (8) % (0)), (2.23)

and can be written in terms of the unitary (U" (¢) [U" (t)]T = I) time evolution operator

Uh (t) as
0

ihaUh (1) ¢ (0)) = h () U" (1) [ (0)) , (2.24)

where h(t) = p(t) H (t) p~! (t), therefore, the Schrédinger equation solution is given in

the following form

[ (8)) = U" () |» (0)), (2.25)

and gratifies

{0 () [ (1)) = (¢ (0) ¢ (0)), (2.26)

which indicates that the norm is constant.
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Znojil[57] is distinguishing two time evolution forms given as

@) = Ur(t)]¢(0)), (2.27)
(@ = (¢OUL®), (2.28)

where Ugr (t) = p () U"(t)p(0) and Up (t) = p~1(0)U™(t)p(t) and they act on
|6()) = p~t(t)|e (1)) and (¢’ (t)] = (¢’ ()| p(t), respectively, this suggests that there
is two different methods of representing the wave function in (2.25), simple computing
leads to the time evolution rule of the action on the right as well as on the left. The
differential equations of the right time evolution operators Ug (t) and the left Uy (t) are

as follows

ihOUg (t) = —ihpt (t)[0,p ()] Ur (t) + H (t) Ug (1), (2.29)
iU} (1) = [ihdp' (0)] [p~ (0] UL (1) + HY (1)) UL (1), (2:30)

In consequence, the states |¢) and |¢') satisfy the Schrodinger equation

16 (0) = Hyen (1)]0(1). 2:31)
OIS (1) = Hi ()16 (1), (2.32)
where
ngn (t) = H(t) _ihpil (t) atp (t>7 (233)
Hi,, (t) = H'(t)+ihdpt (1) (07t (1) (2.34)

This point of view also demonstrates the time evolution to be unitary, if we take the

normalization time differential, we obtain
0 (¢ (t) [ (£)) = 0. (2.35)

Noticeably, two opposite point of views emerges while constructing the quantum time

dependent quasi-hermitian systems.
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3) Fring and Moussa point of view: Fring and Moussa confirm that when 7 (¢) is time
dependent the relations of quasi-Hermicity (2.10) and (2.12) are not valid, thus, approving

Mostafazadeh’s point of view. We take two time dependent Shrodinger equations
o, e,
h(t) ¢ (8) = ihg ¥ (£), H(t)|¢ (1)) = iho [0 (1), (2.36)

where h (t) is hermitian h (t) = h' (¢) while H (¢) is not H (t) # H' (t), Fring and Moussa
claim that the operators are not called Hamiltonians unless they generate the time evol-
ution of the system under consideration, In which they should satisfy the time dependent
Schrodinger euqation. Afterwards, they claim the two solutions |9 (t)) and |¢ (t)) to be

connected by a time dependent invertible operator p ()
[ (1) = p @)1 (1), (2.37)

if we substitute the latter relation into (2.36), we find that the two Hamiltonians are

connected to each other as
h(t)=p(t)H(t)p " (t)—ihp~' (t) Bp (1), (2.38)

we note that h (t) and H (t) are not related with a similarity transformation as in the
time independent case, or as in the time dependent case where the metric operator is time
independent. They refer to the preceding equation as the time dependent Dyson relation,
thus generalizing its time independent counterpart. If we take the adjoint of (2.38) and

use the Hermicity of & (f) we obtain the relation between H (¢) and its adjoint

HY (8)n (t) —n (t) H (t) = ihdn (t) (2.39)

thus, defining 7 (t) = p'(t) p(t) as a metric operator, the latter relation replaces the
well known standard quasi-Hermicity relation in the context of the non-Hermitian time

dependent quantum mechanincs [58, 59].

Besides the three approaches listed above, the pseudo-invariants theory is a useful theory
for the study of time-dependent non-Hermitian systems that we will use for the construc-

tion of pseudo-squeezed coherent states.
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2.2 Pseudo-squeezed coherent states:

To build a time-dependent pseudo-squeezed coherent state, we consider a non-Hermitian time-
dependent case, therefore, we should find the integrals of motion, and we will choose the
annihilation and creation operators which are very convenient for the study of pseudo-coherent
states and pseudo-squeezed coherent states, to show that the pseudo-squeezed coherent states
constitute a non-orthogonal overcomplete system which yields a resolution of the identity op-
erator.

