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Introduction

0.1 Motivations

Les séries temporelles sont considérées a tort comme étant une branche exclus-
ive de ’économétrie. Cette derniére est une discipline qui est relativement jeune
alors que les séries temporelles ont été utilisées bien avant, par exemple en as-
tronomie (1906) et en météorologie (1968).

L’objet des séries temporelles est 1’étude des variables au cours du temps.
Méme s’ils n’ont pas été a l'origine de cette discipline, ce sont les économétres
qui ont assuré les grandes avancées qu’a connues cette discipline (beaucoup de
« Prix Nobel » d’économie sont des économetres).

Parmi ses principaux objectifs figurent la détermination de tendances au sein
de ces séries ainsi que la stabilité des valeurs (et de leur variation) au cours du
temps. Citons par exemple: le volume des ventes hebdomadaires d’un produit,
le prix des actions de la banque de cléture du jour, le volume de la production
quotidienne de pétrole brut en Algérie, le taux de chomage dans une période
connue, ....Ces applications nécessitent beaucoup de recherches et d’expériences.
Les techniques standards d’analyse de séries temporelles ont longtemps reposé
sur les propriétés fondamentales de linéarité et stationnarité. L’essor considér-
able qu’a connu I’analyse statistique des séries chronologiques au cours des ces

derniers trois décennies est lié essentiellement au développement de I’approche

iii
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temporelle sous deux hypothéses remarquables:

Stationnarité et linéarité.

L’analyse des séries chronologiques a été considérablement développée depuis
la publication de 'ouvrage dev Box et Jenkins ! (1970) qui a été décisive. En ef-
fet, dans I'ouvrage les deux auteurs développent le trés populaire modele ARM A
(Auto Regressive Moving Average). Les modeles (ARM A) ont ainsi fait ’objet
d’un intérét croissant sur une vaste étendue disciplinaire allant de I’économétrie
et la finance a la climatologie ou I’électrotechnique. Cependant, de nombreuses
recherches ont démontré que les hypothéses de linéarité n’étaient qu’un pis-aller
utopique apportant un confort appréciable dans I’étude probabiliste et statistique
du modele, et cette classe de processus (ARM A) jouera le role prépondérant dans
notre modélisation concréte des processus stationnaires, tandis que la classe en-
core plus large des processus linéaires caractérisés par leurs flexibilités, facilités
d’utilisation est ses utilisation pour prédire les valeurs futures, ils sont facile
& interpréter parmi la plupart des autres modeles. Cependant, les méthodes
d’analyse et d’inférence statistique sont mieux développés dans cette classe de
processus, et de plus elles peuvent étre employées comme une analyse prélimin-
aire. Habituellement, elles donnent une représentation parcimonieuse et inter-
prétable.

Comme il a été mentionné par Hallin (1978), dans de nombreux cas I’hypothése
qui se trouve a la base de 'utilisation des méthodes de Box et Jenkins (dans le cas
non stationnaire) peut escamoter les problémes de la non stationnarité plutot que
de les résoudre. Cependant, et & partir des années 70, et dans le but de résoudre

certains problémes liés & la non stationnarité, on trouve un intérét croissant

! George BOX et Gwilym JENKINS sont deux statisticiens qui ont contribué, dans les années
(1970), a populariser la théorie des séries temporelles univariées. Les procédures de modél-
isation sont présentées dans leur célebre ouvrage intitulé « Time Series Analysis: Forecasting
and control ».

Ils ont proposé une démarche générale de prévision pour les séries chronologiques. Cette
démarche est fondée sur la notion de processus (ARMA) et elle comprend quatre phases:
l'identification a priori, l’estimation du modele (ARM A) identifié, 'identification a posteriori
et la prévision.
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aux modeles dont les coefficients eux mémes sont susceptibles d’évoluer avec le
temps. On peut distinguer deux classes de modeéles a coefficients dépendant du

temps selon que cette évolution est de nature déterministe ou stochastique

Evolution déterministe Dans cette classe de modeéles qui visent a décrire des
processus de nature linéaires mais non stationnaires, que ’on conviendra
d’appeler évolutifs, ot les trajectoires des coefficients s’expriment comme
des combinaisons linéaires de fonction du temps, supposées connues a pri-
ori et en nombre fini. D’une part et du point de vue technique, I'idée de
faire une projection des trajectoires des coefficients sur une base de fonc-
tions était déja sous-jacente aux travaux de Mendel (1973) et Rao (1970).
Dans ces travaux, la représentation évolutive apparait plutdét comme une
"astuce” de calcul. Liporace (1975) a été le premier a étudier ’estimation
d’un modele autorégressif suivi par Hall, Oppenheim et Willsky (1983).
Grenier (1986) a travaillé sur ce point et a proposé un jeu d’algorithmes
rapides adaptés a plusieurs variantes de modeéles. D’autre part, Cramer
(1961) a étendu le résultat fondamental de Wold au cas non stationnaire (
avec variance finie) donc nous parlerons désormais de la décomposition de
Wold-Cramer, et les mémes arguments; prévision et modélisation, peuvent
étre obtenus a partir de la décomposition de Wold-Cramer en utilisant
des modeles ARM A a coefficients dépendant du temps. Dans cette per-
spective, nous trouvons Mélard (1985) et Hallin (1986, 1989), et autres (cf.
Priestley (1988)), ont enrichi la littérature des séries chronologiques avec

de nombreux travaux fondamentaux.

Evolution stochastique C’est la classe des modeéles qui a recu jusqu’a présent
le plus d’attention surtout dans les domaines de I’économétrie, I’automatique,
le traitement du signal, et des séries chronologiques. Ces modeles (et
comme dans le cas linéaire a coefficients constants) visent a décrire prin-
cipalement des processus de nature stationnaires, mais non linéaires. La

littérature sur ces modeéles étant assez dispersée. La monographie de
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Nicolls et Quinn (1982) et la bibliographie qu’elle contient font d’excellentes
références dans ce domaine. Plusieurs articles, citons Andel (1976) et An-
del (1982) font appel non seulement & l’erreur associée a la spécification du
modele, mais aussi & la nature méme des rapports économiques pour justi-
fier I'existence d’'une composante non-déterministe dans les coefficients de
modeles. Cette hypothése nous semble aussi plus naturellement adaptée

lors de I’analyse des séries chronologiques multiples (cf. Hannan (1970)).

Ainsi, face a une réalisation { X, X, ... X,,} d’un processus (X;) 7 = {0, 41,

A
+2,....}, un statisticien, un économeétre cherchent & identifier le "bon” modéle.
Donc, il est devant deux choix fondamentaux de modéles: modeéles linéaires et
modeéles non linéaires, bien que la frontiére entre les concepts de linéarité et
de non linéarité soit difficile & concevoir, Rao et Gabr (1984) ont observés que
la série décrivant le taux de chomage dans 1’Allemagne de 'ouest a un com-
portement non linéaire et que les prévisions obtenues en utilisant des modeles
bilinéaires sont mieux que celles obtenues par des modeles ARMA. Par con-
séquent, et durant ces deux derniéres décennies, les modeéles non linéaires ont
recus plus d’attention. Une classe particuliére de modeéles stationnaires et non
linéaires qui est introduite dans la littérature de la théorie du controéle, et qui
a trouvé d’autres champs d’applications (cf. Mohler (1988)) est la classe des
modeles bilinéaires. Cette classe de modéles, qui peut étre regardée comme
une extension des modeéles ARMA, a été suffisamment étudiée par Granger
et Andersen (1978), Pham et Tran (1981), Subba Rao (1981), Subba Rao et
Gabr (1984), Guégan (1994), Shu-Ing (1985), Priestley (1988), Liu et Brockwell
(1988), Liu (1989),1992, et Terdik (2000) et autres. Notons aussi qu'une sous
classe particuliere de modeles bilinéaires peut étre utilisée comme des résidus
dans la représentation ARM A (cf. Francq (1999), Francq et Zakoian (2000)).
Dans plusieurs situations pratiques, nous sommes devant des données générées
par un certain processus non seulement non linéaire mais aussi non stationnaire.
Kendall en 1953 a déja mentionné que ”"No economic system yet observed has

been stationary over long periods [...J. It seems natural [to consider] the case



0. Introduction vii

when the constants [in the model] are themselves slowly moving through time
as the economy changes”. Ceci suggére de considérer des modeles a coefficients
dépendant du temps. Autres exemples de coefficients dépendant du temps qui
ont un intérét particulier sont les coefficients périodiques (pour des données sais-
onniéres), ou les coefficients de rupture a un instant connu t, (pour une série
qui subit un changement en un instant ty). Il existe cependant des séries qui
sont soupconnées d’étre a la fois non linéaires et non stationnaires, par exemple,
en théorie de I’économie, la plupart des indices d'un stock d’une marchandise
sont des différences de martingales (donc non nécessairement un processus 7.i.d),
pour de telles séries les techniques des modéles linéaires habituelles sont inapplic-
ables. Lorsque I’économie change, il est difficile de justifier 'utilisation du méme
modele (non linéaire) sur une longue période. Donc le recours aux modeéles non
linéaires & coefficients dépendant du temps nous semble raisonnable.

Motivés par la précédente discussion, nous allons abondonner I'hypothese de
linéarité, bien que ces modeéles ont été relativement utilisés, nous allons néan-
moins consacrer notre travail dans un cadre probabiliste et statistique a I’étude

(bien entendu non exhaustive) d’une classe de processus (X;), ., définis sur un

teZ

espace de probabilité (€2, 3, P) non linéaires.
Un modele générale et est donnée par
Xt = fst (thiaetfjao < Z S P70 <] S Q) +€t

pour une fonction mesurable f et un processus d’innovation (e, ¢ € Z) supposé
étre indépendant et identiquement distribuées (i.i.d). Ainsi, certains locale-
ment (c’est a dire, dans chaque «régime») linéaire ou non-linéaire des modeéles
particuliers ont été étudiés afin de capturer les propriétés probabilistes et stat-
istiques de ces modeles. Par exemple, M'S — ARM A: Francq et Zakoian [22],
M S—non-linear ARM A: Lee [44], Yao et Attali [78], M.S — GARCH: Francq
et Zakoian [21] et d’autres. C’est la classe de processus générés par des mod-

éles bilinéaires & changements de régimes markoviens définis par I’équation aux
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différences stochastiques suivante:

p

q P Q
X = Z a;(s) Xe—i + Z bi(st)er—i + Z Z cij(se) Xi—ier—j + e (0.1)
i=1

i=1 i=1 j=1
noté M'S—BL (p,q, P, Q) ot (ai(st))lgigp ; (bi(st))lgigq g (Cij(st))1§i§p,1§j§(g sont
des fonctions bornées, déterministes, dépendant éventuellement d’une chaine de
Markov & éspace d’état fini, i.e., S ={1,...,d} et o (e;),., est un processus de

bruit blanc fort centré de variance finie et satisfaisant I’hypothése suivante
{et et x, sont indépendants pour tout s < t}.
La classe de modeéles (0.1) contient trois sous classes

1. La classe de modeles MS — ARMA (p,q) peut étre obtenue en posant

¢;;(.) = 0 pour tout 7, j, donc (0.1) est une extension naturelle des processus

MS — ARMA.

2. La classe de modeles superdiagonaux obtenue en supposant ¢;;(.) = 0 for

i< j.

3. La classe de modeles sous diagonaux obtenue en supposant ¢;;(.) = 0 for

1> 7.

Du fait de la dépendance non-linéaire entre X; et e; 5, K > 1 ceci rend délicat
la manipulation des termes de type X;e;—;,7 > 0. Pour cette raison, seule la
classe des modeles super-diagonaux a recu plus d’attention. Notons que, si dans
le modele général (0.1) les coefficients sont constants et le bruit blanc (e;),.,,
est stationnaire, nous trouvons ainsi une littérature abondante. Cette abond-
ance est diie aux conditions sous lesquelles le modéle devient stationnaire et
ergodique. Cependant de nombreux travaux de recherche existent sur le dévelop-
pement des propriétés probabilistes et statistiques, I'identification, les tests et
I'estimation des parameétres de certains modeles bilinéaires stationnaires (pour
une bibliographie récente voir Terdik (2000)). En revanche, lorsque le modéle

est non-stationnaire les méthodes classiques sont inapplicables.
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Certes I’étude des modéles bilinéaires a coefficients dépendant du temps est
loin d’étre achevée. De nombreux problémes restent ouverts. Néanmoins on
peut se demander s’il est possible de résoudre, par exemple, le probleme de
I'identification de certains modeéles bilinéaires & coefficients dépendant du temps
comme ce fut le cas pour certains modeles de séries chronologiques bilinéaires
stationnaires, dans la mesure ou la classe des modeéles considérés est trés riche
et trés complexe. Par contre la théorie des tests qui jusqu’a présent a été peu
étudiée (dans le cas stationnaire) doit permettre d’aboutir assez rapidement &
quelques résultats: outre les tests de stationnarité (respectivement de linéar-
ité) pour lesquels quelques procédures ont été proposées sous 1’hypothese de la
linéarité (respectivement sous I’hypothése de stationnarité) on a besoin de tests
portant sur le choix de la nature des coefficients, autrement dit le choix des

modéles.
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0.2 Apport et présentation de la thése

Notre these intitulée "Statistique Asymptotique Dans Les Modeéles Bilinéaires A

Changement De Régime Markovien" se compose en quatre chapitres principaux:

Chapitre 1 : we used some algebraic notations

Dans ce chapitre, nous utilisons quelques notations algébriques.

Chapitre 2 : Probabilistic proprieties of M S— BL processes

Ce chapitre présente une représentation vectorielle qui est utilisé pour obtenir
des conditions suffisantes pour le processus MS — BL généré par 1’équation
(II —1.1) de la stationarité (au sens fort et faible), la causalité, 1’ergodicité
et Pexistence des moments d’orders supérieurs. Aussi, les conditions sont néces-
saires pour certains cas particuliers. La structure de L, est analysé et la fonction
de covariance est obtenu qui nous permet de donner une représentation ARM A.
Nous avons aussi discuté la structure de L,, & partir de L, et demontré que le
processus de puissance (X]",t € Z) admet aussi une représentation ARM A et
donner quelques exemples illustratifs. Nous donnons aussi des conditions suffis-
antes qui garantissent l'inversibilité. Nous proposons des conditions garantissant
Iergodicité géometrique et f—mélange. Et nous avons fourni certaines applica-

tions & une famille de M'S — GARCH (1,1).

Chapitre 3 : QMV approach for MS — BL models

Dans ce chapitre, étudier la consistance forte de ’estimateur du quasi-maximum

de vraisemblance (QM L) dans les modeles M.S — BL.

