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 شكر و تقدير
 

أشكر و أحمد الله العلي القدير الذي أنعم عليَّ بنعمة العق ل والدين. الق ائل في محكم  
  "وَفوَْقَ كُلِّ ذِي عِلْمٍ عَليِم  " التنزيل

جهداً في    اوأيضا وف اء ً وتقديرا ً واعتراف ا ً مني بالجميل أتقدم بجزيل الشكر لأولئك الذين لم يألو 
على إشرافه    معماش مصطفى .أمساعدتنا في مجال البحث العلمي، وأخص بالذكر الأستاذ الف اضل:  

  ، فجزاه الله كل خيرطوال سنوات إنجازهالهذه المذكرة وصاحب فضل في توجيهي ومساعدتي  
 .وحفظه هو و عائلته

 ،مناقشة مذكرتيجنة  لن يكونوا في  أالذين قبلوا  لأساتذة  ل  أن أتقدم بجزيل الشكر  ىولا أنس
بونامس    و  عبد المالك  بومعالي نجيب،  بعجيالممتحنين    والأساتذةباية رئيسة  بن طاق  الأستاذة  

 .عبد الحفيظ

أكمل    ىكل من مدوا لي يد العون والمساعدة لإتمام هذه المذكرة عل  ىبجزيل شكري إل  أتقدم
 .ياسين  بوقرة نعيمة مانع، وأخص بالذكر وليد كوسة،  وجه

كل    وإلىبلال علوش،  ،لقمان سعد عزام، عبد الرزاق لقويزيزملائي في الدكتوراه  وأخيرا أشكر  
 .من تعذر علينا ذكره

 

 

 

 

 

 



 

 

 إهداء
 

هدي
 
لى وألدي   أ وقفا  أللذأنألعزيزين حفظهما الله  هذأ ألعمل ألمتوأضع أ 

 أءأء وألضر  بجانبي في ألسر  

لى خوتي أ   أ 

لىو   من جمعني بهم منبر ألعلم كل أ 
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Introduction
Classical and quantummechanics are two theories that study the motion of physical objects,

the �rst one is stricted to macroscopic scale whereas the second describes microscopic and

macroscopic objects.

While describing the quantum mechanics of bound and unbound particles is successful

through the wave mechanical formulation, some properties though can not be represented by

a wave-like description i.e. an electron spin degree of freedom can�t be expressed as an action

of a gradient operator. Thus, the reformulation of quantum mechanics to a framework that

involves only operators is useful. A state vector or a wave function  in the Dirac notation

is represented by j i, also known as "ket", likewise, any wavefunction can be expanded as a

superposition of basis state vectors

j i = �1 j 1i+ �2 j 2i+ �3 j 3i+ � � � : (1)

Consequently, we de�ne the "bra" h j that de�nes together with the ket, a scalar product

h�j  i �
+1Z
�1

�� (x) (x) dx; (2)

correspondingly, we deduce the identity h�j  i = h j �i�. The space and momentum represent-

ation of the wave function is given as  (x) = hxj  i and  (p) = hpj  i respectively. Moreover,

B is said to be an opoerator if it maps a state vector j�i into another j�i, i.e. B j�i = j�i,

nevertheless, if

B j�i = b j�i ; (3)

where b is real, accordingly, we can say that j�i is an eigenfunction or an eigenstate of the

operator B with the eigenvalue b, it is known that for any quantum observable O there is an

operator O that acts on a wave function j�i, in which if the system is in a state characterized

by the wave function, then the expectation value is said to be

hOi = h�jO j�i =
Z
dx�� (x)O� (x) : (4)

A hermitian linear operator is an observable, i.e. B (ac j�i+ bc j�i) = ac (B j�i)+bc (B j�i),

where ac and bc are complex numbers, hence, it is appropriate to de�ne the adjoint or the
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Hermitian conjugate, the adjoint of a linear operator O is de�ned as

h�jO �i =
Z
dx�� (O�) =

Z
dx�

�
Oy�

��
=


Oy�

�� �i ; (5)

an operator O is called self-adjoint or Hermitian if Oy = O, where the symbol "y" denotes the

adjoint operation. The eigenfunctions of Hermitian operators form an orthonormal complete

basis, for example hij ji = �ij, in consequence, we obtain the resolution of identity if we sum

over a complete set of states X
i

jii hij = I; (6)

hence, any state function can be expanded if we use the resolution of identity

 (x) = hxj  i =
X
i

hxj ii hij  i =
X
i

hij  i�i (x) ; (7)

where �i (x) = hxj ii.

Since we are able to expand and develop an eigenfunction one can say that we have the

means to inspect the time evolution, thus, the wave function can evolve in time by applying

the time evolution operator, i.e. for a time-dependent Hamiltonian

j (t)i = U (t) j (0)i ; (8)

where U (t) = e�i
R
@tH=~ and it is found by integrating the following time-dependent Schrödinger

equation

H j i = i~@t j i ; (9)

also, the time evolution operator is unitary UU y = I.

Correspondingly, the expectation values can also evolve through time, if we assume that

the operator O is time dependent, then we have

d

dt
h�jO j�i = @t (h�j)O j�i+ h�j @tO j�i+ h�jO (@t j�i) ; (10)

from the time-dependent Schrödinger equation and the fact that the Hamiltonian is Hermitian,

we obtain

d

dt
h�jO j�i =

i

~
[h�jHO j�i � h�jOH j�i] + h�j @tO j�i ;

=
i

~
h�j [H;O] j�i+ h�j @tO j�i ; (11)
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if the operator O is time-independent, then we have

d

dt
h�jO j�i = i

~
h�j [H;O] j�i ; (12)

the preceding relation is also known as the Ehrenfest theorem, from which we notice that when

[H;O] = 0, the expectation value of O is a constant of motion and obeys the laws of classical

mechanics. The expectation values of the position and momentum operators are respectively

given as
d

dt
hxi =

�
@H

@p

�
;

d

dt
hpi = �

�
@H

@x

�
; (13)

these relations are the equivalent of Hamilton�s classical equations of motion. Another descrip-

tion to obtain classical results is achieved with the coherent states. These states which were

introduced for the �rst time in 1926 [1] are related to the harmonic oscillator which is one of the

fairly small number of quantum mechanical problems that can be exactly solved, the problem

provides a foundation for our understanding of many signi�cantly important physical prob-

lems, including molecular vibrations, the vibrational excitations of solids i.e. phonons, and the

quantization of the electromagnetic �eld for example the photons. Indeed, the one-dimensional

harmonic oscillator is one of the most important systems in quantum �eld theory.

The expectation values of the coordinate and momentum in the coherent states are the

same as the expectation values of the position and momentum in the classical theory of the

harmonic oscillator. The coherent states describes a state in a system from which the ground

state wave packet is displaced from the origin of the system, this state can be related to classical

solutions by a particle oscillating with an amplitude equivalent to the displacement, these states

are expressed as eigenvectors of the annihilation operator, they were familiarized by Klauder

[2, 3], and were later on presented by the work of Glauber in 1963 [4].

Coherent states are remarkable quantum states that are important in many �elds of phys-

ics [2, 5], such as quantum optics where they play a particular role in laser physics. These

states were introduced for the hamonic oscillator by Schrödinger in 1926 [1]. In 1963 Glauber

[4] introduced the coherent states of the radiation �eld as eigenstates of the annilation oper-

ator [6], whereas Klauder [7] used coherent states to verify the relation between the quantum

system and the classical system. Squeezed states [8, 9] which are a special class of minimum

uncertainty states, have received considerable attention due to their important applications in
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optical communication, photon detection techniques, gravitational wave detection, and noise-

free ampli�cation.

Squeezed states represent a generalization of coherent states and were introduced by di¤er-

ent authors [10, 11, 12, 13, 14, 15, 16, 17]: Stoler [11, 18], Lu [19, 20], Yuen [21] and Hollenhorst

[13] who originated them with the name "squeezed states".

Similarly, to the coherent states the squeezed states of the harmonic oscillator are the states

that are attained by acting on the ground state with an exponential that consists of terms of

the quadratic forms of the creation and annihilation operators. In addition, these states are

common for which �x�p = ~=2, therefore reaching the saturation of the uncertainty bound.

In addition, the use of the squeezed states allow for continuous measurement improvements,

and it is now becoming widely accepted i.e. in the gravitational wave detectors tests the squeezed

states improved measurements sensitivity.

With the aim to de�ne squeeezed coherent states for time-dependent non-Hermitian sys-

tems, we present in the �rst chapter, the de�nition of coherent and squeezed states for the

Hermitian harmonic oscillator in the stationary case then we develop their time evolution. In

the second chapter, we construct the time-dependent pseudo-squeezed coherent states by in-

troducing pseudo-squeezed bosonic ladder operators de�ned as time-dependent non-Hermitian

linear invariants and related to their adjoint operators via the bounded Hermitian invertible op-

erator or metric operator. As an illustration, we study in the third chapter the time-dependent

non-Hermitian displaced harmonic oscillator, in which we �nd interesting results that lead to

this work.



Chapter 1

Coherent and squeezed states for the

harmonic oscillator

Coherent states together with squeezed states constitute the foundation and cornerstone of

the theoretical framework of modern optics. As shown in the literature, this framework starts

from the harmonic oscillator creation and annihilation operators. In this part, we present the

de�nition of these states, we distinguish the di¤erent methods to obtain the coherent states as

well as the squeezed states, moreover, listing some of their properties.

