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Introduction

Group III nitrides, InN, GaN, AlN, and their alloys, have revolutionized solid state

lighting since the development of a commercial blue light emitting diode based on GaN by

Nakamura [1] and continue to attract substantial research interest due to their unique

properties and importance for optoelectronics and electronics.

Group-III nitrides consist of the compounds of nitrogen (N) and the elements in the

column13 p-block of the periodic table namely boron (B), aluminium (Al), gallium (Ga),

indium (In) and thallium (Tl). Amongst these compounds GaN, InN, AlN and their alloys the

ternaries InGaN, AlGaN and AlInN, and the quaternary AlInGaN have been the subject of

intensive research for the device scientists and engineers in recent years due to their potential

application for electronic and optoelectronic devices fabrication [2]. The fundamental band

gaps of III-nitride ternaries cover various light spectra over the entire composition and easily

tailored lattice parameters allows the fabrication of electronic and optical devices on suitable

lattice matched substrates. They present, compared to other III-V compounds, strong chemical

bonds and high  resistance to degradation from intense illumination and high currents. Among

these semiconductor structures ternary Al1-xInxN alloy has a band gap that covers a very wide

energy range (0.69 eV to 6.25eV), which makes it an ideal candidate to fabricate electronic

and optoelectronic devices such as high-power high-frequency field-effect transistors, blue

and ultraviolet light emitting and laser diodes, resonant-cavity light emitting diodes, surface-

emitting lasers, and solar blind ultraviolet photodetectors [3,4].

Utilization of the group III-nitride ternary alloys such as Al1-xInxN in the fabrication of

electronic and optical device applications requires a better controlling of the growth and

fabrication process conditions as well as a reliable and precise physical modeling of their

structural, electronic and optical properties as a function of the alloy composition. It is now

well known that the better controlling of the growth conditions by molecular beam epitaxy

(MBE) and metal organic chemical vapor deposition (MOCVD) techniques allows precise

tailoring of the dimensions and the material properties of group III-nitride semiconductor

systems.
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Figure 1 Band gaps vs. structural parameters of III-V wurtzitic nitrides (left). Color

range of emitted light (middle). Relationship between band gap and structure parameters on

some material used in LED (right) [5].

It is a fact that, at normal growth conditions, AlN and InN crystallize in hexagonal

wurtzite structure (B4 phase), whereas growth of zincblende structure (B3 phase) on cubic

substrates has also been achieved among reports of interesting physical properties for

electronic devices that this phase may present [6]. In addition to that, thin layer film of

zincblende structure has been achieved in a non polar growth [7]. On the other hand, high

pressure experiments and ab-initio calculations showed that rocksalt (B1 phase) can also be

obtained [8,9]. The perspective of the possibility of realization of three phases has led us to

perform a comparative study of structural and electronic properties of the various phases of

the ternary alloys Al1−xInxN as well as high pressure effects on some of the undertaken

physical properties. This study used as computational methods the density functional theory

with modified Becke-Johnson functional based (mBJLDA) [10,11] and the semi-empirical

*sps tight binding theory with nearest neighbor interactions. By means of these two methods

we investigated the composition effect on the structural and electronic properties of 1 x xAl In N

ternary alloy in the zincblende, wurtzite and rocksalt phases. In the beginning, the lattice
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parameters were computed at various In proportions taking into account alloy randomness by

using special quasi-random structure, then from the obtained results bulk modulus, energy

band gaps, density of states and the electron effective mass were derived. The physical

properties variation with In content within each phase is first examined, then a phase

comparison is carried out.

Over the last few years, study of materials under high pressure has become an

extremely important subject exhibiting high growth. This is primarily due to both theoretical

and experimental developments which have at last facilitated such work. The effects of

pressure are more easily incorporated into first-principles simulations since it affords the

possibility of studying the variation in the properties of solids as interatomic distances are

changed in a systematic way.

In the high pressure effects, we first study the relative stability of the wurtzite and

zincblende phases of the 1 x xAl In N alloy, then wurtzite-rocksalt and zincblende-rocksalt

phase transition pressures throughout the whole indium composition range.

Finally, since varying gaps by means of pressure variation is another way of tailoring gaps

and providing a wider spectrum for optoelectronic devices, we then examine the variation of

the band gap with pressure for both phases.

The architecture of electronic or optical devices requires heterostructure stacking of different

compounds with various lattice parameter constants creating hence strains on the thin films.

This has an immediate effect on the structural properties on the strained alloy and therefore on

its electronic and optical properties. In the case of AlInN based devices, binary GaN is often

chosen as a buffer resulting in a biaxial strain on the alloy with an immediate modification of

the lattice parameters resulting in a whole new physical parameters (band gaps, effective

masses...) for the AlInN/GaN heterostructure.

To end with, previously studied phenomena are applied to a practical device namely the

HEMT. As will be seen later many of its transport parameters depend greatly on the density n

of a two dimensional electron gas (2DEG) created at the edge of the heterostructure. The

purpose of the last section is to study the variation of the density with the strain.
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The work in this thesis has been structured as follows:

 Chapter 1: The structural properties of wurtzite, zincblende and rocksalt are reviewed.

 Chapter 2: We describe the theoretical methods used in this thesis. The physical

formalism of the tight binding method and density functional theory are presented.

 Chapter 3: The structural and electronic properties parameters for a bulk AlInN .are

computed. Lattice parameters, band gap, electron effective masses and density of

states are calculated for zincblende and wurtzite phases and results are analyzed and

compared between phases and with experimental data. High pressure effects on the

alloy are studied. The stability of the various phases, the phase transition pressures

and the pressure variation gap are all examined.

 Chapter 4: Its first part deals with the effects of the strain. Electronic and structural

properties of  the strained AlInN in  the heterostructure AlInN/GaN are revisited. The

then obtained results are applied to a high electron mobility transistor ( HEMT) by

deriving the density of the two-dimensional electron gas and the variation of its

resistance.

 Appendices A and B providing respectively the tight binding hamiltonians  and

matrices parameters for the zincblende and wurtzite structures.

 Appendix C: The elastic theory is reviewed briefly and the nitrides elastic constants

are provided.



__________________________________________1-Cristalline structure of III-N nitrides

5

CHAPTER 1

CRYSTALLINE STRUCTURES OF III-N
NITRIDES
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1.1 Nitrides basic structures

III-nitride semiconductors AlN, GaN, InN and their alloys can crystallize in three

structures: the hexagonal wurtzite phase (B4), the cubic zincblende phase (B3) and the

rocksalt phase (B1). The thermodynamically stable phase at room temperature is the wurtzite

phase, but also nitride epitaxial growth with zincblende structure can be achieved on (001)-

oriented cubic substrates. Finally, the rocksalt structure can be induced in III-nitrides at high

pressures. In the following sections we will try to give a brief reminder of the structures

previously mentioned.

1.2 The zincblende structure:

Figure 1.1 Zincblende unit cell

The zincblende structure (Figure 1.1) has a face-centered cubic (fcc) lattice with a

diatomic basis. where the anion A is at (0, 0, 0) and the cation C is at (1, 1, 1)a/4 relative to

the lattice point. Anion and cation atoms are tetrahedrally arranged with each anion bonded

to four cations and vice versa and their respective sublattices shifted with respect to each other

by a quarter of the diagonal of the fcc lattice. The close-packed layers adopt regular repeating

arrangements: ABCABC along the (111) direction.

The primitive cell is formed by one cation and one anion, and the primitive translation

vectors are:

a= a(0,1,1), b= a(1,0,1), c= c(1,1,0) (1.1)



__________________________________________1-Cristalline structure of III-N nitrides

7

where a is the lattice constant. The unit cell positions are:

R1=0,  R2 = a+ b+ c

The B3 system belongs to the F-43m (No. 216) space group. The first Brillouin zone

for the cubic face centered lattice with the main symmetry direction is represented in Figure

(1.2) where the symmetry points have the following coordinates:

X(1,0,0), L(1,1,1), K(3/4,3/4,0), W(1,1/2,0).

Figure 1.2 First Brillouin zone for the cubic face centered lattice.

1.3 The wurzite structure

The wurtzite structure can be described by considering  two interpenetrating hexagonally

close packed (hcp) sublattices shifted along the c axis. We thus have an hcp lattice with a

diatomic basis. In addition, the wurtzite structure is characterized by an internal parameter u,

defined so as the anion-cation bond length along the (0001) axis is cu.

Figure 1.3 Wurtzite unit cell
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The wurtzite unit cell is shown in figure 1.3. The corresponding lattice vectors are

a=a(1,0,0), b=a(1, √3,0)/2, c=c(0,0,1)                    (1.2)

and the unit cell positions are:

R1=0,  R2=uc,  R3= a+ b+ c,  R4= a+ b+(u + )c
The first Brillouin zone for the cubic face centered lattice with the main symmetry direction is

represented in Figure (1.4) and the symmetry points have the following coordinates:

K(1/3,1/3,0), M(1/2,0,0), A(0,0,1/2), H(1/3,1/3,1/2), L(1/2,0,1/2).

Figure 1.4 First Brillouin zone for the hexagonal lattice.

Wurtzite has the symmetry of P63 mc (space group 186) with both N and Al at Wyckoff

position but with different z values. Wurtzite conventional unit cell, shown in Figure 1.3,

contains four atoms  The lattice parameters a and b are the length of the sides as shown, while

the lattice parameter c is the height of the unit cell.

The ideal wurtzite structure (all bond lengths and angles as in ZB) corresponds toa = a √2; c = ; = ; u=3/8 (whereas it deviates from this value for real

wurtzite crystals). Since zincblende and wurtzite may have almost identical bond lengths, i.e.

nearest neighbors (NN) distances, and bond angles, differing only in coordination of next-

nearest neighbors (NNN), their total energies are usually very close, so that these phases are

strongly competitive.
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In the case of wurtzite the stacking arrangement, along the (0001) direction, as shown

in figure 1.5 is of the type ABAB.

Figure 1.5 Zincblende and Wurtzite crystal structures. Shown are the ABCABC cubic close
pack layer ordering and ABABAB hexagonal close pack layer ordering.

1.4 The rocksalt structure:

The rocksalt structure (Figure 1.6) has face centre cubic lattice with two basis: one at

position (0, 0, 0) and the second at position (1/2, 1/2, 1/2)a where a is the lattice parameter.

The rocksalt structure contains equal amounts aluminium and nitrogen. Rocksalt has

the symmetry of Fm-3m ( space group 225 ). The smallest unit cell possible for the rocksalt

structure contains only two atoms.

Figure 1.6 Rocksalt unit cell



__________________________________________1-Cristalline structure of III-N nitrides

10

The group III-nitrides have polar axes (lack of inversion symmetry). In particular, the bonds

in the <0001> direction for wurtzite and <111> direction for zincblende are all faced by

nitrogen in the same direction and by the cation (Al,Ga, or In) in the opposite. For example in

the GaN (Figure 1.7 ) structure Ga-faced conventionally means Ga on the top position of the

{0001} bilayer, corresponding to [0001] polarity.

Figure 1.7 Structure of the N-face and the Ga -face GaN
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CHAPTER 2

TIGHT BINDING AND DENSITY FUNCTIONAL
THEORY METHODS
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2.1 The Tight Binding method

The tight-binding method (TBM) or Linear Combination of Atomic Orbitals (LCAO)

approach is based on the idea that in solids the electrons are tightly bound to their nuclei as in

the atoms, the lattice can hence be modeled as a combination of atomic orbitals at each atomic

position. The basic assumptions of the TBM are that a small number of basis states per unit

cell is sufficient to describe the bulk band structure and that the overlap parameters,

representing interactions between electrons on adjacent atoms of the localized atomic orbitals

decrease rapidly with increasing distance of the atomic sites. Moreover since the inner

electronic shells are only slightly affected by the field of all the other atoms, it is sufficient,

for the description of the bulk band structure, to take into account the states of the outer shells.

The Schrödinger equation for an atom located at the position Rl is

,, , , , , ,at at
l lH R E R       (2.1)

where the atomic Hamiltonian Hat is:

2
0

0

( , )
2

at
l

p
H V R

m
  (2.2)

and the basis states are , , ,lR    where: Rl is the unit cell position, α the type of atom, ν the

orbital type, σ the spin. V0(Rl,α) is the atomic potential of the atom at the position Rl. In the

presence of all other atoms in the crystal, the single-particle Hamiltonian of the periodic

system can be rewritten as:

n
, '

, ( , ')bulk at
l

n l

H H R V R


 


   (2.3)

and the Schrödinger equation in the following way:

, '

( , ) ( , ') ( )at
l l

n l

H R V R k E k k


 


 
  

 


Due to the crystal periodicity, the wave functions |k> are restricted to the first

Brillouin zone and expressed in terms of Bloch functions. The wave functions are then

approximated by linear combinations of the atomic orbitals:

0
, , n

, ,

( ) , , ,nikR ik

n

V
k e e u k R

V


  
  

     (2.6)
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where Δα is the position of the atom α in the unit cell Rn, V0 volume of the unit cell and V the

volume of the system.

Replacing the wave function of Eq. (2.6) into the Schrödinger equation we get a

matrix equation:

', ', ', , , , , ', ', ', , , , ,
, , , ,

( ) ( ) ( ) ( ) ( )bulkH k u k E k S k u k                 
     

  (2.7)

where the matrix elements are:

'( )0
', ', '; , , ( ) , ', ', ' , , ,m nik R Rbulk bulk

m n

V
H k e R H R

V
 

               (2.8)

and the overlap matrix elements are:

'( )0
', ', ', , , ( ) , ', ', ' , , ,m nik R R

m n

V
S k e R R

V
 

               (2.9)

In the semi-empirical tight binding approach additional approximations are made:

• Since distant orbitals have negligible overlap, the interactions are limited to first,

second or third .nearest neighbors,

• Orthogonal orbital are obtained by performing a Löwdin transformation [12].

• The so-called two-center approximation of Slater and Koster [13] is generally used in

which only the potential due to the two atoms at which the orbitals are located is taken into

account. The three-center integrals which deals with two orbitals located at different atoms,

and a potential part at a third atom is considerably smaller than the two-center integrals.

