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I ntroduction

Group 111 nitrides, InN, GaN, AIN, and their alloys, have revolutionized solid state
lighting since the development of a commercia blue light emitting diode based on GaN by
Nakamura [1] and continue to attract substantial research interest due to their unique

properties and importance for optoel ectronics and e ectronics.

Group-I11 nitrides consist of the compounds of nitrogen (N) and the elements in the
columnl3 p-block of the periodic table namely boron (B), aluminium (Al), galium (Ga),
indium (In) and thallium (TI). Amongst these compounds GaN, InN, AIN and their aloys the
ternaries InGaN, AlGaN and AlInN, and the quaternary AlinGaN have been the subject of
intensive research for the device scientists and engineers in recent years due to their potential
application for electronic and optoelectronic devices fabrication [2]. The fundamental band
gaps of Il1-nitride ternaries cover various light spectra over the entire composition and easily
tailored lattice parameters allows the fabrication of electronic and optical devices on suitable
lattice matched substrates. They present, compared to other 111-V compounds, strong chemical
bonds and high resistance to degradation from intense illumination and high currents. Among
these semiconductor structures ternary AlixInyN alloy has a band gap that covers avery wide
energy range (0.69 eV to 6.25eV), which makes it an ideal candidate to fabricate electronic
and optoelectronic devices such as high-power high-frequency field-effect transistors, blue
and ultraviolet light emitting and laser diodes, resonant-cavity light emitting diodes, surface-
emitting lasers, and solar blind ultraviolet photodetectors [3,4].

Utilization of the group Il1-nitride ternary alloys such as Al1«InyN in the fabrication of
electronic and optical device applications requires a better controlling of the growth and
fabrication process conditions as well as a reliable and precise physical modeling of their
structural, electronic and optical properties as a function of the alloy composition. It is now
well known that the better controlling of the growth conditions by molecular beam epitaxy
(MBE) and metal organic chemica vapor deposition (MOCVD) techniques allows precise
tailoring of the dimensions and the material properties of group IlI-nitride semiconductor

systems.
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Figure 1 Band gaps vs. structural parameters of 111-V wurtzitic nitrides (Ieft). Color
range of emitted light (middle). Relationship between band gap and structure parameters on
some material used in LED (right) [5].

It is a fact that, at normal growth conditions, AIN and InN crystallize in hexagonal
wurtzite structure (B4 phase), whereas growth of zincblende structure (B3 phase) on cubic
substrates has also been achieved among reports of interesting physical properties for
electronic devices that this phase may present [6]. In addition to that, thin layer film of
zincblende structure has been achieved in a non polar growth [7]. On the other hand, high
pressure experiments and ab-initio calculations showed that rocksalt (B1 phase) can also be
obtained [8,9]. The perspective of the possibility of realization of three phases has led us to
perform a comparative study of structural and electronic properties of the various phases of
the ternary aloys Al;xInyN as well as high pressure effects on some of the undertaken
physical properties. This study used as computational methods the density functional theory
with modified Becke-Johnson functiona based (mBJLDA) [10,11] and the semi-empirical

sps tight binding theory with nearest neighbor interactions. By means of these two methods
we investigated the composition effect on the structural and electronic properties of Al In,N

ternary aloy in the zincblende, wurtzite and rocksalt phases. In the beginning, the lattice

2
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parameters were computed at various In proportions taking into account alloy randomness by
using specia quasi-random structure, then from the obtained results bulk modulus, energy
band gaps, density of states and the electron effective mass were derived. The physical
properties variation with In content within each phase is first examined, then a phase

comparison is carried out.

Over the last few years, study of materials under high pressure has become an
extremely important subject exhibiting high growth. This is primarily due to both theoretical
and experimental developments which have at last facilitated such work. The effects of
pressure are more easily incorporated into first-principles simulations since it affords the
possibility of studying the variation in the properties of solids as interatomic distances are

changed in a systematic way.

In the high pressure effects, we first study the relative stability of the wurtzite and
zinchlende phases of the Al _,InN alloy, then wurtzite-rocksalt and zincblende-rocksalt

phase transition pressures throughout the whole indium composition range.

Finally, since varying gaps by means of pressure variation is another way of tailoring gaps
and providing a wider spectrum for optoel ectronic devices, we then examine the variation of
the band gap with pressure for both phases.

The architecture of electronic or optical devices requires heterostructure stacking of different
compounds with various lattice parameter constants creating hence strains on the thin films.
This has an immediate effect on the structural properties on the strained alloy and therefore on
its electronic and optical properties. In the case of AlInN based devices, binary GaN is often
chosen as a buffer resulting in a biaxia strain on the alloy with an immediate modification of
the lattice parameters resulting in a whole new physical parameters (band gaps, effective
masses...) for the AlInN/GaN heterostructure.

To end with, previously studied phenomena are applied to a practica device namely the
HEMT. Aswill be seen later many of its transport parameters depend greatly on the density n
of a two dimensional electron gas (2DEG) created at the edge of the heterostructure. The
purpose of the last section is to study the variation of the density with the strain.
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The work in this thesis has been structured as follows:
Chapter 1: The structural properties of wurtzite, zincblende and rocksalt are reviewed.

Chapter 2: We describe the theoretical methods used in this thesis. The physical
formalism of the tight binding method and density functional theory are presented.

Chapter 3: The structural and electronic properties parameters for a bulk AlInN .are
computed. Lattice parameters, band gap, electron effective masses and density of
states are calculated for zincblende and wurtzite phases and results are analyzed and
compared between phases and with experimental data. High pressure effects on the
aloy are studied. The stability of the various phases, the phase transition pressures

and the pressure variation gap are al examined.

Chapter 4: Its first part deals with the effects of the strain. Electronic and structural
properties of the strained AlINN in the heterostructure AIINN/GaN are revisited. The
then obtained results are applied to a high electron mobility transistor ( HEMT) by
deriving the density of the two-dimensional electron gas and the variation of its
resistance.

Appendices A and B providing respectively the tight binding hamiltonians and
matrices parameters for the zincblende and wurtzite structures.

Appendix C: The elastic theory is reviewed briefly and the nitrides elastic constants

are provided.
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1-Cristalline structureof I11-N nitrides

1.1 Nitrides basic structures

[11-nitride semiconductors AIN, GaN, InN and their alloys can crystalize in three
structures: the hexagonal wurtzite phase (B4), the cubic zincblende phase (B3) and the
rocksalt phase (B1). The thermodynamically stable phase at room temperature is the wurtzite
phase, but also nitride epitaxial growth with zincblende structure can be achieved on (001)-
oriented cubic substrates. Finally, the rocksalt structure can be induced in Il1-nitrides at high
pressures. In the following sections we will try to give a brief reminder of the structures

previously mentioned.

1.2 The zinchlende structure:

Figure 1.1 Zincblende unit cell

The zincblende structure (Figure 1.1) has a face-centered cubic (fcc) lattice with a
diatomic basis. where the anion A is at (0, O, 0) and the cation C is at (1, 1, 1)a/4 relative to
the lattice point. Anion and cation atoms are tetrahedrally arranged with each anion bonded
to four cations and vice versa and their respective sublattices shifted with respect to each other
by a quarter of the diagonal of the fcc lattice. The close-packed layers adopt regular repeating
arrangements. ABCABC aong the (111) direction.

The primitive cell is formed by one cation and one anion, and the primitive transation

VEectors are:

a=2a(0,1,1), b=>a(1,0,1), c=76(1,1,0) (11)



1-Cristalline structureof I11-N nitrides

where aisthe lattice constant. The unit cell positions are:
- A b1
R:1=0, Rz —2a+2b+ >C

The B3 system belongs to the F-43m (No. 216) space group. Thefirst Brillouin zone
for the cubic face centered lattice with the main symmetry direction is represented in Figure
(1.2) where the symmetry points have the following coordinates:

X(1,0,0), L(1,1,1), K(3/4,3/4,0), W(1,1/2,0).

Figure 1.2 First Brillouin zone for the cubic face centered lattice.

1.3 Thewurzite structure

The wurtzite structure can be described by considering two interpenetrating hexagonally
close packed (hcp) sublattices shifted along the ¢ axis. We thus have an hcp lattice with a
diatomic basis. In addition, the wurtzite structure is characterized by an internal parameter u,

defined so as the anion-cation bond length along the (0001) axisis cu.

Figure 1.3 Wurtzite unit cell
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The wurtzite unit cell is shown in figure 1.3. The corresponding lattice vectors are
a=a(1,0,0), b=a(1,/3,0)/2, c=c(0,0,1) (1.2)
and the unit cell positions are:
_ _ 1 0101 1 1
R,=0, R.=uc, R3—§a+§b+ EC, R4—§a+§b+(u + E)C

The first Brillouin zone for the cubic face centered lattice with the main symmetry directionis

represented in Figur e (1.4) and the symmetry points have the following coordinates:

K(1/3,1/3,0), M(1/2,0,0), A(0,0,1/2), H(1/3,1/3,1/2), L(1/2,0,1/2).

Figure 1.4 First Brillouin zone for the hexagonal lattice.

Wurtzite has the symmetry of P63 mc (space group 186) with both N and Al at Wyckoff
position but with different z values. Wurtzite conventional unit cell, shown in Figure 1.3,
contains four atoms The lattice parameters a and b are the length of the sides as shown, while
the lattice parameter c isthe height of the unit cell.

The ideal wurtzite structure (all bond lengths and angles as in ZB) corresponds to

a, = azb/ﬁ; Cw = za;b; i‘— = g; u=3/8 (whereas it deviates from this value for real

wurtzite crystals). Since zincblende and wurtzite may have amost identical bond lengths, i.e.
nearest neighbors (NN) distances, and bond angles, differing only in coordination of next-
nearest neighbors (NNN), their total energies are usualy very close, so that these phases are
strongly competitive.
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In the case of wurtzite the stacking arrangement, along the (0001) direction, as shown

infigure 1.5 isof thetype ABAB.

; L~ B
uA. ¥ -._?.'r,,,l!,
¢ A ]
W I LA b ]
.-r"kr'l g ™ .--"'h'
ot
N S5 L
I
Zinc Blende . Wurtzite

Figure 1.5 Zincblende and Waurtzite crystal structures. Shown are the ABCABC cubic close
pack layer ordering and ABABAB hexagonal close pack layer ordering.

1.4 Therocksalt structure:

The rocksalt structure (Figure 1.6) has face centre cubic lattice with two basis: one at
position (0, O, 0) and the second at position (1/2, 1/2, 1/2)a where ais the lattice parameter.

The rocksalt structure contains equal amounts aluminium and nitrogen. Rocksalt has
the symmetry of Fm-3m ( space group 225 ). The smallest unit cell possible for the rocksalt

structure contains only two atoms.

Figure 1.6 Rocksalt unit cell
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The group Il1-nitrides have polar axes (lack of inversion symmetry). In particular, the bonds
in the <0001> direction for wurtzite and <111> direction for zincblende are all faced by
nitrogen in the same direction and by the cation (Al,Ga, or In) in the opposite. For examplein
the GaN (Figure 1.7 ) structure Ga-faced conventionally means Ga on the top position of the

{0001} bilayer, corresponding to [0001] polarity.

T;fﬁ
@

Substrate Substrate

[o001]

Figure 1.7 Structure of the N-face and the Ga -face GaN
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2 Tight binding and density functional theory methods

2.1 TheTight Binding method

The tight-binding method (TBM) or Linear Combination of Atomic Orbitals (LCAO)
approach is based on the idea that in solids the electrons are tightly bound to their nuclel asin
the atoms, the | attice can hence be modeled as a combination of atomic orbitals at each atomic
position. The basic assumptions of the TBM are that a small number of basis states per unit
cell is sufficient to describe the bulk band structure and that the overlap parameters,
representing interactions between electrons on adjacent atoms of the localized atomic orbitals
decrease rapidly with increasing distance of the atomic sites. Moreover since the inner
electronic shells are only dlightly affected by the field of al the other atoms, it is sufficient,
for the description of the bulk band structure, to take into account the states of the outer shells.

The Schrddinger equation for an atom located at the position R, is

H*|R.,au,s)=E|R.au,s) (2.1)
where the atomic Hamiltonian H® is;
pZ
H®="_+V°R,a 2.2
om, (R.a) (2.2)

and the basis states are | R ,a,u,s ) where: R; is the unit cell position, o the type of atom, v the

orbital type, o the spin. VO(R,,a) is the atomic potential of the atom at the position R. In the
presence of all other atomsin the crystal, the single-particle Hamiltonian of the periodic

system can be rewritten as:

H* =H*|R,a)+ 4 V(R,a’ (2.3)

ntla’

and the Schrédinger equation in the following way:

&H*(R,a)+ & V(R.a)gk)=EW)|K)
u

e ntla'
Due to the crystal periodicity, the wave functions |k> are restricted to the first
Brillouin zone and expressed in terms of Bloch functions. The wave functions are then

approximated by linear combinations of the atomic orbitals:

k)= ﬁé ¢® q &%y, K|R.au,s) (2.6)

n aus
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2 Tight binding and density functional theory methods

where Aa is the position of the atom a in the unit cell Ry, Vo volume of the unit cell and V the

volume of the system.

Replacing the wave function of Eq. (2.6) into the Schrodinger equation we get a

matrix equation:
2 bulk 2
a Ha',u ‘s'aus (k)ua u.,s (k) = E(k) a Sa',u ‘s'‘aus (k)ua us (k) (2-7)

where the matrix e ements are:

a'u'stau,s

[ buik (k):\éé eik(Rﬂ+Da-Rq—Da-)<Rm1a 'u's .|Hbulk|Rn1a,u’s> (2.8)
and the overlap matrix elements are:
_Vo Q _ik(R,+D,-R,-D,.) Ve
Sa',u',s',a,u,s (k)_vae : ) <Rn’a u,S ||Rn’a’u’s> (2.9)

In the semi-empirical tight binding approach additiona approximations are made:

« Since distant orbitals have negligible overlap, the interactions are limited to first,

second or third .nearest neighbors,
* Orthogonal orbital are obtained by performing a Léwdin transformation [12].

* The so-called two-center approximation of Slater and Koster [13] is generally used in
which only the potential due to the two atoms at which the orbitals are located is taken into
account. The three-center integrals which deals with two orbitals located at different atoms,
and a potential part at a third atom is considerably smaller than the two-center integrals.