Chapitre 4 : GMM approach for MS — BL models

Ce chapitre étudier la consistance forte et les propriétés de la normalité asymp-

totique de 'estimateur de distance minimale (M DE). Un ensemble d’expériences
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numeériques illustre I'importance pratique de nos résultats théoriques.
Nous terminons notre thése par un chapitre additif comportant une conclu-

sion générale, des remarques, quelques perspectives et nos occupations futures.



Chapter 1
Algebraic notations

Some notations are used throughout the thesis: I, is the n x n identity matrix
and I, ) := (I(n):...:](n)) is the nxnd matrix and I denotes the indicator function
—_——

d—block
of the set A. p lim signify the convergence in probability. O, denotes the

matrix of order k x [ whose entries are zeros, for simplicity we set O, =
Orky and Oy = Ok 1), ﬂ := Vec (M) is the vector obtained from a matrix
M := (m;;) by setting down the column of M underneath each other, the
spectral radius of squared matrix M is denoted by p(M). Let |.|| denote any
induced operator norm on the set of m x n and m x 1 matrices, and for v €
10,1], let |M|" := (|my;|"), then it is easy to see that |.|” is submultiplicative,
Le., |MiMy|" < |My|" | M|, IMX|" < |M|"|X|" for any appropriate vector X
and also subadditive, i.e., [>, M;|" < > .|M;|” where the inequality M < N
denotes the elementwise relation m;; < n;; for all 4 and j. ® is the usual
Kronecker product of matrices and M® = M @ M ® ... ® M, r—times. If

(M(i),7 € N) is n x n matrices sequence, we shall denote for any integers [ and
J

g, [IM@GE) = MM+ 1)...M(j) if I < j and I(,) otherwise. When the
=1

matrices M = (M(i),i € S) is a sequence of non random matrices, we shall

denote



Chapter 2

Probabilistic proprieties of
MS — BL processes

Abstract: This chapter investigates some probabilistic properties
and statistical applications of general Markov—switching bilinear pro-
cesses (M S — BL) that offers remarkably rich dynamics and complex
behavior to model non Gaussian data with structural changes. In
these models, the parameters are allowed to depend on unobservable
time—homogeneous and stationary Markov chain with finite state
space. So, some basic issues concerning this class of models including
necessary and sufficient conditions ensuring the existence of ergodic
stationary (in some sense) solutions, existence of finite moments of
any order and S—mixing are studied. As a consequence, we ob-
serve that the local stationarity of the underlying process is neither
sufficient nor necessary to obtain the global stationarity. Also, the
covariance functions of the process and its power are evaluated and
it is shown that the second (resp. higher)—order structure is sim-
ilar to a some linear processes, and hence admit ARM A representa-
tion. We have also sufficient conditions ensuring the invertibility are
studied. We establish also sufficient conditions for the M S — BL
model to be f—mixing and geometrically ergodic. We then use
these results to give sufficient conditions for f—mixing of a family of
MS — GARCH(1,1) processes. A number of illustrative examples

are given to clarify the theory and the variety of applications.!

!This chapter is published in the Journal of Stochastics:
An International Journal of Probability and Stochastic Processes.
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2.1 Introduction

Since the seminal works by Hamilton [36], Markov—switching models (M SM)
have received a growing interest and becomes a powerful tool of modelling and
describing asymmetric business cycles (as originally proposed by Hamilton [36])
and continue to gain a more popularity especially in financial data. This is
due to its higher flexibility in capturing the persistence and/or the asymmetric
effects on the shocks of volatility and their ability to model time series which are
characterized by some features including excess kurtosis, asymmetry, turning or
sudden change in regime.

A discrete-time MSM is a bivariate random process ((Xt,s:),t € Z), Z =
{0, £1,42, ...} such that (i): (s;,t € Z) is an unobservable (referred henceforth
as "regime"), finite state space, discrete—time and homogeneous Markov chain
and (i7): the conditional distribution of X} given {(X;_1,s;),t < k} depends on
{(X¢-1,5k),t <k} only. So, the changes in regimes can be abrupt, and they
occur frequently or occasionally depending on the transition probability of the
chain. However, some locally (i.e., in each "regime") linear or nonlinear models
were investigated in order to capture the probabilistic and statistical properties
of such models. For instance, M.S — ARM A: Francq and Zakoian (hereafter
FZ) [22] and Stelzer [68], M S—nonlinear ARM A and bilinear processes: Lee
[44], Yao and Attali [78] and Bibi and Aknouche [7], M S — GARCH: FZ [21],
Hass et al., [30], Liu [55] among others.

In this chapter, we alternatively propose a M S—bilinear model in which the
process follows locally from a bilinear representation. This is in order to cover
many commonly used models in the literature, and to give a general flexible
and parsimonious framework for data sets exhibiting occasional sharp spikes
or involving at certain points a high amplitude oscillations and which cannot
sufficiently explained by the theory of standard linear models. In this context,
we say that a R-valued process (X;,t € Z) defined on some probability space
(Q, S, P) has a general Markov—switching bilinear representation (denoted by
MS — BL (p,q, P,Q)) if it is a solution of the following stochastic difference

equation

Q P q
X, = Z a;(sy) Xy—i + Z Z cij(s1) Xi—ierj + Z bi(st)er—j, t € Z. (1I-1.1)

i=1 j=1 i=1 j=0

In (I1 —1.1), (e, t € Z) is an independent and identically distributed (i.i.d.)

sequence of random variables defined on the same probability space (02,3, P)
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with E {logJr ]et|} < +oo where log" # = max {0,logz}, z > 0. The functions
a;(st), bj(s¢) and ¢;;(s;) depend upon an unobserved Markov chain (s;,t € Z)
subject to the following assumption:

The Markov chain (s;,t € Z) is stationary, irreducible, aperiodic, finite state
space S = {1, ...,d} (thus ergodic), n—step transition probabilities matrix P" =
(p,g?), (i,7) €S % S) where pgl) = P (s; = j|s;_n = i) with one-step transition
S) = P (s = jlsi-1 = i)
for i, j € S, and initial stationary distribution II = (7 (1), ..., 7(d))" where (i) =
P(s;=1),i=1,...,d such that IT' = IT'P. In addition, we assume that e; and
{(Xs_1,8;),s <t} are independent.

In literature of non—linear models, the bilinear models have been receiving

probability matrix P := (p;;, (¢,j) € S x S) where p;; :=p

an increasing interest and were successfully applied for analyzing non-Gaussian
data and can be proposed to model financial returns and other complex data set.
Indeed, Subba Rao and Gaber [72] have used a bilinear model to fit and forecast
the West German monthly unemployment data and showed that the obtained
results are "better" than many linear ARM A alternatives. Peel and Davidson
[62] propose a bilinear errors correction mechanism and suggested its application
for the models that displays "abrupt changes". Maravall [56] consider bilinear
models for forecasting nonlinear processes and demonstrated its improvement
over ARM A forecasts. Recently Aknouche and Rabehi [2] propose a mixture
bilinear model in order to absorb several features exhibited by Canadian Lynx
data and IBM stock prices and show the importance of mixture in bilinear
representation.

The MS — BL (p, q, P,Q) model encompass many commonly used models

in the literature, indeed,

(i) Standard BL (p,q, P,Q) models: These models are obtained by assuming
constant the functions a;(.), b;(.) and ¢;;(.) in (/I —1.1) or equivalently
by assuming that the chain (s;) has a single regime (e.g., Granger and
Anderson [25]).

(ii) Hidden—Markov models (HM M): In contrast with M .SM, HM M are char-
acterized by the fact that given s;, (X;,t € Z) is a sequence of independent
random variables. This class is obtained by setting X; = bg (s¢) ey, i.e.,
a;(.) = bj(.) = ¢ ;(.) =0 for all ¢, j in (I — 1.1) except that by (s;) # 0
(e.g., Francq and Roussignol [24]).

(iii) Markov—switching ARM A models (M S — ARM A): These models are ob-
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tained by setting ¢; ;(.) = 0 for all 4 and j in (/1 —1.1) (e.g., FZ [22] and
Stelzer [68]).

(iv) Some classes of M.S—(G) ARCH (p,q): (e.g., Abramson and Cohen [1], FZ
[21] and Liu [55]). (see also Kristensen [43] for the building of GARCH (p, q)
models as special case of BL (p,q, P,Q)).

(v) Independent-switching BL (p,q, P,@): In this specification, analyzed by
Aknouche and Rabehi [2] in the bilinear models, (s;t € Z) is an i.i.d.

process.

(vi) Some classes of periodic models (PARMA, PBL, PGARCH,...) (e.g.,
Bibi and Lessak [9]): These models can be obtained by rewording and/or

drooping some hypothesis in Assumption 2.1.

The main aim of the chapter is to investigate some theoretical prop-
erties for M.S — BL processes, and thus for the foregoing models. So, and
for the statistical purpose, it is often desirable in practice that the solutions
processes (X;,t € Z) for (11 —1.1) should be stationary, ergodic and satisfy
X; = f (e, 8,601, 81, -..) almost surely (a.s.) where f is a measurable function
from R* to R. Such solutions are called causal. The mentioned properties were
studied recently for the M.S — ARM A by FZ [22], Stelzer [68], and by Lee [44].
For the M\S—GARCH by FZ [21], Liu [55] and Abramson and Cohen [1]. How-
ever, and beside the properties listed in our Note [7], we continue to investigate
others properties with different approach of MS — BL (p, q, P, Q).

2.2 Stationarity and existence of higher—order
moments of M S — BL

In what follows, we shall assume, without loss of generality, that in (/1 —1.1)
P = p since otherwise zeros of a;(.) or ¢;;(.) can be filled in. Define the r =
(p+ q) —state vector X, = (Xy, ..., Xy pi1, €1y oy €1 g1 )", the 7 x r—matrices
(45 (s¢),0<j < Q)

Ao(sy) — Moy(s;) B (s)
o O(q,p) J ’

A(s) — Mj(st) O 1<j<Q
! Owp O T
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and the vectors E = (1a_/(r71)),7 Z_)O (St) = (bO(St),Q,(p_l))/ and
b(st) = (bi) (s¢), 1,Q2q_1)) where

Blsy — [ B0 o bals) )
O(p_lzq) pXq
J = —,(q—l) 0 > ’
Iig-1) Q(q—l) axq
ai(se) .. .. ap(sy)
1 0
MO(St) = 0 )
0 0 1 0
pXPp
M) = [ ) el ) 10

So the Equation (/7 —1.1) can be expressed in the following state—space
representation i.e., for all t € Z, X; = H'X, and

X, =AX, | +eb(s), as. (I1-2.1)

Q
where A; = Ao(s¢)+Y_ Aj(si)e—;. In the subdiagonal model (M S—SBL (p,q,p,Q))
j=1
for which ¢;;(.) = 0 in (/1 —1.1) for i < j the following representation is con-

sidered

Q
X, =Ao(s)X, 1+ Aj(s)X, jer; +eb(s), t €L (11-2.2)

=1

in which (M;(s;),1 < j < @) are the same as above except that their first lines

are (cji(st) ... cpilse), Opmyy)-

N J/

p:JGrl
2.2.1 Strict stationarity

Since ((s¢, e1) , t € Z) is a stationary and ergodic Markov process with state space
S x R, ((As,b(st)er), t € Z) is also a stationary and ergodic process and due
to the finiteness of the state space of (st € Z), then E {log™ ||b(s;)e||} and

k=1
E {log" || A;||} are finite. By setting A(k) = ] A;—;, it follows from Brandt [15]
=0
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(see Bougerol and Picard [13]), that the unique, causal, bounded in probability,
strictly stationary and ergodic solution of (/1 — 2.1) is given by

X, = Ay(k)b(si—r)er—r + b(si)er (11-2.3)

whenever the Lyapunov exponent 7, (A) associated with the sequence of ran-
dom matrices A = (A;,t € Z) defined by v, (4) = 1I>1£E{%log||At(t)||} =
tli»rgo {+log ||A.(t)||} is strictly negative. Obviously, any strictly stationary solu-
tion (X4, t € Z) of (11 — 1.1) leads to a strictly stationary of (I1 — 2.1) via the
above transformation. Conversely, we can see that, H' X, constitutes the unique
solution of (/I — 1.1) having the same properties as X,.

The needness of the condition 7, (A) < 0 for the existence of the strictly sta-
tionary solution of (/I —2.1) was established by Bibi and Aknouche [7] under
controllability concept. Recalling that the Representation (/1 — 2.1) or, equi-
valently the sequence {b(s¢),A;(s;),0 < j < @} is said to be controllable if the

where the matrices (c;(s;),1 < j <r) are defined recursively by: ¢1(s;) = b (s;)
and Cj(St) = |:A0 (St) Cj—l(st—j—i-l)z e AQ (St) Cj—1<5t—j+1>:| fOI‘j 2 2. The follow-

ing theorem gives us the main result for stochastic difference equation (17 — 2.1).

Theorem 1 Consider the model (II — 1.1) with state space representation
(I —2.1). Then

1. v, (A) < 0 is a sufficient condition for (II —2.1) to have a unique, strictly
stationary, causal and ergodic solution, given by the Series (I1 — 2.3) which

converges absolutely almost surely for allt € Z.

2. Conversely, suppose that {b(s:), A;j(st),0 < j < Q} is controllable and

(I1 —2.1) has a strictly stationary solution then v, (A) < 0.

Proof. By the subadditive ergodic theorem (see Kingman [41]), almost
surely, limsup || A (k)||'/* < exp {7, (A)} < 1. On the other hand, by the mo-
k

ment lemma (a.k.a. Markov’s inequality) and the Borel-Cantelli lemma we have

P (lim sup \et,kﬁ > e) =0 for all e > 1. So,
k—+o00

1
lim Sup [ A (k)b(se—k)eil|* < exp{y,(A)} <1
——+400
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and by the Cauchy’s root test the series (I — 2.3) converges absolutely almost
surely. To prove the second assertion, we observe that if there exists a strictly
stationary solution for (/7 — 2.1), then tlggo |A+(t)b (s¢)|| = 0 in probability. By
controllability, we obtain in probability tli>I£> |A:(t)|| = 0. By simple modification
of Lemma 3.4 in Bougerol and Picard [13] we deduce that v, (A) < 0. =

Using the same arguments used by FZ [22], it is straightforward to see that
v (A) = v, (M) where v, (M) is the Lyapunov exponent associated with the

Q
random matrices M = (M;,t € Z) with M; = Moy(s;) + > M;(s;)e;—;. This
j=1

means that v, (.) is independent of the moving average part. Hence

Corollary 2 Consider the model (II —1.1) with state space representation
(II —2.1). Then, we have

1. v, (M) < 0 is a sufficient condition for (I1 —2.1) to have a unique, strictly
stationary, causal and ergodic solution, given by the Series (I1 — 2.3) which

converges absolutely almost surely for all t € Z.

