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Introduction

We know that the laws of physics are described by two important theories, the first
one is the theory of relativity which includes the classical mechanics which is based on
Galilean relativity, special and general relativities. All these theories describe the macro
physical world. The second theory is quantum mechanics which describes the microphysical
world. If we assume that the macro physical world includes the microphysical world as a
limit, these two theories must be linked somehow. The two worlds must be described by a
same theory or by two dependent theories.

The problem with the actual theories that they are formulated on completely different
grounds.

For instance general relativity is a theory based on fundamental physical principles which are
the principle of general covariance, whereas the quantum theory is an axiomatic theory.

So the different constructions of the classical and the quantum theory leads to a fission in
physics yielding two opposite worlds according to the scale: the smallest and largest. That is
why the modern physics seems incomplete, several problems are still posed.

At the small scale the standard model of Weinberg-Salam-Glashow leads to the observed
structure of elementary particles and coupling constants, but this model is not able to predict a
theoretical basis to the number of elementary particles or their masses. In summary some
problems were solved but the problem of the quantization of masses and charges is still
unresolved.

The idea behind this work is the possibility is that quantum and classical domains may have a
similar nature. The aim is to find a theory which depends of the scale. If the scale is less than
a fundamental length which has to be specified, we recover quantum theory and if the scale is

greater that this length we find classical mechanics.



This theory baptized scale relativity has been formulated by Nottale in 1992. This theory is
based on fractal geometry with the assumption that the Einstein’s principle of relativity
applies not only to laws of motion but also to laws of scale.
In scale relativity we can treat quantum mechanics without using quantum principles in other
words we do need to use the correspondence principle.
In this work we attempt to derive the Dirac equation in the formalism of fractal geometry
without any need to quantum mechanics postulates.

This dissertation is organized as follow: in chapter 1 is devoted to a review of fractal

geometry and scale relativity.

Then in chapter 2 we will consider the behavior of quantum mechanical paths in the light of
the fractal geometry.
In chapter 3 we will derive the Schrodinger’s equation from Newton's fundamental equation
of dynamics without using the axioms of quantum mechanics. The method used is the
stochastic mechanics according to Nelson.
The chapter 4 we will apply the principle of scale relativity to the quantum mechanics by
defining the covariant derivative operator and we will treat some applications.
In chapter 5 we write the Schrodinger’s equation by using the hypothesis of Nottale and the
complex Klein-Gordon equation is derived.
We end up with chapter 6 where we have derived the Dirac equation from the Newton's
equation in the spirit of Nottale hypothesis. The dissertation ends up by a perspective for

future work and some appendices.



Chapter 0f

Fractal Geometry and the Theory of Scale Relativity



Introduction

We know that the theory of Kaluza-Klein which attempted to unify the gravitation and
electromagnetism on a geometrical approach based on curvature and or torsion of spacetime
was unsuccessful. After that the advance of quantum gauge theories led to the hope that
unification may rather be reached by the quantized fields associated to particles, but until now
this approach was vain. The main problem is how to quantize gravity. Up to now there is no
acceptable quantum version of gravity.

The geometrical attempts to unification failed because of the following remark:

The observed properties of the quantum world cannot be reproduced by Riemannian
geometry. Indeed we know that quantum mechanics and field theories are based on flat
spacetime, whereas general relativity is formulated in curved spacetime. In the first theories,
spacetime is passive and may be considered as a scene on which physical phenomena occur,
however in general relativity spacetime is dynamical or active, in other words the scene on
which physical phenomena occur may contribute to the physical phenomena.

Until now there is no satisfactory geometrical approach of the quantum properties of
microphysics. For this reason, Nottale suggested in 1992 a possible way towards the
construction of a spatial-temporal theory of the microphysical world, based on the concept of
fractal space-time. His theory is based on the extension of the principle of relativity to include
in addition to the ordinary relativity which is based on motion, another type of relativity: the
relativity of scale.

In this theory, Nottale assumes that spacetime is non-differentiable. One can see easily why it
is possible for the space-time to non differentiable at small scale. Indeed the fact that in the
micro world the notions of velocity and acceleration are totally absent since quantum theory is
in essence non differential in contrast to classical mechanics. Nottale extended Einstein's
principle of relativity by assuming that the principle of relativity applies not only to motion
transformations, but also to scale transformations. In this way he included the resolution of

measurements as a state of the system in addition to the usual coordinates (x, y, z,7) .

From Fractal Objects to Fractal Space



The word "fractal" comes from the Latin word "fractus", which means "fragmented" or
"fractured". It was Benoit Mandelbrot a French mathematician who used this term for the first
time in 1975.

Fractals are objects, curves, functions, or sets, whose form is extremely irregular or
fragmented at all scales [1]. The study of fractal objects is generally referred to as fractal
geometry.

We can see in nature a lot of objects which have fractal structure such as mountains,
coastlines, rivers, plants, clouds.

In humans branches of arteries and blood vessels have a fractal structure, as well as a number
of other things including: kidney structure, skeletal structure, heart and brain waves and the

nervous system.

Examples of natural fractals

Lightning



Bacteria

Clouds



Trees

Using a computer by using some algorithms we can obtain some natural things such as plants

and trees. See the following figures.

Man made fractals
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A Fractal Plant
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A fractal tree

To have an idea on fractals, let us make one known as Koch snowflake.

Consider a triangle

JAVA

Now let us add a small triangle to each edge, we obtain the following figure

XX L)

We repeat the previous procedure which means adding a small triangle to each edge which

gives



LA

More iterations gives

The fractal obtained is called Koch snowflake.

Classical geometry based on Euclidean geometry deals with objects of integer dimensions:
points are zero dimensional objects, lines and curves are one dimensional, however plane
figures such as squares and circles are two dimensional, and cubes and spheres are three

dimensional solids.

The problem is as Mandelbrot quoted in his book "Clouds are not spheres, mountains are not

cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a



straight line." 1is that natural phenomena are better described by fractal geometry than the
Euclidean geometry.

Fractal is characterized by non-integer dimension, which is a dimension between two whole
numbers. So while a straight line has a dimension of one, a fractal curve will have a
dimension between one and two. The more the flat fractal fills a plane, the closer it
approaches dimension two [2].

The dimension used in Euclidean geometry is called a topological dimension which is the
"normal" idea we have on dimension; a point has topological dimension 0, a line has
topological dimension 1, a surface has topological dimension 2, a volume has topological
dimension 3.

In fractal geometry there is another type of dimension called Hausdorff-Besicovitch
dimension or fractal dimension.

So fractals are usually defined as sets of topological dimension Dr and fractal dimension D,
such that D> Dr

Roughly speaking, fractal dimension can be calculated by taking the limit of the quotient of
the log change in object size and the log change in measurement scale or resolution, as the
measurement scale approaches zero.

Let us calculate the Hausdorff (fractal) dimension D for a famous example of an everywhere
continuous but nowhere differentiable curve called the Koch curve.

Its construction is shown in the following figure. The Koch curve is the final product of an

infinite sequence of steps like those in the figure, where in each step in the construction, the
: 4 . e
length of the curve increases by a factor of 3 So the final curve being the result of an infinite

number of steps is infinitely long although it occupies a finite area.
Suppose that we consider the Koch curve resolving distances greater than some scale Ax and

measure its length to be £ then, if we improve our resolution so that

Ax':(;ij, the next level of resolution in the curve will become visible and we will

measure a new length /'= (:jl . Since the conventional definition of length, when applied to

curve like the Koch curve, gives a quantity which depends on the resolution with which the
curve is examined (even for very small Ax), this definition is not very useful. That is why
Hausdorff has proposed a modified definition of length to be used in these cases, which is

called the Hausdorff length L given by



L=/((Ax)""
where £ is the usual length measured when the resolution is Ax, D is a number chosen so that

L will be independent of Ax, at least in the limit Ax — 0.

For the Koch curve, we can determine D by requiring that

L'= ¢'(Ax)”" =(§fj (%Ax) L= A

This implies that
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The Construction of the Koch curve

Relativity of scales



In the well-know theories the coordinate systems is subjected to transformations
corresponding to changing the origin and axes, but we ignore the units. In spite of their
introduction for measuring lengths and times, which is made necessary by the relativity of
every scales in nature, we know that the measuring of length (time) is physical when it
relative to another length (time), what we actually do is to measure the ratio of the lengths of
two bodies (times of two clocks), in the same way as the absolute velocity of a body has no
physical meaning, but only the relative velocity of one body with respect to another as
demonstrated by Galileo, so we can say that the length of a body or the periods of a clock has
no physical meaning, but only the ration of the lengths of two bodies and the ration of the
periods of two clocks.

The resolutions of measurement are related to the units, and their interpretation is changed
according to the scale, while classically we can interpreted it as a precision of measurements
(measuring with two different resolutions yields the same result with different precisions) for
example we can measure the length of a table by a ruler and a palmer. In microphysics where
classical mechanics is no more applicable and it has to be replaced by quantum mechanics,
changing the resolution of measurement dramatically affects the results.

Indeed, if your ruler measure centimetres, what sense does an angstrom make?

The results of measurements explicitly depend on the resolution of the apparatus, as indicated
by Heisenberg’s relation, for this reason we suggest the introduction of resolution into the
description of coordinate systems (as a state of scale), which is the basis of theory of scale
relativity [3].

To realize this idea of scale relativity, firstly we propose to extend the notion of reference
system by defining “super systems” of coordinates which contain not only the usual

coordinates  (¢z,x,y,z) but also spatial temporal resolutions (Af¢,Ax,Ay,Az).

(tx,y,z) +—>» system

A\ 4

(t,x,y,Z,At,AX,Ay,AzZ) super-system

The second suggestion is the extension of the principle of relativity, according to which the
laws of nature should apply to any coordinate super system, in other words, not only general

(motion) covariance is needed but also scale covariance.



State of the system

Scale state

Motion state

\ 4

Special relativity Scale relativity

Special and scale relativities

Let us treat the fundamental behavior of the quantum world. We recall that the wave-particle
duality is postulated to apply to any physical system, and that the Heisenberg relations are
consequences of the basic formalism for quantum mechanics. The existence of minimal value

for the product Ax,Apis a universal law of nature, but is considered as a property of the

quantum objects themselves ( it becomes a property of the measurement process because
measurement apparatus are in part quantum). But it is remarkable that it may be established
without any hint to any particular effective measurement (recall that it arises from the
requirement that the momentum and position wave functions are reciprocal Fourier transforms
) so we shall assume that the dependence of physics on resolution pre-exists any measurement
and that actual measurements do nothing but reveal to us this universal property of nature then
a natural achievement of the principle of scale relativity is to attribute universal property of
scale dependence to space-time itself

- we finally arrive at the conclusion which is now reached by basing ourselves on the

principle of scale relativity rather than on the extension of the principle of motion relativity



to non-differentiable motion, namely the quantum space-time is scale-divergent, according to
Heisenberg's relations by our definition fractal

- So we conclude that the resolutions are considered as a relative state of scale of the
coordinate system, in the same way as velocity describes its state of motion, however
according to the Einstein's principle of relativity we derive the principle of scale relativity
«the haws of physics must apply to coordinate systems whatever their state of scale», and the
principle of scale covariance. « The equations of physics keep the same form (are covariant)
under any transformation of scale (contractions and dilatation) »

- from the principle of relativity of motion and the scale relativity ,we obtain the full principle
of relativity which will need is the validity of the laws of physics in any coordinate system,
whatever its state of motion and of scale

- in more detail we shall see that in this form the principles of scale relativity and scale
covariance imply a modification of the structure of space-time at very-small scale in nature
which is the fractal structure, then in this space-time structure we find a limiting scale, which
is invariant under dilatation, as same as the velocity of light is constant in any coordinate
system

So there is an impassable scale in nature plays for scale laws a role similar to that played by

the velocity of light for motion laws.



Chapter 02

Fractal Dimension of a Quantum Path



Fractal Dimension of a Quantum Path

We know that the standard interpretation of quantum mechanics has completely abandoned
the concept of trajectory by replacing it by the probability amplitude. However Feynman
proved that the probability amplitude between two points is equal to integral over all possible

paths of exp(iS,), where S, is the classical action for each path. This approach is named

path integral. The aim of this chapter is to show how Feynman used that approach to prove
that the trajectories of the quantum particle are continuous and non-differentiable which
means it is fractal. We will see also that accurate calculation of Abbot and Wise leads to
fractal dimension D = 2 of quantum path which is a direct consequence of Heisenberg’s

incertitude's principle.

Path integral approach

Feynman used the path integral approach to understand the behavior of the quantum particle,
and he arrived to the conclusion that the path of the quantum particle are highly irregular (as
we see in the sketch), and that no mean square velocity exists at any point of the path which
means that the paths are continuous and non — differentiable [4].

In other words we shall show in this chapter that the quantum path is fractal.

