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Introduction

In the last two decades, non-Hermitian Hamiltonian systems in particular those
having a real energy spectrum have attracted much of interest in theoretical

physics, where the reality of spectrum has a deep sense and appeared in a whole
class of Hamiltonian systems. The story began in 1993 by C.Bender when he was
visiting CEN Saclay, when he interested in the work of Bessis and Zinn-Justin,
where they had noticed on the basis of numerical work that some of eigenvalues of
cubic anharmonic oscillator [1, 2] seemed to be real and wondered if the spectrum
might be entirely real. however, he started his program of research on such class
of non-Hermitian Hamiltonians. He argued that the reality of spectrum might
be interpreted by the existence of a symmetry, he worked on this purpose a lot
until 1998, he published an article with S. Boettcher on [1, 3, 4] where they had
defined it as a PT-symmetry. Meaning to say it plays a key role at generaliz-
ing quantum mechanics, where Bender and his collaborators [1, 3, 5] adopted
all quantum mechanics axioms except the one that restricted the Hamiltonian to
be Hermitian, they replaced the latter condition with the requirement that the
Hamiltonian must have an exact PT-symmetry. This field of research has been
a great deal of interest in the study of non-Hermitian as well as PT- symmetric
quantum mechanics, the reason is the fact that this generalization of the standard
quantum mechanics to the complex regime renders the spectrum completely real
if the PT-symmetry is not spontaneously broken [1], nevertheless this symmetry
failed to give a general and clear picture of non-Hermitian Hamiltoniains having
a real spectrum, to respond to this crucial question, Mostafazadeh [3, 6] has es-
tablished that PT symmetry which is neither necessary nor sufficient to assure
the reality of the spectrum, where the search for finding a condition which is both
necessary and sufficient has led to a notion of pseudo-Hermiticity [6]. moreover if a
given pseudo Hermitian Hamitonian could be mapped to a Hermitian one by sim-
ilarity transformation therefore it is no thing but a quasi-Hermitian Hamiltonian.
Since the theory of quantum gravity stipulates in somehow a deformation on the
space by choosing the position operator X = (1 + p2)x, this automatically means
a change on Heisenberg algebra so this might raise a problem of non Hermiticity
of the Hamiltonian.
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The purpose of the first three chapters is to study some of deformed Hamilto-
nian systems, not only by deforming a typical Hermitian Hamiltonian ones but
in the large extent those are non-Hermitian in advance, meaning to say defined
in the complex regime, so we’ll study a deformed-shifted harmonic p2 + x2 + iεx
and deformed-cubic anharmonic p2 +x2 + iεx3 oscillators as an examples of quasi-
Hermitian Hamiltonians [6, 7, 8, 9, 10].
In 1935, a decade after the invention of quantum theory by Hiesenberg (1925) and
Schrodinger (1926), three papers appeared and setting the stage for a new con-
cept, quantum entanglement, which named by Erwin Schrodinger [11] in Germen
”Verschränkung” that after his famous ”cat paradox”. Since 1970s entanglement
could be observed directly in a laboratory, until 1990s where the experimental
development have led to new concepts in information technology, including such
topics quantum cryptography,quantum teleportation...etc, in which entanglement
play a key role.
Thus, in the last chapter we’ll work out for instance an entangled PT-symmetric
spin Hamiltonian [12, 13] where we have to focus on the concept of quantum in-
formation processing (QIP) in which the quantum entanglement has considered
as an interesting issue [14, 15, 16, 17] and we will see how is the magnitude of
quantum entanglement perhaps depends on the parameters such the Hermiticity
and metric.
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Chapter 1

Non-Hermitian and Deformed
Hamiltonians

1.1 Non-Hermitian Hamiltonians
One of the axioms of any quantum Hamiltonian system, is the mathematical con-
dition of Dirac Hermiticity

H = H† (1.1)

Where † stands for a (transpose + complex conjugate), the condition (1) is suf-
ficient to guarantee that the energy spectrum is real and the time evolution is
unitary, in fact this condition is not necessary, it is possible to describe a natural
process by means of non-Hermitian Hamiltonians [1]. Since the work of Bender
et al [2], non-Hermitian quantum systems have been studied extensively, where a
diagonalizable non-Hermitian Hamiltonian having a real spectrum may be used to
define a unitary quantum system if one modifies the inner product of Hilbert space
properly. Bender and his collaborators [3] ,who adopted all axioms of quantum
mechanics, except the one that restricted the Hamiltonian to be Hermitian, they
replaced the later condition, with the requirement that the Hamiltonian must have
an exact PT-symmetry

1.1.1 PT-Symmetric Hamiltonians
Nearly two decades earlier [1, 4], Bender and Boettcher introduced PT-symmetry
in the context of non-Hermitian Hamiltonians, they considered it as a response of
the question which says; why a given non-hermitian Hamiltonian, may have a real
and positive energy spectrum?
First, they figured out that the reality of the spectrum is in part due to PT-
symmetry, in which the Hamiltonians that are invariant under PT-Symmetry’s
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effect may have a real energy spectrum, to make sure, they examined this property
on a class of complex Hamiltonians that has the form

p2 + x2 − (ix)N ,N is Real (1.2)

In the articles [1, 4], Bender and his collaborators showed that the mathematical
requirement of Dirac hermiticity (1.1) stands out and it’s replaced by a transparent
physical condition of space-time reflection

H = HPT (1.3)

where PT is defined in terms of the space-reflection operator P (parity) and time-
reversal operator T . where P is a linear operator whose action on a set of coordi-
nates (x, p) is

Px = −xP, Pp = −pP (1.4)
furthermore the linearity of P remains the commutation relations (Heisenberg
algebra of quantum mechanics) invariant.

xp− px = i~ (1.5)

The time-reversal operator T , leaves x invariant but changes the sign of both of
p, and the complex number i

Tx = xT, Tp = −TP (1.6)

Ti = −iT (1.7)
T needs to satisfy (1.5), which leads to(1.7), as a result T is an anti-linear operator.
Since P and T are reflection operators, their squares are the unit operator

P 2 = T 2 = 1 (1.8)

Also P and T operators commute with each other

[P, T ] = 0 (1.9)

And finally, the condition (1.3) can be written as follows

[PT,H] = 0 (1.10)

Often, despite the condition (1.10) is satisfied, it can’t guarantee if the Hamiltonian
H has to have an entire real and positive energy spectrum!! Thus,the Second
thing that Bender and his collaborators [1, 3, 4] were interested in, is how to make
sense of PT-symmetric Hamiltonians those have entirely real and positive energy
spectrum, by pointing out a further restriction on the PT-symmetry itself, which
has to be unbroken.
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Unbroken PT-Symmetry

PT-symmetry is said to be unbroken, if the operators PT andH are simultaneously
have the same eigenstates. Actually, the condition (1.3) determines a whole branch
of non-Hermitian Hamiltonians H that are undergoing to PT-symmetry, but it
could not guarantee that they have an entire real spectrum or not, in such case,
the PT-symmetry needs to be exact which means unbroken. Let’s assume ψ are
the eigenstates of the both of H and PT operators, where the PT eigenvalue
equation given as

PTψ = λψ (1.11)
and the independent time Schrodinger equation with the energy spectrum E writ-
ten as

Hψ = Eψ (1.12)
by multiplying PT on the left of the equation (1.11) and using the property
(PT )2 =11 we obtain

ψ = PTλ(PT )2ψ (1.13)
PT is anti-linear operator, which implies

ψ = (PT )2λPTψ (1.14)

Use the equation (1.11), we get

ψ = (PT )2λPTψ = λλ∗ψ = λ2ψ (1.15)

however λ it cannot be more than a pure phase

λ = eiβ (1.16)

Next we go back to the Schrodinger eigenvalues equation and multiply it on the
left and once again use the property (PT )2 = 1

PT Hψ = PT Eψ = PT E(PT )2ψ (1.17)

and use one more time the equation (1.11) we get

PT Hψ = PT Eψ = PT EPTλψ (1.18)

PT is an anti linear operator which leads to

PTHψ = E∗λψ (1.19)

Since PT commutes with H the previous equation becomes

Eλψ = E∗λψ (1.20)
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by simplifying a non zero value λ , then finally obtain that E is real

E = E∗ (1.21)

This result can not be true for any PT-symmetric Hamiltonian even the conditions
(1.11) and (1.12) are both satisfied, but there are cases where the PT symmetric
Hamiltonian may don’t have eigenstates because their corresponding energy eigen-
values are complex. so the eigenvalues are entirely real, if every eigenstate ψ of
a PT-symmetric Hamiltonian H is also an eigenstate of PT operator [1, 4, 5] in
such case PT it called unbroken.
Conversely, if the previous condition were violated, even with only one eigenstate
which can be thought of as an eigenstate of one of H and PT not both, in such
case the PT symmetry has to be broken.

Broken PT-Symmetry

PT is said to be broken [1, 3], if some of the eigenstates of a PT-symmetric
Hamiltonian H are not simultaneously eigenstates of the PT operator, in this
circumstance the the Hamiltonian has no physical significance because its eigen-
values are complex or partially complex unlike the axiom of quantum mechanics
which says that the energy spectrum should be real and bounded below where
this comes from the fact that the energy is a measurable quantity. The study
of the generalized harmonic oscillator Hamiltonians (1.2) is done by Bender and
Boettcher [1, 4], where it was showed that when (N ≥ 0) all of the eigenvalues
of these Hamiltonians are entirely real and positive, but when (N < 0) there are
complex eigenvalues. and they distinguished two regions :
• (N ≥ 0) : a parametric region of unbroken PT symmetry

• (N < 0) : a parametric region of broken PT symmetry

Despite the Hamiltonian H of equation (1.3) has an unbroken PT-symmetry which
guarantees the requirement of reality and positivity of the energy spectrum, but
this is not sufficient to assure that the PT-symmetric quantum theory is well
established and does not suffer form inconsistency with some basic axioms of or-
dinary quantum mechanics, where any quantum theory needs to be constructed
by a Hilbert space vectors associated with inner product having a positive norm
and having a unitary time evolution, both can be summarized in one term ”uni-
tarity”, so Bender resolved this problem by reconstructing a Hilbert in accordance
with the PT-symmetric Hamiltonian, and he found that the Hamiltonian operator
chooses its own Hilbert space in which it prefers to live [3]. and since any Hilbert
space is associated with an inner product and this latter has to be dependent on
the Hamiltonian itself, so Bender [1] by analogy with Hermitian inner product he
introduced what so called PT-symmetric inner product.
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PT-Inner Product

Even though a non-Hermitian PT-symmetric Hamiltonian operartor has a positive
and real spectrum, but it still has some requirements in order to render it defines
a physical theory [18].
In ordinary quantum theories the Hilbert space is specified even before the Hamil-
tonian is known, that means the inner product also is known a prior, and it’s
represented by Hermitian Hamiltonian, where the Dirac Hermitian conjugation
plays a key role in the construction of the inner product, and it’s written as

(ψ(x), φ(x)) = 〈ψ(x)|φ(x)〉 =
∫
dx[ψ(x)]∗φ(x) (1.22)

where ψ(x) and φ(x) are square-integrable functions L2(R), and the 〈.| , |.〉 are
the Dirac notation of state vectors of the Hilbert space [3].
It’s clearly shown that the Hermitian-inner product (1.22) is positive-definite, be-
cause no matter the state ψ has to be the norm remains positive.

(ψ(x), ψ(x)) = 〈ψ(x)|ψ(x)〉 =
∫
dx[ψ(x)]∗ψ(x) = | ψ(x) |2 ≥ 0 (1.23)

In PT-symmetric quantum theories the situation is a little bit different, unlike the
ordinary quantum mechanics, the novel thing is that the Hilbert space associated
with its inner product would have been generalized and modified in its structure,
in such a way they become dependent on the Hamiltonian itself.
however, Bender [1] has reformulated the expression of the hermitian-inner prod-
uct(1.22) corresponding to a Hermitian Hamiltonian (H = H†) by the analogous
one which is regarding the PT-symmetric Hamiltonian (H = HPT ) and it is defined
as follows

(ψ(x), φ(x))PT = 〈ψ(x)|φ(x)〉P = 〈ψ(x)|P |φ(x)〉 =
∫

Γ
dx[PTψ(x)]φ(x) (1.24)

and
PTψ(x) = [ψ(−x)]∗ (1.25)

where ψ(x) and φ(x) are square-integrable functions of L2(Γ) and Γ is the contour
in complex-x plane that specifies the PT-symmetric model [3].
by virtue of the symmetry’s modification on the Hamiltonian who is respecting
the expression (1.24), the energy spectrum might be real, but it still suffering from
a sticky problem, where this inner product is indefinite and does not define the
physical Hilbert space of the theory!!
Bender [1, 3, 5, 18] has encountered this puzzle of the indefiniteness of norm cal-
culated by a PT-inner product, where the norm in fact should be positive definite,
while according to quantum mechanics the probability is nothing but the norm
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squared which could never be negative.
In PT-symmetric quantum theories, it’s not the case, the PT-inner product is no
longer positive, and it’s known as indefinite-inner product.
Let’s proof that, for a given eigenstates φn(x) of PT-symmetric Hamiltonian H of
equation(1.2) and for (N ≥ 0), H has unbroken PT-symmetry which results that
φn(x) are simultaneously eigenstates of PT operator and satisfy

PTψ(x) = λnψ(x) (1.26)

where λn is no thing but a pure phase (this can be determined in a couple lines)
Without loose generality if (λn = 1), the PT-eigenvalue equation becomes

PTψ(x) = ψ(x) (1.27)

Consequently, H has to have a complete set of eigenstates, so for a different eigen-
values, the PT-inner product is surely zero, strictly speaking about orthogonality,
but PT-inner product does not hold with the normality property where it gives an
alternate sign result [18].

(φm, φn)PT = 〈φm|φn〉P = 〈φm|P |φn〉 = (−1)nδmn (1.28)

The above result summarizes two properties

• Orthogonality (m 6= n) : (φm, φn)PT = 〈φm|φn〉P = 〈φm|P |φn〉 = 0

• Normality (m = n) : (φm, φn)PT = 〈φm|φn〉P = 〈φm|P |φn〉 = (−1)n = ±1

The expression of the P operator in position space [1, 18] in terms of eigenstates.

P (x, y) = δ(x+ y) =
∑
n

(−1)nφn(x)φn(−y) (1.29)

and satisfies
P (x, y)φ(x) =

∫
δ(x+ y)φ(y)dy = φ(−x) (1.30)

P 2(x, y) = δ(x− y) = 11 (1.31)
The apparent advantage of the PT-inner product [18] is that the associated norm
〈ψ|P |ψ〉 is independent of phase-factor and is conserved in time , if we consider
the evolution with time U(t) = eiHt on |ψ(x, 0)〉 gives |ψ(x, t)〉 as

U(t) |ψ(x, 0)〉 = |ψ(x, t)〉 (1.32)

and
PT (|ψ(x, t)〉 = PT (U(t) |ψ(x, 0)〉 = 〈ψ(x, 0)|P.UPT (1.33)

8



Clearly, the norm resulted by a PT-inner product remains conserved with time

〈ψ(x, t)|P |ψ(x, t)〉 = 〈ψ(x, 0)|P.UPT (t).U(t) |ψ(0)〉
= 〈ψ(x, 0)|P.e−iHPT t.eiHt |ψ(0)〉
= 〈ψ(x, 0)|P |ψ(x, 0)〉

(1.34)

Despite the Unitarity principle is satisfied, but the lack of positivity renders this
PT-inner product indefinite and useless, whereas the definiteness of the inner prod-
uct is one of the main ingredients of any quantum theory. To resolve this dilemma,
Bender [1, 18] has introduced a new operator C where their properties similar to
those of the charge conjugation operators in particle physics, where he used it as
tricky idea by changing the indefinite PT-inner product into a positive-definite
CPT-inner product

CPT-Inner Product

For a PT-symmetric Hamiltonian having an unbroken PT-symmetry, the indefi-
niteness of the PT-inner product [1, 3, 18] is resulted from the alternation of the
sign (+) and (−), in fact the change in the norm sign arises a probabilistic inter-
pretation difficulties and to fix this problem the one should construct a genuine
positive-definite inner product which defined by the C-symmetry operator.

