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Chapter 1

Introduction

During the last years, the search for a quantum version of gravity was a challenge
that physicists had seriously taken, they have never stopped to understand the
geometry of spacetime at the infinitesimally scales. It seems the only way to
solve this problem can be done by combining general relativity (GR) [1] with the
quantum effect of quantum mechanics (QM) [2]. In the 60s, J. Wheeler and B.
DeWitt presented a first attempt to proceed spacetime dynamics with quantization
program from a canonical point of view [3], they used the induced spatial 3-metric
as a configuration variable. Unfortunately, this program encountered several major
difficulties due to the problem of introducing an invariant measure on the metric
space. In the late 80s, an intense interest to a new quantum geometry called Loop
Quantum Gravity (LQG) has been devoted [4, 5, 6, 7, 8, 9, 10]. Loop Quantum
Gravity is a non-perturbative', background-independent? and a quantum field
theory of geometry itself. It is based on the quantum implementation of the Holst
Hamiltonian® by using Dirac quantization program [11, 12], with the Ashtekar-

Barbero variables [13, 14].

In order to construct the starting kinematical Hilbert space for Loop Quantum

Gravity, one has to use the well known representation of the holonomy-flux algebra

'LQG theory quantizes the full metric without taking any perturbative fluctuations.

2LQG theory conserves the diffeomorphism symmetry of GR.

3Holst formulation is an equivalence way to describe general relativity. It will be discussed in
section 2.7.
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[15]. It is represented by the space of all cylindrical wave functional through
holonomies defined by the su(2) connection along a system of smooth oriented
paths and flux variables as the smeared electric field along the dual surface for each
path. After we introduce the invariant Haar measure of the space of holonomies,
the kinematical Hilbert space will be well-defined. A useful basis state of the
quantum geometry known as the Penrose’s spin networks is frequently used [16].
Spin network arises as a generalization of Wilson loops [17] necessary to deal with
mutually intersecting loops "nodes" which is represented by a space of intertwiners
at each node. One can construct well defined operators such as the area and volume
acting on links and nodes of smooth paths system respectively. From the spectrum
of the geometrical operators, the fuzziness and discreteness property of space is

predicted [18, 19, 20, 21, 22, 23, 24, 25].

In this thesis, we will construct a new geometrical information from the spin
network states, based on the polyhedra interpretation of intertwiners [26, 27],
which is the value of the 3d-Ricci scalar curvature and the edge length as a function
of volume and boundary areas operators [28]. The main idea of our work comes
from the determination of the volume and the boundary area of a fixed region in a
Riemannian manifold as a function of the scalar curvature inside that region as
well as its parameterization. One can then invert the resulting functions to get the
explicit formula of the scalar curvature in terms of volume and boundary area of
a fixed region. Similar idea was explored by using a geodesic polyhedron shape’
[29]. Thus, we can use the new proposed scalar curvature operator related to a
fixed polyhedron measure and try to determine its spectrum in order to know what
kind of space in which the intertwiner state is represented. Thus, one can describe
the intertwiner state by a curved chunk of a curved polyhedron. In our approach,

an example of a such monochromatic 4-valent node state was studied in details

4Geodesic polyhedron is the convex region enclosed by the ntersection of geodesic surfaces.
A geodesic surface is a surface with vanishing extrinsic curvature and the intersection of two
such surfaces is necessarily a geodesic curve. Geodesic tetrahedron is a special case of a geodesic
polyhedron with four faces.
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and its associated Kapovich-Millson phase space [26, 27] (i.e. the space of all
equilateral Euclidean tetrahedron shapes) was constructed. Moreover, we will show
the absence of a regular Euclidean tetrahedron from the volume orbit of relevant
shapes in that phase space, instead of this it is possible to find a regular tetrahedron
correspondence in the context of a non-zero constant curvature tetrahedron. It
is worth to mention that the phase space of curved tetrahedron shapes idea has
been initiated in ref. [30]. In our present paper [29], full expressions of volume and
boundary face area of a regular tetrahedron in a constant curvature space (in terms
of the scalar curvature and the edge length) are explicitly derived than inverted to
get the exact form of the 3d- Ricci scalar curvature and the edge length. At the
quantum level, we obtain two well defined operators acting on the monochromatic
4-valent nodes state. Their spectra show that all quantum atoms of space can be
represented by chunks of regular hyperbolic tetrahedron of a negative curvature.

It also produces the Euclidean regular tetrahedron in the semi-classical limit.

This thesis is organized as follows:

o In chapter 2: we will explore the Hamiltonian formulation of GR starting
from the mathematical tools: Hyper-surfaces manifold 2.1 and spacetime
foliation 2.2 so we can proceed further to the ADM fomalism 2.3. Then
we will also study the first order formulation of GR: Palatini 2.5, Holst 2.7

actions and their Hamiltonian analysis 2.6, 2.8 respectively.

o In chapter 3: we begin by giving an overview of the Dirac quantization
program 3.1 then we will construct the notion of the holonomy-flux variables
to represents gravity at the quantum scales 3.2. The remaining steps 3.4, 3.6
and 3.7 are to solve the Einstein equation to finally complete the discussion

of LQG.

e In chapter 4: The geometrical operator in LQG will be discussed in details:
the area for a given surface 4.1 and the volume for a given region 4.2. Then

we will explore the geometrical interpretation of quantum geometry state 4.3.
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o In chapter 5: we will give a motivation for a new scalar curvature measure
5.1, then a strategy of defining new curvature operator in LQG is presented
5.2. Finally, a 3d- Ricci scalar curvature and edge length operators are

constructed for a regular tetrahedron state 5.4.

e In chapter 6: we draw our conclusions.



Chapter 2

The Hamiltonian Formulations of
General Relativity

This chapter is based on papers: [31, 32] and textbooks: [1, 33, 34, 35, 36].

The Hamiltonian formulation of General Relativity requires the splitting of space-
time into three dimensional space and one dimensional time that is known by
foliation of spacetime where the diffeomorphism symmetry of GR must be taken into
consideration. It means that we will not fix the splitting of spacetime; rather, we will
use arbitrary foliation parameters to preserve the full symmetry. Before introducing
the different Hamiltonian formulations of GR, we shall discuss in more details the

mathematical tools that we need to perform the the foliation of the spacetime.

2.1 Hyper-Surfaces

Definition 1. In d-dimensional Pseudo-Riemannian manifold M, a hyper-surface
is a (d — 1)-dimensional submanifold that can be either timelike, spacelike, or null.

A particular hyper-surface can be selected by giving an embedding map:

e: X —= M

o+ e(o) (2.1)
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where ¥ is a (d — 1)-dimensional space and S = e(X) C M is the hyper-surface

(submanifold), it can also be defined by the parametric functions:

R&! — RY
o= (0% — z(0) (2.2)
where {o = (6*)} with a = 1,...,d — 1 are coordinates intrinsic to the space %,
and {x = (")} with p=0,1,...,d — 1 are manifold coordinates system. In more

precise mathematical way, we have the following:

e

z - M
ol lx (2.3)

R*!—  R"

zoeog—1

Since every map is surjective when its codomain is restricted to its image, it is
useful to define the diffeomorphism € as the restricted codomain of the embedding

map e to its image:

e: X — S=eX)

or—e(o) :=e(o) (2.4)
Another way to define a hyper-surface is by imposing a constraint on the coordinates:
fRY—R
x = (2") — f(x) (2.5)
the constraint on this coordinates is:
f(x) =0 (2.6)
2.1.1 Hyper-surface orthogonal vector fields

We start with a one-parameter family of hyper-surfaces {S¢c = ec(X) C M, C € R}

defining by a family of embedding maps ec. It is given by the family of constraints:
fley=C , CeR (2.7)

6
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where different members of the family {S¢} correspond to different values of the
constant C'. Consider two neighboring points p and ¢ with coordinates x, and

x, + dx, respectively, lying in the same hyper-surface Sc. Then:

fl®y) =C (2.8a)
f(z, +dx,) = C (2.8b)

We have then to first order:

f(z, +dx,) =C

0
:>f(:vp)+a£ dx, =C
:>C+g£ ~dx, =C
of

Since the displacement dz, is tangent to the hyper-surface S¢ for any p € M, it
implies that the vector field g*(df) € I'TM'? is normal to the hyper-surface Sc.

Definition 2. A unit normal vector field n € T'T M can be introduced in the case
where the hyper-surfaces {Sc} is not null. its norm is defined by:

—1, if Sc is space-like

e (2.10)
+1, if S¢ is time-like

VC € R, VpEScCM:e::g(np,np):{
and we require that n point in the direction of increasing f (future-pointing):
df(n) >0 (2.11)

It can then easily be checked that n = ¢’(n)* is given by:

edf
|df|/?

where |df| = |df (¢*(df))| is the norm of the normal vector field g*(df).

n= (2.12)

In general, the space of smooth section on the tensor bundle T M is defined by

77" M :={o: M — T," M|o is smooth}

2The sharp map: gt : TT*M — TTM, X — ¢8(X) := (¢°)"1(X)
3The flat map: ¢* : TTM — I'T*M, X — ¢"(X) := g(X,)
both are linear and isomorphism maps.
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Figure 2.1: Family of hyper-surfaces {S¢} embedded on the manifold M with the orthonormal
vector field n.

2.1.2 Vector decomposition

The embedded hyper-surface S¢ C M induces a split of the tangent bundle 7'M
into spatial tangent bundle T M spanned by non-linear independent vector fields
tangent to S¢, and normal bundle T, M spanned by the unique future-pointing

vector field m normal to the hyper-surface S¢:
TM=TMoT M (2.13)

Given a vector field X € I'T'M, for any p € S¢ C M, we can uniquely decompose

X at p into a part tangent to S¢ and a normal part proportional to 1, as follows:

X,=X,—-¢eg(n,, X,) n,+eg(n,, X,) n,

XLLGT”M X;J;_GTLM

— Pl.x, + Pt.X, (2.14)
Defining the parallel projector map of a vector field X for any p € M:
Pl T M — TyM
X,— Pl(X,) =X, —eg(n,, X,) = X (2.15)
and the normal projector map of a vector field X for any p € M:

PLTM — T\ M
X, — PHX,) =eg(n,, X,) = X (2.16)

p
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From the bilinearity of the metric g, it is easy to prove that the projection maps
(2.15,2.16) are (1,1)-tensor fields: PI, P+ € TT! M. Thus, the parallel and normal
projectors can be written in terms of components as:
Pl =58 — entn, (2.17a)
P = entn, (2.17h)
One can easily check the projection property:
leple — pll
pleple, = plw (2.18a)
PP, =P, (2.18b)
It is obvious to see the relations:
vXlernm:pl.xl=xI p+. Xl =0 (2.19a)
vXtermmM:pPl.xt =0, Pt. Xt =Xx* (2.19h)
These projections can be extended to tensor product of tangent spaces in M

by contracting each vector index in the tensor with the parallel or the normal

projectors in (2.15,2.16).

2.1.3 Dual vector decomposition

The embedded hyper-surface S¢ C M induces a split of the cotangent bundle
T* M into spatial cotangent bundle H*./\/l spanned by non-linear independent dual
vector fields of S¢, and normal cotangent bundle 17 M spanned by the unique

future-pointing covector field n normal to the hyper-surface S¢:
T"M=TIMaeTIM (2.20)

Given a covector field X € I'T*M, for any p € S¢ C M, we can uniquely
decompose X at p into a part cotangent to S and a normal covector part

proportional to m,:

X, =X, - en(¢(X,)) n+en(¢f(X,)) n

=P

x}er M X}eTiM

I
_ pl. x +PoX, (2.21)

P
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Defining the parallel projector map of a covector field X for any p € M:

Pl:T"M — Tr M

X, — Pl(X,) = X, - en(¢"(X,)) n = X] (2.22)
and the normal projector map of a covector field X for any p € M:
PHT"M — TI M
X, — PHX,) = en(¢(X,) n = X (223)

From the bilinearity of the metric g, it is easy to prove that the projection maps
(2.22,2.23) are (1,1)-tensor fields: PIl, P+ € I'T} M. Thus, in terms of components,

the parallel and normal projectors can be written as:

Plr =51 — en,nt (2.24a)

PL = en,nt (2.24b)
One can easily check the projection property:

pllyﬂpllﬁ =Pl x (2.25a)

PP =P (2.25b)
It is obvious to see the relations:

vxlerpm:pl.x=xI p-. Xl =0 (2.26a)

VXteTTiM:Pl.X* =0, Pt. X' =X"* (2.26D)

These projections can be extended to tensor product of cotangent spaces in M by
contracting each covector index in the tensor with the parallel or the normal

projectors in (2.22,2.23).