In addition, coherent states diagonalize the annihilation operator a involved in the harmonic
oscillator algebra. We stress that the eigenstates of a and other non-Hermitian operators are
not orthogonal. Consequently, we introduce the diagonalization [60, 61, 62, 63] of the complex

time-dependent combinations of the annihilation and creation operators
At)=u(t)a+v(t)al, (2.40)

A (t) is an operator in which is constructed [60, 61] as a non-Hermitian invariant for the quantum

variable frequency oscillator with the Hamiltonian h (t) = 3 [p* 4+ w? (t) ¢*], where

;
040 _i1aw),n) =o. O _jiatwy,ne] =0, (2.41)
ot ot
and satisfies the following commutation relation
[A(t), AT ()] = 1. (2.42)

Therefore, the operators A (t) and AT (¢) can be considered respectively as the lowering and
raising operators and can be used for the construction of the time-dependent coherent states

for the system under consideration.

2.2.1 Pseudo-bosons and pseudo-linear invariants

Similarly, to the time-independent case, we now introduce the time-dependent pseudo-bosonic
coherent states, where we emphasize that now we use a time-dependent creation, annihila-
tion and metric operators, where a linear metric operator 7 = p'p connects a non-Hermitian
Hamiltonian to its Hermitian conjugate H' = nHn~!, where now H is n-pseudo-Hermitian with

respect to a positive-definite inner product defined by (.,.), = (.|n].) -
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More recently, considerable attention has been paid to an alternative formalism for the
description of non-Hermitian systems, based on the concept of the so-called pseudo-bosons
[64, 65, 66]. Pseudo-bosons are a pseudo-Hermitian extension of usual bosons. In fact, they
are a very particular modification of the standard canonical bosonic commutation rule [A, AT}

= 1, obtained from

[A,A] = (AT, AT =1, (2.43)

where the operators A and A are related to their adjoint operator A" and AT, respectively, via

the bounded Hermitian invertible operator or metric operator n as

At =nAn7t,

i (2.44)
At =nAn~L.

Coherent states are generally studied in the Hilbert space H generated through a self adjoint
Hamiltonian (i.e. H = H T). However, under the above assumptions, we can introduce differ-
ent kinds of pseudo-coherent states in a non-Hermitian case. The notion of pseudo-coherent
states, in connection with pseudo-bosons, originally introduced in [64] and then analysed from
a more mathematically oriented perspective, in [65], has been considered as a non-Hermitian
generalization of coherent states. The pseudo-coherent states for the pseudo-Hermitian boson

systems are defined as eigenstates of the corresponding pseudo-boson annihilation operators A

and Af
Al Y=aly, ), Atlp Yy =ale,), acC. (2.45)

and satisfy the resolution of the identity

1 1
%/C 0.} (o] da*da = %/C|¢a> (¢, |da*da =1. (2.46)

with |¢a> = nly,). These pseudo-coherent states ‘wa> and ‘q§a> can be generated respectively
from the vacuum states |2/10> and |¢O> by the action of displacement operators D(«) and ET(Q),

respectively,

D(a) = exp(ad — a*4),  D'(a) = exp(aAl — a* AT (2.47)

where 3T(a) = nD(a)n ! is the complementary pseudo-unitary displacement operator of D(a).
Bagarello et al. [67] introduced the bi-squeezed states that can be considered as a suitable non-

Hermitian extension of the squeezed states. Bi-squeezed states are defined by the action of
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the squeezing operator on the vacuum state ‘w0> of pseudo-boson annihilation operator A.
Moreover, the bi-squeezed coherent states, are defined as the successive applications of the
displacement and of the squeezing operators on the vacuum |¢0>. In our approach, the pseudo-
bosonic squeezed coherent states are generated by displacing the squeezed state or the ground
state.

If we identify A (t), A(t), Af(t) and A (¢) as integrals of motion, where A (t), A (t) are
associated to the time-dependent non-Hermitian Hamiltonian H (t) whereas A' (¢), A' (¢) are
associated to the latter Hamiltonians adjoint HT (¢), thus they are time-dependent invariant
operators verifying the following equations

OA (1) dA(t)

5 AWM H@I=0, = —i[A@®),H ()] =0, (2.48)
Af — i
8A8Tt(t) - [AT (1), ' “ﬂ =9, Ma—t(t) —i[AT(t), H' ()] =0, (2.49)

where the Hamiltonian H (t) governs the time-dependent Schrodinger equation

(W (1)) = ¥ v (1)) . (2.50)

2.2.2 Pseudo-bosonic coherent states

Consequently, in order to construct pseudo-bosonic coherent states, we consider in analogy
with the time-independent case reported above, that the invariant operators A (t), A (t), AT (¢)
and AT (¢) as time-dependent pseudo-bosonic annihilation and creation operators associated to

H (t) and HT (t) respectively, that verify the so-called Weyl-Heisenberg commutation relations

[A(t), A(t)] = [E (1), At (t)} ~ I (2.51)

These operators act on a dense subspace D of H. The operators A (¢) and A (¢) associated

to H (t) are related to the operators Af (t) and A (t) associated to H' (t) via the time-dependent
bounded Hermitian invertible operator 7 (¢) as