2. Conversely, suppose that {b, (s:), M;(s;),0 < j < Q} is controllable and

(I1 —2.1) has a strictly stationary solution, then v, (M) = v, (A) < 0.
Corollary 3 Consider the MS — BL (p,q,p,Q) process (II —1.1) with state
p—1
11 M;—;
=0

(II —1.1) has a unique, strictly stationary and ergodic solution given by the

space representation (II —2.1). If FE < log

} < 0 then FEquation

series (11 — 2.3) whose first component (X;,t € Z) is a strictly stationary, causal

} |

Example 4 [Non-necessity of local stationarity] Consider the first—order M S—
BL model, 1i.e.,

and ergodic solution for (I1 — 1.1).

Proof. The proof follows upon observing that

p—1

11

J=0

Y (A) =7, (M) < E {108;

Xt = <a1<8t) + Cll(st)et—l)Xt—l + bo(St)et.
v

d
The sufficient condition is v, (A) = > w(i)E{log|ai(i) + c11(i)eo|} < 0. On
=1

the other hand, if bo(i) # 0 for all i € S, then v, (A) < 0 is also necessary
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since rg {c1(s;)} = 1, otherwise, X; = 0 is the unique strictly stationary solution
without any constraint on v, (A). This example shows the importance of the
presence of moving average part for the necessity condition. It shows also that the
local strict stationarity is not necessary, i.e., the existence of explosive regimes

(i.e., E{log|ai(i) + c11(i)eg|} > 0) does not preclude global strict stationarity.

It is worth noting that the condition involving the strict stationarity for the
first—order M .S — BL model depends only on the initial distribution of the chain
(s¢,t € Z). This turns out not to be true in higher—order MS — BL models as

showed in the following example
Example 5 Consider the following MS — AR (2) model with two regimes
X = ar Xyalpg=1y + (a2 X1 + 02 Xy—9) Igm0y + €4

with a1 # 0 and state space representation X, = ByX, | + ¢, where By =
Bollys,—1y + Billgs,—2y in which

BOZ a1 0 ’Blz a9 bQ ‘
1 0 1 0

Since the matriz By is singular, then there exists an invertible matriz Q) (can

be obtained using a change of basis) such that QByQ™" can be written as By =

( C(L)l g ) So, we consider the model

Qit = Xt = étthl +§t

where e, = Qe, and Et = QBQ ! = EOH{&:H + Elﬂ{stzg} with El = QB,Q .
Since the Lyapunov exponent associated with (Et, te Z) and with (By,t € Z) is

bll (Tl) blg (n)

b21 (Tl) bQQ (n)
an Rahibe [46], says that the exact Lyapunov exponent is given by

the same, then by writing Br = ( ), then a result due to Lima

71 (B) =7, (B) = P log || +7 (1) papn Y vl log[bu(n)],

n=1

showing that the Lyapunov exponent depends on the initial distribution of the

chain (s¢,t € Z) and their transition probabilities.
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Example 6 [Non-sufficiency of local stationarity] Consider the model

X, — thl + c(l)Xt,let,l + et Zf St — 1
t — .
thl -+ C<2)Xt71€t71 +e_1 Zf St = 2.

1 1
First note that for eacht = 1,2, if Xy = ———= for somet, then X;,, = ———= for

(i) (1)

1 1
alln > 0. On the other hand if © # _?i)’ then P (x + (c(i)x+1) = —@) =

1

0. So, X; = _ﬁ 15 always the unique stationary solution for each regime re-
c(?

garding fy(Li) (A) = m(i)E{log |1+ c(i)eo|} < 0, i = 1,2, or not and the conclusion

follows.

Though the condition 7, (A) < 0 could be used as a sufficient condition for
the strict stationarity, it is of little use in practice since this condition involves
the limit of products of infinitely many random matrices. Hence, some simple

sufficient conditions ensuring the negativity of v, (A) can be given.

Proposition 7 Consider the M\S — BL (p, q,p,1) model in which E {|60\5} <

oo for some 0 < 6 < 1. Let My := (E {]Mo(z) + Ml(i)eo|6} 1 <i < d>. Then
p(P(Ms)) < 1 implies that v, (M) < 0 and hence the statement of the first
assertion of Theorem 1 hold.

Proof. Because the Lyapunov exponent is independent of the norm, by
choosing an absolute norm, i.e., a norm |.|| such that |[N|° < H\N|5H (e.g.,
[Nl = >, Inij|). Therefore, since p (P (M;)) < 1, there exists 0 < A < 1 such
that lim Sltlp || Pt (M5)||1/ " < \. By Jensen inequality and submultiplicativity of

the operator |.|° we obtain

b
o t—1
v (M) 6 = tll{glo ;E log H (Mo(st—j) + Mi(st—j)er—j-1)
j=0
1 t—1 Y
S tli)Ig) z log E (Mo(St_j> + Ml(st_j)et_j_l)
j=0
1 t—1
< i plog B { [Mo(s1-5) + M1<st_j>et_j_1|5H}
=0

J
< lim sup log ||P* (M5)||1/t <0,
t—o0

and the result follows from the Corollary 2. m
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Corollary 8 [MS — ARMA] In the M\S—ARM A(p, q) model, i.e., when M;(s;)
O(p) in above proposition, then the sufficient condition reduces to p (P (M,)) < 1
where M, = (|My(i)|,i =1,...,d).

Proof. Straightforward and hence omitted. m
The Lyapunov exponent criterion v; seems difficult to obtain explicitly when
p > 1. However, a potential method to verify whether or not v, < 0 is via
Monte-Carlo simulation using Equation (/7 — 2.1). This fact heavily limits the
interests of the criterion in statistical applications which often suggests that the
solution process must have some moments not ensured by the condition v; < 0.
So, we need to search for conditions ensuring the existence of moments for the

strict stationary solutions.

2.2.2 Second-order stationarity

The problem of finding conditions ensuring the existence of second—order sta-
tionarity solutions for weak MS — ARM A(p, q) has been addressed recently in
a series papers by FZ ([22], [21] and the references therein). Some results on the
existence of second—order moments for strictly stationary M.S — BL processes
have been obtained by Bibi and Aknouche [7] for some restrictive models. How-
ever, and since, it is difficult to handle in (I7 —1.1) the product terms, like
Xiei_p, k> 0, because of the nonlinear dependence between X; and e;_;, k > 0,
we shall restrict ourselves to the subdiagonal model (/1 —2.2) which can be
easily transformed into a Markovian state—space representation. Indeed, let
s = r(Q + 1) and define the s—vectors Y, := (X;,X;et,...,X;_Qﬂet_QH)’,
n (e) = (Q'(st)et,l_)'(st)ef,Q/(T(Q_l)))/ and the s x s—matrix

st

A()(St) Al (St) AQ(St) e AQ(St)
Owy  Ow  Ow ... O
Lo (s:) = Ow Iy  Ow ... Own |,
O Iy O
Owy O Ow)
Ao(s)  Ai(sy) Aq(s)
Fl (St> = O(T) O(r) e e O(T) ,
O O
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then (I1 — 2.2) admits the following state—space representation X, = F'Y, and
Y, =T (e)Y, ; + Qst<€t) (I1-2.4)
where Ty, (e;) = Tg (s) + eIy (s) and F' = (I(T)SO(T)S...EO(T)) is a r X s matrix.

The advantage of the representation (/1 — 2.4) is that given s; = i, the state
vector Y, is independent of st:i(ek) for any k£ > t and that the extended process
((Y},s:),t € Z) is a Markov chain on R® x S.

Theorem 9 Consider the MS — SBL process (11 — 2.2) with state—space rep-
resentation (I1 — 2.4) and assume that k4 = E {e}} < +00.
Let T® == (T® (4) = T§(i) + o2 T§2(i),1 < i < d). If

Ao = p <IP’(£(2))> <1, (I1-2.5)

then equation (II —2.4) has a unique, causal, ergodic and strictly stationary

solution given by

Y, = Z {H Fst—i(et—i)} ﬂstik(et—k) + QSt(Bt) (II-2.6)

k=1 (i=0

with the above series converging absolutely almost surely and in L.

Remark 10 Using the same arquments used by FZ [22], it is straightforward
to see that
~(2
Aoy = p <IP’(£( ))) <1, (I1-2.7)

where T is the matriz obtained by replacing the matrices A () by M;(.)
j = 0,....,Q. Hence the key element governing the second—order stationarity

is independent of the moving average part.

Corollary 11 When either (i) (s;) has a single regime or (ii) (s;) is an inde-

pendent process, the condition (11 — 2.7) reduces to
)\(2) =p (E {f?f(eﬂ}) < 1.

Proof. In the first case, P =1, s0 p (P(E(z))) =p (E{I'%*(e;)}). The second
follows from the independence of the process ((es, s;),t € Z) and therefore the
columns (by block) of the matrix i(z) are identical and however, the spectral
radius of E(Q) reduce to the spectral radius of the sum of block matrices of any

column of such matrix. m
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Corollary 12 For the model M'S— BL(1,q,1,1) with by(s;) # 0. The condition
(1T —2.7) reduces to p (P(y'?)) < 1 wherey® = (a? (i) + 0%, (i) i = 1, ..., d).

Proof. In this case My(s;) = ay(s:), Mi(st) = c11(8¢), so

ai(i)  a(i)en(i)  a(i)en(i)  cfy(9)
S I A

c2a2(i) o%ai(i)ei (i) oay(i)en (i) o023, (4)

a simple calculation shows that the non—zero eigenvalues of P(I'®) are the
same of that of ]P’(’_y@)) so the result follows. Noting here that when d = 2, with
P12 = pa1 = p, then the condition (/1 — 2.7) is equivalent to the following two

conditions

( (20 = 1) (a}(1) +0°¢1 (1) (F(2) + 0%¢}1(2) > -
+(1 = p) (a3(1) + 0%, (1) + a3 (2) + 0%c},(2)) ’
(1—p) (a3(1) + o%cti (1) +ai(2) + 02c}(2)) < 2.

In particular, for d = 2, a1(2) = 0, ¢11(1) = ¢11(2),p = 0.85 and e; ~» N(0,1),

the regions of strict and second-order stationarity are shown in Figl.

&
-
&
N

5 15" T 5 0
cn @

Figl. Strict and second-order stationarity region for Example 4. A:

Second-order stationarity, A U B: Strict stationarity, and C: non-stationary

Corollary 13 When Q = 1, the condition (11 — 2.7) reduces to p (P(M(z))) <
1 where M® = (M§? (i) + 02 MP2 (i) ,i = 1,...,d)
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Proof. In this case the matrices I'® (i) take the form

Mg?(i)  Mo(i) ® Mi(i)  Mi(i) ® Mo(i) — Mp™(i)
Og2) Op2) Op2) Op2)
O(TQ) O(TQ) O(TQ) O(TQ)

a?ME* (i) o?My(i) @ My(i) o>My(i) @ My(i) o>ME%(i)

() =

and consequently by Remark 10, the non-zero eigenvalues of IP)(E(Q)) are the same
as those of P(M®@). m

Corollary 14 [The MS — ARM A] For the MS— ARM A model, i.e., when the
coefficients c;;(.) in (I1 — 1.1) are all zeros. The condition (11 — 2.7) reduces to
p <IP’(M(()2))> < 1, where MY = (ME2(i),i =1,...,d) .

Proof. In this case; the matrices M;(s¢) = Oy, j = 1,...,Q, 80 p <IP <£(2)>> =
p <P(Mé2))>~ m

Corollary 15 [MS — GARCH|] Without loss of generality, we consider the
MS — GARCH (p,p) model defined by

X = \/Ftet
p p
he = ag(se) + 2 aj(se)h—j + 2 calse) X2,
7=1 =1

in which for all k € S, the sequences (a;(k))y<;<, and (cii(k)),<;c, are positive
with ag(k) > 0. Note that the volatility process (hy,t € Z) can be regarded as a
diagonal bilinear model without moving average part. So, the condition (II — 2.7)
reduces to p (P(M)) < 1, where M = (My(i) + o?M,(i),i = 1, ...,d).

Proof. Straightforward and hence omitted. m
To verify that the series (/1 — 2.6) is well-defined in L, it is sufficient to show

—S¢_

that the sequence Y, (k) = {kHI Fsti(eti)} n, k(et,k) converges to O, in Ly
at an exponential rate as k —>Z—_Fooo. From the independence between s; and e;, we
have E {Y£*(k)} = I, P*(C®)I(Z®)) where ® := (E {ggii(et)} 1<i< d).
Under the condition (/1 — 2.5) and by Jordan’s decomposition, we obtain

1/2

ey PHCOIE?)| " < < KA

||Xt(k)”L2 < (2)

o2
Iis2) ‘

1/2 1/2
P o) |

so Y, (k) — O, in Ly at an exponential rate as k — +oo. Hence, the series

I — 2.6) is the unique solution of (/I — 2.4) which converges in Ly and abso-
q g

lutely almost surely. B
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Example 16 |[Non-sufficiency of local second-order stationarity] Consider the fol-
lowing MS — BL

X, — Cl<]-)Xt—1€t—1 + CQ(].)Xt_get_l + e ’Lf St = 1
! Cl<2>Xt,1 + e ’Lf St — 2

in which (et,t € Z) is an i.i.d process distributed as N (0,1). If (X;,t € Z) is a
second-order stationary, then E{X?|s; = 1,8, = 2} is finite and independent
of t. Moreover,

E {Xt2|8t = 1, St—1 = 2}

=F { ((e1(L)er(2) + (1)) Xy—oer1 + c1(L)ef_, + et)Z lsi =1,8.1 = 2}

> E{(c1(1)c1(2) 4 e2(1))* X7 5lse = 1,81 = 2}

> (c1(D)er(2) + 2(1))*E {XtQ—stt =Lst1=282=1,83= 2}
B P (St—Q = 1, St—3 = 2|St = ]-7515—1 = 2)

= (01(1)01(2) + C2(1>>2p12p21E {XtZiz’St,Q = 1, St—3 = 2} .

This is not possible when A1y = (c1(1)c1(2) + ¢2(1))?propr > 1. Further-
more, it can be seen that the first regime is locally second-order stationary if

p(E{c®*(e;}) < 1 where c(e;) = ( CI(?Q 62(;>6t ), hence, for

Cl<].) = 035,02(1) == —0.9,01(2) == —0.9,])11 == 0.2,])22 =0.1

we can check that both regimes are second-order stationary and that Ay > 1.
Other examples for MS — ARM A models can be found in FZ [22] and in Stelzer
[68].

Remark 17 It is worth noting that the condition (11 —2.7) is only sufficient
in general as already pointed by FZ [22] (see example 4) upon a MS — AR(2)

model with two regimes.

