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Introduction 
 
 

 

We know that the laws of physics are described by two important theories, the first 

one is the theory of relativity which includes the classical mechanics which is based on 

Galilean relativity, special and general relativities. All these theories describe the macro 

physical world. The second theory is quantum mechanics which describes the microphysical 

world. If we assume that the macro physical world includes the microphysical world as a 

limit, these two theories must be linked somehow. The two worlds must be described by a 

same theory or by two dependent theories.  

The problem with the actual theories that they are formulated on completely different 

grounds.  

For instance general relativity is a theory based on fundamental physical principles which are 

the principle of general covariance, whereas the quantum theory is an axiomatic theory. 

So the different constructions of the classical and the quantum theory leads to a fission in 

physics yielding two opposite worlds according to the scale: the smallest and largest. That is 

why the modern physics seems incomplete, several problems are still posed. 

At the small scale the standard model of Weinberg-Salam-Glashow leads to the observed 

structure of elementary particles and coupling constants, but this model is not able to predict a 

theoretical basis to the number of elementary particles or their masses. In summary some 

problems were solved but the problem of the quantization of masses and charges is still 

unresolved. 

The idea behind this work is the possibility is that quantum and classical domains may have a 

similar nature. The aim is to find a theory which depends of the scale. If the scale is less than 

a fundamental length which has to be specified, we recover quantum theory and if the scale is 

greater that this length we find classical mechanics.  



This theory baptized scale relativity has been formulated by Nottale in 1992. This theory is 

based on fractal geometry with the assumption that the Einstein’s principle of relativity 

applies not only to laws of motion but also to laws of scale.  

In scale relativity we can treat quantum mechanics without using quantum principles in other 

words we do need to use the correspondence principle. 

In this work we attempt to derive the Dirac equation in the formalism of fractal geometry 

without any need to quantum mechanics postulates.  

This dissertation is organized as follow:  in chapter 1 is devoted to a review of fractal 

geometry and scale relativity.  

Then in chapter 2 we will consider the behavior of quantum mechanical paths in the light of 

the fractal geometry.  

In chapter 3 we will derive the Schrödinger’s equation from Newton's fundamental equation 

of dynamics without using the axioms of quantum mechanics. The method used is the 

stochastic mechanics according to Nelson.  

The chapter 4 we will apply the principle of scale relativity to the quantum mechanics by 

defining the covariant derivative operator and we will treat some applications.   

 In chapter 5 we write the Schrödinger’s equation by using the hypothesis of Nottale and the 

complex Klein-Gordon equation is derived. 

 We end up with chapter 6 where we have derived the Dirac equation from the Newton's 

equation in the spirit of Nottale hypothesis. The dissertation ends up by a perspective for 

future work and some appendices. 
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Introduction  
 

We know that the theory of Kaluza-Klein which attempted to unify the gravitation and 

electromagnetism on a geometrical approach based on curvature and or torsion of spacetime 

was unsuccessful. After that the advance of quantum gauge theories led to the hope that 

unification may rather be reached by the quantized fields associated to particles, but until now 

this approach was vain. The main problem is how to quantize gravity. Up to now there is no 

acceptable quantum version of gravity.   

The geometrical attempts to unification failed because of the following remark:   

The observed properties of the quantum world cannot be reproduced by Riemannian 

geometry. Indeed we know that quantum mechanics and field theories are based on flat 

spacetime, whereas general relativity is formulated in curved spacetime. In the first theories, 

spacetime is passive and may be considered as a scene on which physical phenomena occur, 

however in general relativity spacetime is dynamical or active, in other words the scene on 

which physical phenomena occur may contribute to the physical phenomena. 

Until now there is no satisfactory geometrical approach of the quantum properties of 

microphysics. For this reason, Nottale suggested in 1992 a possible way towards the 

construction of a spatial-temporal theory of the microphysical world, based on the concept of 

fractal space-time. His theory is based on the extension of the principle of relativity to include 

in addition to the ordinary relativity which is based on motion, another type of relativity: the 

relativity of scale.  

In this theory, Nottale assumes that spacetime is non-differentiable. One can see easily why it 

is possible for the space-time to non differentiable at small scale. Indeed the fact that in the 

micro world the notions of velocity and acceleration are totally absent since quantum theory is 

in essence non differential in contrast to classical mechanics. Nottale extended Einstein's 

principle of relativity by assuming that the principle of relativity applies not only to motion 

transformations, but also to scale transformations. In this way he included the resolution of 

measurements as a state of the system in addition to the usual coordinates ),,,( tzyx . 

From Fractal Objects to Fractal Space 



The word "fractal" comes from the Latin word "fractus", which means "fragmented" or 

"fractured". It was Benoît Mandelbrot a French mathematician who used this term for the first 

time in 1975.  

Fractals are objects, curves, functions, or sets, whose form is extremely irregular or 

fragmented at all scales [1]. The study of fractal objects is generally referred to as fractal 

geometry. 
We can see in nature a lot of objects which have fractal structure such as mountains, 

coastlines, rivers, plants, clouds.  

In humans branches of arteries and blood vessels have a fractal structure, as well as a number 

of other things including:  kidney structure, skeletal structure, heart and brain waves and the 

nervous system. 

Examples of natural fractals 

 
                                     Lightning 

 

 



 
                                                           Bacteria 

 

 
                                                           Clouds 

 

 

 

 



 
                                                 Trees 

Using a computer by using some algorithms we can obtain some natural things such as plants 

and trees. See the following figures. 

Man made fractals 

 
 

 

 

A Fractal Plant 



 
A fractal tree 

To have an idea on fractals, let us make one known as Koch snowflake. 

Consider a triangle  

     
Now let us add a small triangle to each edge, we obtain the following figure 

                
We repeat the previous procedure which means adding a small triangle to each edge which 

gives  



  
More iterations gives  

 
The fractal obtained is called Koch snowflake. 

Classical geometry based on Euclidean geometry deals with objects of integer dimensions: 

points are zero dimensional objects, lines and curves are one dimensional, however  plane 

figures such as squares and circles are two dimensional, and cubes and spheres are three 

dimensional solids.  

 
The problem is as Mandelbrot quoted in his book "Clouds are not spheres, mountains are not 

cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a 



straight line."  is that natural phenomena are better described by fractal geometry than the 

Euclidean geometry.  

Fractal is characterized by non-integer dimension, which is a dimension between two whole 

numbers. So while a straight line has a dimension of one, a fractal curve will have a 

dimension between one and two. The more the flat fractal fills a plane, the closer it 

approaches dimension two [2].                                                                                                                             

The dimension used in Euclidean geometry is called a topological dimension which is the 

"normal" idea we have on  dimension; a point has topological dimension 0, a line has 

topological dimension 1, a surface has topological dimension 2,  a volume has  topological 

dimension 3. 

In fractal geometry there is another type of dimension called Hausdorff-Besicovitch 

dimension or fractal dimension.  

So fractals are usually defined as sets of topological dimension DT and fractal dimension D, 

such that   D > DT  

Roughly speaking, fractal dimension can be calculated by taking the limit of the quotient of 

the log change in object size and the log change in measurement scale or resolution, as the 

measurement scale approaches zero. 

Let us calculate the Hausdorff (fractal) dimension D for a famous example of an everywhere 

continuous but nowhere differentiable curve called the Koch curve. 

Its construction is shown in the following figure. The Koch curve is the final product of an 

infinite sequence of steps like those in the figure, where in each step in the construction, the 

length of the curve increases by a factor of 
3
4 . So the final curve being the result of an infinite 

number of steps is infinitely long although it occupies a finite area.  

Suppose that we consider the Koch curve resolving distances greater than some scale  x∆  and 

measure its length to be ℓ then, if we improve our resolution so that  

 xx ∆





=∆

3
1' , the next level of resolution in the curve will become visible and we will 

measure a new length ll 





=

3
4' . Since the conventional definition of length, when applied to 

curve like the Koch curve, gives a quantity which depends on the resolution with which the 

curve is examined (even for very small x∆ ), this definition is not very useful. That is why 

Hausdorff has proposed a modified definition of length to be used in these cases, which is 

called the Hausdorff length L given by  



1)( −∆= DxL l  

where ℓ is the usual length measured when the resolution is x∆ , D is a number chosen so that  

L  will be independent of x∆ , at least in the limit 0→∆x .  

For the Koch curve, we can determine D by requiring that  
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  This implies that  
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Relativity of scales  

The Construction of the Koch curve 



In the well-know theories the coordinate systems is subjected to transformations 

corresponding to changing the origin and axes, but we ignore the units. In spite of  their 

introduction for measuring lengths and times, which is made necessary by the relativity of 

every scales in nature, we know that the measuring of length (time) is physical when it 

relative to another length (time), what we actually do is to measure the ratio of the lengths of 

two bodies (times of two clocks), in the same way as the absolute velocity of a body has no 

physical meaning, but only the relative velocity of one body with respect to another as 

demonstrated by Galileo, so we can say that the length of a body or the periods of a clock has 

no physical meaning, but only the ration of the lengths of two bodies and the ration of the 

periods of two clocks. 

The resolutions of measurement are related to the units, and their  interpretation is changed 

according to the scale, while classically we can  interpreted it as a precision of measurements 

(measuring with two different resolutions yields the same result with different precisions) for 

example we can measure the length of a table by a ruler and a palmer. In microphysics where 

classical mechanics is no more applicable and it has to be replaced by quantum mechanics, 

changing the resolution of measurement dramatically affects the results.  

Indeed, if your ruler measure centimetres, what sense does an angstrom make?  

The results of measurements explicitly depend on the resolution of the apparatus, as indicated 

by Heisenberg’s relation, for this reason we suggest the introduction of resolution into the 

description of coordinate systems (as a state of scale), which is the basis of theory of scale 

relativity [3]. 

 To realize this idea of scale relativity, firstly we propose to extend the notion of reference 

system by defining «super systems» of coordinates which contain not only the usual 

coordinates ),,,( zyxt  but also spatial temporal resolutions ),,,( zyxt ∆∆∆∆ . 