10
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2.1.4 Tensor decomposition

The embedded hyper-surface S C M induces a split of the (m, n)-tensor bundle
T3"M into a "spatial (m,n)-tensor bundle" 7};" M, and "normal (m,n)-tensor"
T'mM:

TM=T,'MaT M (2.27)
For any (m,n)-tensor field T' € I'T"" M, we can uniquely decompose T" at p € M

into a parallel, normal and mixed parts:

Tp — Z ('P“ e Pi7n+n) . Tp (228)

ity m={ll, L}
2.1.5 Transverse metric (1* fundamental form)

In what follows, we introduce what is called the transverse metric.

Definition 3. the transverse metric or 1%¢ fundamental form is the parallel part

of the metric g at each point p € M and it is defined by:

h=PlPl.g=g—encon (2.29)
In terms of components:
o = 73”#”73”1,"5][,0 = G — €Ny (2.30)
one can see that:
Pl =nl (2.31)

It satisfies these properties:

vl ylernym, vpe M:g(X) Y] = n(X!, Y]) (2.32a)
vXleTTyM, vp e M : h(n,X,) =0 (2.32b)
The geometrical meaning behind this notion is that if we want to find the scalar

product between two tangent vectors of the hyper-surface S¢, the transverse metric

11



Chapter 2. The Hamiltonian Formulations of General Relativity

is the only part of the metric that contributes in the result, for any X Yz‘l € TyM:

Il
p7
g XLy =n(X v+ enon(X) Y]

= h(X), Y1) + en(X)n(Y])
= (X Y3)

Accordingly, the transverse metric works as a spatial metric at each hyper-surface Se¢.
In fact, the transverse metric is not a metric notion, since it degenerates once at each

point in the hyper-surface S by the spanned space of the unit normal vector field n:
hun” =0 (2.33)

2.1.6 Induced metric

For any point p € S¢ C M, the push-forward® of the intrinsic induced basis
{(%) 1 ))} at e '(p) € ¥ by the embedding map (2.1) gives d — 1 vectors:
o(e (p

" -1
€ <88a> = —&U an;)o- (aau> = el(p) (8611) (2.34)
7 ae (p) i o@ ' (p) N9/ a(p) TE T (p)

are tangential to the hyper-surface S¢ at the point p, where we have taken:

Ortoeoo!

eh(p) oy

(2.35)

o€ ' (p))

Since the d — 1 vectors (2.34) are tangential to the hyper-surface S¢, then one has:
nyel =0 (2.36)

Definition 4. The induced metric is the pull-back’ of the metric g by the embedding
map (2.1):
qg=¢€'g (2.37)

it is d — 1 tensor at each point in 3 and its components are written by:

Qab = €-ey g (2.38)

4The push-forward map: ¢, : T, M — Ty N, Xp = 0:(Xp) f = Xp(f 0 9)
5The pull-back map: ¢* : T;(p)J\/ = Ty M, X ) = " (X () (Y p) = Xy (0:(Y )
with the map ¢ : M — N and for any C'(N) function f: N — R and for any Y, € T, M.

12
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This acts as a metric tensor on the tangent space of X2. There are two basic relations

between transverse and induced metric:

egegh,ul/ = (qab (239&)

R = elel g™ (2.39b)

where ¢® is the inverse of qu, and h* is the raised transverse metric components
by using the inverse metric components g* (it is not the inverse of h,, since the

latter is not invertible)

2.1.7 Extrinsic curvature (2"¢ fundamental form)

The embedded hyper-surface S¢ C M induces a split of the covariant derivative of
a vector field, which is a section of the tangent bundle 7'M (vector field), then
from Eq. (2.14) it can be decomposed into parallel and normal parts. In the next,
we will study how a spatial tangent field can be affected if we parallelly translate
it along a small curve tangent to the hyper-surface Sc. Then from now on, we
will just take tangent vector fields to the hyper-surface S¢ and label them by bold
capital letters X,Y, Z, ..., without putting the parellel sign ||, one has:

VxY =Pl . VxY + PL.VxY

=VxY —eg(n,VxY)n+eg(n,VxY)n (2.40)

= DxY + K(X,Y)n

where K is a map of two vector fields X, Y € I'Il M. V is the Levi-Civita
connection on the tangent bundle T"M with respect to the metric g: the unique,

torsion free and metric compatible covariant derivative associated with g.
Lemma 2.1.1. The following two properties are hold:
(i) The map:

K : TiM x TiM — C®(M)

(X,Y)— K(X,Y) = eg(n, VxY) (2.41)

13
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is a symmetric tensor field called the extrinsic curvature or 2™ fundamental

form of the hyper-surface Sc.

14 is the Levi-Civita connection on the tangent bundle with respect to
i) D is the Levi-Civit ti the tangent bundle TyM with t
the transverse metric h.

Proof. A detail proof.
(i) We have to show that:
— K is symmetric: VX, Y e ITTiM : K(X,Y) = K(Y, X)
K(X,Y)=¢€9(n,VxY)
=eg(n,Vy X + [X,Y])

=eg(n,VyX) +eg(n,[X,Y])

=K(Y,X)O
we have used the fact that [X,Y] € I'Ty M; for any X Y € I'TjM:
g(n,[X,Y]) =n,(X"0,Y" - Y"0,X")

= X"0,(n,Y") - X"Y"O,n, —Y"0,(n, X") +Y"X"O,n,

0 0
_ oxliyilg [ EOuf
Xy ay(W)
_ 9 xlnyv € € [y v]
2XUy o, f a”<|df|1/2>+2<|df|1/2>X Y"10,0,.f
0 0
=00

In the first line, we have used the definition of the Lie bracket with
torsion free space. In the second line, we have applied the derivative
leibniz rule and the fact that n is normal to any tangent vector along the
hyper-surface has been taken. In the third line, the normal vector field
n is substituted by its definition in Eq. (2.12). In the last line, the first
and second term are vanish since the function f is constant along the
hyper-surface and there is a symmetric contraction with antisymmetric

ones.

14
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— K is C°(M)-bilinear: since K is symmetric, we will just prove the

linearity of the first argument: VXY, Z € 'T\M, Vf € C®°(M):

K(fX+2Z)Y)= fK(X,Y)+K(Z,Y)

K(fX+2)Y)=¢eg(n,VixizY)
= eg('n,, vaY + VZY)
= Efg<n7 VXY) + 69("7 VZY)

— fK(X,Y)+K(Z,Y) D

In the seconde step, we have used the linearity of the Levi-Civita
connection V and in the third step the linearity of the metric g has

been taken.
(ii) We have to show that:

— D is metric preserving connection: VX € I'Iy M : Dxh 20

Dxh = PIPl . vyh
= PIPl. Vx(g—en@n)

—— ——— ———
0 0 0

=00
— D is torsion free connection: VX,Y € I'Ty\M P T(X.,Y) 0

PT(X,Y)=DxY — DyX — [X,Y]
=Pl.(DxY —DyX — [X,Y])

=Pl.7(X,)Y)
0

=00

15
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Definition 5. The covariant derivative D,, with respect to the transverse metric h

on the hyper-surface Sc can be written in terms of the covariant derivative V,, as:

vT € IT)" M :

(2.42)

1...On V1...Un

DT g im N G g - ) DT

Proof. This definition is a natural generalization of the covariant derivative D, of

a vector field tangent to the slice S¢, we have from Eq. (2.40):

VX,Y € ITyM :DxY" = h* VxY?
SXYDY" = W' XUV, Y"

SD,YH = bV, Y
O

Definition 6. The extrinsic curvature K is a spatial (0,2) symmetric tensor field

on the hyper-surface Sc, it is defined by:
K :=—ePIPl.Vn=—-Vn+noa (2.43)
where a == V,n € FT‘TM In terms of components:
Ky = —eh/h,V n, = —eV,n, +n,a, (2.44)
with a, = n?V n, are the components of the covector field a.
Proof. This definition is coming from the starting point in Eq. (2.40), we have:

VXY eITIM : K(X,Y) =eg(n,VxY) = —eg(Vxn,Y)
— —(Vxn)(Y) = —(Vn)(X,Y)

& K=—ePlpl.vn O

16
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and also one can write the extrinsic curvature in terms of the covariant derivative

V by following:
K, = —€h /h,7V ;n,
= —€(d, —en,n”)(0,” — en,n”)V, ng

= —eV,n, +n,n°V,n, +n,n’V,n, —en,nn,n’V n,
0 0
= —eV,n, +n,n"V,n, O
1
we have used: n°V,n, = ivu(nan") = %Vu(e) —0. ]

The extrinsic curvature measures how much the hyper-surface S¢ is curved in the
way it sits in the manifold M. It also says how much a vector tangent to S¢ fail
to be tangent if we parallelly translate it a bit using the Levi-Civita connection

V along the hyper-surface on the manifold.

Definition 7. The Weingarten map W is a spatial (1,1) symmetric tensor field
on the hyper-surface Sc, it is defined by:

W:=—ePlPl.Vn=—-Vn+noa (2.45)
where a = Vyn € I'IYM. In terms of components:
W,” == —eh h" NV ,n° = —eV¥n, +n,a” (2.46)
with a” = nPV n" are the components of the vector field a.
It is related to the extrinsic curvature by the relation:
VXY e I'T\IM : K(X,Y) =h(W(X),Y) (2.47)
and it has a linear map property: Vp € S¢ C M

W THM — THM
X, — W(X,)=—-ePl.Vxn (2.48)
The Weingarten map K determines how the unit normal vector field n of a

hyper-surface fail to be a normal under a parallel transport along any vector

field tangent to this hyper-surface.
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Lemma 2.1.2. There is a relation between extrinsic curvature K and transverse

metric h, it is written by:

K = _{th (2.49)

Proof. In order to prove this lemma, we use the definition of the transverse metric

(2.29), we have:

h=g—emn@n=L,h=Lg—eLn)dn—n® (L,n)
= L,h=25ym(Vn) —ea®@®n —en®a
= L,h=—2eSym(—eVn +n® a)
= L,h = —2eSym(K)

= L,h=—-2eK [

In the first line, at the RHS, we have applied the Leibniz rule of the Lie derivative.
In the seconde line, we have used the definition of the Lie derivative to compute

the follwing: VX Y, Z € I'T M:

Lz9(X,Y) =Z(g(X,Y)) —g(LzX,Y) - g(X,LzY)
=Vz(9(X,Y)) —9((Z2,X].Y) —g(X,[Z,Y])
=9(VzX,Y)+g(X,VzY)—g([Z X]Y) - g(X,[Z,Y])
=9(VzX —[Z, X]Y)+9(X,VzY - [Z2)Y])
= g(VxZ,Y) +g(X,VyZ)
= (VxZ)(Y) + (VyZ)(X)
=(VZ)(X.Y)+ (VZ)(Y,.X)
= 2Sym(VZ)(X,Y)

= Lz9=25ym(VZ) O
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and,

VX eI'TM: L,n(X) =n(n(X)) —n(L,X)

We have used n(Vxn) = 1Vx(n(n)) = :Vx(e) = 0. H

2
2.1.8 Riemannian tensor

We will now study how a spatial tangent field Z € I'T} M can be affected if
we parallelly translate it around a e-small loop tangent to the hyper-surface
Sc (this e-small loop is generated by the flows of two commuting vector fields
X,Y € I'Ty M). The measure of failure to return Z to its original position is

defined by the curvature transformation linear map ¥ R(X,Y’) as follows:
ZelTM—Z'=Z+2VR(X,Y)Z e TTM (2.50)

where VR is the (1,3) Riemannian tensor field with respect to the connection

V, on the manifold M, it is defined by:
VR(X,Y)Z :=VxVyZ —VyVxZ —Vixy|Z € TTM (2.51)
In terms of components:

VR 0,:=V,V,0, —V,V,.0, (2.52)

opy

The last term in Eq. (2.51) does not contribute to Eq. (2.52) since we have
[04,0,] = 0. It is very obvious to see that the new Z’ may not be tangent to S¢
because of VR(X,Y)Z has two derivatives, then one has to split it into tangent

part and normal proportional to n.
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Definition 8. The (1,3) spatial Riemannian tensor fields R with respect to the
connection D,, on the hyper-surface Sc is defined by: VX,Y ,Z € I'TjM :

DR(X,Y)Z =DxDyZ — DyDxZ — Dix y1Z € I'T) M (2.53)
In terms of components:

Pre 0,:=D,D,0,— D,D,0, (2.54)

ourv=p

Lemma 2.1.3. The embedded hyper-surfaces {Sc C M, C € R} induces a split of
the image space of the curvature transformation map into tangent part and normal

proportional to m by the following relation: VX,Y ,Z € I'l)\ M :

VR(IX,Y)Z = PR(X,Y)Z+K(Y,Z)Vxn— K(X,Z)Vyn
+[(VxK)(Y,Z)— (VyK)(X, Z)|n (2.55)

Proof. We use the definition of the covariant derivative D,, in the expression (2.53),
we have:
VR(X,Y)Z=VxVyZ-VyVxZ-VixyZ
=Vx(DyZ +K(Y,Z)n) - Vy(DxZ + K(X,Z)n) — Dix.y|Z — K(X,Y], Z)n
= Dnyz — DyDXz — D[X,Y]Z + K(Y, Z)VXTL — K(X, Z)Vyn
+[K(X,DyZ)+ Vx(K(Y,Z)) - K(Y,Dx Z) - Vy(K(X, Z)) - K((X,Y], Z)|n
=P R(X,Y)Z+K(Y,Z)Vxn—K(X,Z)Vyn
+[K(X,VyZ)+ Vx(K(Y,Z)) - K(Y,VxZ) - Vy(K(X, Z)) - K([X,Y], Z)|n
I
where we have used the fact that K(X,DyZ) = K(X,VyZ) because of the
spatial property of the extrinsic curvature. In the last term proportional to n, we
use the Leibniz rule of the covariant derivative V to get a torsion term:
I=K(X,VyZ)+Vx(K(Y,Z2)) - K(Y,VxZ) - Vy(K(X,Z)) - K(X,Y], Z)
= (VXK)(Y7Z) - (VYK)(sz) +K(VT(X7Y)7Z)
——

0

by substituting I in our relation, the formula (2.55) has been proved. ]

Definition 9. The (0,4) Riemannian tensor field ¥ Riem with respect to the

connection V,, on the manifold M and is defined by: VX,Y ,Z, X € I'TM :
VRiem(W,Z,X,Y) :=g(W,\YR(X,Y)Z) (2.56)

In terms of components:

= VRopou (2.57)

Vo o V pA
Riempou == gpx " R i~
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Definition 10. The (0,4) spatial Riemannian tensor fields P Riem with respect to

the connection D,, on the hyper-surface Sc is defined by: VX,Y ,Z, W € I'I) M :
PRiem(W,Z,X)Y) :=gW PR(X,Y)Z) (2.58)

In terms of components:

= "Roow (2.59)

D . D pA
Riempop, = gon " R o

Lemma 2.1.4. The following are hold:
(i) Gauss equation: VXY, Z W € I'T)M :

VRiem(W,Z,X,Y)=PRiem(W,Z,X)Y)

— eK(X, W)K(Y,Z) + eK(Y ,W)K(X, Z)
(2.60)

In terms of components:

hhPhhY Y Ragys = P Ruvpe — €K,p Koo + €K,0 Ko, (2.61)

(7i) Scalar curvature decomposition:
‘R= "Ry e[(trK)? —tr(K o K)] 4+ 2eV - v € C®(M) (2.62)
where v € I'T'M is defined by:
v=V,n—(V-n)n=a—-(V-n)n (2.63)
1R is the scalar curvature of the d-manifold M:
IR = grrg"® VRWM (2.64)
=1 R is the spatial scalar curvature of the hyper-surface Sc:

IR = hh PR pe (2.65)

Proof. A detail proof.
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(i) The Gauss equation is the projecting part of the equation (2.55) into hyper-
surfaces S¢ along the W direction, then we just keep the parallel part of
(2.55) and use the definition of the extrinsic curvature in (2.41), we have:

VRiem(W,Z,X,Y)=g(W Y R(X,Y)Z)
—g(W,PR(X,Y)Z)+gW,Vxn)K(Y,Z) — g(W,Vyn)K(X, Z)
=P Riem(W,Z,X,Y) - g(VxW,n)K(Y,Z)+ g(VyW,n)K (X, Z)
=PRiem(W,Z,X,Y) - eK(X,W)K(Y,Z) +eK(Y,W)K(X,Z) O

(ii) The scalar curvature:

R =g""9" ¥ Ryov
v v o o\ V
= (" + en'n”)(W° + enn?) ¥ Ry ov

= WB7 Y Ry + 26077010 Y Ry
—_—

t1 t2

where in the third step we used the antisymmetry of the Riemann tensor to
eliminate the term quartic in n. Now, we will compute separately each term

in the last step:

t1 = k"R VR
= haﬁhw(haﬂhﬁuhvghég VRP/MV)
= h*PR (PR psp — €K 5K op + €K 5 Kos)

= PR —€[(trK)? — tr(K o K)]
where we have used the Gauss equation (2.61) in the third step.

ty = R ntn” VRPWV
= g7 n"n" ¥ R0
= ¢"n"[V,, V,|n"
= (V") (V,nf) = (V,n?) (V) + V,(nPV 0t — nkV ,n’)

=({trK)? —tr(KoK)+V v
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In the last step, we have used the fact that:

trK = g"K,,
— g‘uy(h/“phVUVpna—)
= h*"V n,

= 9"V, n, — enn’Vn,
—_———
0
_ p
=V,n

and,

tT<K © K) = g'uVKupgpaKau
= ¢ (h,*h, Vany)g” (b, h,Vsng)
= h*Ph°(V ans)(Visng)
= (ho‘ﬁ — enanﬁ)(hws — en7n5)(van7)(v5nﬁ)

= WP (Voan,)(Vsng) — eh®n’ (n'Vn.,)(Vsng)
0
— en®h"(Van,)(nVsng) + n®n® (n?Van, ) (n’Ving)
0 0 0

= (Van”)(Vsn®)

by substituting t; and t; in our expression, the formula (2.62) has been

proved.

2.2 Space-Time Foliation
2.2.1 Space-Time in GR

Definition 11. A topological space (M, J) where M be some set and J is a
collection of subsets of M. Then J C P(M)° is called a topology if it satisfies the

following azxioms:

6P (M) is the power set of M: the set of all subsets of M.
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1. The empty set ) and M itself belong to J :

oM} Ccg (2.66)

2. Any arbitrary (finite or infinite) union of elements of J must still in J :

vC, e T :|JCae T (2.67)

3. The intersection of any finite number of elements of J must still in J :

N
VCiEj,izl,...,NlmCiej (268)
i=1

Definition 12. A topological manifold (M, J,A) is a topological space (M, T)

that locally similar to (homeomorphic to) Euclidean space near to each point:
Vpe M,YU € J Ap €U : 3x € Homeo(U,R?) (2.69)

the pair (U, x) is called a chart of the manifold M. The collection of all charts
(U, x) of the manifold is called atlas A. Thus, A topological manifold (M, T, A)

where (X, J) is a topological space and A is an atlas.

Definition 13. A differentiable manifold (M, J,.A) is a topological manifold
(M, T) equipped with an atlas A in which the transition maps between their charts
are all differentiable. Thus, A differentiable manifold (M, J,.A) is a topological

space (M, J) that locally diffeomorphic to Euclidean space near to each point:
Vpe M,YU € J Ap €U :3x € Diff(UR? (2.70)

Definition 14. A smooth manifold (M, J,A) or C*®-manifold manifold is a
differentiable manifold for which all the transition maps between charts of the atlas
A are smooth. That is:

Vpe M,YU € J Ap €U :3x € C°(U,R?) (2.71)
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Definition 15. A (smooth) Riemannian manifold (M, T, A, g) is a real smooth
manifold (M, T, A) equipped with a smooth inner product g, € T9M (symmetric,
non-degenerate and positive defined) on each tangent space T,M at a point p in

M. More precisely,
Vpe M VXY e TTM :pr— g,(X(p),Y(p) € C°(M) (2.72)

The family of inner products g, at each point p in M is called a Riemannian

metric.

Definition 16. A pseudo-Riemannian manifold (M, T, A,g) is a real smooth
manifold (M, T, A) equipped with a smooth, symmetric and non-degenerate metric
tensor g (it is not necessary positive definite). Such a metric g is called a pseudo-

Riemannian metric. The signature of a pseudo-Riemannian metric g is (p,q)".

Definition 17. A Lorentzian manifold (M, T, A, g) is an important special case
of a pseudo-Riemannian manifold in which the signature of the metric g is (1,d—1)

or equivalently (d — 1,1). Such a metric g is called Lorentzian metric.

Definition 18. In General Relativity, a spacetime is a 4d-Lorentzian manifold

with a metric signature (1,3) = (4, —, —, —) or equivalently (3,1) = (—,+,+,+).

2.2.2 Foliation

In what follows, we are going to split the space-time into "space" and "time', that
is called a foliation. In this framework, a theorem due to Geroch [37] and improved
by Bernal and Sanchez [38] says: if the spacetime M is globally hyperbolic then
it is necessarily to admit smooth space-like Cauchy hyper-surfaces and then it is
diffeomorphic to R x X. This foliation allows us to identify > with “space” and the

real line R with “time”. To be more explicit, let us have the following definitions.

Definition 19. A Cauchy surface is everywhere space-like hyper-surface which is

intersected by every inextensible causal (everywhere time-like) curve exactly once.

"p is the number of positive eigenvalues of g, ¢ is the number of negative eigenvalues of g.
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its significance in accordance with the determinism of classical physics, giving the
initial conditions on this Cauchy hyper-surface determines uniquely the future and
the past with respect to this hyper-surface. Then, Cauchy hyper-surfaces are the
natural subsets where initial conditions to the differential Einstein’s equations are

posed.

Definition 20. In General Relativity, a Globally hyperbolic spacetime is a spacetime

with a certain condition on the causal structure; it admits a Cauchy surface in M.

Theorem 2.2.1. Geroch’s splitting theorem: Let (M, g) be a globally hyperbolic
spacetime. Then (M, g) is strongly causal and there exists a global "time function"

on the manifold, i.e. a continuous, surjective map 7 : M — R such that:

e VO € R: S¢ = preim, (C) C M is a Cauchy hyper-surface.

e T is strictly increasing on any causal curve.

Moreover, all Cauchy hyper-surfaces {Sc} in M are homeomorphic, and M is

homeomorphic to R x ¥ where ¥ is a 3d-space homeomorphic to any Cauchy

hyper-surface Sc of M.

Theorem 2.2.2. Bernal, Sanchez’s splitting theorem: Let (M,g) be a globally
hyperbolic spacetime. Then (M, g) is strongly causal and there exists a global "time

function” on the manifold, i.e. a smooth, surjective map 7 : M — R such that:

e VC € R: S¢ =preim,(C) C M is a smooth Cauchy surface.

e T is strictly increasing on any causal curve.