The two-center approximation alows to classify the overlap integrals into two classes;

on-site elements E,) and overlap parameters V, | , | where Ey is the atomic energy level in

the presence of all the other atoms in the lattice, and V, called hopping matrix elements,

Jaglg ?
describe the coupling between different orbitals at different sites. They give the probability
amplitude of an electron moving from one site to another and correspond to the matrix

elements containing orbitals from different atomic sites.

with the previous assumptions Schrédinger equation, EqQ. (2.7), is reduced to:

A HEE s (U, o () = E(K)U, 6 - (K) (2.10)

a'u's‘aus
aus
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2 Tight binding and density functional theory methods

the matrix lements H2 ., , < (K) being given by:
(k,a,u,s [H™|ka,u,s) :\éé_ e R(R aus |[HY™[R,aus) (211

The atomic wave functions being very localized, the contribution of integrals for large |(Rm —
R,)| become negligible and are therefore ignored. The largest contribution is for n=m,the 'on-
site' energies, then first nearest neighbor contributions (n=m = 1) etc

Slater and Koster provide, in their paper, aformalism for evaluating the hopping matrix
elementsin terms of two centre integrals and direction cosines. Direction cosines are the
projection of an orbital’s amplitude in the direction of a bond vector joining two atoms. The
direction cosines associated with a hopping matrix element gives the proportion of the
relevant orbitals pointing along the vector joining their two sites For an sp3 or sp3s* basis the
interaction parameters are classified into two different types o and 1. These parameters are
depicted in Figure. 2.1. Vs models two interacting s-states. Vsapeo @d Vsepao represent the
interactions between an s-state and one of the lobes of a p-state, the difference between them
being where the states are situated- on the cations (c) or anions (a). Interactions between two
p-states are split between two terms, Vpye and Ve . The 0 term describes that part of the
interaction that results from the fraction of the lobes that are pointed directly towards each
other while the 1 term describes the contribution from the fraction of the p-states that are
aligned in parallel.

In practice the V.o and Vg are generally neglected in the sp3s+ Hamiltonian asthe Vs
terms provide the required modulation of the conduction band. For the purpose of solving the
eigenval ue equation one needs to have a knowledge of Hamiltonian matrix elements formed
dueto orbital interactions at different interatomic sites. In the particular case where only s and
p atomic orbitals are responsible for bonding, there exists only four non-zero overlap integrals
as presented in Figure 2.1. If the axis of the p orbital involved in sp-bonding is parallel
(perpendicular) to the interatomic vector, it is called a o (1) bond.

14
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Figure 2.1 Non vanishing matrix elements between sand p in sp bonding [14].

In general, the p orbitals are not just parallel or lie along the direction of atomic bonding asis
depicted in Figure (2.1), but, can aso be oriented along different directions with respect to the
bond length. In such cases, it becomes necessary to take projections of atomic orbitals in

paralel and perpendicular direction to the bond length to account for the orbital interactions.

A projection of p orbitals is required along the direction of bond length in order to achieve
well defined orbital interactions. Each p orbital thus can be decomposed into two components:
(1) paralel to the line joining the atomic orbitals and (2) perpendicular to the line joining the
atomic orbitals. Figure (2.2) represents a randomly oriented p atomic orbital relative to the
direction of bond length. If d is the direction of bond length, a is the unit vector along one of
the Cartesian axes (X, Yy, z) and n being the unit vector normal to the direction of d, each p
orbital can then be decomposed into its parallel and norma components relative to d. Thus,
the Hamiltonian matrix element between an s orbital at one site and a p orbital on another

atomic site would be presented as

(s|H| p,) =cosq(s|H| py) +sing (s|H| p,) = H, cosq (2.12)

Figure 2.2 Relative orientation of p and s orbitals at an angle g wrt the bond direction [14]
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2 Tight binding and density functional theory methods

For two p orbitals oriented along the directions of unit vectors "a 1 and "a 2 at angles 6 1 and 8
2 respectively, relative to the direction of line joining the two p orbitals represented by d as
depicted in Figure (2.3), their decomposition in parallel and perpendicular directions could
give Hamiltonian matrix element as a result of p — p orbitals interactions from two different
site can thus be presented as

(p.|H|p,) =cosq, cosd, ( Py |H | ps,) +sind, sing, (o, [H | p,o)

= c0sq, cosq,H ,, +sing,sing,H (2.13)

Figure 2.3 Orientation of two p orbitals at an angle q w.r.t. the bond direction [14].

In the empirical TB model the matrix elements are treated as parameters. These parameters
are obtained by fitting computed energies at high symmetry points to physical properties of
the bulk band structure, such as band gaps and effective masses.

The quality of the TB band structure depends on the basis set used in the model. The minimal
sp3 model (one s orbital and tree p orbitals) is quite accurate for the valence band of usual
semiconductors, but less for the conduction bands, especialy at high energy. The model with
an extra fictious s* band [15] improves the description and is sufficient for describing the
lowest conduction bands. The most accurate results are however obtained with the sp3d5s*
model which includes 5 more d orbitals.
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2 Tight binding and density functional theory methods

2.2 Density functional theory

Several physical properties of solids such as lattice constant bulk moduli piezoelectric
constants defects to name a few are related to total energies. If total energies can be
calculated, any of those physical properties, can be in principle be computed. The methods
that obtain the total energy of a system, starting exclusively with the atomic constituents of
the system, are designed as ab-initio or first principles methods. Density functional theory
(DFT) is a powerful ab-initio method for the description of the ground state properties of
solids. It is based on the possibility to describe the system by its electronic density, instead of
using its complete many-body wave function. The Kohn-Sham (KS) equations [16] provide
the way to convert the DFT a practical methodol ogy.

2.2.1 General formulation

The starting point of DFT is a system of N interacting electrons under the influence of an
externa potential Veq(r). In most situations Vex(r) is the total coulombic potential created by
the nuclei of the solid, assumed to be at fixed positions. The ground state many-body wave

function of the system is denoted as W and the corresponding density is n(r).

The energy and wavefunctions of a system of N particles can be theoretically determined by

solving Schrodinger's equation:

HY (r,r,...R,R....)=EY(1,h,...R,R,.....) (2.149)

where W is the wave function of the system, r; and R; are the positions of the electrons and

ions respectively, and H is the Hamiltonian of the system:

2K12 2 2 2K12 2
NP g 1 2€ 1g 1 & g 19 1 226 0

: :-ai 2m, i 4pe, |ri' R||+§91 4pe, ‘I’i- ri‘- aI 2M, +§§JEW

H=T,+V,, +V,, +T, +V, (2.16)

The Hamiltonian consists of five terms respectively: the electrons kinetic energy, the
potential energy of the electrons in nuclei field, the Coulomb interaction between the

electrons, the nuclei kinetic energy and the Coulomb interaction between nuclei. The problem
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of solving the Schrédinger equation of a solid, where there are numerous nuclei and electrons
is not computationally possible without some ssimplifications. The first of these is the Born-
Oppenheimer approximation, which exploits the large difference in mass between the

electrons and the nuclei.

In the Born Oppenheimer approximation, the ions are considered quasi-stationary since that
the nucleus mass is much larger than the electron mass, and hence the electronic and nuclear
dynamics are decoupled. The many-body problem is reduced to in aHamiltonian in some set

configuration of nucle.

The density functional theory DFT replaces the many-body problem of an interacting electron
gas in the presence of nuclei to of a single particle moving in an effective nonlocal potential

taking the electronic density n as the key variable.

DFT is based primarily on two theorems by Hohenberg-Kohn [17], stating that the total
energy of an electron gasis a unique functional of the electron density, and that the ground
state energy of the system can be obtained through minimization of the total energy functional
with respect to the density. The electron ground state density can replace the wave function
without any loss of information and the density that yields the minimum energy is the single-

particle ground state density.

Theorem 1. For any system of interacting particles in an external potential V eq(r) the
potential Ve«(r) is determined uniquely, except for a constant, by the ground state density

No(r).

The first Hohenberg-Kohn theorem establishes that the ground state density n(r)
uniquely determines the external potentia Veq(r). Thisimplies that all the properties can thus

be extracted from the exact ground state electron density.

Theorem 2. A universal functional for the energy E[n] in terms of the density n(r) can
be defined, valid for any external potential Veq(r). The exact ground state energy of the
system is the global minimum of this functional and the density that minimizes the functional

isthe exact ground state density ng (r).

This reduces the very complex problem of finding all ground state physical properties
of a system to finding the minimum of the energy with respect to the electron density.
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2 Tight binding and density functional theory methods

The second Hohenberg-Kohn theorem [18] demonstrates that the functional E[n]
defined as follows has its minimum value for the ground state density:

Ev [N] =T [N] + Ep [N] + (Yae (r)N(r)dr (2.17)

where is the Eqk[n] total energy functional, T[n] its kinetic energy part and E;.; [n] the
part coming from the electronic interactions.

Unfortunately, the Hohenberg-Kohn theorems does not provide the exact functional
Enk[n], and the problem of determining the ground state energy and density is subordinate to

the discovery of sufficiently accurate estimations of such functional.
2.2.2 Kohn-Sham equations:

These equations establish the methodology for the practical use of the Hohenberg-
Kohn theorems. In these equations, the interacting electron system under the influence of the
external potential is represented by a system of non-interacting electrons under the influence
of an effective potential. This potential, called Kohn-Sham (KS) potentia Vs (r), ischosenin
such a way that its ground state density is the same as that of the interacting electron system.
The one-electron KS wave functions are then the solutions of the single-particle Schrodinger

eguation:

N

g N“Mao@ﬂrw%a) (2.18)

where g; are the energy eigenvalues.

The density n(r) is written as follows:

N 2
nr=al ) (2.19)
Now we define the mean-field kinetic energy of the non-interacting electrons as follows:
é‘ 1.,
Ts[n]:a<yi|'§Ni |yi> (2.20)
i=1

that it is slightly different from the kinetic energy T of the interacting electron system. The
functional F[n] is now conveniently rewritten in terms of Ts as follows:
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F[n] =Ts[n]+V,, [n] + Exc[N] (2.21)
V,, [n] = O Dgeger (2.22)

-1
and the term Exc is the exchange-correlation energy.

The exchange energy is a consequence of the requirement for antisymmetry of the
electron wavefunctions with the same spin. This antisymmetry causes a spatial separation of
the electrons which reduces the Coulomb energy of the system, and this reduction computed
using the Hartree-Fock approximation is called the exchange energy. The Coulomb energy
can be further reduced (at a cost in kinetic energy) if electrons with opposite spins are also
gpatially separated, and the difference between this and that calculated using the Hartreee-

Fock approximation istermed the correlation energy.

The potential Vs (r) includes the external potentia and the electron-electron

interaction.
Vo (r) =V, (r)+ qrn-(—rr)'|d3r +V, (2.23)
where:
el
Vo () =V, +Vy +Vie =V, (1) + q:‘frr').ﬁr + jr']z(xs (2.24)

The Kohn-Sham equations can now be solved instead of finding the minimum of
Eq.(2.15), and the orbitals @; (r) then give the electron density according to Eq.(2.19) above.
The equations (2.18), (2.19) and (2.23) are acknowledged as Kohn-Sham equations., The
ground state density and the total energy of the system can be derived by solving them self-

consistently-

The Kohn-Sham equations provide the exact ground state density. However, al the
benefits gained by this theoretical study depend on the ability to dea with the exchange-

correlation functional, in an exact manner or by finding accurate approximations.
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2.2.3 Some Exchange correlation Approximation
a) The Loca Density Approximation

The most common approach for the exchange correlation potential is the Local
Density Approximation (LDA). The core assumption of this approach is that the density is
dowly varying. The exchange-correlation at point r can therefore be simply approximated

by that due to a homogeneous electron gas of density n(r). Thus:

Exc [N(N)] = Gpxc (NN(r)d’r (2.25)
d EXC - ﬂn(r)exc(r) (226)
dn(r) n(r)

where

€y (r) = e;?:m [n(r)] (2.27)

There are, of course, alternatives to the LDA. Of these, the most popular are those
based around the generalized gradient approximation (GGA). In the GGA, the density is a
function of both the electron density and its gradient, and for many materials, but not all, it

has been shown to improve results for total energies and the general properties of solids.
b) The generalized gradient approximation:

In LDA one uses the knowledge of the density in apoint r. In real systems the density
varies in space. A logical improvement of the LDA approximation would be to include also
information of this rate of change in the functional. This can be done by adding gradient
terms. This approach is caled the gradient-expansion approximation. In this class of
approximation one tries to systematically calculate gradient-corrections of the form |Vn(r)],
|Vn(r)|?,]V?n(r)| etc. to the LDA. In practice, the inclusion of low-order gradient corrections
amost never improves on the LDA, and often even worsens it. Moreover higher-order
corrections are exceedingly difficult to calculate and little is known about them. It was
realized that instead of power-series-like systematic gradient expansions one could
experiment with more genera functions of n(r) and |Vn(r)|. Such functionals, of the generd

form:

Exe = Cfxc (NN, NZn)ar (2.28)
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are known as generalized-gradient approximations (GGAS). The current GGAs seem to give
reliable results for al main types of chemical bonds and are popular in computational
chemistry. We have used the Perdew-Burke-Ernzerhof (PBE) version of GGA [19] in this

work.

¢)The hybrid functionals

The LDA or GGA approximation predict the structural properties such as lattice
constants and bulk moduli with good accuracy. However, the LDA or GGA results for
electronic properties such as band gaps are of much lower quality. The band gaps are typicaly
underestimated by 50-100 %. Further improvements in the description of band gaps is
achieved by the introduction of so-called hybrid functionals which are obtained by admixing a
fixed amount of the Hartree-Fock (HF) exchange to the GGA functiona. The hybrid
functional proposed by Heyd, Scuseria and Ernzerhof termed as HSEO06 functional [20]
fulfills the need for a universally applicable method that is computationally feasible for awide
range of systems and nowadays becomes a popular choice for calculating the structural
properties and the band gaps. The exchange potential employed in HSEO6 is divided into
short- and long-range parts, and HF exchange is mixed with Perdew-Burke-Ernzerhof (PBE)
exchange in the short-range part. To avoid the expensive calculation of long-range HF
exchange as well as enabling hybrid DFT caculations on metal elements for which
conventional HF or global hybrid calculations are intractable, this term is replaced by long-

range PBE exchange, as shown in the following equation:

L = B (m)+ S EJ5 (m)+ 7 () + B (229
In addition to the aforementioned functionals we can also cite the meta-GGA's like TPSS
[21] wheretypically the kinetic energy is used Ex(n(r),vn(r),V2y(r)).