1.1 De�nition of the coherent states

Coherent states are quantum states that exhibit a classical behavior, i.e. the mean values of the

position and momentum operators in the coherent states have properties close to the classical

values of the position and momentum.

Furthermore, coherent states have been extensively studied by several physicists and di¤er-

ent de�nitions have emerged as a result of that process. If we ought to summarize their work,

we can keep in mind some of the distinct but equivalent methods of obtaining the mentioned

coherent states [1, 4, 22, 23, 24, 25, 26, 27, 28, 29].

These are:
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(1) The states that minimize this uncertainty relation

(�x)2 (�p)2 � 1

4
; (1.1)

where (�x)2 and (�p)2 represent the dispersions of the position and of the momentum respect-

ively

�x =
�

x2
�
� hxi2

� 1
2 ; �p =

�

p2
�
� hpi2

� 1
2 ; (1.2)

and the operators of the position and momentum are given in case of the harmonic oscillator

by

x =

q
~ (2m!)�1

�
ay + a

�
; (1.3)

p = i

r
m!~
2

�
ay � a

�
= i~

�
ay � a

�
p
2d

; (1.4)

where d is a quantum length scale from the harmonic oscillator that can be built from ~,m

and !

d �
p
~=m!: (1.5)

Consequently, the position and the momentum expectation values are

hxi = h�jxj�i = dp
2



�j
�
ay + a

�
j�
�
=

dp
2
(�� + �) = d

p
2Re (�) ; (1.6)

hpi = i~
�
d
p
2
��1 


�j
�
ay � a

�
j�
�
=
~
p
2

d
Im (�) ; (1.7)

thus,

� = Re (�) + i Im (�) =
hxi
d
p
2
+ i
hpi d
~
p
2
; (1.8)

therefore, �x and �p are expressed as

�x =

r
~
2m!

; �p =

r
~m!
2

: (1.9)

(2) The eigenfunctions of the annihilation operator, also called Glauber states, de�ned as

a j�i = � j�i ; (1.10)

where we note that the parameter � is complex, and the action of a on the state j�i can be

computed as the following

a j�i = a exp
�
�ay � ��a

�
j0i =

�
a; exp

�
�ay � ��a

��
j0i ; (1.11)

                  Chapter  1:  Coherent  and  squeezed  states  for  the  harmonic  oscillator



7

and if we look at the commutation relation between the non-Hermitian ladder operators

�
a; ay

�
= 1; (1.12)

it follows that

a j�i =
�
a; �ay � ��a

�
exp

�
�ay � ��a

�
j0i ; (1.13)

therefore, we get (1.10), also, the normalized coherent states are given as[30]

j�i = e
�j�j2

2

1X
n=0

�np
n!
jni ; (1.14)

and their adjoint

h�j = e
�j�j2

2

1X
n=0

(��)np
n!
hnj : (1.15)

(3) Displacement-operator methods, i.e.: applying the displacement operator

D(�) = exp
��
�ay � ��a

��
; (1.16)

on the ground state j0i as

j�i = D(�) j0i = exp
��
�ay � ��a

��
j0i ; (1.17)

The displacement operator D(�) is unitary

Dy (�) = D�1 (�) = D (��) ; (1.18)

Dy (�)D (�) = D (�)Dy (�) = I: (1.19)

Introducing the Baker-Campbell-Hausdor¤ formula [31, 32, 33]

eABe�A = B + [A;B] +
1

2!
[A; [A;B]] � � � ; (1.20)

consequently, we recall the commutator identity

eA+B = e�
1
2
[A;B]eAeB = e

1
2
[A;B]eBeA; (1.21)

it is worth to note that A and B are two operators such that

[[A;B] ; A] = [[A;B] ; B] = 0; (1.22)

         Chapter  1:  Coherent  and  squeezed  states  for  the  harmonic  oscillator
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then

eAeB = e[A;B]eBeA: (1.23)

The operator D(�) (1.16) can be expressed as

D (�) = e
�j�j2

2 e� a
y
e��

�a; (1.24)

or

D (�) = e
j�j2

2 e��
�ae� a

y
; (1.25)

and therefore its action on a and ay yields

Dy (�) aD (�) = a+ �; (1.26)

Dy (�) ayD (�) = ay + ��; (1.27)

we can easily demonstrate that

D (�+ �) = D (�)D (�) ei Im��
�
: (1.28)

Additionally, the formula in (1.21) implies that the coherent state form in (1.17) can be written

as the following expression

j�i = e�
j�j2
2 e�a

y j0i : (1.29)

1.2 Properties and time evolution of the Coherent states

The coherent states has a number of properties that can be listed as

1. The coherent states are not orthogonal between them

h�j�i = h0jDy (�)D (�) j0i ; (1.30)

by using (1.14), we obtain

h�j�i = e
�j�j

2

2
�
j�j2

2
+���; (1.31)

which shows that the coherent states j�i and j�i are not mutually orthogonal, and that

the squared modulus h�j�i indicates the distance measure between the coherent states.

         Chapter  1:  Coherent  and  squeezed  states  for  the  harmonic  oscillator
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2. The coherent states are normalized, simply by puting � = �, we obtain

h�j�i = I: (1.32)

3. Also, the coherent states form an overcomplete basis

1

�

Z
j�i h�j d2� = I; (1.33)

we can demonstrate this identity if we pose that � = uei�, thus, d2� = udud� and by

using (1.14), we obtain

1

�

Z
j�i h�j d2� =

1X
n=0

1X
m=0

Z 1

0

udu

Z 2�

0

d�

�

un+mp
n!m!

ei(n�m)�e�u
2 jni hmj ; (1.34)

and thus,
1

�

Z
j�i h�j d2� =

1X
n=0

jni hnj
n!

Z 1

0

dve�vvn; (1.35)

in which we used
R 2�
0
d�ei(n�m)� = 2��nm, the variable change u2 = v, and after we use

the integration
R1
0
dve�vvn = n!, we obtain the previous relation.

4. The expectation values hxi,hpi and hHi in j�i, remain constantly equal to their classical

counterpart. We de�ne the time evolution of coherent states by using the Heisenberg

picture, from (1.17) we get

j�; ti � e�
i
~Ht j�i = e�

i
~Hte(�a

y���a)e
i
~Hte�

i
~Ht j0i ; (1.36)

then, we obtain the following form of the time evolution of coherent state

j�; ti = exp
�
�ay (t)� ��a (t)

�
exp

�
�i!t
2

�
j0i ; (1.37)

where we have generalized the idea of a Heisenberg operator as

OH (t) = eiHt=~OShre
�iHt=~; (1.38)

Furthermore, we now introduce the relations a (t) = ei!ta, and ay (t) = e�i!tay we can

rewrite the time evolution of the coherent state (1.37) to be in the following form

j�; ti = exp
�
�i!t
2

�
exp

�
�e�i!tay � ��ei!ta

�
j0i ; (1.39)

         Chapter  1:  Coherent  and  squeezed  states  for  the  harmonic  oscillator
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by comparing it to (1.17) and precisely the exponential, we notice that it is in fact the displace-

ment operator with a slight change where � ! �e�i!t, we can say that � (t) = �e�i!t, thus,

the time evolution of the coherent state can be expressed also in the following form

j�; ti = exp
�
�i!t
2

� ��e�i!t�� = exp ��i!t
2

�
j� (t)i ; (1.40)

this interprets time evolution of a coherent states j�i, up to an irrelevant phase the state

remains a coherent state with a time changing parameter e�i!t�, also the state is represented

by a vector that rotates in the clockwise direction with angular velocity ! in the complex

plane � that can be represented with two axis, the �rst one is a real axis that gives hxi up

to a proportionality constant, and the second one is an imaginary axis that gives hpi up to a

proportionality constant. This can be interpreted as a phase space and the evolution regarding

any state is represented by a circle, as demonstrated in the next �gure

Figure 1.2.1 represents the time evolution of the coherent state j�i :

         Chapter  1:  Coherent  and  squeezed  states  for  the  harmonic  oscillator
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The �gure (1.2.1) states that the real and the imaginary parts of � determine the expect-

ation values hxi and hpi respectively. Noticeably, throughout the time evolution the parameter

� of the coherent state rotates clockwise with an angular velocity !.

In an alternative way, there is a conventional calculation of the time evolution by expanding

the exponential in (1.29), where we know that the coherent states refer to a set of vectors in

the Hilbert space and refer to a special kind of quantum mechanical state of light �eld that is

de�ned in (1.14) and its de�nition is also known as the coherent state in the n-representation,

which implies that there is a coherent state in the x-representation that will be mentioned later

on. By using the action exp [�iHt=~], we thus obtain

j�; ti � exp [�iHt=~] j�i =
exp

h
� j�j2

2

iP1
n=0 �

n exp

�
� i~![(n+ 1

2)t]
~

�
p
n!

jni ; (1.41)

where we �nd

j�; ti = exp
�
�i!t
2

�
exp

�
�j�j

2

2

� P1
n=0 (exp [�i!t]�)

n

p
n!

jni ; (1.42)

we note that

je�i!t�j2 = j�j2; (1.43)

therefore, the time evolved coherent state can be written in the following form

j�; ti = exp
�
�i!t
2

� ��e�i!t�� ; (1.44)

this con�rms our previous result in (1.40).