X

»
»

FIG (2-1) sketches the typical path of quantum-mechanical in space-time



We take the special case of one dimensional particle moving in a potential V [x (t)].

The action over the path of the particle is given by
ty
S = j 0(x, x,1)dt (2-1)

where [(x, x, t) is a Lagrangian, defined by

P UNFONON (2-2)
So
S = j[’";z - V(x(t)} (2-3)

Feynman and Hibbs demonstrated the next relation (see Appendix B)

ik
Ox, n\ ox,

where F(x(t)) is a function of x(t).

We divide the time into small intervals of length €, hence the action S can be written as

N-I _ 2
S = z{mu_y(%)g} (2-5)
i+l 2e
when we derive the action with respect to the coordinates we find
aS — m('xk-%—l _xk _ xk B xk—l j+ V!(xk )8 (2'6)
ox, &£ &£
] -2
a_F — E F|:m xk+1 'X;k + xk—l + Vl(xk )} (2_7)
ox, [, h &£
For the special case F'(x) = x, we find
(1) = E<mxk (’“’f“ —Te T e j rexV'(x, )> (2-8)
h £ £

If we assume that the potential V is a smooth function, then in limit as & - 0 we find that
ex,V'(x,)1s negligible in comparison with the remaining terms, so the result becomes

<m Xen ~ % xk>_<kam>=é<l> (2-9)

g g l



X, =X, X, —X : e
So we have <kaM> and<xk+lmu> which are two terms differing from each
& &

other only is order &, since they represent the same quantity calculated, at two times differing
by the interval €.
We can substitute the first term into the second one, and we find

<(xk+l - xk)2> __ h <1> (2-10)

&

: . o 1
This equation means that the average of the square of the velocity is of the order—, and thus
&£

becomes infinite ase& approaches zero. This result implies that the paths of quantum
mechanical particle are irregular on a very fine scale, as indicated by fig (2-1). In other words,

the paths are non differentiable.

[x(t + At) — x(2)]
At

For a short time interval At the average velocity is . The mean square value

of this velocity is —- which is finite but its value becomes larger as the time interval

imAt

becomes shorter

So
AxY’ n
(57 ) o)
(i) =2
or
(ax)” ~ hat (2-12)

m
We define the mean length by <L >= N <|Ax| > and T=NAt
So

from equation (2-12) we find

T (A) ar

= o )

Using the definition of the Hausdorff length




(L) = (LNAD)"7,

we find
aT _
<L>hauss = ?(M)D 1

for that <L> s, 10 D€ Independent to the resolution Ax, it must have D=2.

This result means physically that although the particle path is one-dimensional curve,
however with time this path will cover an area.

Heisenberg Uncertainty principle

For a quantum particle the position is known with precision Ax. We calculate a mean length

of a trajectory which a particle travels during a time T

(L)=N(r) (2-13)
<£> is the distance which a particle travels in a period of time At
(0y=(v)At (2-14)
)
(L) = NAt
According to the Heisenberg uncertainty principle we have
AxAp=h
h
Ap ~—
P Ax
Av = L
mAx
With the assumption that <v> = Av,
we find <L> = NAti _ I
mAx  mAx

This expression is an average of length measured with a resolution Ax .
Using the definition of Hausdorff length

(L) e = (L)A0)™

we obtain

ATy
<L>hauss - mAx (A.X)

hT _
<L>hauss - ;(M)D ’



The dimension of trajectory must be equal 2 to make <L> . independent of the resolution.

haus:
Hence the Hausdorff dimension of the path of a quantum particle is equal to 2.
Now let us study the classical particle path, in this case < L> is independent from the resolution

(Ax)

<L>hauss = <L>(AX)D_1
We see that D must be equal 1 to make <L> 4o IDdependent of the resolution.

The dimension of quantum trajectory of free particle is D = 2, however a classical trajectory

has a dimension D =1 [3,5].

Abbot and Wise Work

Abbot and Wise showed that the observed path of a particle in quantum mechanics is a fractal
curve with Hausdorff dimension equal to 2 [5,6].
We consider the wave function expression of a free particle which is localized in region of

length Ax attime t =0

v, (%,t=0)= el (2-15)

wt
This packet of wave is obtained by superposition of plan wave e *  with coefficient

(A)’* f(lﬁle]
Ol S

where

hk?
2m

The wave function at the time At is given by,

3 . Dy i ZAI

A2 ¢ d plax) 25

() ¢ pyf(ll Jeh
/) v (2r)? /)

vy (R, A = (2-16)

p|Ax
The normalization condition requires that f (%

7 ()

j has to satisfy the following condition

[ . 2-17)




where

We can choose

Indeed we have

ZERIEGIEE

We define the mean of the distance which a particle travels in time At by

(80) = [d*lzlly |

Let as
_ X
e
then
. 2
- B 4’k ( R 2’;’(’;“)21{2%}
o =@l b
We set

ihAt -

3 o\ gk ik
st e b

by substituting in (2-20) we find

(Af) = Ax{ Rj d? ﬂ;”F(;,bﬂ

with
b hAt :
2m(Ax)

We calculate F (},b)in the equation (2-22) by using the equation (2-18)

(2-18)

(2-19)

(2-20)

(2-21)

(2-22)

(2-23)

(2-24)



3

/ i 2
F(f,b) = ! (3) ! J.d3k€ik k> (1+ib)
R3

—2
5 17l

|F(j}9b)2 =(27Z')7%(1+b2)_56 2(1+b%)

We substitute in (2-23) to obtain
o’

<A£> = ij.d3y|)7|(27z)% (1 +b2 )‘% e_2(1+b2)

By using the integrals

[d*y=4z[af5]’

2 " —(k+1)
je’“ x*dx = iﬁ, /”F(wj
0

m m
We find
2 2
(AL) oc Ax, |1+ %
4m~ (Ax)
or

2
2mAx hAt
: [hAL .
Let us now study the equation (2-29) when Ax << Yt it reduces to
m

hAt
m —

(AL) = ——

Since we have
with

we obtain

nT _
<L>hauss *x ?(AX)D ’

which gives the condition D = 2 to make <L> Lo, INdependent to Ax.

(2-25)

(2-26)

(2-27)

(2-28)

(2-29)



Transition from classical dimension D=1 to quantum dimension
D=2
We consider now the case where the particle has an average momentum P, . The wave

function of that particle is

¥ 3 SIAx ) (PP . 1Pt Buy)’
v (%, A1) = (A;;) 2_[ 4p f(|p|h }e il 2mh

We set

= 2 %PA[yzif:] k(- f[f——m‘ | o
!//Ax(x,At)Z(Ax) 2e f(‘k‘)e ,

Using the change of variable
P (2-30)

We find

3 i[),,myAx[ﬁ—MJ 4k L\ ke AL e
v, (%.A0)=(Ax) 2¢" s > f(‘k‘)e 2m(ax) (2-31)
w(27)>

Using the expression of F (ﬁ,b) with b = LZZ yields to the expression
2m(Ax)

IamuyAt

e ]F(,v,b)

i o~
3 ;pmyAX[w

VX, A0) = (Ax) 2e

The average distance <AL> which is traveled by the particle during the time Az is given by
mAx

where



hAt

= W = constant
m
By using (2-20) and (2-30) we can write
D At
AL) = 4 3 | pmoy 2
(AL) = (Ax) R[a’ i+
with
w|* = (ax)|F(5.6)°
which gives
‘ﬁmoy At 3 ﬁmoy mAx —-
ALY =" | Py F(3,b
< > m 1!3 ‘pmoy moy At | l
or ‘
pmoy 3 pmoy h Nl = 1 Y2
d’y (7.b
j ‘pmoy ‘pmoy A'Xb | 1

We remind that the Hausdorff length is given by

(L) = N(AL)AX)™

Then

Ta—— RIS

T [

R3

Do
0, -2

‘ moy ‘ moy

We have two cases for that the Hausdorff length be independent of Ax

D=1 forL<<1:>Ax>>—

is the classical case when the resolution is larger than the quantity —— which is the

‘pmoy

particle's wavelength given by the Broglie relation.

D =2 for 1= Ax <<+——

Ponoy| X \pmoy

In the quantum case when the resolution is smaller than the particle's wavelength.



Conclusion

In this chapter we have calculated the path’s dimension of a classical and quantum particle
using three methods. The first one consists in the use of the path integral formalism.
Following the work of Feynman and Hibbs we have shown that the particle path in quantum
mechanics can be described as a continuous and non-differentiable curve. This non-
differentiability is one of the properties of fractals. The second method is the use of the
Heisenberg uncertainty principle and finally the third method which involves a more accurate
calculation is due to Abbot and Wise.

We have shown that the fractal dimension of the quantum path is equal to 2 which means that
the “trajectory” of the particle tends to occupy a surface. We have also shown that there is a
transition in the Hausdorff dimension from 2 to 1. This transition takes place at the Compton

wavelength scale.
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Derivation of Schrodinger Equation from Newtonian
Mechanics
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Derivation of the Schrodinger Equation from Newtonian
Mechanics

In this chapter, we want to show how we can derive the Schrodinger equation without using
the quantum axioms. This derivation is based on statistical mechanics and the theory of the

Brownian motion [8,9].
Stochastic mechanics

In the stochastic mechanics any particle of mass m is subject to a Brownian motion with

diffusion coefﬁ01ent2— and no friction. and they define the Brownian motion with the
m

following properties:
1. The motion is highly irregular and unpredictable which means that we can not draw
the tangents of the trajectories.
2. The motion is independent of the particle’s nature.
3. The motion is continuous.
In 1905 Einstein adopted a probabilistic description of the Brownian trajectories, and he
found that the density of the probability to find a Brownian particle in x at time t satisfies the

equation of diffusion
0
— P(x,t) = VAP(x,t)
ot

with

In 1906 Smoluchowski derived the equation which describes the Brownian particle in field of

forces F(x)

0 1 0 0’
—p(x,t) =———I(F 1))+ 0— p(x,t
= P - ax( (xX)p(x,))+0 7 P

Any process in time evolution which can be analyzed by the formalism of probability is called
stochastic process. We define the absolute probability W(x,7) which satisfies some of

properties; however the stochastic process is governed by the conditional probability



W(x,t,)
W(y,t,)

We call the stochastic process a Markoff process if the conditional probability has the

P(x,t,/y,t,) =

following property

Vit <t, <ty P(x,t;Xx,,t5...x, 1, /x,,t)=P(x,_,t _/x,t)
We can say that in the Markoff process the future is independent from the history of the
system.

The Fokker-Planck Equation

2

0 0 10
ap(x0 /x,t) = —E(a()c)p(x0 /x,t)) + Ey(b(x)p(xo /X, t)

a(x) is the derive function and b(x)is the function of diffusion

The Wiener and the Ornstein-Uhlenbeck process are considered as a particular case of the
Fokker-Planck equation with a certain definition of a(x) and b(x).

For instance we obtain the equation of the Wiener process for

a=0,b=2v
1 h
VD=—m=——
pmy  2m

x(t) is a stochastic process when it is not differentiable (case of the Wiener process, in

Einstein’s theory of Brownian motion), we define the two kind of derivative

The forward derivative Dx(t)

x(t+ At)—x(1)

Dx(t) = A{1_r)r01 E, Y (3-1)
The backward derivative D.x(¢)
Dux(t) = lim E, XD =X =A) (3-2)

At—0* At

E, indicates the conditional expectation which given the state of the system at time t.

When x(¢) is differentiable, then

Dx(t) = Dx(t) = f;

The Ornstein-Uhlenbeck process is obtained for

_ _2y_,
a(v) =-mw, b(v) i 2y°v



in the Fokker-Planck equation of Brownian motion with the presence of a potential V. So the

particle acquires an acceleration produced by V' given by:
K= L gradV
m

Now if we use a Maxwell-Boltzmann distribution of velocity,

|
W)= ‘/m—ﬂe 72
2

When we compute the fluctuation of velocity, with an initial condition (v,,#,) we find
(v(t)) = j dwW (v) =0
R

1 o (e
<v2> ) :—(l—e A "’))+ vee )
Volo 74

From the next Ornstein-Uhlenbeck equation of velocity

2P(v 1) = i(vP(x 1)+ 208—213@ 1)
o T REE T B T
The same results are obtained by the Langevin theory

So the system is in equilibrium. We can write the Langevin equations, where mf is the
friction coefficient

dx(t) = v(t)dt (3-3)

dv(t) = —fv(t)dt + K (x(t))dt + dB(t) (3-4)

B is a (white noise) Wiener process representing the residual random impacts, dB(¢) are

Gaussian with mean 0, and
EdB(t)* = 6(B—ijdt (3-5)
m

k is the Boltzmann constant, and T is the absolute temperature. dB(t) are independent of x(s),
v(s) with s <t, it dependent only of x(s) and v(s) with s >t.
There is an asymmetry in time so we may write

dv(t) = —fv(t)dt + K (x(t))dt + dB.(t) (3-6)
In this case dB«(t) is independent of x(s), v(s) with s>t
so we calculate the average in (3-1) and in (3-2)

Dx(f) = lim g UFAD=XO g XO=XE=4D

A0t ! At At—0* At

dx
= — = t
Z v(?)