• C-Operator

Because in any PT-inner product, there is the same number of states having a
negative and a positive norms, Bender has introduced in refs [1, 18] a generic
symmetry and he termed it as C-symmetry, which stemmed from the work of
Dirac where he interpreted the alternation of energy signs of energy spectrum
by introducing a new symmetry which do change the matter into anti-matter,
and he called it ”charge-conjugation operator” C. The C-symmetry of H can be
thought as a liner operator represented in position space as a sum over the energy
eigenstates of the PT-symmetric Hamiltonian

C(x, y) =
∑
n

φn(x)φn(y) (1.35)

It commutes with the Hamiltonian H and PT operators

[C,H] = 0 (1.36)

[C,PT ] = 0 (1.37)
and the square of C operator gives the unity operator

C2(x, y) = δ(x− y) = 11 (1.38)
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In fact the C operator is complex unlike the Parity operator P which is real [1, 18]
and they do not commute to each other

CP = (PC)∗ (1.39)

Conversely to the equations (1.31),(1.37), P and C operators are distinct square
root of the unity operator δ(x− y).
The eigenvalues of C are (±1) this can be proved easily

Cφn(x) =
∫
C(x, y)φn(y)dy

=
∑
m

∫
φm(x)φm(y)φn(y)dy

= φm(x)
∑
m

∫
φm(y)φn(y)dy

= φm(x)
∑
m

(−1)nδnm

= ±φm(x)

(1.40)

• CPT-Inner product

For an unbroken PT-symmetry, there is a C operator that satisfies (1.36)(1.37)
and (1.38), whereas the resolution of those equations give the expression of C, in
which the CPT-inner product has the form

(ψ(x), φ(x))CPT = 〈ψ(x)|φ(x)〉CP = 〈ψ(x)|CP |φ(x)〉 =
∫

Γ
dx[CPTψ(x)]φ(x)

(1.41)
In ref [3],CPT-inner product coincides with the positive-definite inner product,
where this latter is written in terms of a positive metric η+

(ψ(x), φ(x))CPT = 〈ψ(x)|φ(x)〉η+
= 〈ψ(x)| η+ |φ(x)〉 =

∫
Γ
dx η+[ψ(x)]∗φ(x)

(1.42)
where η+ = CP is a positive-definite metric operator. The completeness condition
in position space of set of the energy eigenstates φn of an unbroken PT-symmetric
Hamiltonian H are orthonormal and they given as∑

n

φn(x)[CPTφn(y)] = δ(x− y) = 11 (1.43)

We summarize the the subsection (1.1.1) by the next two tables
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Hermitian Hamiltonian PT -symmetric Hamiltonians
E is real E is real if H has an unbroken PT-symmetry
H = H† H 6= H† and H = HPT

Time evolution is unitary Time evolution is unitary

Table 1.1: Hermitin Hamiltonian vs PT-symmetric Hamiltonian

† -inner product PT -inner product CPT -inner product
〈ψ(x)|φ(x)〉 〈ψ(x)|P |φ(x)〉 〈ψ(x)|CP |φ(x)〉
positive-negative indefinite-positive positive-definite
does not depends on H depends implicitly on H depends implicitly on H
H = H† H = HPT H = HCPT

Table 1.2: Comparison between Hermitian, PT and CPT inner products

In ref [19] some disadvantages cited about PT-symmetric quantum theories,
for instance ;

• The use of PT-symmetric Hamiltonians doesn’t lead to genuine extension
of quantum mechanics, rather it provides a new representation of the same
theory where the physical Hilbert space is defined using a new inner product.

• Some of the notions developed in PT-symmetric Hamiltonians do not actu-
ally play a fundamental role. the primary example is the C operator that
used as tool for specifying a particular example of the inner products, called
CPT-inner product where the quantities of interest do not involve the C
operator.

• PT-symmetry doesn’t play any distinctively role, any PT-symmetric or non-
PT-symmetric Hamiltonians that has a real spectrum can serve the same
purpose, and it would be seen that these operators are a subclass of more
general class which called pseudo-hermitian Hamiltonians

1.1.2 Pseudo-Hermitian Hamiltonians
The notion of PT-symmetry can be replaced in general mathematical context
known as pseudo-Hermiticity [20], which is slightly different from the one used
in the earlier studies, the pseudo-hermiticity was introduced by Mostafazadeh
[3, 6, 19], where the Hamiltonian H is said to be pseudo-Hermitian with respect a
positive-definite Hermitian operator η, if it satisfies [7]

H† = ηHη−1 (1.44)
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where η is called the metric operator which is not unique, but when η is fixed
(chosen), H is called η-pseudo Hermitian Hamiltonian [6].
we define the pseudo-Hermitian inner product as follows

〈.|.〉 = 〈.| η |.〉 (1.45)

we can say, it’s kind of hermiticity in non-standard inner product called definite
inner product. the study of pseudo-Hermitians Hamiltonians those having a real
spectrum is much significant because they have a physical sense, so we restrict
ourselves in such category of Hamiltonians.
The necessary and sufficient conditions to guarantee the reality of the spectrum
needs two requirements:
The pseudo-Hermiticity condition

η+ = ρ†ρ (1.46)

and the existence of a positive-definite metric operator corresponds to the inner
product

〈.|.〉 = 〈.| η+ |.〉 (1.47)
The main problem in pseudo-Hermitian Hamiltonians is to determine the metric
operator η+, in ref [6], there are two approaches help to construct the most general
positive-definite inner product

• 1st method employs the approach pursued in the proof of the spectral theo-
rems, and involves constructing a complete bi-orthonormal system |ψn〉 , |φn〉
where |ψn〉 , |φn〉 are eigenstaes of H and H† respectively.

• 2nd method uses the fact that any positive definite operator η+ has a hermi-
tian logarithm i.e., there is a Hermitian operator Q = − ln η+ thus

η+ = e−Q (1.48)

then, apply both the pseudo-Hermiticity relation and Baker-Campbell-Hausdroff
formula.
this technique is much used in this work and it will be shown with details in
the appendices.

Particular case in PT-symmetric Hamiltonians the role of η+ is played by the
combined operator PC and by definition

η+ = eQP (1.49)

The fact that P revers the sign of Q it means (PQ = −QP ) thus the positive-
definite metric is no thing but

η+ = e−Q (1.50)
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and the corresponding positive-definite inner product of equation (1.47) can be
written in terms of Q

〈.| η+ |.〉 = 〈.| e−Q |.〉 (1.51)

This inner product corresponds to the choice η = PC, where C required to ful-
fill [19]

C2 = 1, [C,H] = 0, [C,PT ] = 0, (1.52)

The one must solve these operator equations to find

C = eQP (1.53)

for a Hermitian operator Q it is clearly seems that the CPT-inner product coincides
with 〈.| e−Q |.〉, therefore this procedure provides means of computing a metric
operator of the form η+ = e−Q.
If the one fixes a particular metric η+ [8] which is also Hermitian operator, the
Hamiltonian H is said to be η+ pseudo Hermitian [2]
Mostafazadeh has derived from Pseudo Hermitian Hamiltonian a sub class which
has apparent property and it considered as a generalized version of PT-symmetric
Hamiltonians which called Quasi-Hermitian Hamiltonians [3, 6].

1.1.3 Quasi-Hermitian Hamiltonians
The Quasi-hermitian is a pseudo hermitian Hamiltonian in nature but it could be
mapped to hermitian one by a similarity transformation [6]

h = η1/2Hη−1/2 (1.54)

where H is pseudo Hermitian Hamiltonian defined by the relation H† = ηHη−1 and
belongs to Hilbert space HH , where h is a hermitian Hamiltonian in an equivalent
Hilbert space Hh In such case H is said to be quasi-Hermitian Hamiltonian [7].

1.2 Deformed Heisenberg Algebra
The interest to deformed algebra was renewed after investigations in string theory
and quantum gravity which suggest the existence of nonzero minimal in uncer-
tainty in position following from the generalized uncertainty principle (GUP). It
was shown that GUP and nonzero minimal uncertainty in position can be obtained
from a modified Heisenberg algebra, where the more general case of it includes
non-zero uncertainties in momenta as well as position, this general case is far more
difficult to handle, since neither a position nor a momentum space representation
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is viable. Instead on has to resort to generalized Bargmann-Fock space represen-
tation [9]. The construction of generalized Bargmann-Fock Hilbert spaces was
realized by making use of algebraic techniques developed in the field of quantum
groups. it was found that it has so far only in examples been possible to prove.
let’s confine ourselves in the case of minimal uncertainty in position, by taking
the minimal uncertainty in momentum to vanish, for instance one-dimensional de-
formed Heisenberg algebra, where in the right hand side of it a term proportional
to squared momentum is added [10].
In this section we study the one-dimensional deformed Heisenberg algebra, where
the right hand side of it is quadratic on the momentum, in which we prefer to
mention just the case of continuous momentum space representation rather than
the quasi-position representation. finally we probe the question of existence of
minimal length is much easier to handle in a momentum space representation.

1.2.1 Deformed Harmonic Oscillator in momentum space
Consider a modified one dimensional Heisenberg algebra generated by position X
and momentum P Hermitian operators obeying the commutation relation

[X,P ] = i~f(P ) (1.55)

where f is a function of deformation and we assume that it is strictly positive
(f > 0), even function [10].
In momentum representation both operators acting on a square integrable func-
tions ψ(p) ∈ L(−a, a; f), (a ≤ ∞), often we assume that the deformed function
given as follows

f(P ) = 1 + βP 2 (1.56)
where β > 0 , in this choice a = ∞ and the operators X , P are dense on the
domain L(−∞,∞). It is highly expected to be a good choice for leading to a non
zero minimal length. However equation (1.55) becomes

[X,P ] = i~(1 + βP 2) (1.57)

in fact the Heisenberg algebra can be represented on momentum space wave func-
tions ψ(p) := 〈φ|ψ〉 the operators X and P acting on ψ(p) as

P.ψ(p) = p ψ(p) (1.58)

X.ψ(p) = i~(1 + βp2)∂ψ(p)
∂p

(1.59)

and the deformed inner product

〈φ|ψ〉 =
∫ ∞
−∞

dp

1 + βp2 φ
∗(p) ψ(p) (1.60)
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The norm of ψ is given by

‖ψ‖2 =
∫ ∞
−∞

dp

1 + βp2 |ψ|
2 (1.61)

The deformed completeness relation need preserve a factor (1 + βp2)−1 to cancel
the corresponding factor of the operator X this changes the identity operator as

1 =
∫ ∞
−∞

dp

1 + βp2 |p〉〈p| (1.62)

therefore the inner product of momentum eigenstates is

〈p|p′〉 = (1 + βp2)δ(p− p′) (1.63)

We define the average value of operator A

< A >ψ =
∫ ∞
−∞

dp

1 + βp2 ψ
∗(p) A ψ(p) (1.64)

The uncertainty of A could be extracted from the following relation

∆ψ(A)2 =< A2 >ψ − < A >2
ψ (1.65)

For norm states ‖ψ‖2 = < I >ψ = 1

1.2.2 The minimal Length
The aim of this subsection is to find a nonzero minimal uncertainty in position
∆ψ(X) ≥ ∆(X)min = l0 , which is called also nonzero minimal length. In the
general, if the deformed function f is arbitrary, the existence of minimal length
is not surly guaranteed. let us use Schwartz inequality of position and momen-
tum operators X, P and equations (1.64),(1.65) help to express the generalized
uncertainty principle (GUP)

∆ψ(X)2∆ψ(P )2 ≥ 1
4 < [X,P ] >2

ψ (1.66)

Since the commutator [X,P ] = i~f(P ) so

∆ψ(X)2∆ψ(P )2 ≥ ~2

4 < f(P ) >2
ψ (1.67)

where f(P ) = 1+βp2 obviously the first term of f(P ) which equals one corresponds
to zero minimal length this means non-deformed Heisenberg algebra (ordinary
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quantum mechanics), but the second who contributes in the calculation of the
minimal length [10]. Now if we plunging in the f(P ) = 1+βP 2 into the inequality
we get

∆ψ(X)2∆ψ(P )2 ≥ ~2β2

4 < P 2 >2
ψ (1.68)

we use the equation (1.65), therefore

< P 2 >ψ= ∆ψ(p)2+ < p >2
ψ (1.69)

we substitute it in the expression (1.68), and apply the square root on the equality,
we obtain

∆X∆P ≥ ~
2(1 + β(∆P )2 + β < p >2) (1.70)

In ref [2, 9] shows that the minimal position uncertainty is

∆xmin(< p >) = ~
√
β
√

1 + β < p >2 (1.71)

so that the smallest value of it corresponds to

∆x0 = ~
√
β (1.72)

1.2.3 The Eigenfunctions of the position operator
The eigenvalue equation of the position operator X, on momentum space

i~(1 + βp2)∂ψλ(p)
∂p

= λψλ(p) (1.73)

The solution is given in [9] as

ψλ(p) = A exp(−i λ

~
√
β

(
√
βp)) (1.74)

The constant A is determined by the normalization property of ψλ

1 = AA∗
∫ ∞
−∞

1
1 + βp2 = AA∗ · π√

β
(1.75)

thus

ψλ(p) =
√√

β

π
exp(−i λ

~
√
β

(
√
βp)) (1.76)
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1.2.4 Deformed Hamiltonian Operator
without loosing generality let us work out the example of deformed harmonic
oscillator [20], let us assume the commutation relation taken as

[X,P ] = i(1 + βP 2), ~ = 1 (1.77)

This modification on Heisenberg algebra inevitably lead to change on the Hamil-
tonian itself

H = P 2 +X2 (1.78)

and
P = p, X = (1 + βp2)x, [x, p] = i (1.79)

then
H = p2 + (1 + βp2)x(1 + βp2)x (1.80)

Thus

H = p2 + x2 − 6 iβ x · p+ 2 β x2 · p2 − 2 β − 6 β2p2 − 6 iβ2x · p3 + β2x2 · p4 (1.81)

and use the factorization method to write H in terms of ladder operators, where
p = i√

2
(a† − a) x = 1√

2
(a† + a) therefore

H = −1
2 (a† − a)2 + 1

2 (a+ a†)2 + 3 β (a+ a†)(a† − a)− 1
2 β (a+ a†)2(a† − a)2

− 2 β + 3 β2(a† − a)2 − 3
2 β

2(a+ a†)(a† − a)3 + 1
8 β

2(a+ a†)2(a† − a)4 (1.82)

However, the energy eigenvalues are easily obtained

En = 2n+ 1 + β(n2 + n+ 1
2) + 3

4β
2(2

3n
3 + n2 + 4

3n+ 1
2) + o(β3) (1.83)
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Chapter 2

Deformation on Shifted Harmonic
Oscillator

2.1 Deformation and non-Hermiticity
One of the achievements of modern physics, is how to unify General Relativity
(GR) and Quantum Mechanics (QM), so the attempts at quantifying gravity have
not been as successful [3], in fact that they are incompatible, inconsistent because
they are different in scale, this actually motivated physicists to do some modifica-
tion or generalization either on GR or QM, although none of these modifications
leads to a consistent physical theory, in this work we confine ourselves in two dis-
connected generalizations of QM, the first concerns the generalization of Bender
and his collaborators in the context of non-Hermitian Hamiltonians [1, 3, 4, 18] in
particular PT symmetric and pseudo hermitian hamiltonians, the second started
by Synder’s paper [9, 10] and which has considered as a starting point of a whole
branch of Quantum mechanics called by deformed QM , it is much expected that
the consequence of a theory of quantum gravity is non zero minimal length in po-
sition or momentum or both where deformed Heisenberg algebra does the job, the
sticky problem is that modification on Heisenberg algebra change the Hamiltonian
and might renders it non Hermitian in some problems in the real contour, but in
a complex contour they are strictly distinct to each other.
in this chapter we study the problem of shifted harmonic oscillator under the in-
fluence of deformation (β > 0) we define the modified metric and consequently the
energy spectrum of deformed Hamiltonian Hd.
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2.2 Deformed shifted Harmonic oscillator