2.2.3 Existence of higher-order moments

In this subsection, we shall interested for conditions ensuring the existence
of higher—order moments for strictly stationary MS — SBL processes having

state—space representation (/1 — 2.4).

Theorem 18 Consider the MS — SBL process (11 —2.2) with state—space
representation (I1 — 2.4). For any positive integer m, suppose that E {e{”“} <
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400 and
A(m) 7= P (P(E(m’)> <1, (11-2.8)

where T .= (E{T2™(e))},1 <i<d). Then the process (Y,,t € Z) defined

by (I —2.4) has a unique, causal, ergodic, strictly stationary solution given by
(II —2.6) and satisfies E {|Y{™|} < +o0.

Proof. It is readily seen that E {Y{™(k)} = I{,n,
nm — (E {n®mi(et)} =1, ...,d). Hence

Ls=

PH(L™)II(X™)) where

1/m

[em®l,,, < [Hmll 5o )

So, under the condition (/7 —2.8) and by Jordan decomposition, HIP”“(E(’”))H
converges to zero at an exponential rate as k — oo. Consequently, for any
t, Zn: Y, (k) converges as n — oo to Y, defined by (/I —2.6) both in L,, and
abgc:)futely almost surely. The rest of assertions are immediate and hence omitted.
]

In the following table, we summarize the sufficient conditions for the existence

of E{X;"} in some particular models.
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2.2.4 Computation of the second—order moment and ARM A

representation

Once second—order stationary condition is established, it can be useful to com-
pute the second—order moment of the process (X;,t € Z). For the convenience,

we shall consider the centered version of the state vector Y,, i.e.,
2t = Pst(et)gt—l + igt(et)’ (11—2.9)

where Y, = Y,—E{Y,} and /Q\St (e:) is centred residual vector such that given s; =
k, ﬁk(et) is orthogonal to zt, forallt’ < t. Let 2(;) = (E {ﬁ®2 (et)} =1, .., d),

Lst=1

[, = (To(i),i=1,...d),1 = (1,..,1) € R To express the moments, we re-

call here that if for ¢ > 1, Z;_; be an integrable random variable belonging to

d .
0 (61,8 > 1), then T(k)E {Z,_ils, = k} = 3 E{Zi_i|sizi = j} ol (j).
j=1

Proposition 19 Consider the MS — SBL (p,q,p,Q) process (11 — 2.2) with

state-space representation (I1 —2.9). Then under the conditions of Theorem 9,
we have
2& (h) = Vec {OOU (Ktait—h)}
_1 ~
(& F) (Iuay —P () 1(E)) ifh=0
—1 ~
(L& F2) P (@ ) (T — P (T®)) (S ifh >0

1

Proof. Starting from (/1 —2.9),

1. a. When h = 0 we have

rW)E{T7 s = b} =7 (0, () + 7 (WT®)E { T ]s = k]
— W(k)iff )+ TP (k iE {A;ml\st 1= j}pjkﬂ'(j).

set £(0) = (E{¥ ®2’|st =k} .k =1,..d) , then we have I (S (0)) =

b. When 1 > 0,

rE{Y,®7,,

st:k} i{ { ®f(s))pgk7T(J) }

Ly 1®Yt 1—(h— 1)‘315 1—]}
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Let X (h) = <E {it Y, 4|5 = k:} k=1, ...,d), then

(2 (h) =P (Lo ® I(y) L(Z (h— 1)) = P" (g ® I()) LL(Z(0)),
(I1-2.10)
and hence By (h) = (1® F®)'I1 (S (h)). So

v(h) = (Lo (FH)®*) IL(Z (h)) (11-2.11)

Remark 20 For MS — ARMA (p,q) process with by(s;) = 1 and under the
conditions of Corollary 14, then we have R™(h) = P(4y) R(X)(h - 1) =
P" (4g) RM)(0) for any h > 0. So E{X, X, »} = (e ®H®2) X)(h) and
the covariance function of (X, t € Z) follows.

Remark 21 For the MS — GARCH (p,p) model defined in Corollary 15, we

have E{X:} =0 and covariance function

-1
p
" Iig) — PY) (q. 26 11 h=0
COU(Xt7Xt—h> e € < (d) JZ_; (Q_] + o Q]J)) (O- aO) Zf
0 for allh >0

where a; + 0°c;; = {a;(i) + o?cj;(i), i =1,....d}, j=1,....d.

ARM A representation

The ARM A representation play an important role in forecasting and in identi-
fication, so certain non-linear processes are already represented as an ARM A
model. Indeed, Bibi [6] showed that a superdiagonal bilinear process with
time—varying coefficient admit a weak ARM A representation, FZ [21] have es-
tablished an ARM A representation for (MS—) GARCH and others non linear
processes of interest. The following proposition establishes an ARM A repres-
entation for MS — SBL (p,q,p, Q).

Proposition 22 Under the conditions of Proposition 19, the MS—SBL (p,q,p, Q)

process with state-space representation (11 —2.9) is an ARM A process.

Proof. To prove proposition 22, we use the same approach as FZ [22]. First,

it is worth noting that the equation (/7 — 2.10) is equivalently to

W(h) =P (Ly) W(h—1) (11-2.12)
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where W (h) = I (Z (h)) with S(h) = (E {ztﬁ,ust - k} k=1, d). Hence,
the result follows essentially the same arguments as in FZ [22], in other words,
there exists an uncorrelated sequence of random variables ({(t)),., with zero

mean and finite variance such that and almost surely
p* q
Xp=> aiXoi+ > &, b=1, (11-2.13)
i=1 j=0

where the coefficients (aj, b;,1<j<pV q*) are functions of (a; (.),1 < j <p),
(bj (1),1<j<Q)and (¢ (.),1 <j<i<QVp). The innovation process (§,),cy,
is not Gaussian nor a martingale difference sequence when the ¢;; (.)’s are not

equal to zero. m

Remark 23 The representation (I1 — 2.13) may be used to compute the best
linear predictor )?Hllt of MS — SBL(p,q,p, Q) given {X,,s <t}. Indeed, ac-
cording Bibi [6] the best linear predictor of Xiy1 when {X;, s <t} is given is

p* ) q* ]
where U* (2) =1 — > aiz’ and ®* (2) =1+ > bj2) #0 forall 2 € C: |2] < 1.
i=1 j=1

~ 2
Moreover, E{(Xtﬂt —Xt+1> } = var {&,} > var{e;} = 0%, so, the mean

square error of the best linear prediction is always greater than the innovation
variance of the process (Xt € Z) satisfying (11 —2.2) .

2.3 Covariance structure of higher—power for
MS — SBL

For the identification purpose it is necessary to look at higher—power of the
process in order to distinguish between different ARM A representation. So, in
this section we extend the result of the subsection 2.2.4 to power of (X,t € Z).

For this purpose, we first establish the following lemma

Lemme 24 Consider the MS—SBL(p,q,p,Q) model (11 — 2.2) with state space
representation (11 —2.9). Let us define the following matrices B](l)(st,et), J =

0,....,0 =0,...,m, with appropriate dimension such that

~ Rl
VleN:X?:(ﬁs(et)—i—st(et ) ZB (se.e) Yo (IL3.1)
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where by convention BJ(-I) (,)=01ifj>1orj<0, 2?0 = B(()O) (.,.) =1. Then

Bj(l)(st, er) are uniquely determined by the following recursion

(), BY" (51, e) = T, (),

(er) ® BJ('m) (51, e0) + s (er) ® BjTi (8¢,€0) form > 1

3) |

St

Proof. indeed, the formula (/1 — 3.1) is obvious for [ = 1. Assuming that
(II —3.1) hold for every [ > 1, then we have

~ Q]

!
~®l+1 . ~
Y, - Z (ﬂst(et) + F&(Q)Xt—l) ® BJ('Z) (st e0) Y,y
j=0

~®j

l
. ~®] ~
=20, ()@ {BY (s1,e) T} + {Tule) © B (s1.e) } T, 0 T
=0

I+1 ,
~®j

—~ E 4]
-3 {95t<et) % BY (s, et)} v+ {r&(et) @ BY, (s, et)} P
7=0

So the result follows. m
Now, set ;§1”) = <E {z;@mbt = k:} k=1, ...,d) ,
!

s¢m(n) = (B {2?’ @V s =k} k=1,...d) and

BmJ) — (E {B(.m) (k, et)} k=1,.., d), then it is no difficult to see that

m

nE”) = P (B") Iz and

nE ) = SP(B) ol - 1), 0> 1,
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~ ~(1,j
it ¥, € Liym where B

(=™ (k)
sy ()

= B g I(smy. Moreover, we have

W (h) =

(=0 (h)

[~

(1) #(5") (5"
0 - B m—1,0) p <E(m—l,m—l))
= : W (h —1)
P :(1,0) P E(Ll)
O O< ) P(<](Sm)>>

=A(m) W(m)(h - 1)
in which O is the null matrices with appropriate dimensions.

Proposition 25 Consider the MS — SBL (p,q p, Q) model (II —2.2) with
state- space representation (11 —2.9). If E{ mﬂ)} < 400 and Aopm) =

P (P(£(2m))> <1, then (2? m,t € Z) 15 second-order stationary process and

" (1) if m =0
o) = (Hawy = 2 (B} WZIIP’< B () if m > 1

) ZIP’( ) (2”**’”) it Y, € Liyn and

W (R) = A (m) W™ (h —1) and for any h > 1

=
/\

Remark 26 The proposition 25, we allow to compute W™ (h) recursively for

all h > 0. The unconditional mean and covariance of (K?m,t € Z) are given

p) = B{X" = P p {97 = (Lo PO T(s)
et = {8 553} K)o (57)
= (Lo P I () - B{X" @ (Lo Fom) (s (1)

= W™ (h)

where v/ = (1 ® F®*™)":0:...:0: = F {Xt m} ® (1@ Fom)).
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We are now in a position to state the following results

Proposition 27 Let (X;,t € Z) be the causal second— order stationary of M S —

SBL (p,q,p, Q) with state—space representation (I1 — 2.9). Then under the con-
ditions of Proposition (25), (X", t € Z) is an ARM A process.

Proof. The proof follows essentially the same arguments as in proof of

proposition 22. =

2.3.1 Generic examples

In this subsection, we consider some important special cases aimed to illustrate
the second—order stationarity conditions and explicit expansions of variance and
covariance function and ARM A representation for given process (X;,t € Z). For

this purpose, we consider the following models
Model(l): Xt = s, (et)Xt,1 + ey, Model(2) Xt = hst(et,l)Xt,2 + € (11-32)

in which Gs, (et) =a (St) + etC<8t) (resp. hSt (615—1) = C(St)et—l) and e~ N(O, 1)
with 4 = E{eg"} = (2p)!/2p! and p*V = B {eg"'} = 0.

Moments

Table 2, summarizes the available results concerning F {|X;|™} to be finite.
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Second-order structure
The following proposition summarizes the available results concerning Eg’l)(h)

Proposition 28 Under the appropriate condition ensuring the existence of second

order stationarity solution of Models(i), i =1 and 2 (see Table 2), we have

(Iy — P (g%(e0))) "I, if h =0

Model(1): IT <Z§’1) (h)) = { P (a) 1T (Zg,l) (h — 1)) if h >0

(Iay = PO (B (e))) "I, if h =0
0 otherwise

Model(2): I (2" (1)) = {

The covariance functions can be obtained by v (h) = 1'Il (Z(l 1) (h)> . Hence,
the model(2) may be considered as a weak white noise.
Higher order structure

In order to derive the higher order structure, we shall note ﬁgi)] ) the associated

quantities for Models(7), i = 1,2 respectively, i,e.;

(i) _ [! i
Sor = (j!(Z—j)!E{gk(et)et }”‘3—1’---@)’

Ly _ {! ; - B
2(2) - (mE{hk (et—l)et },k‘—l,...,d) ,
SO
4
2, P (EEZ)])) H(N(])) for Model (1)
M= @ (4 11,0
| 5" (@2’) )ﬂ(g)z) for Model (2)
)

NP (5&;’) (Y™ (h —1)),1 € {0, ...,m} for Model (1)

i ( DY I(EE™(h—2),1 € {0, .., m} for Model (2)

(m) ™) (h — 1) for Model (1)
™) (h — 2) for Model (2)

where A®) (m) has the same form, their entries are respectively P (.), i = 1, 2.

Moreover we have

e () = VIEG™ () — B LX) VIS () = VI (1)
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where V' = (1,0',...,0',—E{X™}1’). Tt is worth noting that due to diag-
onal form of A® (m), i = 1,2, the characteristic polynomial is the product of
characteristic polynomials of matrices P(*) (ﬁgg’o)) We have then the following

proposition due to FZ [21].

Proposition 29 Let (X;,t € Z) be a solution of Model(1) or Model(2) and as-
sume that (X", t € Z) is second-order stationary. Then (X", t € Z) is a solution
of ARM A equation of the form

N

m  k;
[1(1-22) (i — B {xpy) = P ()6
=0 k=1

(2

where {A@, )\g), o )\,(fi)} (with k; < d,kg < d — 1) are the eigenvalues different
from 0 and 1 in module of PY) (Eg,)o))’ [=0,...,m,j=0,1and P™ (L) is some
polynomial such that d°gP™ < d(m +1)—1, P™ (0) =1 and (f‘gm),t € Z) is

some white noise.
ARM A Representation

Table(4), summarizes the result concerning the orders and the coefficient of the
ARDM A representation of different power of Model(i),i = 1, 2.
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2.4 Invertibility of MS — BL processes

The concept of invertibility is very useful for statistical applications, such as the
prediction of X given its past, or the use of algorithms for computing estimates of
the parameters. Several definitions of this notion have been proposed in the liter-
ature, among which, and according to Wittwer [75], model M S — BL (p,q,p,q)
with by (.) = 1 is said to be strongly invertible if almost surely e, — é, — 0
as n — +oo for any sequence (é,),,,, of estimate of e, with initial values
{e1,..,e4, X1,..., X, 51} (see also Aknouche and Rabehi [2] for further discus-

P
sion). So by setting 3;(t) = b;(s¢) + >_ ci(s:) X;—; then we obtain
i=1

§o =6t — € = — Zﬁj(ﬂ&t—j
j=1

. The process (§;,t € Z) may be rewritten in state space form as

where §t = (ft, &g +1)/ and G (t) is an appropriate square random matrix.

Theorem 30 Consider the model MS — BL(p, q,p,q) with v, (M) < 0, then
it is strongly invertible if v, (G) < 0.