Since x(#)1is differentiable.

By (3-5) dB(t)*is of the order dt% that means B (t) and v (t) are not differentiable
So Dv(t) = —pv(t) + K(x(r))  and D.v(t) = pv(t) + K(x(2))
Hence

Dv(t) + Dov(t) = 2K (x(1))

and
1 1
EDD*x(t) + ED*Dx(t) = K(x(r))
We define the second derivative of a stochastic process by
a(t) = lDD*x(t) + lD*Dx(t) = K(x(r)) = 1 grad V
2 2 m
Ifx(¢) is a position, a(t)is defined as an acceleration and F' = ma which is the Newton’s law.

Kinematics of Markoff Processes
We describe the macroscopic Brownian motion of a free particle moving in a fluid by the
Wiener process w(t) , which satisfies;
Edw,(t)dw;(j) =2v0,dt (3-7)
Where v = KT is the diffusion coefficient.
mp3

In the fluid where the particle is moving, if there are external forces or currents, the position
x(t) of the Brownian particle be decomposed as following

dx(t) = b(x(2),1)dt + dw(r) (3-8)
b 1is a vector valued function on spacetime.
Because the Wiener process is a Markoff process dw(¢) are independent of x(s) with s <¢

So from (3-1) and (3-8) we find

Dx(t) = Tim YFADZXO _ i ) (3-9)

At—0+ At

b is the mean forward velocity.

Where we have considered the time t, and ¢ < s, we have an asymmetry in time. So we can
write

dx(t) = b, (x(2),2)dt + dw. dx(t) (3-10)

dw,(t) are independent of x(s) with s>¢



So by (3-1) and (3- 10) we find

Dox(t) = lim YO8 _p ()1 (-11)

At—0+ At

b.1s the mean backward velocity.
We assume a motion of an electron with P(x(t),t) is the probability of position x(t) satisfies

the forward Fokker-Planck equation
oP

P —div(bP)+ AP (3-12)
and the backward Fokker -Planck equation
op = —div(b.P) — VAP (3-13)
ot
When we add (3-12) to (3-13) we find
op = —l(div(bP) + div(b.P))
ot 2
oP 1
— =—div(=(b+b,)P
Py ( 5 (b +b.)
op = —div(vP) (3-14)
ot

which is the equation of continuity, where we have definev by
1
v=5(b+b*) (3-15)

We call v the current velocity.

We can expand the function f* in Taylor series as

df (x(0),t) _of dx(?) 1 dx(dx; (@) 8°f ]

= (x(0),1)+ == Vf(x(t),r)+2; @ anor (x(0),1)  (3-16)
dx. (t)dx . 2

df(x(t),t)=%(x(rxr)dwdx(er(x(z),r)%Z - (tzhx’ i af‘ 8’; -(x(0,1) (3-17)

We take (3-16) and we calculate Df and D, f



Dr(x0.0) = L(x(0.0) 7 ( (0.1 dw(’)] v/ (x(0).1)

Aﬂr(naﬂav
_Z Ox,0x (

x(t),1)

J

dw, (dw, (1) 0 f
_Z dt oxox, (

1 o
+ 2 Zj:bi (x(t)’t)dwf @) Ox,0x

x(t),1)

- (x(0).1)
o f

+ %Z/ dw, ()b, (x(),t)dw (1) Fare (x(1),7)

J

Using (3-7) we obtain
Df (x(1),t) = (g +bV + VAJ f(x@),1) (3-18)
In the same way we obtain

D. f(x(t),t) = (% +b,V - vAj 1(x(2),2) (3-19)

[% +bV + VAJ and [% +b.V — vAj are adjoints to each other with respect to pd xdt ,
that is
—1[3+bV+vAJ+ ——ﬁ—b V+vA (3-20)
P P

Where the superscript + denotes the Lagrange adjoint (with respect to pd”>xdt )

O (,1)e_p2 O
a—t(pl)— pl—p
V(p)=-p7vp

Alp™)=v(ve™)

=V(-p?Np-p2ap
=2p " VpVp —pZAp

=2p(Vp)’ —pAp

{p’l(§+bv+vAj p}p = —%p—bv,o+219,0_1(V,o)2 —VAp



0
=—= p-bVp+vA
th o) 0

So ~bVp+28p7' (Vp)’ —vAp=-bVp+vAp

~bNp=-bVp-20Ap+20 p ' (Vp)’

While
§Apd’xdt =0
So b, =-b- 2UA—’D
Yo
b, :b—zu(gmd p) (3-21)
Yol

Or

"= u(gmd P j (3-22)

Yol
Where we have defined
uz%@—h) (3-23)

According to Einstein’s theory of Brownian motion, the eq. (3-23) is the velocity acquired by
a Brownian particle in equilibrium with respect to an external force.

By subtracting (3-12) from (3-13) we obtain

68—’? - 86_/; =div(bp) —vAp — div(b.p)—vAp

0= 2div(% (b, — b)pj —-20Ap

0=diviup)—-vAp (3-24)
0 = divfup —v grad p| (3-25)
From (3-23) we have
u=vgrad (np (3-26)

) ) . ou
Using the equation of continuity, we may compute >
t

2—]; = %[ugrad (n p)

0
=v grad| —/n
§ (ar P j



=v grad (la_pj
p ot

From the equation of continuity, we have

u =v grad [— div(vp) l}
ot o,

0=v grad(— div vpl - vlgmd pJ
P P

0=—v grad(divv)- grad(u v grad p]
P

From (3-26) we obtain

% =—0 grad(div v)— grad(v u) (3-27)

When we apply (3-18) to b, and (3-19) tod , we find

Db.(x(t),t)= (% +bV + uAjb* (x(2),2)

D. b(x(t),t) = (% +b.V - uAjb(x(t), t)
From (3-10) and (3-11) we obtain

DD, x(f) = [g +bV +0v Ajb* (x(2),2) (3-28)
d
D.Dx(t) = [5 +b,V -0 AJb(x(t), 1) (3-29)
We add (3-28) and (3-29) and multiply the addition by %

1 1 10 1 1 1

—DDx(t)+—DDx(t)=——(b+b.)+=(b.V)b+=(bV )b, ——0VAb-b,) (3-30

S DDx(0)+ S DDx(t) = S (b +b. )+ S (b.V )+~ (BV ). 0 A =b.) (3-30)
which is the mean acceleration a.

So

10 1 1 1
=—— )+ —=b.V )b +—=bV )b, ——0Ab - b. -31
a 2at(b+b)+2(b )b+2(b ) SV (b-b.) (3-31)
From (3-15) and (3-24) we have

v=%(b+b*)



(b-b.)

u=

N | —

sob=v+u and b.,=v—u

Thus (3-31) is equivalent to

v

o =a—-(WW))v+uVu+vAu (3-32)

The Hypothesis of Universal Brownian Motion

We consider that the particles move in an empty space, and are subject to a macroscopic
Brownian motion with diffusion coefficient v

h
v=—— 3-33
. (3-33)

We have not any friction to empty space, this means that the velocities will not exist, hence
we cannot describe the state of a particle by a point in phase space as in the Einstein-
Smoluchowski theory, and the motion will be described by a Markoff process in coordinate
space.

The mean acceleration (a) has no dynamical significance in the Einstein- Smoluchowski

theory, that theory applies in the limit of large friction, so that an external force F does not

. . ) F .
accelerate a particle but merely imparts a velocity _,3 to it, in other words to study
m

Brownian motion in a medium with zero Smoluchowski theory, but use Newtonian dynamics
as in the Ornstein Uhlenbeck theory.

We consider a particle of massm , in an external force F', the particle performs a Markoff

process, we substitute a = r and v= 21 in equation (3-27) and (3-32) thus » and v
m

m
satisfy
ou = —(ijgmd(div v) - grad(vu) (3-34)
ot 2m
@:(ijF_(vvv)+(uvu)+[leu (3-35)
ot m 2m

consequently, if u(x,z,) and v(x,z,) are known and we can solve the problem of the coupled

nonlinear partial differential equation (3-27) and (3-28) then the Markoff process will be



completely known, thus the state of a particle at time ¢, is described y its position x(z,) at

time 7.

The velocities u and v at time #, notice that u(x,z,) and v(x,,) must be given for all values

of x and not just forx(¢,).

The Real Time-independent Schrodinger Equation

We consider the case that the force comes from a potential

F=—gradV

(3-36)

Suppose first that the current velocityv =0, from the equation of continuity and (3-22) we

obtain
P _,
Ot
U0 grad p
Yo,

It seems that p and u are independent of the time¢, so (3-34) and (3-35) become

au _
ot

uVu + (iJAu = (lJ grad V
2m m

by (3-26), u is a gradient, so that we can write

0

WVu = %grad u® and Au = grad(div u)
So (3-24) becomes

1 1
graa’(—u2 +idiv u} =—grad V
2 2m m

lu2 +idivu :iV—lE
2 2m m m

where FE is a constant of integration with the dimensions of energy

If we multiply by mp and integrate, after use u = U(MJ we obtain
P

1, 5 h 3. 3
J-Emu pd X_EI(M grad p)d x—IVpd x—E

(3-37)

(3-38)

(3-39)

(3-40)

(3-41)

(3-42)



From the last equation of u we obtain

-1
ugmdp=upu‘lu=uuzp=(2ij u’p=—mu’p (3-43)
m
So (3-42) becomes
E:j%mwpd%+jnufx (3-44)

: 1 .
E is the average value of Emu2 +V and may be interpreted as the mean energy of the

particle.
The equation (3-41) is nonlinear, but it is equivalent to a linear equation by a change of
dependent variable, by (3-26) u =wv grad (n p , we put

R=%Mp (3-45)

Eq (3-26) becomes u = v grad 2R and we havev = E

2m
%u = grad R (3-46)
So R is the potential of %u let as write
w=e" (3-47)

Then y isrealand p=y°

From (3-22) we have
gradp h 1

u=uv =—grad p—
Y2 2m o,
2
divu = s div(gradp l] = i—(gma;) p_ N gradp (Zgradp
p) 2m p 2m Yo,

i(grad)zp_igradp grad p
2m Yo, 2m  p Yo,

divu =

divu = iApl_u_gradp

(3-48)
2m ~ p p



n* Ap h grad p igradp_u

—divu=—5—"——-u—
2m 2m- p 2m  p 2m  p
2
—divu = h Zﬁ—u2
2m 2m- p

and we have

3 1

22 2 p 2 2 422 2 p p
h’ 1 n Ap B A
= AWp)p P oL
2m 22 p 2m p

We substitute in the eq (3-49) we obtain

idivu— n A p) %—luz
2m 2m* e 2

So

2 Bl
Loav M gu=ty Les ™ Afp)p2=tv-LE
2 2m m m 2m m m

Product by \/; and m we find

(3-49)

(3-50)

(3-51)



b alfp)=0 -

2m

2
3[§—A—V+Ej\/;=0

m

We puty = \/;

2
So [—h—A+V—EJt//:O (3-52)
2m

This is equivalent to the time-independent Schrédinger equation.

Conclusion

We have exposed in this chapter one of the methods to obtain quantum mechanics from the
Newton law. Our aim is to avoid using postulates to construct quantum mechanics. This
method consists of treating quantum mechanical effects as stochastic phenomena.

Quantum effect is considered as a Markoff process. Stochastic mechanics enables us to

construct a bidirectional velocity which will be used in the subsequent chapters.
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Fractal Geometry and Nottale hypothesis

The aim of this chapter is to develop the Nottale hypothesis which can be seen as the
covariant derivative for the scale relativity. We shall show that using the Nottale hypothesis
one can solve some problems like the energy spectrum of a particle in a box without using the

Schrodinger equation.
Fractal behavior

We have seen in the previous chapter, in the Feynman interpretation of the quantum
) ) ) o ) dx .
trajectories that non-differentiability means that the velocity v = ? is no longer defined.
t

However from the theory, continuity and non-differentiability implied fractality. This leads to
conclusion that the physical function must depend explicitly on the resolution. Hence we can
replace the classical velocity on a fine scale which describes the fractal property by a function

which depends explicitly on resolution v = v(¢).

We assume that the simplest possible equation that one can write for v is a first order,
differential equation, written in term of the dilatation operator

dv
dneg

=BW) (4-1)

We can use the fact that v < 1(c=1) to expand it in terms of Taylor expansion, we get

dv
dneg

=a+bv+0(v?) (4-2)

(a,b, independent of ¢ )
If we takeb = -6 and a = v6 , we obtain the solution
v=V+ke” (4-3)
From dimensional analysis we can write k = ¢ A ° with
¢=¢@),(¢7)=1
and A a constant length-scale.