A(t) =0 () AT ()0 (1), A()=n" (AT ()0 (1), (2.52)

where the pseudo-bosonic coherent states are generated by the action on the vacuum states

{|1g (1)), |@o (t))} of the pseudo-displacement operators {DH (a,t), D" (a, t)}, in which

(Y0 (£)) = D" (1) [ty (t)) = exp [@A (t) — " A (1)] [ (1)) , (2.53)
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and
60 (1)) = D" (o, 1) |5 (1)) (2:54)
we note that D' (a,t) is the pseudo-adjoint of D (), i.e.
D' (o, t) = 1 (t) D (o, t) 7' (t) = exp [aAT (t) — " Af ()] . (2.55)

Additionally, the vacuum states are defined by

A () |ty (1)) = 0, AT (t) g (1)) = 0. (2.56)

Consequently, the vacuum states |1, (t)) and |¢p, (t)) are related to each other as

|0 (£)) = 1 (1) |1 (1)), (2.57)

where the same expression for {|¢, (1)), |, (t)) =n(t) |, (t))}, and can be obtained by de-
fining them as eigenstates of the annihilation operators {A (t), Af (t)} with a complex time-

independent eigenvalue «, i.e.

A(8) [9a (1) =l (1)), AT (1) 6, () = aléa (2)). (2.58)

Particularly, the choice of the normalization condition as

(o )1 (1) [0 (1)) = 1, (2.59)

leads to
(o ()] (2) [1hq (1)) = 1, (2.60)

and, then the integral

= [0 1a©) a0l da%da = < [ 10,0) a0l Od0"da =T, (261

™

in which the integral is an identity operator.

2.2.3 Pseudo-squeezed coherent states

Another important class of quantum states are the squeezed states which are generated by the

action of the squeezing operator

SH (6.1) = exp E (A () - g2 <t>)} | (2.62)
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on the vacuum state |1, (t)) of A (t), also the squeezed vacuum state is denoted as

[€,8) = ST (&,1) [ (1)) , (2.63)

where £ is the complex squeeze time-independent parameter. The definition in the preceding
equation resembles that of the coherent states in equation (2.53), but with the linear dis-
placement operator D¥ (a,t) replaced by the squeeze operator of the equation (2.62), whose

exponent is quadratic in the mode creation and destruction operators.

B(t)= ST (&) A(t) ST (&,t) = cosh |£]| A (t) — %sinh €A (1), (2.64)
B(t)=S8S"(&t)A(t) S~ (£,t) = cosh || A (t) — %sinh IE)A(t). (2.65)

Noticeably, the product of any two quantum invariants is also another quantum invariant,
the same holds for the sum of quantum invariants. In this form, it is straightforward that
the preceding B (t) and B (t) are indeed quantum invariant operators verifying the following
equation

oB(t) . _ OB(t) . -
5 B H@B] =0, —=—i[B(t).H )] =0, (2.66)

the ladder operators B (t) and B (t) associated to H (t) are related to the operators BT (t) and

BT (t) associated to HT (t) via the time-dependent bounded Hermitian invertible operator 7 (¢)
as

B(t)=n"t (B )n(t),  BE)=n"0)B"t)n(). (2.67)

In order to construct the time-dependent pseudo-bosonic squeezed coherent states, we

consider, in analogy with the pseudo-bosonic coherent states case reported above, the invariant

operators B (t) and B (t) and their related ones via 7 (t), Bf (t) and B (t), as time-dependent

pseudo-bosonic squeezed ladder operators associated to H (t) and HT (t), respectively, that

verify the commutation relations
[B(t),B(t)] = [ﬁ ), Bt 0] =1 (2.68)

Alternately, we may define the squeezed states in a different way where we start from the

squeezed vacuum (2.63), where

B(t)|¢,t) = S™ (&) A(#) [th, (1)) = 0. (2.69)
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Since the pseudo-bosonic coherent states |, (t)) are generated by using the pseudo-displacement
operator D (a,t) applied on the vacuum |1, (t)), we may generate the set of pseudo-bosonic
squeezed coherent states ‘Q/Ja’g (t)> by displacing the squeezed vacuum state. A more general
pseudo-bosonic squeezed coherent states !1/1,1’5 (t)> may be obtained by applying the pseudo-

squeezed displacement operator T (7, t) to the equation (2.63), where we obtain

Ve () =T (7,1) |6, 1) =exp [YB (t) = 7" B(t)] [€,1) , (2.70)

where v will be defined later on. Obviously, for £ = 0 we just obtain the pseudo-coherent
states. The properties of the pseudo-squeezed coherent states Wa,& (t)> may be proved to
parallel those of the pseudo-coherent states |1, (t)). Since our pseudo-squeezed coherent states
are closely related to the ones of the pseudo-coherent states |1, (¢)), other constructions of

squeezed coherent states can be considered using the ladder operator B (t), where we obtain