Moreover, all smooth Cauchy hyper-surfaces {Sc} in M are diffeomorphic, and
M is diffeomorphic to R x 3 where ¥ is a 3d-space diffeomorphic to any smooth

Cauchy hyper-surface Sc of M.
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Having made these definitions, one has to consider the spacetime as a 4d-globaly
hyperbolic space M diffeomorphic to R x X, where ¥ is a fixed 3d-manifold of
arbitrary topology and positive signature and we write M =p;;r R x X. We

define a diffeomorphism foliation map ¢ by:

p:Rx¥—M
(C o) — ¢(C,0) :==ec(0) (2.73)

where {ec}, C € R are arbitrary one-parameter embedding maps family defined

in Eq. (2.1). We consider the coordinates systems {x} and {y} as follows:

RxY -2 M

y=(t,o) | lx (2.74)

RY — R*
zogoy 1

According to theorem 2.2.2; there exist global smooth time functions ¢ and 7 on

the manifolds R x ¥ and M respectively; we have:

R x Y -5 M
N, ST (2.75)
R
where
T=to¢p ! (2.76)

and the function ¢ is just the standard time coordinate on the foliated manifold

R x X. It is defined by:

t:RxXY—R

(C,o) — t(Cyo) :=C (2.77)

This splitting induces a foliation of the origin manifold M into Cauchy hyper-
surfaces (submanifolds) S¢ € M, C € R:

Se={peM|T(p)=Ceto'(p)=CtC M (2.78)
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The foliation (2.73) seems to break diffeomorphism invariance of the theory.
However, this is not the case because we do not fix the foliation map (2.73),

but rather we keep it arbitrary.

Lemma 2.2.3. The freedom in the choice of the foliation is equivalent to the

diffeomorphism group Dif f(M).

Proof. Let ¢ € Dif f(M) be a diffecomorphism between globaly hyperbolic spaces
M and N; we write M =p,; sy N. Then by theorem 2.2.2, one can find foliations

¢1, P2 of M and N respectively to R x 3:

M 5 N
RN

RxX

then for any diffeomorphism ¢ € Dif f(M), there exist two different foliations

¢1, P2, where:

<P:¢20¢f1

Conversely, for any foliation ¢ : R x ¥ — M, there exists a diffeomorphism ¢ = ¢
which is the foliation itself (since any foliation is a diffeomorphism). Thus the

lemma has been proved. O

As a conclusion, a splitting of spacetime is an arbitrary choice; there are lots of
ways to pick a foliation map in Eq. (2.73). These give different way to define a
time function ¢ on the spacetime manifold M. Since the action of general relativity
is diffeomorphism-invariant, it does not depend on this auxiliary foliation (time
function, unit normal vector field) and varying with respect to it leads to the

generators of this invariance group.
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The main idea

View 4d-spacetime (M, g) as history of 3d- space-like spaces (X, q;) where ¢ is
considered as a time parameter. Mathematically, this means that M foliates into
a one-parameter family of hyper-surfaces {S; = €;(X)} by the one-parameter

family embedding maps:
e —>M,telR (2.79)

We shall only consider a restriction of embeddings such that all {S; = e;(X)}
are space-like hyper-surfaces in M, this means we can define a unit time-like

vector field n € I'T'’M normal to S; where:
g(n,n)=—1 (2.80)

In the next, we will keep the €, but remember that we have considered space-like
hyper-surfaces, that is € = —1. The induced metric ¢; of the 3d-space X at time

parameter ¢ is defined by the pull-back map of the metric g by the embedding map e;:
&G = €9 (2.81)

We consider an interpretation of the induced metric ¢; as a time-dependent 3d-
tensor field on the family of the slices {3;} in R x ¥. Then we can store all
topological informations of the manifold (M, g) in the induced metrics {¢:}. In
order to determine the geometry of the full manifold (M, g) one has to know the
geometry of each space-like hyper-surface (S;, hy) with respect to an arbitrary time
evolution vector field 7 € I'T'’M or equivalently, the dynamics of the 3d-space
(3, ¢:) with respect to the standard time evolution vector field t = 9. € I'T(R x X).
The time-dependent 3d-metric ¢; will play a crucial role as the configuration

variables of canonical gravity.
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Time vector field

As previously stated, we need to define a direction of time evolution vector field
7 € I'T'’M. A natural choice will be the push-forward of the coordinate time vector

t= % € I'T(R x X) by the foliation map (2.73), for any p € M, we have:

Ortogpoy ! 0
Tp = Outy1(p) = o G € T,M
y(o~=1(p)) x(p)
0
— M P
=7, (890“) (2.82)
z(p)

Taking into consideration that the foliation map ¢ is arbitrary, then the choice of
the time-evolution vector field 7 is also arbitrary and we conclude that, the
parameter ¢ is not a real time; it is just an evolution parameter (auxiliary
parameter) for studying the system dynamics®. By using the decomposition
rule in 2.1.2, the time evolution vector field 7 can be decomposed into a part

tangent to S; and a normal part proportional to the unit normal n as follows:

o=t + 7l

=Nn + N (2.83)

where N € C*°(M) is called the lapse function and N €
I'TyM is called the shift vector. They are given by the

following relations:

(2 84&) Figure 2.2: Decomposi-
’ tion of the time vector field

N :=eg(T,m)
N -:7D|| T (2 84b) T into parallel N and nor-

mal part Nn at a given
point in the manifold M.

The lapse function (2.84a) is the measured time along the
unit normal n elapsed between two points separated by
a unit one of proper time. The shift vector (2.84b) measures the shift of the

spatial coordinates between two constant hyper-surfaces separated by a unit one

8problem of time: generally covariant theories do not have a notion of a distinguished physical
time. For more details, see ref. [43, 44].
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of proper time. Given a time evolution vector field 7, we interpret any tensor
field T'(x) tangent to the hyper-surfaces {S;,t € R} as a time-dependent tensor
field (¢*T')(t, o) on the 3d-space ¥ with respect to the coordinate time ¢ in the
foliated spacetime R x X; and we also require the time derivative of a spatial
tensor to be a spatial and does not know anything about geometry. Hence, one

has the following definition.

Definition 21. A time derivative of a tensor field T € I'T}"; M is defined to be

spatial part of the Lie derivative along the time-evolution vector field T:
T:=(Pl...Ph.c,T (2.85)

Lemma 2.2.4. There is a relation between extrinsic curvature K and time

derivative of transverse metric h, it is written by:

K = ;eﬁfho: €

N 2N(h — Lnh) (2.86)

Proof. From the lemma 2.1.2, we have:

—€
KHV == 7£nhuy

—€
= 7(npvphw, + h,, V,n’ + h,,V,n’)
-€
2N

—€

= AT nh v
o Fvati
—€

- ﬁ‘CTho,u,ll

(ND)V s+ sV o (N0) 1y, ¥, (N )

since the extrinsic curvature is a spatial tensor field, then one can write:

—€

K =
2N

(h— Lxh)
O

At this point it is useful to pull-back various spatial quantities from the spacetime

manifold M to the abstract space manifold ¥ by using the embedding map
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(2.1), we have:

(e;h)ur(o) = el(t, 0)el (t, 0y (@(0) = qur(t, o) (2.87a)
(¢;N)u(o) = et(t,0)Nu(@(0)) = N,(t, ) (2.87h)
(e;N)(0) = N(ei(o)) =: N(t,0) (2.87c)
(€ K)ulo) = e(t, )¢ (1, 0) K (@(0)) = Kup(t, ) (2.87d)
(

er” Raca(0) = el (t, 0)e; (t, 0)el(t, o) (t, ) Rywpo (2(0)) = Rapealt, 02

where e# is the Jacobian of the embedding map Eq. (2.1), its expression is

defined in Eq. (2.35).

Lemma 2.2.5. The following relations are hold:

() Ka=y N(qab LNGab) (2.88a)
(i1) g" K = ¢ Kuy =: trK (2.88b)
(i11) §" K,upg" Koy = ¢ Koeq™ Kagp =: tr(K o K) (2.88¢)
(iv) W0 P Rypre = ¢4 *Racha =: °R (2.88d)

Proof. A detail proof.
(i) In order to prove the first relation, one has to prove the next statement:
Let ¢ : N — M be a diffeomorphism between two smooth manifolds N .
Then:

VX,Y,Z eTTN, Vw € TTYM : (L, zyw)($:X,6.Y) = (Lz(¢"w))(X,Y)

(Lp.zyw) (9. X, 0.Y)

= (0:2)(w(¢. X, 0.Y)) — w(L(4.2)(0:X), 0. Y ) = w(d. X, Li5. 2)(¢:Y))
= (0. Z2)((¢p"w)(X,Y) 0 67") = w(d(L2X),0.Y) — w(p. X, ¢(L7Y))
= Z((¢"w)(X,Y) 0 ¢ 0 ¢) = (§"w)(Lz X, Y) — (¢"w)(X, LY

In

= (Lz(¢"w))(X,Y)
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In the second step, we have used the relation L, z)(¢.X) = ¢.(LzX)

Vf e CPM) :(Lig.z)(0. X)) [ = [0:Z, 0. X]f
= (0:2)((¢: X)) = (6. X)((¢:2) [)
= (0.2)(X(fo)od™") = (0. X)(Z(fog)o o)
=Z(X(fog)og o) = X(Z(fog)od ' 0¢)

=12, X](f o ¢)
= (LzX)(fo9)
= (¢:(L2 X)) [

Using this statement then the formula in Eq. (2.88a) can be easily proved.
O

(ii) Since the extrinsic curvature is a spatial tensor field, then its trace must be

invariant under the pull-back map e;:
gMVK/W = hMVK,uV = qabegeZK/w = qabKab ]
(iii) Likewise, the trace of the K-quadratic term is also invariant under the
pull-back map e;:
gw/KupgpaKm/ = hij,uphpUKm/ = qabegegK,uqude'gegKm/ = qabKachdeb O
(iv) By the same method, one can prove that the scalar curvature of the embedding
hyper-surface (submanifold) (S;, h) with respect to the connection D, is equal

to the scalar curvature of the abstract 3d-space (X, ¢;) with respect to the

3d-Levi Civita connection V,.
O

Lemma 2.2.6. The infinitesimal invariant interval ds®> can be written in the

foliated spacetime R x X as following:
ds® = (eN? + N,N®)dt* + 2N, dtdo" + qupdodo® (2.89)
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Figure 2.3: Decomposition of the line element da into parallel da!l and normal part Tdt at a
given point in the manifold M.

Proof. First of all, one has to describe the infinitesimal displacement dz* in the

{y} = {t, 0} coordinates system, we have:

oxH ox#
dat = —dt
v ot + do®

= 7' dt + el do”

do®

where 7# are the components of the time-evolution vector field (2.82) and e is
the Jacobian of the embedding map (2.1). Now, we replace it in the infinitesimal

invariant interval as follows:

ds® = Guvdatdz”
= g (THdt + edo®)(t"dt + ey do®)
= g TV dt* + 2g,, T ey dtdo’ + geteldo’do”

= (eN? + N,N®)dt* + 2N,dtdo® + qupdo*dc®
where in the last step we have used the fact that:

G = g (Nn* + N*)(Nn” + N¥) = eN? + N,N¢

14 v 14
guThey = hymey = Nyey = Ny
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Therefore, the metric components on the foliated space R x ¥ are given by using

the pull-back of the foliation map (2.73):

(¢*g)o0 = eN? + N,N“

Summarizing the results of the foliation quantities:

ty = (eN® + gy NN®, 1N, g2a N, 430 N*)

(¢*N)u = (QabNaNba G1aN?, @2a N, %aNa)

(2.90a)
(2.90Db)

(2.90¢)

" = (1,0,0,0)

(¢"N)" = (0,N',N*, N?)

1 —N' —N%? —N3

* — o \W (.
(6"n)u = (eN,0,0,0) 6 = (5 )
; qasN*N® oy N° R
(¢ h)uv = [ ;abNa qbab <¢ h)u ~lo qab
0 0 0 N@
* nwoo__ * [
(¢ h) v Nb 5ab] (¢ h)u - [0 6ba‘|
i € —eN*
* _ €N2+qabNaNb qabNb * v o__ ﬁ N2
(¢ g);w - QabNa ab (¢ g)ﬂ - —ENb b NaNb
] N2 O

Lemma 2.2.7. The invariant volume measure can be pulled-back into the foliated

space as:

d'zy/|g| = dtd’a\/gN

(2.91)

where we have taken that q to be the positive determinant of the induced metric qqp.