2.2.1 PT Shifted Harmonic Oscillator
in the case of ordinary shifted Harmonic oscillator H = p2 + x2 + iεx, it is PT
symmetric [1, 3, 7].
The general way to represent the C operator [1] is by expressing it in terms of
fundamental dynamical operators x and p by the following expression

C = eQ(x,p)P (2.1)

where Q(x, p) is even on x and odd on p this restriction comes from the conditions
of equation (1.52). In ref [1, 3] as shown in appendix B, Q(x, p) can be determined
by using perturbation method, in shifted harmonic oscillator

Q(x, p) = −εp (2.2)

by consequence the metric
η = e−Q(x,p) = eεp (2.3)

Since PT-symmetric Hamiltonians are subclass of quasi-Hermitians ones? so there
exist a Hermitian Hamiltonian h which can be mapped from H and satisfies simi-
larity relation.

h† = h = η1/2Hη−1/2 (2.4)

bulging in expression of h we get

h = eεp/2 (p2 + x2 + iεx) e−εp/2 (2.5)

by simplification it becomes

h = p2 + x2 + ε2

4 (2.6)

Thus the energy spectrum given is in ref [1] by

En = 2n+ 1 + ε2

4 (2.7)

2.2.2 Deformed shifted Harmonic oscillator
we define a deformed shifted harmonic oscillator as follows

Hd = p2 +X2 + iεX (2.8)
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where ε is real as stated before

X = (1 + βp2)x, [X, p] = i(1 + βp2) (2.9)

we note that there is no deformation on the momentum.
The Hamiltonian Hd is pseudo Hermitian [2], it satisfies

H†d = ηtHdη
−1
t (2.10)

and it’s quasi-Hermitian because ηt mapping Hd to hd by the similarity relation

h†d = η
1/2
t dHdη

−1/2
t d = hd (2.11)

The main problem here is how to calculate this deformed metric ηt, which is no
thing but a correction on the previous one of ordinary shifted harmonic oscilla-
tor by a Dyson operator ηd = e−βp

2 representing the deformation effect and the
corresponding metric is

ηt = e−βp
2−Q(x,p) (2.12)

we substitute it on the expression of ηt in the equation (2.11) we get

hd = e−βp
2/2−Q(x,p)/2Hde

βp2/2+Q(x,p)/2 = h†d (2.13)

where Q(x, p) = −εp.
The appendix B contains all the details of calculation, however the expression of
hd obtained is

hd = −4 iβ xp+ β2p2 + p2 − β + 2 iβ3xp5 − 2 iβ2xp3 + 5 β3p4 + 2 β x2p2 + β2x2p4

− β4p6 + x2 + (β3p5 − iβ xp2 − β p− 2 β2p3 − iβ2xp4)ε+ (−1/4 β2p4 + 1/4)ε2
(2.14)

using the factorization method and substitute x,p by the ladder operators a† and
a, therefore the energy spectrum is given as follows

hd = 2 · β · (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)− 1 · 2−1 · β2 · (‘a+‘− ‘a-‘)2 − 1 · 2−1·
(‘a+‘− ‘a-‘)2 − β − 4−1 · β3 · (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)5 − 2−1 · β2

· (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)3 + 5 · 4−1 · β3 · (‘a+‘− ‘a-‘)4 − 2−1 · β·
(‘a-‘ + ‘a+‘)2(‘a+‘− ‘a-‘)2 + 8−1 · β2( ‘a-‘ + ‘a+‘)2 · (‘a+‘− ‘a-‘)4

+ 8−1 · β4 · (‘a+‘− ‘a-‘)6 + 2−1 · (‘a-‘ + ‘a+‘)2 + (8−1 · i · β3 · 22−1·
(‘a+‘− ‘a-‘)5 + 4−1 · i · β · 22−1 · (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)2 − 2−1+2−1

· i · β (‘a+‘− ‘a-‘) + 2−1 · i · β2 · 22−1 · (‘a+‘− ‘a-‘)3 − 8−1 · i · β2 · 21·2−1

· (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)4)ε+
(
−16−1 · β2 · (‘a+‘− ‘a-‘)4 + 4−1

)
ε2

(2.15)
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Therefore the deformed Energy pseudo [6] spectrum of such Hamiltonian is

En = 1+2n+ ε2

4 +
(
n2 + n+ 1

2

)
β+ 1

2

(
n3 + 3

2 n2 + 2n+ 7
4

)
β2 +o(β2, ε2) (2.16)

2.3 Conclusion
The deformation on a PT-symmetric Hamiltonians type has been studied, for in-
stance PT-shifted-harmonic oscillator p2 + x2 + iεx, after doing the deformation,
it behaves as quasi-Hermitian Hamiltonian and by virtue of similarity transforma-
tion,in which using a deformed metric, we got a Hermitian hamiltonian has a real
energy spectrum which is entirely real and depends on two parameters (α, β).
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Chapter 3

Deformation on
Cubic-Anharmonic Oscillator

3.1 Introduction
The PT-symmetric Hamiltonian H = p2+x2+iεx3 which called cubic an harmonic
Oscillator, was first studied in detail by Bender and Boettcher [7], this Hamiltonian
was shown to have a real , positive spectrum? but it surfers from probabilistic
interpretation problem mainly caused by the form of PT-inner product. Bender [1]
invented the operator C, which helps to define a new inner product known as
CPT-inner product where it is definite positive, often the difficulty is how to
determine C because the one needs to know the eigenvalues and eigenvectors of
the Hamiltonian jones2005, in such case of Hamiltonian the perturbative expansion
is the only issue. Let us expand the example to a deformed QM, the deformed
Hamiltonian becomes more complicated, which is no thing but a quasi-Hermitian
one, and the determination of a positive definite metric ηt which satisfies H†d =
ηtHη

−1
d , where ηt = e−βp

2
eQ(x,p). The aim of this chapter is to calculate that metric

which helps to determine the energy spectrum gotten by a mapping from a pseudo
Hermitian Hd to a Hermitian one hd using a similarity relation hd = η

1/2
t Hdη

1/2
t of

the modified metric ηt

3.2 Deformed Cubic Anharmonic Oscillator

3.2.1 PT Cubic Anharmonic Oscillator
The non deformed Cubic Anharmonic Oscillator H = p2 + x2 + iεx3, is PT sym-
metric [1, 3, 7].
The general way to represent the C operator [1] is by expressing it in terms of
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fundamental dynamical operators x and p by the following expression

C = eQ(x,p)P (3.1)

where Q(x, p) is even on x and odd on p this restriction comes from the condi-
tions of equation (1.52). In ref [3, 8, 6, 7], Q(x, p) can be determined by using
perturbation method, in cubic anharmonic oscillator.

Q(x, p) = ε
(
−2 · 3−1 · p3 − 1 · 2−1 · AntiCommutator

(
x2, p

))
+ε3

(
p+ 16 · 15−1 · p5

+ 5 · 6−1 · AntiCommutator
(
x2, p3

)
+ 2−1 · AntiCommutator

(
x4, p

)
) (3.2)

Substitute Q(x, p) in η = e−Q(x,p) we get

η = exp−(ε
(
−2 · 3−1 · p3 − 1 · 2−1 · AntiCommutator

(
x2, p

))
+ ε3

(
p+ 16 · 15−1 · p5 + 5 · 6−1 · AntiCommutator

(
x2, p3

))
+ 2−1 · AntiCommutator

(
x4, p

)
) (3.3)

The mapped Hermitian Hamiltonian h is gotten by similarity relation.

h† = η1/2Hη−1/2 (3.4)

by substituting η, it becomes

h = eQ(x,p)/2 (p2 + x2 + iεx) e−Q(x,p)/2 (3.5)

where Q(x, p) written as equation (3.2).
Then use Baker-Campbell-Hausdroff [6] formula, we get a long expression of h as
shown in appendix C. Therefore the corresponding Energy spectrum can be simply
calculated in using factorization method, it’s expression shown in ref [3, 8, 7]

En = 2n+ 1 + ε2(11
8 + 15

4 n+ 15
4 n

2) + o(ε4) (3.6)

3.2.2 Deformed Cubic anharmonic oscillator
The deformed cubic anharmonic oscillator can be written as follows

Hd = p2 +X2 + iεX3 (3.7)

where ε is real and

X = (1 + βp2)x, [X, p] = i(1 + βp2) (3.8)
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The Hamiltonian Hd is pseudo Hermitian [2], it satisfies

H†d = ηtHdη
−1
t (3.9)

and it’s quasi-Hermitian because ηt mapping Hd to hd by the similarity relation

h†d = η
1/2
t Hdη

−1/2
t = hd (3.10)

The calculation of the metric ηt, is much complicated because we have to take into
a count a modification done by deformation effect which represented by Dyson
operator ηd = e−βp

2 , by consequence the metric takes the form

ηt = e−βp
2−Q(x,p) (3.11)

we substitute it on the expression of ht in the equation (2.11) we get

hd = e−βp
2/2−Q(x,p)/2Hde

βp2/2+Q(x,p)/2 = h†d (3.12)

Therefore the expression of hd is so long and it’s given in equation (C.27) of Ap-
pendix C. The deformed energy spectrum is calculated by using the factorization
method where we substitute x,p by the ladder operators a† and a, we obtain

En = 1 + 2n+
(
n2 + 1/2 + n

)
β +

(
3/8 + 1/2n3 + 3/4n2 + n

)
β2

+
(15

4 n+ 15
4 n2 + 11

8

)
ε2 +

(21
4 + 27

2 n+ 27
2 n2 + 6n3

)
ε2β + o(β3, ε3) (3.13)

3.3 Conclusion
The deformation on a PT-symmetric Hamiltonians, in the case of cubic an-harmonic
oscillator p2 + x2 + iεx3, where after doing the deformation it becomes quasi-
Hermitian Hamiltonian. By following the same steps as well as chapter 02, we got
the mapped Hermitian hamiltonian and it’s energy spectrum which is entirely real
and depends on two parameters (α, β).
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Chapter 4

Spin Entangled PT-Symmetric
Hamiltonian in a Curved Space

4.1 Entanglement and Non-Hermiticity
Recently, many interest has been developed to the systems with non-hermitian
Hamiltonians and their applications to solve some of the physical problems [12, 13]
especially in the non linear and quantum optics. The later has a tight relation-
ship to quantum information processing (QIP)and implementation [14, 15, 16, 17].
Furthermore,one of the interesting issues in QIP is the quantum entanglement
and many contributions have been presented in the literature so far. The most
important ones are those related to a large class of PT-symmetric Hamiltonian
where the rate of the generated quantum entanglement was characterized by some
set of parameters. This rate can be improved and optimized by the variation of
an appropriate parameters. Recently, much extensive attention has been paid to
relativistic (inertial and non inertial) and gravitational field effects in the context
of QIP [21, 22, 23, 24, 25, 26, 27, 28]. It is worth to mention that in QIP, the spin
of particles is often used as a qubit regardless of the momentum state of the par-
ticle. However, spin and momenta are not separable in general in the relativistic
motion. Thus ,the spin alone cannot be used as a qubit in a relativistic moving
observers [16, 17]. Moreover, the curvature of the space-time has an important
effect on the spin entropy production [29, 30, 31, 32, 33]. This means that even
if the state of the spin is pure at one point of space-time, becomes mixed in an-
other point. the main goal here is to show the effect of gravity on PT-symmetric
Hamiltonian systems during a time evolution especially the creation of quantum
entanglement.
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4.2 Spin Entangled PT-Symmetric Hamiltonian
In ordinary quantum mechanics,we require that the Hamiltonian of the system has
to be Hermitian in order to generate a real spectrum and therefore the correspond-
ing time evolution operator is unitary. It turns out that the Hermiticity condition
is not necessary and with a class of the so called CPT-symmetric Hamiltonian one
can ensure spectrum reality. For the spin 1

2 particle, the most general Hamiltonian
H, which commutes with CPT (C, P and T stand for charge conjugation,parity
and time reversal operators), has the following form:

H =
(
reiθ seiχ

se−iχ re−iθ

)
(4.1)

where r
s

sin θ < 1 The parity P and charge conjugation C operators are shown to
have the expression

P =
(

0 1
1 0

)
(4.2)

and
C = 1

cosφ

(
i sinφ eiχ

e−iχ −i sinφ

)
(4.3)

where sinφ = r

s
sin θ.

Note that the PT-symmetric Hamiltonian which was used in reference. [13] is not
general . One can show that the general PT-symmetric Hamiltonian of (1) can be
written as

H = r cos(θ)12×2 + s~n · ~σ (4.4)

with
~n = (cosχ,− sinχ, i sinφ) (4.5)

Now consider a wave packet of a spin 1
2 particle with a mass m in a Schwarzschild

space-time such that

ds2 = −fc2dt2 + 1
f
dr2 + r2(dθ2 + sin2 φ2) (4.6)

where f = 1− rs
r

and rs is the Shwarchild radius. As it was pointed out in ref. [22],
that at this radius , the space-time has an event horizon, on which the coordinates
system (t, r, θ, φ) breaks down and therefore the time coordinate t is known as a
killing time. In this case the accelerated observer doesn’t suffer from the Hawking
radiation, because the state of the quantum field represented in the Fock space is
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defined with this time and not the crucial time. one can show that the momentum
of the wave packet center in the Minkowski space (local initial frame) is given by

qa(x) = eµ
a [muµ] (4.7)

where uµ is it four-vector of velocity normalized as uµuµ = c2 and eaµ the verbeins.
One can choose

e0
t = 1

c
√
f(r)

(4.8)

e1
r =

√
f(r) (4.9)

e2
θ = 1

r
(4.10)

e3
φ = 1

r sinφ (4.11)

Now, if we make an infinitesimal transformation xµ → x′µ = xµ+δxµ ; (δxµ = uµdτ
, (τ is the proper time), the wave packet center (in the local frame) transforms as
qa → q′a = qa + δqa with

δqa = λb b dτ = [m ab(x) + χb c q
c] (4.12)

where
ab(x) = eµ

b [uν ∇ν u
µ] (4.13)

Is the acceleration of the external force (gravitational force) and

χb c = uµ [eν c(x)∇ν e
a
ν(x)] (4.14)

(∇ν is the co-variant derivatives) represents the change in the charge in the local
inertial frame along uµ(x) due to the space-time curvature. For a wave packet
moving along a circular trajectory of radius (r > rs) with a constant velocity
r
dφ

dt
= v
√
f on the equatorial plane θ = π

2 , the 4-velocity components ut(x) and
uφ(x) of the wave packet center are

ut(x) = cosh ξ√
f(r)

(4.15)

and
uφ(x) = c sinh ξ

r
(4.16)

where ξ is the rapidity in the local inertial frame defined by

tanh ξ = v

c
(4.17)
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(v is the velocity). In this case (as it was given in ref. [22]) straightforward calcu-
lation leads to :

ξ0
1 = ξ1

0 = −c rs cosh ξ
2 r2

√
f(r)

(4.18)

and

ξ1
3 = −ξ3

1 =
c rs sinh

(√
f(r)

)
r

(4.19)

and therefore
λ0

1 = λ1
0 = −L tanh ξ (4.20)

and
λ1

3 = −λ3
2 = L (4.21)

where
L = c coth2 ξ sinh ξ

r
[1− rs

2 f(r) ] (4.22)

The finite Lorentz Transformation Λa
b are in this case

Λa
b(xf , xi) = T exp

∫ τf
τi

λa b(x(τ))dτ (4.23)

when the wave packet center moves along a path xµ(τ) from xi
µ = xµ(τi) to

xf
µ = xµ(τf ). T is the ordering operator. After a proper time τp = τf − τi of

the particle , the momentum eigenstate |pa, σ〉 (σ stands for spin up ↑ or down ↓)
transforms by a Wigner rotation D