2.2.4 Theband gap problem in DFT

In DFT the lattice parameters and atomic positions are accurately predicted within an
error of 1 to 5%, depending of exchange correlation functional used. However the band gaps
calculated within DFT show a large underestimation compared to experiment. Nonetheless,
this underestimation of the band gap is not surprising since the Kohn-Sham eigenvalues are

completely artificial objects. These are the eigenvalues of a non-interacting system chosen to

22



2 Tight binding and density functional theory methods

yield the same density as the many-body interacting system. There is no physical basis to
interpret the Kohn-Sham gaps as the rea experimental gaps. However, in practice, such a
comparison is motivated by the close resemblance observed between the Kohn-Sham band

structure and the real band structure for many systems.

Figure 2.4 Schematic picture of the real band gap and Kohn Sham gap

The band dispersion shows a good agreement with the experiments. The band gaps of
semiconductors are differences of ground-state energies (E) of N and N + 1 particle systems.

E, =E(N+1)+E(N-1- 2E(N)=1- A (2.30)

where | represents the ionization potential and A represents the electron affinity of the system.
In particular, the lowest conduction band energy is given by €. = En+1 — En and highest
valence band energy corresponds to €, = Ey — En-1 . Similar to metals, the highest “occupied
”eigenenergy for the N-electron system €y (N) isthe Fermi energy and thus €.=en+1 (N +1),

&v = € n (N). Hence, the energy gap isrelated to the eigenenergies as:
E, =eya(N+1)+e,(N) (2.31)

It is different from the definition of the band gap in terms of only N-particle eigenenergies
given by:

eg :eN+1(N)' eN(N) (2-32)
Thisdeviation is given by:

Dyc =€na(N+1)- ey, (N) (2.33)
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and corresponds to the neglected derivative discontinuity Axc by the standard local
and semi-local exchange-correlation functionals [22,23]. It is illustrated schematically in

Figure. 2.4. Axcisgiven by:

im(® Ex|  dE]

D,. =1
© heo’ dn |N+h dn |N—h

) (2.34)

To calculate Axc , DFT had to be extended to describe systems with fractional number
of particles N £n. The evaluation of dExc /on(r) at N £n ensures that the discontinuity at
integer particle number N is captured. Depending on the approximation used for Exc the
results differ strongly. For LDA and all GGAs, Axc = 0. Therefore, the fundamental gap is
given solely by the Kohn-Sham gap which is always underestimated compared to the
experiment. The essence of this result is that even with the exact XC functiona the Kohn-
Sham band structure does not provide the fundamental band gap of the real interacting-

electron system as it does not include the finite and positive derivative discontinuity.

A detailed account on this paragraph is given in the original paper by Perdew [24] or
in the book by Engel [25].

2.2.5 Tran-Blaha modified Beck Johnson potential

As LDA and GGA can only reproduce the band structure but cannot produce a band gap of
comparable value to that obtained experimentally, Becke and Johnson (BJ) developed a BJ
potential [26], that improves the band gap in comparison with LDA and GGA functionals. It

can be formulated as;

Vi (r) =V, e(r) 50 (2.35)
’ ’ 6p r.(r)

where py denotes electron density and t, represents kinetic energy .

Blaha et al. [10] further modified the exchange and correlation potential of the BJ approach,
and developed the mBJ potential, capable of better reproducing the experimental gap of

semiconductors in comparison to the LDA or the GGA. The mBJ potential is given by:
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V2 (r) =cV, .2 (r) +(3c- 2)%—“?3(:;) (2.36)

where po(r), to(r) and VERx, o(r) are the spin-dependent density of states, kinetic energy
density and the Becke-Roussel potentia (BR), respectively. In the TB-mBJ, the value of c is
calculated by:

E
c=a +bgel [N (rl)|82

1 (2.37)
chell cell r (I’ ) (%]

where V cell is the unit cell volume, an a and B are the free parameters with the value of -
0.012 and 1.023 Bohr, respectively. The only disadvantage of the TB-mBJ potential is that the
derivative of a XC functional cannot be obtained. Consequently, this potential cannot be used
for the calculation of forces that act on the nuclei, which is required for the optimization of

the geometry.

Figure 2.5 [10] show the remarkable improvement obtained with the Tran-Blaha potential.
The gaps are more accurate than with LDA or GGA and nearly as precise as those obtained by

much more time consuming functionals like HSE or GoWj,
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Figure 2.5 Theoretical versus experimental band gaps.
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2.3 Implementations of Density Functional Theory

Density functional theory is implemented in a variety of software packages such as
VASP [27], SIESTA [28], Wien2k [29], Abinit [30,31], Quantum espresso [32] and many

others.

The existing implementations can be divided into two main groups: all-electron
implementation (i.e. Wien2k) and pseudopotential implementations (i.e. SIESTA, VASP).
The last ones treat only valence electrons and replaces the core electrons by an effective
pseudopotential. This allows to speed up the calculations but leads to less accurate solutions
in comparison to the all electron methods. In this section we describe two main methods and
software which were applied in the calculations on this thesis: the pseudopotential method as
implemented in Abinit or VASP and LAPW+lo method implemented in Wien2k program.

We practically have three basis sets used in the expansion of Kohn-Sham orbitals: the plane-
wave basis, the linear combination of localized atomic orbitals (LCAO ) and a mixed plane-

wave and atomic basis set.
2.3.1 Pseudopotentials

A pseudopotential is an effective potential designed to substitute to the all-electron
potential of Eq. (2.15), and is constructed to reproduce the effects of the all-electron system
on the valence states beyond a certain cutoff distance from the ionic core. In a pseudopotential
calculation, the “core” consists of the nucleus and the inner electrons, which are highly
localized around the nucleus. Outside the core region (that is beyond the cutoff), the potential
matches the Coulomb interaction between the core (whaose ionic charge Zqqe equals that of the
nucleus minus the inner electrons) and each of the valence electrons. Inside the core region,
the Coulomb potential is replaced by a smooth function which is more easily representable,
for instance, by plane waves. Pseudopotentials (PP) are constructed so that the wave functions
of the valence electrons outside the core region match those of an al-electron calculation, in a
calculation for the isolated atom. To illustrate this, Figure 2.6 show the radial part ¢(r) of the
2s and 2p orbitals of atomic C together with the corresponding pseudo wave functions
obtained with PP designed to make them match at re.
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Fig 2.6 Schematic illustration of the replacement of the all-electron wavefunction and core
potential by a pseudo-wavefunction and pseudopotential. [33].

The main argument underlying the use and success of pseudopotentials is the fact that most
chemical properties of atoms can be accurately modeled taking account of the interacting
valence states alone. The core states, much lower in energy, have little interaction with
valence states of the same or surrounding atoms.

The most common types of ab-initio pseudopotentials are “norm-conserving” and “ultrasoft”
pseudopotentials. If the pseudo and AE charge densities within the core are constructed to be
equal, the type of PP is called the norm-conserving PP [34,35]. Many PP are generated to

meet this criterion:

¢ 2 Ie 2
N\l

O (1) dr =y e (r)| dr (2.38)
0 0

On the other hand, if we forget about the norm conserving condition and in addition to the

elimination of radial nodes, shift the peak position of a wave function further to a bigger r.

with reduced peak height, the so-generated potentials introduced by Vanderbilt [36] are called

ultrasoft PPs. They present better computational efficiency at the cost of complicating the

formulas.
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The “hardness” of a pseudopotential refers to how smooth or soft the potential looks in real
space, in particular how rapidly the corresponding pseudo wavefunctions vary in the core
region. In the context of plane wave calculations, functions that are smooth in real space can
be represented in reciprocal space by a lower number of plane waves, compared to more

rapidly varying functions.

In recent times, the projector augmented-wave method (PAW) has gained popularity dueto its
providing further computational advantages compared to the norm-conserving and ultrasoft
pseudopotential methods. Projector augmented wave (PAW) potential may be classified as a
frozen-core AE potential. This type, first proposed by Blochl (1994) [37] and adopted by
Kresse and Joubert (1999) [38], aims for both the efficiency of the PP and the accuracy of the
AE potential. It maps both core and parts of valence wavefunctions with two separate
descriptions.

The wavefunction (Uiner) Of the valence part is represented with a PW expansion, while the
wavefunction (Peore) Of the core part is projected on aradia grid at the atom center. After the
additive augmentation of these two terms, the overlapping part Yne is trimmed off to make

the final wavefunction, Ypaw very close to the AE wavefunction.

2.3.2 The VASP package

Vasp, or the Vienna Ab initio Simulation Package, is a powerful computationa tool
for total energy calculations using a plane-wave basis set. In Vasp , the Schrodinger equation
is solved self-consistently by iteratively optimizing the charge density that determines the KS
Hamiltonian that, in turn, determines the single-particle eigenstates. These eigenstates are
used to calculate the new charge density that will serve as an input for the following iteration.
The total energy difference between one iteration and the following will progressively
decrease as convergence (and hence self-consistency) is achieved. Once the energy difference
between two consecutive iterations falls within the desired precision range, the iterative
process comes to an end: the single-particle eigenstates determine a charge density which

givesrise to those same eigenstates. This basic procedure is shown asachart in Figure 2.7.

The pseudopotential is calculated by solving Kohn-Sham equations for the core
electrons:
2
1d N (I +2)

- ——
( 2r dr? 2r?

+ch(r) +Vhartree(r) +\/I (r))y In (r) = elry In (r) (239)
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Here Vyatree and V¢ are Hartree and exchange-correlation potentials, respectively, V|
is a part of pseudopotential called “semilocal potential”, | is the angular momentum. The
pseudopotential and the eigenfunctions Y are calculated by the following expressions:

V=2 ) =G 0 MO )

Jin(r) =y 0(r)- glj |n-(r)<J 'n'|V| (r) - Vioea (r)ly |n>

2.40
=1 <J Int |V| (") - Voca (r)|J In> (240)

[ Initial charge density ny(r) and wave functions v k(r) ]

4[ Llonstruct Hamiltonian from ny,(r) ]

[ Diagonalization, obtain ¢; g and o & ]

[ Calculate partial occupancies [y and free energy F ]

Obtain charge density from wave functions:
i <"}
”mlt{rl - Efl.klt'r.k'.'
ik

Set up new nyg(r)
from n,,(r) (charge

“I'I.'I.'{‘ we I.I.L‘I!il"ln"l‘(i Ihl‘ ]
density mixing)

1 rl,‘i'll'l.i].'!‘{l Hl'l’.!|.l:|.'=l.l.'!:'m'l'.'II

yes

[ Ell‘i'”'l'ﬂli{' ]..',f'HlllHi shate ]

Figure 2.7 VASP basic procedure towards obtaining self-consistently electronic ground state.
2.3.3 LAPW methods

The Linearized Augmented Plane-Wave Method (LAPW) is an all-electron method

implemented among others in Wien2k software package. It is the improvement of the original
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2 Tight binding and density functional theory methods

Augmented Plane-Wave Method (APW), which was used in this package before. The idea of
this method lies in the fact that in the region far away from nucleus, the electrons behave like
free electrons and can therefore be described by plane waves. In contrast, the electrons close
to the nucleus behave like they were in the free atom and can be described by spherical
functions which are the solutions of Schrodinger equation for a single atom. So, following this
idea, the unit cell of the system is partitioned into atom-centered spheres of selected radii and
the interstitial region (Figure.2.8). The atomic spheres are called Muffin-Tin Spheres (MTYS)
and their radii are called muffin-tin radii (RMT).

II

Figure 2.8 Schematic division of unit cell containing two types of atoms A and B in Muffin-

Tin spheres(l) and an interstitial region (11).

In these two regions two different basis sets are used for solving Kohn-Sham equations. In the

interstitial region the plane-wave expansion of Kohn-Sham orbitalsis used:

1
FX(r,E) = ——gkor (2.41)
W

Here k is the wave vector in the first Brillouin zone, G isareciprocal lattice vector, V isa unit
cell volume. Inside the atomic sphere an expansion of spherical harmonics times radial

functionsis used:
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2 Tight binding and density functional theory methods

F(r.E) =@ AL (r E)Y,,(r) (2.42)

Here Y\m (r) are spherical harmonics, Al are expansion coefficients (unknown at the
beginning), E is the parameter with the dimension of energy, U (', E) is the solution of the
Schrodinger equation for the atom | at the energy E. Of course, these two parts of the basis set
should match together at r=RMT,; ,where RMT; is j-th atom muffin-tin radius (RMT).
Expanding the plane-wave part (Eq. 2.42) into the basis of spherical harmonics and
comparing it to the atomic part of the basis set (Eq. 2.43) at r; = RMT; , gives the expression
for Aljn:

i(k+G)r,

, _ dpi'e

m —mhqk*‘q R" )Yim(k+G) (2.43)

A

here j isaBessel function of order |.