1.3 Generalized coherent states: linear invariants ap-

proach

We introduce the non-Hermitian invariant linear operator as

A (t) = f (t) q + ig (t) p; (1.45)

Ay (t) = f � (t) q � ig� (t) p: (1.46)

         Chapter  1:  Coherent  and  squeezed  states  for  the  harmonic  oscillator
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where f (t) and g (t) are time-dependent complex functions. An operator I (t) is said invariant

if it satis�es the Von-Neumann equation

@IPH(t)

@t
=
i

~
�
IPH (t) ; H(t)

�
: (1.47)

The generalized coherent states can be de�ned with the invariant operators A (t) and

Ay (t), as they can be considered as the annihilation and creation operators, respectively, where�
A (t) ; Ay (t)

�
= I, as

A (t) j�; ti = � j�; ti ; (1.48)

the eigenstates of the operator A (t) are the generalized coherent states, also the number op-

erator can be written as N (t) = Ay (t)A (t). The generalized coherent states j�; ti can be ob-

tained from the action of the displacement operator D (�; t) on the vacuum state j0; ti de�ned

by A (t) j0; ti = 0 as

j�; ti = D (�; t) j0; ti ; (1.49)

where the displacement operator is given by

D (�; t) = exp
�
�Ay(t)� ��A(t)

�
; (1.50)

we emphasize that the generalized coherent states have the same properties as the ones men-

tioned before.

1.4 De�nition of the squeezed states

Squeezed states [8, 9] are a special class of minimum-uncertainty states, have received consider-

able attention due to their important applications in optical communication, photon detection

techniques, gravitational wave detection and noise-free ampli�cation.

Squeezed states represent a generalization of coherent states were introduced by di¤erent

authors [10, 11, 12, 13, 14, 15, 16, 17]: Stoler[11, 18], Lu[19, 20], Yuen[21] and Hollenhorst [13]

whom originated them with the name "squeezed states".

Similar to the coherent states, the squeezed states can be de�ned by some distinct but

equivalent ways:
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1. To obtain squeezed states [34, 35, 36, 37], one applies both the squeeze and displacement

operators on the ground state

D(�)S(�) j0i � j�; �i : (1.51)

We �nd in the literature di¤erent squeeze operators introduced for obtaining squeezed

states that are given as [8, 11, 18, 38, 39, 40]

S1 (�) = exp(
1

2

h
�a2 � ��ay

2
i
); (1.52)

S2 (� = exp()
1

2

h
��ay

2 � �a2
i
); (1.53)

S3 (� = exp()
1

2

h
��a2 � �ay

2
i
); (1.54)

S4 (�) = exp(
1

2

h
�ay

2 � ��a2
i
); (1.55)

where � = r exp [i�] is an arbitrary complex parameter and a and ay are the lowering and

raising operators, which satisfy the commuation relation (1.12), the numbers r and � are

real and known as the squeezed factor and the squeeze angle, respectivly, and they are

de�ned in the intervals 0 � r < 1 and -�
2
� � < �

2
, we notice that S1 (�) = Sy2 (�) and

S3 (�) = Sy4 (�).

Let us consider the unitary squeeze operator de�ned by

S(�) = exp

�
1

2
(�ay2 � ��a2)

�
; (1.56)

whose properties are summarized as

(a) Unitarity

Sy (�) = S�1 (�) = S (��) : (1.57)

(b) S(�) acts upon the lowering and raising operators, a and its adjoint ay, i.e.

b = S(�)aS�1(�) = cosh j�j a� �

j�j sinh j�j a
y;

by = S(�)ayS�1(�) = cosh j�j ay � ��

j�j sinh j�j a (1.58),

which is known as the Bogolyubov transformation [41].
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(c) If the squeeze parameter � is null, � = 0, we obtain the coherent states that we

de�ned above

D(�)S(0) j0i = D(�) j0i = j�; 0i = j�i : (1.59)

Noticeably, since D (�) and S(�) are both unitary operators, then

h�; �j�; �i = I: (1.60)

An equivalent form of de�ning the two-photon coherent state [34] reverses the order

of the D(�) and S(�) such that

D(�)S(�) = S(�)D(
); (1.61)


(�; �) = � cosh j�j � ��
�

j�j sinh j�j . (1.62)

2. The annihilation- (or, more generally, ladder-) operator method. Using a Bogolyubov

transformation (1.58), the operator D(�)S(�)aS�1(�)D�1(�) can be expressed as a lin-

ear combination of a and ay, this transformation provides an eigenvalue relation for the

squeezed coherent states,�
cosh j�j a� �

j�j sinh j�j a
y
�
j�; �i = 
(�; �) j�; �i ; (1.63)

with 
(�; �) given in Eq. (1.62).

3. Minimum-Uncertainty Method, in which the squeezed states can be obtained as states

which satisfy, rather than the Heisenberg uncertainty relation, the Schrödinger-Robertson

uncertainty relation

�A�B � jhCij
2

; where [A;B] = iC: (1.64)

A squeezed state is obtained if the variance in one of the latter observables met the condition

(�A)2 <
jhCij
2

; or (�B)2 <
jhCij
2

; (1.65)

if the condition (1.65) is veri�ed and, in addition, the relation (1.64) is found to be an

equality, i.e.

�A�B =
jhCij
2

; (1.66)

Chapter 1: Coherent and squeezed states for the harmonic oscillator
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then the state is called an ideal squeezed state.

As an illustration, A and B can be expressed in the dimensionless position and momentum

operators form X and P of (1.3) and (1.4), respectively, where

X =
1

2
(a+ ay); P =

1

2i
(a� ay); (1.67)

thus, from (1.64), we obtain

�X�P � 1

4
; where [X;P ] = (�2i)�1; (1.68)

furthermore, the squeezed states are obtained if (1.65) is veri�ed, also, an ideal squeezed

state is obtained if in addition to (1.65) the relation in (1.68) is found to be an equality i.e.

�X�P =
1

4
: (1.69)

1.5 Time evolution of the squeezed states

We de�ne the time evolution of squeezed coherent states using the Heisenberg picture and from

(1.51) we get

j�; �; ti = exp
�
� i
~
Ht

�
j�; �i ; (1.70)

it follows that

j�; �; ti = e(�
i
~Ht)D (�) e

i
~Hte�

i
~HtS (�) e

i
~Hte�

i
~Ht j0i ; (1.71)

by replacing D (�) and S (�), we obtain

j�; �; ti = e[�
i
~Ht]e[�a

y���a]e
i
~Hte�

i
~Hte

[ 1
2

�
�(ay)

2���(a)2
�
]
e
i
~Hte�

i
~Ht j0i ; (1.72)

then by using the Baker-Campbell-Hausdor¤ formula (1.20), we now have the time dependent

squeezed coherent states, de�ned as

j�; �; ti = exp
�
�i!t
2

�
D� (t)S� (t) j0i ; (1.73)

where

D� (t) = exp
�
�ay (t)� ��a (t)

�
; (1.74)

S� (t) = exp

�
1

2

�
�ay (t) ay (t)� ��a (t) a (t)

��
; (1.75)
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Chapter 2

Time-dependent pseudo-squeezed

coherent states

2.1 Time-dependent non-Hermitian systems

PT -symmetry and pseudo-Hermiticity are two notions that have emerged widely in the liter-

ature showing that non-Hermitian systems may have real energy spectrum.

PT -symmetry that was developped in 1998 by Bender and Boettcher [42] signi�es the

symmetry parity-time, where P is a linear operator and it represents the parity, or an in-depth

de�nition, it represents the space re�ection, while the time reversal T is an anti linear operator.

The two operators commute [P ; T ] = 0 but not known to be equal, their square is the identity

(PT )2 = I, where P2 = T 2 = I. The action of P and T on the operators of position x,

momentum p and the imaginary number i are given as

P fx! �x , p! �p , i! ig ; (2.1)

T fx! x , p! �p , i! �ig ; (2.2)

we �nd in some literature, the authors de�ne the operator T as time changing also t ! �t

[43, 44, 45, 46, 47, 48]. A Hamiltonian H is PT -symmetric if it satis�es

[H;PT ] = 0; (2.3)

the notion of PT -symmetry was generalized by Mostafazadeh when he introduced the notion
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of pseudo-Hermiticity [49, 50, 51]. The Hamiltonian H is said to be pseudo-hermitian if it

satis�es the following

Hy = �H��1 (2.4)

where Hy is the adjoint of H, and � is a Hermitian bounded invertible operator. Writing the

eigenvalues equations of H and Hy as

H j ni = En j ni ; (2.5)

Hy j�ni = E�n j�ni : (2.6)

where the eigenvectors j ni and j�ni form a biorthonormal basis

h�m j ni = �mn: (2.7)

The closure relation reads X
n

j ni h�nj =
X
n

j�ni h nj = I; (2.8)

therefore, H and Hy, are given as

H =
X
n

En j ni h�nj H; y =
X
n

E�n j�ni h nj : (2.9)

The pseud-Hermicity connects also the Hamiltonian H to a Hermitian one h as

h = �H��1; (2.10)

where the Dyson transformation operator � is linear, bounded and invertible. In fact, from the

preceding relation we can obtain (2.4), therefore,

�H��1 =
�
��1
�y
Hy�y; (2.11)

we multiply it from the left by �y, and from the right with
�
�y
��1
, noting that � = �y�

�y�H��1
�
�y
��1

= �H��1 = Hy; (2.12)

now, we consider the eigenvalues of the hermitian Hamiltonian h

h j�ni = En j�ni : (2.13)
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the transformation � allows us to pass from the eigenfuctions of h to the eigenfunctions of H

j�ni = � j ni : (2.14)

The eigenfunctions of j�ni form an orthonormal basis in which the inner-product is pre-

served, i.e.

h�m j�ni = �mn; (2.15)

by using (2.14), we obtain

h�m j�ni = h mj �y� j ni = h mj � j ni = h mj  ni� = �mn; (2.16)

the latter is known as the pseudo-inner product or the �-inner product.