1
2 (W (Λ(xf , xi), p)) where

W a
b(Λ, p) = [L−1(p)L] (4.24)

with
L0

0(p) = p0

mc
(4.25)

L0
i(p) = Li 0 = pi

mc
(4.26)

Li k(p) = δi k + ( p
0

mc
− 1) p

i pk
| p |2

(4.27)

here i, k = 1..3. this spin rotation is reduced to rotation about the y-axis (i=2)

D
1
2 (W (Λ, p)) = exp

[−i
σy
2 Θ(pa) τp]

=


cos

θ

2 sin
θ

2

−sinθ2 cos
θ

2

 (4.28)
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where σy is the Pauli matrix:

σy =
(

0 −i
i 0

)
(4.29)

and
Θ(pa) = [1− p3

p0 +mc
tanh ξ] (4.30)

4.3 Quantum Entanglement Entropy
at the initial τi, we have the following wave packet of a composed a bi-parties spin
system |ψi〉 such that

|ψi〉 =
∫
d3p1

∫
d3p2f(p1)f(p2) |p2, ↑〉 ⊗ |p1, ↓〉 (4.31)

We have assumed that there is no correlation between the two momenta subsystems
and the normalization condition reads∫

d3p| f(p) |2 = 1 (4.32)

Now, after a proper time τp = τf − τi the system will evolve and becomes

|ψf〉 = k
∑
σ1,σ2

∫ ∫
d3p1d

3p2f(p1)f(p2)Aσ1σ2 |p2, σ2〉 |p1, σ1〉 (4.33)

where the normalization constant k is

k = [| α |2 + | β |2 + | γ |2 + | δ |2]−1/2 (4.34)

and
A↑↑ = αD

(2)
↑↑ D

(1)
↑↑ + βD

(2)
↑↑ D

(1)
↓↑ + γD

(2)
↓↑ D

(1)
↑↑ + δD

(2)
↓↑ D

(1)
↓↑ (4.35)

A↑↓ = αD
(2)
↑↑ D

(1)
↑↓ + βD

(2)
↑↑ D

(1)
↓↓ + γD

(2)
↓↑ D

(1)
↑↓ + δD

(2)
↓↑ D

(1)
↓↓ (4.36)

A↓↑ = αD
(2)
↑↓ D

(1)
↑↑ + βD

(2)
↑↓ D

(1)
↓↑ + γD

(2)
↓↓ D

(1)
↑↑ + δD

(2)
↓↓ D

(1)
↓↑ (4.37)

A↓↓ = αD
(2)
↑↓ D

(1)
↑↓ + βD

(2)
↑↓ D

(1)
↓↓ + γD

(2)
↓↓ D

(1)
↑↓ + δD

(2)
↓↓ D

(1)
↓↓ (4.38)

where
α = a

(2)
↓ a

(1)
↑ (4.39)

β = a
(2)
↓ b

(1)
↑ (4.40)

γ = b
(2)
↓ a

(1)
↑ (4.41)

29



δ = b
(2)
↓ b

(1)
↑ (4.42)

with
a↑ = a↑(τp) = cosωτp − sinφ sinωτp (4.43)

b↑ = b↑(τp) = ieiχ cosωτp (4.44)

a↓ = a↓(τp) = cosωτp + sinφ sinωτp (4.45)

b↓ = b↓(τp) = −ie−iχ sinωτp (4.46)

and
ω = s cosφ (4.47)

Here D(1)
σ1σ2 (resp. D(1)

σ2σ2) stands for the two dimensional Wigner rotation matrix
representation D

1
2
σ1σ2 for the subsystem 1 (resp. subsystem 2).

Straightforward but tedious calculation gives the following expression of the pure
state matrix density ρ̂

ρ̂ =


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 (4.48)

where

ρ11 = | A↑↑ |2, ρ22 = | A↑↓ |2, ρ33 = | A↓↑ |2, ρ44 = | A↓↓ |2
ρ12 = ρ∗21 = A↑↑A∗↑↓, ρ13 = ρ∗31 = A↑↑A∗↓↑, ρ14 = ρ∗41 = A↑↑A∗↓↓
ρ23 = ρ∗32 = A↑↓A∗↓↑, ρ24 = ρ∗42 = A↑↓A∗↓↓, ρ34 = ρ∗43 = A↓↑A∗↓↓

(4.49)

a denote the average over the momentum distribution

X =< X >=
∫
d3p | f(p) |2 X (4.50)

The reduced matrix tr2 of the subsystem 2 takes the form

ρ̂ = k2
(
η11 η12
η21 η22

)
(4.51)

where

η11 = 1
2(| α |2 + | γ |2) < cos2 θ

2 > +(| β |2 + | δ |2) < sin2 θ

2 >

− 1
2(αβ∗ + α∗β + γδ∗ + γ∗δ) < sin θ >

(4.52)
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η22 = (| α |2 + | γ |2) < sin2 θ

2 > +(| β |2 + | δ |2) < cos2 θ

2 >

+ 1
2(αβ∗ + α∗β + γδ∗ + γ∗δ) < sin θ >

(4.53)

And

η12 = (| α |2 + | β |2 − | γ |2 − | δ |2)〈sin θ〉

+ (αγ∗ + α∗γ + βδ∗ + β∗δ)〈cos2 θ

2〉+ 1
2(| α |2 + | δ |2)〈sin θ〉〈cos θ〉

+ 2αγ∗〈sin2 θ

2〉
2 + (αδ∗ + βγ∗)〈sin θ〉〈sin2 θ

2〉+ 2βδ∗〈sin2 θ

2〉〈cos2 θ

2〉 (4.54)

Therefore the Von Newman quantum entanglement entropy S is

S = −λ+ log2 λ+ − λ− log2 λ− (4.55)

where λ± are eigenvalues of the reduced matrix of (4.51),with

λ± = 1
2 ±

1
2
√

1− Ω2 (4.56)

and
Ω = 4(| η12 |2 η11η22)k4 (4.57)

It is important to mention that since | β |2=| γ |2 and β = γ∗ the eigenvalues
of the reduced matrices tr1ρ̂ and tr2ρ̂ of a subsystems 1 and 2 are the same.
for a numerical analysis and to illustrate the effect of the gravity and the non-
Hermiticity on the spin quantum entanglement ,one has to choose a proper normal
distribution such as a Gaussian one and evaluate the corresponding averages as
a function of the various parameters (r, s, θ, rs) and optimize dS

dτ
to get a good

performance (work under investigation)
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4.4 Conclusion
Throughout this chapter, we have studied the late time (time evolution)effect of
both the space-time curvature and non-Hermiticity of a general PT-symmetric
spin Hamiltonian on a two initially separable spin 1

2 subsystems where we have
assumed that there is no momentum correlation . It turns out that it is possible to
generate a bi-parties spin quantum entanglement quantified in the von Newman
entropy. In fact, the amount of created quantum entanglement can be magni-
fied and becomes maximal or reduced (decoherence) depending on the various
parameters and physical quantities of the system (Hermiticity and metric). Thus,
one can adjust the composed system various parameters and control the quan-
tum entanglement capability (variation of the concurrence per unit of time) and
try to make it optimal. Moreover, we expect that the result depends strongly on
the metric of the space-time especially near the horizon (the Scharzschild radius).
This formalism can be easily applied to other multi-parties states such as Bells,
Werner,Greenberg-Homer-Zeilinger(GHZ) and W states and study the effect of the
momentum correlation on the quantum entanglement phenomenon. This approach
can be also extended to arbitrary spin system (e.g. spin 1) and momentum-spin
quantum entanglement witness etc. Finally, numerical analysis will allow to under-
stand how the quantum entanglement (of this kind of systems)evolves and whither
it can persist(robustness)over time (work in progress)
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Appendix A

Calculation Methods

A.1 Perturbation Theory
The perturbation theory [1, 3, 8] is mainly used to construct a metric operator
for a given quasi-Hermitian Hamiltonian,which helps to find the spectrum energy
easily,often this method concerned the Hamiltonian those have a complex poten-
tials,in the ref [3] Mostafazadeh has figured out it as a tool to calculate the metric
operator which helps to find the energy spectrum,according the following steps :
1/ Decompose the Hamiltonian H into the form

H = H0 + εH1 (A.1)

where H0 and H1 are respectively Hermitian and anti-Hermitian and ε-independent
operators.
2/ For a definite positive operator η,which has a unique logarithm to introduce a
Hermitian Q = − ln η, so that

η = e−Q (A.2)
The pseudo-Hermiticity relation:

H† = e−QH eQ (A.3)

and in terms of Backer-Campbell-Hausdroff identity the expression is getting much
easier

H† = e−QHeQ = H +
∞∑
l=1

1
l! [H,Q]l

= H + [H,Q] + 1
2! [[H,Q], Q] + 1

3! [[[H,Q], Q], Q] + .....

(A.4)
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where
[H,Q]l = [[...[[H,Q], Q], ...], Q (A.5)

3/ The expansion of Q in a power series in ε in such way it is even on x and odd
in p

Q =
∞∑
j=1

Qjε
j (A.6)

4/ Insert the expression of H† and Q in a relation of hermiticity, and do combina-
tion term by term we get:

[H0, Q1] = −2H1

[H0, Q2] = 0

[H0, Q3] = −1
6[H1, Q2]

[H0, Q4] = −1
6([[H1, Q1], Q2] + [[H1, Q2], Q1])

...

...

(A.7)

5/ Solve the above equations for Qj by iteration
6/ In refs [1, 3],the examples p2 + x2 − iεx and p2 + x2 + iεx3, have a satisfied
recurrence equations of Qj by taking Q2i = 0 an putting the ansatz

Q2i+1 =
i+1∑
j,k=0

Cijk · AntiCommutator
(
x2j, p2k+1

)
(A.8)

Where Cijk are real constants. Mainly, the problem in this work is consists to find
the expression of Q in terms of Qj that have to be determined by iteration.
7/Write the pseudo-Hermitian relation in terms of a positive definite metric oper-
ator η in such a way

h = h† = η
1
2Hη−

1
2 (A.9)

The Hamiltonians h and H are respectively Hermitian and pseudo hermitian.

A.2 PT-Symmetric 2×2 matrix Hamiltonian
we work out the example of 2× 2 matrix Hamiltonian [1, 18]

H =
(
reiθ s
s re−iθ

)
(A.10)
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where r, s and θ are real parameters, it is shown clearly that this Hamiltonian is
not Hermitian,moreover it is PT-symmetric, and the PT-operator consists of the
parity operator

P =
(

0 1
1 0

)
(A.11)

And the time reversal T which is no thing but a conjugation of charge operator.To
determine the the Energy eigenvalues ε↑↓ , we should resolve the Schrodinger equa-
tion.

Hψ↑↓ = ε↑↓ψ↑↓ (A.12)
The Hamiltonian characterized by two parametric regions, comes from the calcu-
lation of the determinant

H − ε↑↓11 = 0 (A.13)
where as 11 stands for a unit matrix,so we rewrite the equation (A.12) as∣∣∣∣∣reiθ − ε↑↓ s

s re−iθ − ε↑↓

∣∣∣∣∣ = 0 (A.14)

The calculation of (A.13) gives us, as we precede two distinguished regions, the
first when s2 < r2 sin2 θ in which the calculation of energy gives complex conju-
gate pair,and as a result the PT-symmetry is broken, but if s2 > r2 sin2 θ which
corresponds the region of unbroken PT-symmetry where, the energy eigenvalues
are

ε↑↓ = r cos θ ±
√
s2 − r2 sin2 θ (A.15)

and the eigenstates are

|ε↑〉 = 1√
2 cosα

 e
i
α

2

e
−i
α

2


and

|ε↓〉 = i√
2 cosα

 e
−i
α

2

−e
−i
α

2

 (A.16)

where sinα = r

s
sin θ , it is easily verified that 〈ε↑↓|ε↑↓〉PT = ±1 and that 〈ε↓↑|ε↑↓〉PT =

0 we conclude that the resulting vector space spanned by energy eigenstates has
a metric signature (+,−) The condition s2 > r2 sin2 θ is the region where the
PT-symmetry is unbroken. The Hamiltonian H has a real spectrum that okay
with the axiom of any quantum theory, but the fact that it has a metric signature
(+,−) that makes the corresponding inner product indefinite, Bender in ref [1],

35



has introduced a C operator which was the analogous of the charge conjugation of
particle physics,but they are different in nature ,so by virtue of C the construction
of a positive definite inner product could be possible,under which the the axiom of
unitarity of quantum mechanics remains preserved, in the case of the Hamiltonian
(A.9) the operator C is

C = 1
cosα

(
i sinα 1

1 −i sinα

)
(A.17)

Note that C commute withH and PT operators and satisfies the following relations

C2 = 11

C |ε↑↓〉 = ± |ε↑↓〉 (A.18)

It is precisely clear that the eigenvalues of C are the signs of the PT norms, then
the CPT inner product becomes positive definite as

〈ε↑↓|ε↑↓〉CPT = 1 (A.19)

That is to say the two dimensional complex vector of Hilbert space spanned by
|ε↑↓〉, associated with inner product 〈ε↑↓|ε↑↓〉CPT , has a Hermitian structure with
a signature (+,+), in which we denote 〈 . | as a CPT -conjugate of | . 〉, and next
relations are taken with this statement.
Because the completeness condition is no thing but the outer product of the dyads
where summation of all them represent the identity operator.

|ε↑〉 〈ε↑|+ |ε↓〉 〈ε↓| = 11 (A.20)

Thus leads to write the operator C in terms of the outer product of dyads, as the
following

C = |ε↑〉 〈ε↑| − |ε↓〉 〈ε↓| (A.21)

Note again that the bras 〈 . | are CPT -states.
Mainly,the reality of energy spectrum of a given PT-symmetric Hamiltonian,will
never happen to be if the PT-symmetry is broken,so it should be unbroken, but
this is not sufficient because The PT-symmetric quantum theory needs to be hold
under the axiom of unitarity ,to resolve this dilemma Bender [1] suggested a new
operator and use it to modify the positive definite inner product and it so called
CPT -inner product,and the PT-symmetric Hamiltonian H is becomes Hermitian
with respect to CPT -inner product.
Finally, we point out that the above ingredients of section (A.2)are used in part
of the calculations of chapter (4)
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Appendix B

Calculations in Chapter 2

B.1 Deformed Shifted Harmonic Oscillator
It has the form

Hd = P 2 +X2 + iεX (B.1)
where the deformed coordinates are

P = p X = (1 + βp2)x (B.2)

by substituting their expressions in H we find

Hd = P 2 + (1 + βp2)x(1 + βp2)x+ iε(1 + βp2)x (B.3)

Obviously This Hamiltonian is non-Hermitian and it belongs to the a class of
pseudo-Hermitian Hamiltonians, where their energy spectrum could be found by
virtue of a metric operator ηt which renders them Hermitian, also it serves to
remain the Hamiltonian reconciled with axiom of unitarity, which is the heart of
any quantum theory, this happens by a mapping process from a Hilbert space
basis of Hd to an extensive one of hd, where this later is perfectly Hermitian and
it satisfies the following relation.

hd = h†d = η
1
2
t Hd η

− 1
2

t (B.4)

B.2 Symbolic Computation with Maple

B.2.1 The Metric Operator ηt

The metric of a Shifted deformed harmonic oscillator Hd is

ηt = ηd η = e−βp
2
e−Q(x,p) (B.5)
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where ηd = e−βp
2 and η = e−Q(x,p) are respectively correspond to the deformation

and displacement effect, furthermore ηd is called a Dyson [2] operator which came
from the ansatz of weighted-inner product of deformed Quantum Mechanics.
The case β = 0 the metric changes where, ηt = η = e−Q(x,p) and the Hamiltonian
Hd is no more than H and it takes the form

H = H0 +H1 = p2 + x2 + iεx

where
H0 = p2 + x2

H1 = ix (B.6)
In refs [1, 2], the use of perturbation method on H gives

H† = ηHη−1 = e−Q(x,p)HeQ(x,p = H +
∞∑
l=1

1
l! [H,Q]

by Inserting Q(x, p) = ∑∞
j=1Qjε

j into it,and the simplification, get the following
recurrence equations

[H0, Q1] = −2H1

[H0, Q2] = 0

[H0, Q3] = −1
6[H1, Q1]

...