B(t) [t (1) =7 (. €) [ag (1)), (2.71)

where the equality in the latter equation is from
T(yt) BT (v,t) =B (t) -, T(vt) BT (v,t) = BN (1) =~ (2.72)

The use of the properties of the squeezed operator given in equations (2.64) and (2.65)
leads to

T (y.t) = 8" (&) D" (v,1) ST (&,8) = D" (a1). (2.73)

The pseudo-squeezed coherent states WO{@ (t)> are obtained by first acting with the pseudo-
squeezed displacement operator T (7, t) on the pseudo-squeezed vacuum states |, t) or with the
displacement operator D (a,t) on the pseudo-squeezed vacuum states |, ¢). This transform-
ation provides an eigenvalue relation for the pseudo-squeezed coherent state where
v (a, &) = cosh |€|a — %sinh €] (2.74)

On the other hand, when acting with the pseudo-squeezed displacement operator 7' (v, t)
on the pseudo vacuum |1}, (t)), we obtain the pseudo-bosonic coherent states |1, (t)). Knowing

that, the pseudo-vacuum states {|i, (¢)), |¢, (t))} of {A (t), Al (t)} respectively are related



Chapter 2: Time-dependent pseudo-squeezed coherent states 28

to each other as |¢, (t)) = 1 (t) |, (t)), consequently the pseudo-squeezed vacuum states |€, )
and ]E,?) of B (t) and B (t) are linked to each other as

6.8y =n(6)[€,) =[S (&, 0] n (1) [ (0) = [S7 (&,6)] T | () - (2.75)

Pseudo-bosonic squeezed coherent state |¢,  (t)), associated to H' (t), can be also obtained

from the action of the displacement operator

T ()= [ T ()t ()] = [T (v, 1), (2.76)

on the pseudo-squeezed vacuum state |%,Vt> of B' (t) as

6 () = (T (3, 0] €.1) = exp BT (1) = B (0] 1€.0). (2.77)

The pseudo-squeezed coherent states ‘qba’& (t)) are eigenstates of the operator B (t) with

the complex time-independent eigenvalue v where

B (1) [fue (1)) = 7 |dae () (2.78)

Therefore, the normalization condition in a similar way to (2.59) (¢, (£)|n (¢) |¢, () =
I, leads to

(Dae O] 0 (1) [ag (1) = (e (8) [ae (1)) =1L, (2.79)

which show that the pseudo-bosonic squeezed coherent states form an overcomplete set in that

the identity can be resolved as

= 10 1us O) g O] vy =+ [[60c0) Guc O Oavar =1 (@280

™
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Application: Non-Hermitian displaced

harmonic oscillator

After introducing in detail how to construct the time-dependent pseudo-squeezed coherent
states, we now manage an explicit example, namely the time-dependent non-Hermitian dis-
placed harmonic oscillator.

Let us consider the non-Hermitian displaced harmonic oscillator described by the Hamilto-
nian

Ht)=w®)ala+ B (t)a+\(t)d, (3.1)

where a and a' are bosonic annihilation and creation operators of a light field mode verifying
[a, aT] = 1, and the coefficients w (t), 5 (t) and A (¢) are time-dependent complex parameters

defined as
w(t) = |w ()] exp [ig, (1)],
B(t) =18 (1) exp [ivy (t)], (3.2)
A(t) = A ()] exp [igy (t)] -

Let the linear non-Hermitian pseudo-bosonic invariant operator be in the following form

where

(01 (t) # 02 (1)) € R, (3.4)
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the invariance condition in (2.48) leads to the following equations
o1 (t) = iw (1) 01 (t)
by (1) = —iw (t) 05 (),
B ()02 (t) = A(t)01 (1), (3.6)

(3.5)

if we insert (3.2) in (3.5), we find

51 (1) = exp {— /0 o @lsin (e de] . (1) = exp [ /O o 0lsin (o] 37)

and if inserting (3.2) in (3.6), we find

01 (t) | ()] cos (py) = 02| (t)] cos (5) . 01 () |A ()| sin () = 02| (t)|sin (95) , (3.8)

Now, to determine the pseudo-operator A (¢), defined from the pseudo-Hermicity relation

(2.52), we define the ansatz for the time-dependent metric 7 (t) [68, 69, 70, 71]

00 = 2 () (aat 3) +ua +u )],
~ exp Bm ) aﬂ exp B In 9 (£) <am + %)] exp Bﬁ_ () aQ] , (3.9)

with

2(2p4*) sinh 0 _;
- — —((H)e @
6 cosh  — 2esinh 6 Ct)e ’

-2
Yo (t) = (Coshe — %sinh@) = C3(t) = x(t), 0=2v/e&—4|ul’, (3.10)