LAPW method: In order to solve the Kohn-Sham equations with such a basis one needs to
“guess” the value of the parameter E, then solve the equations and determine E from them
again. That’s time consuming and that is the reason why APW method is replaced by more
efficient one. Unlike this method, the LAPW method sets this parameter fixed to some value
E = Eo (it is caled linearization energy), and the Schrodinger equation is solved to determine

uii(r ', Eo). Since the eigenstate E remains unknown we have to introduce a new parameter
Bl = An(Eo - &)

So that:
§E0LE) = & (AL (T Eo) + Bl W (r, Eg)Yin (1) (2.44)

The coefficients Bjim and A;m can be determined by matching the basis at the boundary. As
we now have a fixed value E, the basis can be determined uniquely from the linearization
energy Eo. One has to note that different atoms will have different linearization energies

depending on the dominant orbitals and so the basis will vary.
2.3.4 Wien2k package

The diagram of a Wien2k program execution is represented in Figure 2.9. A self consistent
calculation SCF is preceded by some steps:
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2 Tight binding and density functional theory methods

The first one deals with the generation of the structure by selecting the space group, lattice
coordinates, constituent atoms and appropriate RMT's. Then follow an initialization step in
which the symmetry of the system is detected, followed by inputting the number of terms
being used for an expansion into spherical harmonics £ the cut-off parameter Ko for
plane wave expansion and the sampling density of the reciprocal space defined by the number
of k-points in the irreducible Brillouin zone (IBZ). Finaly before starting a SCF spin-
polarization, spin—orbit coupling diagonalization matrix method and electron and charge
convergence limit are selected. Various properties to name a few like lattice constant bulk
modulus, density of state, electronic structure elastic may be extracted after completion of the
SCF cycles.
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2 Tight binding and density functional theory methods
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Figure 2.9 Diagram of a standard Wien2k calculation [39]
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CHAPTER 3

STRUCTURAL AND ELECTRONIC
PROPERTIES; HIGH PRESSURE EFFECTS
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3.1 Computational parametrizing
3.1.1 Density Functional Theory Calculation

The DFT-based ab-initio calculations were performed by means of Wien2k and VASP

codes.
Wien2k tuning

Wien2k uses the full potentia linearized augmented plane wave (FP-LAPW) method.
Inside each atomic sphere the wave function is approximated by a linear combination of radial
functions times spherical harmonics, while in the interstitial region a plane wave expansion is
used, with an energy separation between valence and core states of 6 Ry. The |-expansion
(azimutal quantum number) of the non-spherical potential and charge density inside MTS was
carried out up to Ima = 10. The plane waves were expanded up to a cut-off parameter, Kmax,
so that RutKmax = 7 where RMT is the average radius of MTS. The convergence of total
energy was set to an accuracy of 0.1 mRy. Starting from bulk AIN structure we obtained the
ternary Al«InyN (x=0.25, 0.5, 0.75, 1) by replacing the Al atoms with In in the supercell. For
the wurtzite structure of the ternary (Figure 3.1) calculation were carried out using a supercell
of 16 atoms (2x2x1) in an ordered form, whereas for the zincblende form a 8-atom supercell
having luzonite structure for x=0.25, 0.75 and a chalcopyrite (Figure 3.2) for x=0.50 was
used. The sampling density of the reciprocal space defined by the number of k-points, whose
value needed a convergence test with respect to the energy, was found to be 1500 k-points in
the irreducible Brillouin zone (IBZ) for both binary compounds structures. A proportionally

smaller number of k-points was used for the ternary calculation.

Figure 3.1 AlzsinzsN wurtzite cell
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Figure 3.2 Al1xInyN zincblende cell: Left: (luzonite), right: (chal copyrite).

VASP tuning

Starting from bulk AIN structure the ternary AlixInkN (x varying from 0 to 1) was
obtained by replacing, in a supercell of 64 atoms (Figure 3.3), the Al with In atoms in a
proportion step variation x of 0.125. Alloy disorder was taken into account for all phases by
using a specia quasi-random structure (SQS) [40,41] in the 64-atom supercell and was
implemented by means of the Alloy Theoretic Automated Toolkit (ATAT) [42]. The SQS
approach proved to be an efficient method for calculating random alloy physical properties
[43,44], it is designed in a manner that In or Al atomic sites of the supercell are occupied in

such away that the pair correlation function reproduces that of an infinite random alloy.
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Figure 3.3 Specia quasi-random 64-atom supercell Alg7slng2sN derived with ATAT.
top left: rocksalt structure top right: zincblende structure, bottom: wurtzite structure.

The interaction between the ionic cores and the valence electrons were treated in the
VA SP code by the projector-augmented-wave (PAW) method.

The Brillouin integration for binaries was performed using a Gamma centered grid of
8x8x8 for both B1 and B3 AIN and InN and 8x8x6 for B4. For ternary Al.xInkN, a 4x4x4 k-
points sampling grid was selected for B1 and B3 phases and a 6x6x2 for B4. Calculations for
all phases were performed with a plane wave basis set with an energy cut-off of 600 eV and
an energy convergence criteriafixed at 0.01meV.

For both codes, the Perdew, Burke and Ernezerhof (PBE)sol [45] exchange correlation
functional, a modified version for solids of PBE, was utilized for total energy and lattice
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parameter calculations while, since PBE greatly underestimates band gaps, the Tran-Blaha

potential was employed in the energy gap calculations.

3.1.2 Semi-empirical tight binding calculation

The nearest neighbor (NN) sp3s* tight binding model was adopted since it has proved to be
sufficiently precise as regards to the electronic properties. In this model every atom is
described by valence s orbital and the outer p orbital and an s* state added to reproduce high
orbital states. The spin orbit effect is neglected regarding the type of atoms used. The
resulting zincblende and wurtzite structures Hamiltonian matrices are respectively 10x10 and
20x20 matrices.

The tight binding parameters on-site energies Es, Es, Epa, Epc, Esa, Esc and the off diagonal
elements Vs, Vix, Vsape: Vcpa, Vi Vsp, Vprs fOr binary compounds are obtained from available
literature and modified so as to reproduce physical properties such as band gap or effective
mass obtained from experimental datal A1,A2].

The calculation of atomic energies for the Al;—xInyN ternary is carried out by using the

virtual crystal approximation
By (X) = XE, an + (L= X)Ey 1oy
Vi (00 =XV an + (1= Xy o
wherei=s, py, Py, P» S and v=a, B With Vii= Ves, Vi, Vaape, Veopar Vigs Verps Vs,

Using the derived matrix parameters, the energy bands are obtained by diagonalizing the
Hamiltonian matrix at each point of the Brillouin zone The matrix diagonalization and

eigenvalues were computed by means of MATLAB codes.
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3.2 Structural and electronic properties
3.2.1 Structural properties

The equilibrium lattice parameters and the bulk modulus of the ternary AlixInyN
alloys are determined by calculating the total energy at various volumes and fitting it to the
pressure versus volume Birch-Murnaghan equation of state [46] in its third-order expansion of
volume as expressed in equation (3.1):

0 = 2[4 a2 - 0[] o

where P is the pressure, Vo the equilibrium volume, V the deformed volume, By the bulk

modulus and B, its pressure derivative.

The results obtained for the various phases ground state energy confirms the B4 phase
as the most favorable for the entire x range. The ground state energy difference AE with
respect to B4 is, on one hand, small for the B3 phase ranging from 22 (x=0) to 18.8meV/atom
(x=1), and on the other hand rather significant for the B1 phase ranging from 81 (x=0) to 63.5
meV/atom (x=1). B1, B3 and B4 phases computed lattice parameters along with experimental
and others ab-initio data arelisted in Table 3 1.

The lattice constants, represented in Figure 3 4, are increasing with In contents. The
phases B3 is presenting the largest lattice constant ranging from 4.37 A (x=0) t0 5.05 A (x=1)
compared to B1 varying from 4.04 to 4.67A, whereas the parameter a and ¢ of the B4 phase
vary respectively from 3.11 to 3.58 A and from 4.98 t0 5.77 A.

The lattice constants of the Al;,«InyN ternary alloys may be expressed in terms of the binaries

parents by:
a(x) =x.amy+ A —x).ayy +b.x.(1—x) (3.2
with the term b.x.(1-X) representing the linearity correction term due to the lattice distortion.

We observe very little deviation from linearity for all phases, with the bowing parameter b
calculated values of 0.020; -0.253; 0.006 for B3, B1 and B4 phases respectively.
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Table 3.1. Lattice parametersfor AIN, InN and their alloys Al1.xInkN (B1, B3 and B4

phases).
Composition x a(h) c(A)
= =3 —| =1
0 TW 4.044 4377 [3113 |4.982
Exp. 4,043 437°, | 3.112% | 4.982% 4.978°
438 | 3111° ) y
5.006" 4.959
) 1 4.396" | 3.124"
Others 4.069",4.072 | 4 a0ak | 3 0ok
4.308'
0.125 TW 4.155 4459 |3170 |5.096
0.25TW 4.266 4544 | 3227 |5.199
0.375TW 4.339 4623 [3294 |5.291
05TW 4.437 4708 | 3.345 | 5.400
0.625 TW 4.483 479 |3410 |5.482
0.75TW 4.545 4878 | 3463 | 5.584
0.875 TW 4.615 4962 |3526 |5.682
1 TW 4.676 5052 | 3587 | 5775
Exp. 4.688° 498" | 3.548" | 5.760% 5.693°
3.533°
Others 4.636° 4947, | 358°, | 5.722,5.751°
4.980¢ | 3.544°
4,641

Note: Thiswork (TW)

a Ref. [8], b: Ref. [47,48], c: Ref. [49], d: Ref. [50],e: Ref. [51], g: Ref. [52], h: Ref.[53], i: Ref. [54], |:
Ref. [55], k: Ref. [56], |: Ref. [57], m: Ref. [58,59], o: Ref. [60], p: Ref. [61], r: Ref. [62], s Ref. [63]
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Figure 3.4 Lattice parameters of Al1xInyN: the AlInP versus In composition (B1, B3 and B4
phases).

Computed bulk modulus (BM) B and its derivative B' for B1, B3 and B4 phases along
with experimental and others ab-initio findings are listed in Table 3.2 and represented in
Figure 3.5.

The first things to note are the large values obtained compared to the other 111-V families
phosphides, antimonides and arsenides alloyed with In. The BM of AlInP, AlInSb and AlInAs
varies respectively, with In, in the range [82 71] [58 43] [75 60] GPa. The other fact is that
BM decreases as the In content is increased. This can be a consequence of a longer lattice
parameter leading to a weaker bond. Furthermore, the bulk modulus presents the largest value
for B1 phase and close values for B3 and B4 phases. This may be traced back to the fact that
the B1 phase has a shorter lattice constant and B3 and B4 phases have similar bond lengths
and coordinate numbers. There also seems to be a discontinuity in the BM B1 curve occurring
at a composition of 0.5 this may be due to the fact that AIN and InN have different phase

transition pressures and so is the evolution of the AlxInyN and InyxAlxN curves.

The variation of B with In content x which can expressed as :
B(x) =x.Buy+ (1 —x).Byny + b.x. (1 —x) (3.3)

The bulk modulus bowing parameters for B3, B1 and B4 phases are respectively 21.28, 67.42,
24.33 GPa. A relatively large deviation from linearity is then noticed and may be attributed to
the AIN and InN lattice parameter mismatch.
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Table 3.2 Bulk modulus B and itsfist derivative B’y for AIN, InN and their aloys Al;.
xINkN (B1, B3 and B4 phases).

Composition

X

=1 =3 = B _I =3 =

0 TW |264.32 |202.43 | 20333 |3.935 | 387 3.866
Exp. | 221 207.9" |48 |- 5.7-

6.3

Others | 2729 211.78, | 209° 3.8¢ 3.90'3.7¢
213.03 37

0.125TW 249.18 | 19291 | 193.65 | 4.121 | 3.904 3.664

0.25TW 22392 | 183.51 | 184.66 | 4546 | 3.964 3.648

0.375TW 195.07 | 176.59 | 175.10 |5.245 | 3.959 3.609

0.5TW 167.15 | 167.69 | 166.90 | 5.955 | 3.991 3.909

0.625TW 208.37 | 158.24 | 159.19 | 4.670 | 4.236 3.579

0.75TW 203.33 | 152.65 | 149.04 |4.762 | 4.278 4.414

0.875TW 198.78 | 147.53 | 146.03 | 4838 | 4.321 4.344

1 TW |193.39 | 14256 |141.82 | 4931 |4.443 |4.477
Exp. | 170 137" 125' 509 |- 12.7"
Others | 170.0°, | 144', 12559 | 469 | 4.56, 4.69

186' | 143.41" | 143 60 4.558

f: Ref. [64], g: Ref. [52], h: Ref.[53], i: Ref. [54], I: Ref. [57], n: Ref. [65], g: Ref. [66], r: Ref. [62],
t: Ref. [67].
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Figure 3.5 Bulk modulus of Al;«InyN vsIn composition (B1, B3 and B4 phases).

Table 3.3. Bowing parameters of bulk modulus

Bowing Phase Thiswork Others
parameter
Bulk modulus | B3 21,28 10.34 + 9.37%
Bl 67,42
B4 24,33

a Ref.[59]

3.2.2 Band structures

The energy band diagram of the wurtzite and zincblende binaries are respectively shown in
Figures 3.6 and 3.7. The graphs clearly indicate that, apart from zincblende AIN which is an

indirect semiconductor, wurtzite AIN and InN in its two phases have a direct band gap.
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Figure 3.6 AIN band diagram: zincblende (left) wurtzite (right).

Figure 3.7 InN band diagram: zincblende (left) wurtzite (right).
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a) Band gap

Two sets of calculations were carried out, the first one involving the main ambient
phases (zb, wz) with Wien2k and TBM, the second one relating all phases with VASP.

The band gap calculated with TBM and DFT (Wien2k) at high symmetry points at severa In
compositions in zincblende phase, aong with the available experimental and other works are
respectively listed in Table 3.4. Experimental data being available for the binaries alows to
draw some comparison. Zincblende AIN is found to be of indirect gap, the DFT (TBM)
calculated gap valuesat G and X high symmetry points are respectively 5.60 eV (5.4 eV) and
5.03 eV (4.92eV), compared to 5.34 eV and 4.90 experimental/ab initio values while, on the
other hand, zincblende structure InN is a direct semiconductor with DFT (TBM) gap vaue
0.86 eV (0.64 eV) compared with experimental value of 0.61 eV.

The wurtzite phase, in contrast, shows direct gap for both AIN and InN, with respective DFT
(TBM) values of 5.95 eV (6.23 eV) and 0.99 eV (0.79 eV), compared to experimental values
of 6.23 eV and 0.78 eV [67]. One has to note, at that point, that the indium band gap has long
been overestimated at 1.7 €V it was not until 2001 that the correct value was reported.

When aloying AIN and InN the band gap remains indirect up to a crossover whose
concentration value was found at x = 0.17 (TBM) and 0.10 (DFT) with a corresponding gap
of 4.47 eV (4.95) in comparison to works of Liou et a. [57] who find a crossover at x=0.183
and agap Eg=4.97 eV and Wang et al. [68] with at x = 0.18 and Eg=4.36 €V. The-I" and I
-X band gap variation with In for the wz and zb phases aong with similar works are
represented in Figure 3.8. The data was obtained with Wien2k where the work was mainly
centered on obtaining the crossover point.
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Table 3.4 Band gap of AlxInyN in zincblende phase.