...

(B.7)

It remains only one equation [H0, Q1] = −2ix, because H has the form p2+x2−iεx,
the following assumption is convenient

Q1(x, p) = ap+ bx2 + cp3 + dx4 (B.8)

where Q1(x, p) is necessarily odd on p and even on x,this constraint came from the
PT-symmetry conditions [1, 3]

[C,PT ] = 0 (B.9)

[C,H] = 0 (B.10)
C2 = 11 (B.11)

where the metric operator η expressed in terms of P (parity) and C operators as
follows

C = η−1P = eQ(x,p)P (B.12)
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by Going back again to the equation(B.8) and inserting it into the first equa-
tion(B.7), we get

a[H0, p] + b[H0, x
2] + c[H0, p

3] + d[H0, x
4] = −2ix

The expansion and the comparison lead to the values a = −1, b = c = d = 0 which
implies Q1 = ap = −p, therefore Q = εp = −εp by consequence

η = e−Q(x,p) = eεp (B.13)

In the case β 6= 0 on a shifted harmonic oscillator,it gets more complicated as
shown in the relation(B.5), and according to the equation (B.13) the corresponding
metric operator becomes

ηt = ηd η = e−βp
2+εp (B.14)

Use relation (12) and substitute in it the expression of ηt

hd = h†d = e
−β
2 p2+ ε

2p (p2 + (1 + βp2)x(1 + βp2)x+ iε(1 + βp2)x) e
β
2 p

2− ε2p (B.15)

with some simplification we get

hd = h†d = −4iβxp+ β2p2 + p2 − β + 2iβ3xp5 − 2iβ2xp3 + 5β3p4 + 2βx2p2

+β2x2p4−β4p6+x2+
(
β3p5 − iβxp2 − βp− 2β2p3 − iβ2xp4

)
ε+
(
−4−1β2p4 + 4−1

)
ε2

(B.16)

B.2.2 The Energy spectrum En

Let’s assume that a- a+ are the annihilation and creation operators, and their
effect on the Fock states.

a- |φn〉 =
√
n |φn−1〉 (B.17)

√
n 〈φn−1| (B.18)

√
n+ 1 |φn+1〉 (B.19)
√
n+ 1 〈φn+1| (B.20)

The commutator
[a-, a+] = 1 (B.21)

After Maple simplify the expression of hd it takes this form

hd = −4iβxp+β2p2 +p2−β+2iβ3xp5−2iβ2xp3 +5β3p4 +2βx2p2 +β2x2p4−β4p6

+ x2 +
(
β3p5 − iβxp2 − βp− 2β2p3 − iβ2xp4

)
ε

+
(
−4−1β2p4 + 4−1

)
ε2 (B.22)
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Plugging in x = 1√
2

(a- + a+) and p = i√
2

(a+− a-) into hd we get

hd = 2 · β · (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)− 1 · 2−1 · β2 · (‘a+‘− ‘a-‘)2 − 1 · 2−1·
(‘a+‘− ‘a-‘)2 − β − 4−1 · β3 · (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)5 − 2−1 · β2

· (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)3 + 5 · 4−1 · β3 · (‘a+‘− ‘a-‘)4 − 2−1 · β·
(‘a-‘ + ‘a+‘)2(‘a+‘− ‘a-‘)2 + 8−1 · β2( ‘a-‘ + ‘a+‘)2 · (‘a+‘− ‘a-‘)4

+ 8−1 · β4 · (‘a+‘− ‘a-‘)6 + 2−1 · (‘a-‘ + ‘a+‘)2 + (8−1 · i · β3 · 22−1·
(‘a+‘− ‘a-‘)5 + 4−1 · i · β · 22−1 · (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)2 − 2−1+2−1

· i · β (‘a+‘− ‘a-‘) + 2−1 · i · β2 · 22−1 · (‘a+‘− ‘a-‘)3 − 8−1 · i · β2 · 21·2−1

· (‘a-‘ + ‘a+‘) (‘a+‘− ‘a-‘)4)ε+
(
−16−1 · β2 · (‘a+‘− ‘a-‘)4 + 4−1

)
ε2

(B.23)

by definition
En = 〈φ, n|hd |φ, n〉 (B.24)

which leads to the expression of En in function of n,ε and β

En = 1 + 2n+ 4−1ε2 +
(
n2 + 2−1 + n

)
β +

(
2n+ 2−1n3 + 7 · 8−1 + 3 · 4−1n2

)
β2

−
(
3 · 16−1 + 3 · 8−1n2 + 3 · 8−1n

)
β2ε2−

(
5n+ 15 · 8−1 + 15 · 4−1n2 + 5 · 2−1n3

)
β4

(B.25)

for (β, ε) << 1

En = 1 + 2n+ ε2

4 +
(
n2 + n+ 1

2

)
β + 1

2

(
n3 + 3

2 n2 + 2n+ 7
4

)
β2 + o(β2) + o(ε2)

(B.26)
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Particular Cases

1. ε 6= 0 and β 6= 0

En = 1 + 2n+ 4−1ε2 +
(
n2 + 2−1 + n

)
β +

(
2n+ 2−1n3 + 7 · 8−1 + 3 · 4−1n2

)
β2

−
(
3 · 16−1 + 3 · 8−1n2 + 3 · 8−1n

)
β2ε2

−
(
5n+ 15 · 8−1 + 15 · 4−1n2 + 5 · 2−1n3

)
β4

(B.27)

Figure B.1: Deformed Shifted Harmonic Oscillator
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2. ε = 0 and β 6= 0

En = 1 + 2n+
(
n2 + 2−1 + n

)
β +

(
2n+ 2−1n3 + 7 · 8−1 + 3 · 4−1n2

)
β2

−
(
5n+ 15 · 8−1 + 15 · 4−1n2 + 5 · 2−1n3

)
β4

(B.28)

Figure B.2: Deformed Harmonic Oscillator
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3. ε 6= 0 and β = 0
En = 1 + 2n+ 4−1ε2 (B.29)

Figure B.3: Shifted Harmonic Oscillator
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Appendix C

Calculations in Chapter 3

C.1 Deformed Cubic Anharmonic Oscillator
which is given as follows

Hd = P 2 +X2 + iεX3 (C.1)

where ε is a constant and choosing the deformation on the coordinates as

P = p

and
X = (1 + βp2)x (C.2)

We substitute their expressions in H we get

Hd = P 2 + (1 + βp2)x(1 + βp2)x+ iε(1 + βp2)x(1 + βp2)x(1 + βp2)x (C.3)

This Hamiltonian seems non-Hermitian,moreover strictly speaking about pseudo
Hermitian Hamiltonian, to find it’s energy spectrum, first we use the mapping
process showed in ref [3, 8], by virtue of the metric operator ηt which serves as an
operator of transformation from Hd to a new Hamiltonian hd by doing extension
on the Hilbert space in which the new transformed Hamiltonian hd is Hermitian
however the spectrum could be found easily. That in one hand it characterized by
a real energy spectrum, and another hand it preserves the axiom of Unitarity. The
Hermitian hd which has gotten by the mapping process, will satisfy the pseudo-
Hermiticity relation

hd = h†d = η
1
2
t Hd η

− 1
2

t (C.4)
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C.2 Symbolic Computations with Maple

C.2.1 The Metric Operator ηt

The metric of cubic An-harmonic deformed oscillator H is

ηt = ηd η = e−βp
2
e−Q(x,p) (C.5)

where ηd = e−βp
2 and η = e−Q(x,p) are respectively correspond to the deformation

and the cubic interaction term effect, furthermore ηd came from the ansatz of
weighted-inner product of deformed Quantum Mechanics.
The case β = 0 the metric changes where, ηt = η = e−Q(x,p) and the Hamiltonian
Hd is no more than H and it takes the form

H = H0 +H1 = p2 + x2 + iεx3

where
H0 = p2 + x2

H1 = +ix3 (C.6)
In refs [1, 3, 7, 8], the perturbation method on H gives

H† = ηHη−1 = e−Q(x,p)HeQ(x,p = H +
∞∑
l=1

1
l! [H,Q] (C.7)

by inserting Q(x, p) = ∑∞
j=1Qjε

j into it and doing some simplifications, to obtain
the following recurrence equations

[H0, Q1] = −2H1

[H0, Q2] = 0

[H0, Q3] = −1
6[H1, Q1]

...

...

(C.8)

we get [H0, Q1] = −2ix and [H0, Q3] = −1
6[[H1, Q1] the convenient assumption on

Q1 and Q3 are

Q1(x, p) =
1∑
j=0

1∑
k=0

C0,j,k · AntiCommutator
(
x2j, p2k+1

)
(C.9)

and
Q3(x, p) =

2∑
j=0

2∑
k=0

B0,j,k · AntiCommutator(x2j, p2k+1 (C.10)
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where Q1(x, p) and Q3(x, p) are thought of as odd on p and even on x let’s deter-
mine the expression of Q1(x, p), by developing (C.9) to get

Q1(x, p) = 2 · C0,0,0p+ 2 · C0,0,1p
3 + C0,1,0AntiCommutator

(
x2, p

)
+C0,1,1AntiCommutator

(
x2, p3

)
(C.11)

by simplification we find
C0,0,0 = C0,1,1 = 0

C0,0,1 = −1
3

C0,1,0 = −1
2

thus
Q1(x, p) = −2 · 3−1 · p3 − 1

2AntiCommutator
(
x2, p

)
(C.12)

It ’s clearly shown that the calculation of Q3(x, p) is much complicated, because
there are many terms raised up by the effect of anti-commutators. So we work out
the expression of equation (C.10) which gives

Q3(x, p) = 2 ·B0,0,0 ·p+2 ·B0,0,1 ·p3 +2 ·B0,0,2 ·p5 +B0,1,0 ·AntiCommutator
(
x2, p

)
+B0,1,1 · AntiCommutator

(
x2, p3

)
+B0,1,2 · AntiCommutator

(
x2, p5

)
+B0,2,0 · AntiCommutator

(
x4, p

)
+B0,2,1 · AntiCommutator

(
x4, p3

)
+B0,2,2 · AntiCommutator

(
x4, p5

)
(C.13)

Simplify once again then we obtain the following constants Cijk

B0,0,0 = B0,2,0 = 1/2

B0,0,2 = 8/15

B0,1,1 = 5/6

and
B0,2,2 = B0,2,1 = B0,1,2 = B0,0,1 = B0,1,0 = 0

therefore

Q3(x, p) = p+ 16 · 15−1 · p5 + 5 · 6−1 · AntiCommutator
(
x2, p3

)
+ 2−1 · AntiCommutator

(
x4, p

)
(C.14)
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Note that Q is defined as follows

Q(x, p) = εQ1 + ε3Q3

Substitute Q1 and Q3 we obtain

Q(x, p) = ε
(
−2 · 3−1 · p3 − 1 · 2−1 · AntiCommutator

(
x2, p

))
+ε3

(
p+ 16 · 15−1 · p5

+ 5 · 6−1 · AntiCommutator
(
x2, p3

)
+ 2−1 · AntiCommutator

(
x4, p

)
) (C.15)

Finally the expression of θ in function of Q1 , Q3 and the parameter ε becomes

η = e−Q(x,p)

that implies

η = exp−(ε
(
−2 · 3−1 · p3 − 1 · 2−1 · AntiCommutator

(
x2, p

))
+ ε3

(
p+ 16 · 15−1 · p5 + 5 · 6−1 · AntiCommutator

(
x2, p3

))
+ 2−1 · AntiCommutator

(
x4, p

)
) (C.16)
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Apply (A.9) to find the Hermitian Hamiltonian

h = p2+x2+2−1·i·ε
(
4−1 · ε · Commutator

(
x3,Commutator

(
p2,AntiCommutator

(
x2, p

)))
+2−1 · ε3

(
5 · 6−1 · Commutator

(
x3,Commutator

(
p2,AntiCommutator

(
x2, p3

)))
+2−1 · Commutator

(
x3,Commutator

(
p2,AntiCommutator

(
x4, p

)))
−i·ε

(
−6 · x2 + 2 ·

(
2 · i · x (i+ 2 · p · x) + 2 · i · p · x2

)
x
)
−64·3−1·

(
3 · i · p2 + 2 · p3 · x

)
x2

+2−1 · ε3
(
16 · 3−1 · i

(
4 · i

(
3 · i · x

(
2 · i · p+ 2 · p2 · x

)
+ 3 · i · p2 · x2

)
+2·

(
4i · x

(
3i · p2 + 2p3 · x

)
+ 4i · p3 · x2

)
x−4−1ε·Commutator

(
p2,AntiCommutator

(
x2, p

)
)

+5 · 6−1 · Commutator
(
x3,Commutator

(
x2,AntiCommutator

(
x2, p3

)))
+i · ε

(
1 · 2−1 · ε

(
−2 · i · x

(
−6 · x2 + 2 ·

(
2 · i · x (i+ 2 · p · x) + 2 · i · p · x2

)
x
)

−2·i·
(
2 · i · x (i+ 2 · p · x) + 2 · i · p · x2

)
x2+2−1·ε3

(
16 · 3−1 · i · x

(
−12 · x

(
2 · i · p+ 2 · p2 · x

)
−12·p2·x2+2·

(
4 · i · x

(
3 · i · p2 + 2 · p3 · x

)
+ 4 · i · p3 · x2

)
x+16·3−1·i·

(
4 · i · x

(
3 · i · p2 + 2 · p3 · x

)
+4·i·p3·x2x2+5·6−1·Commutator

(
x3,Commutator

(
x3,AntiCommutator

(
x2, p3

)))
+2−1 · ε3

(
5 · 6−1 · Commutator

(
p2,AntiCommutator

(
x2, p3

))
+2−1·Commutator

(
p2,AntiCommutator

(
x4, p

))
+1·2−1·ε

(
−2 · i

(
2 · i · p+ 2 · p2 · x

)
−1 · 2−1 · Commutator

(
x2,AntiCommutator

(
x2, p

))
+1 · 2−1 · ε3

(
2 · i · x+ 16 · 3−1 · i

(
4 · i · p3 + 2 · p4 · x

)
+5 · 6−1 · Commutator

(
x2,AntiCommutator

(
x2, p3

))
+1 · 2−1 · Commutator

(
x2,AntiCommutator

(
x4, p

)
−2−1 · Commutator

(
p2,Commutator

(
x3,AntiCommutator

(
x2, p

)))
+2−1·i·ε

(
2−1 · ε

(
−2 · i

(
−4 · i · x · p3 − 2 · i · p

(
2 · i · p+ 2 · p2 · x

))
− 4 · p2 (i+ 2 · p · x)

+1·2−1·ε3
(
6 · i+ 12 · p · x+ 16 · 3−1 · i

(
−4 · i · x · p5 − 2 · i · p

(
4 · i · p3 + 2 · p4 · x

))
+32·3−1·p4 (i+ 2 · p · x)+5·6−1·Commutator

(
p2,Commutator

(
x3,AntiCommutator

(
x2, p3

)))
+2−1 · Commutator

(
p2,Commutator

(
x3,AntiCommutator

(
x4, p

)))
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−8−1 · ε · Commutator
(
p2,Commutator