_ 2(2u)sinh® ()
v-(t) = fcoshf — 2esinh§ C(t)e ’
cosh 8 + % sinh 0
X(t) = - 2€ _: ’
cosh 6 — 7 sinh 6

using the Baker-Campbell-Hausdorff formula (1.20) to obtain

exp [30_ (t) a®] aexp [-30_ (t) a®] = qa,

3.11
exp [%19-1- (t) aT2] a exp [—%19+ (t) aT2} —a—19, (t) aT, ( )

a

exp [% In Yy (t) (aTa + %)} a exp [—% In Yy (t) (aTa + %)} = ,

o (t) (3.12)
exp [0y (t) a™] alexp [-104 (t) a™?] = dT,
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D) an (1) = 2= (a— 0. (t)al),
n(t)an™ (t) = 7= (V- () a— x (t)al).

Thus, by using (2.52) with (3.13) the pseudo-operator A (t), is expressed in the following

(3.13)

form

A(t) = ([0 (8) + 0+ (£) 02 ()] @’ — [0 (1) 61 (1) + x () 62 (1)] a) - (3.14)

The operator A (t) verify the bosonic commutation relation (2.51)

[A(t), A@)] =A@)A(t) = A(t) A(t)
— (61 (t) a+ 65 (t) af) (L (161 + 0,85 at — [0_6, + x0s] a)) 1s)
(%% (16, + q9+52] at — [9_6, + x0s] a)) (61 (t) a + 65 () o)
=1,
which imply the constraint
03 (£) + x5 () + (94 + D) 61 (1) 82 () = /. (3.16)

The time-dependent pseudo-bosonic squeezed ladder operators B (t) and B (t) can be de-
termined by using the equations (2.63), (2.64) and (2.65) as

B( ) = cosh [¢] (61 () a + 05 (t) al)

(3.17)
& sin J¢] (b (101 (8) + V4 (1) 82 (D] al = [0~ ()81 (1) + x (1) 82 (D] 0) ),

B () = cosh el (b5 (191 (1) + 0 (1) 82 (B] ' = [0 (1) 81 (1) + x (1) 2 (1)] ) )
—$sinh €] (31 (t)a+ 82 (1) a)

hence, the operators B (t) and B (t) have a linear combination of a and a' and can be expressed

(3.18)

as
<51 (t) cosh [¢| + \élf sinh |£] [9_d1 + )(52]>

B(t) = (3.19)
+ (52 (t) cosh [¢| — \EIW sinh €] [01 + 19+52])
B(t) = (m cosh |€][61 + 91 dq] — smh €162 (¢ )) (3.20)

(ﬁ% cosh [€] [9_6, + Xaz] + £ sinh|¢]8; (¢ )) a
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Let us express the equation (3.3), (3.14), (3.19) and (3.20) in position and momentum

operators representation for the case where a = \/Li (z +ip) and also af = % (x — ip) which

imply
A(t) = [fo +igp)., A(t) = |fx— gy, (3.21)
where
1 1
f = —2 [51 + (52] 5 g = E [(51 — 52] s (322)
also
i ;%Kl—&qa@»+w+—maxm, (3.23)
gzv;%ul+ﬁ>&ur+w++maxm. (3.24)

Additionally, the condition (2.51) gives

g f)+f(H)g@) =1 (3.25)

Furthermore, the operators B (t) and B (t) can also be written as

B(t) = [few + igep) B(t) = |fer — iGep| (3.26)

where the condition in (2.68) and

fe = cosh 1 = 767 sinh |1 ge = cosh elg-+ ersinh |7, (3:27)
together with
fe = cosh |6 — 7 sinh . G = cosh g + i sinbela, (329
imply that
gefe + fege = 1. (3.29)

3.1 Pseudo-squeezed coherent states in position repres-
entation

In order to construct the pseudo-squeezed coherent states in the position representation, the

pseudo-squeezed vacuum state in the z-represetation is required. This will lead us to solve the
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eigenvalue equation B (t) [£,t) = 0 and B (1) ]g,\t/> in the z-representation

0
B0 wlet) = (£ 0+ (1) 57 ) €)=, (3.30)

_T A re ~% a
B (t) (w|&,t) = | f&(t)x+gi(t) B £ (x,t) = 0. (3.31)

Therefore, the solutions of the above equations are
€ (x,1) < = )}le p[ fgﬁ} (3.32)
s = ~ X 5. ) :
2T ge ge 29¢

and )

E(x,t) =n )& (z,t) = ~1 . 4 exp | — ExQ , (3.33)
27Tgg 9¢ 29§
where the coefficients (2 1 )Z and <2~—1**> : come from the binormalization relation between
ng/.i&_/ 7'(9595

the pseudo-vacuum state |€,t) and |£,t)