Proof. The proof follows upon the observation that under the condition
v (M) < 0, the process (X, t € Z) is strictly stationary and admit a finite
moment of order ¢ € ]0,1], so E {log™ | X;|} < o0 and hence the top Lyapunov
exponent associated with the random matrices (G (t),t € Z) is well defined. m
Some simple sufficient condition for invertibility for some restrictive models can

be given.

Corollary 31 Consider the MS — SBL(0,0,p, 1) model generate by

p
Xi= ¢ (s0) Ximjer +e (I1-4.1)

=2
Then, under the condition of Theorem 30, the model (II —4.1) is invertible

whenever E {log |5 ()|} < 0 where 5 (t) = — Z cj (s1) Xi—j.
=2



2. Probabilistic proprieties of M S — BL processes 30

Proof. We have

t—1

[I5@-1)

1=0

t—1
= %Zlogﬁ(t —1)| +%log|§0] — E{log |3 (t)|},a.s.
=0

1 1 1
;10g’ft| = glog +;10g|§0|

So the result follows by the Cauchy’s criterion. m
It is worth noting that the evaluation of E {log |5 (t)|} is difficult, because it
depend on the distribution of (e;, ¢ € Z) within each regime. So in the following

corollary, and easier sufficient condition is given.

Corollary 32 Consider the model (II —4.1) and assume that p (A) < 1 where
P

A= o? ZIP’U) <g§2)> where ng) = (c%(i), 1 =1,...d). Then if
=2

J

d
1'Al < ——. 11-4.2
- T o2d+1 ( )
with 1 = (1,1,...,1) € R? | model (II —4.1) has a unique strictly, ergodic,

second—order stationary and invertible solution.

Proof. It can be shown that under the assumption of the corollary, model
(II — 4.1) admits an ergodic, strictly and second—order stationary solution (see
Bibi and Ghazel [10]). Moreover, the stationary solution is a weak white noise
with mean 0 and variance R (0) = 021’ (I(d) — A)_l . On the other hand,

Ellogls ()]} = 3 {log* ()}

< Slog B {5 (1)}

1 - 1 _
= 3 log E {; & (se) Xf_]} =3 log {o”¢'(I(qy — A) ' Ar}

so 021'(Iigy — A)7'Am < 1if 0*1'(I(4) — A)"'AL < 1. The last inequality hold
true if for example 02A1 < 2(I(4) — A)1 (where the inequality M < N denotes
the elementwise relation m;; < n;; for all + and j) and hence E {log |3 (t)|} < 0
if (11 —4.2) is satisfied or whether
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In particular for p =2, d=2,and p11 = ¢, p2=1—¢q,p21 =1 —¢q, poo = q= 0.5
with e; ~ N(0,(0.5)%), the strict, second—order stationarity and invertibility

zones are shown in the following figure

Fig 1: A:Invertibility,A U B: Second order stationarity and
AU BUC: Strict stationarity

2.5 Geometric ergodicity and S/—mixing prop-

erties

Mixing conditions describe some type of asymptotic independence, which can
be useful in proving many limit theorems e.g. for central limit theorem, law
of large numbers and for sample covariance function that can be employed to
derive the consistency, asymptotic normality and the law of iterated logarithm of
some estimation procedures. We first recall a few definitions which will be used
throughout. Noting firstly that the extended process <zt =Y, s), te Z)
can be rewritten as

Y, =Ty ()Y, +17, (e), (I1-5.1)

! ~
where ﬁSt(et) = (Q;t (et), st> and I',(e;) is an (s + 1) x (s + 1) —random mat-

rix. Let Zo be an arbitrarily specified random vector in R**! independent of
((fst (et),m (et)>> , then (Zt, te Z) is a Markov chain with a state space
s teZ

R* x S and n—step transition probability P™ (g, C’) =P (zn eC |ZO = 'g) and
invariant probability measure 7 (C) = [ P (y,C)w (dy) for any Borelean set
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C € Bgs+1. The chain is ¢—irreducible if, for some non trivial measure ¢ on
(R*™, Bgs+1) such that VC € Bret1, ¢(C) > 0 = 3n > 0, P™ (y,C) > 0.
It called a Feller Markov chain if the function £ { g(ztﬂzt_l = g} is continu-
ous for every bounded and continuous function g on R¥*!. The chain is called
geometrically ergodic if there exists some probability measure m on Bgs+: and
a positive real number ¢ € ]0,1] such that ¢ [|[P™ (,.) — 77()HV — 0 as
n — +o0o where ||.||,, denotes the total variation norm. It is called exponential
B—mixing if [ ||P™ (y,.) — 7 ()HV 7 (dy) < kc™ for some constant k > 0.
Recalling here, that one of the most popular mixing measure for stationary

processes is a—mixing coefficients defined by

ay (k) = sup |P(ANB)— P(A)P(B)|.

Aea(zt,tgo),Bea(Zt,tzk)

A closely mixing measure that we found in literature is f—mixing coefficients
which are defined by

IJ
By (k)= sup >N |P(ANB) = P(A)P(B))
Ai€0(Y,t<0),Bjea(Y,t2k) i=1 j=1
where {A;,i=1,...,I} and {B;,i=1,...,J} are finite partition of the sample
space €. The chain (zt is called a«—mixing (resp. S—mixing ) if klim ay (k) =
tez oo
0 (resp. kh_}rgo By (k) = 0). It can be seen that ay (k) < 8y (k) so that f—mixing
implies the a—mixing. Consequently, and according to the above definitions, ex-
ponential f—mixing and geometric ergodicity are equivalent for Markov chains.
Moreover, for any ergodic chain with invariant probability measure = we have
By (k) = [||PW (g,.) — ()HV’]T (dy), so if the chain is geometrically ergodic
By (k) = O (c’“), c€10,1].
In what follows and in order to make the notation shorter, we shall set
k—1 _ k=1 _
ITi(k) .= J[ Ts,_,(er—;) (vep. Ty(k) := [] Ts,_,(er—i)) . For the representation
i=0 1=0

(11 —5.1) we have the following results.

Lemme 33 Let v, () (resp. v,(I') ) be the Lyapunov exponent associated with

the respect to the sequence of random matrices (T, (e;),t € Z) (resp. (T's,(er),t €

Z)). Then if v, (I') < 0 = ~.(I') < 0 and hence the representation (II —5.1)

has a unique, causal, ergodic and strictly stationary solution given by

Y, =Y Tk, (eos) +11, (e) (I1-5.2)
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Proof. Straightforward and hence omitted. m

Lemme 34 Let v, (T") be the Lyapunov exponent associated with respect to the
sequence of random matrices (I's,(e;),t € Z) and assume that us = E {|60|6} <
+oo, for some 6 > 0. Then if v, (I') < 0, there is 6* € ]0,1[ such that
E {]Xt\‘;*} < +00.

Proof. Noting that because v, (I') < 0, then equation (/1 —2.4) has a
unique, causal, strictly stationary and ergodic solution given by the series (11 — 2.6).
Hence, we have to show that if v, (I') < 0 there is 6* € |0,1] and ¢, > 0 such
that F {HI‘t(to)Hé*} < 1. Indeed, let us consider an absolute norm, then by
definition of vy, (I"), there is an integer ¢, > 1 such that F {log ||T':(to)||} < 0. On
the other hand, by the submultiplicativity of |.|°, we have

to—1

E{Irw)’} < {Hm,vetz }: E{H}F(”}

to—1
3 {E { H ‘Pst_"’(et_i)r St St-1, -+ St—t0+1}}"
i=0

< [T P (L) L(1(s))|| < +o0.

where 'y = <E{|F0 (1) + eoly (i)\‘s},l <1< d). Now, for any t > 0, let

f(t) = E{|ITu(to)|'}, since f(0) = E{log||Ty(to)||} < 0, then f(t) decrease

in a neighborhood of 0 and since f(0) = 1, it follows that there exists ¢* €

10,1 such that £ {|Ty(to)]|” } < 1. Since ||V, < z)mkm k(et,k)H +
k>1 -

6*
HT]St(et) and because 6* € ]0, 1], we obtain ||Y,]|° < 3 ||Tu(k ), (et,k)H +
o k>1
6*
Hﬂa(et> and by the dominated convergence theorem together with the fact

that lim sup HI‘t(k’)n k(et_k)HE <exp{y.,(I')} < 1, the last series converges in
k—oo —St—k

Ls= and hence the result follows. m

A similar result to the Proposition 7 for the representation (/1 — 2.4) is given in

following lemma

Lemme 35 Assume that p (P (Ls)) < 1, then (L) < 0 (consequently v, (T) <
0 ) and hence equation (I —2.4) (rep. equation II — 5.1) has a unique, strictly
stationary and ergodic solution given by the Series (I1 — 2.6) (resp. by Il —5.2).

Moreover, for all t € Z, the sequence (T'y(k)y)

- (resp. <f‘t(k)g>k>l converges

almost surely to O for any vector y € R® (resp. j € R°*1).
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Proof. Straightforward and hence omitted. m

Noting that one of the most well-known condition used in establishing sta-
tionarity and geometric ergodicity for discrete-time, aperiodic and ¢—irreducible
Markov chains is the drift condition developed by Meyn and Tweedie [59].

The chain (2“75 € Z) is called hold the drift condition, if there exist a pos-
itive function V' on R* xS, a compact set C' of R*xS with nonempty interior and
real numbers o > 0, v > 0 and p € ]0, 1| such that

() E{VT)Y\ =5} <pV(H—a ifjeC
(i) E{V)IY, =G} <vifj¢cC

In order to derive the geometric ergodicity of the chain (zt, t e Z) we make the
following assumptions.

The marginal distribution of e; is absolutely continuous with respect to the
Lebesgue measure A. The support of e; is defined by its strictly positive density
fe and contains an open set around zero.

pus = E {|eo|6} < 400 for some 0 < § < 1.

p(P(Ly) <1

p, = E {|eo]”} < 400 for some s > 1

p (P (IL)) < 1 where L = (E{IL, ()"} k=1, ... d)

Lemme 36 Under A.0 — A.2, (it,t € Z) is Feller, (A ® v) —irreducible and
aperiodic chain where v is a counting measure on S and therefore every compact

set 18 a petit set.

Proof. For any bounded and continuous function g on R* x S, and by the
Lebesgue dominated convergence theorem, the function F { gY )Y, = 'g} =
E {g <fk<€t)g+ﬁk<€t)>}, k € S is continuous in ¥ := (y,k) € R* x S, thus

the chain (Zt,t € Z> is Feller. (it,t € Z) is (A ® v) —irreducible, indeed, let
B = By X By € Bgs x S be such that (A®@v)(B) > 0. Since B, contains

at least one integer k£ € S, it is enough to prove that there exists ¢ such that
P (ﬂ € By x {k} [V = (v, z)’) > 0 for all k,l € S. By definition

P(Y) € Byx (R} Yy = (4,1)) = P (Y, € Bi,si = k|Y = y,50 =)

[ P(YaeBisi=kso=1Y,=y)
P (81 =kl|so =1,Y, :Q)

= pu. P (Fk(€1)g+ﬂk(el) < Bl) '
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Moreover, it can be easy seen that I'y(e1)y + 1, (e1) € By can be transformed
into gp(e1) = age? + brey € Cy, where ag, by are real constants and Cj, is some

Borelean on which the equation y = gi.(x) has a unique solution z = g; ' (y). So
~/ ~/
P(Y) € Bix (kYo = (4.1)) = puP(geler) €Cy)

— [ o ) o )]

which is strictly greater than 0. Analogously, it can be easily seen that (zw t e Z)

is aperiodic. m

Lemme 37 Under A.1 — A.2 the chain (it,t € Z) holds the drift condition
. ~ 6
with V @) = 3+ 1.

Proof. From (/I — 5.1) we have by recursion

T
rt(t+1)HtHXOH . (IL5.3)

1
7, (ew)| +|

St —

such that by A.2 we have almost surely %log ’ f‘t(t)H — v (f) < 0 and hence

‘ f‘t(t)‘r — ¢72(T) < 1. On the other hand, the random variables ’ f‘t(t)H? be.

ing almost surely bounded by sup ||I's,(e;)||, we have by dominated convergence
¢

1
t

I‘t (t>]:[{51:1'}

positive integer p > % and a positive constant K < 1 such that

Yeole(e)) <x

Taking now the conditional expectation in both sides of inequality (/1 — 5.3),
JURNTE S 1
we obtain E{HKP g Y, = g } <« Hg”p +

theorem for all x € S: tlirn E {

} < 1. It follows that there is a

a:=supF {‘ Fp(p)]l{81=1}

€S

p—1 1 1
where v = F {kz_o ‘ (k)" "Y, = g} The last inequality

implies we have E {V(Zp)lzo = g} <aV(y)+v+1—a. Set p=a+ 152 and

define the compact C' = {g' = (v, z) € R*xS: pV () < aV(y) + 1+ }. Then,
it is easily seen that 0 < p < 1 and thus the drift condition hold true. =

ﬁsp,k (ep—k)

Lemme 38 Under B.1 — B.2 the chain <zt,t € Z) holds the drift condition
with V (@ = HQHS + 1 for some s > 1.
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Proof. We have
. t—1
< <Z(
k=0

taking expectation for any y = (y,z) € Bgrs XS and from the L; norm inequality

Y= (=S o) 1)

|7

b2, 0] +]

o [5)

we obtain

(%

ro)|| [

o]+

St

[ CE R eo)))”
{7
SOCHEOH""Y

~ s 1/s
L(t+1) |st:m}> and

o= (e{E [l o]}

Hence E{Hit S} < (a }EOH —i—fy) . Since a < p(P(I'])) < 1, the conclu-
sion is the same as in proof of Lemma 37. m

where a = sup,cg (E {‘

Theorem 39 Under conditions A.0 — A.2 (rep. A.0,B1 and B.2) the chain
<zt,t € Z) is geometrically ergodic. Moreover, if zt 15 starting with the sta-
tionary distribution, then its first component process is strictly stationary and

B—mizing with exponential decay rates.

Proof. The result follows from Lemmas 36—38 and Theorem 15.0.1 by Meyn
and Tweedie [59]. =

Remark 40 In standard case, with i.i.d. innovation, Pham [64] studied a bilin-
ear Markovian representation in the form Y, = A(e;)Y, | + B (e;) of general
bilinear model in which (A (e;), B (e;)) being i.i.d. pairs of random matriz and
vector, independent of Y . for s < t. He establishes the geometric ergodicity under
condition involving the symmetric tensor power of matriz A (e;) and the rank of

complicated matrixz. However, our conditions are more flexible.