We find

v=V+¢ (ij (4-4)
&

D=D, +0

D, =



At large scales

&=~ 1= v =V classical case

)
While at small scales € << A =>v~( (ij

5

D-1
A
. . ) X =
£ is space-resolution& = 0 x, while ¢ < x we have 51 | 5x
cot

SxP =A""cst
Replacing in equation (4-4), we get
i = vidis D (cdt)% 4-5)
The first term yields classical physics while the second is one of the sources of the quantum
behavior. In general any quantity can be put as a sum of a classical counterpart of this

quantity and a fluctuation part which can be considered as the quantum part [3,10-14].
Infinity of geodesics

The scale-relativity hypothesis is that the quantum properties of the microphysical world
stem from the properties of the geodesics of a fractal space-time. This means that the quantum
effects are the manifestation of the fractal structure of the space-time as the gravitation is a
manifestation of the space-time curvature. However when the quantum particle moved
between two points in the fractal space-time, it follows one geodesics among an infinity
geodesics existing between the two points. We cannot define which geodesic is followed by
the particle since all geodesics are equiprobable. It means that we keep the indeterminism
property of quantum physics and the predictions can only be of a statistical nature. With this

hypothesis we can solve some problems of the quantum physics [3].
Two-valuedness of time derivative and velocity vector

Another consequence of the non differentiable nature of space is the breaking of local
differential time reflection invariance, so consider the usual definition of the derivative of a
function with respect to time

(i) L Sard) =@ @) f(=di) -6

m
dt dr—0 dt dt—0 dt

In the differentiable case we passed from one another by the transformation dtf — —dt , but in
the non differentiable case we can not compute the above derivative because the limits are not

defined. To solve this problem we use the scale-relativistic method. We suggest that we



substitute dt by time-resolution df = 6t, while the limit dt = 0 have not a physical meaning,

and we get two values of the derivatives f, /' , defined as explicit function of ¢ and of df

OO gy i[OS

dt—>0 dt—>0

[, (tdt) =

When applied to the space variable, we have two velocities

x(t+dt)—x(¢)

The forward velocity V.= 611t1£r(1) % (4-8)
. _ lim *(®)—x(z—dr) i
The backward velocity i g (4-9)

Covariant derivative operators

So we have found that when the particle is at a fine scale it has two velocities, and we have no
reason to favor one to another, we must deal the both velocity by the same way and consider
the both process the forward and the backward. We have showed that the quantum particle
have a fractal trajectory, we obtained above that the elementary displacement for both
processes, dX as sum of a classical part dx = vdt and a fluctuation about this classical part

de , which is a Wiener process satisfying the following relation

<de >=0 (4-10)
(de'de’) = 5"f‘c2(ij2_; (4-11)
cdt
For the quantum particle D = 2, so

(de'de’) = 167 cdt (4-12)

Now we consider the both process the forward (+) and the backward (-)
dX. =dx| +de', () (4-13)
dXi=vi dt +de’ (1) (4-14)

v Forward velocities, v\ backward velocities
i d
v, = —— (x(1) (4-15)
dt,
i d
e (x(®)) (4-16)

From Wiener’s theory, the fluctuation &' can be written as

2
2-=
ALl oo A o
dt dt cdt




The fractal dimension of typical quantum mechanical pathis D =2,

So <d5;dgi>= + 16 Vedt (4-18)
<deg'del >= +25"Ddt (4-19)
Where
p_f_ N1
2 2m

is the diffusion coefficient.

We consider a derivable function f(x(t), dt), so

G _Y | gpdX, o'f dx'dx’

= ——— (4-20)
dt ot dt  20X'0X’ dt
We write the forward (+) derivative and backward derivative (—) of f(x(¢,dt))
2 i j
ﬁ 6f LVf < d¢X>+ 8'f | <diXdiX - @21)
dt ot dt 20X'0X’ dt

We replace d. X by its expression in (4-20) and (4-21)

da.f _ 8f - [de, 1 Jd.x'd.x 1, /d.é'd.e
TR A vy e L e ey

xd.g'\ 1, ./déedx
—A - +—Af(———— 4-22
() Ly 4o @)
We use the equations
d,.f 8f d.e'd.e’
— + AM({——— 4-23
dt ot f< dt > f< dt > ( )
with the help of equation (4-18) (4-19) to obtain
d.f _of
——=——4V + DA 4-24
i o Vv, \f (4-24)
So 40, v,'V +1pA (4-25)
dt ot 2

+

The forward and backward derivatives % and% can be combined in term of a complex

derivative operator

d_1fd. d_ _1 fd._d_ (4-26)
dt 2\ .dt dt dt dt



+

d d .
When we replace = and 7; by the expression (4-25) we get

4 _9 vv_ilpa (4-27)
dr ot 2
While v =Ly pi g 2 YV vV (4-28)
dt 2 2

We observe that the operator % includes the total derivative operator % = % + vV and other

imaginary term which vanished at the classical limit
d a(gwﬁj—(wmmm (4-29)

dt ot

: d . . —
This operator = is the covariant derivative operator.
t

Applications

The energy expression in fractal geometry

Using different approaches L. Nottale and independently J.-C. Pissondes established the total
energy expression of a particle, the first by using the Newton complex equation of motion but

the second by using the conservation law of energy written in terms of complex derivative
operator 4 [14,16]
a7

Nottale approach
We have the equation of motion

d _
—v=-V 4-30
m 7 \% @ ( )

We replace the operator c;i and v by their complex expressions
t
So
0 = : =
m(a + ijv —imDAv =-V ¢ (4-31)
For a free particle
p=0= m(% + vﬁjv = imDAv (4-32)

Like classical mechanics we have



i:ﬁ+VV and m;iV F

dt ot
We make the correspondence with the complex values
9 w=24yv (4-33)
ot Ot
d _
m—v=f=-Vb (4-34)

dt

f is called the fractal force and @ is the fractal potential .

The previous equations give

f =imDAy and ® = —imDVy (4-35)
So the total energy is
P2
E=—+¢+0 (4-36)
2m

with ¢ external potential and @ is the fractal potential, in the free particle case ¢ =0

So
v’ =~
E = m; —imDVv (4-37)
J-C Pissondes approach
The Newton’s law of mechanics is
mCZt/ =-V¢= mV.dIt/ =—VVp=>
4 (v (4-38)
S L R
de\ 2
where ¢ is time independent function.
So
dt o
2 2
(V|20 A mV 0@1E=0 (4-40)
dt\ 2 dt dt dt

which is the conservation law of the energy.

By using the change



d d

We can show that (see appendix B)

By using the eqs (4-41), (4-42) we obtain

—_ _) —_
dt dt
V—v
mviv = W e(x) (4-41)
dt
(4-42)

d d d - -
~(fe)=f—g+g—f-2iDVV
dt(fg) fdtg gdtf i fg

a4, l% o)+iDv)  (4-43)

i(vz) = 2viv—2iD(ﬁv)2 oV
dt dt dt  2d

We apply the operator c;’i to the potential #(x)
t

From (4-42) we have

We replace in (4-47) which gives

The other way is

From (4-34) and (4-35)

mv%v = %(% mv’ j +imD(Vv)? (4-44)
%m) = % + W h(x) — iDAG(X) (4-45)
d _ .
L9 =7V h(x) - iDV(V (x)) (4-46)
V() =-m Ly (4-47)
U dt
We(x) = %ﬂx) - izﬁ(m%v) (4-48)
ﬁ(i v] = 6(@ +wWy— l'DAVj
dt ot
= %(ﬁv) +VIVy + W (Vv) —iDA(Vv)
0 = e == d - -
= {—t +VV — ZDA:|VV +VvVy = E(Vv) +(Vv) (4-49)
(4-50)

W(x) = %gﬁ(x) - iDm{% (Vv)+ (?v)z}



We use (4-44) and (4-48), the relation (4-50) becomes

%Gm#} +imD(Vv)? = —%m) + imD% +imD(Vv)?

& %{% mv? —imDVy + ¢(x)} =0

So the energy is
E = %mv2 —imDVy + d(x) (4-51)

We put
—imDVv=® and f[=-VO
In the classical case v=FVand D -0

We have

E = %mv2 + ¢(x)

Particle in a Box

Our aim is to show how we can solve one dimension problem of a quantum particle in a box,
by only using the Nottale hypothesis, and without any need to the Schrédinger equation [17].
This means we use only scale covariant derivative and the fundamental equation of dynamics

in theirs complex forms

= d
-Vo=m—v 4-52
¢ 7 (4-52)
We use the complex velocity
v=V-iU

Since ¢, being a potential and it is a real quantity, we can separate (4-52) into real and

imaginary parts

m(% V—DAU + (VN — (Uﬁ)UJ =-VU (4-53)
m(%U +DAU +(UN)U + (Uﬁ)Vj =0 (4-54)

We consider one dimensional problem with infinite limit boundary and without force (thus ¢
constant).
V' is considered as an average classical velocity; V =0

So our equations reduce to



U(VU)+DAU =0 (4-55)

)
“U=0 4-56
Py (4-56)

The equation (4-56) means that U is a function of x and does not depend explicitly on time.

From (4-55) we have

DV(VU) +%6U2 =0 ﬁ{D(ﬁU) +%U2} -0 (4-57)

which gives

o(,.oU 1_,
D= 4+-U = 4-58
8x( ox 2 (x )j ( )
Integrating this differential equation gives
0 1, .
D—U+-U"(x)=K: (4-59)
Ox 2
where K, is integration constant
> K, ‘ :
v\ UK U :L@(U :iuj
ox 2D D 2K, -U" 2D dx
_J'—sz _ = I dx —I = ——+cste
JUP-2K, 22D T 4 ( hk )Z 2D
aretg—2 - X Lk, (4-60)

\/71 i2K, 2D

Let us introduce the change K, = —K,, which gives

U(x) = /2K, tan[— Ly+K J (4-61)

where the limit conditions will determine the integration constants K, and K 5 ubeing a

difference of velocities can be interpreted as a kind of acceleration. We can thus reasonably
suppose that U — 400 on the left border (that isx - 0) and U — —oo on the right border

(That is, conventionally x — a , if our ‘box’ is of sizea )

2D*n’r? 2D*n’r?
T:Kl :_T (4-62)

limU(x)=—-0=K, =

xX—a



timU(x) = -0 = K, = % (4-63)

x—0

So
Ux) = 227 tan(ﬂx + EJ (4-64)
a a 2
From equation (4-59) we can write
2_21n12
_k -Lu= E-mk, :M
m a

h .
IfD = Py the quantum energy expression
m

n’r’h’

E =
2ma*

(4-65)

We can arrive to the same result if we use the energy expression of a free particle

E= m;/ —imD@v, with v=V —iU
V=0
So v=—iU

After substituting in the expression of energy, we find

2.2_2
e e R et e

2 a a a a 2

2mD*n’zr* 2mD*n*z? 2mD*n’r’
E=- + +

a*cos’a  a’cos’a a’
nm
where og=—+—=
a 2
Finally we find
2n’D*r?
E = 5 m
a
with
71
D=—



So

2 212
nz°h

E =

2
2ma

This is the same result when we use the ordinary quantum mechanics.

Conclusion

Using the Nottale hypothesis which consists of replacing the derivative % byE , We recover

the Schrodinger equation from Newton equation.
The application to the problem of a free particle in a box gives the known formula of the

energy.



Chapter 03

Fractal Geometry and Quantum Mechanics



Fractal Geometry and Quantum Mechanics

Now, we shall postulate that the passage from classical (differentiable) mechanics [18] to the

quantum (non differentiable) mechanics can be performed simply by replacing the standard

: o d d . .
time derivative Eby the new complex, operatorE. This postulate is called Nottale

hypothesis.

Covariant Euler-Lagrange equations

In a general way, the Lagrange function is expected to be a function of the variable xand
their time derivatives X, but in the non-differentiable the number of velocity components x is
doubled, so that we are led to write [3,7]

0= 0(x,%,,%_,1) (5-1)

Instead a classical formulation of the Lagrange functions as

{=0(x,v,t)
We now keep the classical expression of the Lagrangian but make the substitution the
classical velocity v =x by its complex form v =¥ —iU which expressed in term of forward

velocity x,and backward velocity x_ the as v = %(}Q +Xx)— é()'c+ —Xx_), so the Lagrange

function can be written as

(= f[x,%(fg +%) —%(;g —)'c),tJ (5-2)

0= Z(x,l;lx+ +lix,zj (5-3)
2 2

Therefore we obtain o = ov ot = 1=i ot (5-4)
ox, ox, ov. 2 Ov

o v ol _1+i ol

A T A AT A Al (5-5)
ox. Ox_ ov 2 ov
While the new covariant time derivative operator writes
d 1-i d 1+id (5-6)

= +—
dt 2 dt, 2 dt

Let us write the stationary action principle in terms of the new Lagrange function, as written

58 =5[t(x%,. % ,0dt =0 (5-7)

]



It becomes

| L+ 55 + %L 55 =0 (5-8)
Ox ox, ox_
Since
si, =400 hd 55 =40 (5-9)
dt, di_
Eq (5-1-8) takes the form
[ Mgy 2l)Izid 1+id Jo o (5-10)
;| Ox ov| 2 dt, 2 dt
| sy 2l 5 =0 (5-11)
ox ov dt

4
To obtain the Lagrange equation from the stationary action principle we must integrate
(5-11) by parts, but this integration by parts cannot be performed as usual way because it
involves the new covariant derivative.