(
p2,AntiCommutator

(
x2, p

)))
+4−1 · ε3

(
5 · 6−1 · Commutator

(
p2,Commutator

(
p2,AntiCommutator

(
x2, p3

)))
+2−1 · Commutator

(
p2,Commutator

(
p2,AntiCommutator

(
x4, p

)))
+4−1·ε

(
−8 · p3 − 1 · 2−1 · Commutator

(
p2,Commutator

(
x2,AntiCommutator

(
x2, p

))))
+4−1·ε3

(
4 · p+ 64 · 3−1 · p5 + 5 · 6−1 · Commutator

(
p2,Commutator

(
x2,AntiCommutator

(
x2, p3

)))
+2−1 · Commutator

(
p2,Commutator

(
x2,AntiCommutator

(
x4, p

)))
+1·2−1·i·ε

(
1 · 2−1 · ε

(
−2 · i · x (−4 · x+ 4 · i · (i+ 2 · p · x)x) + 4 · (i+ 2 · p · x)x2

)
+ 2−1 · ε3

(
16 · 3−1 · i · x

(
−24 · i · p− 24 · p2 · x+ 8 · i ·

(
3 · i · p2 + 2 · p3 · x

)
x
)

+ 5 · 6−1 · Commutator
(
x2,Commutator

(
x3,AntiCommutator

(
x2, p3

)))
− 8−1 · ε · Commutator

(
x2,Commutator

(
p2,AntiCommutator

(
x2, p

)))
+ 4−1 · ε3

(
5 · 6−1 · Commutator

(
x2,Commutator

(
p2,AntiCommutator

(
x2, p3

)))
+ 2−1 · Commutator

(
x2,Commutator

(
p2,AntiCommutator

(
x4, p

)))
+ i · ε

(
2−1 · ε

(
−2 · i · x

(
2 · i · p+ 2 · p2 · x

)
− 2 · i · p2 · x2

− 2−1 · Commutator
(
x3,AntiCommutator

(
x2, p

))
+ 1 · 2−1 · ε3

(
3 · i · x2 + 16 · 3−1 · i · x

(
4 · i · p3 + 2 · p4 · x

)
+ 16 · 3−1 · i · p4 · x2

+ 5 · 6−1 · Commutator
(
x3,AntiCommutator

(
x2, p3

))
+ 1 · 2−1 · Commutator

(
x3,AntiCommutator

(
x4, p

))
+ 4−1 · ε3

(
16 · 3−1 · i

(
−24 · i · p− 24 · p2 · x+ 8 · i ·

(
3 · i · p2 + 2 · p3 · x

)
x
)

+ 5 · 6−1 ·Commutator
(
x2,Commutator

(
x2,AntiCommutator

(
x2, p3

)))
+ i · ε ·x3

− 2−1 · i · ε (−4 · x+ 4 · i · (i+ 2 · p · x)x) (C.17)
The simplification and expansion of commutators and anti-commutator gives

h = p2 + x2 +
(
3 ix− 3x2p

)
ε+

(
3/2x4 − 6 ixp3 − 9 p2 − 2 + 3 x2p2 − 6 ixp

)
ε2

+
(
12 ix3 + 15 ixp2 + 4 p3 + 6 p− 3 ix− 5x2 · p3 − 6x4p+ ix5 + 2 p5 + 2 ixp4

+ 3x2p+ ix3p2)ε3 + (−8x2p4 + 78 ixp+ 18− 45
2 x4 − 63x2p2 − 9 ix5p+ 32 ixp3

− 3/2x6 + 30 ix3p+ 32 p2 − 15/2x4p2 + 16 ixp5 + 26x2 − 14 ix3p3 + 40 p4)ε4

+ (45
2 x6p− 480x2p+ 48x4p3 − 135

2 ix5 − 288 ix3p2 + 192 ix)ε5 (C.18)
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According to the equation (C.4), we conclude that the expression of hd is

hd = η
1
2
t Hdη

− 1
2

t = η
1
2
d (η 1

2Hη−
1
2 )η−

1
2

d = η
1
2
d hη

− 1
2

d

to get a deformed version of h of expression (C.17), x should be changed by X and
hd becomes

hd = p2+X2+
(
3 iX − 3X2p

)
ε+
(
3/2X4 − 6 iXp3 − 9 p2 − 2 + 3X2p2 − 6 iXp

)
ε2

+
(
12 iX3 + 15 iXp2 + 4 p3 + 6 p− 3 iX − 5x2 · p3 − 6X4p+ iX5 + 2 p5 + 2 iXp4

+3X2p+ iX3p2)ε3 +(−8X2p4 +78 iXp+18− 45
2 X4−63X2p2−9 iX5p+32 iXp3

− 3/2X6 + 30 iX3p+ 32 p2 − 15/2X4p2 + 16 iXp5 + 26X2 − 14 iX3p3 + 40 p4)ε4

+ (45
2 X6p− 480X2p+ 48X4p3 − 135

2 iX5 − 288 iX3p2 + 192 iX)ε5 (C.19)

. if we substitute X = (1+βp2)x , then hd gets much complicated as the following
expression

hd = p2+
((

1 + β p2
)
x
)2

+
(

3 i
(
1 + β p2

)
x− 3

((
1 + β p2

)
x
)2
p
)
ε+
(

3/2
((

1 + β p2
)
x
)4

−6 i
(
1 + β p2

)
xp3−9 p2−2+3

((
1 + β p2

)
x
)2
p2−6 i

(
1 + β p2

)
xp)ε2+

(
12 i

((
1 + β p2

)
x
)3

+15 i
(
1 + β p2

)
xp2+4 p3+6 p−3 i

(
1 + β p2

)
x−5x2·p3−6

((
1 + β p2

)
x
)4
p+i

((
1 + β p2

)
x
)5

+2 p5+2 i
(
1 + β p2

)
xp4+3

((
1 + β p2

)
x
)2
p+i

((
1 + β p2

)
x
)3
p2)ε3+(−8

((
1 + β p2

)
x
)2
p4

+78 i
(
1 + β p2

)
xp+18−45

2
((

1 + β p2
)
x
)4
−63

((
1 + β p2

)
x
)2
p2−9 i

((
1 + β p2)x)5p

+32 i
(
1 + β p2

)
xp3−3/2

((
1 + β p2

)
x
)6

+30 i
((

1 + β p2
)
x
)3
p+32 p2−15/2

((
1 + β p2

)
x
)4
p2

+16 i
(
1 + β p2

)
xp5+26

((
1 + β p2

)
x
)2
−14 i

((
1 + β p2

)
x
)3
p3+40 p4)ε4+(45

2
((

1 + β p2
)
x
)6
p

−480
((

1 + β p2
)
x
)2
p+48

((
1 + β p2

)
x
)4
p3−135

2 i
((

1 + β p2
)
x
)5
−288 i

((
1 + β p2

)
x
)3
p2

+ 192 i
(
1 + β p2

)
x)ε5 (C.20)

C.2.2 The Energy Spectrum En

Let’s assume that a- a+ are the annihilation and creation operators and their
effect on the Fock states as follows

a- |φn〉 =
√
n |φn−1〉 (C.21)
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√
n 〈φn−1| (C.22)

√
n+ 1 |φn+1〉 (C.23)
√
n+ 1 〈φn+1| (C.24)

The commutator
[a-, a+] = 1 (C.25)

According to the previous subsection we use the expression of hd and plug in it
the expressions of the coordinates (x, p) written in terms of the annihilation and
creation operators : x = 1√

2
(a- + a+) , p = i√

2
(a+− a-) , after we have finished

this heavy computation ,we got a long equation

hd = 6·ε2·β ·‘a+‘3·‘a-‘3−675·256−1·i·ε5·21·2−1 ·β4·‘a-‘13−3·ε2·‘a-‘2·‘a+‘6·β2+
3·4−1·i·ε·21·2−1 ·β·‘a+‘·‘a-‘2+9·32−1·ε2·β4·‘a+‘9·‘a-‘ 3+189·32−1·i·ε5·21·2−1 ·β2·
‘a-‘9+27·64−1·ε4·β6· ‘a-‘11·‘a+‘7+2925·512−1·i·ε5·21·2−1 ·β6·‘a-‘12·‘a+‘7+79·
32−1 ·i·ε3 ·21·2−1 ·β4 ·‘a+‘6 ·‘a-‘ 7+2·‘a+‘·‘a-‘+21·32−1 ·ε2 ·β4 ·‘a+‘6 ·‘a-‘6−19·
16−1·ε4·β3·‘a+‘12−5103·64−1·i·ε5·21·2−1 ·β2·‘a+‘4·‘a-‘7+99·512−1·ε4·β6· ‘a-‘10·
‘a+‘8−15·32−1·ε4·β4·‘a-‘14+30·ε4·‘a+‘7·‘a-‘3·β3−1·128−1·i·ε3·21·2−1 ·β4·‘a+‘13+
675·8−1·i·ε5·21·2−1 ·β2·‘a-‘7·‘a+‘2+i·ε3·21·2−1 ·β ·‘a+‘6·‘a-‘+1·8−1·β2·‘a-‘6−3·
16−1·ε2·β4·‘a+‘7·‘a-‘5+3·4−1·i·ε3·21·2−1 ·β·‘a-‘3−1·2−1·β·‘a+‘4−135·32−1·ε4·β4·
‘a+‘3·‘a-‘9−135·32−1·ε4·β4·‘a+‘9·‘a-‘3+7·4−1·i·ε3·21·2−1 ·‘a-‘2·‘a+‘3−3·8−1·i·
ε3·21·2−1 ·β3·‘a-‘9+6543·32−1·i·ε5·21·2−1 ·β3·‘a+‘7·‘a-‘4+9·8−1·i·ε3·21·2−1 ·β3·‘a-‘8·
‘a+‘−45·8−1 ·ε4 · ‘a-‘2 ·‘a+‘8 ·β3+3753·32−1 ·i·ε5 ·21·2−1 ·β ·‘a+‘6 ·‘a-‘−3·64−1 ·
ε4 ·β6 · ‘a+‘15 ·‘a-‘3+441·16−1 ·i·ε5 ·21·2−1 · ‘a-‘5−15·256−1 ·i·ε3 ·21·2−1 ·β5 ·‘a-‘12 ·
‘a+‘3−3267·32−1·i·ε5·21·2−1 ·β2·‘a-‘8·‘a+‘+5·2−1·i·ε3·21·2−1 ·β2·‘a-‘6·‘a+‘3+15·
8−1 ·ε4 ·‘a-‘10 ·β3+9·8−1 ·ε4 ·‘a-‘8 ·β2−1·256−1 ·i·ε3 ·21·2−1 ·β5 ·‘a-‘15+157·8−1 ·ε4 ·
‘a-‘4+675·2048−1 ·i·ε5 ·21·2−1 ·β6 ·‘a+‘17 ·‘a-‘2−2925·512−1 ·i·ε5 ·21·2−1 ·β6 ·‘a+‘12 ·
‘a-‘7+147·16−1 ·i·ε3 ·21·2−1 ·β2 ·‘a-‘5 ·‘a+‘4+579·512−1 ·i·ε5 ·21·2−1 ·β4 ·‘a+‘15−69·
16−1·i·ε3·21·2−1 ·β2·‘a-‘4·‘a+‘5−675·512−1·i·ε5·21·2−1 ·β5·‘a-‘16·‘a+‘+57·32−1·i·
ε5 ·21·2−1 ·β ·‘a+‘9−45·2048−1 ·i·ε5 ·21·2−1 ·β6 ·‘a-‘19−48·i·ε5 ·21·2−1 ·β ·‘a+‘3+3375·
256−1 ·i·ε5 ·21·2−1 ·β4 ·‘a-‘9 ·‘a+‘4+45·128−1 ·ε4 ·β5 ·‘a+‘13 ·‘a-‘3+75·64−1 ·ε4 ·β4 ·
‘a-‘12 ·‘a+‘2+513·32−1 ·i·ε5 ·21·2−1 ·‘a-‘3 ·‘a+‘4−15·4−1 ·ε2 ·β · ‘a+‘2 ·‘a-‘4+33·
64−1·i·ε3·21·2−1 ·β3·‘a+‘9·‘a-‘2−5391·32−1·i·ε5·21·2−1 ·β3·‘a-‘6·‘a+‘5−9·128−1·ε4·
β6 · ‘a+‘13 ·‘a-‘5−4725·512−1 ·i·ε5 ·21·2−1 ·β5 ·‘a-‘11 ·‘a+‘4−135·512−1 ·i·ε5 ·21·2−1 ·
β5·‘a+‘17−5391·32−1·i·ε5·21·2−1 ·β3·‘a+‘6·‘a-‘5+24·i·ε5·21·2−1 ·β·‘a+‘2·‘a-‘7−45·
64−1·ε4·β4·‘a+‘10·‘a-‘2−9·2−1·ε4·‘a-‘·‘a+‘7·β2+243·4−1·ε4·‘a-‘2·‘a+‘6·β2−7·
4−1·i·ε3·21·2−1 ·β·‘a-‘7−29·32−1·i·ε3·21·2−1 ·β2·‘a+‘9−67·64−1·i·ε3·21·2−1 ·β3·‘a+‘10·
‘a-‘+9·4−1·i·ε3·21·2−1 ·β3·‘a+‘4·‘a-‘5+9·4−1·i·ε3·21·2−1 ·β3·‘a+‘5·‘a-‘4−120·i·ε5·