The study of time-dependent non-Hermitian Hamiltonian systems has led to a controversial

between physicists: Mostafazadeh [52, 53, 54] said that the evolution of a pseudo-Hermitian

Hamiltonian H(t) is unitary only if the metric operator is time-independent. Znojil [55, 56, 57]

demonstrated the unitary evolution of a time-dependent system does not necessitate a time-

independent metric operator, it can be obtained with a time-dependent one. Whereas Fring

and Moussa [58, 59] established a time-dependent quasi-Hermiticity relation.

We summarize the three di¤erent points of views in what follows:

1) Ali Mostafazadeh point of view: Let UH (t) be the time-evolution operator associated

to the non-Hermitian Hamiltonian H (t)

H (t)UH (t) = i~
@

@t
UH (t) ; (2.17)

where U (0) = I, and  (t),� (t) are eigenstates with UH (t) de�ning their time evolution

as

 (t) = UH (t) (0) ; � (t) = UH (t)� (0) ; (2.18)

the time independence is given to the scalar product h (t) ; � (t)i�(t) by the unitary evol-

ution. The pseudo scalar product h:; :i�(t) is also valid for � (t) i.e. (2.16)

h (t) ; � (t)i�(t) = h (t) j� (t)� (t)i

= h (0)jU yH (t) � (t)UH (t) j� (0)i = h (0)j � (0) j� (0)i ; (2.19)
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it follows that

U yH (t) � (t)UH (t) = � (0)() � (t) =
�
U yH (t)

��1
� (0)

�
UH (t)

��1
; (2.20)

thus, we obtain

��1 (t) = U yH (t) ��1 (0)UH (t) ; (2.21)

by using the latter relation, the relation in (2.17) gives

Hy (t) = � (t)H (t) ��1 (t)� i~� (t)
@

@t
��1 (t) : (2.22)

the preceding equation demonstrates that H (t) is �-pseudo-Hermitian only if � is time

independent (2.4).

2) Milozlav Znojil point of view: Znojil states that the time evoution of the quasi-

Hermitian quantum systems is generated by the time evolution of non observable gener-

ator Hgen di¤erent than H. The associated Schrödinger time dependent equation of the

hamiltonian h (t) is

h (t) j' (t)i = i~
@

@t
j' (t)i ; j' (t)i = Uh (t) j' (0)i ; (2.23)

and can be written in terms of the unitary (Uh (t)
�
Uh (t)

�y
= I) time evolution operator

Uh (t) as

i~
@

@t
Uh (t) j' (0)i = h (t)Uh (t) j' (0)i ; (2.24)

where h (t) = � (t)H (t) ��1 (t), therefore, the Schrödinger equation solution is given in

the following form

j' (t)i = Uh (t) j' (0)i ; (2.25)

and grati�es

h' (t) j' (t)i = h' (0) j' (0)i ; (2.26)

which indicates that the norm is constant.
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Znojil[57] is distinguishing two time evolution forms given as

j� (t)i = UR (t) j� (0)i ; (2.27)

h�0 (t)j = h�0 (0)jUL (t) ; (2.28)

where UR (t) = ��1 (t)Uh (t) � (0) and UL (t) = ��1 (0)U yh (t) � (t) and they act on

j�(t)i = ��1 (t) j' (t)i and h�0 (t)j = h'0 (t)j � (t), respectively, this suggests that there

is two di¤erent methods of representing the wave function in (2.25), simple computing

leads to the time evolution rule of the action on the right as well as on the left. The

di¤erential equations of the right time evolution operators UR (t) and the left UL (t) are

as follows

i~@tUR (t) = �i~��1 (t) [@t� (t)]UR (t) +H (t)UR (t) ; (2.29)

i~@tU yL (t) =
�
i~@t�y (t)

� �
��1 (t)

�y
U yL (t) +Hy (t)U yL (t) : (2.30)

In consequence, the states j�i and j�0i satisfy the Schrödinger equation

i~
@

@t
j� (t)i = Hgen (t) j� (t)i ; (2.31)

i~
@

@t
j�0 (t)i = Hy

gen (t) j�0 (t)i ; (2.32)

where

Hgen (t) = H (t)� i~��1 (t) @t� (t) ; (2.33)

Hy
gen (t) = Hy (t) + i~@t�y (t)

�
��1 (t)

�y
: (2.34)

This point of view also demonstrates the time evolution to be unitary, if we take the

normalization time di¤erential, we obtain

@t h�0 (t) j� (t)i = 0: (2.35)

Noticeably, two opposite point of views emerges while constructing the quantum time

dependent quasi-hermitian systems.
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3) Fring and Moussa point of view: Fring and Moussa con�rm that when � (t) is time

dependent the relations of quasi-Hermicity (2.10) and (2.12) are not valid, thus, approving

Mostafazadeh�s point of view. We take two time dependent Shrödinger equations

h (t) j (t)i = i~
@

@t
j (t)i ; H (t) j� (t)i = i~

@

@t
j� (t)i ; (2.36)

where h (t) is hermitian h (t) = hy (t) while H (t) is not H (t) 6= Hy (t), Fring and Moussa

claim that the operators are not called Hamiltonians unless they generate the time evol-

ution of the system under consideration, In which they should satisfy the time dependent

Schrödinger euqation. Afterwards, they claim the two solutions j (t)i and j� (t)i to be

connected by a time dependent invertible operator � (t)

j (t)i = � (t) j� (t)i ; (2.37)

if we substitute the latter relation into (2.36), we �nd that the two Hamiltonians are

connected to each other as

h (t) = � (t)H (t) ��1 (t)� i~��1 (t) @t� (t) ; (2.38)

we note that h (t) and H (t) are not related with a similarity transformation as in the

time independent case, or as in the time dependent case where the metric operator is time

independent. They refer to the preceding equation as the time dependent Dyson relation,

thus generalizing its time independent counterpart. If we take the adjoint of (2.38) and

use the Hermicity of h (t) we obtain the relation between H (t) and its adjoint

Hy (t) � (t)� � (t)H (t) = i~@t� (t) ; (2.39)

thus, de�ning � (t) = �y (t) � (t) as a metric operator, the latter relation replaces the

well known standard quasi-Hermicity relation in the context of the non-Hermitian time

dependent quantum mechanincs [58, 59].

Besides the three approaches listed above, the pseudo-invariants theory is a useful theory

for the study of time-dependent non-Hermitian systems that we will use for the construc-

tion of pseudo-squeezed coherent states.
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2.2 Pseudo-squeezed coherent states:

To build a time-dependent pseudo-squeezed coherent state, we consider a non-Hermitian time-

dependent case, therefore, we should �nd the integrals of motion, and we will choose the

annihilation and creation operators which are very convenient for the study of pseudo-coherent

states and pseudo-squeezed coherent states, to show that the pseudo-squeezed coherent states

constitute a non-orthogonal overcomplete system which yields a resolution of the identity op-

erator.

In addition, coherent states diagonalize the annihilation operator a involved in the harmonic

oscillator algebra. We stress that the eigenstates of a and other non-Hermitian operators are

not orthogonal. Consequently, we introduce the diagonalization [60, 61, 62, 63] of the complex

time-dependent combinations of the annihilation and creation operators

A (t) = u (t) a+ v (t) ay; (2.40)

A (t) is an operator in which is constructed [60, 61] as a non-Hermitian invariant for the quantum

variable frequency oscillator with the Hamiltonian h (t) = 1
2
[p2 + !2 (t) q2], where

@A (t)

@t
� i [A (t) ; h (t)] = 0;

@Ay (t)

@t
� i
�
Ay (t) ; h (t)

�
= 0; (2.41)

and satis�es the following commutation relation�
A (t) ; Ay (t)

�
= 1: (2.42)

Therefore, the operators A (t) and Ay (t) can be considered respectively as the lowering and

raising operators and can be used for the construction of the time-dependent coherent states

for the system under consideration.

2.2.1 Pseudo-bosons and pseudo-linear invariants

Similarly, to the time-independent case, we now introduce the time-dependent pseudo-bosonic

coherent states, where we emphasize that now we use a time-dependent creation, annihila-

tion and metric operators, where a linear metric operator � = �y� connects a non-Hermitian

Hamiltonian to its Hermitian conjugate Hy = �H��1, where nowH is �-pseudo-Hermitian with

respect to a positive-de�nite inner product de�ned by h:; :i� = h:j�j:i :
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More recently, considerable attention has been paid to an alternative formalism for the

description of non-Hermitian systems, based on the concept of the so-called pseudo-bosons

[64, 65, 66]. Pseudo-bosons are a pseudo-Hermitian extension of usual bosons. In fact, they

are a very particular modi�cation of the standard canonical bosonic commutation rule
�
A;Ay

�
= 1, obtained from �

A; �A
�
= [ �Ay; Ay] = 1; (2.43)

where the operators A and �A are related to their adjoint operator �A
y
and Ay, respectively, via

the bounded Hermitian invertible operator or metric operator � as

�Ay = �A��1;

Ay = � �A��1:
(2.44)

Coherent states are generally studied in the Hilbert spaceH generated through a self adjoint

Hamiltonian (i.e. H = H
y
). However, under the above assumptions, we can introduce di¤er-

ent kinds of pseudo-coherent states in a non-Hermitian case. The notion of pseudo-coherent

states, in connection with pseudo-bosons, originally introduced in [64] and then analysed from

a more mathematically oriented perspective, in [65], has been considered as a non-Hermitian

generalization of coherent states. The pseudo-coherent states for the pseudo-Hermitian boson

systems are de�ned as eigenstates of the corresponding pseudo-boson annihilation operators A

and �Ay

A
�� 

�

�
= �

�� 
�

�
; �Ay

���
�

�
= �

���
�

�
; � 2 C: (2.45)

and satisfy the resolution of the identity

1

�

Z
C

���
�

�
h �j d��d� =

1

�

Z
C
j �i



�
�

�� d��d� = I: (2.46)

with
���

�

�
= � j �i. These pseudo-coherent states

�� 
�

�
and

���
�

�
can be generated respectively

from the vacuum states
�� 

0

�
and

���
0

�
by the action of displacement operators D(�) and D

y
(�);

respectively,

D(�) = exp(� �A� ��A); D
y
(�) = exp(�Ay � �� �Ay) (2.47)

where D
y
(�) = �D(�)��1 is the complementary pseudo-unitary displacement operator of D(�):

Bagarello et al. [67] introduced the bi-squeezed states that can be considered as a suitable non-

Hermitian extension of the squeezed states. Bi-squeezed states are de�ned by the action of
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the squeezing operator on the vacuum state
�� 

0

�
of pseudo-boson annihilation operator A.