 
The second suggestion is the extension of the principle of relativity, according to which the 

laws of nature should apply to any coordinate super system, in other words, not only general 

(motion) covariance is needed but also scale covariance. 

(t,x,y,z) system 

(t,x,y,z,∆t,∆x,∆y,∆z)  super-system 



 
 

 

Let us treat the fundamental behavior of the quantum world. We recall that the wave-particle 

duality is postulated to apply to any physical system, and that the Heisenberg relations are 

consequences of the basic formalism for quantum mechanics. The existence of minimal value 

for the product ρ∆∆ ,x is a universal law of nature, but is considered as a property of the 

quantum objects themselves ( it becomes a property of the measurement process because 

measurement apparatus are in part quantum). But it is remarkable that it may be established 

without any hint to any particular effective measurement (recall that it arises from the 

requirement that the momentum and position wave functions are reciprocal Fourier transforms 

) so we shall assume that the dependence of physics on resolution pre-exists any measurement 

and that actual measurements do nothing but reveal to us this universal property of nature then 

a natural achievement of the principle of scale relativity is to attribute universal property of 

scale dependence to space-time itself  

- we finally arrive at the conclusion which is now reached by basing ourselves on the 

principle of scale relativity rather than on the extension of the principle of   motion relativity 

State of the system  

Motion state 
Scale state 

Special relativity Scale relativity 

Special and scale relativities 



to non-differentiable motion, namely the quantum space-time is scale-divergent, according to 

Heisenberg's relations by our definition fractal 

- So we conclude that the resolutions are considered as a relative state of scale of the 

coordinate system, in the same way as velocity describes its state of motion, however 

according to the Einstein's principle of relativity we derive the principle of scale relativity 

«the haws of physics must apply to coordinate systems whatever their state of scale», and the 

principle of scale covariance. « The equations of physics keep the same form (are covariant) 

under any transformation of scale (contractions and dilatation) »  

- from the principle of relativity of motion and the scale relativity ,we obtain the  full principle 

of relativity which will need is the validity of the laws of physics in any coordinate system, 

whatever its state of motion and of scale  

- in more detail we shall see that in this form the principles of scale relativity and scale 

covariance imply a modification of the structure of space-time at very-small scale in nature 

which is the fractal structure, then in this space-time structure we find a limiting scale, which 

is invariant under dilatation, as same as the velocity of light is constant in any coordinate 

system  

So there is an impassable scale in nature plays for scale laws a role similar to that played by 

the velocity of light for motion laws. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fractal Dimension of a Quantum Path 
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Fractal Dimension of a Quantum Path 
 
 We know that the standard interpretation of quantum mechanics has completely abandoned     

the concept of trajectory by replacing it by the probability amplitude. However Feynman 

proved that the probability amplitude between two points is equal to integral over all possible 

paths of   )exp( cliS , where clS  is the classical action for each path. This approach is named 

path integral. The aim of this chapter is to show how Feynman used that approach to prove 

that the trajectories of the quantum particle are continuous and non-differentiable which 

means it is fractal. We will see also that accurate calculation of Abbot and Wise leads to 

fractal dimension D = 2 of quantum path which is a direct consequence of Heisenberg’s 

incertitude's principle. 

 
Path integral approach 
Feynman used the path integral approach to understand the behavior of the quantum particle, 

and he arrived to the conclusion that the path of the quantum particle are highly irregular (as 

we see in the sketch), and that no mean square velocity exists at any point of the path which 

means that the paths are continuous and non – differentiable [4]. 

In other words we shall show in this chapter that the quantum path is fractal.        
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FIG (2-1) sketches the typical path of quantum-mechanical in space-time 



 

                                                                             
We take the special case of one dimensional particle moving in a potential V [x (t)]. 

The action over the path of the particle is given by  

                                              ∫=
f

i

t

t

dttxxS ),,( &l                                                    (2-1)  

where ℓ(x, x, t) is a Lagrangian, defined by 

                                                            ))((
2

)(2
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&
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So 
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Feynman and Hibbs demonstrated the next relation (see Appendix B) 
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where F(x(t)) is a function of x(t).  

We divide the time into small intervals of length ε, hence the action S can be written as  
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when we derive the action with respect to the coordinates  we find  
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For the special case kxxF =)(  we find  
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If we assume that the potential V is a smooth function, then in limit as 0→ε  we find that 

)( kk xVx ′ε is negligible in comparison with the remaining terms, so the result becomes 

                              111

i
xx

mxx
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So we have 
ε

1−− kk
k

xx
mx and

ε
kk

k
xxmx −+

+
1

1  which are two terms differing from each 

other only is order ε, since they represent the same quantity calculated, at two times differing 

by the interval  ε . 

We can substitute the first term into the second  one, and we find  

                                        1)( 2
1

εε im
xx kk h

−=
−+                                          (2-10) 

This equation means that the average of the square of the velocity is of the order
ε
1 , and thus 

becomes infinite asε approaches zero. This result implies that the paths of quantum 

mechanical particle are irregular on a very fine scale, as indicated by fig (2-1). In other words, 

the paths are non differentiable. 

For a short time interval ∆t the average velocity is [ ]
t

txttx
∆

−∆+ )()( .  The mean square value 

of this velocity is 
tim∆

−
h   which is finite but its value becomes larger as the time interval 

becomes shorter 

 So   
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We define the mean length  by < L > = N <|∆x| > and T=N∆t 

So  

x
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from equation (2-12) we find 
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Using the definition of the Hausdorff length 
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we find  

1)( −∆= D
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x
m
TL h  

for that 
hauss

L to be independent to the resolution ∆x, it must have D=2. 

This result means physically that although the particle path is one-dimensional curve, 

however with time this path will cover an area. 

Heisenberg Uncertainty principle 

For a quantum particle the position is known with precision ∆x. We calculate a mean length  

of a trajectory which a particle travels during a time T 

                                                                      lNL =                                                     (2-13) 

l is the distance which a particle travels in a period of time ∆ t 

                                                                       tv ∆=l                                                    (2-14) 
so   

                                                                                                             tNL ∆=  

According to the Heisenberg uncertainty principle we have 
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This expression is an average of length measured with a resolution x∆ . 
Using the definition of Hausdorff length  
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The dimension of trajectory must be equal 2 to make 
hauss

L  independent of the resolution. 

Hence the Hausdorff dimension of the path of a quantum particle is equal to 2. 

Now let us study the classical particle path, in this case L  is independent from the resolution 
( )x∆  
so                                                                                              
                                                                                                         ( ) 1−∆= D

hauss
xLL  

We see that D must be equal 1 to make 
hauss

L  independent of the resolution.  

The dimension of quantum trajectory of free particle is 2=D , however a classical trajectory 

has a dimension 1=D  [3,5]. 

 
Abbot and Wise Work       
Abbot and Wise showed that the observed path of a particle in quantum mechanics is a fractal 

curve with Hausdorff dimension equal to 2 [5,6]. 

We consider the wave function expression of a free particle which is localized in region of 

length x∆  at time 0=t  
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This packet of wave is obtained by superposition of plan wave 
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The wave function at the time t∆  is given by, 
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The normalization condition requires that 
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Indeed we have 
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We define the mean of the distance which a particle travels in time t∆ by  
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by substituting in (2-20) we find 
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We calculate ( )byF ,r in the equation (2-22) by using the equation (2-18) 
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Let us now study the equation (2-29) when 
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Transition from classical dimension D=1 to quantum dimension 

D=2 
We consider now the case where the particle has an average momentum avP . The wave 

function of that particle is        
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Using the change of variable  
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Using the expression of   ( )byF ,r  with 2)(2 xm
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The average distance L∆ which is traveled by the particle during the time t∆ is given by  
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We remind that the Hausdorff length is given by 
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We have two cases for that the Hausdorff length be independent of x∆   
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is the classical case when the resolution is larger than the quantity 
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particle's wavelength  given by the Broglie relation. 
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In the quantum case when the resolution is smaller than the particle's wavelength. 

 

 

 



Conclusion 
In this chapter we have calculated the path’s dimension of a classical and quantum particle 

using three methods. The first one consists in the use of the path integral formalism. 

Following the work of Feynman and Hibbs we have shown that the particle path in quantum 

mechanics can be described as a continuous and non-differentiable curve. This non-

differentiability is one of the properties of fractals. The second method is the use of the 

Heisenberg uncertainty principle and finally the third method which involves a more accurate 

calculation is due to Abbot and Wise. 

 We have shown that the fractal dimension of the quantum path is equal to 2 which means that 

the “trajectory” of the particle tends to occupy a surface. We have also shown that there is a 

transition in the Hausdorff dimension from 2 to 1. This transition takes place at the Compton 

wavelength scale. 
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Derivation of the Schrödinger Equation from Newtonian 
Mechanics 
 
In this chapter, we want to show how we can derive the Schrödinger equation without using 

the quantum axioms. This derivation is based on statistical mechanics and the theory of the 

Brownian motion [8,9].  

Stochastic mechanics  
 In the stochastic mechanics any particle of mass m is subject to a Brownian motion with 

diffusion coefficient
m2
h and no friction. and they define the Brownian motion with the 

following properties: 

1. The motion is highly irregular and unpredictable which means that we can not draw 

the tangents of the trajectories. 

2. The motion is independent of the particle’s nature. 

3. The motion is continuous. 

 In 1905 Einstein adopted a probabilistic description of the Brownian trajectories, and he 

found that the density of the probability to find a Brownian particle in x at time t satisfies the 

equation of diffusion  
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In 1906 Smoluchowski derived the equation which describes the Brownian particle in field of 

forces )(xF  
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Any process in time evolution which can be analyzed by the formalism of probability is called 

stochastic process. We define the absolute probability ),( txW which satisfies some of 

properties; however the stochastic process is governed by the conditional probability  
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We call the stochastic process a Markoff process if the conditional probability has the 

following property  

                             ),/,(),/,;.....;,;,( 11112211321 nnnnnnnn txtxPtxtxtxtxPttt −−−− =∀ pp        

 We can say that in the Markoff process the future is independent from the history of the 

system.     