The two-center approximation allows to classify the overlap integrals into two classes;

on-site elements Eα,l and overlap parameters
0 0, , ,l lV  where Eα,l is the atomic energy level in

the presence of all the other atoms in the lattice, and
0 0, , ,l lV  , called hopping matrix elements,

describe the coupling between different orbitals at different sites. They give the probability

amplitude of an electron moving from one site to another and correspond to the matrix

elements containing orbitals from different atomic sites.

with the previous assumptions Schrödinger equation, Eq. (2.7), is reduced to:

', ', ', , , , , ', ', '
, ,

( ) ( ) ( ) ( )bulkH k u k E k u k           
  

 (2.10)
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the matrix elements ', ', ', , , ( )bulkH k      being given by:

( )0

,

, , , , , , , , , , , ,m nik R Rbulk bulk
m n

m n

V
k H k e R H R

V
             (2.11)

The atomic wave functions being very localized, the contribution of integrals for large |(Rm −

Rn)|  become negligible and are therefore ignored. The largest contribution is  for n=m,the 'on-

site' energies, then first nearest neighbor contributions ( n = m ± 1) etc

Slater and Koster provide, in their paper, a formalism for evaluating the hopping matrix

elements in terms of two centre integrals and direction cosines. Direction cosines are the

projection of an orbital’s amplitude in the direction of a bond vector joining two atoms. The

direction cosines associated with a hopping matrix element gives the proportion of the

relevant orbitals pointing along the vector joining their two sites For an sp3 or sp3s∗ basis the

interaction parameters are classified into two different types σ and π. These parameters are

depicted in Figure. 2.1. Vssσ models two interacting s-states. Vsapcσ and Vscpaσ represent the

interactions between an s-state and one of the lobes of a p-state, the difference between them

being where the states are situated- on the cations (c) or anions (a). Interactions between two

p-states are split between two terms, Vppσ and Vppπ . The σ term describes that part of the

interaction that results from the fraction of the lobes that are pointed directly towards each

other while the π term describes the contribution from the fraction of the p-states that are

aligned in parallel.

In practice the Vss∗σ and Vs∗s∗σ are generally neglected in the sp3s∗ Hamiltonian as the Vs∗pσ

terms provide the required modulation of the conduction band. For the purpose of solving the

eigenvalue equation one needs to have a knowledge of Hamiltonian matrix elements formed

due to orbital interactions at different interatomic sites. In the particular case where only s and

p atomic orbitals are responsible for bonding, there exists only four non-zero overlap integrals

as presented in Figure 2.1. If the axis of the p orbital involved in sp-bonding is parallel

(perpendicular) to the interatomic vector, it is called a σ (π) bond.
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Figure 2.1 Non vanishing matrix elements between s and p in sp bonding [14].

In general, the p orbitals are not just parallel or lie along the direction of atomic bonding as is

depicted in Figure (2.1), but, can also be oriented along different directions with respect to the

bond length. In such cases, it becomes necessary to take projections of atomic orbitals in

parallel and perpendicular direction to the bond length to account for the orbital interactions.

A projection of p orbitals is required along the direction of bond length in order to achieve

well defined orbital interactions. Each p orbital thus can be decomposed into two components:

(1) parallel to the line joining the atomic orbitals and (2) perpendicular to the line joining the

atomic orbitals. Figure (2.2) represents a randomly oriented p atomic orbital relative to the

direction of bond length. If d is the direction of bond length, a is the unit vector along one of

the Cartesian axes (x, y, z) and n being the unit vector normal to the direction of d, each p

orbital can then be decomposed into its parallel and normal components relative to d. Thus,

the Hamiltonian matrix element between an s orbital at one site and a p orbital on another

atomic site would be presented as

cos sin cosa d n sps H p s H p s H p H      (2.12)

Figure 2.2 Relative orientation of p and s orbitals at an angle  wrt the bond direction [14]
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For two p orbitals oriented along the directions of unit vectors ˆa 1 and ˆa 2 at angles θ 1 and θ

2 respectively, relative to the direction of line joining the two p orbitals represented by d as

depicted in Figure (2.3), their decomposition in parallel and perpendicular directions could

give Hamiltonian matrix element as a result of p − p orbitals interactions from two different

site can thus be presented as

1 2 1 2 1 2 1 2cos cos sin sina b d d n np H p p H p p H p    

1 2 1 2cos cos sin sinpp ppH H      (2.13)

Figure 2.3 Orientation of two p orbitals at an angle  w.r.t. the bond direction [14].

In the empirical TB model the matrix elements are treated as parameters. These parameters

are obtained by fitting computed energies at high symmetry points to physical properties of

the bulk band structure, such as band gaps and effective masses.

The quality of the TB band structure depends on the basis set used in the model. The minimal

sp3 model (one s orbital and tree p orbitals) is quite accurate for the valence band of usual

semiconductors, but less for the conduction bands, especially at high energy. The model with

an extra fictious s* band [15] improves the description and is sufficient for describing the

lowest conduction bands. The most accurate results are however obtained with the sp3d5s∗
model which includes 5 more d orbitals.
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2.2 Density functional theory

Several physical properties of solids such as lattice constant bulk moduli piezoelectric

constants defects to name a few are related to total energies. If total energies can be

calculated, any of those physical properties, can be in principle be computed. The methods

that obtain the total energy of a system, starting exclusively with the atomic constituents of

the system, are designed as ab-initio or first principles methods. Density functional theory

(DFT) is a powerful ab-initio method for the description of the ground state properties of

solids. It is based on the possibility to describe the system by its electronic density, instead of

using its complete many-body wave function. The Kohn-Sham (KS) equations [16] provide

the way to convert the DFT a practical methodology.

2.2.1 General formulation

The starting point of DFT is a system of N interacting electrons under the influence of an

external potential Vext(r). In most situations Vext(r) is the total coulombic potential created by

the nuclei of the solid, assumed to be at fixed positions. The ground state many-body wave

function of the system is denoted as Ψ and the corresponding density is n(r).

The energy and wavefunctions of  a system of N particles can  be theoretically determined by

solving Schrodinger's equation:

1 2 1 2 1 2 1 2( , ...., , .....) ( , ...., , .....)H r r R R E r r R R   (2.14)

where Ψ is the wave function of the system, ri and Ri are the positions of the electrons and

ions respectively, and H is the Hamiltonian of the system:

2 2 2 2

, 0 0

1 1 1

2 4 2 4
i I

i i I i je i I i j

Z e e
H

m r R r r 


    

 
   2 2 2

0

1 1

2 2 4
i I J

I i jI i j

Z Z e

M R R





 

...(2.15)

inte ext N NH T V V T V     (2.16)

The Hamiltonian consists of five terms respectively: the electrons kinetic energy, the

potential energy of the electrons in nuclei field, the Coulomb interaction between the

electrons, the nuclei kinetic energy and the Coulomb interaction between nuclei. The problem
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of solving the Schrödinger equation of a solid, where there are numerous nuclei and electrons

is not computationally possible without some simplifications. The first of these is the  Born-

Oppenheimer approximation, which exploits the large difference in mass between the

electrons and the nuclei.

In the Born Oppenheimer approximation, the ions are considered quasi-stationary since that

the nucleus mass is much larger than the electron mass, and hence the electronic and nuclear

dynamics are decoupled. The many-body problem is  reduced  to in a Hamiltonian in some set

configuration of nuclei.

The density functional theory DFT replaces the many-body problem of an interacting electron

gas in the presence of nuclei to of a single particle moving in an effective nonlocal potential

taking the electronic density n as the key variable.

DFT is based primarily on two theorems by Hohenberg-Kohn [17], stating that the total

energy  of an electron gas is a unique functional of the electron density, and that the ground

state energy of the system can be obtained through minimization of the total energy functional

with respect to the density. The electron ground state density can replace the wave function

without any loss of information and the  density that yields the minimum energy is the single-

particle ground state density.

Theorem 1. For any system of interacting particles in an external potential Vext(r) the

potential Vext(r) is determined uniquely, except for a constant, by the ground state density

n0(r).

The first Hohenberg-Kohn theorem establishes that the ground state density n(r)

uniquely determines the external potential Vext(r). This implies that all the properties can thus

be extracted from the exact ground state electron density.

Theorem 2. A universal functional for the energy E[n] in terms of the density n(r) can

be defined, valid for any external potential Vext(r). The exact ground state energy of the

system is the global minimum of this functional and the density that minimizes the functional

is the exact ground state density n0 (r).

This reduces the very complex problem of finding all ground state physical properties

of a system to finding the minimum of the energy with respect to the electron density.
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The second Hohenberg-Kohn theorem [18] demonstrates that the functional E[n]

defined as follows has its minimum value for the ground state density:

     int ( ) ( )HK extE n T n E n V r n r dr    (2.17)

where is the EHK[n] total energy functional, T[n] its kinetic energy part and Eint [n] the

part coming from the electronic interactions.

Unfortunately, the Hohenberg-Kohn theorems does not provide the exact functional

EHK[n], and the problem of determining the ground state energy and density is subordinate to

the discovery of sufficiently accurate estimations of such functional.

2.2.2 Kohn-Sham equations:

These equations establish the methodology for the practical use of the Hohenberg-

Kohn theorems. In these equations, the interacting electron system under the influence of the

external potential is represented by a system of non-interacting electrons under the influence

of an effective potential. This potential, called Kohn-Sham (KS) potential VKS (r), is chosen in

such a way that its ground state density is the same as that of the interacting electron system.

The one-electron KS wave functions are then the solutions of the single-particle Schrödinger

equation:

21
( ) ( ) ( )

2 KS i i iV r r r        
(2.18)

where εi are the energy eigenvalues.

The density n(r) is written as follows:

2

( ) ( )
N

i
i

n r r  (2.19)

Now we define the mean-field kinetic energy of the non-interacting electrons as follows:

  2

1

1

2

N

s i i i
i

T n  


   (2.20)

that it is slightly different from the kinetic energy T of the interacting electron system. The

functional F[n] is now conveniently rewritten in terms of Ts as follows:
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       S H XCF n T n V n E n   (2.21)

  3 3( ) ( ')
'

'H
i

n r n r
V n d d r

r r


 (2.22)

and the term EXC is the exchange-correlation energy.

The exchange energy is a consequence of the  requirement for antisymmetry of the

electron wavefunctions with the same spin. This antisymmetry causes a spatial separation of

the electrons which reduces the Coulomb energy of the system, and this reduction computed

using the Hartree-Fock approximation is called the exchange energy. The Coulomb energy

can be further reduced (at a cost in kinetic energy) if electrons with opposite spins are also

spatially separated, and the difference between this and that calculated using the Hartreee-

Fock approximation is termed  the correlation energy.

The potential VKS (r) includes the external potential and the electron-electron

interaction.

3( )
( ) ( ) '

'KS ext XC

n r
V r V r d r V

r r
  

 (2.23)

where:

 
( )
XC

XC

E
V n

n r






( ')
( ) ( ) '

' ( )
XC

KS ext H XC ext

En r
V r V V V V r dr

r r n r




     
 (2.24)

The Kohn-Sham equations can now be solved instead of finding the minimum of

Eq.(2.15), and the orbitals φi (r) then give the electron density according to Eq.(2.19) above.

The equations (2.18), (2.19) and (2.23) are acknowledged as Kohn-Sham equations., The

ground state density and the total energy of the system can be derived by solving them self-

consistently.

The Kohn-Sham equations provide the exact ground state density. However, all the

benefits gained by this theoretical study depend on the ability to deal with the exchange-

correlation functional, in an exact manner or by finding accurate approximations.
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2.2.3 Some Exchange correlation Approximation

a) The Local Density Approximation

The most common approach for the exchange correlation potential is the Local

Density Approximation (LDA). The core assumption of this approach is that the density is

slowly varying. The exchange-correlation  at point r can therefore be simply approximated

by that  due to a homogeneous electron  gas of density n(r). Thus:

  3( ) ( ) ( )XC XCE n r r n r d r  (2.25)

( ) ( )

( ) ( )
XC XCE n r r

n r n r

 






(2.26)

where

 hom( ) ( )XC XCr n r  (2.27)

There are, of course, alternatives to the LDA. Of these, the most  popular are those

based around the generalized gradient approximation (GGA). In the GGA, the density is a

function of both the electron density and its  gradient, and for many materials, but not all, it

has been shown to improve results for total energies and the general properties  of solids.

b) The generalized gradient approximation:

In LDA one uses the knowledge of the density in a point r. In real systems the density

varies in space. A logical improvement of the LDA approximation would be to include also

information of this rate of change in the functional. This can be done by adding gradient

terms. This approach is called the gradient-expansion approximation. In this class of

approximation one tries to systematically calculate gradient-corrections of the form |∇n(r)|,

|∇n(r)|2 ,|∇2n(r)| etc. to the LDA. In practice, the inclusion of low-order gradient corrections

almost never improves on the LDA, and often even worsens it. Moreover higher-order

corrections are exceedingly difficult to calculate and little is known about them. It was

realized that instead of power-series-like systematic gradient expansions one could

experiment with more general functions of n(r) and |∇n(r)|. Such functionals, of the general

form:

2( , , )GGA
XC XCE n n n dr   (2.28)
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are known as generalized-gradient approximations (GGAs). The current GGAs seem to give

reliable results for all main types of chemical bonds and are popular in computational

chemistry. We have used the Perdew-Burke-Ernzerhof (PBE) version of GGA [19] in this

work.

c)The hybrid functionals

The LDA or GGA approximation predict the structural properties such as lattice

constants and bulk moduli with good accuracy. However, the LDA or GGA results for

electronic properties such as band gaps are of much lower quality. The band gaps are typically

underestimated by 50-100 %. Further improvements in the description of band gaps is

achieved by the introduction of so-called hybrid functionals which are obtained by admixing a

fixed amount of the Hartree-Fock (HF) exchange to the GGA functional. The hybrid

functional proposed by Heyd, Scuseria and Ernzerhof termed as HSE06 functional [20]

fulfills the need for a universally applicable method that is computationally feasible for a wide

range of systems and nowadays becomes a popular choice for calculating the structural

properties and the band gaps. The exchange potential employed in HSE06 is divided into

short- and long-range parts, and HF exchange is mixed with Perdew-Burke-Ernzerhof(PBE)

exchange in the short-range part. To avoid the expensive calculation of long-range HF

exchange as well as enabling hybrid DFT calculations on metal elements for which

conventional HF or global hybrid calculations are intractable, this term is replaced by long-

range PBE exchange, as shown in the following equation:

, , ,1 3
( ) ( ) ( )

4 4
HSE HF sr PBE sr PBE lr PBE
XC X X X CE E E E E      (2.29)

In addition to the aforementioned functionals we can also cite the meta-GGA's like  TPSS

[21] where typically the kinetic energy is used Exc(n(r),∇n(r),∇2ψ(r)).