Proof. In order to prove this result, one has to use the decomposition of the metric
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into parallel and normal parts, we have:

1
— __  Mopip2p3 Vovivavs
g= 4|6 € GpovoJuiv1 Guava Gusvs

1
— _ Mopip2aps Vovivavs
- 4|6 € (h,uovo + Enuonvo)(hmm + 6nmnl/l)

(hMQVZ + enmn’&)(husw + Enu:snlfs)

1
— __  HOMIM2M3 VOV1V2V3
— € € (Paovo Prssn Pazs Prssos + €000 Py i P )

1
= det(h) + 6560“1“2%60“”21’3(eN)(eN)halbl Poagby Nashs
0

1
2 aiazas bi1bab
- EN ?6 142 36 172 3Qa1b1Qa2bQQQ3b3

= eNyg

As a conclusion of this result, the spacetime geometry of the manifold M that is
described by the 10 metric components g,,, can be viewed in a diffeomorphic way as
spatial geometry of slices {S;,t € R}, encoded by the 6 components of the induced
metric gy, on the abstract 3d-space X together with deformations of neighboring
slices with respect to each other as described by the 4 components N, N¢. The
Einstein’s field equations are really 10 different equations, since there are 10
independent components in the Einstein tensor. We will rewrite these equations in
terms of the induced metric g4, and the extrinsic curvature K, of the slice. In Eq.
(2.88a) we see that the extrinsic curvature can be thought of as representing the
time derivative of the induced metric. Then, in what follows, We shall think of
(qab, Kap) as Cauchy data (initial conditions) for the spacetime dynamics, just as
we think of the vector potential on space and the electric field as Cauchy data for
electromagnetism or the Yang-Mills field. We will see that from the 10 Einstein’s
equations, 4 are constraint equations that the Cauchy data must satisfy, while 6 are
evolutionary equations saying how the induced metric g, changes with time. This

is called the Arnowitt-Deser-Misner, or ADM formulation of general relativity [39].
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2.3 ADM Formalism

Since the Einstein-Hilbert action Sggy is an invariant integral quantity under
diffeomorphism transformation of spacetime, then we are able to write Sgy as an
integral over the foliated spacetime R x ¥. From Egs. (2.62,2.91), the resulting

ADM action Sapy for matter-free gravity can be written as:

1
Sapuldan NN = 7= /R it /Z BoGNPR — (trK)? + tr(K o K)]

- / dtL[Gup, Gas N, N (2.92)
R

up to boundary terms which do not affect local field equations. This action is to
be varied with respect to the 3d-Lorentzian metric g, (¢, o), lapse function N(¢, o)
and shift vector N(t, o) where the extrinsic curvature K, (t, o) to be expressed as
(2.88a). Due to the diffeomorphism invariant of the action, we will expect to have a
constrained Hamiltonian system or gauge system (a system of phase space includes
non-physical variables, gauge variables). In order to deal with these kind of systems,

one has to follow the Dirac-Bergman algorithm [40, 41] and for more details [42].

2.3.1 Legendre transformation

We now wish to cast this action into canonical form, that is, we would like to
perform the Legendre transform from the Lagrangian density appearing in (2.92)
to the corresponding Hamiltonian density: one can write down the conjugate
momenta [p® (o), p(c), p.(a)] to the configuration variables [gu (o), N(o), N%(o)]
respectively. The 20 x oo dimensional kinematical (unconstrained) phase space

I can be then coordinatized as:

I = [4u(0), 7*(a), N(0), p(c), N*(0), pal(r)] (2.93)

The classical canonical algebra of the system is expressed by the only non-

vanishing basic Poisson relations between the configuration variables and their
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conjugate momenta:

{qu(o), p“ (")} = 5(6(165)53(0', o’) (2.94a)
{N(o),p(o")} = &°(0,0") (2.94D)
{N%(o),pp(0”)} = 6;6° (o, 0") (2.94¢)

Observing that the action depends on ¢, via K, while is independent of time

derivative of the remaining spacetime metric components N and N%, we have:

p® (o) = 5@21(;0') = 16\5{361 (K% — tr(K)q™ (2.95a)
oL
plo) = N (o) =0 (2.95b)
oL
Pa(0) = SNe() 0 (2.95¢)

This confirms the status that the lapse function N and shift vector N* as non-
dynamical variables that can be specified as arbitrary functions on R x }; they
are only Lagrange multipliers (similar to Ay in electrodynamics). Since we cannot
express N and N as functions of their momenta, then we have 4 x co® primary

constraints (4 primary constraints for each spatial coordinates points o):

Clo):==p=0 (2.96a)

Cu(o) :=p, =0 (2.96b)

Since the momentum function p® in Eq. (2.95a) can be inverted for the time

derivative of the spatial metric ¢, as:
Gab(0) = 327G N Gopeap™ + 2V (o, Ny (2.97)

Then, the Eqs. (2.96a,2.96b) are the only primary constraints; They define
16 x oo*-dimensional primary constrained surface on the kinematical phase space

I', denoted by I', as:

I, ={I|C(e) =0,C,(e) =0} C T (2.98)
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we will asign the equality on I', by ~. The Hamiltonian treatment of systems
with constraints has been developed by Dirac [40, 41]. According to that theory,
we are supposed to introduce Lagrange multiplier fields (¢, o) and \%(¢, o) for
the primary constraints and to perform the Legendre transform as usual with
respect to the remaining velocities which can be solved for. Following the Dirac

algorithm for expressing the primary Hamiltonian one has:

Hy[qap, p™, N, N%] := /d3 qabp“"+Np +N“pa—£+AC+A“C]
0 0

= d3o-[N(167rGQabcdp“prd — m\fa 3R) — 2¢acN*Vyp™ + AC + Aaoa] (2.99)

1
Gabed(0) = 5—=(Gacvd + Gaadvc — abded) (2.100)

2/

is the (inverse) DeWitt supermetric on the space of 3d-metrics. The DeWitt

supermetric Gobed:
gabcd(a_> — \é_(qacqbd + qadqbc 2qab cd) (2]_0]_)

can be interpreted as a metric on the space of contravariant Lorentzian metrics
and it can define an interval between two infinitesimally separated Lorentzian

metric g, and g + 0qq as:

(0Gab, 0qab) / >0 G qu0qea (2.102)

We now have to ensure the consistency of the constraints, i.e. that they are

preserved by evolution generated by H,:

5H

0~ {C(o),H,} = N (o) = 167G Gapeap™p*® + 1%/% R (2.103a)
5H

0~ {Co(o), Hy} = = 204 Vep" (2.103b)

Ne(o)

Therefore, the primary constraints imply secondary constraints:

H(0; qup, 7] := 167G Gapeap™p™ 18/_G ‘R=0 (2.104a)

Ho(05 qa, p™) 1= —2GacVip™ = 0 (2.104b)
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they are 4 X 00? constraints on the canonical variables (g, (o), p®(or)] and it is called
Hamiltonian (or super-Hamiltonian) constraint H(o; g, p*] and diffeomorphism
(or super-momentum) constraint H,(o; ¢, p®]°. In fact, these are the Lagrange
constraints, and one can obtain it by variation the action with respect to the
Lagrange multipliers N and N*. Now, one has to check consistency for the newly
generated secondary constraints, a non-trivial calculation shows that these Poisson
brackets generate combinations of the secondary constraints and so we do not
have tertiary constraint. The set of 8 x co® constraints (2.96a,2.96b,2.104a,2.104Db)

define the 12 x 0o® constrained surface I'. on the primary surface T, as:
I'.={lH(o) =0,H,(0) =0,C(6) =0,C,(c) =0} CcI', CT (2.105)

from now &~ means equality on I'.. With these definitions (2.104a,2.104b), we see

that the total prime Hamiltonian is a linear combination of constraints
Hylgu, o, N, N AN = [ Po[NH + NH, +XC+X'C,] (2.106)
b

The total Hamiltonian is thus constrained to vanish, this result is in accordance
with general reparametrization invariance. This is in agreement with the fact
that there is no absolute time in general relativity. In addition to the constraints
(2.96a,2.96b,2.104a,2.104b), one has the six dynamical equations; the Hamiltonian

equations of motion for the variables g, p®, The first half,

Gan(0) = {qa(@), Hy } =

(2.107)

can be determined algebraically and it just reproduces the Eq. (2.97). The second
half, yields a lengthy expression:

- al a 6H
p* (o) = {p™(o), Hy} = ~3 -
Gab
VN byed ab _ LOTGN b b
— G 8GNacaca_ IPPCPY _ a0
60"+ 8TGNGaeap™ g 7 (2p"pe — p*'p7)
+ﬂ(vavbj\f—q“bvcvw)+\/avc PN — 2p°®V . NY  (2.108)
167G Va

9Since the constraints expressions are having a locally partial derivative of the canonical fields,
we choose the notation H(o; qab,pab] and H,(o; qab,p“b] to indicate that the constraints are
functionals of the canonical fields gqp, p®® and functions of the spatial point o
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We write only the final equation here (for details of calculation see [35]). Indeed
these equations are not needed for canonical quantization. It is of course needed
for applications of the classical canonical formalism such as gravitational-wave

emission from compact binary objects.

2.3.2 Discussion of the constraints

1. The Hamiltonian constraints has some similarity to the constraint for the
relativistic particle p? + m? = 0. While the diffeomorphism constraints is

similar to Gauss’s law of electrodynamics V - E = 0.

2. The Hamiltonian of general relativity is not a true Hamiltonian but is a
linear combination of constraints. Rather than generating time translations
it generates spacetime diffeomorphisms!’. Since the parameters of these
diffeomorphisms N and N® are completely arbitrary unspecified functions,
the corresponding motions on the phase space have to be interpreted as gauge
transformations. This is quite similar to the gauge motions generated by the

Gauss constraint in Maxwell theory.

3. The Hamilton equations above (2.97) and (2.108) reproduce the projections of
the Einstein equations that are tangent to the hyper-surfaces {S;}. while the
secondary constraints (2.104a) and (2.104b) reproduce the normal projections

of these Einstein equations:
4. The last argument is understood in the following sense:

o If the Lorentzian metric g satisfies the vacuum Einstein equations
Guw(z;9] = 0. Then the family of induced metrics ¢@ = ¢;¢ and

momenta p;, = g—i must satisfy the equations (2.104a,2.104b,2.97,2.108).

» Conversely, if ¢, is a space-like foliation of (M, g) such that the evolution
and constraint equations above hold, then g (which is defined by (2.90))

satisfies the vacuum field equations.

Oproblem of time: generally covariant theories do not have a notion of a distinguished physical
time. For more details, see ref. [43, 44].
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5. In fact one can further show that: the Hamiltonian and diffeomorphism
constraints are satisfied on every Cauchy hype-rsurface S; if and only if the
metric g satisfies the vacuum Einstein equations (the dynamical equations
(2.97,2.108) is guaranteed to satisfy when we impose the secondary constraints

(2.104a,2.104b) at any slice S;).

6. In the terminology of Dirac-Bergman algorithm [40, 41], The primary and
secondary constraints are first class and thus generate gauge transformations
which do not change the physical information in solutions (due to the
reparameterization invariance of coordinates in a generally covariant theory).
The Hamiltonian constraint does this for time, and the diffeomorphism

constraint for spatial coordinates.

7. Counting the number of physical degrees of freedom in the gravitational field:
the kinematical phase space I" has 20 x co® canonical variables. Due to the
presence of the eight constraints (2.96a,2.96b,2.104a,2.104b), 8 x co® have
to be subtracted. The remaining 12 x oo® variables define the constrained
surface I'.. Since the constraints are first class, then it generates 8-parameter
set of gauge transformations on I, then 8 x 0o® degrees of freedom must be
subtracted in order to fix the gauge’. The remaining 4 x co® variables define
the reduced phase space I'; = I'j5ys and correspond to 2 degrees of freedom
at each coordinate point o in configuration space. This result agrees with
the linear field analysis, which shows that the gravitational wave propagating
on a fixed background spacetime has two degrees of freedom (the two circular

polarisations of a gravitational wave; the two helicity states of a graviton).