So we consider the Leibniz rule for the covariant derivative operator

) 0 - . ) o ..
z smcez = 8_ +vV —iDA is a linear combination of first and second order derivatives, the
t t t

same is true of its Leibniz rule; this implies an additional term in the expression for the
derivative of a product

i[%é‘xj =i%5x+%i§x—2iDV%V5x (5-12)
dt\ ov dt ov ov dt ov

Since ox(¢)is not a function ofx, the third term on right-hand side of (5-12) vanishes.
Therefore the above integral becomes
| (%—K%J&Hi(%m) dt =0 (5-13)
sL\Ox dtov dt\ Ov
The second point is integration of the covariant derivative we define a new integral as being

the inverse operation of covariant derivation
[dr =1 (5-14)

In terms of which one obtains

[a Usel=|%Lsx| =0 (5-15)
ov ov



Since O x(t,) = d x(t,) = 0 by definition of the variation principle therefore the action integral

becomes
)
j O _d 0t s vdr=0 (5-16)
s\ 0x dtov
And finally we obtain generalized Euler Lagrange equation that read
ar_dot_ 517
ox dtov

Complex probability amplitude and principle of correspondence

Assuming homogeneity of space in the mean leads to defining a complex momentum

P:% (5-18)
p=VS (5-19)

if one now considers the action as a functional of the upper limit of integration (5-7) the
variation of the action from a trajectory to another close-by trajectory, when combined with
(5-17) yields a generalization of another well-known result, namely that the complex
momentum is the gradient of the complex action
P=VS

this equation implies that v is a gradient this demonstrate that the classical velocity v is a
gradient (while this was postulated in Nelson's work) (see chapter 3)

We can now introduce a generalization of the classical action S which is complex

manifestation consequence to the complex form of velocity in fine scale by the relation [18]
v=—VS§ (5-20)

from equation P =mv.

We introduce a complex function 7 from the complex action S

I
=exp ——S 5-21
v p(sz J (5-21)

This is related to the complex velocity in the following way
v ==2iDV({ny) (5-22)
As we shall see in what follows, i is solution of the Schrédinger equation and satisfies to

Born's statistical interpretation of quantum mechanics, and so can be identified with the wave

function or (probability amplitude)



From (5-21) and the relation P = mv, we obtain
Py = =2imDV(lny)y

p_
2m

Py = —itV(Iny)y

Py = —ih—l/jw
74
Py =—ihVy
So
P =—ihV (5-23)
From (5-21) we obtain
S =ihlny
oS 0
E=——=ih—(In
ot ar( V)
E=inY
w ot
So
E= ih2 (5-24)
ot

Thus the principle of correspondence becomes an equality because, the energy and the
impulsion both become complex.

The Schrodinger equation

We consider the Newton equation of dynamics, which is written in terms of complex variable

and complex operator as [3, 7, 14]

d N
AP v/ 5-25
m v ¢ (5-25)
with
4 _ 0, \W_iDA and D=t
dt ot 2m
When
y=—M S v (5-26)

m



We substitute in equation of motion (5-25), we obtain

m(é G nyy - ﬂA)(ﬁﬁ(m y/)j - Vo (5-27)
o m 2m m
. 0 = h - - = -
—zha(VKn w)——VIinyVN(Viny)=VO (5-28)
m

Using the following remark

((Vinf) + Alnf = %,Av =VA)

-0 0=
V(Vf) = 2AVV)(Vf), V== =V
ot ot
We obtain
=l .0 ih = h - =
Vi-ih—{Uny) |—-—V({Uny)Alny ——V(Alny) =-V ¢
ot m 2m
= 0 o= /. =
V| —ih—(Iny)——Viny)’ ——Alny |=-V
{zat(m//) 2m( ny) . nv/} ¢
0 o , R
—ih—(/ -— (V¢ ——Alny =-—
lat(nl//) 2m( ny) 5. Ay ¢
This yields
— 2 —
Qv _D(Vy ) R yAy =) )
wot 2m\ w 2m W’
plov o mL
w ot 2my
0 n’
= —ih—y=|—A+
o’ (Zm ¢}//

Which is the Schrodinger equation, when has been derived as a geodesics equation in a fractal

three space for non-relativistic motion in the framework of Galilean scale relativity.
The Complex Klein-Gordon equation

Now we shall be concerned with relativistic motion in the framework of Galilean scale
relativity. we shall derive the complex Klein-Gordon as geodesic equation in a four-
dimensional fractal space-time [12].

In the relativistic case, the full space-time continuum is considered to be non differentiable,

we consider a elementary displacement dx, (u=20,1, 2, 3) of a non differentiable four-

coordinate(space and time) along one of the geodesics of the fractal space-time, we can



decompose dx# in term of v large-scale part <dx,> =dx, =V, ds and a fluctuation

de* (Wiener process) such that <dg,>= 0 by definition, and s is a proper time (relativistic

case).

As in the non-relativistic motion case, the non-differentiable nature of space-time yields the
breaking of the reflection invariance at the infinitesimal level one is then led to write the
elementary displacement along a geodesic of fractal dimension D = 2, respectively for the

forward (+) and backward (-) processes, under the form

dX* = dx" +de," (5-29)

dx! =v.,"ds+de." (5-30)
1

de." = a":2Dds’ (5-31)

a,” is a dimensionless fluctuation, and de&t Wiener process satisfy the following relation

<de de,>=+2n"ds (5-32)

<dg">=0 (5-33)

We define the forward and backward derivatives relative to the proper time diand = as
s s

+

dix" (s)=v" ,dil—_x” (s)=v." (5-34)

+

We can combined the forward and the backward derivatives to construct a complex derivative

operator i
P ds

4 _1fd d) ifd d (5-35)
ds 2\ds, ds ) 2\ds, ds

When we apply to the position vector, this operator yields a complex four-velocity

u u
v”:diX":V"—iU”:v+ ;V- _ik T (5-36)
S

We have a derivable function f(x*(s),ds)

i 2 " %
LA N GO
ds o0s " ds oX"oX' ds

(5-37)

So

d o ax* AX*dx”
49 5 10,0, flE A 5-38
ds, Os, ”f< ds, > “ Vf< ds, > (5-38)



We use (5-30), (5-32), (5-33), we find

df 0 i~ -
——=(—+vio, ¥ Do"o 5-39
ds. (as vio, DS (5-39)

p=Tt

2m

We only cansider s-stationary functions, (functions that do not explicitly depend on the proper
times), the complex covariant derivative operator reduces to
d 4o 2TYAM
— =" +iDd")0, (5-40)
ds
Let us now assume that the large-scale part of any mechanical system can be characterized by

a complex action S ,the same definition of the action as in standard relativistic mechanics, so

we write
b
§ = [ AGxwds (5-41)
2 Jax*dx
A="5 ds =% N T
ds c c

S = —mcj.qldX”dX# (5-42)
oS = —mc§j.,/dX”dXﬂ

b 1
58S =-mec j %5(dX”dXV)(dX”dXV) 2

a

b
5S= —mcjadXﬂ djv (5-43)
S

b
88 =-me[v'(5dx")

a

Integration by parts yields

58 =—me|(5 x| j&X" ‘;Vv
p S

ds (5-44)

To get equation of motion, one has to determine 6.5 =0 between the same two points, at the

limits (5 X"), = (5 X"), =0.



So

5Si|=-me[s x" A (5-45)
ds
We therefore obtain a differential geodesic equation
v’
=0 5-46
” (5-46)

We consider the point (a) as fixed, so that (6 x")“ =0
The second point b must be considered as variable 6§ =-mcv, (6 X"),, Simply writing
(6x") asd x" gives

So 0S8 =-mev,o X" (5-47)

The complex four-momentum be written as

P =mcv,=—0S=>v, = 0.8 (5-48)
mc

Now, the complex S, characterizes completely the dynamical state of the particle, and can

introduce a complex wave function

el (5-49)
h
iS .
:;Knl//: S =—ihlny (5-50)
from (5-49) we obtain
v, = _iavgnv/ (5-51)
mc

We now apply the scale-relativistic prescription, replace the derivative by its covariant

expression given by eq (5-40), and v, the complex four velocity of eq (5-51), in the

equation of motion (5-46) we find
—v, =" +iD0")0, v, =0
’l‘ v u'v

v,0,v, +iD0"0,v, =0

2

We find

2 2

a”fnl//ﬁﬂévﬁnt//—h—Dé”avény/=0 (5-52)
m-c mc

We have the relation

0,0 [+ fortn £ =207
0 n f+0,/0%n [ =




This yield

(0.0 1.,
~5 [ L J:—a (0“0, tny +8"“tny d tny)

1,00 1., 1.,

~0 [ . ]:56 (a#aﬂzny/)+§a (0“tny o, iny)

_1 v yz 1 vAau 1 )7 v

—58 0,0 Knl//+56 0 ﬂnwéﬂﬁnl/l+58 lny 00 Iny
1 14 14

=(56 +0,ny)0" 0" iny

1_,[0,0% 1 j
So —0'| =& =0 fny+—0, |0"0"In
2 ( v (" A v

2

Dividing (5-53) by the constant factor D* = —,
(2mc)

5"d
o S 2o
%

When we integrate this equation we find
0"y _
7

we obtain the equation of motion of the

free particle under the form

-K

where K is a constant
=00 y+Ky =0

2.2
m c

hZ

The integration constant K is chosen equal to square mass term,

So

2.2
m c

0“0,y + e w=0

This is the Klein-Gordon equation (without electromagnetic field).

Conclusion

Using the Euler-Lagrange equation in the framework of fractal geometry, we have
reformulated the Schrodinger and the Klein-Gordon equations. Both of these equations have
been obtained by using the Nottale hypothesis without any use of any postulate of quantum

mechanics.



Chapter 06

Bi-quaternionic Klein-Gordon Equation and Dirac
Equation



Bi -quaternionic Klein - Gordon Equation and Dirac Equation

In this chapter we attempt to write the Dirac equation without using the axioms of

quantum mechanics. Indeed, it is known that this equation is obtained from the square root of
the Klein-Gordon equation. The latter is obtained from the expression of energy in special
relativity and the application of the correspondence principle.
Our aim is to derive the Dirac equation naturally from Klein-Gordon equation when the latter
is written in a quaternionic form. We start by a bi —quaternionic covariant derivative operator
which leads to the definition of a bi-quaternionic velocity and wave function, which gives us
the Klein-Gordon equation in a bi-quaternionic form. The Klein-Gordon equation in bi-
quaternionic form allows us to obtain the Dirac equation.

Most of the material used in precedent chapter remains applicable.
Bi- quaternionic covariant derivative operator

Because we are in the relativistic case, and in the scaling domain, we define the space-time

coordinates X “(s,¢,,¢,) as four fractal functions of the proper times s and of the resolutions
¢,and & where ¢, for the coordinates and &, for proper time [7,19].