The Fokker-Planck Equation 
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)(xa is the derive function and )(xb is the function of diffusion  

 

The Wiener and the Ornstein-Uhlenbeck process are considered as a particular case of the 

Fokker-Planck equation with a certain definition of a(x) and b(x). 

For instance we obtain the equation of the Wiener process for 
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)(tx  is a stochastic process when it is not differentiable (case of the Wiener process, in 

Einstein’s theory of Brownian motion), we define the two kind of derivative 

The forward derivative  )(tDx  
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The backward derivative   )(* txD  
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tE  indicates the conditional expectation which given the state of the system at time t. 

When  )(tx   is differentiable, then  
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dxtDxtxD == )()(*  

The Ornstein-Uhlenbeck process is obtained for  
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in the Fokker-Planck equation of Brownian motion with the presence of a potential V . So the 

particle acquires an acceleration produced by V given by: 
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Now if we use a Maxwell-Boltzmann distribution of velocity,  
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When we compute the fluctuation of velocity, with an initial condition ),( 00 tv  we find  
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From the next Ornstein-Uhlenbeck equation of velocity   
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The same results are obtained by the Langevin theory    

So the system is in equilibrium.  We can write the Langevin equations, where βm   is the 

friction coefficient 

                                                             dttvtdx )()( =                                                 (3-3)        

                                          ( ) )()()()( tdBdttxKdttvtdv ++−= β                              (3-4)              

B  is a (white noise) Wiener process representing the residual random impacts, )(tdB   are 

Gaussian with mean 0, and   
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m
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
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k is the Boltzmann constant, and T is the absolute temperature. dB(t) are independent of x(s), 

v(s) with   s ≤ t, it dependent only of x(s) and v(s)  with s > t. 

There is an asymmetry in time so we may write  

                                                ( ) )()()()( * tdBdttxKdttvtdv ++−= β                             (3-6)        

In this case   dB*(t) is independent of  x(s) , v(s) with   s ≥ t  

so we calculate the average in (3-1) and in (3-2) 
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Since )(tx is differentiable.  

By (3-5) 2)(tdB is of the order 2
1

dt  that means B (t) and v (t) are not differentiable  

So                           ( ))()()( txKtvtDv +−= β        and           ( ))()()(* txKtvtvD += β   

Hence 
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We define the second derivative of a stochastic process by  
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If )(tx  is a position, )(ta is defined as an acceleration and maF = which is the Newton’s law.  

Kinematics of Markoff Processes  
We describe the macroscopic Brownian motion of a free particle moving in a fluid by the 

Wiener process )(tw , which satisfies; 
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=     is the diffusion coefficient.  

In the fluid where the particle is moving, if there are external forces or currents, the position 

)(tx  of the Brownian particle be decomposed as following    
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b  is a vector valued function on spacetime. 

Because the Wiener process is a Markoff process )(tdw  are independent of  )(sx  with  ts ≤   

So from (3-1)   and (3-8) we find 
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b is the mean forward velocity.  

                                      

Where we have considered the time t, and st ≤ , we have an asymmetry in time. So we can 

write   
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So by (3-1)   and (3- 10) we find 
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 *b is the mean backward velocity.  

We assume a motion of an electron with ( )ttxP ),(  is the probability of position x(t) satisfies  

the forward Fokker-Planck equation 
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which is the equation of continuity, where we have define v  by  
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We call v  the current velocity.  

We can expand the function f   in Taylor series as  
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We take (3-16) and we calculate  Df   and fD*   
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Using (3-7) we obtain  
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In the same way we obtain  
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Where the superscript + denotes the Lagrange adjoint (with respect to xdtd 3ρ ) 
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According to Einstein’s theory of Brownian motion, the eq. (3-23) is the velocity acquired by 

a Brownian particle in equilibrium with respect to an external force.   
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which is the mean acceleration a. 
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From (3-15) and (3-24) we have 
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The Hypothesis of Universal Brownian Motion  
We consider that the particles move in an empty space, and are subject to a macroscopic 

Brownian motion with diffusion coefficient υ  
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We have not any friction to empty space, this means that the velocities will not exist, hence 

we cannot describe the state of a particle by a point in phase space as in the Einstein-

Smoluchowski theory, and the motion will be described by a Markoff process in coordinate 

space.  

The mean acceleration (a) has no dynamical significance in the Einstein- Smoluchowski 

theory, that theory applies in the limit of large friction, so that an external force F  does not 

accelerate a particle but merely imparts a velocity   
βm

F   to it, in other words to study 

Brownian motion in a medium with zero Smoluchowski theory, but use Newtonian dynamics 

as in the Ornstein Uhlenbeck theory. 

We consider a particle of mass m , in an external force  F , the particle performs a Markoff 

process, we substitute  
m
Fa =  and   

m2
h

=υ  in equation (3-27) and (3-32) thus  u   and v   

satisfy 
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consequently, if ( )0, txu  and ( )0, txv  are known and we can solve the problem of the coupled 

nonlinear partial differential equation (3-27) and (3-28) then the Markoff process will be 



completely known, thus the state of a particle at time  0t  is described  y its position )( 0tx  at 

time 0t . 

The velocities u  and v   at time 0t  notice that ( )0, txu  and ( )0, txv  must be given for all values 

of  x  and not just for )( 0tx .  

The Real Time-independent Schrödinger Equation  
We consider the case that the force comes from a potential  

                                                                  VgradF −=                                             (3-36)         

Suppose first that the current velocity 0=v , from the equation of continuity and (3-22) we 

obtain    
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ρ

ρυ gradu =                       

It seems that ρ  and u  are independent of the time t , so (3-34) and (3-35) become   
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∂
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t
u                                                       (3-37)       
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by (3-26), u   is a gradient, so that we can write  

                 2

2
1)( ugraduu =∇  and  ( )udivgradu =∆                            (3-39)       

 So (3-24) becomes 
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where  E  is a constant of integration with the dimensions of energy 

If we multiply by  ρm  and integrate, after use  







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ρ
ρυ gradu  we obtain 
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From the last equation of  u  we obtain  
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So (3-42) becomes  
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 E is the average value of Vmu +2

2
1  and may be interpreted as the mean energy of the 

particle. 

The equation (3-41) is nonlinear, but it is equivalent to a linear equation by a change of 

dependent variable, by (3-26)    ρυ ngradu l=  , we put          
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2
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 Eq (3-26) becomes Rgradu 2υ= and we have
m2
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So  R  is the potential of um
h

  let as write 
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From (3-22) we have 
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and we have 

                                           







∇∇=








∇∇=








∆

−−
ρρρρ 2

1
2
1

2
1

2
1                

                                                     ρρρρ ∆+∇∇=
−−

2
1

2
1

2
1

2
1     

                                                     ρρρρρ ∆+∇∇−=
−−

2
1

2
3

2
1

4
1  

                                           
ρ
ρρρρρρ ∆

+∇∇−=







∆ −−

2
1

4
1 22

1
2
1

 

                                              ρρρρρ
ρ
ρ

∇∇+







∆=

∆ −− 22
1

2
1

4
1

2
1     

                                     
ρ
ρ

ρ
ρρρ

ρ
ρ ∆∆

+∆=
∆ −

22

2
2
1

2

2

22

2

24
1)(

22 mmm
hhh  

                                          
ρ
ρ

ρ
ρρρ ∆∆

+∆=
−

mmm 222
1)(

2
2
1

2

2 hhh  

                                                22
1

2

2

22

2

2
1)(

22
u

mm
+∆=

∆ −
ρρ

ρ
ρ hh                          (3-50)       

We substitute in the eq (3-49) we obtain 
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So  
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Product by ρ and m  we find 
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This is equivalent to the time-independent Schrödinger equation. 

Conclusion 

We have exposed in this chapter one of the methods to obtain quantum mechanics from the 

Newton law. Our aim is to avoid using postulates to construct quantum mechanics. This 

method consists of treating quantum mechanical effects as stochastic phenomena.  

Quantum effect is considered as a Markoff process.  Stochastic mechanics enables us to 

construct a bidirectional velocity which will be used in the subsequent chapters. 

 

 

              



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fractal Geometry and Nottale Hypothesis  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fractal Geometry and Nottale hypothesis 
The aim of this chapter is to develop the Nottale hypothesis which can be seen as the 

covariant derivative for the scale relativity. We shall show that using the Nottale hypothesis 

one can solve some problems like the energy spectrum of a particle in a box without using the 

Schrödinger equation. 

Fractal behavior 
We have seen in the previous chapter, in the Feynman interpretation of the quantum 

trajectories that non-differentiability means that the velocity =v
dt
dx  is no longer defined. 

However from the theory, continuity and non-differentiability implied fractality. This leads to 

conclusion that the physical function must depend explicitly on the resolution. Hence we can 

replace the classical velocity on a fine scale which describes the fractal property by a function 

which depends explicitly on resolution )(εvv = . 

We assume that the simplest possible equation that one can write for v  is a first order, 

differential equation, written in term of the dilatation operator  
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We can use the fact that  v  < 1(c=1) to expand it in terms of Taylor expansion, we get 
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( ba, , independent ofε )  

If we take δδ vaandb =−= , we obtain the solution  

                                                                          δε −+= kVv                                               (4-3) 

From dimensional analysis we can write δλζ=k with 

                   )(tζζ = , 12 =ζ  

and λ a constant length-scale.  

We find   
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At large scales  

             Vv ≈⇒λε ff classical case 
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                                                                                                tcx DD δλδ 1−=  

Replacing in equation (4-4), we get  

                                                                                       DiDii cdtdtvdx
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)(ελ
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The first term yields classical physics while the second is one of the sources of the quantum 

behavior. In general any quantity can be put as a sum of a classical counterpart of this 

quantity and a fluctuation part which can be considered as the quantum part [3,10-14].  