8. The lapse function N and shift vector N play the role of Lagrange multipliers
of secondary constraints. Thus, it is therefore completely straightforward
to impose the primary first class constraints (2.96a,2.96b), before solving
the dynamical equations of motion (2.97,2.108). To do so, we process their

gauge orbits by fixing the phase space independent functions N and N¢
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on the spatial manifold (the gauge fixing function must has at least one
non-vanishing Poisson bracket with the primary constraints), after that,
we can say that N and N* aren’t dynamical variables. We define a new
constrained Hamiltonian system called the Arnowitt - Deser - Misner (ADM)
system, with the 12 x co® dimensional phase space I'spys that is canonically

coordinatized by:

Capar = [qus(0), p®(0)] (2.109)

and an evolution ADM Hamiltonian H4p,; defined by:
HADM[C]ab,pab] = / d30'[NH+ N°H,| (2.110)
b

In this theory the lapse and shift are viewed as fixed phase space independent
functions on the spatial manifold. The resulting ADM action Sspys defined
by:

S apn (G 9] = /E Bolgup™ — NH — N°H,] (2.111)

The secondary constraints (2.104a,2.104b) define a 8 x oo dimensional constrained

surface I"'spps. on the ADM phase space I'spys as:
Capyve=Tapu N{H(o) =0,H,(6) =0} C Tapn (2.112)

and we assign ~ to be an equality on I'4pps.. From now on, we work on the

constrained surface I's4pase.

2.3.3 The Constraints algebra analysis

The classical canonical algebra of the system is expressed by the only non-vanishing

basic Poisson brackets:

{qu (), p (")} = 5fa6g)53(0', o') (2.113a)
{4ca(0), qap(0")} = 0 (2.113b)
{p”(0),p™(0)} =0 (2.113¢)
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We now state and discuss the Poisson algebra formed by H and H,, a crucial
property of the canonical formalism is the closure of the Poisson brackets of
the super-Hamiltonian and supermomentum, by using (2.113) one can show the
constraints are first class. Explicit calculations for the Poisson brackets gives
the fundamental relations: From there we can evaluate the following brackets

among the constraints:

{H,(0), Hy(o")} = H,(0")06° (0, 0") — Hy(0)D,0%(o, o) (2.114a)

{H,(0),H(c")} = H(0)0,0°(0,0") (2.114b)

{H(c),H (")} = ¢®(0)H,(0)9,6°(0,0") — ¢** (6" ) H,(6")D,0% (o, 67)  (2.114c)
Notice that the right-hand sides vanish on the constrained surface I'4pps.. This
means that the Poisson flows generated by the constraints tangent to the constrained
surface I"g4pye. Constraints with this characteristic are said to be first class, as
opposed to second class constraints whose Poisson brackets do not vanish on-
shell. First class constraints generate gauge transformations on the constraint

surface: To see what the gauge transformations look like in our case, consider

the smearing of the constraints'!

H[y] = /Z Boy(e)H (o) (2.115a)
Hlx] = /E By (o) Ha(o) (2.115b)

where y and x are any scalar function and 3d-vector field on 3, respectively.

An explicit computation shows that:

{H[x], dar(0)} = Lxqar(o) (2.116a)
{H[x],p"(0)} = Lyp™(0) (2.116b)

which means that the vector constraint is the generator of space-diffeomorphism on

Y. The situation is somewhat subtler for the Hamiltonian constraint. We have:

{H[x]; 4ar(0)} = Lixn)Gas(0) (2.117a)

1
{H[x],p" (o)} = Lynyp™ (o) + 5qabXH +2xv/40"" 7" R4 (2.117b)

" The integrals are well-defined since both H and H, are +1 densities on X.
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The first bracket is the action of time diffeomorphisms on ¢,,. The second bracket
gives the action of time diffeomorphisms on p®, but contains also two extra pieces.
These vanish if H = 0 and R.; = 0, namely on the constrained surface I"apas.

12 Therefore, we conclude that the Hamiltonian and

and for physical solutions
diffeomorphic constraints are the generators of the spacetime diffeomorphism group
Dif f(M) on physical configurations. For general configurations, they define the
algebra of hyper-surface deformations, often called Dirac algebra or Bargmann-

Komar algebra is given using the smeared variables:

{H[xal, H{xz2]} = H[Lx, X2] (2.118a)
{H[x], H[x]} = H[Lxx] (2.118b)
{H[x1], H[x2]} = H|¢" (x1dx2 — x2dx1)] (2.118¢)

Two important things should be noted about the Dirac algebra:

« The sub-Dirac algebra consists of the Poisson bracket (2.118a) is a Lie algebra
and is isomorphic to the Lie algebra of Dif f(X).

o The structure constants on the right-hand side of Eq. (2.118¢) contain the
sharp map ¢* (the inverse of 3d-metric ¢?°); hence they are not constants at
all. It means that, unlike Dif f(M), the Dirach algebra is not a genuine Lie

algebra even though this was the invariance group of the original theory.

Even though the Dirac algebra is not a genuine Lie algebra, it still generates gauge
transformations on the canonical variables [qq (o), p? ()] sited on the constrained

surface I spasre; it is obtained by integrating the infinitesimal changes of the form:

Oy xab(0) = {qar(0), H[x] + H[x]} (2.119a)

Ox™(e) == {p™ (o), H[x] + H[x]} (2.119b)

for arbitrary infinitesimal smearing functions x and 3d-vector fields x, where

Qap, p?° must satisfy the secondary constraints (2.104a,2.104b). We shall refer to

2recall that in vacuum Einstein’s equations for physical solutions read: R,, =0
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the set of all such trajectories generated by (2.119) in the phase space I apase
as the gauge orbits of the Dirac algebra. A peculiar feature of general relativity
is that an orbit on the constraint surface includes the dynamical evolution of a
pair [qu (o), p®(o)] with respect to any choice of lapse function and shift vector.
Indeed, the dynamical equations (2.97) and (2.108) are simply a special case of
the transformations above when we consider the functions y and x are the lapse

N and the shift vector N respectively.

Definition 22. The phase space function O : U'apye — R is said to be an

observable if and only if O is a gauge invariant, that is:
{0, H[x] + H[x]} = 0 (2.120)
for all functions x and 3d-vector fields x

Notice that the basic variables of the theory, g, and p® are not observables of

the theory because they are not gauge invariant.

2.4 Palatini Formulation (First Order Formula-
tion of GR)

For certain purposes, it can be useful to put an action leading to 2"¢ order differential
equations into 1% order form by the introduction of some auxiliary variables, it
was first considered by Palatini [45]. It is worth to mention that a metric g,
and a connection f‘fw are independent concepts, and that the notion of curvature

(curvature, Ricci and Riemann tensors) can be defined for an arbitrary connection

R, [T =007, -0, + 15,10, —T4,17, (2.121a)
R, =6R,, [ =R, (2.121D)
Rg,I] = g" Ry, [T (2.121c)

General relativity employs and is formulated in terms of the canonical Levi-Civita
connection described by the unique Christoffel symbols f‘ﬁy =17 lg] by the fact

ju

that the connection is compatible with the metric and has no torsion:
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1. Compatibility condition: the metric is covariantly constant: V,g,, =0

p pu—

2. Torsion free condition: the torsion tensor is is everywhere zero: T), = 2I'

0

It is thus easy to come up with various generalizations of general relativity in
which these requirements are relaxed. It is of course possible to relax either of
the conditions (1) or (2), (not both of them!) and nevertheless reproduce general
relativity by treating the connection and metric as independent variables. In
particular, connections with torsion (relaxation of condition 2) are popular in
certain circles and arise naturally in certain generalized gauge theories of gravity
and in string theory. To discuss this a bit more systematically, we consider a

general connection:
Iy, = Fﬁy[g] +C7, (2.122)

with I'", is the Levi-Civita connection, and C*, is a (1, 2)-tensor field (because it
is a difference between two connection). We will also use the corresponding

(0,3)-tensor field as:
Cor = GpeC3, (2.123)

Introducing the covariant derivative V, associated with ffw. Since f‘ﬁy will in
general not be symmetric in its lower indices, in this section we need to be
particularly careful with the ordering of the lower indices in the covariant derivative.
We will choose the convention that the last index always refers to the direction

along which one is differentiating, i.e
V,VP=0,VP+ 10,V (2.124)

The reason for this choice is that one should think of the collection of connection
objects ffw as the coefficients of a matrix-valued 1-form fﬁ = fﬁydx”. The
conditions on the arbitrary C,,, must be imposed to satisfy the conditions (1)

and (2) are given as follos:
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1. The non-metricity tensor Q.

vpg#l/ = _Q,pr = Q,uzxp = QWCLT,, + guoagp = 2C(uy)p (2125)

The connection is compatible with the metric if and only if C'uvp is anti-

symmetric in its first two indices.
2. The torsion tensor Tlfyz

0, =210, = Th, = 2C7,, (2.126)

The torsion is zero if and only if C%, is symmetric in its lower indices. (or

equivalently, if C,,, is symmetric in its last two indices).
In particular, if the torsion is zero and the connection is metric-compatible, one has:
Copw =0 (2.127)
and the connection f‘ZV in (2.122) will be then the Levi-Civita connection.

Specifically, we will consider an action of the generalised Einstein-Hilbert like form

in the absence of the coupling of the metric (gravity) to other fields:

1
167G

/M e/ —gR[g, T (2.128)

S[gu I%,] =

From now, we treat g,, and f‘fw as independent variables. Since R]g, f‘} depend only
on first derivative of the connection, then the Lagrangian density depends purely
algebraically on the metric and the connection, and on at most 1% derivatives of
the connection (it is a first order formulation). It remains to look at the equations
of motion imposed by stationarity of the action with respect to variations of g,,
and f‘fwz

Variation the action over the metric g,,:

3 1 .
0,5=04G,lg. 1 =R, — §gw,R[g, [N=0 (2.129)
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These are, however, not yet the vacuum Einstein equations because the independent
connection I'f, is not the Levi-Civita connection.

Variation the action over the connection f‘ZV:
S =0& (g"Co — CHP — C"F + ¢g"PC" )6C,,, =0 (2.130)

However, these equations do not determine the C, uniquely (we will explicitly
parameterize this non-uniqueness below), and hence in this case the Einstein-Hilbert-
like action (2.129) alone does not give rise to acceptable equations of motion for
the fields. The situation changes if one imposes some a priori constraints on the
allowed f‘ﬁy and hence on their variations 0C,,,. We now consider separately

the two cases mentioned above:

. fﬁy are restricted to be torsion-free: In terms of the coefficients C',, this
amounts to the condition C,,, = C)) and the same condition should be
imposed on their variations in (2.130). Thus, by manipulating appropriately
the resulted equation (2.130), we obtain the non-metricity tensor to be vanish
Quvp = 0 i.e. that the connection is compatible with the metric. Then we

started off with a torsion-free connection and the f‘ﬁy—equations of motion fix

the connection fﬁy to be the Levi-Civita connection.

. fﬁy are restricted to be compatible with the metric: In terms of the coefficients

Ccr

£, this amounts to the condition C,,, = C|p,), the same condition should be

imposed on their variations in (2.130). Thus, by manipulating appropriately

the resulted equation (2.130), we obtain the torsion-free condition C,,, =

C

w(uv)- Since we started off with metric-compatible connection, this means

that the f‘ﬁy—equations of motion fix the connection fﬁy to be the Levi-Civita

connection.
This concludes the proof of the following assertion:

Theorem 2.4.1. Palatini principle:
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e If we choose the connections to be torsion-free and imposes the fﬁy-equations
of motion, then the connections are forced to be also compatible with the

metric and thus ffw is uniquely determined to be the Levi-Civita connection.

e if we choose the connections to be compatible with the metric and imposes the
fﬁy—equations of motion, then the connections are forced to be also torsion-free

and thus fﬁy is uniquely determined to be the Levi-Civita connection.

2.5 Tetradic Palatini Formulation

The tetradic Palatini action for general relativity, is simply the Einstein-Hilbert
action rewritten so that it is not a function of metric g,, but instead a function of
a connection so(1, 3)-value connection wuf ; and a frame field e;. This formalism

provides first-order field equations for general relativity.