Remark 41 In independent switching bilinear model BL(1,0,1,1), Aknouche
and Rabehi [2] have established the geometric ergodicity under the strict station-
arity assumption with drift condition V (z) = ||z||° + 1, 6 €]0,1]. The case

V (z) = ||z]|° + 1, 6 > 1, is not established. So our result is more general.
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2.5.1 Application to a family of MS — GARCH (1,1) pro-

cesses

The result of Theorem 39 can be extended to the so—called augmented M .S —
GARCH (1,1) processes defined by ¢, = v/h;e; where (e;,t € Z) is an i.i.d pro-
cess independent of hy with E {e;} =0, E{e?} = 1 and satisfying the condition
AOQ. The volatility process (h,t € Z) is assumed to verify

f(he) = hg, (n,) f (he—1) + gs, (0;) (I1-5.4)

where f : R} — R is strictly monotonic and continuous function and 7, € %ﬁ‘i =

o ((et—j, st), 7 > 1). In this subsection, we shall derive sufficient condition for the
existence of higher-order moment and S—mixing with exponential rate for several
classes of augmented MS — GARCH (1,1) processes. Note that all examples

considered here were examined by Carrasco and Chen [16] in standard cases.

Proposition 42 Consider the model (II — 5.4), and assume that gs, (n,) and

hs, (n,) are polynomials function in n, and there is an integer p > 1 such that
p(P (k")) <1 and 'L (¢") < +o0 (I11-5.5)
where b = (E{h} (n,)} , k =1,....d) and g* = (E{g; (n,)} ,k = 1,....,d). Then
(i) hy = (he,s;) is Markovian chain geometrically ergodic. If (Et,t € Z) is
initialized from the invariant measure then (hy,t € Z) and (e, t € Z) are

strictly stationary and B—mizing with exponential rate and E{|f (h,)|'} <
—+00.

(i1) Moreover, if f (hy) = h{, ¢ > 0 and E{\et]2pq} < 400 then E{|et\2pq} <
+00.

Proof.

(i) The geometric ergodicity and mixing property of the chain (f (h;),s;)’
may be deduced from Theorem 39 with X; = f(h:),Ts,(er) = hs, (er)
and Qst(et) = gs, (€;). So, since f is invertible, then h; is also f—mixing
with exponential rate and so ¢; which can be regarded as a hidden Markov

process.
(i) This statement follows from the fact that £ {|e,|*™} = E {|h,|"} E {|e,|*"}.
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Corollary 43 [MS — LGARCH (1,1)] Consider the model
he =w (se) + B (st) o1 + o (se) (er—1 — ¢ (5¢))” hys

in which w (.) >0, (.) >0 and a(.) > 0. The case c(.) = 0 correspond to clas-
sical MS—GARCH(1,1) model. Assume that there is an integer p > 1 such that

) <IP’ (Q@)) < 1 where ) = <E{(ﬁ (k) + a (k) (er — c(k:))2)p} k=1, ...,d).
If <Et,t € Z | 1is initialized from the invariant measure, then (hy,t € Z) and

(er,t € Z) are strictly stationary and f—mizing with exponential rate. Moreover
E{h{} <400 and E {|6t]2p} < +o00.

Proof. The result follows from the proposition 42 with f (h;) = hy, hs, (1,) =
B (s¢) 4+ a(sy) (n, — ¢ (s¢))” with i, = e,y and gs, (,) = w (s;), which satisfies
the conditions of the proposition 42. =

Corollary 44 [MS — MGARCH (1,1)] Consider the model
log (he) = w (s:) + 3 (s¢) log (he—1) + a (s¢) log e, -

Assuming that there is an integer p > 1 such that E {\log e2|? } < 400 and
p(P(B)) <1 where g = (B(k),k=1,....d). If (Et,t € Z) is initialized  from
the invariant measure, then (hy,t € Z) and (e, t € Z) are strictly stationary,
B—mizing with exponential rate and E {|log (h;)["} < +oo and E {|logel|"} <
+00.

Proof. The result follows from the proposition 42 with f (h;) = log (h:),
hs, (1) = B (s1) and gy, (n,) = w (s1) + o (s¢) logn with n, = ;1. m

Corollary 45 [MS — EGARCH (1,1)] Consider the model

log (ht) = w (s¢) + B (s¢)log (he—1) + a (s¢) (lec—1] + v (s1) €i-1)

where y (.) # 0. Assuming that there is an integer p > 1 such that E {|e?|"} <
+o00 and p (IP’ (@)) <1 where B = (B(k),k=1,...,d). If <Et,t € Z) is initialized
from the invariant measure, then (hy,t € Z) and (e;,t € Z) are strictly stationary
and B—mizing with exponential rate. Moreover, if E {|log e2|” } < 400 then
E {|log€?|"} < 4o0.

Proof. The result follows from the proposition 42 with f (h;) = log (h),
hs, (n,) = B (1) and gs, (n,) = w (s¢) + a(s¢) my, with g, = |es1| + 7 (1) €1 ®
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Corollary 46 [MS — VGARCH (1,1)] Consider the model

he = w (s¢) + B (5¢) he—1 + a (s¢) (-1 — ¢ (5))”

in whichw (.) >0, B(.) >0 and a(.) > 0. Assuming that there is an integer p >
1 such that E {|et|2p} < o0 and p(P(B)) <1 where B = (B(k),k=1,....d).
If <Et,t € Z) is initialized ~ from the invariant measure, then (hy,t € Z) and
(e, € Z) are strictly stationary, f—mizing with exponential rate, E {|h:/"} <
+o0 and E {|e}|"} < +oc.

Proof. The result follows from the proposition 42 with f (h;) = hy, hs, (1,) =
B (s:) and gy, (1,) = w (s1) +  (50) (n, — ¢ (50))” with n, = ¢, 1. m

Corollary 47 [MS — GJR — GARCH (1,1)] Consider the model
he = w (s¢) + B (5¢) heo1 + aq (81) €21 he—1 + g (s¢) max(0, —e;_1)*hs_1

in which w(.) > 0, f(.) > 0 and a1(.) > 0 and ay(.) + as(.) > 0 . As-

suming that there is an integer p > 1 such that p (IP’ <Q§p)>> < 1 where Qgp) =
(E{(B (k) + a1 (k) €2 + ay (k) max(0, —)2)"} k= 1,....d). If (Et,t € Z) is ini-

tialized from the invariant measure, then (hy,t € Z) and (e, t € Z) are strictly
stationary, B—mizing with exponential rate, E {|h|"} < 400 and E {|€|"} <
+00.

Proof. The result follows from the proposition 42 with f (h;) = hy, hs, (1,) =

2

B (st) +n, and gs, (n,) = w (s¢) with , = a; (s;) €2 + s (s¢) max(0, —e;_1)*. =

Corollary 48 [MS — TSGARCH (1,1)] Consider the model

Vhe =w (s¢) + B (5:) Vheer + 0 (1) ler—1] Voot + a2 (s¢) max(0, —e;—1)y/hes

in which w(.) >0, (.) > 0 and a;y(.) + az(.) > 0. Assuming that there is an
integer p > 1 such that p (IP <Q§p)>> < 1 where

O = (E{(B (k) + ax (k) [ed] + s (k) max(0, —e))"}  k = 1,...,d). If

h,,t € Z) is initialized from the invariant measure, then (hy,t € Z) and
(e, € Z) are strictly stationary, f—mizing with exponential rate, £ {|ht\p / 2} <
+00 and E {|e|"} < +o0.

Proof. The result follows from the proposition 42 with f (h;) = V/hy, hs, (1,) =
B (st) + 1, and g, (1) = w (s¢) with 7, = a1 (s¢) |ee—1| 4 a2 (s¢) max(0, —€;—1). =



Chapter 3

QMYV approach for MS — BL

models

Abstract: In this chapter, we consider the class of Markov—switching
bilinear processes (MS — BL). Analysis based on models with time
varying coefficients has long suffered from the lack of an asymptotic
theory except in very restrictive cases. So, we illustrate the fun-
damental problems linked with M.S — BL models, i.e., parameters
estimation by considering a maximum likelihood (ML) approach.
So, we provide the detail on the asymptotic properties of ML, in

particular, we discuss conditions for its strong consistency.!

3.1 Introduction

The estimating of general bilinear model (/7 — 1.1) is quite challenging even
when d = 1. So, in the literature many ideas have been established for estim-
ating the parameters of some restrictive stationary and ergodic bilinear models.
The most frequently used methods are the (generalized) method of moments
(G) (M M) and the (conditional) least squares (C') (LS) method. The asymp-
totic properties of the (G) MM and (C) LS estimates have been also discussed
under certain restrictions, see for example, Pham and Tran [63], Guégan and
Pham [28], Liu [54], Kim et al. [39], Grahn [26], Wittwer [75] and among others.

IThis chapter is published in the Journal of Statistics and Probability Letters.

40
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3.1.1 Model and its parameters

In this chapter, we will investigate the estimating of M S —SBL(p,0,p,q) i.e.,

p q p
Xt = Qg (St) -+ Z CLi(St)Xt_i + Z Z Cij(St)Xt_iet_j + €. (III—ll)
=1

j=1 i=j

In (II1 —1.1), the innovation process (e;,t € Z) is an i.i.d sequence with zero
mean and variance 1. the orders p, ¢ and the regimes number d are assumed to
be known and fixed, the R—unknown parameters, gathered in 6 := (g’ o, )/
and its true values denoted 6°, belongs to a parameter space © C R where a =
(gﬂgig@Qg:@Jgigdwgz(gﬁgigd)Mﬂﬂzmaymwuw
with vectors coordinate projections a; := (ag (), ...,a, (1)), ¢; == (e (i), 1 < k
< max(p,q)), p, = (Pij, s Pids J 7 i)' (due to the constraints Z?:l pij = 1
for all i). For any integers a and b, such that a < blet X, (resp. X,,) denotes
the set { Xy, Xoy1..., Xp} (resp. {(Xu,e€a), (Xat1,€a11) -, (X, €p)}) with pos-
sibly a = —o0 in this cases we shall note X, (resp. X;). The problem of interest
in this chapter is the estimation of the parameter vector § governing Equation
(II1 —1.1) from an observed sequence X,.,. For this purpose, we denote the
density function of observations by gy (.) and that of innovations e; by fy (.) and
we use py (., ...,.) to denote the density with respect to probability measure on
Bgngrr. The corresponding conditional joint density given s; = z; and X, ,

with pg = max {p,q} + 1 is

Po (11:n|&1—p0:0) =7 (1'1) {Hpﬂct—lﬂft} {ngﬂﬂt (Xt|i1—p0:t—1)}
t=2 t=1

The likelihood L, (#) with respect to the measure \" ® p™ (where A denotes
the Lebesgue measure and p is the counting on S) that we work with is given

by summing over all possible path of the Markov chain the conditional density
Po (Xlzn|&1—p0:0)? Le.,

Ly (8) = Z m (21) 96, (Xl,il—poz()) le’z—hxtggzt (Xt|&1—p0:t—1>

(21,eeeyxn)ES™ t=2

(I11-1.2)

which can be rewritten as a product of matrices due to this simplified structure,

Ly, (Q) =1 {HP (QQ (Xt‘&l—pozt—l)) } s (gQ(leil—pO:O)) (111‘1-3)

t=2
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where go (Xi| X pov1) = (90, (Xel Xy pe1),1 <k < d)). A quasi—maximum
likelihood estimator (QM LE) of 6 is defined as any measurable solution §,, of

0, —argrgleaécL 0). (I11-1.4)

It is worth noting that given s;, the Jacobian of the transformation from X; to
€, is unity, so gy _ (Xel Xy _poier) = fo, (e (0) | X1 _pe1) where (e, (8),t € Z) is

ZLay

the process determined recursively by

et(Q):Xt_aO(st)_ Zaz St Xt i ZZ% St Xt i€t— 7(9)

Jj=1 i=j

and hence the likelihood function of X, ., is the same as the joint density function

of e,., (#) summed over possible paths of the chain (s;,t € Z) i.e.,

Ln (Q) = Z ™ (‘7;1) fﬁxl (61 (6 2 1—po:0 prt 1 wtfe (et ( ) ‘Xl—pozt—l)

= l/ {HP (fQ (et (Q) ’il—pmt—l))} (f@(el ( ) | 1—po: 0))
t=2

in which fy (€0 (0) [ X1 p1) = (fo, (€0 (6) X1y 1)1 < k < d). For the asymp-

totic purpose, it is Convement to approximate the process gp (Xt|§ 17p0;t71)

(resp. fo,, (Xi|X,_p,4-1)) by its ergodic stationary version 90, (X:|X,_,) (resp.

fe,, (e:|X,_;) so we work with the following approximate version L, (0) ie.,

Zn(Q): Z m(r1) gs, (X1|X prt 1,290 (Xt|Xt 1)
(z1,eeeyxn ) EST
:;'{Hp(ge(xtwt 1))} (Xl o))

Remark 1 The ezistence and the uniqueness of the process (e; (0) ,t € Z) is en-
sured by the invertibility of the model (II1 —1.1). Hence, from Theorem 30, a
sufficient condition for the invertibility of the model (I11 — 1.1) is ensured by

the negativity of the top Lyapunov exponent associated with the random matrices
(G(t),t € Z) where G(t) = [B;(t)d1 (i) + 641 (z')]m.:1 g With 6 (i) is the Kro-

-----

p
necker’s function and B;(t) = — > cij(s:)Xi—; provide that there already evists a

strictly stationary and ergodic process (X, t € 7Z) satisfying (111 —1.1).
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Remark 2 When the innovation process (e;,t € 7Z) is heteroscedastic, i.e.,

et (0) = hi(0)n,, then the conditional density function fp, (e: (0)|X,_)) should

be replaced by hi@)‘fak (Ztt((gi |it1))'

Remark 3 For instance, the initial values can be chosen as Xi_p, = €1_p, =
sy = Xo = €9 = ad(k) for any k €S or

Xiopo = €1-pp =, ., = Xo = €0 = 0. (I1I-1.5)

It will be shown that the choice of the initial values does not matter for the
asymptotic properties of the ML estimator. However, it may have importance

from a practical point of view.

3.1.2 Consistency of QMLE

In this subsection, we will give conditions ensuring the strong consistency of
MLE for MS — BL model (/1] —1.1). Our approach is benefitted from the
papers by Xie et al., [76] and Krishnamurthy and Rydén [42] for MS — AR,
Straumann and Mikosch [70] for general conditionally heteroscedastic time series,
Leroux [45] for hidden Markov models. For this purpose define py (X¢[X;_,.;_1)
(resp. go (Xi|X,_,)) the conditional density of X, given X, , ;(resp. given
X,y) and pp (Xy|Xy_, 1) (vesp. qj (X4]X,_)) its logarithm, i.c., given s; =
x1 (see Leroux [45] for further discussions),

Po (Xt|&17p0:t71) = Z 9e,, (Xt|ilfp0:t71) Pav_ya P (St—l = xt—1|&17p0:t71) )
(zt—1,7¢)€ES?
a (XX ) = D g0, (XlXy) Pe s P (101 = ma]X,y)

(zt—1,m1)ES?
Consider the following regularities conditions.
Al. 6° € © and © is a compact subset of R?