Infinity of geodesics 
The scale-relativity hypothesis is that the quantum properties of the microphysical world       

stem from the properties of the geodesics of a fractal space-time. This means that the quantum 

effects are the manifestation of the fractal structure of the space-time as the gravitation is a 

manifestation of the space-time curvature. However when the quantum particle moved 

between two points in the fractal space-time, it follows one geodesics among an infinity 

geodesics existing between the two points. We cannot define which geodesic is followed by 

the particle since all geodesics are equiprobable.  It means that we keep the indeterminism 

property of quantum physics and the predictions can only be of a statistical nature. With this 

hypothesis we can solve some problems of the quantum physics [3].                                                                                             

Two-valuedness of time derivative and velocity vector 
Another consequence of the non differentiable nature of space is the breaking of local 

differential time reflection invariance, so consider the usual definition of the derivative of a 

function with respect to time  
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In the differentiable case we passed from one another by the transformation  dtdt −→ , but in 

the non differentiable case we can not compute the above derivative because the limits are not 

defined. To solve this problem we use the scale-relativistic method. We suggest that we 



substitute dt by time-resolution tdt δ= , while the limit 0=tδ have not a physical meaning, 

and we get two values of the derivatives −+ ′′ ff ,  , defined as explicit  function of  t  and of  dt  
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         (4-7) 

When applied to the space variable, we have two velocities  

The forward velocity                               V+ =  
0

lim
→dt

  
dt

txdttx )()( −+                                   (4-8) 

The backward velocity                            V- = 
0

lim
→dt

  
dt

dttxtx )()( −−                                    (4-9) 

Covariant derivative operators  
So we have found that when the particle is at a fine scale it has two velocities, and we have no 

reason to favor one to another, we must deal the both velocity by the same way and consider 

the both process the forward and the backward. We have showed that the quantum particle 

have a fractal trajectory, we obtained above that  the elementary displacement for both 

processes, dX as sum of a classical part vdtdx =   and a fluctuation about this classical part   

εd , which is  a Wiener process satisfying the following relation 

                                                                        < εd  > = 0                                                   (4-10)                        

                                                              
Dijji

cdt
cdd

2
2

2
−







=
λδεε                                     (4-11) 

For the quantum particle 2=D , so 

                                                                  cdtdd ijji λδεε =                                           (4-12) 

Now we consider the both process the forward (+) and the backward (-) 
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                                                               idX m = ivm dt  + id mε  )(t                                        (4-14) 
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From Wiener’s theory, the fluctuation   iε    can be written as                                  
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The fractal dimension of typical quantum mechanical path is 2=D , 

So                                                               < ji dd ±± εε  > = cdtijλδ±                                 (4-18) 

                                                               < ji dd ±± εε  > =  Ddtijδ2±                                   (4-19) 
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m
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is the diffusion coefficient. 

We consider a derivable function f(x(t), dt), so  
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We write the forward (+) derivative and backward derivative )),(()( dttxfof−  
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We replace Xd±  by its expression in (4-20) and (4-21) 
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We use the equations 
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with the help of  equation (4-18) (4-19)  to obtain 
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The forward and backward derivatives
dt
d+  and

dt
d−  can be combined in term of a complex 

derivative operator  
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When we replace  
dt
d+  and   

dt
d−  by the expression (4-25)  we get  

                                                                   ∆−∇+
∂
∂

=
/ Div

tdt
d

2
1.                                      (4-27) 

While                                      
22

iiii
iiii vvivviUVX

dt
dv −+−+ −

−
+

=−==                        (4-28) 

We observe that the operator 
dt
d/  includes the total derivative operator ∇+
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∂
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imaginary term which vanished at the classical limit 
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This operator 
dt
d/  is the covariant derivative operator.  

Applications  

The energy expression in fractal geometry 
Using different approaches L. Nottale and independently J.-C. Pissondes established the total 

energy expression of a particle, the first by using the Newton complex equation of motion but 

the second by using  the conservation law of energy written in terms of complex derivative 

operator 
dt
d/  [14,16].       

Nottale approach  

We have the equation of motion  
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We replace the operator 
dt
d/  and ν by their complex expressions  
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For a free particle  
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Like classical mechanics  we have 
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We make the correspondence with the complex values  
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f  is called the fractal force and Φ  is the fractal potential . 

The previous equations give  
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So the total energy is  
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with φ  external potential and Φ  is the fractal potential, in the free particle case 0=φ  

So                                                 
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J-C  Pissondes approach 

The Newton’s law of mechanics is  
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whereφ  is time independent function.  

So                                      
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which is the conservation law of the energy.  

By using the change   

                                                       

 



                                                      
dt
d

dt
d /
→                             

                                                      vV →                                                                                                 

                                                     )(xvv
dt
dmv φ∇−=
/ r

                                                        (4-41) 

We can show that (see appendix B) 
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By using the eqs (4-41), (4-42) we obtain 

                                   ( )2222 )(
2
1)(22)( viDv

dt
dv

dt
dvviDv

dt
dvv

dt
d

∇+
/

=
/

⇔∇−
/

=
/ rr

          (4-43)    

                                                      22 )(
2
1 vimDmv

dt
dv

dt
dmv ∇+






/=

/ r
                                (4-44) 

We apply the operator  
dt
d/   to the potential )(xφ  
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From (4-42) we have  
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We replace in (4-47) which gives  
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The other way is 
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From (4-34) and (4-35) 
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We use (4-44) and (4-48), the relation (4-50) becomes 
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We put  
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In the classical case Vv = and 0→D  

We have 
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Particle in a Box 
Our aim is to show how we can solve one dimension problem of a quantum particle in a box, 

by only using the Nottale hypothesis, and without any need to the Schrödinger equation [17]. 

This means we use only scale covariant derivative and the fundamental equation of dynamics 

in theirs complex forms  
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We use the complex velocity  
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Sinceφ , being a potential and it is a real quantity, we can separate (4-52) into real and 
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We consider one dimensional problem with infinite limit boundary and without force (thus φ  

constant).   

V is considered as an average classical velocity; 0=V  

So our equations reduce to  



                                                                     0)( =∆+∇ UDUU
r

                                       (4-55) 

 

                                                                           0=
∂
∂ U
t

                                             (4-56) 

The equation (4-56) means that U is a function of x and does not depend explicitly on time. 

From (4-55) we have  
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Integrating this differential equation gives 
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Let us introduce the change 2
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1 KK −= , which gives  
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where the limit conditions will determine the integration constants 1K and 2K u being a 

difference of velocities can be interpreted as a kind of acceleration. We can thus reasonably 

suppose that  +∞→U   on the left border (that is 0→x ) and  −∞→U   on the right border   

(That is, conventionally ax → , if our ‘box’ is of size a ) 
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From equation (4-59) we can write  
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We can arrive to the same result if we use the energy expression of a free particle 
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 with iUVv −=  

                                                                            0=V  
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So                                                                           
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This is the same result when we use the ordinary quantum mechanics. 

Conclusion 

Using the Nottale hypothesis which consists of replacing the derivative 
dt
d  by

dt
d/ , we recover 

the Schrödinger equation from Newton equation.   

The application to the problem of a free particle in a box gives the known formula of the 

energy.  

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fractal Geometry and Quantum Mechanics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fractal Geometry and Quantum Mechanics  
Now, we shall postulate that the passage from classical (differentiable) mechanics [18] to the 

quantum (non differentiable) mechanics can be performed simply by replacing the standard 

time derivative 
dt
d by the new complex, operator

dt
d/ . This postulate is called Nottale 

hypothesis.   

Covariant Euler-Lagrange equations 
In a general way, the Lagrange function is expected to be a function of the variable x and 

their time derivatives x& , but in the non-differentiable the number of velocity components x&   is 

doubled, so that we are led to write [3,7]  

                                                       ),,,( txxx −+= &&ll                                                             (5-1) 

Instead a classical formulation of the Lagrange functions as 
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While the new covariant time derivative operator writes                      
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Let us write the stationary action principle in terms of the new Lagrange function, as written  
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It becomes                        
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Since                                      
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To obtain the Lagrange equation from the stationary action principle we must integrate  

(5-11) by parts, but this integration by parts cannot be performed as usual way because it 

involves the new covariant derivative. 

So we consider the Leibniz rule for the covariant derivative operator 
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∂
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 is a linear combination of first and second order derivatives, the 

same is true of its Leibniz rule; this implies an additional term in the expression for the 

derivative of a product             
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Since )(txδ is not a function of x , the third term on right-hand side of (5-12) vanishes. 

Therefore the above integral becomes  
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The second point is integration of the covariant derivative we define a new integral as being 

the inverse operation of covariant derivation  

                                                                           ∫ =/ ffd                                                 (5-14) 

In terms of which one obtains  
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Since 0)()( 21 == txtx δδ by definition of the variation principle therefore the action integral 

becomes  
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And finally we obtain generalized Euler Lagrange equation that read  
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Complex probability amplitude and principle of correspondence 
Assuming homogeneity of space in the mean leads to defining a complex momentum                        

v
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if one now considers the action as a functional of the upper limit of integration (5-7)  the 

variation of the action from a trajectory to another close-by trajectory, when combined with 

(5-17) yields a generalization of another well-known result, namely that the complex 

momentum is the gradient of the complex action 
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 this equation implies that v  is a gradient  this demonstrate that the classical velocity v  is a 

gradient (while this was postulated  in Nelson's work) (see  chapter 3) 

We can now introduce a generalization of the classical action S which is complex 

manifestation consequence to the complex form of velocity in fine scale by the relation [18] 
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from equation mvP = . 

We introduce a complex function ψ   from the complex action S    
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This is related to the complex velocity in the following way  
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As we shall see in what follows, ψ   is solution of the Schrödinger equation and satisfies to 

Born's statistical interpretation of quantum mechanics, and so can be identified with the wave 

function or (probability amplitude)                
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Thus the principle of correspondence becomes an equality because, the energy and the 

impulsion both become complex.  

The Schrödinger equation 
We consider the Newton equation of dynamics, which is written in terms of complex variable 

and complex operator as [3, 7, 14] 
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We substitute in equation of motion (5-25), we obtain  
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This yields  
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Which is the Schrödinger equation, when has been derived as a geodesics equation in a fractal 

three space for non-relativistic motion in the framework of Galilean scale relativity. 