We assume, that we have a forward shift ds of s which yield to a displacement dX* of X*

the canonical decomposition is;

dX" = dx" +dg" (6-1)
(dX* )=dx" =v,'ds (6-2)
1
de" =a"\2D(ds*)?", (a!) =0,((a")*) =1 (6-3)
e [ T T [T T T T T T T T T T I T I TTIT T
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Fig (6-1) Fractal function X*“(s,¢,,¢,)



and assume also that we have a backward shift —ds yields a displacement —dX*and not

necessarily equal to dX*“, so we can write its decomposition as

_dX" = S x" + 66" (6-4)
<—dx" > =06x"=v"ds (6-5)

1
Se =a "2D(ds?)?", <a ">=0,<(a=")>=1 (6-6)

Furthermore, we must also consider the breaking of the symmetry ds — —ds, which gives

two large-scale forward and backward derivative diand di When applied to dx” (large-
s s

scale displacement) yields two large-scale velocities v,,“and v_*

So we can write

dx* =v++/j (ds)+dg++ﬂ =dx" +de" (6—7)
dX* =v_"(~ds)+de " =dx" +de" 68)
u u
v = B, (69)
ds, ds_
1 1
de, " =a " \N2D((~ds)*)?" /de,." = a," 2D ((+ds)*)?" (6-10)
7 I
d§++ =w,, =a,"2D((+ds)’)?" ?
S+
de_ " L1
=0 =0 V2D((d)) (6-11)
o

Considering now the same forward and backward derivative ianddi applied to an

ds, s

elementary displacement— dx” , which yield two velocities v, “and v_"*

So we can write

—dX" =v, (ds)+ 3¢, " =5x" +O&" (6-12)
—dX" =v_(=ds)+ e " =5 x" + 5" (6-13)
u H
V+_:5x /V“:5x (6-14)
ds, ds_
1
Se__ =a_ "\2D((~ds)*)?P (6-15)

S, =a "\2D((ds)?)*P



1 1
i‘g*- = o, =a "2D((ds)*)> > (6-16)
S+

1 1
ij—- —w_ =a"J2D((~ds)*)?" 2
S_

By using a Taylor expansion, we can define several total derivatives with respect to s

d _of o' of  1oxtax” O°f
ds, Os 0Os, ox* 2 0Os, Ox"ox"

+

(6-17)

g _of ' of 1ax'a o

(6-18)
ds— 0Os Os—0ox" 2 0Os— ox'ox’

In addition, when considering the two case (—dx*)and (dx")we find four total derivatives.

df o o 1t

(6-19)
ds Os, ds, ox* 2 ds, Ox"Ox'
u u v 2
£—+: 8f+8x of +18x ox" O f (6-20)
ds Os. ds_ox* 2 ds. oOx"ox'
— A — At Ay 2
£+_:i+ ox" of +l ox" —ox o f (6-21)
ds os, ds, —ox" 2 ds, —Ox" —ox"
— Ay H — A4 Ay 2
a 8f+ ox* of +l ox" —0Ox o f (6-22)
ds Os. ds. —ox" 2 ds_ —ox" —ox’
We take the first equation and calculate it term by term.
From the equation (6-7) to (6-16) and by using the following equations
<o, 0. >=F2Dn"ds (6-23)
i
<w," >=< de >=0 (6-24)
o ds,
u 14 u v
<dg dx o (de* )Ydx >:0 (6-25)
ds ds
dx"de"
< > =0

ds



dx"dx”
< >=<y" yds > =0
dS ds—0

ox* ox* o
+

os, 0Os, Os,

11
" :a”@(dsz)w 2
=V + 0"y

-0X"  ox" N oc"
0s, Os, Os,

=v" _ +o"
<de >=0 = <w">=0

ax‘dx’ dx*dx’ detde’
< >=< >4 <
ds ds ds

detde”
<
Os

—dX" —dX"’ ox"ox’
< >=< >+
ds ds

dx" dx" .
< >=<y v 'ds > -0 isasame for (—ds)
ds ds—0

ox“ox" .
<———>=<v"“v"ds > -0 isasame for (—ds)

ds ds—0

1
2D
>

D=2

1
- a"a."2D(ds*)?" (ds*)

de'de’
< >=
ds

ds

=aa V2D§=a+”a+v2D

+ Y+
ds

u v u v
<d€ de >_<d6‘ de ds>=< o "o '>=—2n"ds
ds ds ds

From the definition
oet og” oe! o¢’ v
< >=< ds>=<w, "w,">=-2n""ds

ds ds ds

(6-26)

(6-27)

(6-28)

(6-29)

(6-30)

(6-31)

(6-32)

(6-33)

(6-34)

(6-35)

(6-36)



Using the same calculation, we find

U v

<detde” s (6-37)
—ds
u v

<9 3‘9 > =4 2" ds (6-38)
—as

So when we use the precedent relation, the total derivative with respect to s of a fractal

function f becomes

Y 4 =(ﬁ+vuaﬂ $D8”8#j f (6-39)
S R

ds, »
where the * sign in the right- hand side is still the inverse of the s-sign.

When we apply these derivatives to the position vector X *

u
ax +t+=V (6-40)
ds s o

we obtain

We consider now the four function —X*“(s,¢,,&,) because there is no reason for
distinguishing (—X*“)(s,¢,,¢,)) and —(X“(s,¢,,¢&,)) since there is a breaking of the parity
P(u = x,y,z)and time reversal T( for u =t) symmetries.

As we are dealing with X*, we consider that we have a forward shift ds of s which yields

a  displacement d(-X")of —X*“and a  backward shift —ds yields a
displacement—d(—X*)of — X*.

Therefore, we can write the canonical decomposition

d(-X")=dx" +de" (6-41)
<d(-X")>= dx" =V" +ds (6-42)

- T
de" =a"\2D(dt*)>P < (@ )>=0 <(@".)’>=1 (6-43)
—d(-X")=0x" + ¢, (6-44)
<—d(-X")>=6x" =¥"_ds (6-45)

1

Se, =a" 2D(dt*)?P < G" >=0< (")’ >=1 (6-46)

When we consider the breaking of the ds — —dssymmetry we find the large scale forward

~ ~

and backward derivatives i and L .

ds ds_

+



Furthermore, when we apply the precedent derivatives to— X*  yielding an elementary

displacement d (—x* ), we obtain two large —scale velocities

- dx* - dx*
vl = and v'_. =

woods, w“ ds

(6-47)

However, when we consider an elementary displacement —d(—x") they yield two other
large-scale velocities

oxt - ox”
v = and v'__ =

su dS+ su dS_

(6-48)

By the same method as above, we obtain new total derivatives with respect to s of a fractal

function f , which we can write as

df o _
Y[ 5r.0 FDO"O 6-49
ds, » (8s TVt "jf (6-49)

When we apply these derivatives to the position vector X*, we obtain

th= T (6-50)

So from (6-40) and (6-50) we obtain eight large-scale velocities

u “ LN SE SE S S
Vs, Vo,V 4,V V1,V 4,V YV
Sp S S Sp su Sp S S

If we assume that the breaking of the symmetry dx* — —dx* is isotropic (the signs
corresponding to the four p indices are chosen equal), we can use the eight components of
velocities to define a bi-quaternionic four-velocity. When we write this velocity we have

several choices, but the right choice is the velocity, which leads to complex velocities
v =[v” V=iV —v”7+)]/ 2 in the non-relativistic motion and real velocities

v =v*,, atthe classical limits.

For this reason we write

V‘“ :%(V’u++ +V”__)—é(v”++ —\7#——)+|:%(V'u+— +Vﬂ—+)—%(\/”+— —’\7'”++):|€1

1 i 1 i
+| — V#—— +\7#+— - \7#—— —\7'”—+ e, +|— V'u—+ +"7,u++ - \7/1—+ +\,7'u+— e 6-51
{2( ) 2( )}2 {2( ) 2( )}3( )

At the limit whene, — dx“ande, — ds, every e; — term in (6-51) goes to zero, and as
v# _ =v*_,in this limit v* = [v”++ + v =iV =V )]/2Which is the complex velocity,

At the classical limit v*,. =v*_, so the velocity becomes real: v =v*,,.



We obtain the bi-quaternionic velocity v* when we apply a bi-quaternionic derivative

d .
operator e to the position vector X*
S

The derivative operator which yields the velocity in eq (6-51) when applied to X “ is writes

d 1(a d) i(a d) 1 ( d d J i(a d)
— = +—|—-= - | += — == —— e,
ds 2\ds™ ds 2\ ds*™t  ds 2{\ds™™ ds™ ) 2\ds"™ ds™

[(a da) i(d d \(a d) i(ada da)]
+— —t— || — |l +| | —+ ——| ——+——le; (6-52)
21\ ds ds” 2\ ds ds™ 20ds™ ds* 20 ds™ ds*

Substituting by

_fﬁ{gm ¥ 00" Jf
S U

"

.od )
in — we obtain
ds

if=l(a Vi3, D00, + 2 4740 +D8"6j
ds 2\ Os g Os

—i(ﬁwiga _pere —2 _5up - Do"3,
2\ os “ “ Os “

+ l(ﬁ—i-vf_@ —Do"0 +£+vﬁ‘+8 +D0"0,
2 0s ! “ o Os “

i(0 0 =
——(—+V" 0,-D0"0, -—-V"0,+D0o"0, Je,

2\ 0s + Os

{ (—+v“6 + Do"0 +§+\7"8 —Da"@j
0 0 j

—i(—+vf‘_8 +D3"8, ———v* 0, — D"
2\ os g Os

Je,

[ (—+V"6 +D0"0, +3+V“6 —D@“aj

S ++
0
2\ Os + Os

]
]
—i[—ww +Do"d, +ﬁ+V”a ~Do*a, [le,]f



& - (E—FL(V“_V#k# _%(Iﬁl 0, _?_ﬂkﬂ +iD6”8ﬂj

ds os 2+ -
+ g+l(V"+V“)§ —i( “—17“)6 e,
Os 2 ‘+- —+ /N K

+{%+1(V”+ I?l)ﬁﬂ _%(I{f_ I?:‘)?ﬂ}ez

[eotrhofg) o)

Os 2 -+ 4+ s

7 _(|2 e +e —ie iDo*
o —HGS(H e, +(1 )3)D+ D0, +

+1(V"+ v )—L(V”—V")
2 N4+ -— 2 N ++ —

rrave)- -7 )

+ ++

{1
+_
2

+ [l (V" + V" )— L(V” —V ):|62
2 —+

%f = {[l+el +e, +(1—i)e3]§+v”a# +iD6”a#}f

Therefore, the bi-quaternionic proper-time derivative operator is given

4 _ [1+e +e, +(l+i)e3]%+v”8# +iDd"0, (6-53)

We consider s-stationary functions (functions which do not explicitly depend on the proper

time s) the derivative operator reduces to
d :
o vi0, +iDo"0, (6-54)



Bi-quaternionic stationary action principles

Like the complex case, we give the free motion equation as a geodesic equation
dv,
—==0 (6-55)
ds
But now v, is a bi-quaternionic four velocity, the elementary variation of the action
0S8 =-mcv, 6 x" (6-56)

We define the bi-quaternionic four-momentum as [18]

P, =mev, =-0,8 (6-57)

i

We define the bi-quaternionic wave function as [19, 20]

s

w=e™ (6-58)
: s
l ¢S,
Owy=—=~0 Se™ 6-59
W s, (6-59)
i
dw=—-oS 6-60
W o, O 7 (6-60)
) i
w'o,w =c—aﬂs (6-61)
0
So
-0,8
V= (6-62)
iS,
v, :70:// "0,y (6-63)

We substitute the v, expression and the covariant derivative operator in the equation of

motion, we obtain

d
Ly =0 6-64
ds i ( )

('8, +iDo" I, =0 (6-65)

ﬁ(’s—ow-lavw 0 + iDévévj(t//_léﬂy/): 0 (6-66)

m m

Since

S, =2mD



We have
w oy o,y o,w)+e%e,lyo,p)=0 (6-67)

To develop this equation we use the relations of quaternions

py =y Ty =1 (6-68)
you =-(wh (6-69)
vo,u=-0,5" W (6-70)

By taking the second one term of equation (6-67) and developing it, we obtain
1., . 1, B B
50 2, 16,3//)=56 v ow+y0,0,v)
1 v -1 1 -1Av
=58 ow a#lﬂ+58vl/l 00,y

+%8V1//_18V8#l// +%t//"16V8v6ﬂt//
1., . | P _ | B
50 o, (v aﬂw)ja o0,y + 0"y 0.0,y 4y 00,0, (6-71)
The first term of (6-71) becomes
v @vp v ow)=v @ vow By v @Vl 00w
=y (0o )-low by 0.0,
=y Jow)-(0w b0 ,w (6-72)
The second term of (6-71) vanishes if we use the second term of (6-72)
oy =-0v k™)
00,y =y Nowlw " —y oy —y o yay
Oy oy =0y lwoy T =+ Oy
=y ooy
So
00y =2y 0y Oy —y 0Oy (6-73)

L on (- A B} | .
50 0,lw0,w)=—yovow 16ﬂw—5w '0"0,0,¥

- |
+0"'y"0,0,w 4 '0"0,0 ¥ (6-74)



v vk, v o,w)=v ' @v)ow By -Ev,0,w

When we add (6-74) to (6-75) we find

(6-75)

7 (8”w)@v(w"6#w)+%avﬁv(w‘la,,V/F ~y 0y oy o,y —%w"ﬁvavw‘laﬂw

v | P
+0"y 'ﬁvéﬂl//JrEt// '0"0,0,¥

ryEylow -0y P.ow=0
So w0 @wly 0w -y 00,0,y =0
Using eq (6-73) we can show that
v 0" (0,w)0 vy +y10"8,0,w =0
Multiplying this equation by y™' to the right and by v to the left and using (6-71)
py 0" (0w)o v wy T +wy 80,0, py T =0
0"(0,w)o,w " +0"0,0,yy ™ =0
where we have used the relation
0'0,0,=0,0"0,
So
"0 wo,w ' +0,00py =0

o leowh -0

If we integrate, we find
(@owl'+Cc=0
when we take the right product by y to obtain
0"0,w+Cy=0

2.2
mc

/i

By substituting C =

the equation (6-78) becomes

2.2
m c

00,y + e w=0

which is the bi-quaternionic Klein-Gordon equation, and we can write
1 0’y o*w 0w 0w m’c’
A2 T A2 At AT T T
c” ot ox oy 0z h

(6-76)

(6-77)

(6-78)

(6-79)



We now attempt to derive the Dirac equation from the Klein-Gordon equation by using the
property of quaternion formalism.