2.5.1 A tetrad (vierbein, frame field)

A frame field (tetrad) provides a way to specify geometries alternative but equivalent
to metrics or line elements. It can be viewed as a set of 4-orthonormal basis vector

fields {e; € I'TM, I =0,1,2,3}. At each point p € M, we have:

gler(p),es(p)) = n1s (2.131)

where [n;;] = diag[—1,1,1,1] , and the frame field e; can be linearly written in

terms of the induced coordinate basis 9, as:
er = €0, (2.132)

where ef is the tetrad components (it is often called tetrad). Introducing the co-

tetrad fields {e! € TT*M,I =0,1,2,3| e!(es) = 6} as the dual of the tetrad e; as:
' = el dat (2.133)

where ei is the co-tetrad components (it is often called co-tetrad). The tetrad can

also be physically understood as describing the frame of reference of an inertial
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observer, who in a sufficiently small region recovers, by the equivalence principle,
special relativity. More formally one can define a tetrad as a vector bundle
isomorphism e between a local trivialization M x R3! and the tangent bundle of

spacetime T'M, i.e., one has to trivialise the tangent bundle into a vector bundle as:
e: MxR¥ — TM (2.134)

where R3! represents Minkowski spacetime equipped with a metric 7. If one
chooses a set of 4-orthonormal basis vectors {£; € R* T = 0,1,2,3} on the

Minkowski space R*!, such that:

n(€r, &) = n1s (2.135)

At each point p € M, the trivialization map (2.134) must send the orthonormal
basis & of R*! to the orthonormal basis e;(p) of T,M as:

e(p,&1) = er(p) (2.136)

Therefore, the trivialization map (2.134) sends a copy of Minkowski space R3!

at each point p of M to tangent space 1, M at p:

e: {p} x R¥ — T, M

(p, U;{&) — e(p, U;{f]) = U;;el(p) = U Ol (2.137)
where
vk = e (p)v] (2.138)

The idea of Palatini formalism is to do a lot of work on the trivial bundle M x R31!,
which serves as a kind of substitute for the tangent bundle 7M. This approach
makes contact with the mathematical formalism of classical gauge and matter
fields, which are described by principal and associated vector fibre bundles. In
this way one views the copy of Minkowski spacetime as an internal space in the
same way that one views either the gauge group G or its representation space

as an internal space in Yang-Mills matter theory. As usual, we shall use Greek
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letters p, v, p, ... to denote spacetime indices and capital Latin letters I, J, K, ... to
denote the internal Minkowski space indices. All spacetime indices can be lowered
or raised only with the spacetime metric g,, and its inverse g"” respectively, and
similarly one can lower and raise Minkowski (internal space) indices only with 77,

and 7!/ respectively.

In terms of components, the orthogonality of the tetrad is written by:

Gun€r€ = M1 (2.139)

Since the trivialization map (2.134) has considered to be inverted, one obtains:

nueiei = g (2.140)

It is clear from (2.140) that the knowledge of the co-tetrad field can determined
uniquely the spacetime metric. However, the converse is not true; there are an
infinity of co-tetrad fields satisfying (2.140), all related to each other by local

Lorentz transformations, i.e for any A € SO(3,1) we have:
ei — eﬁ = A%ef (2.141)
if e}, satisfies the equation (2.140), then /] will also check:

enelny = el el [Aﬁ IWIJAJL} = el elnkL = G (2.142)
using the invariance of the Minkowski metric under Lorentz transformations. Thus
the local Lorentz transformations are to be interpreted as gauge in this formalism;
this can be seen from the number of independent components in the frame field, the
spacetime metric has 10 such components whereas the tetrad has 16 components,

the difference 6 corresponds to the dimension of the Lorentz group SO(3,1).
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2.5.2 Connections via tetrads

Beside the frame fields, the other structure we need in the Palatini formalism is
the connection on the local trivialization M x R*! as with any vector bundle one
cannot define differentiation without this additional structure, and in general the
connection will be an so(3, 1) algebra - value spacetime 1-form w} = w,/ ;dz*, it is
called Lorentz connection. As in the tangent bundle 7'M, we define the connection
to be the amount of changing the vector basis under a parallel translation, or
formally the connection represents the change in the frame axis (horizontal space)
of the principal GL(4,R)-bundle fiber bundle. Then, define the gi(4, R)-value
1-form connection I, = f‘,’jud:c“ in the frame bundle LM (principal GL(4, R)-
bundle) and the so(3,1)-value 1-form connection w’} = w} dz* in the principal

SO(3,1)-bundle (Lorentz bundle). They defined by:

Ouer =T, e, (2.143a)
ouer = wIJHeJ (2.143b)

where e, = 0, is the induced coordinates basis and e; is the orthonormal frame
basis, we have placed a tilde on the spacetime connection to distinguish it from
the Levi-Civita connection. We may define the action of these connections fﬁ and

w} by defining the covariant derivatives @# and Du respectively,

V= 0,0 + fpwv” (2.144a)
D' =0,0" + wIJM'UJ (2.144b)
They have to be linear by addition over tensors of the same order and satisfy

the Leibniz rule. From (2.143b) one can easily get an expression between the

two connections:

wIJu = el{@#ef’, = ef)ff’wel} + ei@ueﬁ (2.145a)

Conversely, can also see:
o e I _p, I J P I
[%,, = erDyue, = efw’ ; e, + efdue, (2.146)
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e One can consider the trivialization as a basis transformation by the Jacobian
matrix e = [ef]. Indeed, it is not induced by a coordinates transformation

and then the connection I', transforms to w} as:

w=eTe+elde (2.147)

« One can easily check the covariance of the covariant derivative D with respect

the basis transformation e

2 I... 1y 5 . Im 11 L pln = U1 e o,
DMT Jrdn T eul epmejl ejnv,uT V1...Un (2148)

where T € I'T)" M are arbitrary tensor field which can be written in the

tangent space basis or in the orthonormal frame basis:

Il---I‘"L _ 11 R Im 141 .. Un 1. b
T Ji..dn T eMl eﬂmejl ejnT Vi...Un (2149)

o In general, the Lorentz connection w} depends linearly on the connection f‘ﬁ

and quadratically on the frame field e;:

w=w(T,e) (2.150)

o If we impose the compatibility and the torsion free conditions, then the
connection fﬁ will be the Levi-Civita connection I'/, that is a function on
the metric and then the frame field, I'), = I, (g) = I'/(e). This induces a

connection w} = T’} that is a function only on the frame field, '} = T'(e)

2.5.3 Spin connection

It is useful to define tetrad-compatible connection called spin connection by defining
a new covariant derivative f)ﬂ on mixed tensor indices (the tangent space and
the Minkowski indices) which parallel transport the tangent space component by
contracting them with the I'” connection and the Minkowski component by the
w? connection. It has to be linear by addition over tensors of the same order and
satisfies the Leibniz rule. One can easily show that 75“ is really a tetrad compatible

connection and the same thing for the tetrad:

D,ey =0 (2.151)
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2.5.4 Torsion and Curvature

The torsion components of the induced connection T;fu is defined by:

T!, = e Tr, =2Dye] (2.152)

p v v]

where 7% is the torsion components tensor and one can then express this using

differential forms as:
T! = De! (2.153)

where T = %Tlfydx“ A dx” is a torsion represented by an R*!-valued 2-form, D is
the exterior covariant derivative with respect to the Lorentz connection wy .

The final result we need action is the relation between the curvature on the
Minkowski vector bundle and the spacetime curvature. First the internal curvature

two form F}/[w] is defined by:

[Dy., D" = F'; v’ (2.154)

I

where v' is an arbitrary Lorentz vector and F ;{13] [w] can be expressed in terms

of the Lorentz connection coefficients as:
F/fy‘][w] = Jwl’ — &,wi‘] + [w,, w, ] (2.155)
we may express this relation using differential forms as:
FY = dw' 4+ w'p AN w™7 (2.156)

where F'7 = JF!Jdxt A dz” is a curvature represented by an so(3,1)-valued 2-
form. Second recall that the spacetime Riemann tensor 17, [e, w] of the covariant

derivative @u with nonzero torsion is defined by:
[V, V,Jof = R, 07— Tiyﬁgv" (2.157)

for an arbitrary spacetime vector v”. using the abstract definition for the induced

connection in (2.148) one can deduce:

[V, Vo = e';F[JWegv” — Tlf,/@gvp (2.158)
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and hence one can get from (2.157) and (2.158):

RP

UHV[

e,w] = efF, [wlel (2.159)

Juv o

Using this relation one can express the spacetime curvature Ricci tensor and scalar
in terms of contractions of the internal curvature and tetrad as:

The Ricci tensor:

Royle,w] = eF", ) [wle] (2.160)
The scalar curvature:
Rle,w] = efe} Fl [w] (2.161)

2.5.5 The compatibility and the torsion free conditions:

1. Compatibility condition: according to (2.148) and (2.149), we have:
Vogw =0 Dy =0 (2.162)

Using the definition of the covariant derivative D, in (2.144b), the last
equation becomes:

W1y =0 (2.163)

where wy; = 1y Kw’f], then the Lorentz connection w;; must be antisymmetric
in their internal indices which agree with the fact that wy; is an so(3,1)-
valued one-form. Therefore, the compatibility condition imposed by itself and
doesn’t give new constraints, for this reason we will consider the connection
in the Palatini formalism to be compatibile with the metric rather than the

torsion free condition.
2. Torsion free condition: from Eq. (2.146), one has:

Tﬁy =217

(= 0& T, :=2Dyel =0 (2.164)

fact we shall see that in the Palatini action the torsion free condition 77 = 0

one of the Euler Lagrange equations derived from it.
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2.5.6 The tetradic-Palatini action

We can now write down the tetradic-Palatini action, which is just the first order form
of Einstein Hilbert action, but with the Lorentz connection and tetrad independent
variables; one has from (2.140) that \/—g = [e[, where e = det[e]] is the determinent
of the co-tetrad ei. The tetradic Palatini action is defined by using the scalar

curvature in Eq. (2.161) and cancel the sign of the determinant e, we obtain:

1
167G

S;_ple,w] = /M d*z eeffe FL e, w] (2.165)

where the action is a functional of both the co-tetrad efb and the Lorentz connection
wgﬂ. We now compute the equations of motion for this action:

Variation the action over the co-tetrad el{:

0Si-p=0%& Gi[e,w] = e’ (Rw,[e, w] — ;gu,,R[e, w]) =0 (2.166)

Then variation of the tetradic Palatini action with respect to the co-tetrad eﬁ gives
the (mixed index) Einstein tensor Glﬂ to be zero. Since the tetrad is invertible,

then multiplying both side of the equation (2.166) by the co-tetrad e,;, we get:
1
Guwle,w) = Ry le, w] — §9WR[€7 w| =0 (2.167)

which of course would be Einstein’s equations if our induced connection were
torsion free.

Variation the action over the co-tetrad wfm:
0uSi—p =0 D, (eef'e]) =0 (2.168)

where we have dropped the boundary term. We can prove that the equation of

motion derived from the variation with respect to the connection is equivalent to:
Dyely =0 (2.169)

which is the torsion free condition, then we conclude that the Lorentz connection

can be uniquely determined by the tetrad and we write w/’;‘] = Ff;] where F,ﬂj is
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the internal Christoffel symbol associated to D, also the generalized derivative
operator Du must agree with D,. The torsion free condition now implies the
induced spacetime connection is the unique Levi-Civita connection and hence that

Eq. (2.167) is now equivalent to Einstein’s equations in vacuum.