AIN Alg75Ing2sN | AlgsolngsoN | AlgasingzsN | InN

TBM Eg®C(ev) | 5.4 4.04 2.774 1.62 0.64
Eg®* (ev) | 4.92 4.26 3.64 3.07 2.59

DFT- Eg®C(ev) | 5.65 3.68 2.69 1.57 0.83
Eg®* (ev) | 5.09 5.89 4.53 4.33 4.18

Others Eg®®(ev) | 6.53%5.4°, | 4.70', 2.20', 0.53°,
4.36", 3.61" . 1.43™ 0.78°,0.0°,

4.25° 2.35 0.013¢,

6.00°, 0.73",

6.03" 0.53"

Eg® (eV) | 5.63%4.9°, | 4.04™ 3.48™ 2.85™ 2.51°,

2.50',3.23), 1.56°,

3.16° 2.81),

4.90°, 2.32"

4.87™

Experiment 5.34° 0.7,0.6,
0.7-1.1'

a Ref. [47], b: Ref. [49] c: Ref. [48],d: Ref. [69],e: Ref. [70].f: Ref. [71],g: Ref. [72],h: Ref. [59],i: Ref. [73], k:

Ref. [68],: Ref. [50],
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Table 3.5 Band gap of AIN, InN and their alloys Al1xInkN in rocksalt (B1), zincblende (B3)
and wurtzite (B4) phases.

Composition x Eg (eV)
0 TW 5.743 4.817 5.347
Exp. 5.34% 6.28", 6.23°,

Others 5429 5.40°| 4.09% 4.36' | 4.26° 4.229,

0.25TW 3.794 2.961 2.924
05TW 2.037 2.044 1.794
0.75TW 1.346 1.256 1.203
1TW 0.800 0.595 0.782
Exp. 0.7", 0.6 0.9% 0.78",
0.7"
Others 1.0¢ 0.53% 0.692 0.90
0.78%,
0.73

a Ref. [47], b: Ref. [2], c: Ref. [49], d: Ref. [55], e Ref. [57],f: Ref. [56], g: Ref. [58], h: Ref. [68]; i:Ref.[73], k:
Ref. [47], |: Ref.[61],
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Figure 3.8 Band gap variation of Ali.xInyN zincblende with In (TBM and DFT )

TheT-I" energy band gap, computed with Vasp, of Al1xInyN for al three phases Zb, Wz and

Rs as afunction of indium proportionislisted in Table 3.5 and illustrated in Figure 3.9. The

results confirm that AlInN has the largest spectrum compared to the other 111-V

semiconductors. For example the gap variation with In for the phosphides the antimonides
and the arsenides are respectively [3.63, 1.42]; AlInSb [2.38, 0.23]; AlInAs[3.09, 0.41]eV.
The results show that the band gaps are decreasing with In composition. They are varying
from 5.74 to 0.80 eV for rocksalt which is shows the largest band gap range, from 4.81 to 0.59

eV for zincblende and from 5.34 eV to 0.78 eV for wurtzite. For agiven In concentration

(0<x<1) the Rs ,overal, appear to have the highest band gap, and the Wz the lowest one.

Bandgap (eV)

n Wz

A Rs

e 7b

Wz Ref[76]
Wz Ref[77]

0,0 0,2

0,4

0,6 0,8

In Composition

Figure 3.9 Band gap variation of Al;.xInkN rocksalt, zincblende and wurtzite.
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The energy band gap variation with In contents can be expressed as follows:

E,(X) = XE, oy + (- X)E,  +PX(1- X) (3.4)

g,InN

where Egain and Eginy are respectively the band gap energy of InN and AIN and b the band
gap bowing parameter for Al, . InN ternary aloy. The obtained values of b are presented in

Table 3.6.

Table 3.6 AlInN Band gap bowing parameter of zinc-blende, wurtzite and rocksalt

Phase bowing bowing
parameter parameter
Thiswork Others

B3 2.83 2.5

B1 4.37

B4

x=0.125 11.82 11.74 (x=0.13)°
x=0.25 6.80 8.12

x=0.50 5.07 5.15

x=0.75 3.85 4.24

x=0.875 3.61 3.87 (x=0.85)

a Ref.[49],b: Ref.[82]

From Eq. (3.4) the bowing parameter is deduced as follows:

b(x) = DE (0<x<1) (3.5)

X(1- X)

where DE = EJ'¥(x) - (1- X)E;™ - XE;™ represents the deviation from linearity.
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b is considered composition dependent if its fluctuation around the mean vaue by, is over

20% otherwise it isindependent.

So since for usual concentration (0.25,0.5,0.75) : (x(1-x)) isroughly 0.2 and a small deviation
from linearity for usual semiconductors is estimated at less than 0.2 eV (for small gap
semiconductors it is much less) therefore the bowing factor should be considered small when

itsvalueislessthan 1 eV.

As can be seen in Table 3 6 the band-gap bowing parameter yielded by our calculations has a
constant value for both B1 and B3 phases. Nevertheless, it depends on the aloy composition x
for the B4 phase. A similar band-gap bowing parameter composition dependent has been

reported in numerous works for the same materia system of interest [81,82,83,84,85,86,].

In fact the bowing parameter strong dependence on In-composition is a genera trend in al the
In-containing nitride alloys. Physical explanation seem still in debate and there a number of
theories regarding the cause among which: alarge size mismatch between cation atoms [83],
charge transfer contributions due to a large electronegativity differences between aluminum

and indium atoms [81,85], localized electronic states [82], indium clustering [84].

Moreover, the composition dependence of the band gap bowing parameter has been reported
for InGaN ternary semiconductor materials in the zincblende structure [86,87]. According to
these authors, the dependence of the band gap bowing parameter on the alloy composition is
traced back to the carrier localization effects. Furthermore, have also reported a composition
dependence of the band gap bowing parameter in wurtzite InGaN [88]. Besides, using DFT
calculations, Schulz et al. [89] showed also that even a single In atom in wurtzite InAIN can
introduce localized states in the material in question. They argue that this feature is

responsible for the composition dependence of the band gap bowing parameter. As far as the
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B1 and B3 phases are concerned in the present contribution, the physical reason for the non-

dependence of the band-gap bowing parameter on the alloy composition x is not clear.

b) Effective mass

In addition to the band gap, the effective mass of electrons stand to be another significant
physical parameters giving more insights as regards the electronic transport electronic devices
engineering especially the newly HEMT's using AlInN active layers [4]. The electronic mass
caculation has been carried out using Effective mass calculator EMC) software
(https://github.com/afonari/emc) which implements calculation of the effective masses at the
bands extrema using finite difference method. The results are presented in Table 3.7 with m,,
and m,; being the masses in the direction paralel and perpendicular to the c-axis,
respectively. The obtained masses are, to some extent, heavier than the other In based 111-V's.
AlInN effective mass varies in the range [0.29, 0.05] compared to [0.22, 0.08] for AlInP
[0.14, 0.014] for AlInSb and [0.15, 0.026] for AllnAs. Calculated values show reasonable
agreement with experimental data and other theoretica works and a phase comparison
reveals, overall, a lighter relative electron mass for the B4 structure and within this phase,
independently of concentration, a smaller mass along the c-axis.

Plots of the calculated electron effective mass of Al;—InyN aloy, as a function of indium

composition, for B1, B3 and B4 phases are illustrated in Figure 3.10 where the B4 mass is

taken as the mean mass value defined by m* = 3/mym? .

By observing Figure 3.9, the electron effective mass of rocksalt and zinc-blende structure
seems to vary quite strongly with composition even in the low In content regime. This may
affect the mobility of the carriers which in turn has an effect on the transport properties and
hence on devices performance. On the other hand, a nearly constant value for the wurtzite

effective mass at low In content is observed. This mass stability regarding fluctuation of
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concentration could of interest for HEMT devices in which the In content that matches the
lattice parameters between AlInN with GaN [3] is not steady but varies around 0.82.
Assuming that the electron effective mass versus alloy content x curve is quadratic, similarly

to the band-gap energy, one defines an electron effective mass bowing parameter b, (X) by

the relation,
m* (x) = (L- X)m* ;™ +xm* " +b_ (X) x(1- X) (3.6)

Our findings regarding the electron effective mass bowing parameter for the three phases
being considered here at various alloy concentrations x are listed in Table 3.8. Note that the

electron effective mass exhibit small bowing parameters.

Since the electron effective mass is inversely proportional to the electron mobility, one may
expect a contribution of the decrease of the electron effective mass in richer In ternary
compounds to the increase of the mobility bearing in mind that thisis not the only parameter
that affects the electron mobility. As a matter of fact, the electron mobility is also affected by
the alloy scattering and a deeper study should include the effects of disorder and eventual

clustering in the AlInN alloying on scattering.
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Figure 3.10 Electron effective mass of AlxInyN zinc-blende and wurtzite (DFT).
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Table 3.7 Electron effective masses m (in units of free electron mass mg) of ternary Al1xInyN
(B1, B3 and B4 phases).

Composition =T — == —
X = = - =
0 TW 0.583 0.523 0.306 0.289
Exp. 0.29- 0.29-
0.45% 0.45
Others 0.32¢
0.329, 0.284™
0.321°

0.25TW 0.438 0.260 0.293 0.253

05TW 0.202 0.174 0.169 0.151

0.75TW 0.134 0.093 0.077 0.069

1TW 0.096 0.077 0.049  0.046
EXp. 0.04 0.07° 0.07°
Others 0.129™  0.089™

a Ref. [47], d: Ref. [51], g: Ref. [58], j:Ref. [90], m: Ref. [76].

Table 3.8 Electron effective mass bowing factor

X 0.25 0.5 0.75
b (B1) -0.124 -0.55 -0.447
b (B3) -0.808 -0.504 -0.507
b (B4) 0.273 0.094 0.0386
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3.2.3 Density of states

The number of states available per unit energy (density of states (DOS)) is an
important factor in studying the electronic properties. The calculated total and partial density
of states of zincblende and wurtzite are shown respectively in Figures 3.11 a and b. The
vertical dashed line represents the Fermi level which is set to zero. It is clear that the density
of statesis higher in wurtzite phase than in zincblende phase. The upper energy vaence bands
range from -5 eV to 0 eV. The mgor contribution comes from the nitrogen atom for all
compositions in the two phases. The p-orbital seems to bring all the contribution of nitrogen
to the binaries. The lower conduction band of wurtzite phase extends continuously from the
value of the gap up to about 15 eV with a similar contribution of all atoms either in wurtzite
or zincblende phase. In the case of AIN, the p-orbital is prevalent while for InN, N and In,
respectively, contributes through the p-and s-orbitals. The ternary compounds present in the
case of wurtzite phase a continuous lower conduction band. However, there is a discontinuity
for zincblende phase that seems to shift towards higher energies with augmenting indium

content. In the case of the valence band we notice that the DOS peak increases with indium.
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Fig. 3.11 a Total and partial density of states of zinc-blendeAl ;I nyN: x=0.25 (a), 0.50 (b) and 0.75 (c).
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Fig. 3.11 b Total and partial density of states of wurtziteAl14nyN:x=0.25 (a), 0.50 (b) and 0.75 (c).
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3.3 High Pressure effects and Phase transition
3.3.1 Introduction

High pressure studies of semiconductors have given valuable insights to their room pressure
properties and have also been used to generate new phases. It is important to note that
hydrostatic pressure acts as a perturbation on the electronic properties without a change of
symmetry within a single, homogeneous phase. Accordingly, the changes in optical or
electronic properties can be interpreted in a straightforward manner. Experimentally high
pressure attracted attention from the Semiconductor Physics community after the discovery of
William Paul’s Empirical Rule [91]. The technique gained further momentum with the
invention of the diamond-anvils high pressure cell.

Phase transitions of nitrides will help us to theoretically understand and in some cases even
theoretically predict their properties. Nitrides are most commonly found in the wurtzite
crystalline structure. The atoms in the wurtzite structure rearrange into the rocksalt structure
when put under extreme high pressure. This phase transition is the one that we investigated

for the nitrides.

There are two widely adopted techniques, called enthalpy comparison method, to investigate
pressure-induced phase transition and identify stable phases. The first one is to optimize the
total internal energy of some selected structures with respect to structural parameters at
constant volume, and then construct in the same diagram total energy versus the volume per
unit atom for each phase. From the common tangent (Figure 3.12) one can extract the

transition pressure.

a — wurizile (B4)
3 d — rocksalt (B1) |

Total energy (eV)
.

s{ PyB4BI=820GPa .

Figure 3.12 Typical energy-volume E(V ) diagrams.
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In the second method one plots the enthalpy of the various phases against the pressure
and the intersect of the plot of two phases will provide the phase transition pressure (Figure
3.13).

=

Enthalpy per atorn relative to B3 (mRy)

acmpe

— . —— ‘
12 14 16 18
Pressure (GPa)

Figur e 3.13 Enthal py-pressure H(p) diagrams for four phases of ZnS material [92].

3.3.2 Band gap variation

We will first begin with the study of the effects of pressure on the energy band gap of
Al1«InyN in its B3 and B4 phases. The pressure are varied from tensile to compressive up to

the transition phase pressure. Results show a linear increase of the gap for either phases
(Figures 3.14 a and 3.14 b), with the dopes % varying with In concentration from 36.8

meV/GPa ( x=0) to 24.5 (x=1) for B4 and from 41.5 ( x=0) to 29.5 meV/GPa (x=1) for B3.
The magnitude of these slopes is typica of Ill-group nitrides which, due to their large
ionicity,and independently of their phase, exhibit much lower band gap pressure coefficients
than other [11-V group compounds such as GaAs (117 meV/GPa) [93]. It is also expected that
the pressure coefficient of the bandgap decreases with increasing indium composition as a
consequence of the larger ionicity of InN with respect to AIN [94].
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Figure 3.14a Band gap of Ali«InyN vs pressure B3:phase.
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Figure 3.14b Band gap of AlixInN vs pressure B4 phase.

3.3.3 Phasetransition pressure

Starting from a sequence of different volumes, calculation of the corresponding
energies were carried out within PBEsol with the energy versus volume E(V) plot illustrated

in Figure 3.15. Results show clearly that, B4 is the most stable phase structure independently
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of In proportion, that B3 is slightly higher in ground state energy than B4, and that we may
get phase transitions B4-B1 and B3-B1 for the entire proportions of In contents.