2.2.4 The band gap problem in DFT

In DFT the lattice parameters and atomic positions are accurately predicted within an

error of 1 to 5%, depending of exchange correlation functional used. However the band gaps

calculated within DFT show a large underestimation compared to experiment. Nonetheless,

this underestimation of the band gap is not surprising since the Kohn-Sham eigenvalues are

completely artificial objects. These are the eigenvalues of a non-interacting system chosen to
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yield the same density as the many-body interacting system. There is no physical basis to

interpret the Kohn-Sham gaps as the real experimental gaps. However, in practice, such a

comparison is motivated by the close resemblance observed between the Kohn-Sham band

structure and the real band structure for many systems.

Figure 2.4 Schematic picture of the real band gap and Kohn Sham gap

The band dispersion shows a good agreement with the experiments. The band gaps of

semiconductors are differences of ground-state energies (E) of N and N ± 1 particle systems:

( 1) ( 1) 2 ( )gE E N E N E N I A       (2.30)

where I represents the ionization potential and A represents the electron affinity of the system.

In particular, the lowest conduction band energy is given by  εc = EN+1 − EN and highest

valence band energy corresponds to εv = EN − EN−1 . Similar to metals, the highest “occupied

”eigenenergy for the N-electron system  εN (N) is the Fermi energy and thus  εc=εN+1 (N +1),

εv = ε N (N). Hence, the energy gap is related to the eigenenergies as:

1( 1) ( )g N NE N N    (2.31)

It is different from the definition of the band gap in terms of only N-particle eigenenergies
given by:

1( ) ( )g N NN N    (2.32)

This deviation is given by:

1 1( 1) ( )XC N NN N      (2.33)
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and corresponds to the neglected derivative discontinuity ΔXC by the standard local

and semi-local exchange-correlation functionals [22,23]. It is illustrated schematically in

Figure. 2.4. ΔXC is given by:

0
lim( )XC XC

XC
N N

E E

n n
 

 
 

 

   (2.34)

To calculate ΔXC , DFT had to be extended to describe systems with fractional number

of particles N ±η. The evaluation of δEXC /δn(r) at N ±η ensures that the discontinuity at

integer particle number N is captured. Depending on the approximation used for EXC the

results differ strongly. For LDA and all GGAs, ΔXC = 0. Therefore, the fundamental gap is

given solely by the Kohn-Sham gap which is always underestimated compared to the

experiment. The essence of this result is that even with the exact XC functional the Kohn-

Sham band structure does not provide the fundamental band gap of the real interacting-

electron system as it does not include the finite and positive derivative discontinuity.

A detailed account on this paragraph is given in the original paper by Perdew [24] or

in the book by Engel [25].

2.2.5 Tran-Blaha modified Beck Johnson potential

As LDA and GGA can only reproduce the band structure but cannot produce a band gap of

comparable value to that obtained experimentally, Becke and Johnson (BJ) developed a BJ

potential [26], that improves the band gap in comparison with LDA and GGA functionals. It

can be formulated as:

, ,

( )5
( ) ( )

6 ( )
mBJ BR

x x

t r
V r V r

r


 
 

  (2.35)

where ρσ denotes electron density and tσ represents kinetic energy .

Blaha et al. [10] further  modified the exchange and correlation potential of the BJ approach,

and developed the mBJ potential, capable of better reproducing the experimental gap of

semiconductors in comparison to the LDA or the GGA. The mBJ potential is given by:
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, ,

2 ( )5
( ) ( ) (3 2)

12 ( )
mBJ BR

x x

t r
V r cV r c

r


 
 

   (2.36)

where ρσ(r), tσ(r) and VBRx, σ(r) are the spin-dependent density of states, kinetic energy

density and the Becke-Roussel potential (BR), respectively. In the TB-mBJ, the value of c is

calculated by:

1

2( ')1

( ')cell cell

r
c

V r


 



 
   

 
 (2.37)

where V cell is the unit cell volume, an α and β are the free parameters with the value of -

0.012 and 1.023 Bohr, respectively. The only disadvantage of the TB-mBJ potential is that the

derivative of a XC functional cannot be obtained. Consequently, this potential cannot be used

for the calculation of forces that act on the nuclei, which is required for the optimization of

the geometry.

Figure 2.5 [10] show the remarkable improvement obtained with the Tran-Blaha potential.

The gaps are more accurate than with LDA or GGA and nearly as precise as those obtained by

much more time consuming functionals like HSE or G0W0.

Figure 2.5 Theoretical versus experimental band gaps.
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2.3 Implementations of Density Functional Theory

Density functional theory is implemented in a variety of software packages such as

VASP [27], SIESTA [28], Wien2k [29], Abinit [30,31], Quantum espresso [32] and many

others.

The existing implementations can be divided into two main groups: all-electron

implementation (i.e. Wien2k) and pseudopotential implementations (i.e. SIESTA, VASP).

The last ones treat only valence electrons and replaces the core electrons by an effective

pseudopotential. This allows to speed up the calculations but leads to less accurate solutions

in comparison to the all electron methods. In this section we describe two main methods and

software which were applied in the calculations on this thesis: the pseudopotential method as

implemented in Abinit or VASP and LAPW+lo method implemented in Wien2k program.

We practically have three basis sets used in the expansion of Kohn-Sham orbitals: the plane-

wave basis, the linear combination of localized atomic orbitals (LCAO ) and a mixed plane-

wave and atomic basis set.

2.3.1 Pseudopotentials

A pseudopotential is an effective potential designed to substitute to the all-electron

potential of Eq. (2.15), and is constructed to reproduce the effects of the all-electron system

on the valence states beyond a certain cutoff distance from the ionic core. In a pseudopotential

calculation, the “core” consists of the nucleus and the inner electrons, which are highly

localized around the nucleus. Outside the core region (that is beyond the cutoff), the potential

matches the Coulomb interaction between the core (whose ionic charge Zcore equals that of the

nucleus minus the inner electrons) and each of the valence electrons. Inside the core region,

the Coulomb potential is replaced by a smooth function which is more easily representable,

for instance, by plane waves. Pseudopotentials (PP) are constructed so that the wave functions

of the valence electrons outside the core region match those of an all-electron calculation, in a

calculation for the isolated atom. To illustrate this, Figure 2.6 show the radial part φ(r) of the

2s and 2p orbitals of atomic C together with the corresponding pseudo wave functions

obtained with PP designed to make them match at rc.
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Fig 2.6 Schematic illustration of the replacement of the all-electron wavefunction and core
potential by a pseudo-wavefunction and pseudopotential. [33].

The main argument underlying the use and success of pseudopotentials is the fact that most

chemical properties of atoms can be accurately modeled taking account of the interacting

valence states alone. The core states, much lower in energy, have little interaction with

valence states of the same or surrounding atoms.

The most common types of ab-initio pseudopotentials are “norm-conserving” and “ultrasoft”

pseudopotentials. If the pseudo and AE charge densities within the core are constructed to be

equal, the type of PP is called the norm-conserving PP [34,35]. Many PP are generated to

meet this criterion:

.    
2 2

0 0

c cr r

pp AEr dr r dr   (2.38)

On the other hand, if we forget about the norm conserving condition and in addition to the

elimination of radial nodes, shift the peak position of a wave function further to a bigger rc

with reduced peak height, the so generated potentials introduced by Vanderbilt [36] are called

ultrasoft PPs. They present better computational efficiency at the cost of complicating the

formulas.
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The “hardness” of a pseudopotential refers to how smooth or soft the potential looks in real

space, in particular how rapidly the corresponding pseudo wavefunctions vary in the core

region. In the context of plane wave calculations, functions that are smooth in real space can

be represented in reciprocal space by a lower number of plane waves, compared to more

rapidly varying functions.

In recent times, the projector augmented-wave method (PAW) has gained popularity due to its

providing further computational advantages compared to the norm-conserving and ultrasoft

pseudopotential methods. Projector augmented wave (PAW) potential may be classified as a

frozen-core AE potential. This type, first proposed by Blöchl (1994) [37] and adopted  by

Kresse and Joubert (1999) [38], aims for both the efficiency of the PP and the accuracy of the

AE potential. It maps both core and parts of valence wavefunctions with two separate

descriptions.

The wavefunction (ψinter) of the valence part is represented with a PW expansion, while the

wavefunction (ψcore) of the core part is projected on a radial grid at the atom center. After the

additive augmentation of these two terms, the overlapping part ψnet is trimmed off to make

the final wavefunction, ψPAW very close to the AE wavefunction.

2.3.2 The VASP package

Vasp, or the Vienna Ab initio Simulation Package, is a powerful computational tool

for total energy calculations using a plane-wave basis set. In Vasp , the Schrodinger equation

is solved self-consistently by iteratively optimizing the charge density that determines the KS

Hamiltonian that, in turn, determines the single-particle eigenstates. These eigenstates are

used to calculate the new charge density that will serve as an input for the following iteration.

The total energy difference between one iteration and the following will progressively

decrease as convergence (and hence self-consistency) is achieved. Once the energy difference

between two consecutive iterations falls within the desired precision range, the iterative

process comes to an end: the single-particle eigenstates determine a charge density which

gives rise to those same eigenstates. This basic procedure is shown as a chart in Figure 2.7.

The pseudopotential is calculated by solving Kohn-Sham equations for the core

electrons:

2

ln ln ln2 2

1 ( 1)
( ( ) ( ) ( )) ( ) ( )

2 2 xc hartree l

d l l
r V r V r V r r r

r dr r
  


      (2.39)
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Here VHartree and Vxc are Hartree and exchange-correlation potentials, respectively, Vl

is a part of pseudopotential called “semilocal potential”, l is the angular momentum. The

pseudopotential and the eigenfunctions ψ are calculated by the following expressions:

ln ln ln( ) ( )pseudo
lV r V r 

1
ln' ln

ln ln ln'
' 1 ln' ln

( ) ( )
( ) ( ) ( )

( ) ( )

n
l local

n l local

V r V r
r r r

V r V r

 
  

 






 

 (2.40)

Figure 2.7 VASP basic procedure towards obtaining self-consistently electronic ground state.

2.3.3 LAPW methods

The Linearized Augmented Plane-Wave Method (LAPW) is an all-electron method

implemented among others in Wien2k software package. It is the improvement of the original
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Augmented Plane-Wave Method (APW), which was used in this package before. The idea of

this method lies in the fact that in the region far away from nucleus, the electrons behave like

free electrons and can therefore be described by plane waves. In contrast, the electrons close

to the nucleus behave like they were in the free atom and can be described by spherical

functions which are the solutions of Schrodinger equation for a single atom. So, following this

idea, the unit cell of the system is partitioned into atom-centered spheres of selected radii and

the interstitial region (Figure.2.8). The atomic spheres are called Muffin-Tin Spheres (MTS)

and their radii are called muffin-tin radii (RMT).

Figure 2.8 Schematic division of unit cell containing two types of atoms A and B in Muffin-

Tin spheres(I) and an interstitial region (II).

In these two regions two different basis sets are used for solving Kohn-Sham equations. In the

interstitial region the plane-wave expansion of Kohn-Sham orbitals is used:

( )1
( , )k i k G rr E e

V
  (2.41)

Here k is the wave vector in the first Brillouin zone, G is a reciprocal lattice vector, V is a unit

cell volume. Inside the atomic sphere an expansion of spherical harmonics times radial

functions is used:
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( , ) ( ', ) ( )k j j
lm l lm

lm

r E A u r E Y r   (2.42)

Here Ylm (r) are spherical harmonics, Aj
lm are expansion coefficients (unknown at the

beginning), E is the parameter with the dimension of energy, uj
l (r′, E) is the solution of the

Schrodinger equation for the atom j at the energy E. Of course, these two parts of the basis set

should match together at rj=RMTj ,where RMTj is j-th atom muffin-tin radius (RMT).

Expanding the plane-wave part (Eq. 2.42) into the basis of spherical harmonics and

comparing it to the atomic part of the basis set (Eq. 2.43) at rj = RMTj , gives the expression

for Aj
lm:

( )4
( ) ( )

( , )

ji k G rl
j MT

lm l j lmj MT
l j

i e
A j k G R Y k G

V u R E

 

   (2.43)

here  j is a Bessel function of order l.

LAPW method: In order to solve the Kohn-Sham equations with such a basis one needs to

“guess” the value of the parameter E, then solve the equations and determine E from them

again. That’s time consuming and that is the reason why APW method is replaced by more

efficient one. Unlike this method, the LAPW method sets this parameter fixed to some value

E = E0 (it is called linearization energy), and the Schrodinger equation is solved to determine

ujl(r ′, E0). Since the eigenstate E remains unknown we have to introduce a new parameter

0( )j j n
lm lm kB A E   .

So that:

0 0( , ) ( ( ', ) ( ', )) ( ')k j j j j
G lm l lm l lm

lm

r E A u r E B u r E Y r


  (2.44)

The coefficients Bjlm and Ajlm can be determined by matching the basis at the boundary. As

we now have a fixed value E0, the basis can be determined uniquely from the linearization

energy E0. One has to note that different atoms will have different linearization energies

depending on the dominant orbitals and so the basis will vary.

2.3.4 Wien2k package

The diagram of a Wien2k program execution is represented in Figure 2.9. A self consistent

calculation SCF is preceded by some steps:
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The first one deals with the generation of the structure by selecting  the space group, lattice

coordinates, constituent atoms and appropriate RMT's. Then follow an initialization step in

which the symmetry of the system is detected, followed by inputting the number of terms

being used for an expansion into spherical harmonics ℓmax, the cut-off parameter Kmax for

plane wave expansion and the sampling density of the reciprocal space defined by the number

of k-points in the irreducible Brillouin zone (IBZ). Finally before starting a SCF spin-

polarization, spin–orbit coupling diagonalization matrix method and electron and charge

convergence limit are selected. Various properties to name a few like lattice constant bulk

modulus, density of state, electronic structure elastic may be extracted after completion of the

SCF cycles.
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Figure 2.9 Diagram of a standard Wien2k  calculation [39]
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CHAPTER 3

STRUCTURAL AND ELECTRONIC
PROPERTIES; HIGH PRESSURE EFFECTS
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3.1 Computational parametrizing

3.1.1 Density Functional Theory Calculation

The DFT-based ab-initio calculations were performed by means of Wien2k and VASP

codes.

Wien2k tuning

Wien2k uses the full potential linearized augmented plane wave (FP-LAPW) method.