Moreover, the bi-squeezed coherent states, are de�ned as the successive applications of the

displacement and of the squeezing operators on the vacuum
�� 

0

�
. In our approach, the pseudo-

bosonic squeezed coherent states are generated by displacing the squeezed state or the ground

state.

If we identify A (t) ; �A (t) ; �Ay (t) and Ay (t) as integrals of motion, where A (t) ; �A (t) are

associated to the time-dependent non-Hermitian Hamiltonian H (t) whereas �Ay (t) ; Ay (t) are

associated to the latter Hamiltonians adjoint Hy (t), thus they are time-dependent invariant

operators verifying the following equations

@A (t)

@t
� i [A (t) ; H (t)] = 0;

@A (t)

@t
� i
�
A (t) ; H (t)

�
= 0; (2.48)

@Ay (t)

@t
� i
h
Ay (t) ; Hy (t)

i
= 0;

@Ay (t)

@t
� i
�
Ay (t) ; Hy (t)

�
= 0; (2.49)

where the Hamiltonian H (t) governs the time-dependent Schrödinger equation��	H (t)� = ei'(t) j (t)i : (2.50)

2.2.2 Pseudo-bosonic coherent states

Consequently, in order to construct pseudo-bosonic coherent states, we consider in analogy

with the time-independent case reported above, that the invariant operators A (t), A (t), Ay (t)

and Ay (t) as time-dependent pseudo-bosonic annihilation and creation operators associated to

H (t) and Hy (t) respectively, that verify the so-called Weyl-Heisenberg commutation relations�
A (t) ; A (t)

�
=
h
Ay (t) ; Ay (t)

i
= I: (2.51)

These operators act on a dense subspace D of H. The operators A (t) and A (t) associated

toH (t) are related to the operators Ay (t) and Ay (t) associated toHy (t) via the time-dependent

bounded Hermitian invertible operator � (t) as

A (t) = ��1 (t)Ay (t) � (t) ; A (t) = ��1 (t)Ay (t) � (t) ; (2.52)

where the pseudo-bosonic coherent states are generated by the action on the vacuum states

fj 0 (t)i ; j�0 (t)ig of the pseudo-displacement operators
n
DH (�; t) ; DHy

(�; t)
o
, in which

j � (t)i = DH (�; t) j 0 (t)i = exp
�
�A (t)� ��A (t)

�
j 0 (t)i ; (2.53)
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and

j�� (t)i = DHy
(�; t) j�0 (t)i ; (2.54)

we note that DHy
(�; t) is the pseudo-adjoint of DH (�; t), i.e.

DHy
(�; t) = � (t)DH (�; t) ��1 (t) = exp

h
�Ay (t)� ��Ay (t)

i
: (2.55)

Additionally, the vacuum states are de�ned by

A (t) j 0 (t)i = 0; Ay (t) j�0 (t)i = 0: (2.56)

Consequently, the vacuum states j 0 (t)i and j�0 (t)i are related to each other as

j�0 (t)i = � (t) j 0 (t)i ; (2.57)

where the same expression for fj � (t)i ; j�� (t)i = � (t) j � (t)ig, and can be obtained by de-

�ning them as eigenstates of the annihilation operators
n
A (t) ; Ay (t)

o
with a complex time-

independent eigenvalue �, i.e.

A (t) j � (t)i = � j � (t)i ; Ay (t) j�� (t)i = � j�� (t)i : (2.58)

Particularly, the choice of the normalization condition as

h 0 (t)j � (t) j 0 (t)i = 1; (2.59)

leads to

h � (t)j � (t) j � (t)i = 1; (2.60)

and, then the integral

1

�

Z
C
�(t) j �(t)i h �(t)j d��d� =

1

�

Z
C
j��(t)i h��(t)j ��1(t)d��d� = I; (2.61)

in which the integral is an identity operator.

2.2.3 Pseudo-squeezed coherent states

Another important class of quantum states are the squeezed states which are generated by the

action of the squeezing operator

SH (�; t) = exp

�
1

2

�
�A

2
(t)� ��A2 (t)

��
; (2.62)
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on the vacuum state j 0 (t)i of A (t), also the squeezed vacuum state is denoted as

j�; ti = SH (�; t) j 0 (t)i ; (2.63)

where � is the complex squeeze time-independent parameter. The de�nition in the preceding

equation resembles that of the coherent states in equation (2.53), but with the linear dis-

placement operator DH (�; t) replaced by the squeeze operator of the equation (2.62), whose

exponent is quadratic in the mode creation and destruction operators.

B (t) = SH (�; t)A (t)S�1H (�; t) = cosh j�jA (t)� �

j�j sinh j�jA (t) ; (2.64)

B (t) = SH (�; t)A (t)S�1H (�; t) = cosh j�jA (t)� ��

j�j sinh j�jA (t) : (2.65)

Noticeably, the product of any two quantum invariants is also another quantum invariant,

the same holds for the sum of quantum invariants. In this form, it is straightforward that

the preceding B (t) and B (t) are indeed quantum invariant operators verifying the following

equation
@B (t)

@t
� i [B (t) ; H (t)] = 0;

@B (t)

@t
� i
�
B (t) ; H (t)

�
= 0; (2.66)

the ladder operators B (t) and B (t) associated to H (t) are related to the operators By (t) and

By (t) associated to Hy (t) via the time-dependent bounded Hermitian invertible operator � (t)

as

B (t) = ��1 (t)By (t) � (t) ; B (t) = ��1 (t)By (t) � (t) : (2.67)

In order to construct the time-dependent pseudo-bosonic squeezed coherent states, we

consider, in analogy with the pseudo-bosonic coherent states case reported above, the invariant

operators B (t) and B (t) and their related ones via � (t), By (t) and By (t), as time-dependent

pseudo-bosonic squeezed ladder operators associated to H (t) and Hy (t), respectively, that

verify the commutation relations�
B (t) ; B (t)

�
=
h
By (t) ; By (t)

i
= I: (2.68)

Alternately, we may de�ne the squeezed states in a di¤erent way where we start from the

squeezed vacuum (2.63), where

B (t) j�; ti = SH (�; t)A (t) j 0 (t)i = 0: (2.69)
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Since the pseudo-bosonic coherent states j � (t)i are generated by using the pseudo-displacement

operator DH (�; t) applied on the vacuum j 0 (t)i, we may generate the set of pseudo-bosonic

squeezed coherent states
�� �;� (t)� by displacing the squeezed vacuum state. A more general

pseudo-bosonic squeezed coherent states
�� �;� (t)� may be obtained by applying the pseudo-

squeezed displacement operator T (
; t) to the equation (2.63), where we obtain

�� �;� (t)� = T (
; t) j�; ti = exp
�

B (t)� 
�B (t)

�
j�; ti ; (2.70)

where 
 will be de�ned later on. Obviously, for � = 0 we just obtain the pseudo-coherent

states. The properties of the pseudo-squeezed coherent states
�� �;� (t)� may be proved to

parallel those of the pseudo-coherent states j � (t)i. Since our pseudo-squeezed coherent states

are closely related to the ones of the pseudo-coherent states j � (t)i, other constructions of

squeezed coherent states can be considered using the ladder operator B (t), where we obtain

B (t)
�� �;� (t)� = 
 (�; �)

�� �;� (t)� ; (2.71)

where the equality in the latter equation is from

T (
; t)B (t)T�1 (
; t) = B (t)� 
; T (
; t)By (t)T�1 (
; t) = By (t)� 
�: (2.72)

The use of the properties of the squeezed operator given in equations (2.64) and (2.65)

leads to

T (
; t) = SH (�; t)DH (
; t)S�1H (�; t) = DH (�; t) : (2.73)

The pseudo-squeezed coherent states
�� �;� (t)� are obtained by �rst acting with the pseudo-

squeezed displacement operator T (
; t) on the pseudo-squeezed vacuum states j�; ti or with the

displacement operator DH (�; t) on the pseudo-squeezed vacuum states j�; ti. This transform-

ation provides an eigenvalue relation for the pseudo-squeezed coherent state where


 (�; �) = cosh j�j�� �

j�j sinh j�j�
�: (2.74)