The Complex Klein-Gordon equation 
Now we shall be concerned with relativistic motion in the framework of Galilean scale 

relativity. we shall derive the complex Klein-Gordon as geodesic equation in a four-

dimensional fractal space-time [12].   

In the relativistic case, the full space-time continuum is considered to be non differentiable,  

we consider a elementary displacement      µdx (µ = 0, 1, 2, 3) of a non differentiable four-

coordinate(space and time) along one of the geodesics of the fractal space-time, we can 



decompose µdx in term of v  large-scale part      < µdx > = µdx  = µv  ds   and a fluctuation  

µεd (Wiener process) such that < µdε > = 0  by definition, and s  is a proper time (relativistic 

case).     

 As in the non-relativistic motion case, the non-differentiable nature of space-time yields the 

breaking of the reflection invariance at the infinitesimal level one is then led to write the 

elementary displacement along a geodesic of fractal dimension D = 2, respectively for the 

forward (+) and backward (-) processes, under the form  
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                                                            µµ ddsvdX ±±± += εµ                                               (5-30) 
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 µa±  is a dimensionless fluctuation, and µε±d Wiener process satisfy the following relation                              

                                                         < µµdd ±± εε > = dsµη2±                                           (5-32) 
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We can combined the forward and the backward derivatives to construct a complex derivative 
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When we apply to the position vector, this operator yields a complex four-velocity  
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We use (5-30), (5-32), (5-33), we find   
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We only cansider s-stationary functions, (functions that do not explicitly depend on the proper 

times), the complex covariant derivative operator reduces to 
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Let us now assume that the large-scale part of any mechanical system can be characterized by 

a complex action S ,the same definition of the action as  in standard relativistic mechanics, so 

we write  
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To get equation of motion, one has to determine 0=Sδ  between the same two points, at the 
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We therefore obtain a differential geodesic equation  
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The complex four-momentum be written as 
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Now, the complex S, characterizes completely the dynamical state of the particle, and can 

introduce a complex wave function  
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We now apply the scale-relativistic prescription, replace the derivative by its covariant 
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We have the relation 

                                                             
f

f
fnffn

µ
µµ

µ
µ

µ

∂∂
=∂∂+∂∂ ll             



This yield 

                                                 ( )ψψψ
ψ
ψ

nnn µ
µ

µ
µv

µ
µv lll ∂∂+∂∂∂=









 ∂∂
∂

2
1

2
1         

                                             ( ) ( )ψψψ
ψ
ψ

nnn µ
µvµ

µ
v

µ
µv lll ∂∂∂+∂∂∂=









 ∂∂
∂

2
1

2
1

2
1  

                                              = ψψψψψ µ
νµ nnnnn µ

µvµ
µ

v lllll ∂∂∂+∂∂∂+∂∂∂
2
1

2
1

2
1     

                                                      = ψψ µν
µ

ν nn ll ∂∂∂+∂ )
2
1(  

So                                      ψψ
ψ
ψ

nn vµ
µµ

µ
µv ll ∂∂






 ∂+∂=









 ∂∂
∂

2
1

2
1                                                                

Dividing (5-53) by the constant factor 2
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free particle under the form 
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                                                           0=+∂∂⇒ ψψ Kµ
µ  

The integration constant K is chosen equal to square mass term, 2

22

h

cm  

So  

                                                           02

22

=+∂∂ ψψ
h

cm
µ

µ   

This is the Klein-Gordon equation (without electromagnetic field). 

Conclusion 
Using the Euler-Lagrange equation in the framework of fractal geometry, we have 

reformulated the Schrödinger and the Klein-Gordon equations. Both of these equations have 

been obtained by using the Nottale hypothesis without any use of any postulate of quantum 

mechanics. 
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Bi -quaternionic Klein - Gordon Equation and Dirac Equation 
 

In this chapter we attempt to write the Dirac equation without using the axioms of 

quantum mechanics. Indeed, it is known that this equation is obtained from the square root of 

the Klein-Gordon equation. The latter is obtained from the expression of energy in special 

relativity and the application of the correspondence principle. 

Our aim is to derive the Dirac equation naturally from Klein-Gordon equation when the latter 

is written in a quaternionic form. We start by a bi –quaternionic covariant derivative operator 

which leads to the definition of a bi-quaternionic velocity and wave function, which gives us 

the Klein-Gordon equation in a bi-quaternionic form. The Klein-Gordon equation in bi-

quaternionic form allows us to obtain the Dirac equation. 

Most of the material used in precedent chapter remains applicable.  

Bi- quaternionic covariant derivative operator 
Because we are in the relativistic case, and in the scaling domain, we define the space-time 

coordinates ),,( sµsX εεµ as four fractal functions of the proper times s and of the resolutions 

µε and sε  where µε  for the coordinates and sε  for proper time [7,19]. 

We assume, that we have a forward shift ds of s which yield to a displacement µdX  of µX  

the canonical decomposition is; 

                                                               µµµ ddxdX ε+=                                               ( 6-1)  

                                                         µdX dsvdx µµ
+==                                            (6-2) 

                                        ,)(2 2
1

2 Dµµ dsDad +=ε 0=+
µa , 1)( 2 =+

µa                         (6-3) 
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and assume also that we have a backward shift ds− yields a displacement  µdX− and not 

necessarily equal  to µdX , so we can write its decomposition as 

                                              µµµ xdX δεδ +=−                                                              (6-4) 

                                            < µdx−  > dsvx µµ
−== δ                                                     (6-5) 

                                       ,)(2 2
1

2 Dµµ dsDa−=δε  < µa− > 0= , < )( µa − > 1=                    (6-6)   

Furthermore, we must also consider the breaking of the symmetry  dsds −→ , which gives 

two large-scale forward and backward derivative 
−+ ds

dand
ds
d . When applied to µdx (large-

scale displacement) yields two large-scale velocities µv ++ and µv +−   

So we can write  
                                                          

µµµµµ ddxddsvdX εε +=+= ++++ )(                                       (6-7) 

                                                                   
µµµµµ ddxddsvdX εε +=+−= +−+− )(                              (6-8) 
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Considering now the same forward and backward derivative 
−+ ds

dand
ds
d  applied to an 

elementary displacement µdx− , which yield two velocities µµ vandv −−−+  

So we can write  

                                            µµµµ xdsvdX δεδδε +=+=− −+−+ )(                                    (6-12) 

                                            µµµµ xdsvdX δεδδε +=+−=− −−−− )(                                  (6-13) 
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By using a Taylor expansion, we can define several total derivatives with respect to s  
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In addition, when considering the two case )( µdx− and )( µdx we find four total derivatives. 
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We take the first equation and calculate it term by term. 

From the equation (6-7) to (6-16) and by using the following equations  
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From the definition                                                                                    
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Using the same calculation, we find 
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So when we use the precedent relation, the total derivative with respect to s of a fractal 

function f  becomes 
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where the  ±   sign in the right- hand side is still the inverse of the   s-sign.  

When we apply these derivatives to the position vector  µX  

we obtain                                            
sµ

V
ds

dX
sµ

µ

±±=±±                                                          (6-40) 

We consider now the four function ),,( sµ
µ sX εε−  because there is no reason for 

distinguishing )),,)(( sµ
µ sX εε−  and )),,(( sµ

µ sX εε−  since there is a breaking of the parity  

),,( zyxµP = and time reversal  )( tµforT = symmetries. 

As we are dealing with  µX , we consider that we have a forward shift ds  of  s   which yields 

a displacement µµ XofXd −− )( and a backward shift ds−  yields a 

displacement µµ XofXd −−− )( . 

Therefore, we can write the canonical decomposition  
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When we consider the breaking of the dsds −→ symmetry we find the large scale forward 

and backward derivatives
+ds

d~  and 
−ds

d~ .     



Furthermore, when we apply the precedent derivatives to µX−    yielding an elementary 

displacement )( µxd − , we obtain two large –scale velocities 
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However, when we consider an elementary displacement )( µxd −−   they yield two other 

large-scale velocities  
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By the same method as above, we obtain new total derivatives with respect to s of a fractal 

function  f  , which we can write as 
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When we apply these derivatives to the position vector µX , we obtain  
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So from (6-40) and (6-50) we obtain eight large-scale velocities  
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If we assume that the breaking of the symmetry  µµ dxdx −→  is isotropic (the signs 

corresponding to the four µ indices are chosen equal), we can use the eight components of 

velocities to define a bi-quaternionic four-velocity. When we write this velocity we have 

several choices, but the right choice is the velocity, which leads to complex velocities 

[ ] 2/)( +−+++−++ −−+= µµµµµ vvivvv  in the non-relativistic motion and real velocities   

++= µµ vv   at the classical limits. 

For this reason we write  
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At the limit when µ
µ dx→ε and dsµ →ε , every  e1 – term  in (6-51) goes to zero, and as  

+−−− = µµ vv~ in this limit   [ ] 2/)( +−+++−++ −−+= µµµµµ vvivvv which is the complex velocity,  

At the classical limit +−++ = µµ vv  so the velocity becomes real: ++= µµ vv . 