(€ tn@)[€,t) = [ & (x,0)¢ (z,1) do = 1. (3.34)

As mentioned before, the pseudo-squeezed coherent state is obtained by the action of
the displacement operator T (,¢) on the pseudo-squeezed vacuum (2.70). Accordingly, by

expressing 1" (y,t) in terms of

fft = 9¢B + e (3.35)
ip=feB~ fB
we find
T(y,t) =exp [YB(t) =7"B(t)] = exp [7 (fgw — i’g}p) =7 (fex +igep) (3.36)
= exp [(vfs - v*fg) x— i (79 + v*gg)p] ,
and by using the relation (1.21) and the following commutation relation
[z, p] = ih, h=1, (3.37)
thus, we obtain
T (y,t) = exp |—5 (D), <x>n} exp [l (p), x| exp [—Z (), p
< (3.38)
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where
@)y = (Vag 0| 02 [Uae (1)) = ((9eB + GeB)), = 79 + 7", (3.39)
Py =i (g O] mp[vag (0) = ((FeB ~ £B)) =2fe="fe (3.40)
by the same method, we deduce

*

T (. 8))" = exp | =3 (o) (@) ] exp i (p); 2 exp | =i (a); ]
= exp [—% (), <w>§§] exp [@ (p), @ ] exp [ (< Dy {20y )p} exp [—@ (M) p} ,

When the operators defined above in (3.38) and (3.41) act on the pseudo-squeezed vacuums

(3.41)

given in (3.32) and (3.33), we obtain the pseudo-squeezed coherent states as

Vo 0.0 = (5 )iexp 30w i (- 0,)] . e

2T Gege 29¢

Gog (2,1) = < E > exp ¢ (p)y <x>:; exp |i(p), T — 2f§ (:L’ — <m>;)2] , (3.43)

2T9¢ 9
with
exp [—i (z), p} £(z,t) =¢ (m —(a), ,t> . (3.44)

Noting that these last two equations (3.42), (3.43) can also be written in a more appropriate

form, where

ac ) = (s ) ow [5 00, (o, 0 [1 0,2

(3.45)
e [ (55 ] e [ (o - [(255)].
o 0.8) = () exp [<5 o) (2)2] exo [ ;]

(3.46)

) —(x x 2)* 7\ 2
% oxp [_Z. (< i >,,)p] ox p[ fi (x_ [< )+ >D ] .

Therefore, the density |p () ¥, ¢ (2, t)|2 = (¢e () [1hy ¢ (t)) can be expressed as a function
of ((az:>77 + (m)Z) as the following

) % 1 (@), + (@)
‘p(t)wa{ (a:,t)‘ = (27{92%) exp —% <x—T> , (3.47)
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and the latter represents a gaussian wave packet centred at [m — (M)} . We see from this
equation that the width of this gaussian wave packet varies with the time and is identical to
0 = gege. This wave packet is represented in the figures 3.1.1-3. it also readily verified that the

time-dependent pseudo-probability density is conserved

/ 0 | (8) o (2, 8)] = / 0z (o (2.0)71(8)) e (2. )
/ 0z (60 ¢ (2,)) Vo (1) (3.48)

1
_ 1 \2 1 _ (@), @) =
B /dx (27@59&) P [ 29¢9¢ (I "2 "> } B (2”9595 (an§g§> =L

[N

I Wave packet

0127
1 I Vacuum

0,10
008

0.067

0.04

00 S~

-20 -10 0 10 20
x

2
Figure 3.1.1 Time evolution of the wave packet |p(t)i, ¢(z,t)| with {=1,9, =9J_ =0,

Yo = —x = €*, e =2t —arcsinh(2), w = —i and a = 1 +1.
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I Wave packet
I Vacuum

X

2
Figure 3.1.2 Time evolution of the wave packet |p(t)y, ¢(x,t)| for § =0,9, =9J_ =0,

Yo = —x = €*,e =2t — arcsinh(2), w = —iand « = 1 +14, t € ]0,1.44].

We have illustrated the pseudo-probability density, equation (3.47), in the figures 3.1.1-
3 from various parameters (¢, ¥y =9J_, Jy, €, w, a and t). These figures correspond to the
wave packet for a particle moving along the positive and negative x axis. Figure 3.1.1 shows
that, although the shape of the wave packet is always kept to be gaussian. As a consequence, the
width of the packet gradually becomes broader over time whereas its height, 1/ [20], decreases.
Figure 3.1.2 however, the wave packet in it that corresponds to pseudo-boson coherent states

(¢ = 0) which is finite only when ¢ € |0, 1.44[ and it has an obvious pronounced peak which is
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(2), (@)}
",

situated at = = ((x>n>R =

d
10

L ]

—IIO —Ij 0
— &1 —&0
2
Figure 3.1.3 ‘p(t)waﬁé(x,t)‘ for{=1and £ =0, at time t =1

Iy =9_=0,9=—x=¢e* e=2—arcsinh(2), w=—iand a = 1 + 1.