Dirac equation

By using the property of the quaternion and complex imaginary units e,” = e,’= e;* = i* = -1,
where substituting in (6-79) which becomes [19]

1 0% _ ,0% , 0
ot G eTan

2
iver 0 Ve (6-80)
Oz

However, we have used the anticommutative property of the quaternionic units

(eie ,=—ee fori#j ) and we obtain six vanishing couples of terms.

Then we add this terms to the right-hand side of (6-80), we obtain

lg(la_'//}:%g e3a—l//e2 —|—e16—l//i+e3a—l//e1 —Z'Eeg//e3 e,
cot\c ot ox ox oy 0z h

+e, 2[63 a—!’//ez +e, aa—;/}/i +e, %—Z@l —i%ey//qji

oy ox
0 oy oy . oy .mc
te,—|e,—e,+te,—ite,—e —i—
e, ™ (e3 o e, +e 6yl e, ™ e —i - e3we3]el
.mc( O oy . 0 .mc
+l7[e3a—ijez +ela—;/:l+e3a—lz//e1 —17€3l//€3]€3 (6-81)

It seems that eq (6-81) is obtained by applying twice the operator % to the bi-quaternionic
cot

wave functiony .

So we obtain
lﬁ:e3ie2+elaii+e3iel—iﬁe3( )63 (6-82)

we show in appendix that the matrices e; (  )ex,ei( )iand e3;(  )ep, are the Conway
matrices and can be written in a compact form a* , with
ar
o, 0
where the o* being the three Pauli matrices, and e3 ( )e3 is a Dirac B matrix, we substitute
the Conway matrices in (6-82) by « “and S, we obtain the non-covariant Dirac equation for

a free fermions

1oy  Ow . mc
loy __xow _ me 6-83
P 4 (6-83)



Conclusion:

In previous chapters we have noticed that complex numbers enables us to obtain the
Schrédinger equation. The aim of this chapter has been to show in explicit manner how the
use of the bi-Quaternionic numbers helps us to obtain the Dirac equation.

One of the astonishing remarks which one can mention in this chapter is the link between the

laws of physics and the theory of numbers.



Conclusion

In this work we have attempted to obtain the Dirac equation by using the formalism of the
scale relativity. In order to reach our goal ,we have followed the following steps.

Chapter 1 is devoted to a review of fractal geometry and scale relativity which lead to define a
fractal space- time and introduce new mathematical tools for physics, such as scale-
dependent fractal function that allows us to deal with the non differentiability.

Then in chapter 2 we consider the behavior of quantum mechanical paths in the light of the
fractal geometry. we have expressed the work of Feynman and Hibbs while were
demonstrated that typical quantum mechanical trajectories are characterized by their non
differentiability and their fractal structure even the word fractal has not been used . We have
also demonstrated that the Heisenberg relation can be translated in terms of the fractal
dimension of dimensional four space-time coordinates jumping from D=2 in the quantum and
quantum relativistic domain to D=1 in the classical domain . The transition scale has been

identified as the de Broglie scale 4, = iﬂ

P
In chapter 3 we have derived the Schrodinger’s equation from Newton's fundamental
equation of dynamics without using the tools of quantum mechanics. The method used is the
stochastic mechanics according to Nelson.
The chapter 4 we have applied the principle of scale relativity to the quantum mechanics by
defining the covariant derivative operator and we have treated some applications.
In chapter 5 we have attempted to write the Schrodinger’s equation by using the hypothesis
of Nottale also in a same way we have derived the complex Klein-Gorden equation
We end up with chapter 6 where we have derived the Dirac equation from the Newton's
equation in the spirit of Nottale hypothesis ( the scale covariant derivative)
So we can consider the studies in the previous chapters just as a first step towards a more deep
level (all geometrical) where the scale forces are manifestation of fractal geometry and non-
differentiability, and we find as a result, lead to a new interpretation of gauge invariance ,and

the meaning of the gauge field too.



Prospects and Perspective

Gauge field nature

We consider an electron or any charge particle ,in scale relativity ,which call particle is
identify as a geodesic of space —time their trajectories have interns fractals structures ,situate

with a resolution & < A, =%/mc then we take in account a displacement of the electron

,the principle of scale relativity implicate the appearance of field induce by this displacement
to understand, we can give like a model an sight of construction of Einstein gravitation theory
from general relativity principle of movement ,in this theory the phenomena of gravitation is
identify as a manifestation of space-time curvature which translate by rotation of origin
geometrical vector ,indeed on account of space-time non-absolute character , a vector
V*made a displacement dx” can not still identical to itself ( else, it mean that the space was
absolute),so it endure a rotation which write by using the Einstein notation

oVH=TpV"dx"
the Christoffel ‘s symbols I')) appear of course in this transformation, we can calculate it in

the following of construction ,in function of derive of metrical potential g, ,which allowed

to it be considered as components of gravitation field which generalize Newtonian force

As same as, in the case of electron’s fractal structure,we wait that the structure which we find
it entailment at certain scale we find it again at other scale after displacement of the electron
(in the opposite case the scale’s space be absolute, which give a contradiction with the scale

relativity  principal),so it must appear a dilatation field of resolution induce by the

.. ) ) o€
ecclesiastical translation, let us write e—=-4 #5 x“
P

we can write the last equation by covariate derivative
eD, (n(A]e) = ed (n(1]&)+ A,
this field of dilatation should be able been define however the scale ,it means however the



under-structure was considered, so we take an other scale &' = pe (we considered the Galilean

!

. . . o€
scale relativity) we following the same translation e—- = -4 5 x*
&

The both expression of 4, are connected by the relation

A;, =4, +e8#£np
when V = /np = (n(¢'/ &) characterize relative scale case which explicitly depend to the
coordinate, so we are now in the frame of general relativity of scale and the non-linear
transformation because the scale velocity which was redefine as a first derivative
np=dinL | db
then the equation() including a second derivative of fractal coordinate

d*inL] dx"ds
So if we now conceder a translation along tow different coordinates, we can write a relation of
commutation
e(0,D,—-0,D, )np=(0,4,-0,4,)

This relation define a tonsorial field F,, =0,4,-0,4,,which, contrary to 4, 1s

uv vaituod

independent to the initial scale

Charge’s Nature

In a gauge transformation 4 = 4, -0,y ,the wave function of a electron of charge (e)

become ' =we* ,the gauge function is the conjugated variable of the charge as the
position ,the time and the angle are the conjugated variable respectively of the impulsion ,the
energy and the angular moment in the action expressions or in the quantum phase of free
. Apx—Et+o : .

particle ,0 = zw ,we know that the impulsion ,the energy and the angular
moment are yielding from the space—time nature consequence to its symmetry (translation and
rotation) according to Noether’s theory,

In the precedent paragraph we reinterpret the gauge transformation as a scale transformation

. &
of resolutione — &',/n p = In| —
&

In such interpretation the property specific characterize a charged particle is the explicit
dependent of the action to the scale it means the wave function with the resolution
So

, iéffnp
l// — l//e he
Now we consider the electron’s wave function as a function dependant explicitly with the
ratio of the resolution, we can write the differential equation of scale among y is solution

with the form

a(e n pj
c
D= —ihL is the dilatation operator, the differential equation we can write it as a

6(6 In pj
c

equation of values proper



Dy =ey
So the electrical charge be consider the conservative quantity which yield from the new
symmetry of scale, namely, the uniformity of the variable of the resolution /n &



Appendix A
The Laws of Scale Transformation



Appendix A
The Laws of Scale Transformation

In Galilean motion relativity we write the relative velocity as

V,-" =(I72_I70)_(I71_I70) (A-1)

We also may write the relative scale as a ratio

Ax, [ Ax, | Ax, }
)

It clear that the length of object is define as scale ratio which have physical meaning

In logarithmic representation we have

tnp = tn(Ax, /Ax,) = (n(Ax, | Ax, ) - tn(Ax, [ Ax, ) (A-3)
From the equation (A-3) seems that the scale state ) = fn(sz / Axl) is formally equivalent to a
velocity.
In accordance to the assumption which treats state of scale and motion as a same, and one we
speak to the velocity of the system, we never speak to the absolute velocity, but we speak to
the velocity of system relative to an other system, as the velocity the scale of the system can
be defined by its ratio to the scale of an other system
We can now write the equation of the scale state

V=V, V=, -1)- (-7, (A-4)

Consider now a ¢ which transforms under a dilatation ¢ = Ax/Ax"as

p'=pq° (A-5)

We can write the equation above in a linear form

tn(g' /9, )= tn(p]p, )+ S In(Ax/Ax') (A-6)

We assume that the resolution Ax << 4 (A= n de Broglie length)
P
We have the Galilean motion transformation
X' =x+vt (A-7)
t'=t



When we compare the equations (A-6) and (A-7), we obtain the correspondences

X = En(ij
Dy

t=0

we are particularly interested in the case where w =/ or v =t

We showed in chapter 1 that the length of a quantum particle diverges as (A-1-9)

In (A-1-9) X = ¢n(¢)

t=0

f)

Then we define the state of scale as

v m(i} _dtn(f) _dx (A-1-13)
Ax do do

The scale laws (A-1-9) are formerly equivalent to the laws of free motion at constant velocity.
We assume that the coordinate system is described by its state of motion and also by its scale.
A coordinate system which verifies the equation (A-1-9) is called scale inertial system.
We can suggest now that the laws of nature are identical in all scale inertial systems of
coordinates
The anomalous dimension J is assumed to be invariant as time is invariant in Galilean
relativity, where we describe by the equation of the Galilean scale-inertial transformation

X' =X+Vo (A-14)

5'=6 (A-15)

The law of composition of scale state is, as the velocity, the direct sum

W=U+V (A-16)

which corresponds to the product Ax"/Ax = (Ax"/Ax")(Ax'/Ax) for the resolution.



A-2 Special Scale Relativity

We know that the Lorentez transformation derived from the successive assumptions: linearity,
invariance of ¢ (the speed of light), the composition law, existence a neutral element, and the
reflection invariance, but we can show that may be derived it from only of the linearity,
composition law and reflection invariance

We write the linear transformation of coordinates as

x'=a(v)x—b(v)t (A-17)
t'=a)t- pv)x (A-18)
We divide on a(v), and we define the velocity v = % the linear transformation become
a(v
x"=y()(x—vt) (A-19)
t'=y(W)(AW) - B(v)x) (A-20)

Where y(v) = a(v), A and B are a new functions of v
Let us take two successive transformations

x"=y(u)(x —ut) (A-21-a)
t"=y(u)(A(u)t — B(u)x) (A-21-b)
x"=y)(x"—vt") (A-22-a)
t=y(W)(AW)t'— B(v)x") (A-22-b)
We substitute (A-21) in  (A-22), we find
. _u+ A(u)v Py
x" = }/(u)}/(v)[l + B(u)v{x 1o Blat Bl t} (A-23-a)
. _ AMW)BW)+ B() .
t" =y W)y ([ A@w)Av) + B(v)u{t 2640} Bo)s x} (A-23-b)

Then the principle of relativity means that the composed transformation (A-23)
keeps the same form (A-21)

x"=y(v)(x—wt) (A-24-a)

t"=y(W)(A(w)t — B(w)x) (A-24-b)

We compare (A-24) and (A-23), we find
_u+ A(u)y

Bl (A-25-a)



y(w) = y(u)y [+ B(u)v] (A-25-b)

y (W) A(w) = y )y [ Aw) A() + B(v)u] (A -25-c)

B(w)  AW)B(u)+ B(v)
A(w)  A@w)A() + B(v)u

So we now use the reflection invariance, it means use the transformations (x — —x,x" — —x')

—x"=yw)(—x—-u't)
t' =y (A"t + B(u')x)

We compare to (A-21) and take u' = —u consequent to the reflection invariance, we find
)=y (A-26)
A(=v) = A(v) (A-27)
B(-v)=B(v) (A-28)
Combining the equations (A-25) yields the equation
A{u + A(u)v} _ A@w)AW) + B (A-29)
1+ B(u)v 1+ B(u)v
Substitute by v = 0 in the equation, we obtain
A(u)[1 - A(0)] = uB(0) (A-30)

Ifu = 0, we find two solutions 4(0)=0 or A4(0)=1
A(0)=0= A(u)=uB(0) with B(0)=0
= A(u)=0 (A-31)
The equation (A-25-d) becomes