We obtain the bi-quaternionic velocity µv  when we apply a bi-quaternionic derivative 

operator 
ds
d   to the position vector µX   

The derivative operator which yields the velocity in eq (6-51) when applied to µX  is writes  
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Substituting by  
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Therefore, the bi-quaternionic proper-time derivative operator is given  
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We consider s-stationary functions (functions which do not explicitly depend on the proper 

time s) the derivative operator reduces to  
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Bi-quaternionic stationary action principles 

Like the complex case, we give the free motion equation as a geodesic equation  
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But now µv  is a bi-quaternionic four velocity, the elementary variation of the action  
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We define the bi-quaternionic four-momentum as  [18] 
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We define the bi-quaternionic wave function as [19, 20]  
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We substitute the µv expression and the covariant derivative operator in the equation of 

motion, we obtain  
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We have                               
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To develop this equation we use the relations of quaternions  
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The first term of (6-71) becomes  

                         ( ) ( ) ( )( ) ( ) ψψψψψψψψψψψψ µv
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                                                   ( )( ) ( ) ψψψψ µv
v

v
v ∂∂∂−∂∂= −−− 111                                   (6-72) 

The second term of (6-71) vanishes if we use the second term of (6-72) 
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                                 ( )( ) 1111111 −−−−−−− ∂∂−∂∂−∂∂−=∂∂ ψψψψψψψψψψν
ν v

vv
v

v
v   

                                         111111 −−−−−− ∂∂+=∂−∂=∂∂ ψψψψψψψψψ v
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v
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v
v  

                                                                 11 −− ∂∂= ψψψ v
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So   

                                                    11111 2 −−−−− ∂∂−∂∂−=∂∂ ψψψψψψψ v
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v
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v
v                  (6-73) 
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                                ( ) ( ) ( )( ) ψψψψψψψψ µv
v

µv
v ∂∂∂=∂∂∂ −−−− 1111 ( ) ψψ µv

v ∂∂∂− −1           (6-75)                        

 

When we add (6-74) to (6-75) we find 
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( )( ) ( ) 0111 =∂∂∂−∂∂∂+ −−− ψψψψψψ ν
µv

v
µv  

So                                       ( ) 0111 =∂∂∂−∂∂∂ −−− ψψψψψψ µv
v

µv
v  

Using eq (6-73) we can show that  

                                               ( ) 0111 =∂∂∂+∂∂∂ −−− ψψψψψψ ν µv
v

µ
v  

Multiplying this equation by ψ-1 to the right and by ψ to the left and using (6-71) 

                                          ( ) 011111 =∂∂∂+∂∂∂ −−−−− ψψψψψψψψψψ ν
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where we have used the relation   

v
v

µµv
v ∂∂∂=∂∂∂  

So  
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µµv
v  

                                                               ( )[ ] 01 =∂∂∂ −ψψv
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µ                                               (6-76) 

If we integrate, we find   

                                                             ( ) 01 =+∂∂ − Cv
v ψψ                                                (6-77) 

 when we take the right product by  ψ to obtain   

                                                                 0=+∂∂ ψψ Cv
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By substituting 2
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cmC =  , the equation (6-78) becomes  
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which is the bi-quaternionic Klein-Gordon equation, and we can write                           
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We now attempt to derive the Dirac equation from the Klein-Gordon equation by using the 

property of quaternion formalism.     

Dirac equation 
By using the property of the quaternion and complex imaginary units e1

2 = e2
2= e3

2 = i2 = -1, 

where substituting in (6-79) which becomes [19] 
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However, we have used the anticommutative property of the quaternionic units 

( )jiforeeee ijji ≠−=   and we obtain six vanishing couples of terms.  

Then we add this terms to the right-hand side of (6-80), we obtain  
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                        (6-81) 

It seems that eq (6-81) is obtained by applying twice the operator 
tc∂

∂  to the bi-quaternionic 

wave functionψ .  

So we obtain  
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we show in appendix that the matrices   e3 (      )e2 , e1(     )i and  e3(      )e1, are the Conway 

matrices and can be written in a compact form kα  , with  
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where the kσ  being the three Pauli matrices, and e3 (     )e3 is a Dirac β matrix, we substitute 

the Conway matrices in (6-82) by βα andk , we obtain the non-covariant Dirac equation for 

a free fermions 

                                                    βψψαψ
h

mci
xtc k

k −
∂
∂

−=
∂
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Conclusion: 

In previous chapters we have noticed that complex numbers enables us to obtain the 

Schrödinger equation. The aim of this chapter has been to show in explicit manner how the 

use of the bi-Quaternionic numbers helps us to obtain the Dirac equation.  

One of the astonishing remarks which one can mention in this chapter is the link between the 

laws of physics and the theory of numbers. 



 

 

 

Conclusion  
In this work we have attempted to obtain the Dirac equation by using the formalism of the 

scale relativity. In order to reach  our  goal ,we  have followed the following steps.  

Chapter 1 is devoted to a review of fractal geometry and scale relativity which lead to define a 

fractal space- time and introduce new mathematical tools for physics, such as scale- 

dependent fractal function that allows us to deal with the non differentiability.  

Then in chapter 2 we consider the behavior of quantum mechanical paths in the light of the 

fractal geometry. we have expressed the work of Feynman and Hibbs while were 

demonstrated that typical quantum mechanical trajectories are characterized by their non 

differentiability and their fractal structure even the word fractal has not been used  . We have 

also demonstrated that the Heisenberg relation can be translated in terms of the fractal 

dimension of dimensional four space-time coordinates jumping from D=2 in the quantum and 

quantum relativistic domain to D=1 in the classical domain . The transition scale has been 

identified as the de Broglie scale  µµ p
h

=λ         

 In chapter 3 we have derived the Schrödinger’s equation from Newton's fundamental 

equation of dynamics without using the tools of quantum mechanics. The method used is the 

stochastic mechanics according to Nelson.  

The chapter 4 we have applied the principle of scale relativity to the quantum mechanics by 

defining the covariant derivative operator and we have treated some applications.   

 In chapter 5 we have attempted to write the Schrödinger’s equation by using the hypothesis 

of Nottale also in a same way we have derived the complex Klein-Gorden equation  

 We end up with chapter 6 where we have derived the Dirac equation from the Newton's 

equation in the spirit of Nottale hypothesis ( the scale covariant derivative)  

So we can consider the studies in the previous chapters just as a first step towards a more deep 

level (all geometrical) where the scale forces are manifestation of fractal  geometry  and non-

differentiability, and we find as a result, lead to a new interpretation of gauge invariance ,and 

the meaning of the gauge field too. 

 



 

 

 

 

Prospects and Perspective 
 

Gauge field nature  
We consider an electron or any charge particle ,in scale relativity ,which call particle is 

identify as a geodesic of space –time their trajectories have interns  fractals  structures ,situate 

with a resolution mcc hp =λε ,then we take in account a displacement of the electron 

,the principle of scale relativity implicate the appearance of field induce by this displacement   

to understand, we can give like a model an  sight of construction of Einstein gravitation theory 

from general relativity  principle of movement ,in this theory the phenomena of gravitation is 

identify as a manifestation of space-time curvature which translate by rotation of origin 

geometrical vector ,indeed on account of space-time non-absolute character , a vector 
µV made a displacement ρdx  can not still identical to itself ( else, it mean that the space was 

absolute),so it endure a rotation which write by using the Einstein notation    
ρνµ

νρ
µδ dxVV Γ=            

the Christoffel ‘s symbols µ
νρΓ appear of course in this transformation, we can calculate it in 

the following of construction  ,in  function of derive of metrical potential µνg ,which allowed 

to it be considered as components of gravitation field which generalize Newtonian force   
As same as, in the case of electron’s fractal structure,we wait that the structure which we find 

it entailment at certain scale we find it again at other scale after displacement of the electron 

(in the opposite case the scale’s space be absolute, which give a contradiction with the scale 

relativity  principal),so it must appear a dilatation field of resolution induce by the 

ecclesiastical translation, let us write     µ
µδε

δε xAe −=   

we can write the last equation by covariate derivative       

µµµ ελελ AneneD +∂= )()( ll  
this field of dilatation should be able been define however the scale ,it means however the 



under-structure was considered, so we take an other scale ρεε =′ (we considered the Galilean 

scale relativity)  we following the same translation µ
µδε

εδ xAe ′−=
′
′

 

The both expression of µA  are connected by the relation 
                                                             ρµµµ neAA l∂+=′  
when )( εερ ′== nnV ll characterize relative scale case which explicitly depend to the 
coordinate, so we are now in the frame of general relativity of scale and the non-linear 
transformation because the scale velocity which was redefine as a first derivative                       

δρ dnLdn ll =   
then the equation() including a second derivative of fractal coordinate  
                                                                 δµddxnLd l2  
So if we now conceder a translation along tow different coordinates, we can write a relation of 
commutation   
                                              )()( µννµµννµ ρ AAnDDe ∂−∂=∂−∂ l  
This relation define a tonsorial field µννµµν AAF ∂−∂= ,which, contrary to µA  ,is 
independent to the initial scale 
 
Charge’s Nature 
In a gauge transformation χµµµ ∂−=′ AA ,the wave function of a electron of charge (e) 

become  χψψ iee=′  ,the gauge function is the conjugated variable of the charge as the 
position ,the time and the angle are the conjugated variable respectively of the impulsion ,the 
energy and the angular moment in the action expressions or in the quantum phase of free 

particle , ( )
h

σϕθ +−
=

Etpxi ,we know that the impulsion ,the energy and the angular 

moment are yielding from the space–time nature consequence to its symmetry (translation and 
rotation) according to Noether’s theory, 
In the precedent paragraph we reinterpret the gauge transformation as a scale transformation 

of resolution 







′
=′→

ε
ερεε nn ll,  

In such interpretation the  property specific characterize a charged particle is the explicit 
dependent of the action to the scale it means the wave function with the resolution    
So  

ρ
ψψ

n
c

ei
e

l
h

2

=′  
Now we consider the electron’s wave function as a function dependant explicitly with the 
ratio of the resolution, we can write the differential equation of scale among ψ is solution 
with the form 

ψ
ρ

ψ e
n

c
e

i =





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−
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
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∂
−=

ρn
c
e

iD
l

h
~  is the dilatation operator, the differential equation we can write it as a 

equation of values proper 



ψψ eD =~  
So the electrical charge be consider the conservative quantity which yield from the new 
symmetry of scale, namely, the uniformity of the variable of the resolution εnl    
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Appendix A 
The Laws of Scale Transformation  
 
In Galilean motion relativity we write the relative velocity as  

                               ( ) ( )010212 VVVVVV
rrrrrr

−−−=−                                       (A-1)  

We also may write the relative scale as a ratio  
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ρ                                                  (A-2) 

It clear that the length of object is define as scale ratio which have physical meaning    

In logarithmic representation we have 

                               ( ) ( ) ( )010212 xxnxxnxxnn ∆∆−∆∆=∆∆= llll ρ                             (A-3) 

From the equation (A-3) seems that the scale state ( )12 xxnV ∆∆= l  is formally equivalent to a 

velocity.   