-300 |- ‘ -
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x=0.25
x=0.50
x=0.75
R R T TP AR SR mrae.  ut S
400 500 600 700 800 900 1000 1100 1200

Volume (Ang"3)

-500

Figure 3.15 Al.«InyN tota energy vs cell volume.
The phase stability is determined by the minimum of the Gibbs free energy G:
G=E+P.V-T.S (6)

where E, P, V, T, S stand respectively for internal energy, pressure, volume, temperature and
entropy. The Gibbs free energy reduces to enthalpy H (H = E + P.V) given that calculations
are made at 0°K. By using the obtained values for total energy and corresponding volume one
can easily calculate the variation of enthalpy with pressure for each phase. The variation of
the relative enthalpy difference of B4 and B3, for various In proportions, are plotted in
Figures 3.16(a, b) with the phase transition pressures determined at the x-axis intersection of

the various enthal py curves (AH=0).

The computed phase transition pressures are summarized in Table 3.8 and plotted in Figure
3.16. The results show a structural phase transition varying, with dopant, from 4.02 (x=0) to
7.84 GPa (x=1) for B4-B1 transition and from 3.37 (x=0) to 6.02 GPa (x=1) for B3-B1

transition with a maximum value around 16 GPa for x=0.5.
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Table 3.9 B4-B1 and B3-B1 phase transition pressures.

Composition Transition pressure of Al1xINyN (GPa)

X B4-B1 B3-B1
0TW 7.84 6.02
Others 12.5% 9.2° 7.1°
EXp. 14,20°

0.25 TW 15.015 14.69
05TW 15.194 16.94
0.75 TW 9.608 9.456
1TW 4.024 3.37
Others 13.4%4.93°11.1° 10.5°
EXp. 11.6°

a Ref. [95], b: Ref. [64 ], c: Ref. [65], d: Ref. [96], e: Ref. [97]
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Figure 3.16a B4- B1 Ali4InyN enthalpy difference
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Figure 3.17 Phase transition pressure vs In composition.
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4.1 Introduction to the origin of strains

In the growth process the AlINN films are deposited on a substrate, the difference in
the lattice structure parameters results in strain effects which in itself has a great influence on
the structural and therefore to the physical properties of the aloy. The following study deals
with the effect of depositing a AlInN film on a GaN substrate, this kind of substrate being
chosen ahead of studying a device based on thistype of heterostructure.

Prior to the study of an electronic device, we analyze the physics of a layer deposited
on a substrate. We will try to see the effects of the mismatch of the lattice parameters of two

compounds as well as the change of the physical properties due to the mismatch.

If we consider that the first few layers of the AlInN film are affected by the substrate
and that mainly the bond length and the angles are changed within the process, the first direct
effect will be the change in lattice parameters of AlInNN compound causing a whole new
energy band diagram. Thereof the band gap and the el ectronic effective mass will modify and

hence the semiconducting properties of the compound will be affected.

4.2 Theory of Strain

Consider the two materials A and B shown in Figure 4.1(a). These two materials have
an obvious lattice mismatch, and this is the case to be found in all the nitride materials
considered in this work. Due to this lattice mismatch, strain effects will be present in any
heterostructures made from these materials. This is obvious if one considers growing an
epilayer of material B on a substrate of material A, as is shown in Figure 4.1(b) The atoms of
B are forced to align themselves with those of A with the in-plane lattice constant of B
matching that of A, and thus the epilayer will be under biaxial compression. As a result of
this, the epilayer of B expands along the growth direction by taking the shape of substrate A
(a) and changes in the normal direction , such that, instead of being described by one lattice
constant a, B is now described by asand a such that a>a>a..

For a sufficiently thin epilayer we can assume that al the strain is incorporated in the layer.

The net strain in the layer planeis given by;
e =e,=e,=(a-a)/a (4.1)

The strain in the epilayer along the growth direction €.is given by:
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Figure 4.1 Lattice modification under strain
4.3 Strain effect on the electronic band structure

If we consider that only the first few layers of the AlInN film are affected by the
substrate and that mainly the bond length and the angles are changed within the process, the
first direct effect will on the energy band diagram of AlInN. In order to calculate electronic

structure, one has first to calculate or measure the position dependent strain tensor e, .

The basic approach to calculating such strains is Harmonic continuum elasticity: Here,
one uses classical easticity within the harmonic approximation, to compute the theoretical

variation on the geometry of the unit cell:

For a cubic system, the strain energy per atom, Ece [98] is:

V V
Eee :ECﬂ(eix +E§y +ezzz) +EC44(efy +e§z +e22x) +VCy, (8, T€)8x +ezzeyy) '4.3)
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where V isthe equilibrium volume, C;; are cubic elastic constants, and e, the strain tensor.

In the absence of shear strain, for afilm coherently grown on a substrate with parallel

|attice constant &, the strain components are:

=& 8% € % (4.4)

where ag is the equilibrium lattice constant of the unstrained material and c is the

perpendicular lattice constant of the strained film. The equilibrium value of this ¢ axis is

determined from: e =0
Te.
yielding [92]:
,G
%0 1 (5. 396)e @) (45)

where the 'epitaxial strain reduction factor' for orientation G of the c axisis

B

1= veEp

1
andD=C,, - > (C,- C,) istheelastic anisotropy,

2
B= 3 (C,, *+2C,,)isthe bulk modulus,

andg(G) isapurely geometric factor givenin.

For principal directions, g (001)=0, g (011)=1, g (111)=4/3. Equations 4.4 and 4.5 are used
routinely to predict tetragonal distortions of strained films.

In the case of an hexagonal structure asin wurtzite [99]:

=5 %
%q

c=c,(1- 2%%) (4.6)

33
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Thus the growth of both the zincblende or wurtzite AlInN structures on a GaN
substrate yields a tetragonal structure whose basal parameter corresponding to the substrate (
GaN) lattice parameter and the perpendicular parameter given by equations 4.6.

The computed lattice parameters of the resulting tetragona structure are listed in
Table 4.1. The basa parameter a is that of the substrate i.e. a=acan=3.189 Ang, while c,;
and ¢, correspond respectively to the perpendicular parameters of the former wurtzite and

zincblende structures.

Table 4.1 Perpendicular lattice parameter of the tetragonal strained structure

AIN A|o.75| n0,25N A|0.50| no.5oN A|o.25| n0,75N InN

Cx (ANQ) 2.062 | 1.856 1.618 1.333 0.976

Cuz (ANQ) 4913 | 5.204 5.543 5.964 6.535

4.3.1 Calculation of strain by the Tight Binding method

The modification of the bonding length and cell parameters owing to the strain means
that the TB matrix elements Hirmr differ from those of the unstrained bulk material. In the
following the bulk matrix elements of the unstrained structure are denoted by H%rmr. We

consider here only scaling of the inter-site matrix elements, for which, in general, arelation:

HIR',n'R = Hl??‘,me (dg'- R dR'— R) (4.7)

is expected, where d%- r and dx- g are the bond vectors between the atomic positions of the
unstrained and strained material, respectively. Since the atomic-like orbitals of TB models are
typically orthogonalized Lowdin orbitals, it might be that the diagonal matrix elements, too,
vary in response to displacements of neighboring atoms [100]. However, Priester et a. [101]
achieved a very accurate band structure description in the framework of a spin-orbit
dependent sp3s+ TB model without adjusting the diagonal matrix elements. Therefore, we
consider here only scaling of the inter-site matrix elements. The function f(d%- r , dr- Rr)

describes, in general, the influence of the bond length and the bond angle on the inter-site
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(hopping) matrix elements. Here we use the relation: f(d’r-_r,dr-r)=( d°&-r / d r- g )* This
corresponds to Harrison’s d™2 rule [100], the validity of which should be a reasonable
approximation.

The bond angle distortions can exactly be included in a TB model and the directiona cosines
between the different atomic orbitals are calculated according to the strain-induced
displacements of the different atoms. With this so-called d ansatz, the new interatomic
matrix elements Hirmg are given by:

éds. U

IRMR — H|?a',mR ed—g (4.8)

élr.r0

H

Taking into account all these facts the energy band diagram of a unstrained and strained
AlInN film for x=0.75 is presented in Figure 4.2.(wurtzite) and Figure 4.3 (zincblende). For
this particular indium concentration we notice a slight change in the band gap and a rather
appreciable variation of the conduction band shape between enlarged to squeezed depending
on the phase (wurtzite or zincblende) and therefore a consequent change in the electron
effective mass.

Energy (eV)

Wate ector

Figure 4.2 Unstrained (blue) and strained (red) Alp7slng2sN wurtzite band diagram (TBM)

67



4 Strain effects and application to an €ectronic device

Wave vector

Figure 4.3 Unstrained (blue) and strained (red) Alp7slng2sN zincblende band diagram (TBM)

The band gap is extracted from the band energy diagram for various In concentration x and its
variation with x is plotted in Figure 4.4. Below the matching concentration the strained mass
is lower than the unstrained one whereas the trend reverses for higher In contents. The

variation is quasi-linear since constant basal parameter dictates all the stress variation.
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Figure 4.4 Band gap variation of strained and unstrained Al In;.xN with In proportion
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4.3.2 Computation of strain effects by DFT

The strain results in a deformation of the wurtzite cell, leading to a tetragonal
structure. All calculation have been made using 16 atom supercell with the new atom
positions determined by equations 4.6 and 4.7.

As previously we used a PBEsol exchange correlation function with the remaining
Wien2K tuning parameters similar to the unstrained case. Figure 4.5 and 4.6 represent
respectively the energy band diagram of unstrained and strained Alg 75 Ing2sN in wurtzite and

zincbhlende form;

We notice a for the wurtzite diagram a widening inthe shape of the lower conduction band
and a narrowing of the band gap. Moreover the degeneracy is lifted for the higher valence
bands. The same observation is valid for zincblende where the lowering on the lowest CB is

more severe than in the other CB bands.

Energy (V)

Figure 4.5 Energy band diagram (DFT) Alg7s1no2sN (wz). left: unstrained right: strained
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Figure 4.6 Energy band diagram (DFT) Alp7s Ing2sN (zb). left: unstrained, right: strained

The data extracted from these band diagrams are reported in Table 4.2 for the energy band
gapsand in Table 4.3 for the electron effective mass.

Table 4.2 Calculated band gap for strained and unstrained AIN, InN and their alloys AlxInyN
in wurtzite phase

AIN AlozslnozsN | AlgsolnosoN | AlgaslingzsN | INN
TB unstrained 6.231 4.303 2.656 1.448 0.790
TB strained 5.825 4.492 3.097 1.833 0.879
DFT unstrained | 5.950 3.769 2.802 1.786 0.998
DFT strained 5.238 3.368 3.175 2.145 1.523
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Figure 4.7 Band gap of unstrained and strained wurtzite AlInN versus In composition
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We notice in Figure 4.7 as expected a decrease of the gap with In with a change in the

relative value or the strained and unstrained at the concentration at which the lattice parameter

of the Alx In;«N turns out to be greater than that of GaN. The strain modulates the range of
gap causing a modification in eV from [6.23, 0.79] to [5.82, 0.88].

Table 4.3.Electron effective masses TBM and DFT calculations for strained and unstrained
AIN, InN and their aloys in wurtzite phase.

AIN Alp7slng2sN AlgsolngsoN | Algzslng7sN InN
TB unstrained __10321 0.259 0.194 0.127 0.054
€ 770
TB strained 0.294 0.257 0.215 0.166 0.113
DFT unstrained 0306 0.293 0.169 0.077 0.049
]
DFT strained 0.300 0.209 0.196 0.185 0.141

Figures 4.8 and 4.9 show the variation of the electron effective mass, obtained respectively
by TBM and DFT, with In concentration
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Both methods show decreasing mass with In proportion. Above around 25% strained mass
raises with respect to the unstrained one the difference of which increases with In. What is
noticeable in the short interval centered on x=0.18, our zone of interest, is that the strain

causes a smaller electron effective mass contributing positively to the electron mobility.
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Figure 4.8 Electron effective mass of unstrained and strained AlInN versus In composition
(TB)
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Figure 4.9 Electron effective mass of unstrained and strained AlInN versus In composition
(DFT calculation)
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4.6 Polarization effects
4.6.1 Theoretical framework

Piezoelectricity is a charge that accumulates in certain solid materials (such as crystals

certain ceramics and biological matter) in response to applied mechanical stress.

The piezoelectric effect arising from stress-occurs in crystals that lack a center of inversion. A
piezoelectric potential can be created in any bulk or nanostructured semiconductor crystal
having non central symmetry, such as the Group IlI-V and II-VI materiads, due to
polarization of ions under applied stress and strain. This property is common to both the
zincblende and wurtzite crystal structures. The semiconductors where the strongest
piezoelectricity is observed are those commonly found in the wurtzite structure, i.e. GaN,
InN, AIN and ZnO.

The polarization is related to stress through the piezoel ectric tensor by the relation:

P, =¢g¢, (4.9

pz

where g, isthe piezoelectric coefficients and e; the strain tensor.

For zincblende semiconductors, the piezoelectric tensor only has one non vanishing tensor

element ey4, and the polarization induced by strain is then given by:

BoP B

(4.10)

D> D> (D> D~

N-U ~<-U ><-U

(e oY Y exY «]
o O O
o O O
o O

Because of the special form of the piezoelectric tensor, only the shear strain generates the
piezoelectricity. Hence a biaxial strain does not generate piezoelectricity in zincblende
semiconductors grown on (001) direction, whereas this effect is largest dong the (111) axes,

since the anions and cations are stacked in the (111) planes.

On the other hand in strained wurtzite structures along or perpendicular to c-axis, a

piezoel ectric polarization will appear given by:
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where the piezoelectric tensor e presents three nonzero coefficients ess, es3 and ess.

For strained I111-V nitride epitaxia layers grown in the [0001] orientation, a piezoelectric

polarization will be present aligned along the [0001] direction and given by:
sz = ejl(exx +eyy) + e?,Sezz (412)

In addition to piezoelectric polarization, among I11-V semiconductors, I11-V nitrides show a
property, consisting of a built-in electric field, called spontaneous polarization (Psp ). The
materials showing this property are called pyroelectric.