21·2−1 ·‘a+‘3+135·128−1·i·ε5·21·2−1 ·β5·‘a-‘15·‘a+‘2−5391·64−1·i·ε5·21·2−1 ·β3·‘a+‘9·
‘a-‘2−3·2−1·ε2·‘a+‘7·‘a-‘3·β3+30·i·ε5·21·2−1 ·β2·‘a-‘5·‘a+‘2+13·4−1·i·ε3·21·2−1 ·
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β2 ·‘a+‘7 ·‘a-‘2+315·2048−1 ·i·ε5 ·21·2−1 ·β6 ·‘a+‘16 ·‘a-‘3+675·64−1 ·i·ε5 ·21·2−1 ·β5 ·
‘a+‘13·‘a-‘4−6075·512−1·i·ε5·21·2−1 ·β5·‘a+‘8·‘a-‘7+9·2−1·ε2·‘a-‘·‘a+‘3+15·4−1·
ε2·‘a-‘2· ‘a+‘2+99·2−1·ε4· ‘a-‘5·β2·‘a+‘3−23·64−1·i·ε3·21·2−1 ·β4·‘a+‘11·‘a-‘2+
135·512−1·i·ε5·21·2−1 ·β5·‘a-‘15−5391·64−1·i·ε5·21·2−1 ·β3·‘a-‘9·‘a+‘ 2−13·2−1·i·ε3·
21·2−1 ·β2·‘a+‘6· ‘a-‘3−513·32−1·i·ε5·21·2−1 ·‘a-‘4·‘a+‘3+18·ε4−2·ε2+135·128−1·
ε4·β5·‘a-‘13·‘a+‘3−3375·64−1·i·ε5·21·2−1 ·β4·‘a+‘6·‘a-‘7−27·1024−1·ε4·β6·‘a-‘16·
‘a+‘2−3·64−1·ε4·β6·‘a-‘15·‘a+‘3−75·8−1·ε4·‘a-‘ ·‘a+‘9·β3−18·ε4·‘a+‘5·‘a-‘3·
β2+77·64−1 ·i·ε3 ·21·2−1 ·β3 ·‘a-‘10 ·‘a+‘−3·i·ε3 ·21·2−1 ·β3 ·‘a-‘6 ·‘a+‘3+9·8−1 ·i·ε3 ·
21·2−1 ·β3·‘a+‘8·‘a-‘+765·128−1·ε4·β4·‘a+‘8·‘a-‘4−6159·64−1·i·ε5·21·2−1 ·β3·‘a+‘9·
‘a-‘ 4+981·16−1·i·ε5·21·2−1 ·β·‘a+‘5· ‘a-‘4+45·2048−1·i·ε5·21·2−1 ·β6·‘a+‘19+150·
i·ε5·21·2−1 ·β2·‘a-‘4·‘a+‘3+45·128−1·ε4·β5· ‘a-‘14·‘a+‘2−45·128−1·ε4·β5·‘a+‘14·
‘a-‘2−3·16−1·ε2·‘a+‘10·β3−3·16−1·ε2·‘a-‘10·β3+8775·512−1·i·ε5·21·2−1 ·β5·‘a+‘9·
‘a-‘6+135·32−1 ·i·ε5 ·21·2−1 ·β5 ·‘a+‘12 ·‘a-‘5+β ·‘a+‘2 ·‘a-‘2−3·4−1 ·ε2 ·β ·‘a-‘6+
90·i·ε5·21·2−1 ·β2·‘a+‘6·‘a-‘+5·256−1·i·ε3·21·2−1 ·β5·‘a-‘14·‘a+‘+1·8−1·β2·‘a+‘6−
1·2−1·β ·‘a-‘4+675·128−1·i·ε5·21·2−1 ·β5·‘a-‘14·‘a+‘3−1·8−1·β2· ‘a+‘4·‘a-‘2+1·
2−1·β2·‘a+‘3·‘a-‘3+675·512−1·i·ε5·21·2−1 ·β5·‘a+‘16·‘a-‘−2103·512−1·i·ε5·21·2−1 ·
β4 ·‘a-‘11 ·‘a+‘4−675·64−1 ·i·ε5 ·21·2−1 ·β5 ·‘a-‘13 ·‘a+‘4+15·128−1 ·i·ε3 ·21·2−1 ·β4 ·
‘a+‘12 ·‘a-‘+93·16−1 ·i·ε3 ·21·2−1 ·β2 ·‘a-‘4 ·‘a+‘3+48·i·ε5 ·21·2−1 ·β ·‘a+‘·‘a-‘2+
27·64−1 ·ε4 ·β6 ·‘a+‘11 · ‘a-‘7−135·512−1 ·i·ε5 ·21·2−1 ·β5 ·‘a+‘10 ·‘a-‘5+35·256−1 ·i·
ε3·21·2−1 ·β5·‘a+‘11·‘a-‘4+9·8−1·ε2·‘a-‘4+149·128−1·i·ε3·21·2−1 ·β4·‘a+‘9·‘a-‘4+
11·32−1·i·ε3·21·2−1 ·β3·‘a-‘7·‘a+‘4+675·8−1·i·ε5·21·2−1 ·β2·‘a+‘7·‘a-‘2+3·64−1·ε2·
β4 ·‘a+‘10·‘a-‘2+19·16−1 ·ε4·β3 ·‘a-‘ 12−133·32−1·i·ε3 ·21·2−1 ·β3 ·‘a+‘7 ·‘a-‘4+3·
4−1·i·ε·21·2−1 ·β ·‘a+‘· ‘a-‘4−675·256−1·i·ε5·21·2−1 ·β4·‘a+‘13+3·2−1·ε2·β ·‘a-‘4−
111·32−1 ·i·ε3 ·21·2−1 ·β3 ·‘a+‘6 · ‘a-‘5−99·16−1 ·i·ε5 ·21·2−1 ·‘a-‘·‘a+‘4+9·32−1 ·ε2 ·
β4 ·‘a+‘3 ·‘a-‘9−17·32−1 ·i·ε3 ·21·2−1 ·β2 ·‘a-‘8 ·‘a+‘−3·8−1 ·ε2 ·‘a-‘4 ·β3 ·‘a+‘6−3·
16−1·ε2·β4·‘a+‘5·‘a-‘ 7+45·256−1·i·ε3·21·2−1 ·β5·‘a+‘8·‘a-‘7−65·256−1·i·ε3·21·2−1 ·
β5·‘a+‘6·‘a-‘9−945·512−1·i·ε5·21·2−1 ·β6·‘a-‘14·‘a+‘5+1035·512−1·i·ε5·21·2−1 ·β6·
‘a+‘13·‘a-‘6+9·16−1·i·ε·21·2−1 ·β2·‘a+‘6·‘a-‘+45·256−1·ε4·β6·‘a-‘ 14·‘a+‘4−23·
4−1·i·ε3·21·2−1 ·β2·‘a-‘7·‘a+‘2+387·64−1·i·ε5·21·2−1 ·β3·‘a-‘11+3·8−1·ε2·‘a-‘·‘a+‘9·
β3−1035·512−1 ·i·ε5 ·21·2−1 ·β6 ·‘a-‘13 · ‘a+‘6−3·1024−1 ·ε4 ·β6 ·‘a-‘18+15·64−1 ·ε4 ·
β4·‘a+‘14−3·1024−1·ε4·β6·‘a+‘18+48·i·ε5·21·2−1 ·β ·‘a+‘2·‘a-‘−3·16−1·i·ε·21·2−1 ·
β2 ·‘a+‘5 ·‘a-‘2−9·128−1 ·ε4 ·β6 ·‘a-‘ 13 ·‘a+‘5−165·256−1 ·ε4 ·β6 ·‘a-‘9 ·‘a+‘9+9·
512−1 ·ε4 ·β6 ·‘a-‘17 ·‘a+‘−33·64−1 ·i·ε3 ·21·2−1 ·β3 ·‘a-‘11+15·64−1 ·i·ε3 ·21·2−1 ·β3 ·
‘a+‘11+99·128−1 ·i·ε5 ·21·2−1 ·β2 ·‘a+‘11+9·128−1 ·ε4 ·β5 ·‘a+‘15 ·‘a-‘+45·32−1 ·ε4 ·
β4·‘a-‘13·‘a+‘−161·8−1·ε4·β3·‘a+‘9·‘a-‘ 3+233·4−1·ε4·β · ‘a+‘2·‘a-‘4+70·ε4·
β ·‘a+‘5·‘a-‘+38·ε4·β ·‘a+‘· ‘a-‘5+16875·256−1·i·ε5·21·2−1 ·β4·‘a-‘8·‘a+‘5−45·
128−1·ε4·β5·‘a-‘15·‘a+‘ +675·128−1·i·ε5·21·2−1 ·β4·‘a-‘11· ‘a+‘2−99·128−1·i·ε5·
21·2−1 ·β2 ·‘a-‘11+43·32−1 ·i·ε3 ·21·2−1 ·β2 ·‘a-‘9+99·512−1 ·ε4 ·β6 ·‘a-‘8 ·‘a+‘10+11·
128−1·i·ε3·21·2−1 ·β4·‘a-‘13−108·ε4·β· ‘a+‘3·‘a-‘3+9·2−1·ε4·β3·‘a+‘10·‘a-‘2+15·
4−1·ε4·β4·‘a+‘11·‘a-‘3+15·32−1·ε4·β4· ‘a+‘9·‘a-‘5+693·32−1·i·ε5·21·2−1 · ‘a+‘5·
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‘a-‘2+5·4−1·i·ε3·21·2−1 ·β ·‘a+‘7+3753·32−1·i·ε5·21·2−1 ·β ·‘a+‘·‘a-‘6−315·128−1·
ε4 ·β5 ·‘a-‘12 ·‘a+‘4−675·64−1 ·ε4 ·β4 ·‘a+‘10 ·‘a-‘4−9·128−1 ·ε4 ·β5 ·‘a-‘11 ·‘a+‘5−
197·4−1·ε4·β·‘a+‘4·‘a-‘2−4725·128−1·i·ε5·21·2−1 ·β4·‘a-‘10· ‘a+‘3+9·512−1·ε4·β6·
‘a+‘17 ·‘a-‘−65·256−1 ·i·ε3 ·21·2−1 ·β5 ·‘a+‘9 ·‘a-‘6+1·256−1 ·i·ε3 ·21·2−1 ·β5 ·‘a+‘10 ·
‘a-‘5−231·4−1·i·ε5·21·2−1 ·β·‘a+‘3· ‘a-‘6+7407·64−1·i·ε5·21·2−1 ·β2·‘a+‘6·‘a-‘5−
1755·1024−1 ·i·ε5 ·21·2−1 ·β6 ·‘a-‘11 ·‘a+‘8−7407·64−1 ·i·ε5 ·21·2−1 ·β2 ·‘a+‘5 ·‘a-‘6+
3·4−1 ·ε2 ·‘a-‘·‘a+‘7 ·β2+120·i·ε5 ·21·2−1 ·β ·‘a+‘·‘a-‘4+9·128−1 ·ε4 ·β5 ·‘a-‘16−3·
32−1·ε2·β4·‘a+‘11·‘a-‘ −87·256−1·ε4·β6·‘a-‘12·‘a+‘6+315·2048−1·i·ε5·21·2−1 ·β6·
‘a-‘18 ·‘a+‘+17931·512−1 ·i·ε5 ·21·2−1 ·β4 ·‘a+‘9 · ‘a-‘6−315·128−1 ·ε4 ·β5 ·‘a+‘11 ·
‘a-‘5+465·32−1·ε4·β4· ‘a-‘9·‘a+‘5−45·128−1·ε4·β4·‘a+‘12−81·8−1·ε4·‘a+‘8·β2+
2103·512−1 ·i·ε5 ·21·2−1 ·β4 ·‘a+‘11 ·‘a-‘4+945·512−1 ·i·ε5 ·21·2−1 ·β6 ·‘a+‘14 ·‘a-‘5−
675·128−1·i·ε5·21·2−1 ·β5·‘a+‘14·‘a-‘3+125·64−1·ε4·β2·‘a+‘10+1·2−1·ε4·β ·‘a+‘8−
42·ε4·‘a+‘2+165·8−1·ε4·‘a+‘4−87·8−1·i·ε3·21·2−1 ·β·‘a+‘·‘a-‘4+15·4−1·ε4·‘a+‘10·
β3−12147·512−1 ·i·ε5 ·21·2−1 ·β4 ·‘a-‘12 · ‘a+‘3−1·256−1 ·i·ε3 ·21·2−1 ·β5 ·‘a+‘15−45·
128−1·ε4·β4· ‘a-‘12+9·4−1·i·ε3·21·2−1 ·‘a-‘3·‘a+‘ 2−1·8−1·β2·‘a+‘2·‘a-‘4−1·4−1·
β2 ·‘a+‘5 ·‘a-‘−1·4−1 ·β2 ·‘a-‘5 ·‘a+‘+3375·256−1 ·i·ε5 ·21·2−1 ·β4 ·‘a+‘9 ·‘a-‘ 4+
11·4−1·ε4·β · ‘a+‘6+13·2−1·ε4·β ·‘a+‘4−693·32−1·i·ε5·21·2−1 ·‘a-‘5·‘a+‘2+31·8−1·
i·ε3·21·2−1 ·‘a+‘·‘a-‘4−5·256−1·i·ε3·21·2−1 ·β5·‘a-‘13· ‘a+‘2−255·64−1·i·ε5·21·2−1 ·
β3 ·‘a+‘12 ·‘a-‘−4617·16−1 ·i·ε5 ·21·2−1 ·β2 ·‘a-‘4 ·‘a+‘5−4617·16−1 ·i·ε5 ·21·2−1 ·β2 ·
‘a-‘5 ·‘a+‘4+597·32−1 ·i·ε5 ·21·2−1 ·β ·‘a-‘8 ·‘a+‘+5859·32−1 ·i·ε5 ·21·2−1 ·β ·‘a+‘5 ·
‘a-‘2−240·i·ε5 ·21·2−1 ·β ·‘a+‘3 ·‘a-‘2−3·8−1 ·i·ε3 ·21·2−1 ·β3 ·‘a+‘9−120·i·ε5 ·21·2−1 ·
‘a-‘· ‘a+‘2−24·i·ε5 ·21·2−1 ·β ·‘a+‘7 ·‘a-‘2+75·4−1 ·ε4 ·‘a-‘6 ·β3 ·‘a+‘4−15·8−1 ·
ε4 ·‘a-‘9 ·β3 ·‘a+‘+2403·8−1 ·i·ε5 ·21·2−1 ·β2 ·‘a-‘6 ·‘a+‘3−4725·128−1 ·i·ε5 ·21·2−1 ·
β4 ·‘a+‘10 ·‘a-‘3+809·64−1 ·ε4 ·β2 ·‘a+‘2 ·‘a-‘8+1353·512−1 ·i·ε5 ·21·2−1 ·β4 ·‘a-‘14 ·
‘a+‘−15 ·8−1 ·ε2 ·‘a+‘4 +6435 ·1024−1 ·i ·ε5 ·21·2−1 ·β6 ·‘a-‘9 ·‘a+‘10 +81 ·32−1 ·ε4 ·
β2 · ‘a+‘9 ·‘a-‘−27·1024−1 ·ε4 ·β6 ·‘a+‘16 ·‘a-‘2+4239·64−1 ·i·ε5 ·21·2−1 ·β3 ·‘a+‘8 ·
‘a-‘5+2025·256−1 ·i·ε5 ·21·2−1 ·β4 ·‘a-‘12 ·‘a+‘−405·128−1 ·ε4 ·β5 ·‘a+‘7 ·‘a-‘9+9·
4−1 ·ε2 ·‘a-‘5 ·β3 ·‘a+‘5+9·16−1 ·ε2 ·‘a-‘2 ·‘a+‘8 ·β3−1251·8−1 ·i·ε5 ·21·2−1 · ‘a-‘2 ·
‘a+‘3+3·2−1·i·ε·21·2−1 ·β· ‘a+‘2·‘a-‘3−3·4−1·i·ε3·21·2−1 ·β·‘a+‘2·‘a-‘−5·256−1·i·
ε3·21·2−1 ·β5·‘a+‘13·‘a-‘2−517·16−1·ε4·β2· ‘a+‘5·‘a-‘5−90·ε4·‘a-‘4·β2·‘a+‘ 4+
3375·128−1·i·ε5·21·2−1 ·β5·‘a+‘6·‘a-‘11−1485·128−1·i·ε5·21·2−1 ·β5·‘a+‘ 7·‘a-‘10−
3·2−1·ε2·β ·‘a+‘4+3·128−1·ε2·β4·‘a-‘12+235·8−1·ε4·β2·‘a+‘3·‘a-‘7+57·4−1·i·ε3·
21·2−1 ·β·‘a+‘3·‘a-‘2−135·128−1·i·ε5·21·2−1 ·β5·‘a+‘15·‘a-‘2−1053·32−1·i·ε5·21·2−1 ·
β ·‘a-‘7−1495·64−1 ·ε4 ·β2 ·‘a+‘8 ·‘a-‘2+35·256−1 ·i·ε3 ·21·2−1 ·β5 ·‘a-‘11 ·‘a+‘4+
2799·128−1 ·i·ε5 ·21·2−1 ·β2 ·‘a+‘2 ·‘a-‘9+3·2−1 ·i·ε·21·2−1 ·‘a-‘ −9·2−1 ·i·ε3 ·21·2−1 ·
‘a-‘+3·8−1 ·i·ε3 ·21·2−1 ·‘a+‘5+1·8−1 ·i·ε3 ·21·2−1 ·‘a-‘5−1·2−1 ·i·ε3 ·21·2−1 ·‘a-‘3−i·
ε3 ·21·2−1 ·‘a+‘3+3·2−1 ·i·ε3 ·21·2−1 ·‘a+‘+441·16−1 ·i·ε5 ·21·2−1 ·‘a+‘5+9711·128−1 ·
i·ε5 ·21·2−1 ·β2 ·‘a+‘3 ·‘a-‘8−120·i·ε5 ·21·2−1 ·β ·‘a+‘4 ·‘a-‘−3·2−1 ·ε2 ·‘a+‘·‘a-‘3−
9·ε2 ·‘a+‘·‘a-‘+3·4−1 ·ε2 ·β · ‘a+‘6−13·4−1 ·ε4 ·β2 ·‘a+‘4 ·‘a-‘2−3·16−1 ·i·ε·21·2−1 ·
β2 ·‘a+‘7−1053·32−1 ·i·ε5 ·21·2−1 ·β ·‘a+‘7−87·256−1 ·ε4 ·β6 ·‘a+‘12 ·‘a-‘6−15·2−1 ·
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ε4 ·β4 ·‘a-‘11 ·‘a+‘3+27·8−1 ·ε4 ·β3 ·‘a+‘11 · ‘a-‘−3·4−1 ·i·ε·21·2−1 ·‘a-‘·‘a+‘2−29·
8−1 ·ε4 ·‘a-‘4 · ‘a+‘2−23·2−1 ·ε4 · ‘a-‘3 ·‘a+‘3−51·128−1 ·ε2 ·β4 ·‘a+‘4 ·‘a-‘8−315·
2048−1·i·ε5·21·2−1 ·β6·‘a-‘16·‘a+‘3+13·4−1·ε4·β2·‘a-‘6−9·8−1·ε4·β·‘a-‘8−39·4−1·
ε4 ·‘a-‘5 ·‘a+‘+45·16−1 ·ε4 ·β4 ·‘a-‘10 ·‘a+‘4+3·64−1 ·ε2 ·β4 ·‘a+‘2 ·‘a-‘10−45·4−1 ·
ε4·‘a-‘8·β3· ‘a+‘2+15·ε4·‘a-‘7·β3·‘a+‘3+2403·8−1·i·ε5·21·2−1 ·β2·‘a+‘6·‘a-‘3+
6543·32−1·i·ε5·21·2−1 ·β3·‘a-‘7·‘a+‘ 4+225·8−1·ε4·β · ‘a+‘6·‘a-‘2+163·8−1·ε4·β ·
‘a+‘5· ‘a-‘3−15·256−1·i·ε3·21·2−1 ·β5·‘a+‘12·‘a-‘3−111·16−1·i·ε3·21·2−1 ·β2·‘a-‘5·
‘a+‘2+3·2−1·ε2·‘a-‘2+15·2−1·ε2·‘a+‘2+45·256−1·ε4·β6·‘a+‘14·‘a-‘4+387·64−1·i·
ε5·21·2−1 ·β3·‘a+‘11−27·8−1·i·ε3·21·2−1 ·β·‘a+‘5+15·8−1·ε4·β4·‘a+‘12·‘a-‘2−23·8−1·
ε4·‘a+‘6+19·8−1·ε4·‘a-‘6+36·ε4· ‘a-‘2−855·512−1·i·ε5·21·2−1 ·β6·‘a+‘15·‘a-‘4+
5859·32−1·i·ε5·21·2−1 ·β·‘a+‘2·‘a-‘5+61·4−1·ε4·‘a+‘5·‘a-‘−39879·512−1·i·ε5·21·2−1 ·
β4·‘a+‘7· ‘a-‘8+33717·512−1·i·ε5·21·2−1 ·β4·‘a-‘10·‘a+‘5−135·32−1·i·ε5·21·2−1 ·β5·
‘a-‘12 ·‘a+‘5+12147·512−1 ·i·ε5 ·21·2−1 ·β4 ·‘a+‘12 ·‘a-‘3−17931·512−1 ·i·ε5 ·21·2−1 ·
β4·‘a+‘6·‘a-‘ 9+33·16−1·i·ε3·21·2−1 ·β2·‘a-‘7+39879·512−1·i·ε5·21·2−1 ·β4·‘a+‘8·
‘a-‘7+13·4−1 ·ε4 ·β2 · ‘a+‘6−65·2−1 ·ε4 ·β ·‘a-‘4+135·128−1 ·ε4 ·β5 ·‘a+‘12 ·‘a-‘4−
35·8−1 ·i·ε3 ·21·2−1 ·‘a-‘·‘a+‘4−33717·512−1 ·i·ε5 ·21·2−1 ·β4 ·‘a+‘10 ·‘a-‘5−67·64−1 ·
ε4·β2· ‘a-‘10+121·8−1·ε4·β ·‘a-‘7·‘a+‘−315·2048−1·i·ε5·21·2−1 ·β6·‘a+‘18·‘a-‘−
129·64−1 ·i·ε5 ·21·2−1 ·β3 ·‘a+‘13+2025·512−1 ·i·ε5 ·21·2−1 ·β5 ·‘a+‘12 ·‘a-‘3−9·16−1 ·i·
ε·21·2−1 ·β2·‘a-‘6·‘a+‘−3·4−1·ε2·‘a-‘5·β2·‘a+‘3+675·512−1·i·ε5·21·2−1 ·β5·‘a-‘13·
‘a+‘2−149·8−1·ε4·β·‘a+‘7·‘a-‘−1353·512−1·i·ε5·21·2−1 ·β4·‘a+‘14·‘a-‘+15·16−1·
i·ε·21·2−1 ·β2·‘a-‘4·‘a+‘3+765·64−1·i·ε5·21·2−1 ·β3·‘a+‘10·‘a-‘−3·2−1·i·ε·21·2−1 ·β ·
‘a+‘3·‘a-‘2−6075·512−1·i·ε5·21·2−1 ·β5·‘a+‘7·‘a-‘8+3·8−1·ε2·‘a-‘9·β3·‘a+‘+9·