Inside each atomic sphere the wave function is approximated by a linear combination of radial

functions times spherical harmonics, while in the interstitial region a plane wave expansion is

used, with an energy separation between valence and core states of 6 Ry. The l-expansion

(azimutal quantum number) of the non-spherical potential and charge density inside MTS was

carried out up to lmax = 10. The plane waves were expanded up to a cut-off parameter, Kmax,

so that RMTKmax = 7  where RMT is the average radius of MTS. The convergence of total

energy was set to an accuracy of 0.1 mRy. Starting from bulk AlN structure we obtained the

ternary Al1−xInxN (x=0.25, 0.5, 0.75, 1) by replacing the Al atoms with In in the supercell. For

the wurtzite structure of the ternary (Figure 3.1) calculation were carried out using a supercell

of 16 atoms (2x2x1) in an ordered form, whereas for the zincblende form a 8-atom supercell

having luzonite structure for x=0.25, 0.75 and a chalcopyrite (Figure 3.2) for x=0.50 was

used. The sampling density of the reciprocal space defined by the number of k-points, whose

value needed a convergence test with respect to the energy, was found to be 1500 k-points in

the irreducible Brillouin zone (IBZ) for both binary compounds structures. A proportionally

smaller number of k-points was used for the ternary calculation.

Figure 3.1 Al75In25N wurtzite cell
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Figure 3.2 Al1-xInxN zincblende cell: Left: (luzonite), right: (chalcopyrite).

VASP tuning

Starting from bulk AlN structure the ternary Al1-xInxN (x varying from 0 to 1) was

obtained by replacing, in a supercell of 64 atoms (Figure 3.3), the Al with In atoms in a

proportion step variation x of 0.125. Alloy disorder was taken into account for all phases by

using a special quasi-random structure (SQS) [40,41] in the 64-atom supercell and was

implemented by means of the Alloy Theoretic Automated Toolkit (ATAT) [42]. The SQS

approach proved to be an efficient method for calculating random alloy physical properties

[43,44], it is designed in a manner that In or Al atomic sites of the supercell are occupied in

such a way that the pair correlation function reproduces that of an infinite random alloy.
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Figure 3.3 Special quasi-random 64-atom supercell Al0.75In0.25N derived with ATAT.

top left: rocksalt structure top right: zincblende structure, bottom: wurtzite structure.

The interaction between the ionic cores and the valence electrons were treated in the

VASP code by the projector-augmented-wave (PAW) method.

The Brillouin integration for binaries was performed using a Gamma centered grid of

8x8x8 for both B1 and B3 AlN and InN and 8x8x6 for B4. For ternary Al1-xInxN, a 4x4x4 k-

points sampling grid was selected for B1 and B3 phases and a 6x6x2 for B4. Calculations for

all phases were performed with a plane wave basis set with an energy cut-off of 600 eV and

an energy convergence criteria fixed at 0.01meV.

For both codes, the Perdew, Burke and Ernezerhof (PBE)sol [45] exchange correlation

functional, a modified version for solids of PBE, was utilized for total energy and lattice
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parameter calculations while, since PBE greatly underestimates band gaps, the Tran-Blaha

potential was employed in the energy gap calculations.

3.1.2 Semi-empirical tight binding calculation

The nearest neighbor (NN) sp3s* tight binding model was adopted since it has proved to be

sufficiently precise as regards to the electronic properties. In this model every atom is

described by valence s orbital and the outer p orbital and an s* state added to reproduce high

orbital states. The spin orbit effect is neglected regarding the type of atoms used. The

resulting zincblende and wurtzite structures Hamiltonian matrices are respectively 10x10 and

20x20 matrices.

The tight binding parameters on-site energies Esa, Esc, Epa, Epc, Es*a, Es*c and the off diagonal

elements Vss, Vxx, Vsapc, Vscpa, Vxy, Vs*p, Vp*s for binary compounds are obtained from available

literature and modified so as to reproduce physical properties such as band gap or  effective

mass obtained from experimental data[A1,A2].

The calculation of atomic energies for the Al1−xInxN ternary is carried out by using the

virtual crystal approximation

, ,( ) (1 )vi vi AlN vi InNE x xE x E  

, ,( ) (1 )vi vi AlN vi InNV x xV x V  

where i=s, px, py, pz, s
* and ν=α, β with Vνi= Vss, Vxx,  Vsapc, Vscpa, Vxy, Vs*p, Vp*s.

Using the derived matrix parameters, the energy bands are obtained by diagonalizing the

Hamiltonian matrix at each point of the Brillouin zone The matrix diagonalization and

eigenvalues were computed by means of MATLAB codes.
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3.2 Structural and electronic properties

3.2.1 Structural properties

The equilibrium lattice parameters and the bulk modulus of the ternary Al1-xInxN

alloys are determined by calculating the total energy at various volumes and fitting it to the

pressure versus volume Birch-Murnaghan equation of state [46] in its third-order expansion of

volume as expressed in equation (3.1):

( ) = ⁄ − ⁄ 1 + ′ − 4 ⁄ − 1 (3.1)

where P is the pressure, V0 the equilibrium volume, V the deformed volume, B0 the bulk

modulus and its pressure derivative.

The results obtained for the various phases ground state energy confirms the B4 phase

as the most favorable for the entire x range. The ground state energy difference ΔE with

respect to B4 is, on one hand, small for the B3 phase ranging from 22 (x=0) to 18.8meV/atom

(x=1), and on the other hand rather significant for the B1 phase ranging from 81 (x=0) to 63.5

meV/atom (x=1). B1, B3 and B4 phases computed lattice parameters along with experimental

and others ab-initio data are listed in Table 3 1.

The lattice constants, represented in Figure 3 4, are increasing with In contents. The

phases B3 is presenting the largest lattice constant ranging from 4.37 Å (x=0) to 5.05 Å (x=1)

compared to B1 varying from 4.04 to 4.67Å, whereas the parameter a and c of the B4 phase

vary respectively from 3.11 to 3.58 Å and from 4.98 to 5.77 Å.

The lattice constants of the Al1-xInxN ternary alloys may be expressed in terms of the binaries

parents by:( ) = . + (1 − ). + . . (1 − ) (3.2)

with the term b.x.(1-x) representing the linearity correction term due to the lattice distortion.

We observe very little deviation from linearity for all phases, with the bowing parameter b

calculated values of 0.020; -0.253; 0.006 for B3, B1 and B4 phases respectively.
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Table 3.1. Lattice parameters for AlN, InN and their alloys Al1-xInxN (B1, B3 and B4

phases).

Note:  This work (TW)

a: Ref. [8], b: Ref. [47,48], c: Ref. [49], d: Ref. [50],e: Ref. [51], g: Ref. [52], h: Ref.[53], i: Ref. [54], j:

Ref. [55], k: Ref. [56], l: Ref. [57], m: Ref. [58,59], o: Ref. [60], p: Ref. [61], r: Ref. [62], s: Ref. [63]

Composition x a (Å) c (Å)

0 TW

Exp.

Others

4.044

4.043a

4.069h ,4.072j

4.377

4.37b,
4.38c

4.396h

4.353k,
4.308l

3.113

3.112d,
3.111e

3.124h

3.096k

4.982

4.982d, 4.978e

5.006h 4.959k

0.125 TW 4.155 4.459 3.170 5.096

0.25 TW 4.266 4.544 3.227 5.199

0.375 TW 4.339 4.623 3.294 5.291

0.5 TW 4.437 4.708 3.345 5.400

0.625 TW 4.483 4.796 3.410 5.482

0.75 TW 4.545 4.878 3.463 5.584

0.875 TW 4.615 4.962 3.526 5.682

1 TW

Exp.

Others

4.676

4.688g

4.636o

4.641r

5.052

4.98m,

4.947i,
4.980k

3.587

3.548d,

3.533e

3.58p,
3.544s

5,775

5.760d,  5.693e

5.722l, 5.751s
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Figure 3.4 Lattice parameters of Al1-xInxN: the AlInP versus In composition (B1, B3 and B4
phases).

Computed bulk modulus (BM) B and its derivative B' for B1, B3 and B4 phases along

with experimental and others ab-initio findings are listed in Table 3.2 and represented in

Figure 3.5.

The first things to note are the large values obtained compared to the other III-V families

phosphides, antimonides and arsenides alloyed with In. The BM of AlInP, AlInSb and AlInAs

varies respectively, with In, in the range [82 71] [58 43] [75 60] GPa. The other fact is that

BM decreases as the In content is increased. This can be a consequence of a longer lattice

parameter leading to a weaker bond. Furthermore, the bulk modulus presents the largest value

for B1 phase and close values for B3 and B4 phases. This may be traced back to the fact that

the B1 phase has a shorter lattice constant and B3 and B4 phases have similar bond lengths

and coordinate numbers. There also seems to be a discontinuity in the BM B1 curve occurring

at a composition of 0.5 this may be due to the fact that AlN and InN have different phase

transition pressures and so is the evolution of the Al1-xInxN and In1-xAlxN curves.

The variation of B with In content x which can expressed as :( ) = . + (1 − ). + . . (1 − ) (3.3)

The bulk modulus bowing parameters for B3, B1 and B4 phases are respectively 21.28, 67.42,

24.33 GPa. A relatively large deviation from linearity is then noticed and may be attributed to

the AlN and InN lattice parameter mismatch.
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Table 3.2 Bulk modulus B and its fist derivative B'0 for AlN, InN and their alloys Al1-

xInxN (B1, B3 and B4 phases).

f: Ref. [64], g: Ref. [52], h: Ref.[53], i: Ref. [54], l: Ref. [57], n: Ref. [65], q: Ref. [66], r: Ref. [62],

t: Ref. [67].

Composition

x

( ) ′( )
0 TW

Exp.

Others

264.32

221f

272g

202.43

---

211.78i,

213.03l

203.33

207.9f

209g

3.935

4.8g

3.8g

3.87

---

3.90i3.7g

3.866

5.7-

6.3g

3.7f

0.125 TW 249.18 192.91 193.65 4.121 3.904 3.664

0.25 TW 223.92 183.51 184.66 4.546 3.964 3.648

0.375 TW 195.07 176.59 175.10 5.245 3.959 3.609

0.5 TW 167.15 167.69 166.90 5.955 3.991 3.909

0.625 TW 208.37 158.24 159.19 4.670 4.236 3.579

0.75 TW 203.33 152.65 149.04 4.762 4.278 4.414

0.875 TW 198.78 147.53 146.03 4.838 4.321 4.344

1 TW

Exp.

Others

193.39

170f

170.0r,

186t

142.56

137f

144i,

143.41h

141.82

125f

125.5q,

143t

4.931

5.0g

4.6g

6.0t

4.443

----

4.56i,

4.558l

4.477

12.7n

4.6g
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Figure 3.5 Bulk modulus of Al1-xInxN vs In composition (B1, B3 and B4 phases).

Table 3.3. Bowing parameters of bulk modulus

a: Ref.[59]

3.2.2 Band structures

The energy band diagram of the wurtzite and zincblende binaries are respectively shown in

Figures 3.6 and 3.7. The graphs clearly indicate that, apart from zincblende AlN which is an

indirect semiconductor, wurtzite AlN and InN in its two phases have a direct band gap.

Bowing
parameter

Phase This work Others

Bulk modulus B3

B1

B4

21,28

67,42

24,33

10.34 ± 9.37a

----

----
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Figure 3.6 AlN band diagram: zincblende (left) wurtzite (right).

Figure 3.7 InN band diagram: zincblende (left) wurtzite (right).
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a) Band gap

Two sets of calculations were carried out, the first one involving the main ambient

phases (zb, wz) with Wien2k and TBM, the second one relating all phases with VASP.

The band gap calculated with TBM and DFT (Wien2k) at high symmetry points at several In

compositions in zincblende phase, along with the available experimental and other works are

respectively listed in Table 3.4. Experimental data being available for the binaries allows to

draw some comparison. Zincblende AlN is found to be of indirect gap, the DFT (TBM)

calculated gap values at  and X high symmetry points are respectively 5.60 eV (5.4 eV) and

5.03 eV (4.92eV), compared to 5.34 eV and 4.90 experimental/ab initio values while, on the

other hand, zincblende structure InN is a direct semiconductor with DFT (TBM) gap value

0.86 eV(0.64 eV) compared with experimental value of 0.61 eV.

The wurtzite phase, in contrast, shows direct gap for both AlN and InN, with respective DFT

(TBM) values of 5.95 eV (6.23 eV) and 0.99 eV(0.79 eV), compared to experimental values

of 6.23 eV and 0.78 eV [67]. One has to note, at that point, that the indium  band gap has long

been overestimated at 1.7 eV it was not until 2001 that the correct value was reported.

When alloying AlN and InN the band gap remains indirect up to a crossover whose

concentration value was found at x = 0.17 (TBM) and 0.10 (DFT) with a corresponding gap

of 4.47 eV (4.95) in comparison to works of Liou et al. [57] who find a crossover at x=0.183

and a gap Eg=4.97 eV and Wang et al. [68] with at x = 0.18 and Eg=4.36 eV. The Γ-Γ  and Γ

-X band gap variation with In for the wz and zb phases along with similar works are

represented in Figure 3.8. The data was obtained with Wien2k where the work was mainly

centered on obtaining the crossover point.
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Table 3.4 Band gap of Al1-xInxN in zincblende phase.

a: Ref. [47], b: Ref. [49],c: Ref. [48],d: Ref. [69],e: Ref. [70],f: Ref. [71],g: Ref. [72],h: Ref. [59],i: Ref. [73], k:
Ref. [68],l: Ref. [50],

AlN Al0.75In0.25N Al0.50In0.50N Al0.25In0.75N InN

TBM Eg- (eV) 5.4 4.04 2.774 1.62 0.64

Eg-X (eV) 4.92 4.26 3.64 3.07 2.59

DFT- Eg- (eV) 5.65 3.68 2.69 1.57 0.83

Eg-X (eV) 5.09 5.89 4.53 4.33 4.18

Others Eg- (eV) 6.53a, 5.4b,
4.36c,
4.25d,
6.00e,
6.03m

4.70f,
3.61m

2.35m

2.20f,
1.43m

0.53a,
0.78b, 0.0d,
0.013g,
0.73h,
0.53m

Eg-X (eV) 5.63a, 4.9b,
2.50i, 3.23j,
3.16d,
4.90e,
4.87m

4.04m 3.48m 2.85m 2.51b,
1.56d,
2.81j,
2.32m

Experiment 5.34a 0.7i,0.6k,

0.7-1.1l
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Table 3.5 Band gap of AlN, InN and their alloys Al1-xInxN in rocksalt (B1), zincblende (B3)
and wurtzite (B4) phases.

a: Ref. [47], b: Ref. [2], c: Ref. [49], d: Ref. [55], e: Ref. [57],f: Ref. [56], g: Ref. [58], h: Ref. [68]; i:Ref.[73], k:
Ref. [47], l: Ref.[61],

Composition x Eg (eV)

0 TW

Exp.