Spontaneous polarization is an intrinsic property related to the bonding nature of the material,
whose origin can be attributed to the fact that the geometric center of the negative charges
(electrons) in the solid does not coincide with the center for the positive charges (nuclei).
Another way to express this concept is to think that, in the pyroelectric, the bonds connecting
the atoms with their first neighbors are not equivalent, i.e., one of these bonds has a more (or
less) ionic nature when compared to the others. Tetrahedrally coordinated semiconductors
with cubic structure have four equivaent bonds and due to this symmetry the center of the
electronic charge belonging to an atom coincides with the nucleus position.. This intuitive
picture shows why elemental semiconductors (Si, C, Ge) and zincblende-structure

semiconductors, such as most of the I11-V and 11-V1 semiconductors, do not show aPsp .

However, the Psp can arise in some cubic semiconductors by the effect of aloying. In the
case of InGaP aloys [102], materials formed by the substitution of a certain amount of In
atoms at the Ga sublattice sites of a zincblende GaP crystal, the bond distortion induced by the
atomic size mismatch between Ga and In, can induce a break in the symmetry among the four
bonds of the tetrahedral structure. The ensuing polarization must be called Psp since it is
shown in the equilibrium structure of the aloy: this effect isfairly relevant in 111-N alloys.
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On the other hand, lower symmetry crystals, such as hexagonal structure
semiconductors, having a bond oriented in the [0001] direction longer from the other ones,
show the existence of an asymmetry in the bonding. This difference in ionicity leads to the
center of the electron charges being displaced along the [0001] direction (the pyroelectric axis

direction).

The Modern Theory of Polarization (MTP) [103], sometimes referred to as Berry’s phase
method, provides an easy and accurate way to compute Psp. Within MTP the calculation of
Psp is performed using first-principles computational tools and does not require a previous

experimental knowledge about the material structure.
4.6.2 Polarization effect on AlInN layer grown on a bulk GaN

Since, as previously mentioned, the cubic binaries do not show any kind of spontaneous

polarization, we will concentrate for the remaining part of this study on the wurtzite case.

In the case of a biaxial strain on a AlInN layer grown on a GaN buffer the piezoelectric

polarization takes the following expression:

P 09 = 20400~ €00 22 e ) @13)

where the piezo-coefficient g; and elastic parameter C;; are given by Vegard's law:

jAIl_xIan = (1- X)Q?'N +XqunN (4.14)
G = 9GT G (4.15)
and the AlInN/Gan biaxial strain e,, is determined by equation 4.6 .

whereas the spontaneous polarization takes the form

PN (X) = (1- x)PAN +xPy™ +bx(1- X) (4.16)

here b is the spontaneous polarization bowing factor. Its computed value given in the
literature [104] is: bpspaiinn=0.071 Cm

The values of the binaries AIN and InN spontaneous polarization and piezoelectric

coefficients e3; and e33 used in thiswork, are presented in Table 4.4.
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Table 4.4 Piezoel ectric constants and spontaneous polarization of nitrides binaries [104,105]

Parameters AIN INN GaN
e31(Cm™) -0.58 -0.412 -0.55
es3(Cm™?) 1.55 0.815 1.12
Py (CmM™) -0.09 -0.042 -0.034

The resulting values of piezoelectric and spontaneous polarization for are listed in Table 4.5,
with their variation with In concentration plotted in Figure 4.10. The plot shows the decrease
of the piezoelectric polarizations with In concentration due to decreasing strain to finally
cancel in the matching of lattice parameters of the AlInN and the GaN substrate (proportion
x=0.18). Obviously the Py rises again with strain but reverses to take the same direction of
Psp . The spontaneous polarization, on the other side, shows a slow decrease over the

concentration range, and at high In concentration Pyiezo Will be minor with respect to Psp.

Table 4.5 Piezoel ectric and spontaneous polarization of Al1xINyN vsIn composition

X 0 0.25 0.5 0.75 1
Psp -0.0900 -0.0647 -0.0483 -0.0407 -0.0420
Ppz 0.0484 -0.0191 -0.0807 -0.1378 -0.1930
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Figure 4.10 Al;.xInyn Spontaneous and Piezoel ectric polarization vs In concentration
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4.7 Application to an electronic device:The HEMT
4.7.1 Introduction

The High Electron mobility Transistor HEMT (also known as MODFET), is a field
effect transistor consisting of a heterostructure of two different gap semiconductors. A
commonly used material combination is GaAs with AlGaAs, though there is wide variation,
dependent on the application of the device. Devices incorporating more indium generally
show better high-frequency performance, while in recent years, gallium nitride HEMTs have
attracted attention due to their high-power performance. GaN based HEMT have the ability to
operate at high frequencies are used in high power devices such as radars, satellite TVs, cell
phones voltage converters. Nitride HEMTSs traditionally use a heterogeneous AlGaN / GaN
structure with a n-doped large band n type AlGaN donor delivery layer and an undoped GaN
narrow band gap channel layer. The heterojunction created by different band gaps materials
forms a quantum well and within this structure high mobility electrons are generated in the
thin layer of AlGaN and fall completely into the GaN layer. The electrons can move rapidly in
the GaN-side conduction band without colliding with impurities because of the undoped the
GaN layer and form what is called a two-dimensional electron gas (2DEG),. The effect of this
isto create avery thin layer of highly mobile conductive electrons at very high concentration,
giving the channel a very high electron mobility. As with al other types of FETS, a voltage
applied to the gate changes the conductivity of this layer. Thus the supplier to conduction in a
HEMT isthe 2DEG which itself comes from the sum of spontaneous polarization of the polar
material and a piezoelectric polarization due to the deformation induced by the mismatch
between the two layers (AlGaN and GaN ).

However, after years of development there are some drawback on the
traditional AlIGaN/GaN HEMTSs. Indeed, there is increasing indication, that total stress limits
the reliability of AlGaN / GaN conventional HEMTs (Park et a [106], Chini et a. [107]). In
addition, the need to extend GaN HEMTs to millimeter-scale applications imposes thinner
upper barriers to minimize the effects of short channels and to alow higher cutoff
frequencies, while 2-DEG AlGaN/GaN electron gases are subject to surface depletion effects

when the thickness of the upper barrier is thinned below 15 nm.

Following the idea of Kuzmik [3], AlInNN/GaN HEMTs were proposed as an
aternative to GaN-based HEMTS, offering a solution to the strain-related device reliability .
In addition, surface depletion effects should be far weaker for the AlINN/GaN system
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(Kuzmik) [3], enabling, in principle, thin-barrier GaN HEMTs that should maintain excellent
channel aspect ratios down to very short gate lengths. Ultrathin-barrier of AIInN/GaN HEMTs
was verified down to 3-nm and high temperature stability (as high as1000 C) have also been
reported (Medjdoub et a [108]).

AlInN/GaN HEMTs have two main advantages over AlGaN/GaN HEMTSs: (i) the
charge induced by the spontaneous polarization is almost three times higher, allowing higher
current densities. Electron densities as high as 2.73 x10™ can be reached in lattice matched
AlINN/GaN devices.(ii) Alogslngi7N and GaN are lattice matched removing strains in the
heterostructures . These mechanical constraints are harmful to the reliability of the devices
and are also supposed to be at the origin of trapping centersin transistors [ 109,110,111].

4.7.2 HEMT Physical processes and derived equations:

A basic configuration AlInNN/GaN HEMT isshownin Figure4.11

Figure4.11 Basic AlInN/GaN HEMT

Its corresponding band diagram is sketched in Figure 4.12.
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Figure 4.12 Band diagram for the balance equation model of an AlInN/GaN structure

For most of cases only quantum well ground state energy E; is occupied then the balance
eguation can then be written as.

ed
eF ,(X) - ——(S mimvican (X) = €sg) - DE mivican B+ (Er - E)) =0 (4.17)
€08 i (X)

Triangular quantum well discrete energy levels are well known with the ground state E; is:
E1 = gn 2/3

gp hez 62/3

38 [8m*eAllnN ;

and the energy difference Er -E;:

with g=

E-g=""n (4.18)

he . .
where pm* is the quantum well density of states.

The 2D electron gas density is then:

Al In,N 1 AN Al In N
@hz €8, " 0 & ™ ee AllnN/GaN 234 O

n.= - +1- - L e~ (x)- DE X)+gn - (4.19

s gezm g A o g e e?d AN ( b( ) ¢ (x)+g s )g ( )

the previous equation is ssimplified if we consider that in reality the ground state energy E;

nearly coincides with the bottom of channel conduction band i.e. neglecting the term gn.*®

2 AlpIn,N
ph eOer '

e2m* dAIInN

and then neglecting further we get the standard expression for the density of
the 2DEG:
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Al In,N Al In N

S e er nN/Gal
=" —- gsz”nN (eF »(x)- DES™ (x)) (4.20)
eisthe electron charge, d*'"™ barrier layer thickness and e "N the aloy permittivity given
by:
e/ () = (L- )™ +xe™ (4.21)
s A'"™ the polarization-induced charge
S A InN AN S Al I N

% et (4.22)

®y, isthe Schottky contact barrier height., Er is Fermi energy level.

DEA'™/®N (%) the conduction band discontinuity between barrier and buffer takes the
following value [112]:

DECAIInN/GaN (X) — 0_63(EgA|1.xlan (X) _ EgGaN) (4.23)

In area device one usually introduce a thin AIN layer, to get an heterostructure with
AlInN for the barrier, AIN for the interlayer, and GaN for the bulk (Figure 4.11). The
introduction of an AIN spacer layer at the AIINN/GaN interface increases the carrier density
and effectively reduces the aloy scattering of 2DEG as well as provides better carrier
confinement [114,115].

source Gate Drrain
TilAUNV AR - TVALN A
Undoped AllnN i 11 nm
p. Y| SIEWCET d""d = |
AIN spacer (1 nm) Undoped GaN II_J pm

Figure 4.13 Structure of an AlInN HEMT transistor

The corresponding energy band diagram is sketched in figure 4.14.
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Figure 4.14 Band diagram for the balance equation model of an AlInN/AIN/GaN

The balance equationfor a configuration with the AIN spacer is:

eF (%) - Ec minsanAaim + DE aimram = EcanGan = DEc anjean T B+ (Er - B) =0 (4.24)
Note that in this case

Ec.an = €S anvcan = €Mg) / €€ an

isthe field across the AIN and

Ec v = &8 ainnsan (X) +S anjcan = €M2q) / €€ (X)

is the field across the AlINN barrier. The latter is thus determined by the total polarization

charge across the AIN interlayer.
We get the expression of ng:

o1,
_ 1mjA||nN dAlN o edAHnNS AlInN dA|NS AIN eo
ns__g, AN an +~ @ AN AN

€ee e gé e e e

u
(d: b(X) _ DECA|N/GaN + DE?HHN/AIN (X) + EF )Q
u

(4.25)

If we assume that ®y, for IlI-nitrides is given by the difference between the metal work

function @, and the semiconductor electron affinity x [113], and taking the following values
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of electron affinities [114]: x(InN) = 5.75 eV, x(AIN)= 2.05 eV, x(GaN) = 4.16 eV, @, (Ni) =
5.1 eV by applying Vegard’s law we get:

F,(Ni/Al_ InN)=305- 3.7x (4.22)

If we further take a buffer (AlINN) thickness of 11nm and a spacer thickness of 1nm,
equations 4.21 and 4.25 representing the variation of the two-dimensional gas density with In

concentration for a basic (red) and with a spacer (blue) configurations are illustrated in Figure
4.15.

2DEG density (107 m'2)

] N

L r L L L L L L L
10 18 30 40 50 60 70 80 920 100
In concentration (%)

Figure 4.15 2DEG density vs In concentration for AlInN/GaN (blue) and AIINN/AIN/GaN
(red) HEMT configurations.

One is mainly interested in the region around the matching point (MP) x=0.82, at that
concentration the electron gas may, theoretically, reach a density of 4.70 10" m? for a
AlINN/AIN/GaN configuration. In the case of a basic configuration calculation yields a
density of 4 10'" m in agreement with other works [3]. Now, if we compare the two curves
we clearly observe the impact of the thin layer of AIN by the increase the gas density
estimated at approximately 18% at the MP. Another noticeable fact is the negative values
obtained for the gas density at above approximately 50% of In content. That corresponds to
obtaining a gas of holes as carriers (2DHG).
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Since the stress is composition dependent, to provide estimation of a gauge factor, the factors
influencing the change in channel resistance with concentration are investigated. The channel
resistance isinversely related to the 2DEG sheet carrier density and electron mobility

A
ansm,

R, = (4.26)

where the A is cross sectional area of the 2DEG. In the presence of stress, the normalized

change in channel resistance can be written as:

DR, _Dn, _ Dm (4.27)
Rh ns nl

To evauate the effect of stress on the channel resistance, both the effect of stress on the
2DEG sheet carrier density and mobility needs to be considered. Strain-enhanced mobility can
result from reduced average conductivity effective mass from carrier repopulation and band
warping, suppression of intervalley scattering from subband splitting, and change in density
of states with stress. Unlike Si, GaN is a direct semiconductor with a non-degenerate
conduction band minimum at the M-point. Therefore, stress-induced change of the average
effective mass due to electron repopulation and scattering can be neglected. Thus, the
mobility change is dominated by a change in the effective mass through band warping.

Ry - D0, DT (4.28)
R:h ns ITL

If we take the zero stress concentration x=0.82 as the reference point, we will get the

fluctuation of the 2DEG density and the electron effective mass around the matching point as

respectively:

Ans=ny(X) - Ng(0.82), Ame=mg(X)- m(0.82).

where mg(x) is the electron effective mass of the strained structure.

The relative variation due to the indium concentration fluctuation around the matching
(x=0.82) of the channel resistance along with the 2DEG and the electron effective mass is
plotted in Figure 4.16. For In variation less than £8% the plot is linear with the variation of
the electron gas density having the main contribution, and to get a practical evaluation a 2%

variation of the In results approximately in avariation of 10% of the channel resistance.
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Figure4.16 Channel resistance variation AR/R (black), 2DEG relative variation Angdns (blue)

electron effective mass variation (red)
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Conclusion

This work was dealing with a nitride compound AlINN which is a relatively new
comer with respect to the other well studied aloys such as AlGaN or InGan. Thanks to new
methods of growing this ternary has found new multiple use in electronic and optical devices

such as, to name afew, high power transistors or distributed Bragg reflector.