On the other hand, when acting with the pseudo-squeezed displacement operator T (
; t)

on the pseudo vacuum j 0 (t)i, we obtain the pseudo-bosonic coherent states j � (t)i. Knowing

that, the pseudo-vacuum states fj 0 (t)i ; j�0 (t)ig of
n
A (t) ; A

y
(t)
o
respectively are related
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to each other as j�0 (t)i = � (t) j 0 (t)i, consequently the pseudo-squeezed vacuum states j�; ti

and gj�; ti of B (t) and By
(t) are linked to each other as

gj�; ti = � (t) j�; ti =
�
SH (�; t)

��1y
� (t) j 0 (t)i =

�
SH (�; t)

��1y j�0 (t)i : (2.75)

Pseudo-bosonic squeezed coherent state
����;� (t)�, associated toHy (t), can be also obtained

from the action of the displacement operator

TH
y
(
; t) =

�
� (t)T (
; t) ��1 (t)

�
= [T (
; t)]�1y ; (2.76)

on the pseudo-squeezed vacuum state gj�; ti of By
(t) as

����;� (t)� = [T (
; t)]�1y gj�; ti = exp h
By (t)� 
�B
y
(t)
i gj�; ti: (2.77)

The pseudo-squeezed coherent states
����;� (t)� are eigenstates of the operator By

(t) with

the complex time-independent eigenvalue 
 where

B
y
(t)
����;� (t)� = 


����;� (t)� : (2.78)

Therefore, the normalization condition in a similar way to (2.59) h 0 (t)j � (t) j 0 (t)i =

I; leads to 

 �;� (t)

�� � (t) �� �;� (t)� = 
��;� (t) j �;� (t)� = I; (2.79)

which show that the pseudo-bosonic squeezed coherent states form an overcomplete set in that

the identity can be resolved as

1

�

Z
c

� (t)
�� �;� (t)� 
 �;� (t)�� d
�d
 = 1

�

Z
c

����;� (t)� 
��;� (t)�� ��1 (t) d
�d
 = I: (2.80)
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Chapter 3

Application: Non-Hermitian displaced

harmonic oscillator

After introducing in detail how to construct the time-dependent pseudo-squeezed coherent

states, we now manage an explicit example, namely the time-dependent non-Hermitian dis-

placed harmonic oscillator.

Let us consider the non-Hermitian displaced harmonic oscillator described by the Hamilto-

nian

H (t) = ! (t) aya+ � (t) a+ � (t) ay; (3.1)

where a and ay are bosonic annihilation and creation operators of a light �eld mode verifying�
a; ay

�
= 1, and the coe¢ cients ! (t), � (t) and � (t) are time-dependent complex parameters

de�ned as
! (t) = j! (t)j exp [i'! (t)] ;

� (t) = j� (t)j exp
�
i'� (t)

�
;

� (t) = j� (t)j exp [i'� (t)] :

(3.2)

Let the linear non-Hermitian pseudo-bosonic invariant operator be in the following form

A (t) =
�
�1 (t) a+ �2 (t) a

y� ; (3.3)

where

(�1 (t) 6= �2 (t)) 2 R; (3.4)
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the invariance condition in (2.48) leads to the following equations

_�1 (t) = i! (t) �1 (t) ;

_�2 (t) = �i! (t) �2 (t) ;
(3.5)

� (t) �2 (t) = � (t) �1 (t) ; (3.6)

if we insert (3.2) in (3.5), we �nd

�1 (t) = exp

�
�
Z t

0

j! (t)j sin ('!) dt0
�

�; 2 (t) = exp

�Z t

0

j! (t)j sin ('!) dt0
�
; (3.7)

and if inserting (3.2) in (3.6), we �nd

�1 (t) j� (t)j cos ('�) = �2 j� (t)j cos
�
'�
�
; �1 (t) j� (t)j sin ('�) = �2 j� (t)j sin

�
'�
�
; (3.8)

Now, to determine the pseudo-operator A (t), de�ned from the pseudo-Hermicity relation

(2.52), we de�ne the ansatz for the time-dependent metric � (t) [68, 69, 70, 71]

� (t) = exp

�
2

�
� (t)

�
aya+

1

2

�
+ � (t) a2 + �� (t) ay2

��
;

= exp

�
1

2
#+ (t) a

y2
�
exp

�
1

2
ln#0 (t)

�
aya+

1

2

��
exp

�
1

2
#� (t) a

2

�
; (3.9)

with

#+ (t) =
2(2��) sinh �

� cosh � � 2� sinh � = ��(t)e
�i'(t);

#0 (t) =

�
cosh � � 2�

�
sinh �

��2
= �2(t)� �(t) �; = 2

q
�2 � 4 j�j2; (3.10)

#� (t) =
2(2�) sinh �

� cosh � � 2� sinh � = ��(t)e
+i'(t);

�(t) = �
cosh � + 2�

�
sinh �

cosh � � 2�
�
sinh �

;

using the Baker-Campbell-Hausdor¤ formula (1.20) to obtain

exp
�
1
2
#� (t) a

2
�
a exp

�
�1
2
#� (t) a

2
�
= a;

exp
�
1
2
#+ (t) a

y2� a exp ��1
2
#+ (t) a

y2� = a� #+ (t) a
y;

(3.11)

exp
�
1
2
ln#0 (t)

�
aya+ 1

2

��
a exp

�
�1
2
ln#0 (t)

�
aya+ 1

2

��
=

ap
#0 (t)

;

exp
�
1
2
#+ (t) a

y2� ay exp ��1
2
#+ (t) a

y2� = ay;

(3.12)
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� (t) a��1 (t) = 1p
#0
(a� #+ (t) a

y);

� (t) ay��1 (t) = 1p
#0

�
#� (t) a� � (t) ay

�
:

(3.13)

Thus, by using (2.52) with (3.13) the pseudo-operator A (t), is expressed in the following

form

A (t) =
1p
#0 (t)

�
[�1 (t) + #+ (t) �2 (t)] a

y � [#� (t) �1 (t) + � (t) �2 (t)] a
�
: (3.14)

The operator A (t) verify the bosonic commutation relation (2.51)�
A (t) ; A (t)

�
= A (t)A (t)� A (t)A (t)

=
�
�1 (t) a+ �2 (t) a

y� � 1p
#0

�
[�1 + #+�2] a

y � [#��1 + ��2] a
��

�
�

1p
#0

�
[�1 + #+�2] a

y � [#��1 + ��2] a
�� �

�1 (t) a+ �2 (t) a
y�

= I;

(3.15)

which imply the constraint

�21 (t) + ��22 (t) + (#+ + #�) �1 (t) �2 (t) =
p
#0: (3.16)

The time-dependent pseudo-bosonic squeezed ladder operators B (t) and �B (t) can be de-

termined by using the equations (2.63), (2.64) and (2.65) as

B (t) = cosh j�j
�
�1 (t) a+ �2 (t) a

y�
� �
j�j sinh j�j

�
1p
#0

�
[�1 (t) + #+ (t) �2 (t)] a

y � [#� (t) �1 (t) + � (t) �2 (t)] a
��
;

(3.17)

B (t) = cosh j�j
�

1p
#0

�
[�1 (t) + #+ (t) �2 (t)] a

y � [#� (t) �1 (t) + � (t) �2 (t)] a
��

� ��

j�j sinh j�j
�
�1 (t) a+ �2 (t) a

y� ; (3.18)

hence, the operators B (t) and �B (t) have a linear combination of a and ay and can be expressed

as

B (t) =

�
�1 (t) cosh j�j+ �

j�j
p
#0
sinh j�j [#��1 + ��2]

�
a

+
�
�2 (t) cosh j�j � �

j�j
p
#0
sinh j�j [�1 + #+�2]

�
ay;

(3.19)

�B (t) =

�
1p
#0
cosh j�j [�1 + #+�2]� ��

j�j sinh j�j�2 (t)
�
ay

�
�

1p
#0
cosh j�j [#��1 + ��2] +

��

j�j sinh j�j�1 (t)
�
a:

(3.20)
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Let us express the equation (3.3), (3.14), (3.19) and (3.20) in position and momentum

operators representation for the case where a = 1p
2
(x+ ip) and also ay = 1p

2
(x� ip) which

imply

A (t) = [fx+ igp] ; A (t) =
h efx� iegpi ; (3.21)

where

f =
1p
2
[�1 + �2] ; g =

1p
2
[�1 � �2] ; (3.22)

also ef = 1p
2#0

[(1� #�) �1 (t) + (#+ � �) �2 (t)] ; (3.23)

eg = 1p
2#0

[(1 + #�) �1 (t) + (#+ + �) �2 (t)] : (3.24)

Additionally, the condition (2.51) gives

g (t) ef (t) + f (t) eg (t) = 1: (3.25)

Furthermore, the operators B (t) and �B (t) can also be written as

B (t) = [f�x+ ig�p] ; �B (t) =
h ef�x� ieg�pi ; (3.26)

where the condition in (2.68) and

f� = cosh j�jf �
�

j�j sinh j�j
e gf; � = cosh j�jg +

�

j�j sinh j�jeg; (3.27)

together with

ef� = cosh j�j ef � ��

j�j sinh j�jf; ~g� = cosh j�jeg + ��

j�j sinh j�jg; (3.28)

imply that

g� ef� + f�eg� = 1: (3.29)

3.1 Pseudo-squeezed coherent states in position repres-

entation

In order to construct the pseudo-squeezed coherent states in the position representation, the

pseudo-squeezed vacuum state in the x-represetation is required. This will lead us to solve the
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eigenvalue equation B (t) j�; ti = 0 and By
(t) gj�; ti in the x-representation