16−1 ·ε2 ·‘a-‘8 ·β3 ·‘a+‘ 2−3·2−1 ·ε2 ·‘a-‘7 ·β3 ·‘a+‘3−15·16−1 ·i·ε·21·2−1 ·β2 ·‘a+‘4 ·
‘a-‘3−3·4−1 ·i·ε·21·2−1 ·β ·‘a+‘4 ·‘a-‘+8775·512−1 ·i·ε5 ·21·2−1 ·β5 ·‘a+‘6 ·‘a-‘9−
3375·128−1·i·ε5·21·2−1 ·β5·‘a+‘11· ‘a-‘6−3·ε2·‘a-‘6·β2·‘a+‘2−3·8−1·ε2·‘a-‘6·β3·
‘a+‘4+135·512−1 ·i·ε5 ·21·2−1 ·β5 ·‘a-‘17+129·64−1 ·i·ε5 ·21·2−1 ·β3 ·‘a-‘13−3·32−1 ·
ε2·β4·‘a+‘·‘a-‘11+2025·512−1·i·ε5·21·2−1 ·β5·‘a-‘12·‘a+‘3+675·512−1·i·ε5·21·2−1 ·
β5·‘a+‘13·‘a-‘2−675·512−1·i·ε5·21·2−1 ·β5·‘a+‘14·‘a-‘ +16875·256−1·i·ε5·21·2−1 ·
β4·‘a+‘8· ‘a-‘5−5·8−1·ε4·β ·‘a+‘2·‘a-‘6+5103·64−1·i·ε5·21·2−1 ·β2·‘a+‘7·‘a-‘4+
3·16−1 ·i·ε·21·2−1 ·β2 ·‘a-‘5 ·‘a+‘2−9·128−1 ·ε4 ·β5 · ‘a+‘10 ·‘a-‘6−9711·128−1 ·i·ε5 ·
21·2−1 ·β2·‘a+‘8·‘a-‘3−129·32−1·i·ε5·21·2−1 ·‘a-‘6·‘a+‘+3·ε2·β·‘a+‘3· ‘a-‘−2799·
128−1·i·ε5·21·2−1 ·β2·‘a+‘9·‘a-‘2+585·128−1·ε4·β5·‘a+‘9·‘a-‘7+21·4−1·ε2·‘a-‘4·
β2 ·‘a+‘4+129·32−1 ·i·ε5 ·21·2−1 · ‘a+‘6 ·‘a-‘+585·128−1 ·ε4 ·β5 ·‘a+‘6 ·‘a-‘10−405·
128−1·ε4·β5·‘a+‘8·‘a-‘8+3·4−1·ε2·‘a-‘7·β2·‘a+‘−4239·64−1·i·ε5·21·2−1 ·β3·‘a-‘8·
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by definition
En = 〈φ, n|hd |φ, n〉 (C.26)

by substituting the expression of hd in (C.26) and using a Maple compilation, then
we get the following expression of energy En

En = 1024−1[−
((

65520n7 + 660n9 + 2970n8 + 1472940n5 + 215460n6

+ 3150630n4 + 6832350 · n+ 8764740 · n2 + 7873080 · n3 + 2055375)β6

+
(
3240n8 + 3936600 + 10500480n3 + 1249920n5 + 255360n6 + 11983680n

+ 14579040n2 + 25920n7 + 4337760n4)β5 +
(
80640n6 + 2296800n4

+ 624960n5 + 7753056n+ 6019968n3 + 9227232n2 + 11520n7 + 2659536)β4

+
(
102144n5 + 1436160n3 + 2079360n+ 731712 + 23040n6 + 654720n4

)
β3

+
(
535392 · n+ 399488 · n3 + 33088 · n5 + 90400n4 + 179760 + 544160n2)β2

+
(
83840 + 226304n+ 27520n4 + 117248n3 + 196608n2

)
β + 2944 + 17664n2

+ 11776 · n+ 11776 · n3)ε4) +
((

2016 · n5 + 672 · n6 + 46224 · n+ 31680 · n3

+ 61728n2 + 17520n4 + 16200)β4 +
(
2304n5 + 14400 + 30720n3 + 40320n2

+ 5760n4 + 41856n)β3 +
(
29952n+ 35328n2 + 12288 + 5376n4 + 10752n3

)
β2

+
(
5376 + 13824 · n+ 13824 · n2 + 6144n3

)
β + 1408 + 3840n+ 3840n2)ε2]

+ 1024−1[1024n+ 512n3 + 768n2 + 384)β2 +
(
512 + 1024n2 + 1024n

)
β]

+ 1 + 2 · n
(C.27)

56



for (β, ε) << 1

En = 1 + 2n+
(
n2 + 1/2 + n

)
β +

(
3/8 + 1/2n3 + 3/4n2 + n

)
β2

+
(15

4 n+ 15
4 n2 + 11

8

)
ε2 +

(21
4 + 27

2 n+ 27
2 n2 + 6n3

)
ε2β + o(β3, ε3) (C.28)
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Particular Cases

1. ε 6= 0 and β 6= 0

En = 1 + 2n+
(
2−1 + n2 + n

)
β +

(
n+ 2−1n3 + 3 · 4−1n2 + 3 · 8−1)β2

+ (11 · 8−1 + 15 · 4−1n+ 15 · 4−1n2)ε2

+
(
21 · 4−1 + 27 · 2−1n+ 27 · 2−1 · n2 + 6n3)ε2 · β

(C.29)

Figure C.1: Deformed Cubic An-harmonic Oscillator
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2. ε = 0 and β 6= 0

En = 1+2n+
(
2−1 + n2 + n

)
β+

(
n+ 2−1n3 + 3 · 4−1n2 + 3 · 8−1

)
β2 (C.30)

Figure C.2: Deformed Harmonic Oscillator
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3. ε 6= 0 and β = 0

En =
(
−23 · 8−1 − 69 · 4−1n2 − 23 · 2−1n− 23 · 2−1n3

)
ε4

+
(
11 · 8−1 + 15 · 4−1 · n+ 15 · 4−1 · n2

)
ε2 + 1 + 2 · n

(C.31)

Figure C.3: Cubic An-harmonic Oscillator
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Abstract

Quantum gravity is a physical theory designed to unify general relativity and
quantum mechanics, which are inconsistent and incompatible and each one has
a different scale from the other, the first is macroscopic while the second is mi-
croscopic, thus it would be difficult to make them integrated into a single theory.
There are numerous attempts to unify them using three separate roads: super
string theory, loop-quantum gravity and black hole approach, and since these three
approaches expect a minimal length on either the position x or the momentum p
coordinates, or both of them, this necessitates a deformation on the phase space,
with a slight deformation coefficient. Certainly; such deformation affects Quantum
Mechanics in particular Heisenberg algebra by producing a modifications in the
commutation relations. In such circumstances, the resulted Hamiltonians could be
non-Hermitian which means they do not respect Dirac Hermiticity condition de-
fined in a Hermitian-inner product, which is necessary and sufficient condition to
obtain a real and positive energy spectrum.In fact, it is contrary to what was found;
because there are Hamiltonian operators do not respect this condition.In this con-
text it can be categorized them into three classes, PT-Hermitian, pseudo-Hermitian
and Quasi-Hermitan hamiltonian, where all they have the property of Hermiticity
but in non standard inner product. First, two examples of PT-symmetric Hamil-
tonians have been studied, Shifted(displace)-harmonic oscillator p2 + x2 + iεx and
Cubic-anharmonic oscillator p2 + x2 + iεx3, then we have deformed the position
operator x, where the Hamiltonians H became pseudo-hermitian or more precisely
quasi-Hermitian characterized by the similarity transformation which is written in
terms of a positive-definite, Hermitian and invertible operator η. We found that
the energy spectrum is real and positive and related to a deformation coefficient
β is given for small values,and we studied the effect of time evolution on both
the space-time and non-Hermiticity of PT-symmetric spin Hamiltonian H2∗2 with
assumption that there is no correlation in the momentum. It turns out that it is
possible to generate a bipartite spin quantum entanglement quantified in the Von
Newman entropy, as well as the possibility of magnified the amount of quantum
entanglement and becomes maximal or reduced (decoherence) depending on the
various parameters and physical quantities of the system (Hermiticity and metric)
Finally we also expect that quantum entanglement depends strongly on the met-
ric space, especially near the horizon (Schwarzchild’s radius). This result can be
generalized to multisystems (Bell, Werner,...etc).

pass words: Quantum gravity, Hermiticity, PT-symmetry,Pseudo-Hermiticity
Quasi-Hermiticity,minimal length,Quantum Entanglement



Résumé

La gravité quantique est une théorie physique conçue à unifier la relativité générale
et la mécanique quantique, qui sont inconsistantes et incompatibles et chacune
possède une échelle différente de l’autre.Il y a de nombreuse tentatives pour les
unifier en utilisant trois voies distictes : la théorie des super cordes, la théorie des
boucles quantique et l’approche du trou noir, et étant donné que ces approches
atteignent une longueur minimale de coordonnées de la position x ou l’impul-
sion p, ou les deux, autrement, ce qui nécessité une déformation dans l’espace
des phases, avec un coefficient de déformation un peu petit. Certainement ; cette
déformation affecte l’algèbre de Heisenberg en produisant quelques modifications
qui apparaissent dans en particulier les relations de commutation.Dans ce cas, les
Hamiltoniens obtenus pourraient être non-Hermitiques, cela signifie qu’ils ne res-
pectent pas la condition d’Herméticité de Dirac définie dans un produit scalaire
Hermitique, cette condition étant considérée comme une condition nécessaire et
suffisante pour obtenir un spectre d’énergie réel et positif.En fait, c’est contraire
à ce qui a été trouvé, car il y a des opérateurs Hamiltoniens qui ne respectent
pas cette condition. Dans ce contexte, nous les avons classés en trois classes, PT-
hermitien, pseudo-hermitien et Hamiltonien quasi-Hermitain, où ils ont tous la pro-
priété d’Herméticité mais dans un produit intérieur non-standard. En premier lieu
on a étudié deux exemples d’hamiltoniens PT-symmetrique, un oscillateur harmo-
nique déplacé p2+x2+iεx et un oscillateur cubeibique anharmonique p2+x2+iεx3,
En suite, on a déformé l’opérateur de position x, où l’ Hamiltonien H est devenu
pseudo-hermitiens ou plus précisément quasi-hermitien caractérisé par la trans-
formation de similarité qui s’écrive en fonction d’un opérateur η ; positif défini,
hermitien et inversible. Nous avons trouvé que le spectre d’énergie est réel et po-
sitif et lié à un coefficient de déformation β est donné pour de petites valeurs En
deuxième lieu, nous avons étudié l’effet de l’évolution du temps sur l’espace-temps
et la non-Herméticité du Hamiltonien de spin PT-symétrique H2∗2 en supposant
qu’il n’y a pas de corrélation dans l’impulsion. Il s’avère qu’il est possible de générer
une intrication quantique de spin bipartite quantifiée dans l’entropie de Von New-
man. Ainsi que la possibilité d’augmenter la quantité d’intrication quantique et de
devenir maximal ou réduit (décohérence) en fonction de différents paramètres, et
nous prédisons également que l’intrication quantique dépende fortement de l’es-
pace métrique,en particulier près de l’horizon (rayon de Schwarzchild). Ce résultat
peut être généralisé à multi-systèmes (Bell, Werner,...etc).

mots de passe : La gravité quantique, herméticité, PT-symétrie,quasi-Herméticité,
Pseudo-Herméticité,Longueur milimale,Intrication quantique
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