Others

5.743

----

5.42d, 5.40e

4.817

5.34a

4.09d, 4.36f

5.347

6.28b, 6.23c,

4.26d, 4.22g,

0.25 TW 3.794 2.961 2.924

0.5 TW 2.037 2.044 1.794

0.75 TW 1.346 1.256 1.203

1 TW

Exp.

Others

0.800

1.0k

0.595

0.7h, 0.6i

0.53a,
0.78c,
0.73l

0.782

0.9a, 0.78c,
0.7h

0.69a, 0.90l
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Figure 3.8 Band gap variation of Al1-xInxN zincblende with In (TBM and DFT )

The Γ-Γ energy band gap, computed with Vasp, of Al1-xInxN for all three phases Zb, Wz and

Rs as a function of indium proportion is listed in Table 3.5 and illustrated in Figure 3.9. The

results confirm that  AlInN has the largest spectrum compared to the other III-V

semiconductors. For example the gap variation with In for the phosphides the antimonides

and the arsenides are respectively [3.63, 1.42]; AlInSb [2.38, 0.23]; AlInAs [3.09, 0.41]eV.

The results show that the band gaps are decreasing with In composition. They are varying

from 5.74 to 0.80 eV for rocksalt which is shows the largest band gap range, from 4.81 to 0.59

eV for zincblende and from 5.34 eV to 0.78 eV for wurtzite. For a given In concentration

(0<x<1) the Rs ,overall, appear to have the highest band gap, and the Wz the lowest one.

Figure 3.9 Band gap variation of Al1-xInxN rocksalt, zincblende and wurtzite.
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The energy band gap variation with In contents can be expressed as follows:

, ,( ) (1 ) (1 )g g AlN g InNE x xE x E bx x     (3.4)

where EgAlN and EgInN are respectively the band gap energy of InN and AlN and b the band

gap bowing parameter for 1 x xAl In N ternary alloy. The obtained values of b are presented in

Table 3.6.

Table 3.6 AlInN Band gap bowing parameter of zinc-blende, wurtzite and rocksalt

Phase bowing
parameter
This work

bowing
parameter
Others

B3

B1

B4:

x=0.125

x=0.25

x=0.50

x=0.75

x=0.875

2.83

4.37

11.82

6.80

5.07

3.85

3.61

2.5a

----

11.74 (x=0.13)b

8.12

5.15

4.24

3.87 (x=0.85)

a: Ref.[49],b: Ref.[82]

From Eq. (3.4) the bowing parameter is deduced as follows :

( )b x
(1 )

E

x x





(0˂x˂1) (3.5)

where ( ) (1 )alloy AlN InN
g g gE E x x E xE     represents the deviation from  linearity.
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b is considered composition dependent if its fluctuation around the mean value bm is over

20% otherwise it is independent.

So since for usual concentration (0.25,0.5,0.75) : (x(1-x)) is roughly 0.2 and a small deviation

from linearity for usual semiconductors is estimated at less than 0.2 eV (for small gap

semiconductors it is much less) therefore the bowing factor should be considered small when

its value is less than 1 eV.

As can be seen in Table 3 6 the band-gap bowing parameter yielded by our calculations has a

constant value for both B1 and B3 phases. Nevertheless, it depends on the alloy composition x

for the B4 phase. A similar band-gap bowing parameter composition dependent has been

reported in numerous works for the same material system of interest [81,82,83,84,85,86,].

In fact the bowing parameter strong dependence on In-composition is a general trend in all the

In-containing nitride alloys. Physical explanation seem still in debate and there a number of

theories regarding the cause among which: a large size mismatch between cation atoms [83],

charge transfer contributions due to a large electronegativity differences between aluminum

and indium atoms [81,85], localized electronic states [82], indium clustering [84].

Moreover, the composition dependence of the band gap bowing parameter has been reported

for InGaN ternary semiconductor materials in the zincblende structure [86,87]. According to

these authors, the dependence of the band gap bowing parameter on the alloy composition is

traced back to the carrier localization effects. Furthermore, have also reported a composition

dependence of the band gap bowing parameter in wurtzite InGaN [88]. Besides, using DFT

calculations, Schulz et al. [89] showed also that even a single In atom in wurtzite InAlN can

introduce localized states in the material in question. They argue that this feature is

responsible for the composition dependence of the band gap bowing parameter. As far as the
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B1 and B3 phases are concerned in the present contribution, the physical reason for the non-

dependence of the band-gap bowing parameter on the alloy composition x is not clear.

b) Effective mass

In addition to the band gap, the effective mass of electrons stand to be another significant

physical parameters giving more insights as regards the electronic transport electronic devices

engineering especially the newly HEMT's using AlInN active layers [4]. The electronic mass

calculation has been carried out using Effective mass calculator EMC) software

(https://github.com/afonari/emc) which implements calculation of the effective masses at the

bands extrema using finite difference method. The results are presented in Table 3.7 with ∥
and being the masses in the direction parallel and perpendicular to the c-axis,

respectively. The obtained masses are, to some extent, heavier than the other In based III-V's.

AlInN effective mass varies in the range [0.29, 0.05] compared to [0.22, 0.08] for AlInP

[0.14, 0.014] for AlInSb and [0.15, 0.026] for AlInAs. Calculated values show reasonable

agreement with experimental data and other theoretical works and a phase comparison

reveals, overall, a lighter relative electron mass for the B4 structure and within this phase,

independently of concentration, a smaller mass along the c-axis.

Plots of the calculated electron effective mass of Al1−xInxN alloy, as a function of indium

composition, for B1, B3 and B4 phases are illustrated in Figure 3.10 where the B4 mass is

taken as the mean mass value defined by ∗ = ∥ .

By observing Figure 3.9, the electron effective mass of rocksalt and zinc-blende structure

seems to vary quite strongly with composition even in the low In content regime. This may

affect the mobility of the carriers which in turn has an effect on the transport properties and

hence on devices performance. On the other hand, a nearly constant value for the wurtzite

effective mass at low In content is observed. This mass stability regarding fluctuation of
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concentration could of interest for HEMT devices in which the In content that matches the

lattice parameters between AlInN with GaN [3] is not steady but varies around 0.82.

Assuming that the electron effective mass versus alloy content x curve is quadratic, similarly

to the band-gap energy, one defines an electron effective mass bowing parameter )(xbm by

the relation,

)1()(**)1()(* xxxbmxmxxm m
InI
g

AlN
g  (3.6)

Our findings regarding the electron effective mass bowing parameter for the three phases

being considered here at various alloy concentrations x are listed in Table 3.8. Note that the

electron effective mass exhibit small bowing parameters.

Since the electron effective mass is inversely proportional to the electron mobility, one may

expect a contribution of the decrease of the electron effective mass in richer In ternary

compounds to the increase of the mobility bearing in mind that this is not the only parameter

that affects the electron mobility. As a matter of fact, the electron mobility is also affected by

the alloy scattering and a deeper study should include the effects of disorder and eventual

clustering in the AlInN alloying on scattering.
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Figure 3.10 Electron effective mass of Al1-xInxN zinc-blende and wurtzite (DFT).
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Table 3.7 Electron effective masses m (in units of free electron mass m0) of ternary Al1-xInxN
(B1, B3 and B4 phases).

a: Ref. [47], d: Ref. [51], g: Ref. [58], j:Ref. [90], m: Ref. [76].

Table 3.8 Electron effective mass bowing factor

x 0.25 0.5 0.75
b (B1) -0.124 -0.55 -0.447
b (B3) -0.808 -0.504 -0.507
b (B4) 0.273 0.094 0.0386

Composition
x ∥

0 TW

Exp.

Others

0.583

----

----

0.523

----

0.32g

0.306

0.29-
0.45a

0.32g,
0.321d

0.289

0.29-
0.45

0.284m

0.25 TW 0.438 0.260 0.293 0.253

0.5 TW 0.202 0.174 0.169 0.151

0.75 TW 0.134 0.093 0.077 0.069

1 TW

Exp.

Others

0.096

---

----

0.077

0.04j

---

0.049

0.07a

0.129m

0.046

0.07a

0.089m
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3.2.3 Density of states

The number of states available per unit energy (density of states (DOS)) is an

important factor in studying the electronic properties. The calculated total and partial density

of states of zincblende and wurtzite are shown respectively in Figures 3.11 a and b. The

vertical dashed line represents the Fermi level which is set to zero. It is clear that the density

of states is higher in wurtzite phase than in zincblende phase. The upper energy valence bands

range from -5 eV to 0 eV. The major contribution comes from the nitrogen atom for all

compositions in the two phases. The p-orbital seems to bring all the contribution of nitrogen

to the binaries. The lower conduction band of wurtzite phase extends continuously from the

value of the gap up to about 15 eV with a similar contribution of all atoms either in wurtzite

or zincblende phase. In the case of AlN, the p-orbital is prevalent while for InN, N and In,

respectively, contributes through the p-and s-orbitals. The ternary compounds present in the

case of wurtzite phase a continuous lower conduction band. However, there is a discontinuity

for zincblende phase that seems to shift towards higher energies with augmenting indium

content. In the case of the valence band we notice that the DOS peak increases with indium.



________________________3 Structural and electronic properties; High pressure effects

55

(a) (b) (c)

Fig. 3.11 a Total and partial density of states of zinc-blendeAl1-xInxN: x=0.25 (a), 0.50 (b) and 0.75 (c).

Fig. 3.11 b Total and partial density of states of wurtziteAl1-xInxN:x=0.25 (a), 0.50 (b) and 0.75 (c).
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3.3 High Pressure effects and Phase transition

3.3.1 Introduction

High pressure studies of semiconductors have given valuable insights to their room pressure

properties and have also been used to generate new phases. It is important to note that

hydrostatic pressure acts as a perturbation on the electronic properties without a change of

symmetry within a single, homogeneous phase. Accordingly, the changes in optical or

electronic properties can be interpreted in a straightforward manner. Experimentally high

pressure attracted attention from the Semiconductor Physics community after the discovery of

William Paul’s Empirical Rule [91]. The technique gained further momentum with the

invention of the diamond-anvils high pressure cell.

Phase transitions of nitrides will help us to theoretically understand and in some cases even

theoretically predict their properties.  Nitrides are most commonly found in the wurtzite

crystalline structure. The atoms in the wurtzite structure rearrange into the rocksalt structure

when put under extreme high pressure. This phase transition is the one that we investigated

for the nitrides.

There are two widely adopted techniques, called enthalpy comparison method, to investigate

pressure-induced phase transition and identify stable phases. The first one is to optimize the

total internal energy of some selected structures with respect to structural parameters at

constant volume, and then construct in the same diagram total energy versus the volume per

unit atom for each phase. From the common tangent (Figure 3.12) one can extract the

transition pressure.

Figure 3.12 Typical energy-volume E(V ) diagrams.
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In the second method one plots the enthalpy of the various phases against the pressure

and the intersect of the plot of two phases will provide the phase transition pressure (Figure

3.13).

Figure 3.13 Enthalpy-pressure H(p) diagrams for four phases of ZnS material [92].

3.3.2 Band gap variation

We will first begin with the study of  the effects of pressure on the energy band gap of

Al1−xInxN in its B3 and B4 phases. The pressure are varied from tensile to compressive up to

the transition phase pressure. Results show a linear increase of the gap for either phases

(Figures 3.14 a and 3.14 b), with the slopes varying with In concentration from 36.8

meV/GPa ( x=0 ) to 24.5 (x=1 ) for B4 and from 41.5 ( x=0 ) to 29.5 meV/GPa (x=1 ) for B3.

The magnitude of these slopes is typical of III-group nitrides which, due to their large

ionicity,and independently of their phase, exhibit much lower band gap pressure coefficients

than other III-V group compounds such as GaAs (117 meV/GPa) [93]. It is also expected that

the pressure coefficient of the bandgap decreases with increasing indium composition as a

consequence of the larger ionicity of InN with respect to AlN [94].
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Figure 3.14a Band gap of  Al1-xInxN vs pressure B3:phase.
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Figure 3.14b Band gap of  Al1-xInxN vs pressure B4 phase.

3.3.3 Phase transition pressure

Starting from a sequence of different volumes, calculation of the corresponding

energies were carried out within PBEsol with the energy versus volume E(V) plot illustrated

in Figure 3.15. Results show clearly that, B4 is the most stable phase structure independently
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of In proportion, that B3 is slightly higher in ground state energy than B4, and that we may

get phase transitions B4-B1 and B3-B1 for the entire proportions of In contents.
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Figure 3.15 Al1-xInxN total energy vs cell volume.

The phase stability is determined by the minimum of the Gibbs free energy G:= + . − . (6)

where E, P, V, T, S stand respectively for internal energy, pressure, volume, temperature and

entropy. The Gibbs free energy reduces to enthalpy H ( = + . ) given that calculations

are made at 0°K. By using the obtained values for total energy and corresponding volume one

can easily calculate the variation of enthalpy with pressure for each phase. The variation of

the relative enthalpy difference of B4 and B3, for various In proportions, are plotted in

Figures 3.16(a, b) with the phase transition pressures determined at the x-axis intersection of

the various enthalpy curves (ΔH=0).

The computed phase transition pressures are summarized in Table 3.8 and plotted in Figure

3.16. The results show a structural phase transition varying, with dopant, from 4.02 (x=0) to

7.84 GPa (x=1) for B4-B1 transition and from 3.37 (x=0) to 6.02 GPa (x=1) for B3-B1

transition with a maximum value around 16 GPa for x=0.5.
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Table 3.9 B4-B1 and B3-B1 phase transition pressures.

Composition
x

Transition pressure of Al1-xInxN (GPa)

B4-B1 B3-B1

0 TW

Others

Exp.

7.84

12.5a, 9.2b

14,20c

6.02

7.1b

0.25 TW 15.015 14.69

0.5 TW 15.194 16.94

0.75 TW 9.608 9.456

1 TW

Others

Exp.