A2. v, (M°) < 0 for all € © where M" denotes the sequence (M;,t € Z) when

the parameters 6, are replaced by their true values 69, i = 1, ..., d.

A3. a. For all § € O, almost surely

0< mkin {ggk (Xt|&t_1)} < max {ggk (Xt|it_1)} < 400
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b. There exists a neighborhood V () = {8' : |0 — ¢'|] < §} of § such that

Ego ¢ sup

T 2ev(o)

A4. For any 6§, §' € O, if almost surely g (Xt|&t_1) = qy (Xt|§t_1), then
0=10.

(Xt|Xt 1))} < oo for some § > 0.

In Assumption A1l., the compactness of © is assumed in order that several
results from real analysis may be used. As seen in Theorem 1, Assumption
A2., ensure that the process (X;,t € Z) defined by (/11 — 1.1) admits a strictly
stationary, ergodic solution and the existence of a finite moments (see proposition
7). Assumption A3., implies that there exists at least one subset V (§) of ©
containing f, over which the expectation under ¢, of ‘qé (X X,_y) | is uniformly
bounded. While Assumption A4., means that if Equation (/77 — 1.1) has two
solutions processes associated with two different parameter, then their stationary
laws do not coincide.

First we show the following general results.

Lemme 4 Under A2 and A3, almost surely, uniformly with respect to § € ©

1. lim l1og'in () = lim llogLn () = Ep {q (Xe| X, 1)}

n—oon, n—oon,

1 ~ 1
2. lim —logL, (f) = lim —log

n—oon, n—oon,

ﬁwgamml))H

t=2

Proof.

1. Using L, Hpg Xi| X 1) and L, qu X/ X, ;) and

t=1 t=1
define the process

Ny (1) = S}:ill) ‘pé (Xt’it—k:t—l) - q§ (Xt| &t—l)‘ )

then for each fixed [, the process (N; (1),t € Z) is stationary, ergodic and
Eg {N¢(I)} < +00. Moreover,

n

lim sup |~ Z (P (Xel Xy g 1) — @3 (Xel Xy 1))

n

< lim sup — Py (Xt|§1—po:t—1> —dp (Xt’it—lﬂ

1 n
< lim sup — > N()=Ep{N ()}
n—-oo t:l—po+1
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Since, the process (q§ (Xt] &t_l) ,t € Z) is stationary and ergodic and
llim Eg {N;(I)} = 0, then the result of the first assertion follows.

n
2. Noting that > 7 (1) [[ Pes_yze = 1 and choose a norm ||.|| such
(@1,...,zn)ES™ t=2

that ||A|| = > |ai;|, then we have
i,J

n

[T7 o (12..)|
TI® (0 (X, ) H} ,

t=2

min {7 (k)ge, (X1]X,)}

< Ly (0) < max {m(k)gs, (X1|X0)} {

so the second assertion follows.

u
1 L, ()

Lemme 5 Let Z, (0) = —log for all § € ©. Then under the condi-
n L, (6"

tions A1-A4, almost surely lim Z, (8) < 0 with equality iff 6 = 0°.

Proof. Under conditions A1-A4 almost surely Z,, (6) is well defined. From

the lemma 4 and Jensen’s inequality, we have

lim Z, (0) = Egp logw < log Eg M <logl=0,
n——eo B qyo (Xt|&t_1) qpo (Xt|it_1)

with equality iff almost surely gy (Xt| X t71) =, (Xt| X tfl). Moreover, by the
condition A4, Z, (f) converge to Kullback—Leinbler information which equals
tozero iff  =6". m

Lemme 6 Under the assumptions A1-A4. For all @ # 6°, there exists a

neighborhood V (8') of 0’ such that almost surely lim sup sup Z, () < 0.
n—+00 eV, (9')

Proof. The proof follows essentially the same arguments as in Xie [76]. m
Theorem 7 For the MS — BL model (IIT —1.1), let 0, be the MLE sequence
over © satisfying (I11 — 1.4). Then under the conditions A1-A4, Qn — 6

a.s as n — OQ.
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Proof. Suppose that Qn does not converge to #° a.s. as n — oo. This means
that for any N ( large enough ), 39 > 0 and n > N, such that ‘ én — QOH > . By

lemma 6, it follows that L, (én> < L, (QO). However, by the definition of M LE

given by (II11 — 1.4), we have L, (én) = sup L, (¢) > L, (6°) for any compact
HcO*

subset ©*of © containing #°. This contradiction gives the result. m



Chapter 4

GMM approach for MS — BL

models

Abstract: In this chapter we consider Markov—switching bilinear
process (MS — BL). We illustrate the fundamental problems linked
with M S — BL models, i.e., parameters estimation by a minimum
Lo—distance estimator (M DE). So, we provide the detail on the
asymptotic properties of M DFE, in particular, we discuss conditions
for its consistency and asymptotic normality. Numerical experiments
on simulated data sets are presented to highlight the theoretical res-

ults.!

4.1 Introduction

In this chapter, we focus on the minimum distance estimation (M DE) of the
parameters of Model (/1 —1.1) with ¢;; (.) =01if i < j e,

p

q Q P
Xi=ao(st)+ Y ai(s) Xy + Y bi(s)ej+ > cijls)Xiierj, (IV-1.1)
i=1 =0 j=1 i=j
and use the models (/1 — 3.2) to examine the performance of the method. There
are already established methods in the literature for estimating of some special
cases of (/V —1.1) with time—invariant parameters including [26], [38], [39],
[40], [55], [63],[75] among other. In our best knowledge, only a few studies on
bilinear models with time—varying coefficients can be found in the literature,

except the works by [11], [7], [8] and by [12] concerning the bilinear models with

!This chapter is submit in the Journal of Statistics

47
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periodic coefficients. So, in this chapter, we continue our effort in estimating the
MS — BL. The proposed estimator is closely related to the M DFE considered
by Tieslau et al. [74] for long—memory processes, Bibi and Gautier [12] for
simple periodic BL (0,0, 2, 1) models and by Storti [69] and Baillie and Chung [5]
for GARCH (1,1) models based on the autocorrelation function of the squared

observations.

4.1.1 Proposed M DE and asymptotic properties

Let {Xi,...,X,,} be a sample from a second—order stationary MS — BL pro-
cess generated by (/V — 1.1) with [ unknown parameters, gathered in 0 :=

(Q/7Q/7§,7B,7E,7 0-2)/ E @ C Rl Where Q = (Q{)’Qi)"'?glp)/’ b = (b&?"')b;)IJ

!
= (g’u, ...,QIPQ)I,B = (]_9’1, ...,g{) 7= (7(j),1<j<d) with
a; = (a; (), 1 < <d) b= (b (§) , 1< j < d) gy 1= (e (k) , 1 < b < d)f
p, = (pij, 1 < j < d)'. For any h > [, let

L@ @ =L=0),....,7(R), L= (5, 0),.... 4, (h),
L, = L,(0)=.0)....5, (h)
where 4, (i) =+ 3~ (Xt - X’n) (Xt_i - )?n> with X, = 2 3" X, and 7,(4) is

t=i+1
v(i),i = 0, ..., h defined by(I/I —2.11) in which the mean and covariance func-

3 M

tions are replaced by their consistent estimates. To derive the asymptotic prop-

erties of ﬁn and fn, we need the following assumptions.

A1l. The chain (s;,t € Z) is g—dependent.

A2. The process (X;,t € Z) is strictly stationary, ergodic and admits moments
up to 4 — th order.

Lemme 1 Let (Xy,t € Z) be a process satisfying model (IV — 1.1) with state-
space representation (II — 2.4). Then under the conditions A1 and A2 we have,

1. almost surely X,, converges to u and vn ()A(n - ,u) ~ N (O, Zv(h))
heZ
where y(h) is given in (11 — 2.11)

2. almost surely in converges to L' and \/n (fn — E) ~~ N (0,%) where X is
an (h+1) x (h+ 1) covariance matriz whose (i,j)-th element o, ; is given
by

05 =Y Cov (XXt XerXemjoi) 6,5 =0, hy

kEZ
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Proof. From the representation (/1 — 2.4), define the processes (U;(m),t € Z)
and (Wy(m),t € Z) as Uy(m) := F'U, (m) and Wy(m) := F'W, (m) where

m

U,(m) = Z {1:[ Ly, (er—i }_St_k(et—k) +ﬂ5t<€t)a

k=1

W,(m) = {H Fsti(eti)} Y, 1

Then under the conditions A1 and A2, (U;(m),t € Z) is an (m + 1) —dependent

(m > q) and second order stationary process and X; can be expressed by

1. The convergence of X, to i follows immediately from the ergodic theorem.
Next, by Theorem 9, W;(m) converges in probability to 0 as m — oo and
thus the asymptotic distribution of \/n ()A(n — u) is the same as that of

n

ns Z (Uy(m) — ) where puy; = E {U;(m)} and since E {U?(m)} < +oo,

we have for m fixed

n"2 Yy (Uy(m) — py) wj\r( Z Cov (Uy(m Ut_k(m))).

t=1

Asm — oo, Uy(m) converges in probability to X; and hence the asymptotic

variance converge to Z ~ (k) which can be expressed by (I1 — 2.11).
keZ

2. Firstly, the convergence of fn to [ follows from the ergodic theorem. Sec-

ondary, from the definition of 7, (.) we have

1 <& X, < (n—1) oy
= — g X X — — E i )
' X w2 (X + Xoi) + - X,

t=141 t=1+1

A~

X n s N
By the ergodic theorem, the term —— Z (Xy+ Xii) + MX% con-
n t=i+1 n

verges to —u?, so, the asymptotic distribution of \/n (3,,(i) — v()) is the

same as that of n™'/2 Y (X, X;_; — E{X,X,_;}). On the other hand,
t=it1
since Uy (m) converges in probability to a stationary process and W, (m)

converges in probability to zero as m — oo, then we can show that the
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asymptotic distribution of n=2 Y (X, X, ; — E{X,X,_;}) is the same
t=it+1
as the one of

n~1/? Z (Ui (m) Ui (m) — E{U; (m) U;_; (m)}) as m — oc.

t=i+1

Now, for any real sequence (A\;,0 < i < h), let

Py=n""">" 3" X (Ui (m) Uy (m) = E{Us (m) Up—y (m)}) .

=0 t=i+41

so lim P, = lim n~2 3 Y;(h) where

n—00 n—o0 t—it1

h
Yi(h) =) A (Up (m) Up—i(m) — E{U; (m) Up—; (m)}).
=0
Clearly, {Y:(h),t € Z} is an (m + h 4+ 1)—dependent stationary process
with E{Y;(h)Y;_r(h)} = MW (k)X < 4+oo where A = (Ag,...,\)" and

where W (k) is the covariance matrix with (7, j)—th element being

(W(k?))l’] = Cov (Ut (m) Ut—i—l (m) s Ut—k (m) Ut—j—k—l (m)) s Z,j = O, N h.

Therefore, we have n=%/2 3" Y;(h) ~ N (0, 'WA) where the (i,j)—th
t=it1
element of the asymptotic variance—covariance matrix W is (W), =
m+h

>, {W(k)};;- As m — oo, W converges to ¥ whose (i,j)—th ele-
k=—(m+h)
ment is 0;; = I;ZCOU {XeXii, X4k Xe—k—j},1,7 = 0,..., h. Finally the
S
proof follows from the Cramer—Wold device.

Corollary 2 Under the Condition of the above lemma, we have in—E converges
to 0 almost surely and \/n (En — E) ~ N (0,%).

Proof. Write fn —-I'= fn — fn + fn — I, since fn — En converges almost
surely to 0, then the asymptotic properties of in — I are the same as that of
[,-L =
We are now in a position to state the M D procedure. The M D estimator of 6
is defined as any measurable solution of

8, = argmin Qn (0)
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where Q, (0) = Eln () M,,F, (8) with F, (§) =T, — T, (0) is the score function
and M, is a sequence of (h + 1) x (h + 1) random non—negative definite matrices
introduced in order to improve the efficiency. To analyze the large sample prop-
erties of the proposed estimator, it is necessary to impose the following regularity
conditions on the process (X;,t € Z), on the matrix M, and on the parameter

space O.

A3. The sequence of matrices (M,,) converges in probability to a non random

positive definite matrix M.

or’ (¢ or
A4. The matrix— (6 )M L (6,) is a finite nonsingular matrix of constants.

00 00

A5. The parameter O is compact and 6, is in the interior of ©.
Under these assumptions, we can state the following result.
Theorem 3 Under A1—-A5, En converges in probability to 0.

Proof. From the first—order conditions (organized as column vector) for
the minimization of @Q),,(6), we have

Taking the first—order Taylor—series expansion of the score vector F, (8) around
or oL, (0,)
09

ate point on the line segment joining Qn and f#y. Substituting for E n(én) into

6,, we have F_(0,) = F_(6,) — ) (6’ — 0, ) where 0, is an intermedi-

—n

s @) [ OL,(8.) (5 _
(IV —1.3) yields a—QMn F, (0, — —o0 (9 —QO) = 0. Rearran-

ging the above expression gives almost surely

i o {ain@’n> PRGN } L) 1y 5 (g

o0 00 00

Since the process (X, t € Z) is second—order stationary and ergodic, then under

the conditions of Lemma 1,

o0, o, OL(b,)
pJEEO 00 M, = B= 20 M and
~) ~ ~ .
p lim OL,( )MnaEH( ) A — or (Qo)MaE(Qo).

neso 00 00 90 90
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Hence from Slutsky’s and the dominated convergence theorems

~ ~ ~ -1 ~y ~
) lim {amen)Mnazn(Q*)} OL,00)  _ gipy

n—00 o6 06 o0

is finite, and since p lim F, (6,) =0, the consistency of 6 follows. m

Now, we consider the estimator

g = in ' (0)M,F (§) = in 0, (0
v, = arg gélg—n(—) n—n(—) = arg IQIg(I)l Qn(_>

where Q,(0) = E;(Q)ann(ﬁ) with F () =T, —I'(9). The asymptotic proper-

ties of {En}n21 are given in the following theorem.
Theorem 4 Under A1—AS5 we have
Vi (8, 80) ~ N(0, A BEB'AY).