B (t) hxj�; ti =
�
f� (t)x+ g� (t)

@

@x

�
� (x; t) = 0; (3.30)

B
y
(t) hxgj�; ti = �ef �� (t)x+ eg�� (t) @@x

�
�̂ (x; t) = 0: (3.31)

Therefore, the solutions of the above equations are

� (x; t) =

�
1

2�eg�g�
� 1

4

exp

�
� f�
2g�

x2
�
; (3.32)

and

�̂ (x; t) = � (t) � (x; t) =

 
1

2�eg��g��
! 1

4

exp

"
�
ef ��
2eg�� x2

#
; (3.33)

where the coe¢ cients
�

1
2�eg�g�

� 1
4
and

�
1

2�eg��g��
� 1
4
come from the binormalization relation between

the pseudo-vacuum state gj�; ti and j�; ti
h�; tj � (t) j�; ti =

Z
^�� (x; t)� (x; t) dx = 1: (3.34)

As mentioned before, the pseudo-squeezed coherent state is obtained by the action of

the displacement operator T (
; t) on the pseudo-squeezed vacuum (2.70). Accordingly, by

expressing T (
; t) in terms of

fx = g�B + eg�B
ip = ef�B � f�B

; (3.35)

we �nd

T (
; t) = exp
�

B (t)� 
�B (t)

�
= exp

h


� ef�x� ieg�p�� 
� (f�x+ ig�p)

i
= exp

h�

 ef� � 
�f�

�
x� i (
eg� + 
�g�) p

i
;

(3.36)

and by using the relation (1.21) and the following commutation relation

[x; p] = i~; ~ = 1; (3.37)

thus, we obtain

T (
; t) = exp
h
� i
2
hpi� hxi�

i
exp

h
i hpi� x

i
exp

h
�i hxi� p

i
= exp

h
� i
2
hpi� hxi�

i
exp

h
i hpi� x

i
exp

h
�i
�
hxi��hxi

�
�

2

�
p
i
exp

h
�i
�
hxi�+hxi

�
�

2

�
p
i
;

(3.38)
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where

hxi� =


 �;� (t)

�� �x �� �;� (t)� = 
�g�B + eg�B��� = 
eg� + 
�g�; (3.39)

i hpi� = i


 �;� (t)

�� �p �� �;� (t)� = D� ef�B � f�B
�E

�
= 
 ef� � 
�f�; (3.40)

by the same method, we deduce

[T�1 (
; t)]
y
= exp

h
� i
2
hpi�� hxi

�
�

i
exp

h
i hpi�� x

i
exp

h
�i hxi�� p

i
= exp

h
� i
2
hpi�� hxi

�
�

i
exp

h
i hpi�� x

i
exp

h
�i
�
hxi���hxi�

2

�
p
i
exp

h
�i
�
hxi�+hxi

�
�

2

�
p
i
;

(3.41)

When the operators de�ned above in (3.38) and (3.41) act on the pseudo-squeezed vacuums

given in (3.32) and (3.33), we obtain the pseudo-squeezed coherent states as

 �;� (x; t) =

�
1

2�eg�g�
� 1

4

exp

�
� i
2
hpi� hxi�

�
exp

�
i hpi� x�

f�
2g�

�
x� hxi�

�2�
; (3.42)

��;� (x; t) =

 
1

2�eg��g��
! 1

4

exp

�
� i
2
hpi�� hxi

�
�

�
exp

"
i hpi�� x�

ef ��
2eg��

�
x� hxi��

�2#
; (3.43)

with

exp
h
�i hxi� p

i
� (x; t) = �

�
x� hxi� ; t

�
: (3.44)

Noting that these last two equations (3.42), (3.43) can also be written in a more appropriate

form, where

 �;� (x; t) =
�

1
2�eg�g�

� 1
4
exp

h
� i
2
hpi� hxi�

i
exp

h
i hpi� x

i

� exp
h
�i
�
hxi��hxi

�
�

2

�
p
i
exp

�
� f�
2g�

�
x�

h
hxi�+hxi

�
�

2

i�2�
;

(3.45)

��;� (x; t) =
�

1
2�eg��g��

� 1
4
exp

h
� i
2
hpi�� hxi

�
�

i
exp

h
i hpi�� x

i

� exp
h
�i
�
hxi���hxi�

2

�
p
i
exp

�
�

ef��
2eg��
�
x�

h
hxi�+hxi

�
�

2

i�2�
:

(3.46)

Therefore, the density
��� (t) �;� (x; t)��2 = 
��;� (t) j �;� (t)� can be expressed as a function

of
�
hxi� + hxi

�
�

�
as the following

��� (t) �;� (x; t)��2 = � 1

2�eg�g�
� 1

2

exp

24� 1

2eg�g�
 
x�

hxi� + hxi
�
�

2

!235 ; (3.47)
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and the latter represents a gaussian wave packet centred at
h
x�

�
hxi�+hxi

�
�

2

�i
. We see from this

equation that the width of this gaussian wave packet varies with the time and is identical to

� = eg�g�. This wave packet is represented in the �gures 3.1.1-3. it also readily veri�ed that the
time-dependent pseudo-probability density is conservedZ

dx
��� (t) �;� (x; t)��2 = Z dx

�
 �;� (x; t) � (t)

�
 �;� (x; t)

=

Z
dx
�
���;� (x; t)

�
 �;� (x; t)

=

Z
dx
�

1
2�eg�g�

� 1
2
exp

�
� 1
2eg�g�

�
x� hxi�+hxi

�
�

2

�2�
=
�

1
2�eg�g�

� 1
2
�

1
2�eg�g�

�� 1
2
= 1:

(3.48)

Figure 3.1.1 Time evolution of the wave packet
����(t) �;�(x; t)���2 with � = 1; #+ = #� = 0;

#0 = �� = e2�; � = 2t� arc sinh(2), ! = �i and � = 1 + i:
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Figure 3.1.2 Time evolution of the wave packet
����(t) �;�(x; t)���2 for � = 0; #+ = #� = 0;

#0 = �� = e2�; � = 2t� arc sinh(2), ! = �i and � = 1 + i, t 2 ]0; 1:44[ :

We have illustrated the pseudo-probability density, equation (3.47), in the �gures 3.1.1-

3 from various parameters (�; #+ = #�; #0; �; !; � and t). These �gures correspond to the

wave packet for a particle moving along the positive and negative x axis. Figure 3.1.1 shows

that, although the shape of the wave packet is always kept to be gaussian. As a consequence, the

width of the packet gradually becomes broader over time whereas its height, 1= [2�], decreases.

Figure 3.1.2 however, the wave packet in it that corresponds to pseudo-boson coherent states

(� = 0) which is �nite only when t 2 ]0; 1:44[ and it has an obvious pronounced peak which is
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situated at x =
�
hxi�

�
R
=

hxi�+hxi
�
�

2
.

Figure 3.1.3
����(t) �;�(x; t)���2 for � = 1 and � = 0, at time t = 1

#+ = #� = 0; #0 = �� = e2�; � = 2� arc sinh(2), ! = �i and � = 1 + i:

Figure 3.1.3 shows that
��� (t) �;� (x; t)��2 is a function which has a peak at x = �hxi��

R

with the width � and an amplitude of 1=�, whose integral between �1 and +1 is equal to 1.

Noticeably, (3.39) and (3.40) yields a complex quantities, the equations (3.45), (3.46) and

(3.47) prompt us to de�ne the expectation value of an operator O in a given pseudo-squeezed

coherent state as the real part of O, namely,�
hOi�

�
R
� 1

2
[hOi+ hOi�] : (3.49)

Since our aim is to compute the Heisenberg uncertainty relations, it is required to calculate

the preceding equation for O = x; x2; p and p2. Using the expression for the expectation value

of an operator O given by the latter equation, the corresponding dispersion, de�ned in the usual

way, is in the following form

(�O)2R =
1

2

h

O2
�
�
� hOi2�

i
+
1

2

�

O2
��
�
�
�
hOi��

�2�
; (3.50)

it follows, after evaluating the dispersion in the position

(�x)2R =
1
2

h
hx2i� � hxi

2
�

i
+ 1

2

�
hx2i�� �

�
hxi��

�2�
;

= 1
2

�
g�eg� + g��eg��� ; (3.51)
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and momentum

(�p)2R =
1
2

h
hp2i� � hpi

2
�

i
+ 1

2

�
hp2i�� �

�
hpi��

�2�
;

= 1
2

h
f� ef� + f ��

ef �� i ; (3.52)

Figure 3.1.4 Time dependent dispersions in position, momentum and the uncertainty product

for #+ = #� = 0; #0 = �� = e2�; � = 2t� arc sinh(2), ! = �i and � = 1 + i:

Accordingly, the pseudo expectation value of x; x2; p and p2 in the gaussian state  �;� (t)

in (3.42) are given by

hxi� =

�
g�B + eg�B��� = 
eg� + 
�g�; (3.53)


x2
�
�
=


�
g�B + eg�B� �g�B + eg�B��� = heg2�
2 + g2�


�2 + g�eg� �2 j
j2 + 1�i ; (3.54)

i hpi� =
D� ef�B � f�B

�E
�
= i
�

�f� � 
 ef�� ; (3.55)


p2
�
�
= �

D� ef�B � f�B
�� ef�B � f�B

�E
�
= �

h
f 2� 


� + ef 2� 
2 � f� ef� �2 j
j2 + 1�i :(3.56)
It follows from the equation (3.49) that the expression for the Heisenberg uncertainty

relations (�x)2R (�p)
2
R, is written as in the following form

(�x)R (�p)R =
1

2

h�
g�eg� + g��eg��� �f� ef� + f ��

ef �� �i 12 : (3.57)

While in �gure 3.1.4 the uncertainty product and dispersions are represented for � = 1, in

the following �gure 3.1.5 they are represented for � = 0.
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Figure 3.1.4 also illustrates that (�x)R, (�p)R and (�x)R (�p)R decrease when time t 2

]0; 0:72] while they increase when t > 0:72.