4.024

13.4d,4.93e,11.1b

11.6b

3.37

10.5b

a: Ref. [95], b: Ref. [64 ], c: Ref. [65], d: Ref. [96], e: Ref. [97]

Figure 3.16a B4- B1 Al1-xInxN enthalpy difference
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Figure 3.16b B3- B1 Al1-xInxN enthalpy difference.
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Figure 3.17 Phase transition pressure vs In composition.
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CHAPTER 4
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AND

APPLICATION TO AN ELECTRONIC DEVICE
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4.1 Introduction to the origin of strains

In the growth process the AlInN films are deposited on a substrate, the difference in

the lattice structure parameters results in strain effects which in itself has a great influence on

the structural and therefore to the physical properties of the alloy. The following study deals

with the effect of depositing a AlInN film on a GaN substrate, this kind of substrate being

chosen ahead of studying a device based on this type of heterostructure.

Prior to the study of an electronic device, we analyze the physics of a layer deposited

on a substrate. We will try to see the effects of the mismatch of the lattice parameters of two

compounds as well as the change of the physical properties due to the mismatch.

If we consider that the first few layers of the AlInN film are affected by the substrate

and that mainly the bond length and the angles are changed within the process, the first direct

effect will be the change in lattice parameters of AlInN compound causing a whole new

energy band diagram. Thereof the band gap and the electronic effective mass will modify and

hence the semiconducting properties of the compound will be affected.

4.2 Theory of Strain

Consider the two materials A and B shown in Figure 4.1(a). These two materials have

an obvious lattice mismatch, and this is the case to be found in all the nitride materials

considered in this work. Due to this lattice mismatch, strain effects will be present in any

heterostructures made from these materials. This is obvious if one considers growing an

epilayer of material B on a substrate of material A, as is shown in Figure 4.1(b) The atoms of

B are forced to align themselves with those of A with the in-plane lattice constant of B

matching that of A, and thus the epilayer will be under biaxial compression. As a result of

this, the epilayer of B expands along the growth direction by taking the shape of substrate A

(as) and changes in the normal direction , such that, instead of being described by one lattice

constant a, B is now described by as and ar such  that  ar>a >as.

For a sufficiently thin epilayer we can assume that all the strain is incorporated in the layer.

The net strain in the layer plane is given by;

( ) /xx yy s l la a a      (4.1)

The strain in the epilayer along the growth direction is given by:
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2

1


 

  
  .....................................................................................................................(4.2)

where σ is Poisson coefficient.

Figure 4.1 Lattice modification under strain

4.3 Strain effect on the electronic band structure

If we consider that only the first few layers of the AlInN film are affected by the

substrate and that mainly the bond length and the angles are changed within the process, the

first direct effect will on the energy band diagram of AlInN. In order to calculate electronic

structure, one has first to calculate or measure the position dependent strain tensor  .

The basic approach to calculating such strains is Harmonic continuum elasticity: Here,

one uses classical elasticity within the harmonic approximation, to compute the theoretical

variation on the geometry of the unit cell:

For a cubic system, the strain energy per atom, ECE [98] is:

2 2 2 2 2 2
11 44( ) ( )

2 2CE xx yy zz xy yz zx

V V
E C C            12 ( )xx zz yy xx zz yyVC       

'4.3)
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where V is the equilibrium volume, Cij are cubic elastic constants, and  the strain tensor.

In the absence of shear strain, for a film coherently grown on a substrate with parallel

lattice constant as , the strain components are:

s eq
xx yy

eq

a a

a
  


  

eq
zz

eq

c a

a
 


  (4.4)

where aeq is the equilibrium lattice constant of the unstrained material and c is the

perpendicular lattice constant of the strained film. The equilibrium value of this c axis is

determined from: 0CEE








yielding [92]:

( , )
1 (2 3 ( )) ( )eq s

s
eq

c a G
q G a

a
    (4.5)

where the 'epitaxial strain reduction factor' for orientation G of the c axis is

11

( ) 1
( )

B
q G

C G
 

 

and 44 11 12

1
( )

2
C C C    is the elastic anisotropy,

11 12

2
( 2 )

3
B C C  is the bulk modulus,

and ( )G is a purely geometric factor given in.

For principal directions,  (001)=0,  (011)=1,  (111)=4/3. Equations 4.4 and 4.5 are used

routinely to predict tetragonal distortions of strained films..

In the case of an hexagonal structure as in wurtzite [99]:

s eq
xx yy

eq

a a

a
  


  

13

33

(1 2 )eq xx

C
c c

C
  (4.6)
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eq
z

eq

c c

c





Thus the growth of both the zincblende or wurtzite AlInN structures on a GaN

substrate yields a tetragonal structure whose basal parameter corresponding to the substrate (

GaN) lattice parameter and the perpendicular parameter given by equations 4.6.

The computed lattice parameters of the resulting tetragonal structure are listed in

Table 4.1. The basal parameter a is that of the substrate i.e. a=aGaN=3.189 Ang, while cwz

and czb, correspond respectively to the perpendicular parameters of the former wurtzite and

zincblende structures.

Table 4.1 Perpendicular lattice parameter of the tetragonal strained structure

AlN Al0.75In0.25N Al0.50In0.50N Al0.25In0.75N InN

Czb (Ang) 2.062 1.856 1.618 1.333 0.976

Cwz (Ang) 4.913 5.204 5.543 5.964 6.535

4.3.1 Calculation of strain by the Tight Binding method

The modification of the bonding length and cell parameters owing to the strain means

that the TB matrix elements HlR,mR differ from those of the unstrained bulk material. In the

following the bulk matrix elements of the unstrained structure are denoted by H0
lR,mR. We

consider here only scaling of the inter-site matrix elements, for which, in general, a relation:

0 0
', ', ' '( , )lR mR lR mR R R R RH H f d d  (4.7)

is expected, where d0
R'− R and dR'− R are the bond vectors between the atomic positions of the

unstrained and strained material, respectively. Since the atomic-like orbitals of TB models are

typically orthogonalized Löwdin orbitals, it might be that the diagonal matrix elements, too,

vary in response to displacements of neighboring atoms [100]. However, Priester et al. [101]

achieved a very accurate band structure description in the framework of a spin-orbit

dependent sp3s∗ TB model without adjusting the diagonal matrix elements. Therefore, we

consider here only scaling of the inter-site matrix elements. The function f(d0
R'− R , dR'− R)

describes, in general, the influence of the bond length and the bond angle on the inter-site
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(hopping) matrix elements. Here we use the relation: f(d0
R'−R,dR'−R)=( d0

R'− R / d R'− R )2. This

corresponds to Harrison’s d−2 rule [100], the validity of which should be a reasonable

approximation.

The bond angle distortions can exactly be included in a TB model and the directional cosines

between the different atomic orbitals are calculated according to the strain-induced

displacements of the different atoms. With this so-called d−2 ansatz, the new interatomic

matrix elements HlR,mR are given by:

20
0 '

', ',
'

R R
lR mR lR mR

R R

d
H H

d




 
  

 
(4.8)

Taking into account all these facts the energy band diagram of a unstrained and strained

AlInN film for x=0.75 is presented in Figure 4.2.(wurtzite) and Figure 4.3 (zincblende). For

this particular indium concentration we notice a slight change in the band gap and a rather

appreciable variation of the conduction band shape between enlarged to squeezed depending

on the phase (wurtzite or zincblende) and therefore a consequent change in the electron

effective mass.

Figure 4.2 Unstrained (blue) and strained (red) Al0.75In0.25N wurtzite band diagram (TBM)

A L M G A H K G
-20

-15

-10

-5

0

5

10

15

20

Wave vector

E
n
e
rg

y
 (

e
V

)



____________________________4 Strain effects and application to an electronic device

68

Figure 4.3 Unstrained (blue) and strained (red) Al0.75In0.25N zincblende band diagram (TBM)

The band gap is extracted from the band energy diagram for various In concentration x and its

variation with x is plotted in Figure 4.4. Below the matching concentration the strained mass

is lower than the unstrained one whereas the trend reverses for higher In contents. The

variation is quasi-linear since constant basal parameter dictates all the stress variation.

Figure 4.4 Band gap variation of strained and unstrained Alx In1-xN with In proportion
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4.3.2 Computation of strain effects by DFT

The strain results in a deformation of the wurtzite cell, leading to a tetragonal

structure. All calculation have been made using 16 atom supercell with the new atom

positions determined by equations 4.6 and 4.7.

As previously we used a PBEsol exchange correlation function with the remaining

Wien2K tuning parameters similar to the unstrained case. Figure 4.5 and 4.6 represent

respectively the energy  band diagram of unstrained and strained Al0.75 In0.25N in wurtzite and

zincblende form;

We notice a for the wurtzite diagram a widening inthe shape of the lower conduction band

and a narrowing of the band gap. Moreover the degeneracy is lifted for the higher valence

bands. The same observation is valid for zincblende where the lowering on the lowest CB is

more severe than in the other CB bands.

Figure 4.5 Energy band diagram (DFT) Al0.75 In0.25N (wz). left: unstrained right: strained
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Figure 4.6 Energy band diagram (DFT) Al0.75 In0.25N (zb). left: unstrained, right: strained

The data extracted from these band diagrams are reported in Table 4.2 for the energy band

gaps and in Table 4.3 for the electron effective mass.

Table 4.2 Calculated band gap for strained and unstrained AlN, InN and their alloys Al1-xInxN
in wurtzite phase

AlN Al0.75In0.25N Al0.50In0.50N Al0.25In0.75N InN

TB unstrained 6.231 4.303 2.656 1.448 0.790

TB strained 5.825 4.492 3.097 1.833 0.879

DFT unstrained 5.950 3.769 2.802 1.786 0.998

DFT strained 5.238 3.368 3.175 2.145 1.523
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Figure 4.7 Band gap of unstrained and strained wurtzite AlInN versus In composition

We notice in Figure 4.7 as expected a decrease of the gap with In with a change in the

relative value or the strained and unstrained at the concentration at which the lattice parameter

of the Alx In1-xN turns out to be greater than that of GaN. The strain modulates the range of

gap causing a modification in eV from [6.23, 0.79] to [5.82, 0.88].

Table 4.3.Electron effective masses TBM and DFT calculations for strained and unstrained
AlN, InN and their alloys in wurtzite phase.

AlN Al0.75In0.25N Al0.50In0.50N Al0.25In0.75N InN

TB unstrained / 0.321 0.259 0.194 0.127 0.054

TB   strained 0.294 0.257 0.215 0.166 0.113

DFT unstrained / 0.306 0.293 0.169 0.077 0.049

DFT strained 0.300 0.209 0.196 0.185 0.141

Figures 4.8 and 4.9 show the variation of  the electron effective mass, obtained respectively

by TBM and DFT, with In concentration
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Both methods show decreasing mass with In proportion. Above around 25% strained mass

raises with respect to the unstrained one the difference of which increases with In. What is

noticeable in the short interval centered on x=0.18, our zone of interest, is that the strain

causes a smaller electron effective mass contributing positively to the electron mobility.

Figure 4.8 Electron effective mass of unstrained and strained AlInN versus In composition
(TB)
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Figure 4.9 Electron effective mass of unstrained and strained  AlInN versus In composition
(DFT calculation)
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4.6 Polarization effects

4.6.1 Theoretical framework

Piezoelectricity is a charge that accumulates in certain solid materials (such as crystals

certain ceramics and biological matter) in response to applied mechanical stress.

The piezoelectric effect arising from stress-occurs in crystals that lack a center of inversion. A

piezoelectric potential can be created in any bulk or nanostructured semiconductor crystal

having non central symmetry, such as the Group III–V and II–VI materials, due to

polarization of ions under applied stress and strain. This property is common to both the

zincblende and wurtzite crystal structures. The semiconductors where the strongest

piezoelectricity is observed are those commonly found in the wurtzite structure, i.e. GaN,

InN, AlN and ZnO.

The polarization is related to stress through the piezoelectric tensor by the relation:

pz ij jP e  (4.9)

where ije is the piezoelectric coefficients and j the strain tensor.

For zincblende semiconductors, the piezoelectric tensor only has one non vanishing tensor

element e14, and the polarization induced by strain is then given by:
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(4.10)

Because of the special form of the piezoelectric tensor, only the shear strain generates the

piezoelectricity. Hence a biaxial strain does not generate piezoelectricity in zincblende

semiconductors grown on (001) direction, whereas this effect is largest along the (111) axes,

since the anions and cations are stacked in the (111) planes.

On the other hand in strained wurtzite structures along or perpendicular to c-axis, a

piezoelectric polarization will appear given by:
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(4.11)

where the piezoelectric tensor e̿ presents three nonzero coefficients e31, e33 and e15.

For strained III–V nitride epitaxial layers grown in the [0001] orientation, a piezoelectric

polarization will be present aligned along the [0001] direction and given by:

31 33( )pz xx yy zzP e e    
(4.12)

In addition to piezoelectric polarization, among III-V semiconductors, III-V nitrides show a

property, consisting of a built-in electric field, called spontaneous polarization (Psp ). The

materials showing this property are called pyroelectric.

Spontaneous polarization is an intrinsic property related to the bonding nature of the material,

whose origin can be attributed to the fact that the geometric center of the negative charges

(electrons) in the solid does not coincide with the center for the positive charges (nuclei).

Another  way to express this concept is to think that, in the pyroelectric, the bonds connecting

the atoms with their first neighbors are not equivalent, i.e., one of these bonds has a more (or

less) ionic nature when compared to the others. Tetrahedrally coordinated semiconductors

with cubic structure have four equivalent bonds and due to this symmetry the center of the

electronic charge belonging to an atom coincides with the nucleus position.. This intuitive

picture shows why elemental semiconductors (Si, C, Ge) and zincblende-structure

semiconductors, such as most of the III-V and II-VI semiconductors, do not show a Psp .

However, the Psp can arise in some cubic semiconductors by the effect of alloying. In the

case of InGaP alloys [102], materials formed by the substitution of a certain amount of In

atoms at the Ga sublattice sites of a zincblende GaP crystal, the bond distortion induced by the

atomic size mismatch between Ga and In, can induce a break in the symmetry among the four

bonds of the tetrahedral structure. The ensuing polarization must be called Psp since it is

shown in the equilibrium structure of the alloy: this effect is fairly relevant in III-N alloys.
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On the other hand, lower symmetry crystals, such as hexagonal structure

semiconductors, having a bond oriented in the [0001] direction longer from the other ones,

show the existence of an asymmetry in the bonding. This difference in ionicity leads to the

center of the electron charges being displaced along the [0001] direction (the pyroelectric axis

direction).

The Modern Theory of Polarization (MTP) [103], sometimes referred to as Berry’s phase

method, provides an easy and accurate way to compute Psp. Within MTP the calculation of

Psp is performed using first-principles computational tools and does not require a previous

experimental knowledge about the material structure.