Our contribution was through a comparative study of all possible phases of this
compound. This comparative study was conducted by means of two methods : the first one
the tight binding method is semi-empirical, the second the density functional theory is an ab-
initio method. The aim of this work is first to study, for a given phase, the variation of a
physical property with the indium composition, then to set an inter phase comparison. In the

following we summarize our main results:

First of all the obtained data for Al In;..xN were checked with the binaries that is for
x=0 and x=1 for which experimental results were available and the results were pretty good in

agreement with experimental works.

As far as the structural properties are concerned we observe : A linear increase of the
lattice parameter and so a decrease of the bulk modulus. The denser packing rocksalt phase

taking the highest BM value while wurtzite and zincblende phases have close values

In the chapter of electronic properties DFT calculation with the modified Becke and
Jonson potential allowed decent band gap values compared experimental data . The first
comment confirmed literature results that AIN in its zincblende phase is an indirect semi
conductor, and since InN is a direct one (for all structures) the AlInN alloy presented mixed

properties from direct to indirect depending on the In proportion.

On the other side, wurtzite structure- showed a direct band gap variation for the whole
In range and the largest gap spectrum (from AIN to InN) belongs to the rocksalt phase with an
extent of.4.94 eV. The gap of al phases decreased with In, however with a composition
dependent bowing factor confirming the genera trend in nitride aloys (InGaN and AlGaN).
Without being conclusive, our result and the absence of this tendency in the zinc blende phase

may suggest a charge transfer cause for this dependency .

The effective mass presented a decreasing value with In composition favoring the
mobility at rich In concentrations and the lighter mass for the wurtzite structure. The density
of states diagrams show a higher density in the wurtzite structure and the predominance of p
states.
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High pressure study showed the following points:

confirmed the wurtzite as the most stable, independently of In proportion, and that the
wurtzite and zincblende presented rather close values of ground state energies.

the Wz-Rs and Zb-Rs occurred for all In concentrations and that the phase transition
pressures were relatively low (less than 20 GPa).

slow increase of band gap with pressure.

If we consider the ternaries as In,Al1xN or AlxIn;«N, the effect of augmenting x

resultsin an increase of the phase transition pressure.

Heterostructure in which afilm of AlInN is deposited on a bulk GaN induces a biaxial strain
resulting in a tetragonal symmetry in which the basal parameter may be compressed or
extended depending on the In content, and the perpendicular parameter ¢ taking the other way
round. The first main result that the cubic binaries do not show any kind of spontaneous
polarization nor do they present any piezoelectric one under a biaxia strain, so the rest of the

study was carried out for the wurtzite structure.

The strain effect on the electronic structure resulted in alower band gap and a lower electron
effective mass for In concentration less than 25%. The piezoelectric and spontaneous
polarizations has been recalculated according to the new structure and the main contribution
has been found to proceed from the | atter one.

Finally the outcome of the strain study was applied to a HEMT transistor and results showed
that the sheet of induced electron gas has a high density of about 4.7 10" m? and that the

channel resistance variation was mainly caused by the 2DEG fluctuation.
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Outlook

Severa extensions can be added to the current study of which the:

High temperature effects
Optical properties with application to an optical device
Effects of defects on physical properties

calculation of the spontaneous and piezoel ectric polarization of AlInN cubic phase.
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APPENDIX A

TIGHT BINDING HAMILTONIAN AND PARAMETERS OF A
ZINCBLENDE STRUCTURE

The TB sps Hamiltonian matrix of azinchlende structure without spin-orbit interaction is

given by the following matrix [116]:

é E, V.0, 0 0 0 Var®: Va8 Vel 0 0 0
e u
eVad®  Er VOl V0¥ Vot 0 0 0 0 0 ¢
§ 0 V0 E, 0 0 Vud Vo8 VG 0 -Vgp
2 0 Vo0 0 E. 0 Vids Voo V0, 0 Ve 95U
u

H—é 0 Vo s 0 0 E. VO Vo0, Vo0 0 Ve G4y
= a
Vg8 0 Vgt  Voaf  V,o¢  E, 0 0 Vil O 3§
o8 0 Vol Vgt Vgs 0 E 0 Vgl 0
g/_mggc 0 V,9¢ V08 V.ge 0 0 Er Veamels 0 3
é 0 0 0 0 0 Vs*apcgg: Vs*apcgg: Vs*apcgg: Es*a 0 U
g8 0 0 Vo 0% Ve 08 -V 08 0 0 0 0 E. H

The four parameters g; to g4 arise from summing over the factors exp(i.d;.ko). They are
defined by:

9 =%(exp(id1ko)+exp(id2ko)+exp(id3ko)+exp(id4ko))
0 = (exp(icik,) + exp(ick,) - exp(ick) - exp(idk,))
0, = 5 (explidkc)- exp(idk,) explick,) - exp(id)

O; :%(eXp(id1ko)' eXp(idzko)' eXp(id3k0)+eXp(id4ko))

where we have assumed that atom 1 islocated at the origin and d; (i=1,4) are the positions of

its four nearest neighbors and ais the lattice parameter.
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1 a a a
d==-(111); d,==(1-1-1); d,=—(-11-1); d,=—=(-1-11).
=502 =30 1-0); ¢, = 8- 12-1); o = 2(-1- 1)
Some of the onsite and hopping parameters AIN InN and GaN parameters listed below have
been extracted from Ref. [117] and modified so asto fit with high symmetry points.
AIN:

Ee=-11.5047; E=4.3815; E<=0.5047; Epc=10.2184; E¢:=12.04;E¢=13.74;V -
9.8077;Vx=6.031; V,y=8.6191; Vepe= 9.4; V per=8.5; V¢ 5p=8.03; V pasr =2.47;

INN:

Ee=-12.8605; E=1.98; Eq=-0.3994; E,=8.02; E¢;=10.63; Es=13.00;
V=4.2285,V5=3.65; V5y=6.405; V gp= 3.81; V pasc=5.75; Vg 5pc=6.88; V peasr =3.36;

All elementsare givenineV.
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APPENDIX B

TIGHT BINDING HAMILTONIAN AND PARAMETERSOF A
WURTZITE STRUCTURE

The TB sps Hamiltonian matrix for awurtzite structure without spin-orbit interaction, can be
expressed in block from as below with the notation following the Ref. [118,119].

where the different matrix elements are  4x4 matrix blocks. The diagonal matrices E; and E

contain the orbital energies. The matrices Hj; represent the interaction up to nearest neighbors.

Hiz= 01*"M13
His= g*M14
Hz4= g2*M24
éE, O 0 0 u
e u
- 0 En O 0 G
2 €0 0 E, 00U
e u
8 0 0 0 praa
éE, O 0 (Vv
e u
E = a 0O E, O 0 l'J
€0 o E. O u
e u
80 0 0 Egg
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e u
a0 0 0 Ugg
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€ f) 1 f1e - fU o f 1o u
e u
é 3 G
€ )1 f,, L\ "o f u
Mo, =€ o
¢ 3 V3 a
g - 15 - 1., F0 o +Z fzc(ulxx +U1yy) 4 f3q(ulxx } Ulyy) 3
¢ 3 NE 3 3 i
.g' ) f¥ns - ) f¥ B 4 f3G(U1xx - Ulyy) flmlyy +Z fZQ(lex +U1yy)H

Us= Vo4 Us= -(Sart(3)/4)* Vsape, Uzs= -Ug;

Uz= (Vid4)+(Vx/2)) ; Un= (Vil4)-(V14)) ;

U1ss= Uss Ulg=-Ug/3; U= -Uzd3; Uis= Vs SArt(6);
U1xs=V sepd/ SArt(6) ;U1=Vyy/ (3*S0rt(2));U1x= Uiz

Uso= ((8°Uz/9)+H(Usd9)); Urzz= (Uz/9)+H(8* U/ 9)); Uyy= Uxx;

Thetight binding (self EnergiesIn, Al (cation) and N (anion)), AIN, InN and GaN parameters
have been extracted from Ref. [91] and modified so asto fit with high symmetry points.
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On-site elements.
Ex(AIN)=-12.104
Eoxa(AIN)= 3.581;Epzo(AIN)= 3.725; E«(AIN)=-0.096; Ep(AIN)=8.95
Ex(INN)=-6.791; Epxa(INN)= 0.000; Epza(INN)= 0.000;Es(INN)=-3.015; Ep(INN)=8.822;
off site elements:
V(AIN)=-10.735; Vx(AIN)= 5.808; V,(AIN)= 7.486;
Veepa(AIN)= 9.755; V epc(AIN)=10.092;
V&(INN)= -5.371; V(INN)= 0.022;
Vi (INN)=6.373;V sepa(INN)= 0.370;V gpc(INN)=18.0

All elementsaregivenineV.
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APPENDIX C

ELASTIC THEORY
1) Strain tensor
For adetailed analysisrefer to the classical book of Nye [120].

Two close points A and B of asolid ( AB=dr ) under stress shift to a position A'B'=dr’

so that dr'=dr +du where

du :del +de2 +de3

ix ix, X
is the displacement vector.

the relation between du and dx may be written in a matrix form
[du] =[b][dX] with [b]the matrix representation of the strain tensor.

The symmetric part of the strain tensor which correspond to the length variations (not the

rotation of the body) is:

éen €r €4 U
_€ u
€= €x» €y

@13 e23 e33 é (C 1)

where

o 13y
28 WX g

The diagonal terms of the tensor represent the stretching components of the strain whereas the

off diagonal are the shear components.

2) Stresstensor

If astressisapplied to asolid along its facets experiences forces dF;

dF, =sds =s dx;dx, (2)
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the overal effect can be described by a symmetric tensor called the stress tensor s of the
form:

~

€&, Sp SiU

S:é%IZ S 3233 (C3)

@13 S23 S33H

s =Ce (C4)
where s, are the components of stress tensor. The first subscript refers to the normal of the

face on which the fore acts the second to the direction of the force.
;i are components of atensile stress ( force isnormal to the applied face ).

g;; (i#j) are components of a shear stress ( forceis along to the applied face ).

3) Stiffness tensor

The relation between the strain and stress is governed by the well known Hooke's law through
the relation

;:Ce

where C  the stiffnesstensor isa symmetric tensor of the form
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a&y, C, C; C, Cy Cuo
gC21 Cpn Cu Cu Cu Cyul
- ¢Cs Gy Cy Gy G Gy N
! gC41 Cu Cu Cu Cp Cu-
¢C Gy G Gy G Gy N
gC(Sl Co Co Cu G Cup

(C5)

For a cubic symmetry as in the zincblende structure the number of Cj reduces to four

independent components Ci;, Ci2, Cy4q and the matrix isin the form

£11 C12 C12 O 0 0 0
€, Cy C; 0 0 0

— gClZ C12 Cll O 0 0 N

G =¢ =
o 0 0 ¢C, 0 O

¢o 0 0 0 C, 07

g 0 0 0 0 0 C,p

(C6)

For a hexagonal symmetry as in the wurtzite structure the number of C; reduces to four

independent components Cy;, Cio, Ci3, Ca3 Caq and the matrix will take the form

%:11 C12 Cl3 O 0 O O
€C: C G 0 0 0
gcla C, C, 0 O 0o =

G = ¢c0 0 0 C, O 0 -
go 0 0 0 C, o *
go 0 0 0 o SuCe:

2 9

(C7)

The values of the elastic constant are all taken from Reference [104]
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Table C1 Nitrides e astic constants.

Zincblende AIN GaN In
Cn 315 2901 190
Ci2 150 148 104
Cus 185 158 99
Wourtzite AIN GaN In
Cn 410 373 190
Cr 140 141 104
Cis 100 80 121
Css 390 387 182
Cu 120 94 99
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Propriétés électroniques et structuralesde Al n,N avec
application a un composant éectronique

Résumé

Le ternaire AlInN est un matériau utilisé dans les composants optiques tels que les
diodes éectroluminescentes, diodes lasers, fibres a réseau de Bragg ainsi que dans des
composants électroniques tel que les HEMT. Il se présente sous deux phases, wurtzite et
zincblende, on se propose alors, dans ce travail, en premier lieu de comparer les propriétés
structurales et éectroniques des deux phases. Cette comparaison serait bénéfique pour le

choix de la phase |a plus appropriée pour un composant donné.

L’AlInN se présente généralement sous forme d'hétérostructure AlINN/GaN dans les
composants électroniques. Sa croissance sur la couche GaN entraine I'apparition de
contraintes é astiques résultant en de profonds changements dans ses propriétés structural es et
électroniques. La deuxieme partie de cette these concernera |'éude de I'effet physique de ces

contraintes.

Et finalement aprés un bref rappel sur |'architecture et sur la physique d’un transistor
HEMT, on essaiera d'appliquer les concepts précédents aux effets sur les principaux

parameétres régissant |le fonctionnement de ce composant.

Deux méthodes de calcul ont été utilisées pour les éudes théoriques: la premiére
semi empirique la tight binding, et |'autre la théorie de la fonctionnelle de la densité une
méthode ab-initio. Un apercu théorique sur ces deux méthodes ainsi que les parameétres de

calcul utilisés sont exposés.

Mots clés: Nitrures, LCAO, théorie de la densité fonctionnelle, propriétés électroniques et
structurales.
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Abstract

The ternary AlInN is a material used in optical components such as light emitting diodes,
laser diodes, fiber Bragg grating as well as in electronic components such as HEMTSs. It
comes in two phases, wurtzite and zinc blende, it is proposed then, in this work, first to
compare the structural and electronic properties of the two phases. This comparison would be
beneficia to choose the most appropriate phase for a given component. Furthermore we will
try to study high pressure effects on the structural and el ectronic properties of AlInN and its
phase transformation into the rocksalt phase.

The AIINN comes generally in the form of heterostructure AlIINN/GaN in electronic
components. Its growth on the GaN layer causes the appearance of elastic stresses resulting in
profound changes in its structural and electronic properties. The second part of this work will
involve the study of the physical effect of these constraints.

And finally after a brief introduction on architecture and on the physics of aHEMT, one will
attempt to apply the above concepts to the effects on the main parameters governing the
operation of this component.

Two calculation methods have been used for theoretical studies: the first semi empirical tight
binding method, and the second ab-initio the density functional theory. A theoretical overview
of these methods is exposed as well as the calculation parameters used.

Key words: Nitrides alloys, tight binding, density functional theory, electronic and
structural properties.
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