In accordance to the assumption which treats state of scale and motion as a same, and one we 

speak to the velocity of the system, we never speak to the absolute velocity, but we speak to 

the velocity of system relative to an other system, as the velocity the scale of the system can 

be defined by its ratio to the scale of an other system  

We can now write the equation of the scale state  

                                    ( ) ( )010212 VVVVVVV −−−=−=                                        (A-4) 

Consider now a ϕ  which transforms under a dilatation xxq ′∆∆= as        

                                       δϕϕ q=′                                                                    (A-5) 

We can write the equation above in a linear form 

 

                                 ( ) ( ) ( )xxnnn ′∆∆+=′ lll δϕϕϕϕ 00                                           (A-6) 

We assume that the resolution λppx∆      (
p
h

=λ  de Broglie length) 

We have the Galilean motion transformation  

                                                                 vtxx +=′                                                            (A-7) 

tt =′  

 



When we compare the equations (A-6) and (A-7), we obtain the correspondences 
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we are particularly interested in the case where tor == ψψ l  

We showed in chapter 1 that the length of a quantum particle diverges as (A-1-9)  

 

In (A-1-9) ( )llnX =  
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The scale laws (A-1-9) are formerly equivalent to the laws of free motion at constant velocity.   

We assume that the coordinate system is described by its state of motion and also by its scale. 

A coordinate system which verifies the equation (A-1-9) is called scale inertial system.  

We can suggest now that the laws of nature are identical in all scale inertial systems of 

coordinates 

The anomalous dimension δ  is assumed to be invariant as time is invariant in Galilean 

relativity, where we describe by the equation of the Galilean scale-inertial transformation  

                                                           δVXX +=′                                                        (A-14) 

                                                             δδ =′                                                                 (A-15) 

The law of composition of scale state is, as the velocity, the direct sum  

                                                             VUW +=                                                          (A-16) 

 

which corresponds to the product ( )( )xxxxxx ∆′∆′∆′′∆=∆′′∆    for the resolution.  

 

 



 

A-2 Special Scale Relativity 
We know that the Lorentez transformation derived from the successive assumptions: linearity, 

invariance of c (the speed of light), the composition law, existence a neutral element, and the 

reflection invariance, but we can  show that may be derived it from only of the linearity, 

composition law and reflection invariance    

We write the linear transformation of coordinates as   

                                                          tvbxvax )()( −=′                                                    (A-17) 
                                                          xvtvt )()( βα −=′                                                    (A-18) 

We divide on )(va , and we define the velocity   
)(
)(

va
vbv =  the linear transformation become  

 ))(( vtxvx −=′ γ                                                          (A-19) 
  ))()()(( xvBtvAvt −=′ γ                                              (A-20) 

 
Where )()( vav =γ , A and B are a new functions of v  
Let us take two successive transformations 
 
                                                            ))(( utxux −=′ γ                                                 (A-21-a) 
                                                       ))()()(( xuBtuAut −=′ γ                                         (A-21-b) 
                                                           ))(( tvxvx ′−′=′′ γ                                                (A-22-a) 
                                                       ))()()(( xvBtvAvt ′−′= γ                                         (A-22-b) 

 
We substitute (A-21) in    (A-22), we find 

                                        [ ] 







+
+

−+=′′ t
vuB
vuAuxvuBvux

)(1
)()(1)()( γγ                              (A-23-a)                        

 

                            [ ] 







+
+

−+=′′ x
uvBvAuA

vBuBvAtuvBvAuAvut
)()()(
)()()()()()()()( γγ                (A-23-b) 

 
Then the principle of relativity means that the composed transformation (A-23)                        
keeps the same form (A-21) 

        ))(( wtxvx −=′′ γ                                                (A-24-a) 
     ))()()(( xwBtwAvt −=′′ γ                                       (A-24-b) 

 
 
 
 
 
 
We compare (A-24)    and   (A-23), we find  

                                                               
vuB

vuAuw
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=                                                 (A-25-a) 



                                                   [ ]vuBvuw )(1)()()( += γγγ                                         (A-25-b) 
 
                                           [ ]uvBvAuAvuwAw )()()()()()()( += γγγ                           (A -25-c) 

 
 
 

 
So we now use the reflection invariance, it means use the transformations ),( xxxx ′−→′−→  
                                                        ))(( tuxux ′−−′=′− γ  
                                                     ))()()(( xuBtuAut ′+′′=′ γ  
We compare to (A-21 )   and take uu −=′  consequent   to the reflection invariance, we find  

                                                              )()( vv γγ =−                                                      (A-26) 
                                                              )()( vAvA =−                                                     (A-27) 
                                                              )()( vBvB =−                                                     (A-28) 

Combining the equations (A-25) yields the equation  
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Substitute by 0=v in the equation, we obtain 
                                                  [ ] )0()0(1)( uBAuA =−                                                   (A-30) 

If 0=u , we find two solutions 1)0(0)0( == AorA  
                                   0)0()0()(0)0( ==⇒= BwithuBuAA  
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The equation    (A-25-d) becomes 
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Let us now take uv −= in (A-29) 
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We use the property )()( vAvA =− , and the new function   F define as 
                                                  1)()(1)()( +=⇒−= uFuAuAuF                               (A-35) 

F verifies the next equation  
                                                           0)0( =F                                                               (A-36) 

From the equation (A-34) we obtain  
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We now use the continuity of the F and B at 0=u , which means that 2)(1)( uFu +=Φ   
and uuBu )(1)( −=ψ  which implies that  

1)0(1)0()0()()0()(0 ==Φ−Φ−Φ∃ ψψψεε andwithuanduthen pf  
Next  
                                                  εε +−− 1)(11 pp uuB                                               
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The function )()( uandu ψΦ   were bounded when  [ ]00 ηη−∈u  
So we can writ  
                                4321 kkandkk pppp ψΦ  
                           ] [1,011 4321 ∈+==−== εεε andkkandkk  
The bounds on 2)(1 uF+ and uuB )(1− change the equation (A-2-23) to the equation  
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The continuity of F at u it means  
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                                        nn FuFuuFuu −− ==⇒== 1
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After p iteration we obtain  
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And after n iterations  

                                          
2
112)( f== −nn

nuF  

This is in contradiction with the continuity of   F since εf)( nuF  
So the composition of velocity in the equation (A-25-a) take the form   
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The equation (A-25-b) becomes 
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We put vu −= the equation (A-41) becomes 
                                                         )1)(()()0( 2kvvv −−= γγγ                                       (A-42) 

For 0=v  
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When we consider the reflection invariance, which implies )()( vv −= γγ , we obtain  

                                                              
21

1)(
kv

v
−

=γ                                                 (A-44) 



We remark that if we put 0=k , we find  1)( =vγ  , which describe the Galilean 

transformation, and if 2ck = (A-44) become

2

2

1

1)(

c
v

v
−

=γ , which describe the 

transformation of Lorentz  
 
3-Lorentz Scale Transformation 
 
So we showed how  we can  derive the Lorentz transformation  from only the linearity ,the 
internal composition and reflection invariant, which lead to the thought that the laws of scale 
transformation  must be also take the Lorentz form ,instead  of the Galilean form  
We give the Lorentz law of composition of velocities 

                                                                  
21

c
uv
vuw

+

+
=                                                       (A-45) 

Which we can be written it in other way as 
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We put
c
wW

c
vV

c
uU === ,, , which are dimensionless quantities 

So                                                              
UV

VUW
+
+

=
1

                                                   (A-47) 

We replace W, U and V by logarithms of other numbers taken in base k (A-47) becomes                        

νρ
νρµ
kk

kk
k ogog
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ll

ll
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+
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=
1

                                           (A-48)  

We divide both members of (A-48) by knl , we find  
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Appendix B 
Some Explicit Calculations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
In the following we shall compute the covariant derivation of a product .We has  

                                               ( ) ( )gfiDv
t
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
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rr                    (B-1-1)    
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Now we attempt to prove the following relation which it was used in the second chapter .So in 
the formalism of path integral they give the average of a function ( ))(txF  by 

                                             ( ) ( ) ( ) ))((
)()()(

txS
i

etxFtxDtxF h∫=                                     (B-2-1)  
 
( ))(txS  is the classical action  

If we displace x(t) by )(tη fixed  
                                                                 ))(()( txDxD =+η                                           (B-2-2) 

                                       ( ) ( ) ∫+=+ ds
sx
sFstxFttxF
)(
)()()()()(

δ
δηη                                   (B-2-3) 

Which gives  

                                                                 ∫= ds
sx

FsF
)(

)(
δ
δηδ                                          (B-2-4) 

The average does not affect by the displacement )(tη , so 
                                                        ( ) ( ))()()( ttxFtxF η+=                                       (B-2-5) 
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If we develop the exponential function we obtain 
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We denote that  

                                                              ∫ = Sds
x
Ss δ
δ
δη )(                                                  (B-2-9) 

So  

                                               FSFixFxF δδη ++=+
h

)()(                              (B-2-10) 

From (B-2-5) we conclude that  

                                                              SFiF δδ
h

−=                                               (B-2-11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix C 
Quaternions  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
We showed in the chapter six  how the Dirac equation was naturally obtained from the Klein-
Gordon equation when written in a quaternionic form  ,to we get a good  understanding we 
must be know the quaternion and there properties   
 
Definition   
 
A bi-quaternion ( )3210 ,,, ΦΦΦΦ=Φ is a mathematical being compote to a four complexes 
numbers components,  3,,0 K=Φ ii   

 
 
Algebraic properties  
 
 
We have two quaternions ( )3210 ,,, ΦΦΦΦ=Φ and ( )3210 ,,, ψψψψψ =    
                                        3,2,1,0,00 ==Φ⇒=Φ iwithi  
So the zero quaternion as                      0 = (0, 0, 0, 0 ) 
                                        3,2,1,0, ==Φ⇒=Φ iwithii ψψ  
We have a complex number α  
The multiplication of a quaternion by a complex numberα , is write   
                                            ( )3210 ,,, ΦΦΦΦ=Φ ααααα  
                                ( )3210 ,,, ΦΦΦΦ=Φ=Φ αααααα    the commutative property  
                                 ψααψα +Φ=+Φ )(                       the distributive property 