Figure 3.1.5 Time dependent dispersions in position, in momentum and the uncertainty product

for #+ = #� = 0; #0 = �� = e2�; � = 2t� arc sinh(2), ! = �i and � = 1 + i:

Figure 3.1.5 shows that (�x)R and (�x)R (�p)R increase with time while (�p)R de-

creases. Hence, the corresponding uncertainty relation (�x)R (�p)R increases with time. For

t 2 ]0:72; 1:44[ the inverse occurs. It does not seem for �gure 3.1.4, that the pseudo-squeezed

coherent states produce any squeezing. Figure 3.1.5 however, it is clear that the quadrature

squeezing is achieved.

Time evolution of the pseudo-squeezed coherent states3.2

j	�;� (t)i

The �nal step consists in determining the Schrödinger solution which is an eigenstate of the

pseudo-invariant operator B (t) multiplied by a time-dependent factor [72]

	H�;� (x; t) = exp
�
i'�;�

�
 �;� (x; t) ; (3.58)

this phase [69, 70] is given as

_'�;� =
R
 ��;� (x; t) � (i@t �H) �;� (x; t) dx

=
R
���;� (x; t) (i@t �H) �;� (x; t) dx;

(3.59)
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where the Hamiltonian in (3.1) expressed in variable operators x and p is

H (t) =
!

2

�
p2 + x2

�
+

1p
2
(� + �)x+

ip
2
(� � �) p� !

2
: (3.60)

The phase is calculated by substituting the expressions in (3.42) and (3.43) into the equation

(3.59), we thus obtain

 �;� (x; t)

�� � (t)H (t) �� �;� (x; t)� = !
2

�
hp2i� + hx2i�

�
+ 1p

2
(� + �) hxi�

+ ip
2
(� � �) hpi� � !

2
;

(3.61)

and 

 �;� (x; t)

�� � (t) i@t �� �;� (x; t)� = � i
4

�e_g�g�+eg� _g�
g�eg�

�
+ 1

2

�
h _xi� hpi� � hxi� h _pi�

�
+i
�
f� _g�� _f�g�

2g2�

�
(�x)2 ;

(3.62)

therefore, the phase can be expressed as

_'�;� = � i
4

�e_g�g�+eg� _g�
g�eg�

�
+ 1

2

�
h _xi� hpi� � hxi� h _pi�

�
+ i
�
f� _g�� _f�g�

2g2�

�
(�x)2

�
h
!
2

�
hp2i� + hx2i�

�
+ 1p

2
(� + �) hxi� + ip

2
(� � �) hpi� � !

2

i
;

(3.63)

where

(�x)2 = ~g�g�; (3.64)

and h _pi� and h _xi� are replaced by the classical equations,

h _pi� = �@H(t)
@ hxi�

= �! hxi� �
1p
2
(� + �); (3.65)

h _xi� =
@H(t)

@ hpi�
= ! hpi� +

ip
2
(� � �): (3.66)

Finally, the phase (3.59) can be simpli�ed by using the equation (2.66) and (3.26), thus,

we have

_'�;� = ! (t)

�
1

2
� 1

4g� (t) eg� (t)
�
: (3.67)

Consequently, the evolved pseudo-squeezed coherent states can be written as

	�;� (x; t) = exp

�
i

Z t

0

! (t0)

�
1

2
� 1

4g� (t0) eg� (t0)
�
dt0
�
 �;� (x; t) : (3.68)
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Moreover, after a straightforward calculation, we obtain the expectation value of x in the

pseudo-squeezed coherent states 	�;� (x; t)

hxi (t) = h	�;� (x; t) j� (t)xj	�;� (x; t)i

=
���exp hi R t0 ! (t0)�12 � 1

4g�(t0)eg�(t0)
�
dt0
i���2 
 �;� (x; t) j� (t)xj �;� (x; t)�

=
���exp hi R t0 ! (t0)�12 � 1

4g�(t0)eg�(t0)
�
dt0
i���2 (
eg� + 
�g�) :

(3.69)

Figure 3.1.6 Represents variation of hxi (t)

Figure 3.1.6 has been produced by the parameters #+ = #� = 0; #0 = �� = 1; ! = �i and

also � = 1 + i, which have been used in the latter equation. In which it shows that hxi (t) for

the pseudo-squeezed coherent states (� = 1) increases rapidly than hxi (t) of the pseudo-boson

coherent states (� = 0).
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Conclusion
In this thesis, we have distinguished the di¤erent methods to obtain the coherent and

squeezed states in the stationary case that are

� The minimum uncertainty method,

� The annihilation or more general the ladder operator method,

� The squeeze and displacement operator methods.

Also, we list some of their properties and we develop the time evolution of the coherent

and squeezed states.

Consequently, we have constructed time-dependent pseudo-bosonic squeezed coherent states

solutions of the Schrödinger equation for non-Hermitian Hamiltonians. Our construction of

pseudo-bosonic squeezed coherent states is based on the introduction of time-dependent pseudo-

bosonic squeezed ladder operators subjected to time-dependent metric such that the latter ones

are integrals of motion. The pseudo-squeeze ladder operators (or invariant operators) obtained

as a Bogolyubov transformation of pseudo-bosonic annihilation (or creation) operators, are

used to de�ne the pseudo-bosonic squeezed coherent states by the pseudo-displacement oper-

ator method acting on the ground state.

These pseudo-bosonic squeezed coherent states form a quasi-normalized and quasi-overcomplete

set of states in the Hilbert space and are eigenfunctions of the introduced ladder operators. As

discussed earlier, whereas a pseudo-coherent state is generated by linear terms in A (t) and

A (t) in the exponent, the pseudo-squeezed coherent state requires quadratic terms.

As an illustration, we have treated in detail the non-Hermitian time-dependent displaced

harmonic oscillator. Thus, we have introduced a set of linear integrals of motion that are

pseudo-squeeze ladder operators. With the help of these operators, we constructed in position

representation, pseudo-bosonic squeezed coherent states as displaced squeezed ground state.

We have determined the associated phase of the evolved pseudo-bosonic squeezed coherent

states solution of the Schrödinger equation, this solution is in a Gaussian form and preserves

Schrödinger minimum uncertainty.
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 ملخص:

 سلم مشغلات باستخدامالوقت  على تعتمد مضغوطة شبه متماسكة حالات ببناء نقوم الأطروحة، هذه في

 ترتبط والتي ،الوقت على تعتمد هيرميتية غير خطية ثوابت أنها على تعريفها يتم مضغوطة بوزونية

 من السلم مشغلي على الحصول يتم في حين .الوقت على يعتمد متري مشغل عبر مساعدين نبمشغلي

 المعتمد تيالهرمي غير التوافقي المذبذب ندرس كتوضيح،. الرفعو الخفض لمشغلي المضغوط التحويل

.اليقين عدم ومبدأ الموضعب يتعلق فيما الحالات هذه خصائص تحليل و الوقت، على  

، ةالتكافؤ، شبه هرميتيتناظر شبه ، مضغوطةال متماسكة حالات، المتماسكة حالاتال الكلمات المفتاحية:

.مضغوطةشبه ال متماسكة حالاتالأنظمة المعتمدة على الوقت، العوامل اللامتغيرة، ال  



 

    Abstract: 

    In this thesis we construct time-dependent pseudo-squeezed coherent states 

using pseudo-squeezed bosonic ladder operators defined as time dependent 

non-Hermitian linear invariants that are related to their adjoint operators via a 

time-dependent metric operator. These ladder operators are obtained from 

the squeezed transformation of the pseudo-bosonic annihilation and creation 

operators. As an illustration, we study the time-dependent non-Hermitian 

displaced harmonic oscillator and the properties of these states are analyzed 

with respect to the localization in position and to uncertainty principle. 

Keywords: Coherent states, squeezed states, pt-symmetry, pseudo-hermicity, 

time-dependent systems, invariant operators, pseudo-squeezed coherent 

states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

    Résumé : 

    Dans cette thèse, nous construisons des états cohérents pseudo-squeezed 

dépendant du temps en utilisant des opérateurs pseudo-squeezed bosoniques 

d'annihilation et de création définis comme des invariants non-hermitique 

linéaires dépendant du temps qui sont liés à leurs opérateurs adjoints via un 

opérateur métrique dépendant du temps. Ces opérateurs sont obtenus à partir 

de la transformation squeezed des opérateurs d'annihilation et de création 

pseudo-bosonique. En effet, comme une illustration, nous étudions l'oscillateur 

harmonique non-hermitique déplacé dépendant du temps, et les propriétés de 

ces états sont analysées par rapport à la localisation en position et au principe 

d'incertitude. 

Mots clés: Les états cohérents, les états squeezed, pt-symétrie, pseudo-

hermiticité, systèmes dépendant du temps, opérateurs invariant, les etats 

cohérent pseudo-squeezed. 
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