Figure 3.1.3 shows that |p (), (a:,zf)‘2 is a function which has a peak at x = (<$>n>R
with the width o and an amplitude of 1/0, whose integral between —oco and +o0 is equal to 1.

Noticeably, (3.39) and (3.40) yields a complex quantities, the equations (3.45), (3.46) and
(3.47) prompt us to define the expectation value of an operator O in a given pseudo-squeezed

coherent state as the real part of O, namely,

(n),

Since our aim is to compute the Heisenberg uncertainty relations, it is required to calculate

S 1(0) +{0)". (3.49)

the preceding equation for O = x, 2%, p and p®. Using the expression for the expectation value
of an operator O given by the latter equation, the corresponding dispersion, defined in the usual

way, is in the following form

(AO)%, = [<02> (0] +% {<02>; - (<o>;)2] , (3.50)

it follows, after evaluating the dispersion in the position

(3.51)
= 5 [9¢9e + 9292]
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and momentum
@ = 4 [0, - 03] + [0 - ()]

AL (3.52)
= L [fefe+ 5]

1000

00 4

s

1 2
t

— (Az)}, — (Ap)y —— (A2),(Ap)y,
Figure 3.1.4 Time dependent dispersions in position, momentum and the uncertainty product
for 9, =9_ =0,09 = —x = €*,e =2t —arcsinh(2), w = —i and a = 1 + 1.

Accordingly, the pseudo expectation value of x, 2%, p and p? in the gaussian state Voe (1)
in (3.42) are given by

(@), = ((9¢B+3eB)), =79 +7" e, (3.53)
(@*), = ((9¢B +B) (9:B + geB)), = [?J?’YZ +9e7" + 9:Ge (21 + 1)] , (3.54)
i), = ((FB-1B)) =i(rf—F). (3.55)
", = - <(ng - ng) (ng - ng) >n — - [f?v* + 12— fefe 2P+ 1)} (3.56)

It follows from the equation (3.49) that the expression for the Heisenberg uncertainty

relations (Az)3 (Ap)%, is written as in the following form

() (B)y = & [(ocdi + 0c) (sefe+ 7)) 357

While in figure 3.1.4 the uncertainty product and dispersions are represented for £ = 1, in

the following figure 3.1.5 they are represented for £ = 0.
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Figure 3.1.4 also illustrates that (Az),, (Ap)g and (Az), (Ap), decrease when time ¢ €
10, 0.72] while they increase when t > 0.72.

2.0

1.3

1.6+
1.44
124
1.04
0.8
0.6

0.4

02

02 04 06 08 10 12
t

(Ap)l, — (Az) 5 (Ap),

. .2
— (Az)g

Figure 3.1.5 Time dependent dispersions in position, in momentum and the uncertainty product

for v, =9_=0,09=—x =e%,¢=2t —arcsinh(2), w= —i and a = 1 + .

Figure 3.1.5 shows that (Az), and (Az), (Ap), increase with time while (Ap), de-
creases. Hence, the corresponding uncertainty relation (Az)p (Ap)p increases with time. For
t €10.72, 1.44[ the inverse occurs. It does not seem for figure 3.1.4, that the pseudo-squeezed
coherent states produce any squeezing. Figure 3.1.5 however, it is clear that the quadrature

squeezing is achieved.

3.2 Time evolution of the pseudo-squeezed coherent states

[Wag (1))

The final step consists in determining the Schrédinger solution which is an eigenstate of the

pseudo-invariant operator B (t) multiplied by a time-dependent factor [72]

\Ilf,ﬁ (l‘, t) = eXp [iSDa,g} ¢a,£ (fL‘, t) ) (358)
this phase [69, 70] is given as

gpa,{ = f 1/%:,{ (.Z', t) n (Zat - H) ¢a,§ (I‘, t) dx

(3.59)
= [ g (@,) (10 — H) Yo ¢ (2,1) do,
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where the Hamiltonian in (3.1) expressed in variable operators x and p is

:g(p2+x2)+%(ﬁ+)\)x+%

The phase is calculated by substituting the expressions in (3.42) and (3.43) into the equation

H (1) (B=Np— (3.60)

w
B .