B(w) 1
A0w) = < A(w) =uB(w) (A-32)
A0)=1= B(0)=0 (A-33)
Let us now take v = —u in (A-29)
A{u - A(u)u} _ A@)A(u) + B(-u)u (A-34)
1-B(u)u 1-B(u)u
We use the property A(—v) = A(v), and the new function F define as
Fu)=Aw)-1= Alu)=F(u)+1 (A-35)
F verifies the next equation
F0)=0 (A-36)
From the equation (A-34) we obtain
F[u - A(u)u} R GOE 1)? + B(—u)u (A37)
1-B(u)u 1-B(u)u
F{ F(u)u } _ Fu)F(u)+2F (1) (A-38)
1-B(u)u 1-B(u)u

F{ Fluu } = 2F(u)M (A-39)
1-B(u)u 1-B(u)u



We now use the continuity of the F and B atu = 0, which means that ®(u) =1+ F(u)/2

andy (1) =1— B(u)u which implies that

A& - 0 then|®(u) — ®(0)| < & and|y (u) -y (0)| with ®(0) = landy(0) =1

Next

l-¢<1-Buu<1+¢

l-e<1+Fw)/2<1+¢

The function ®(u) and y(u) were bounded when u e [— M, 770]

So we can writ

k, <® <k, and k; <y <k,

ki=k,=l1-¢ and k,=k,=1+¢ and g0
The bounds on 1+ F(u)/2 and1— B(u)u change the equation (A-2-23) to the equation
2F(u) = F(F(u)u)

The continuity of F at u it means
Ve=0,3n>0 then |u

We put F,=F(u,)=2"<¢

We have 2F, = F(u,Fy)

u, =u,Fy =2"u, <u, = F(u,)=2F, =2""

After p iteration we obtain

F(u,)=2""

And after n iterations

Flu)=2""=1>—
(n) 2

This is in contradiction with the continuity of F since F(u,) > ¢
So the composition of velocity in the equation (A-25-a) take the form

u+v

1+ kuy

The equation (A-25-b) becomes

7(”+V]=7WWWXmeo

1+ kuv
We put u = —vthe equation (A-41) becomes

7(0) =y Wy (-v)1-kv*)

Forv=0

1

—<77:>|F(u)|-<g

7(0)=[y(O)] = (0) =1

So yWy(=v) =

When we consider the reflection invariance, which implies (v) = y(—v), we obtain

1

1
1—kv?

yv) = —=——=

1-kv

2

(A-40)

(A-41)

(A-42)

(A-43)

(A-44)



We remark that if we putk=0, we find y(v)=1 , which describe the Galilean

transformation, and if k=c’(A-44) becomey(v)= ! =, which describe the

v
==
C

transformation of Lorentz

3-Lorentz Scale Transformation

So we showed how we can derive the Lorentz transformation from only the linearity ,the
internal composition and reflection invariant, which lead to the thought that the laws of scale
transformation must be also take the Lorentz form ,instead of the Galilean form

We give the Lorentz law of composition of velocities

w=H2EY (A-45)
1+
CZ
Which we can be written it in other way as
LIRS
W_ T (A-46)
c 1+ )
u v w . . . .
We putU =—, V =—, W =—, which are dimensionless quantities
c c c
So w=Y*V (A-47)
1+uUV
We replace W, U and V by logarithms of other numbers taken in base k (A-47) becomes
log, i1 = log, p+log,v (A-48)
1+ /og,p log,v
We divide both members of (A-48) by /n k , we find
_ Inp+/tnv
Inu = - n pinv (A-49)



Appendix B
Some Explicit Calculations



In the following we shall compute the covariant derivation of a product .We has

%(f.g){%w%—im)(f.g) (B-1-1)
L(18)=L(f.g)+7V(f.2)-iDA(f )
C(re)==(r. . .

%(f-g) = f%g - g%f +ifVg +igVf —iDV[V(f.g)]
%(f-g)= f%g++Vﬁg+g§f+ﬁg§f—iDﬁ[ﬁg+g§f]

%(f.g)z f£g++\7ﬁg+g§f+\7g§f—iD§ﬁg—iD§g§f—inAg—iDgAf
—(fg) f{ +vV—zDA}g+gL§ +VV - zDA}f—ZiD?ﬁg
So E(f-g) = ng + ggf —2iDVfVg (B-1-2)

Now we attempt to prove the following relation which it was used in the second chapter .So in
the formalism of path integral they give the average of a function F (x(t)) by

(x(2))

(F(x(®)) = [ D(x())F x(t)) (B-2-1)

S(x(¢)) is the classical action
If we displace x(t) by 7(¢) fixed

D(x+n) = D(x(¢)) (B-2-2)
Flx(0)+ (1) = F(x(0) jm>FV; (B-2-3)
Which gives
OF = B-2-4
jmw5() (B-2-4)

The average does not affect by the displacement (), so

(F(x()) = (Fx(®)+n(0))) (B-2-5)



m)

(Fx+m) = [D@F(x+ ner’ (B-2-6)

(Facem) = [ D(x)[(F(x) LG~ dsJeh[“I }] (B-2-7)

If we develop the exponential function we obtain

<F(x + 77)> ~ J-D(x)Kf(x) + I?](s)i—idsjehs (1 + %In(s)%dsﬂ

<F(x + 77)> ~ ID(x)[F(x) eé + %F(x) e;SIn(S)gds + e;'[n(s)i—ids} (B-2-8)

We denote that
j n(s)ﬁds =85 (B-2-9)
ox
So
(FGe+m) = (F(x)+ %{F&S} +(6F) (B-2-10)

From (B-2-5) we conclude that
(6F) = —%{FﬁS} (B-2-11)



Appendix C
Quaternions



We showed in the chapter six how the Dirac equation was naturally obtained from the Klein-
Gordon equation when written in a quaternionic form ,to we get a good understanding we
must be know the quaternion and there properties

Definition

A bi-quaternion ® =(®,,®,,®,,d, )is a mathematical being compote to a four complexes

numbers components, @, i=0,...,3

Algebraic properties

We have two quaternions @ = (®,,®,,®,,®,)and v = (v,.v,,v,,v,)
OP=0=>, =0,withi=0,1,2,3
So the zero quaternion as 0=(0,0,0,0)
O=y=>, =y, ,withi=0,1,2,3
We have a complex number «
The multiplication of a quaternion by a complex number «z, is write
Da = (a®,,ad,,aD,,ad,)
Pa=a® = (ad,,aD,,ad,,ad,) the commutative property
a(P+y)=ad+ay the distributive property
(a+ ) P=aD+ LD the associative property (c-1)

Addition of quaternions is commutative and associative
O+y=y+0 =(CD0 T, @+, @, +y,, @ +V/3)
O+ +p)=(P+y)+o
O-y=0+(-1)y (c-2)
The quaternionic product ®@.y of two quaternions is a quaternion
For any complex. Number.

(a@)y = d(ay)=a(®y) (c-3)
We can write the quaternion as
O =D, +¢de, +e,De, +e,De, (c-4)
Where the units e, satisfy the following property
ee =—0, + ZZ: le e, (c-5)

And ¢, is antisymmetric three-index with &,; =1
From these rules, we find that the product of two arbitrary quaternions is
Oy = (q)ol//o Oy, Dy, Dy, Ry + Dy, + DLy + Dy, + DY, +(Dzl//o)

+ Oy, Oy, O + Py, + Dy, — Do) (c-6)
This product is not in general commutative, but is associative



We define quaternion conjugate as
O D =(D,~D,,~D,,~D,) (c-7)
From (c-6), we find that for any @,y
Dy =iyd (c-8)
One also defines the scalar product of quaternions

1y — 1=
Oy = E(CDI// + l//CD) = E(CD v+ l//CD) =0y, + Oy, + Dy, + Dy, (c-9)
From the scalar product we obtain the norm of a quaternion as
DD =D =D + D) + D] + D] (c-10)

The norm and scalar product are numbers, in general complex
The norm of a product is the product of the norms

@p)oy)=(@p)op)= (@ )py) (c-11)
When ®® =0= ® =0 or ® is singular
If®OD =1,® is unimodular.
The inverse of @ since @ # 0 and® is not singular is defined as

o' = i_ (c-12)
(Ol0)
We have the properties
(@y)' =y 0! (c-13)
OP' =07'D (c-14)
The hermitian conjugate of a quaternion @ is the quaternion
0N :(_q)zsq)Ts@;:(D;) (0'15)
(Py) =y 0" (c-16)
Quaternion @ is hermitic if ®* = ®
The complex reflection of a quaternion @ is the quaternion
©* = (- ] -0 -0} -0} (e-17)
(Ddy) =Dy~ (c-18)

The effect of applying any two of the operations -, +, * to a quaternion is the same as that of
applying the third; for example

@) =(@) = (c-19)
Note too that, for any complex number a,
(a_): ad,(ad)" =a'47" (ad) =a" A" (ad) =a" A" (c-20)

Quaternions and Conway Matrices

We have four quaternions @, , a and b, we consider the transformation again;

O >y =adb (c-21)
This transformation is linear for the elements (®,,®,,®,,d, ), so we can be written in matrix
form



w =M(a,b)D (c-22)
Where M is a 4x4 matrix and ® and y are 4x1 column matrices the notation indicates that
M (a,b)is determined by a and b if we
We now consider tow transformations,

v =adb andy = cyd = y = cadbd (c-23)
Which be written in matrix form
w=M(a,b)0 and y = M(c,d)y = y = M(c,d)M(a,b)D (c-24)

y =ca®bd = y = M(ca,bd)
So, when we compare the tow parts of (c-24) we find

M(c,d)M(a,b)= M(ca,bd) (c-25)
For a=cand b=d , eq (c-25) becomes
M(a,b) = M(a>,b?) (c-26)

If we put a =b =—-1in eq(c-21) we obtain
y =(DO(=) =

y=M-1-1)0=0= M(-1,-1)=1 (c-27)
Where I is the unit matrix
If a® =b* =1, we can write
M(a,bf =M(a>,p?)=M(-1-1)=1 (c-28)
From the unit matrix Conway suggested proposes that we can write M a,b) as
M(a,b)=a( b (c-29)

Now, by using the quaternions (e;, €, €3, 1), which satisfy eq(c-28) we can derive sixteen
matrices, but we care to the four matrices which we will use in chapter 6

0 0 0 -1 000 i
e P O O P
10 0 o0 i 000
0 0 -1 0 10 0 0
63()6‘_—018 g (1)63()€3=8(1)—01 0
01 0 0 00 0 -1

It seems that the above matrices satisfy the suggestion of Conway
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Résumé

Le but de ce mémoire est de d’essayer de trouver un lien entre la mécanique classique et la
mécanique quantique. Le but de la physique moderne est retrouver la mécanique quantique
comme limite de la mécanique classique. L’une des théories contemporaines proposées est la
théorie de Nottale dont le but est de reformuler les équations de la mécanique quantique
directement de la mécanique classique (le principe fondamental de la dynamique) sans passer
par aucun des postulats de la mécanique quantique.

La théorie de Nottale — la relativité d’échelle- consiste dans une généralisation du concept de
la relativité pour incorporer en plus de la relativité du mouvement — sur laquelle elle est basée
la relativité d’Einstein- une autre relativité celle de I’échelle ou la résolution.

Dans le cadre de la relativité d’échelle I’espace-temps devient fractal d’ou la non
différentiabilité des coordonnées.

En utilisant la définition de la dérivée fractale covariante qui est une généralisation de la
dérivée covariante de la théorie de jauge, on a pu obtenir les équations de Schrédinger, Klein-
Gordon et Dirac a partir de la mécanique Newtonienne. Les résultats obtenus montre un lien

étroit entre les équations de la physique et la théorie des nombres.

Mots Clefs:

Géométrie Fractale. Relativité d’échelle. La dimension de Haussdorff. Les nombres

quaternioniques.
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Abstract :

The aim of this dissertation is to find a link between quantum and classical mechanics. On of
the modern theories which seek to find this link is the scale relativity of L. Nottale. The aim
of this theory is to reformulate some of quantum mechanical equations directly from classical
mechanics without any use of the postulates of quantum mechanics.

We have used the Nottale theory based of the generalization of the concept of relativity to
incorporate another type of relativity: the scale relativity in addition to ordinary relativity of
Einstein based on motion relativity. In scale relativity the spacetime will be fractal, which
leads to non differentiability of the coordinates.

By using a definition of a covariant fractal derivative proposed by Nottale which similar to the
covariant derivative encountered in gauge theories, we can obtain the Schrodinger, Klein-
Gordon and Dirac equation from Newtonian Mechanics.

The results obtained in this dissertation show a close relationship between laws of physics and

number theory.

Key Words:

Fractal Geometry. Scale relativity. The Haussdorf dimension. Quaternion numbers.