Proof. The proof rests classically on a Taylor—series expansion of the score

vector F,,(6) around 6,. Thus, by the same argument used in Theorem 3, we

have
ar',) . arw®,) | ar' (0,
=M, ——= 0,—0,) = M,F, (0 IV-1.4
{ GQ GQ <—n —0) aQ —n(—O) ( )
From Lemma 1, we have pl lim F (8,) = 0, and thus p lim 6, = 6,. On
the other hand, in the expansmn (IV-1 4) we have the following limits A =
r r or’
p lim a_a(g_")Mna_a(e_*), B = p lim — (_")Mn, since /nE, (0) ~ N (0,%).
Then, the result simply follows from Slutsky s theorem. [ ]

The result in Theorem 4 can be easily generalized to the estimator En
Theorem 5 Under A1-A5 we have
Vi (8, 80) ~ N(0, A BEB'A™).
Proof. We have F, (§) — F, (0) = [(§) — L, (), so by Corollary 2,
p lim v/i{E, (0)~F.(0)} = 0

and consequently \/_ F (@) converges to the same limit distribution as the one

of /i, (0). m
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Discussion

We now discuss the optimal choice of the weighting matrix M. It is clear from
Theorem 4 that the asymptotic variance of /Q\n depends on M, via M. As it is
the case for GM M estimation, under the conditions of Theorem 5, the choice
of M matters for asymptotic efficiency. When appropriately choosing M, it is
possible to minimize the asymptotic variance of @n Then the minimum variance
that can be achieved is when M = X~!. In this particular case, the asymptotic

variance of 0, is

Sl

and nQ,(A) has an asymptotic chi-square distribution (see Hall [32] Theorem 3.4).
However, estimating the matrix > by a consistent estimator in is crucial since:
i) it is the optimal weighting matrix of M DF)| ii) it is a part of the construction
of En and its asymptotic variance (needed to construct confidence intervals and
to make statistical tests based on /Q\n) In practice, a heteroskedasticity and

autocorrelation consistent (HAC') estimate of ¥ can be used, i.e.,

~ A 1 i\ (A .

2, =0a(0)+) K (5) {2+ %0}

1

where 0,(j) = n~' S0 WL W, with W, = (Wt(O), o Wt(h)) L Wk) =
(Xy — 1) ( Xk — 1) —?y“n(k@:;), k=0,...,h, E:L any consistent estimator of 6.
The truncated lag ¢ needs to go to infinity at some appropriate rate with respect
to the sample, and the kernel weight K (j/q) is assumed to satisfy K (-) € K where
K={k:R—[-1,1 | k(0) =1, k(z) = k(—z),Vz € R, [|k(z)|dz < oo, and

k is continuous but at some countable points}. Examples of such kernel weights
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are the following

Name Ezxpressions
1 if 2| <1
Truncated | kr(z) = if |z] =
0 otherwise,
1-— if |z| <1
Bartlett | kp(x) = x| if || =
0 otherwise,
1 — 622+ 6lz> if |2] < 1/2,
Parzen | kp(z) =< 2(1 — |z|)? i£1/2 < 2] <1,
0 otherwise,
1 2 if 2| <1
Tukey — Hanning | ky(x) = (1 +cosma)/2 if || =
0 otherwise,
25 :
uadratic — spectral | ko(x) = {Sln(ﬁm/5) — cos(6rz/5 }
¢ P Q( ) 12 (W:E)Z 6mx/5 ( / )

It can be shown that Bartlett, Parzen and quadratic spectral kernels all product
positive semi-definite estimates of > while this is not necessarily the case for

truncated and Tukey—Hanning kernels.

4.1.2 Hypothesis testing

As an application of Theorem 5, we consider the problem of testing a null hypo-

thesis against an alternative one of the form
Hy:RO=0" wv.s H;:RO#0", (IV-1.5)

where R is a given [ x [ matrix of rank [, and 0" is a given vector. Under the
null hypothesis Hy in (/V — 1.5) and under the conditions of Theorem 5,

Jn (Rén . Q*) —~ N (0, RA"'BSB'AT'R)) .

Moreover, if the matrix ¥ is nonsingular, then the asymptotic variance matrix
involved below is nonsingular. So we have the following result from the delta
method.

Theorem 6 Assume that the conditions of Theorem 5 hold and ¥ is a nonsin-
gular matriz. Then, under the null hypothesis in (IV —1.5) with R of rank I,

we have

W, =n (RE . Q*)l (RA 1B, B AT 13’) - (Rén - Q*> wy?  (IV-1.6)
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where gn and én are some consistent estimates of A and B respectively. In
addition, under the alternative hypothesis in (IV — 1.5), we have
p lim n™'W, = (Rf — ") (RAT'BEB'A~'R) " (R§—¢*) > 0.  (IV-1.7)

n—o0

Note that the test statistics W,, is now the one of the Wald test of the null
hypothesis in (/V — 1.5).

Given the size a € [0, 1], choose a critical value 5 so that under the null hy-
pothesis in (IV — 1.5), P(W,, > 3) — a. Then the null hypothesis is accepted
if W,, < 3, and rejected in favor of the alternative hypothesis if W,, > . This
test is consistent due to (IV — 1.7). In the case when R is a raw vector (so 8" is

a scalar), we can modify (IV — 1.6) to

e ~1/2
t= v (RAB.S,BAL ' R) T (RD, —87) ~ N (0,1)
whereas under the alternative hypothesis in (IV — 1.5), (IV — 1.7) becomes

plim = = (RA'BSB'A'R) V2 (RO — 67) # 0.

n—o00 n

These results can be used to construct two-sided or one—sided tests. In partic-

ular, we have the following result.

Theorem 7 Assume that the conditions of Theorem 6 hold. Consider the hy-
pothesis
Y 0, =0 vs HY : 0,40, ve{l, .}

where 07, is given. Let (e;, i = 1,...,1) be the canonical basis of R'. Then, under
HS”,

whereas under H",

lim ta(v) 0, — 0
pn—>oo NZD \/QLA_lBEB’A’_lgv

£0

Given the size a € )0, 1], choose a critical value (3 so that, if the null hypothesis
is true, we have P{|t,(v)| > 8} — «. Then the null hypothesis is accepted if
|tn(v)| < B, and rejected in favor of the alternative hypothesis if |¢,(v)| > 5.
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Remark 8 The likelihood ratio (LR) (resp. Lagrange Multiplier (LM)) style
tests (despite M DE having no likelihood) are available. Indeed, let E,:LR) (resp.
/Q\;LM)) any measurable solutions of éiLR) = Argmin F (0)S-1F () subject to
RO—6° =0 (respf, = ArgminE},(6)5;F,(6) — N(RY — 6°)) where S,
is an estimate of the asymptotic variance defined in Lemma 1. Then from these
estimates, a LR and LM —like tests statistics can be formed as

Mo o FL () S0E, (87) - F (8,) S0E (8,) -

n n “n In
n

LM, ~1 [~ D N
= B, (0" F (FSUF) FSE, (0") -
n
~ dF x (6
where in probability F' := lim %(_)

4.2 Simulation results

4.2.1 Generalities

In order to illustrate the performance of our asymptotic results described in
previous section, we now provide some numerical results from Monte Carlo ex-
periments. We simulated 1000 independent trajectories via a M S — BL Models
(11 —3.2) of length n € {500,1000,2000} with d = 2, standard normal errors
distribution with parameter § which satisfies the second order stationarity and
existence of moments up to 4—th order conditions. For each trajectory, the
parameter vector § has been estimated with M DFE, noted as /Q\n. All the efficient
Minimum Distance (M D) estimations have been performed with the parameter
dependent truncated kernel weight &k described in above discussion. In addition,
and in order to have an heavy—tailed distribution for the errors, we consider the
Student t5—distribution as well (where 5 denotes the number of degrees of free-
dom), to replace the standard Gaussian assumption in M D. This additional
experiment is made to emphasize that the proposed asymptotic theory is free
from the Gaussianity assumption.

In Tables below, the rows “Means” correspond to the average of the para-
meters estimates over the 1000 simulations. We give into brackets the results

obtained from the t5—distribution for the errors process (e;). We denote by

\/Varg, (51171) = n~ 12/ (f]n)w, the estimator of the standard deviation. In or-

der to demonstrate that this estimate, although based on the asymptotic theory,

can be successfully applied to finite samples of reasonable size, the average of
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Varas(fé;)’n) over the 1000 simulations, denoted RM SE*, has been compared

to the root of the mean of <5Un — 0,)? over the 1000 simulations, denoted by
RMSE.

4.2.2 MS — BL(0,0,2,1) model

The model MS — BL(0,0,2,1) was defined by (/I —3.2). When d = 2 with

P11 = paz = 1 — p, p1a = pa1 = p, the eigenvalues of P? (02g(2)) are

0.2

Z (L —a)(@(1) +c*(2) £ %2\/(1 = 20)((1) = ¢2(2))* + a2((1) + 2(2))?

where v = 2p(1—p). Hence, the condition A2y = p (P? (62¢?)) < 1is equivalent

to the following two conditions

{ o2(1—a) (@ (1) +2(2)—ot(1—2a)2 (1) (2) < 1
o?(1—a)((1)+c*(2) < 2.

So, the stationarity region is shown in Figure F'ig2.
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Fig 2. Plots of the boundary curves A = 1 for
MS — BL(0,0,2,1) Model with e; ~» N(0,1)

The results of simulation
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4.2.3 MS — BL(1,0,1,1) model
The model MS — BL(1,0,1,1) was defined by (/I — 3.2). The eigenvalues of
P(v(2)) are

51— 0)(a(1) +(2)) & 5 /[T~ 20)(a(1) — 2(2))F + a2( (1) T 2(2))?

where o = p and z(i) = a®(i) + 0°c*(i), ¢ = 1,2. The condition A\ :=
p (]P (1 (2))) < 1 is therefore equivalent to the following conditions

{ 1-—a)(z()+2(2)—(1-2a)2(1)z(2) <1
(l1—a)(x(1)+2(2) <2

which reduce to the condition given by Francq and Zakoian [23] for the M S— AR
model. The zone of stationarity for M S — BL(0,0,1,1) is shown in Figure Fig3.

T T
solid p=3/4
— - — doshdotp=1/2

15 _ .

05 - : » B e

c(2)

05 : ; .

-15 . -
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2 -15 -1 -05 0 05 1 15 2
()

Fig 3. Plots of the boundary curves A3 =1 for
MS — BL(0,0,1,1) Model with e¢; ~» N(0,1)

Remark 9 [t is worth noting that this example shows that the local second— order
stationarity condition is neither sufficient nor necessary for the global second— order

stationarity.

The result of simulation
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Chapter 5

General Conclusion: Remarks

and some perspectives

The focus has been devoted on the extension of some results by FZ on MS —
GARCH for the M S-bilinear time series one. So, we have analyzed the prob-
abilistic structure of several subclasses of M S—bilinear models especially sub-
diagonal. First, sufficient conditions for the existence of regular strictly sta-
tionary solutions are given for general M S-bilinear model. For the subdiagonal
model, a Markovian bilinear (M B) representation is presented for which we are
derived conditions ensuring the existence of second (resp. higher)-order station-
ary solutions. The main advantage of the M B representation is that besides
its adaptation with nonlinear effects, it preserves the mathematically tractable
ARM A structure. In particular, it was seen in Sect. 4, that the second-order
properties do not generally provide sufficient information about the structure.
Moreover, it is shown that the power of M S—bilinear models having a M B—
representation has also an ARM A structure. Since, the mixing concept is often
required in statistical applications, then we have examined sufficient conditions
ensuring the f—mixing for M S—bilinear models having a M B— representation.
As an application, we then have established the geometric ergodicity of various
MS—GARCH(1,1) models including MS—EGARCH(1,1), TSGARCH (1,1),
VGARCH (1,1) among others. The forecasting problem using M S—bilinear
models and its comparison with ARM A models seems a problem of interest, so
we leave this important issue for future researches.

This thesis investigated the question of parameter estimation for a station-
ary and ergodic bilinear process (M S — BL) in which we allows the coefficients

to vary according an unobservable time-homogeneous Markov chain with finite
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state space. This problem has been previously resolved in the statistical lit-
erature for the usual time-constant case. To the best of our knowledge, the
statistical inference has received a little attention in literature. So, this thesis,
discusses some basic issues concerning the class of MS — BL models including
invertibility and the consistency of QM LE. We showed that QM L estimates
perform very well for large sample sizes, not only with a common Gaussian as-
sumption for the noise, but also with general distribution for the error having
some moment of finite order or with heteroscedastic error. On the other words
and as already mentioned by Pham and Tran [63], the asymptotic normality
of QM LE seems to be difficult to establish. One of the most important diffi-
culties is to know whether the partial derivatives of g (Xt] X t_l) with respect
to 0 are integrable. However, specific tools, for instance GM M method as an
alternative should be adapted to estimate the MS — Bl model. We leave this
important issue for future researches. Also, we considered a distribution-free
approach based on M DE. We showed that M D estimates perform very well for
large sample sizes, not only with a common Gaussian assumption for the noise,
but also with heavy-tailed distribution for the error, the Student distribution
being an example. Consistency and asymptotic normality of the M DE| as well
as hypotheses testing, have been derived. The behavior of the estimators has

also been studied via simulations, showing satisfactory (and expected) results.
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Asymptotic Statistics For Markov-Switching Bilinear
Time Series Models

Ao tract

This thesis investigates some probabilistic properties and statistical applications of general Markov-
switching bilinear processes (MS-BL) that offers remarkably rich dynamics and complex behavior to model non
Laussian data with structural changes. In these models, the parameters are allowed to depend on unobservable
time-homogeneous and stationary Markov chain with finite state space. So, some basic issues cancerning this
class of models including necessary and sufficient conditions ensuring the existence of ergodic stationary (in
some sense) solutions, existence of finite moments of any order and B-mixing are studied. As a consequence,
we observe that the local stationarity of the underlying process is neither sufficient nor necessary to obtain the
global stationarity. Also, the covariance functions of the process and its power are evaluated and it is shown
that the second (resp. higher)-order structure is similar to a some linear processes, and hence admit ARMA
representation. We establish also sufficient conditions for the MS-BL model to be B-mixing and geometrically
ergodic. We then use these results to give sufficient conditions for 3-mixing of a family of MS-GARCH(L)
processes. A number of illustrative examples are given to clarify the theory and the variety of applications.
Secondary, we illustrate the fundamental problems linked with MS-BL models, i.e., parameters estimation by
considering a maximum likelihood (ML) approach. So, we provide the detail on the asymptotic properties of ML
in particular, we discuss conditions for its strong consistency.

Finally, we used another approach for illustrate the fundamental problems linked with MS-BL models, i.e..
parameters estimation by a minimum L,-distance estimator (MDE). So, we provide the detail on the asymptotic
properties of MDE, in particular, we discuss conditions for its consistency and asymptotic normality. Numerical
experiments on simulated data sets are presented to highlight the theoretical results.
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