4.6.2 Polarization effect on AlInN layer grown on a bulk GaN

Since, as previously mentioned, the cubic binaries do not show any kind of spontaneous

polarization, we will concentrate for the remaining part of this study on the wurtzite case.

In the case of a biaxial strain on a AlInN layer grown on a GaN buffer the piezoelectric

polarization takes the following expression:

1 13
31 33

33

( )
( ) 2( ( ) ( ) ) ( )

( )
x xAl In N

piezo xx

C x
P x e x e x x

C x
   (4.13)

where the piezo-coefficient eij and elastic parameter Cij are given by Vegard's law:

1 (1 )x xAl In N AlN InN
ij ij ije x e xe   

(4.14)

1 (1 )x xAl In N AlN InN
ij ij ijC x C xC   

(4.15)

and the AlInN/Gan biaxial strain xx is determined by equation 4.6 .

whereas the spontaneous polarization takes the form

1 ( ) (1 ) (1 )x xAl In N AlN InN
sp sp spP x x P xP bx x     

(4.16)

here b is the spontaneous polarization bowing factor. Its computed value given in the

literature [104] is: bPspAlInN=0.071 Cm-2

The values of the binaries AlN and InN spontaneous polarization and piezoelectric

coefficients e31 and e33 used in this work, are presented in Table 4.4.
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Table 4.4 Piezoelectric constants and spontaneous polarization of nitrides binaries [104,105]

Parameters AlN InN GaN

e31(Cm-2) -0.58 -0.412 -0.55

e33(Cm-2) 1.55 0.815 1.12

Psp (Cm-2) -0.09 -0.042 -0.034

The resulting values of piezoelectric and spontaneous polarization for are listed in Table 4.5,

with their variation with In concentration plotted in Figure 4.10. The plot shows the decrease

of the piezoelectric polarizations with In concentration due to decreasing strain to finally

cancel in the matching of lattice parameters of the AlInN and the GaN substrate (proportion

x=0.18). Obviously the Ppiezo rises again with strain but reverses to take the same direction of

Psp . The spontaneous polarization, on the other side, shows a slow decrease over the

concentration range, and at high In concentration Ppiezo will be minor with respect to Psp.

Table 4.5 Piezoelectric and spontaneous polarization of Al1-xInxN vs In composition

x 0 0.25 0.5 0.75 1

Psp -0.0900 -0.0647 -0.0483 -0.0407 -0.0420

Ppz 0.0484 -0.0191 -0.0807 -0.1378 -0.1930
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Figure 4.10 Al1-xInxn Spontaneous and Piezoelectric polarization vs In concentration
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4.7 Application to an electronic device :The HEMT

4.7.1 Introduction

The High Electron mobility Transistor HEMT (also known as MODFET), is a field

effect transistor consisting of a heterostructure of two different gap semiconductors. A

commonly used material combination is GaAs with AlGaAs, though there is wide variation,

dependent on the application of the device. Devices incorporating more indium generally

show better high-frequency performance, while in recent years, gallium nitride HEMTs have

attracted attention due to their high-power performance. GaN based HEMT have the ability to

operate at high frequencies are used in high power devices such as radars, satellite TVs, cell

phones voltage converters. Nitride HEMTs traditionally use a heterogeneous AlGaN / GaN

structure with a n-doped large band n type AlGaN donor delivery layer and an undoped GaN

narrow band gap channel layer. The heterojunction created by different band gaps materials

forms a quantum well and within this structure high mobility electrons are generated in the

thin layer of AlGaN and fall completely into the GaN layer. The electrons can move rapidly in

the GaN-side conduction band without colliding with impurities because of the undoped the

GaN layer and form what is called a two-dimensional electron gas (2DEG),. The effect of this

is to create a very thin layer of highly mobile conductive electrons at very high concentration,

giving the channel a very high electron mobility. As with all other types of FETs, a voltage

applied to the gate changes the conductivity of this layer. Thus the supplier to conduction in a

HEMT is the 2DEG which itself comes from the sum of spontaneous polarization of the polar

material and a piezoelectric polarization due to the deformation induced by the mismatch

between the two layers (AlGaN and GaN ).

However, after years of development there are some drawback on the

traditional AlGaN/GaN HEMTs. Indeed, there is increasing indication, that total stress  limits

the reliability of AlGaN / GaN conventional HEMTs (Park et al [106], Chini et al. [107]). In

addition, the need to extend GaN HEMTs to millimeter-scale applications imposes thinner

upper barriers to minimize the effects of short channels and to allow higher cutoff

frequencies, while 2-DEG AlGaN/GaN electron gases are subject to surface depletion effects

when the thickness of the upper barrier is thinned below 15 nm.

Following the idea of Kuzmik [3], AlInN/GaN HEMTs were proposed as an

alternative to GaN-based HEMTs, offering a solution to the strain-related device reliability .

In addition, surface depletion effects should be far weaker for the AlInN/GaN system
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(Kuzmik) [3], enabling, in principle, thin-barrier GaN HEMTs that should maintain excellent

channel aspect ratios down to very short gate lengths. Ultrathin-barrier of AlInN/GaN HEMTs

was verified down to 3-nm and high temperature stability (as high as 1000 C) have also been

reported (Medjdoub et al [108]).

AlInN/GaN HEMTs have two main advantages over AlGaN/GaN HEMTs: (i) the

charge induced by the spontaneous polarization is almost three times higher, allowing higher

current densities. Electron densities as high as 2.73 ×1013 can be reached in lattice matched

AlInN/GaN devices.(ii)  Al0.83In0.17N and GaN are lattice matched removing strains  in the

heterostructures . These mechanical constraints are harmful to the reliability of the devices

and are also supposed to be at the origin of trapping centers in transistors [ 109,110,111].

4.7.2 HEMT Physical processes and derived equations:

A basic configuration  AlInN/GaN HEMT is shown in Figure 4.11

Figure 4.11 Basic AlInN/GaN HEMT

Its corresponding band diagram is sketched in Figure 4.12.
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Figure 4.12 Band diagram for the balance equation model of an AlInN/GaN structure

For most of cases only quantum well ground state energy E1 is occupied then the balance
equation can then be written as:
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Triangular quantum well discrete energy levels are well known with the ground state E1 is:
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where
2

*m


is the quantum well density of states.

The 2D electron gas density is then:
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the previous equation is simplified if we consider that in reality the ground state energy E1

nearly coincides with the bottom of channel conduction band i.e. neglecting the term 2/3
sn

and then neglecting further
12

0
2 *

x xAl In N
r
AlInNe m d

  
we get the standard expression for the density of

the 2DEG:
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e is the electron charge, AlInNd barrier layer thickness and 1 x xAl In N
r  the alloy permittivity given

by:

1 ( ) (1 )x xAl In N AlN InN
r r rx x x      (4.21)

AlInN the polarization-induced charge

1
1 1

Al In Nx x
x x x xAl In N Al In N

sp piezoP P 
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(4.22)

Φb is the Schottky contact barrier height., EF is Fermi energy level.

/ ( )AlInN GaN
cE x the conduction band discontinuity between barrier and buffer takes the

following value [112]:

1/ ( ) 0.63( ( ) )x xAl In NAlInN GaN GaN
c g gE x E x E  

(4.23)

In a real device one usually introduce a thin AlN layer, to get an heterostructure with

AlInN for the barrier, AlN for the interlayer, and GaN for the bulk (Figure 4.11). The

introduction of an AlN spacer layer at the AlInN/GaN interface increases the carrier density

and effectively reduces the alloy scattering of 2DEG as well as provides better carrier

confinement [114,115].

Figure 4.13 Structure of an AlInN HEMT transistor

The corresponding energy band diagram is sketched in figure 4.14.
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Figure 4.14 Band diagram for the balance equation model of an AlInN/AlN/GaN

The balance equation for a configuration with the AlN spacer is:

, / , / , , / 0 0( ) ( ) 0b c AlInN AlN AlInN c AlInN AlN c AlN AlN c AlN GaN Fe x E d E E d E E E E           (4.24)

Note that in this case

, / 2 0( ) /c AlN AlN GaN d AlNE e en   

is the field across the AlN and

, / / 2 0( ( ) ) / ( )c AlInN AlInN AlN AlN GaN d AlInNE e x en x     

is the field across the AlInN barrier. The latter is thus determined by the total polarization

charge across the AlN interlayer.

We get the expression of ns:
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(4.25)

If we assume that Φb for III-nitrides is given by the difference between the metal work

function Φm and the semiconductor electron affinity χ [113], and taking the following values
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of electron affinities [114]: χ(InN) = 5.75 eV, χ(AlN)= 2.05 eV, χ(GaN) = 4.16 eV, Φm (Ni) =

5.1 eV  by applying Vegard’s law we get:

1( / ) 3.05 3.7b x xNi Al In N x   (4.22)

If we further take a buffer (AlInN) thickness of 11nm and a spacer thickness of 1nm,

equations 4.21 and 4.25 representing the variation of the two-dimensional gas density with In

concentration for a basic (red) and with a spacer (blue) configurations are illustrated in Figure

4.15.

Figure 4.15 2DEG density vs In concentration for AlInN/GaN (blue) and AlInN/AlN/GaN

(red) HEMT configurations.

One is mainly interested in the region around the matching point (MP) x=0.82, at that

concentration the electron gas may, theoretically, reach a density of 4.70 1017 m-2 for a

AlInN/AlN/GaN configuration. In the case of a basic configuration calculation yields a

density of 4 1017 m-2 in agreement with other works [3]. Now, if we compare the two curves

we clearly observe the impact of the thin layer of AlN by the increase the gas density

estimated at approximately 18% at the MP. Another noticeable fact is the negative values

obtained for the gas density at above approximately 50% of In content. That corresponds to

obtaining a gas of holes as carriers (2DHG).
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Since the stress is composition dependent, to provide estimation of a gauge factor, the factors

influencing the change in channel resistance with concentration are investigated. The channel

resistance is inversely related to the 2DEG sheet carrier density and electron mobility

ch
s e

A
R

qn 
 (4.26)

where the A is cross sectional area of the 2DEG. In the presence of stress, the normalized

change in channel resistance can be written as:

ch s e

ch s e

R n

R n




  
  (4.27)

To evaluate the effect of stress on the channel resistance, both the effect of stress on the

2DEG sheet carrier density and mobility needs to be considered. Strain-enhanced mobility can

result from reduced average conductivity effective mass from carrier repopulation and band

warping, suppression of intervalley scattering from subband splitting, and change in density

of states with stress. Unlike Si, GaN is a direct semiconductor with a non-degenerate

conduction band minimum at the Γ-point. Therefore, stress-induced change of the average

effective mass due to electron repopulation and scattering can be neglected.  Thus, the

mobility change is dominated by a change in the effective mass through band warping.

ch s e

ch s e

R n m

R n m

  
  (4.28)

If we take the zero stress concentration x=0.82 as the reference point, we will get the

fluctuation of the 2DEG density and the electron effective mass around the matching point as

respectively:

Δns=ns(x) - ns(0.82), Δme=me(x)- me(0.82).

where me(x) is the electron effective mass of the strained structure.

The relative variation due to the indium concentration fluctuation around the matching

(x=0.82) of the channel resistance along with the 2DEG and the electron effective mass is

plotted in Figure 4.16. For In variation less than ±8% the plot is linear with the variation of

the electron gas density having the main contribution, and to get a practical evaluation a 2%

variation of the In results approximately in a variation of 10% of the channel resistance.
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Figure 4.16 Channel resistance variation ΔR/R (black), 2DEG relative variation Δns/ns (blue)

electron effective mass variation (red)
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CONCLUSION
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This work was dealing with a nitride compound AlInN which is a relatively new

comer with respect to the other well studied alloys such as AlGaN or InGan. Thanks to new

methods of growing this ternary has found new multiple use in electronic and optical devices

such as, to name a few, high power transistors or distributed Bragg reflector.

Our contribution was through a comparative study of all possible phases of this

compound. This comparative study was conducted by means of two methods : the first one

the tight binding method is semi-empirical, the second the density functional theory is an ab-

initio method. The aim of this work is first to study, for a given phase, the variation of a

physical property with the indium composition, then to set an inter phase comparison. In the

following we summarize our main results:

First of all the obtained data for Alx In1-xN were checked with the binaries that is for

x=0 and x=1 for which experimental results were available and the results were pretty good in

agreement with experimental works.

As far as the structural properties are concerned we observe : A linear increase of the

lattice parameter and so a decrease of the bulk modulus. The denser packing rocksalt phase

taking the highest BM value while wurtzite and zincblende phases have close values

In the chapter of electronic properties  DFT calculation with the modified Becke and

Jonson potential allowed decent band gap values compared experimental data . The first

comment confirmed literature results that AlN in its zincblende phase is an indirect semi

conductor, and since InN is a direct one (for all structures) the AlInN alloy presented mixed

properties from direct to indirect depending on the In proportion.

On the other side, wurtzite structure showed a direct band gap variation for the whole

In range and the largest gap spectrum (from AlN to InN) belongs to the rocksalt phase with an

extent of.4.94 eV. The gap of all phases decreased with In, however with a composition

dependent bowing factor confirming the general trend in nitride alloys (InGaN and AlGaN).

Without being conclusive, our result and the absence of this tendency in the zinc blende phase

may suggest a charge transfer cause for this dependency .

The effective mass presented a decreasing value with In composition favoring the

mobility at rich In concentrations and the lighter mass for the wurtzite structure. The density

of states diagrams show a higher density in the wurtzite structure and the predominance  of  p

states.
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High pressure study showed the following points:

 confirmed the wurtzite as the most stable, independently of In proportion, and that the

wurtzite and zincblende presented rather close values of ground state energies.

 the Wz-Rs and Zb-Rs occurred for all In concentrations and that the phase transition

pressures were relatively low (less than 20 GPa).

 slow increase of band gap with pressure.

 If we consider the ternaries as InxAl1-xN or AlxIn1-xN, the effect of augmenting x

results in an increase of the phase transition pressure.

Heterostructure in which a film of AlInN is deposited on a bulk GaN induces a biaxial strain

resulting in a tetragonal symmetry in which the basal parameter may be compressed or

extended depending on the In content, and the perpendicular parameter c taking the other way

round. The first main result that the cubic binaries do not show any kind of spontaneous

polarization nor do they present any piezoelectric one under a biaxial strain, so the rest of the

study was carried out for the wurtzite structure.