(3.59), we thus obtain

(g (.01 (1) H () [00g (,0)) = 5 (67, +(52),) + 5 (B+ ) (),

(3.61)
(BN (), — %,
and
(Vo (0.0 1010 [ (0.0)) = = (S255) 4 (@), ), = @, )
i (B (.
therefore, the phase can be expressed as
= () 1 (0
— 15 (62, + @2),) + HB+ N (@), + S BN, - 4],
where
(Az)* = Gege, (3.64)
and (p) , and () , are replaced by the classical equations,
Bla = =Gyl = lely = 504 (3.65)
@, = ), + G-, (3.66)
7 a(p), V2

Finally, the phase (3.59) can be simplified by using the equation (2.66) and (3.26), thus,

we have

o oo (oL
Pug = () (2 190 % <t>)' (3.67)

Consequently, the evolved pseudo-squeezed coherent states can be written as

Uoe (2,1) = exp [z /O () (% - m) dt’] e (@1). (3.68)
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Moreover, after a straightforward calculation, we obtain the expectation value of x in the

pseudo-squeezed coherent states W, ¢ (x,1)

7 (8) x| Wae (1))

z,1)

1 1 /
2 4ge(t)ge(t) ) dt]
1 1

1 ) |

- 4g£(t' :(75 (t )

2

(Vo (2,1) I (8) 2] e (2,1)) (3.69)

2
(YGe +7*g¢) -

1 2 3
— 1 —0
Figure 3.1.6 Represents variation of (x) (t)
Figure 3.1.6 has been produced by the parameters ¥, =9_ =0, Jg=—x =1, w= —7and
also @ = 1 + ¢, which have been used in the latter equation. In which it shows that (x) (¢) for

the pseudo-squeezed coherent states (£ = 1) increases rapidly than (x) () of the pseudo-boson

coherent states (§ = 0).



Conclusion

In this thesis, we have distinguished the different methods to obtain the coherent and

squeezed states in the stationary case that are

e The minimum uncertainty method,
e The annihilation or more general the ladder operator method,

e The squeeze and displacement operator methods.

Also, we list some of their properties and we develop the time evolution of the coherent
and squeezed states.

Consequently, we have constructed time-dependent pseudo-bosonic squeezed coherent states
solutions of the Schrodinger equation for non-Hermitian Hamiltonians. Our construction of
pseudo-bosonic squeezed coherent states is based on the introduction of time-dependent pseudo-
bosonic squeezed ladder operators subjected to time-dependent metric such that the latter ones
are integrals of motion. The pseudo-squeeze ladder operators (or invariant operators) obtained
as a Bogolyubov transformation of pseudo-bosonic annihilation (or creation) operators, are
used to define the pseudo-bosonic squeezed coherent states by the pseudo-displacement oper-
ator method acting on the ground state.

These pseudo-bosonic squeezed coherent states form a quasi-normalized and quasi-overcomplete
set of states in the Hilbert space and are eigenfunctions of the introduced ladder operators. As
discussed earlier, whereas a pseudo-coherent state is generated by linear terms in A (¢) and
A (t) in the exponent, the pseudo-squeezed coherent state requires quadratic terms.

As an illustration, we have treated in detail the non-Hermitian time-dependent displaced
harmonic oscillator. Thus, we have introduced a set of linear integrals of motion that are
pseudo-squeeze ladder operators. With the help of these operators, we constructed in position
representation, pseudo-bosonic squeezed coherent states as displaced squeezed ground state.

We have determined the associated phase of the evolved pseudo-bosonic squeezed coherent
states solution of the Schrodinger equation, this solution is in a Gaussian form and preserves

Schrodinger minimum uncertainty.
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Abstract:

In this thesis we construct time-dependent pseudo-squeezed coherent states
using pseudo-squeezed bosonic ladder operators defined as time dependent
non-Hermitian linear invariants that are related to their adjoint operators via a
time-dependent metric operator. These ladder operators are obtained from
the squeezed transformation of the pseudo-bosonic annihilation and creation
operators. As an illustration, we study the time-dependent non-Hermitian
displaced harmonic oscillator and the properties of these states are analyzed
with respect to the localization in position and to uncertainty principle.

Keywords: Coherent states, squeezed states, pt-symmetry, pseudo-hermicity,
time-dependent systems, invariant operators, pseudo-squeezed coherent
states.



Résumé :

Dans cette thése, nous construisons des états cohérents pseudo-squeezed
dépendant du temps en utilisant des opérateurs pseudo-squeezed bosoniques
d'annihilation et de création définis comme des invariants non-hermitique
linéaires dépendant du temps qui sont liés a leurs opérateurs adjoints via un
opérateur métrique dépendant du temps. Ces opérateurs sont obtenus a partir
de la transformation squeezed des opérateurs d'annihilation et de création
pseudo-bosonique. En effet, comme une illustration, nous étudions l'oscillateur
harmonique non-hermitique déplacé dépendant du temps, et les propriétés de
ces états sont analysées par rapport a la localisation en position et au principe
d'incertitude.

Mots clés: Les états cohérents, les états squeezed, pt-symétrie, pseudo-
hermiticité, systemes dépendant du temps, opérateurs invariant, les etats
cohérent pseudo-squeezed.
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