                                Φ+Φ=Φ+ βαβα )(                        the associative property         (c-1) 
 
Addition of quaternions is commutative and associative  
                                 ( )33221100 ,,, ψψψψψψ +Φ+Φ+Φ+Φ=Φ+=+Φ                                                      
                                                 ϕψϕψ ++Φ=++Φ )()(  

                                                     ( )ψψ 1−+Φ=−Φ                                                        (c-2) 
The quaternionic product  ψ.Φ  of two quaternions is a quaternion 
 For any complex. Number.α  

                                                   ( ) ( ) ( )ψααψψα Φ=Φ=Φ                                              (c-3) 
We can write the quaternion as  

                                                  3322110 eeeeee Φ+Φ+Φ+Φ=Φ                                     (c-4) 
Where the units ie  satisfy the following property   

                                                  ∑ =+−=
3 1
k kijkijii eee εδ                                                  (c-5) 

And ijkε is antisymmetric three-index with 1123 =ε  
From these rules, we find  that the product of two arbitrary quaternions is  

( )02202332011033221100 , ψψψψψψψψψψψ Φ+Φ+Φ+Φ+Φ+ΦΦ−Φ−Φ−Φ=Φ  

122103303113 , ψψψψψψ Φ−Φ+Φ+ΦΦ−Φ+ )                                                                (c-6) 
This product is not in general commutative, but is associative  
 



We define quaternion conjugate as  
                                           ( )3210 ,,, Φ−Φ−Φ−Φ=Φ→Φ                                                (c-7) 

From (c-6), we find that for any   ψ,Φ     
                                                     Φ=Φ ψψ                                                                     (c-8) 

One also defines the scalar product of quaternions  
 
 

             ( ) ( ) 332211002
1

2
1. ψψψψψψψψψ Φ+Φ+Φ+Φ=Φ+Φ=Φ+Φ=Φ                   (c-9) 

From the scalar product we obtain the norm of a quaternion as  
                                          2

3
2
2

1
2

2
0. Φ+Φ+Φ+Φ=ΦΦ=ΦΦ                                           (c-10) 

The norm and scalar product are numbers, in general complex 
The norm of a product is the product of the norms 

                                         ( )( ) ( )( ) ( )( )ψψψψψψ ΦΦ=ΦΦ=ΦΦ                                   (c-11) 
When  00 =Φ⇒=ΦΦ  or Φ  is singular  
If Φ=ΦΦ ,1  is unimodular. 
The inverse of  Φ  since Φ≠Φ and0 is not singular is defined as  

                                                                 
ΦΦ
Φ

=Φ−1                                                      (c-12) 

 
We have the properties  

                                                            ( ) 111 −−− Φ=Φ ψψ                                                  (c-13) 
                                                                  ΦΦ=ΦΦ −− 11                                                 (c-14) 

The hermitian conjugate of a quaternion Φ is the quaternion  
( )*

3
*
2

*
1

*
0 ,,, ΦΦΦΦ−=Φ+                                          (c-15) 

                                                                ( ) +++ Φ=Φ ψψ                                                (c-16)                        
Quaternion Φ is hermitic if Φ=Φ+  
The complex reflection of a quaternion Φ is the quaternion  

                                                        ( )*
4

*
3

*
2

*
1 ,,, Φ−Φ−Φ−Φ−=Φ×                                     (c-17) 

                                                                   ( ) ××× Φ=Φ ψψ                                              (c-18) 
The effect of applying any two of the operations -, +, * to a quaternion is the same as that of 
applying the third; for example  
( ) ( ) Φ=Φ=Φ

×++×                                                                                                           (c-19) 
Note too that, for any complex number a,  

( ) ( ) ( ) ( ) ××++−−− ==== AaaAAaaAAaaAAaAa **111 ,,                                                   (c-20) 
 
 
Quaternions and Conway Matrices  
 

We have four quaternions ψ,Φ , a and b, we consider the transformation again;  
                                                            baΦ=→Φ ψ                                                        (c-21) 

This transformation is linear for the elements ( )3210 ,,, ΦΦΦΦ , so we can be written in matrix 
form                                                                                                                                                                      



( )Φ= baM ,ψ                                                                  (c-22) 
Where M is a 4×4 matrix and Φ and ψ are 4×1 column matrices the notation indicates that 

( )baM , is determined by a and b if we  
 We now consider tow   transformations,  

                                       bdcadcandba Φ=⇒=Φ= χψχψ                                         (c-23) 
Which be written in matrix form  
                             ( ) ( ) ( ) ( )Φ=⇒=Φ= baMdcMdcMandbaM ,,,, χψχψ                  (c-24) 

                                                 ( )bdcaMbdca ,=⇒Φ= χχ  
So, when we compare the tow parts of (c-24) we find   
                                                   ( ) ( ) ( )bdcaMbaMdcM ,,, =                                            (c-25) 

For ca = and db =  , eq (c-25) becomes  
                            ( ) ( )222 ,, baMbaM =                                                (c-26) 

If we put 1−== ba in eq(c-21) we obtain 
                                                               Φ=−Φ−= )1()1(ψ  
                                                  ( ) ( ) IMM =−−⇒Φ=Φ−−= 1,11,1ψ                             (c-27)                      
Where I is the unit matrix 
 
 
If 122 == ba , we can write    

                                                    ( ) ( ) ( ) IMbaMbaM =−−== 1,1,, 222                           (c-28)         
From the unit matrix Conway suggested proposes that we can write ( )baM ,  as 
                                                          ( ) ( )babaM =,                                                         (c-29) 

Now, by using the quaternions (e1, e2, e3, i), which satisfy eq(c-28) we can derive sixteen 
matrices, but we care to the four matrices which we will use in chapter 6  
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It seems that the above matrices satisfy the suggestion of Conway                                                                      
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Résumé 
 
Le but de ce mémoire est de d’essayer de trouver un lien entre la mécanique classique et la 

mécanique quantique. Le but de la physique moderne est retrouver la mécanique quantique 

comme limite de la mécanique classique. L’une des théories contemporaines  proposées est la 

théorie de Nottale dont le but est de reformuler les équations de la mécanique quantique 

directement de la mécanique classique (le principe fondamental de la dynamique) sans passer 

par aucun des postulats de la mécanique quantique. 

La  théorie de Nottale – la relativité d’échelle- consiste dans une généralisation du concept de 

la relativité pour incorporer en plus de la relativité du mouvement – sur laquelle elle est basée 

la relativité d’Einstein- une autre relativité celle de l’échelle ou la résolution.  

Dans le cadre de la relativité d’échelle l’espace-temps devient fractal d’où la non 

différentiabilité  des coordonnées.  

En utilisant la définition de la dérivée fractale covariante qui est une généralisation de la 

dérivée covariante de la théorie de jauge, on a pu obtenir les équations de Schrödinger, Klein-

Gordon et Dirac à partir de la mécanique Newtonienne. Les résultats obtenus montre un lien 

étroit entre les équations de la physique et la théorie des nombres. 

 

Mots Clefs: 

 

Géométrie Fractale. Relativité d’échelle. La dimension de Haussdorff. Les nombres 

quaternioniques.  

 

 



 
  ملخص

 
 محاولة لفهم العلاقة بين الميكانيكا الكلاسيكية و ميكانيكا الكم ، فالمعلوم انه لا توجد إلى حد الآن  هوهدف هذه المذآرة

النظریة المطروحة في هذه المذآرة هي  ..نظریة تحاول فهم الميكانيكا الكمية اعتبارا من الميكانيكا الكلاسيكية أو العكس

لمبدأ الأساسي ا(  الميكانيكا الكلاسيكيةولة لإعادة صياغة بعض معادلات ميكانيكا الكم انطلاقا من هي محانظریة نوتال و 

  . مسلمات ميكانيكا الكم أي مسلمة من بدون استعمال)للتحریك

حيث ندمج نسبية  لتشمل السلم ننستعمل نظریة نوتال و المسماة  نسبية السلم و التي تعتمد على تعميم مبدأ النسبية لاینشتای

  .الحرآة مع نسبية السلم

  . و هندسة آسوریة التي تعتمد على لا تفاضل الإحداثياتذ مكان یصبح-في إطار نسبية السلم الزمن

و هي تعميم للمشتقة محافظة التغایر المستعملة في نظریة العياریة   باستعمال مفهوم المشتقة الصامدة بالنسبة لتحویلات السلم

 . معادلة شرودینغر و معادلة آلاین قوردن ومعادلة دیراك انطلاقا من معادلة نيوتن تتحصل علىآي 

 . بينت النتائج المتحصل عليها العلاقة الوثيقة بين المعادلات الفيزیائية و نظریة الأعداد

  

 الكلمات المفتاحية

  

  الهندسة الكسوریة،  نسبية السلم ، بعد هسدورف،  الارقام الرباعية

  
         



Abstract : 

 

The aim of this dissertation is to find a link between quantum and classical mechanics. On of 

the modern theories which seek to find this link is the scale relativity of L. Nottale. The aim 

of this theory is to reformulate some of quantum mechanical equations directly from classical 

mechanics without any use of the postulates of quantum mechanics.  

We have used the Nottale theory based of the generalization of the concept of relativity to 

incorporate another type of relativity: the scale relativity in addition to ordinary relativity of 

Einstein based on motion relativity. In scale relativity the spacetime will be fractal, which 

leads to non differentiability of the coordinates. 

By using a definition of a covariant fractal derivative proposed by Nottale which similar to the 

covariant derivative encountered in gauge theories, we can obtain the Schrödinger, Klein-

Gordon and Dirac equation from Newtonian Mechanics. 

The results obtained in this dissertation show a close relationship between laws of physics and 

number theory. 

 

Key Words: 

 

Fractal Geometry. Scale relativity. The Haussdorf dimension. Quaternion numbers. 

 
 
 
 
 
 
 
 