The strain effect on the electronic structure resulted in a lower band gap and a lower electron

effective mass for In concentration less than 25%. The piezoelectric and spontaneous

polarizations has been recalculated according to the new structure and the main contribution

has been found to proceed from the latter one.

Finally the outcome of the strain study was applied to a HEMT transistor and results showed

that the sheet of induced electron gas has a high density of about 4.7 1017 m-2 and that the

channel resistance variation was mainly caused by the 2DEG fluctuation.
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Outlook

Several extensions can be added to the current study of which the:

 High temperature effects

 Optical properties with application to an optical device

 Effects of defects on physical properties

 calculation of the spontaneous and piezoelectric polarization of AlInN cubic phase.
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APPENDIX A

TIGHT BINDING HAMILTONIAN AND PARAMETERS  OF A
ZINCBLENDE STRUCTURE

The  TB sps* Hamiltonian matrix of a zincblende structure without spin-orbit interaction is

given by the following matrix [116]:

1 2 3 4

1 2 3 4

2 1 4 3 2

3 4 1 2 3

4 3 2 1 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

sa ss sapc sapc sapc

ss sc pasc pasc pasc

pasc pa xx xy xy pasc

pasc pa xy xx xy pasc

pasc pa xy xy xx pasc

sapc

E V g V g V g V g

V g E V g V g V g

V g E V g V g V g V g

V g E V g V g V g V g

V g E V g V g V g V g
H

V g







     
 
 




2 1 4 3 2

3 4 1 2 3

4 3 2 1 4

2 3 4

2 3 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

xx xy xy pc s apc

sapc xy xx xy pc s apc

sapc xy xy xx pc s apc

s apc s apc s apc s a

pasc pasc pasc s c

V g V g V g E V g

V g V g V g V g E V g

V g V g V g V g E V g

V g V g V g E

V g V g V g E







   

   








  

  
   

  
    








 
 
 
 
 
 
 
 
 
 

The four parameters g1 to g4 arise from summing over the factors exp(i.d1.k0). They are

defined by:

        1 1 0 2 0 3 0 4 0

1
exp exp exp exp

4
g id k id k id k id k   

        2 1 0 2 0 3 0 4 0

1
exp exp exp exp

4
g id k id k id k id k   

        3 1 0 2 0 3 0 4 0

1
exp exp exp exp

4
g id k id k id k id k   

        3 1 0 2 0 3 0 4 0

1
exp exp exp exp

4
g id k id k id k id k   

where we have assumed that atom 1 is located at the origin and di (i=1,4) are the positions of

its four nearest neighbors and a is the lattice parameter.
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 1

1
1,1,1

4
d  ;  2 1, 1, 1

4

a
d    ;  3 1,1, 1

4

a
d    ;  4 1, 1,1

4

a
d    .

Some of the onsite and hopping parameters AlN InN and GaN parameters listed below have

been extracted from Ref. [117] and modified so as to fit with high symmetry points.

AlN:

Esa=-11.5047; Epa=4.3815; Esc=0.5047; Epc=10.2184; Es*a=12.04;Es*c=13.74;Vss=-

9.8077;Vxx=6.031; Vxy=8.6191; Vsapc= 9.4; Vpasc=8.5; Vs*apc=8.03; Vpas*c=2.47;

InN:

Esa=-12.8605; Epa=1.98; Esc=-0.3994; Epc=8.02; Es*a=10.63; Es*c=13.00;

Vss=4.2285;Vxx=3.65; Vxy=6.405; Vsapc= 3.81; Vpasc=5.75; Vs*apc=6.88; Vpas*c=3.36;

All elements are given in eV.
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APPENDIX B

TIGHT BINDING HAMILTONIAN AND PARAMETERS OF A
WURTZITE STRUCTURE

The  TB sps Hamiltonian matrix for a wurtzite structure  without spin-orbit interaction, can be

expressed in block from as below with the notation following the Ref. [118,119].

0 13 14

0 14 24

13 14 0

14 24 0

a

a

c

c

E H H H

H E H H
H

H H E H

H H H E

 
 
 
 
 
  


 
 

where the different matrix elements are   4×4 matrix blocks. The diagonal matrices Ea and Ec

contain the orbital energies. The matrices Hij represent the interaction up to nearest neighbors.

H13= g1*M13

H14= g3*M14

H24= g2*M24

0 0 0
0 0 0
0 0 0
0 0 0

sa

pza
a

pxa

pxa

E

E
E

E

E

 
 
 
 
 
  



0 0 0
0 0 0
0 0 0
0 0 0

sc

pc
c

pc

pc

E

E
E

E

E

 
 
 
 
 
  


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   
   

3
0 1 0 1 1 1 3 12

3
0 1 0 1 1 1 3 12

13 3 3
1 1 1 1 1 1 2 1 1 3 1 14 4

3 3 3 3
3 1 3 1 3 1 1 1 1 2 1 12 2 4 4

f U f U f U f U
ss sz sx sx

f U f U f U f U
zs zz zx zx

M

f U f U f U f U U f U U
xs xz xx xx yy xx yy

f U f U f U U f U f U U
xs xz xx yy yy xx yy



  

   

 
 
 
 
 
 
 
 
 
 
 
 

14

0 0
0 0

0 0 0
0 0 0

ss sz

zs zz

xx

xx

M

U U

U U

U

U

 
 
 
 
 
 



   

   

0 1 0 1 1 1 3 1

0 1 0 1 1 1 3 1

24

1 1 1 1 1 1 2 1 1 3 1 1

3 1 3 1 3 1 1 1 1 2 1 1

3
2
3

2
3 3
4 4

3 3 3 3
2 2 4 4

ss sz sx sx

zs zz zx zx

xs xz xx xx yy xx yy

xs xz xx yy yy xx yy

f U f U f U f U

f U f U f U f U
M

f U f U f U f U U f U U

f U f U f U U f U f U U

 
 
 
 
 
 
 
 
 


 

    

    


         

         



Uss= Vss/4;Usz= -(sqrt(3)/4)*Vsapc; Uzs= -Usz;

Uzz= ((Vxx/4)+(Vxy/2)) ; Uxx= ((Vxx/4)-(Vxy/4))  ;

U1ss= Uss;U1sz=-Usz/3; U1zs= -Uzs/3; U1sx= Vsapc/sqrt(6);

U1xs=-Vscpa/sqrt(6) ;U1xz=Vxy/(3*sqrt(2));U1zx= U1xz;

U1xx= ((8*Uzz/9)+(Uxx/9)); U1zz= ((Uzz/9)+(8*Uxx/9)); U1yy= Uxx ;

The tight binding (self Energies In, Al (cation ) and N (anion)), AlN, InN and GaN parameters

have been extracted from Ref. [91] and modified so as to fit with high symmetry points.
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On-site elements:

Esa(AlN)=-12.104

Epxa(AlN)= 3.581;Epza(AlN)= 3.725; Esc(AlN)=-0.096; Epc(AlN)=8.95

Esa(InN)=-6.791;Epxa(InN)= 0.000;Epza(InN)= 0.000;Esc(InN)=-3.015; Epc(InN)=8.822;

off site elements:

Vss(AlN)= -10.735; Vxx(AlN)= 5.808; Vxy(AlN)= 7.486;

Vscpa(AlN)= 9.755; Vsapc(AlN)=10.092;

Vss(InN)= -5.371; Vxx(InN)= 0.022;

Vxy(InN)=6.373;Vscpa(InN)= 0.370;Vsapc(InN)=18.0

All elements are given in eV.
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APPENDIX C

ELASTIC THEORY

1) Strain tensor

For a detailed analysis refer to the classical book of Nye [120].

Two close points A and B  of a solid  ( AB dr
 

) under stress shift to a position ' ' 'A B dr
 

so that 'dr dr du 
  

where

1 2 3
1 2 3

i i iu u u
du dx dx dx

x x x

  
  

  



is the displacement vector.

the relation between du and dx may be written in a matrix form

    du dx with   the matrix representation of the strain tensor.

The symmetric part of the strain tensor which correspond to the length variations (not the

rotation of the body) is:

11 12 13

12 22 23

13 23 33

  
   

  

 
   
   (C1)

where

1

2
ji

ij
j i

uu

x x


 
     

The diagonal terms of the tensor represent the stretching components of the strain whereas the

off diagonal are the shear components.

2) Stress tensor

If a stress is applied to a solid along its facets experiences forces dFi

i i j kd F ds dx dx  
  

(C2)
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the overall effect can be described by a symmetric tensor called the stress tensor  of the
form:

11 12 13

12 22 23

13 23 33

  
   

  

 
   
  

(C3)

C  (C4)

where ij are the components of stress tensor. The first subscript refers to the normal of the

face on which the fore acts the second to the direction of the force.

σii are components of a tensile stress ( force is normal to the applied face  ).

σij (i≠j) are components of a shear stress ( force is along to the applied face  ).

3) Stiffness tensor

The relation between the strain and stress is governed by the well known Hooke's law through

the relation

C 

where C the stiffness tensor is a symmetric tensor of the form
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11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 41 43 44 45 46

51 51 53 54 55 56

61 61 63 64 56 66

ij

C C C C C C

C C C C C C

C C C C C C
C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

  
 
 
  
  (C5)

For a cubic symmetry as in the zincblende structure the number of Cij reduces to four

independent components C11, C12, C44 and the matrix is in the form

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ij

C C C

C C C

C C C
C

C

C

C

 
 
 
 

  
 
 
  
  (C6)

For a hexagonal symmetry as in the wurtzite structure the number of Cij reduces to four

independent components C11, C12, C13, C33, C44 and the matrix will take the form

11 12 13

12 11 13

13 13 33

44

44

11 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
2

ij

C C C

C C C

C C C
C C

C

C C

 
 
 
 
   
 
 

  
  (C7)

The values of the elastic constant are all taken from Reference [104]
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Table C1 Nitrides elastic constants.

Zincblende AlN GaN In

C11 315 291 190

C12 150 148 104

C14 185 158 99

Wurtzite AlN GaN In

C11 410 373 190

C12 140 141 104

C13 100 80 121

C33 390 387 182

C44 120 94 99
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Propriétés électroniques et structurales de Al1-xInxN avec
application à un composant électronique

Résumé

Le ternaire AlInN est un matériau utilisé dans les composants optiques tels que les

diodes électroluminescentes, diodes lasers, fibres à réseau de Bragg ainsi que dans des

composants électroniques tel que les HEMT. Il se présente sous deux phases, wurtzite et

zincblende, on se propose alors, dans ce travail, en premier lieu de comparer les propriétés

structurales et électroniques des deux phases. Cette comparaison serait bénéfique pour le

choix de la phase la plus appropriée pour un composant donné.

L’AlInN se présente généralement sous forme d'hétérostructure AlInN/GaN dans les

composants électroniques. Sa croissance sur la couche GaN entraine l'apparition de

contraintes élastiques résultant en de profonds changements dans ses propriétés structurales et

électroniques. La deuxième partie de cette thèse concernera l'étude de l'effet physique de ces

contraintes.

Et finalement après un bref rappel sur l'architecture et sur la physique d’un transistor

HEMT, on essaiera d'appliquer les concepts précédents aux effets sur les principaux

paramètres régissant le fonctionnement de ce composant.

Deux méthodes de calcul ont été utilisées pour les études théoriques : la première

semi empirique la tight binding, et l'autre la théorie de la fonctionnelle de la densité une

méthode ab-initio. Un aperçu théorique sur ces deux méthodes ainsi que les paramètres de

calcul utilisés sont exposés.

Mots clés: Nitrures, LCAO, théorie de la densité fonctionnelle, propriétés électroniques et
structurales.



111

مع التطبیق Al1-xInxNئص الإلكترونیة و الھیكلیة ل الخصا

على مركب إلكتروني

ملخص

هو من المواد المستخدمة في المكونات البصرية مثل الثنائيات الباعثة للضوء، الثنائيات الليزر AlInNالثلاثيو

تكون هذه السبيكة في بنيتين، . HEMTsوالألياف براج مقضب وكذلك في المكونات الإلكترونية مثل 

wurtziteوzincblende ، ان هذه المقارنة . والإلكترونية للمرحلتينيقترح  في هذا العمل، أولا لمقارنة الخصائص الهيكلية

.تكون مفيدة لاختيار أنسب بنية لمكون معين

نموها على طبقة الجاليوم يتسبب في . في المكونات الإلكترونيةGaN/AlInNعموما في شكل AlInNنجد 

أما الجزء الثاني من هذا . ظهور ضغوط مرنة مما أدى إلى إحداث تغييرات عميقة في الخصائص الهيكلية والإلكترونية لها

.العمل ينطوي على دراسة تأثير مادي من هذه القيود

،نحاول تطبيق المفاهيم المذكورة أعلاه إلى الآثار المترتبة HEMTوأخيرا بعد تقديم موجز عن الهندسة والفيزياء للترانزيستور 

.على المعالم الرئيسية التي تحكم عمل هذا العنصر

، و tight bindingطريقة النصف التجريبية الأولا : وقد استخدمت طريقتين حساب للدراسات النظرية

.نعرض لمحة  نظرية لهذه الأساليب وكذلك معاملات الحساب المستخدمة. الثانية هي النظرية الوظيفية للكثافة

.نظریة الربط القوي،ة والإلكترونیةالخصائص الھیكلیالنظریة الوظیفیة للكثافة،،نیترید: الكلمات المفتحیة
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Abstract

The ternary AlInN is a material used in optical components such as light emitting diodes,
laser diodes, fiber Bragg grating as well as in electronic components such as HEMTs. It
comes in two phases, wurtzite and zinc blende, it is proposed then, in this work, first to
compare the structural and electronic properties of the two phases. This comparison would be
beneficial to choose the most appropriate phase for a given component. Furthermore we will
try to study high pressure effects on the structural and electronic properties of AlInN and its
phase transformation into the  rocksalt phase.

The AlInN comes generally in the form of heterostructure AlInN/GaN in electronic
components. Its growth on the GaN layer causes the appearance of elastic stresses resulting in
profound changes in its structural and electronic properties. The second part of this work will
involve the study of the physical effect of these constraints.

And finally after a brief introduction on architecture and on the physics of a HEMT, one will
attempt to apply the above concepts to the effects on the main parameters governing the
operation of this component.

Two calculation methods have been used for theoretical studies: the first semi empirical tight
binding method, and the second ab-initio the density functional theory. A theoretical overview
of these methods is exposed as well as the calculation parameters used.

Key words: Nitrides alloys, tight binding, density functional theory, electronic and
structural properties.