Before we discuss the Hamiltonian analysis of tetrad Palatini action we should like

to make some remarks concerning the tetradic Palatini formalism, described here:

e The Palatini formalism is often called first order because the equations of
motion only involve first order derivatives of the dynamical variables in
contrast to the Einstein Hilbert action where e.g. the Ricci tensor involves

second order derivatives of the metric.

o The following identity:

g0 1
ee[]“eJ] = Ze”pp"eUKLefe{; (2.170)
allows us to re-write the tetradic Palatini action as an integral of a four form

as:

1
Si_ple,w] = 327TG/M erixre’ Ael A FEL e ] (2.171)

the co-tetrad el is defined in (2.133) and the 2-form curvature tensor F/ is

written by its spacetime components as:

1
FY = 5F/{;] dz" A dx” (2.172)

e The third point we wish to make regards matter coupling in the Palatini
formalism, all matter types may be coupled to this action including fermionic
matter. Indeed as we mentioned earlier in section 3.4 only the tetrad
formalism may be used to describe fermionic degrees of freedom. However,
one can simply re-write the Einstein Hilbert action directly in terms of a

tetrad basis but where the connection is fixed and non-dynamical such that
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it induces the Levi-Civita connection and in this case one can describe all

matter degrees of freedom, i.e one have:

1
Senle] = e /M d*z eefel FLle] (2.173)

However, in the Palatini formalism the connection is dynamical and this
leads to a nonequivalence in the dynamics for fermions coupled to gravity.
This non-equivalence appears because in order to write down a covariant
derivative for fermions one must use the Lorentz connection and then one

has, in this formalism, a fermionic standard model action term of the form:

SF[€7 w, A7 (bv ?/1] = /M d4$ € {@716?(8/”# + wJK,uL?w + AZL(W)
+Y (6,0, 9)| +ce. (2174)

where ¢ is scalar field, A} is a Yang Mills field with gauge group Lie algebra
a, 1 is a Dirac spinor,y! are the Gamma matrices, L;;, L, are representation
matrices of the Lorentz and Yang Mills gauge group G up which act upon the
representation space 1, and finally Y'(¢,,) is a polynomial interaction which
will include the mass term for the fermion field after symmetry breaking. The
term 0,1 + wJKuL§< Y+ Af Ly can be viewed as a generalised covariant derivative
acting upon the group SO(3,1) x G. When one performs a variation with respect

to the Lorentz connection in this term there will be a non-zero contribution:

0S —
5wa = ey Kel Ly (2.175)

m

which contributes to the torsion 77 and hence one finds that the spacetime
connection on shell is no longer Levi-Civita but will have a non-zero torsion.
Hence in the presence of fermions the second order and first order theories are
inequivalent; we do not know which one is physically correct, because the effect of
gravity on single fermions is hard to measure. Finally we consider the Legendre
transform of these tetrad formulations of gravity. The Hamiltonian formulation

of the tetrad version of the Einstein Hilbert action , is derived in detail and the
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result is a first class Hamiltonian system. The configuration variable is a triad e
where a = 1,2,3 is the spatial index on ¥ and i = 1,2, 3 is an SO(3) index, where,

in analogy with the tetrad, the triad is an orthonormal frame which satisfies.

2.6 Hamiltonian Analysis of Tetrad Palatini For-
mulation

For the Hamiltonian formulation we proceed as before, assuming a 3 + 1 splitting
of the spacetime (M = R x ¥) with coordinates (¢,0). We introduce the lapse
function and the shift vector (N, N*) as in the ADM decomposition of the metric
in (2.84a,2.84b).

2.6.1 triad, co-triad

It is easy to see that the tetrad e} and the co-tetrad eﬁ for the ADM metric is

projected out to £} and Sl{ respectively by:

&l = hbell = el + nfng (2.176a)
S/f = h/’:ez{ = ei +n'n, (2.176b)

where n; = n,e¥ and n! = eln”. . Immediately one can deduce that:

Efn,=0 &n'=0 En"=0 &En =0 (2.177a)
&Ny = EFEWMYT =h EFEL =Dl (2.177b)
EEIN =h ELE N, = by EFE] = hi (2.177c¢)

where hy; is the internal transverse metric, or internal projector; it is defined by:
h[J:U[J—i-n[n] (2178)

and hence we view &' as a degenerate tetrad corresponds to the degenerate
transverse metric hy,,. If we pull-back these quantities from the tangent bundle

spacetime 7'M to the tangent bundle of the foliated spactime T'(R x ¥) by using the
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pull-back of the foliation map (2.73), one can obtain a non-degenerate quantities

E¢ El a =1,2,3 called triad and co-triad respectively, which are,

E = elEl , El=elel (2.179)

One can see from that:
Séé'gjnu = Qup E“Sb 1) — gob 5}16})} =0y (2.180a)
Elé'J ab — plJ nggqab = hry 8}18‘] h‘] (2.180Db)

and hence we view the triad £ a non-degenerate tetrad corresponds to the non-

degenerate induced metric qgp.

2.6.2 Hamiltonian Analysis

Using the splitting (2.176a) and the definition of time vector field 7 in Eq. (2.83),

one can express the tetradic Palatini action (2.165) as:

- 167G
St_p[é’,w]:/Md%[aﬂET’wi‘]%—T”wi‘]DyaU N”aIJFIJ+N T okt FU}
(2.181)
where
v Vi
afy(0) = Yo & (2.182)

and we have used the fact that the co-tetrad determinant e = N,/q. Since a7,
and N* are spatial vector fields, one can hence pull-back all the integral in (2.181)

from the our originial spacetime M to the foliated spacetime R x ¥ as:

Si—pl€,w] /dt/d3 o|af il —i—wOJD al; — N“&UFQII;]—l—Na?La%JF;,;]]

— / dt Lo_plw!, il wl’, N, NY| (2.183)

167G

where we have taken the change of variable N = N T we have also introduced:

ag; (o) = 2Efn, (2.184)

61



Chapter 2. The Hamiltonian Formulations of General Relativity

and the densitized triad EY is defined by:

o _ VT
E? = 2.1

By comparison with the ADM formulation, we expect that the coefficients of N,
N® and w{’ will form the Hamiltonian, diffeomorphism and 6 new constraints
respectively. We now wish to cast this action into canonical form, that is, we would
like to perform the Legendre transform from the Lagrangian density appearing in
Eq. (2.238) to the corresponding Hamiltonian density: one can write down the
conjugate momenta [I1,(o),I1;;(0),p(o), pa(o)] to the configuration variables

1J

M), wl’ (a), N(e), N*()] respectively. The 56 x 0o? dimensional kinematical

[w

(unconstrained) phase space I' can be then coordinatized as:

[ = [w,”(0),117,(0), wy’ (o), 1s(0), N (), p(e), N%(0), pa(e)]  (2.186)

a

The symplectic structure is expressed by the only non-vanishing basic Poisson

bracket relations between the configuration variables and their conjugate momenta:

{wl (o), T (0")} = 6x67,006% (0, &) (2.187a)
{wg”(0), Ikr(0")} = 0[5 07)0% (0, o) (2.187b)
{N(o),p(0")} = 6*(c,0") (2.187¢)
{N(0),p(a")} = 6;0°(0. o) (2.187d)

Observing that the action in (2.238) is in standard canonical form [ p¢ — H and

therefore we can read off the conjugate momenta to the configuration variables:

¢,(o) = % = a%,(o) (2.188a)

(o) = (% =0 (2.188b)

plo) = ;]gt(; =0 (2.188¢)
oLip

Pa(0) = N(o) 0 (2.188d)
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This confirms the status that the lapse function N, shift vector N* and the time
components of the Lorentz connection wf’ are non-dynamical variables that can
be specified as arbitrary functions on R x ¥; they are only Lagrange multipliers.

Since we cannot express w?¢;, wl’, N and N® as functions of their momenta, then

we have the following constraints in I':

Crs(o) =17, —aj; =0 (
C[J(O') = H[JZO (2189b
Clo):=p=0 (2.189¢

Co(o) :=pa =0 (2.189d

Clearly the last three equations being identically zero correspond to primary
independent constraints. However, in addition the parameteric equations (2.189a)

3 constraints because 119, has 18 x 0o® independent components

describes 6 x 0o
whereas a4 ; has 12 x 0o® such components (from Eq. (2.184), a4, contains 3 x 003
of the unit normal n; and 9 x 0o® of the triad £¢). Hence one expects Eq. (2.189a)

to be equivalent to following six constraints dor each coordinates points o:

C®o) = 7KLY 05, =0 (2.190a)

tr(* - T1°) > 0 (2.190b)

Then, the Eqgs. (2.189b,2.189¢,2.189d,2.190) are the 16 x oo® primary constraints;
They define 40 x co® dimensional "primary" constrained surface on the kinematical

phase space I', denoted by I', as:
I, :={T|C®@a) =0,C1;(0) =0,C(c) =0,C,(c) =0} C T (2.191)

we will asign the equality on I'), by ~. The Hamiltonian treatment of systems with
constraints has been developed by the well-known Dirac algorithm. According
to that theory, we are supposed to introduce Lagrange multiplier fields Ay (t, o),
M7 (t, o), Mt, o) and \%(t,o) for the primary constraints and to perform the

Legendre transform as usual with respect to the remaining velocities which
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can be solved for. Following the Dirac algorithm for expressing the primary

Hamiltonian one has:

Hy[w! 118, wi? N, N .= H + / BoPpC® + MOy + O+ A0, (2.192)
b

where H is the canonical Hamiltonian:
H:— /E Lo| — wl D13, + NI, FY — N1GHI, B (2.193)

We now have to ensure the consistency of the primary constraints, i.e. that they

are preserved by evolution generated by H,. Therefore, the primary constraints

3

imply 16 X oo” secondary constraints:

0~ {C®), H,} & x*(o;w!’ 11}, := ELTIMTe DI, ~ (2.194a)
0~ {Crs(0), H)} & Gry(o;wl? 119, .= —D,I1%, =~ 0 (2.194b)
0~ {C(o),H,} & H(o;wl’ 19,] := 1114 , FY ~ (2.194c)
0~ {Cu(o), H,} & Hy(o;wl’ 19, =115, FY ~ 0 (2.194d)

they are polynomial constraints on the canonical variables [w!/ (o), 11%,(o)] and
they are called Hamiltonian constraint H, diffiomorphism constraint H, and
the new 6-constraints Gy are the Gauss constraint corresponds to the internal
symmetry of Lorentz group SO(3, 1); we expect the G, to be generators of Lorentz
transformations. Indeed this can be confirmed, if one computes the Poisson algebra
of the smeared GG;; with any phase space function. One should now check for the
consistency of these secondary constraints but fortunately there are no further
secondary (tertiary) constraints. The set of 32 X oo® independent constraints in

Egs. (2.189b,2.189¢,2.189d,2.190,2.194a,2.194b,2.194¢,2.194d) defined the 24 x 003

constrained surface I'. on the primary surface I', as:
Fe=A{T,Ix"(0) =0,G1y(0) =0,H(c) = 0,Hy(0) =0} cT, c T (2.195)

from now ~ means equality on I'.. With these definitions, we see that the total

prime Hamiltonian is a linear combination of constraints:
H, = / Bolwl!Gry+ NH + N°H, + A\yC% + M Cry + AC + X°C,]  (2.196)
b
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as in the ADM dormalism, the total Hamiltonian is thus constrained to vanish,
a result that is in accordance with our general discussion of reparametrization
invariance. Hence we have completed the Dirac-Bergmann algorithm, all that
remains is to classify the constraints we have found into first and second class. We

shall see that all constraints are first class except for C® and y

2.6.3 Constraint Algebra Analysis

By using the Poisson brackets (2.242), one can show all constraints are first class
(their Poisson brackets with all constraints are proportional to the secondary class
constraints) except for C% and x®. Explicit calculations for the Poisson brackets

between the second class constraints C% and y® gives:

{C™(a),x"(0")} = A[tr(I1® - )t (11 - T1Y) — ¢r(I1° - L) e (117 - T19)| 6% (0, &)

(2.197)
which is in general not zero on I'.. Now we can count how many degrees of freedom
in the gravitational field: the constrained phase space I', has 24 x oo® degrees
of freedom, the first class constraints (2.189b,2.189¢,2.189d,2.194b,2.194¢,2.194d)
generate 20 x oo® parameter set of gauge transformations on I'., then 20 x o003
degrees of freedom must be subtracted in order to fix the gauge. The remaining
4 x 0o® variables define the reduced phase space I', = 'y and as expected, they

correspond to 2 degrees of freedom at each coordinate point o in configuration space.

2.6.4 Solving Second Class Constraints

The next step in the Dirac procedure is to solve the second class constraints. Since
the momentum II¢; is a 2-form in its internal indices, we can decompose it into
its electric and magnetic parts by using the internal projection with respect

to the unit normal n; as:
I}, = 2E{mn ) + e B n* (2.198)

The first term is the electric part 9-components of I1; describes the (boost-

spatial) components, where the decond term is the magnetic part 9-components
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of 11, describes the (spatial-spatial) components. The electric Ef and magnetic

B¢ fields are defined as:

B¢ = n10Y, (2.199a)

B .= ;GUKLH?,KnL (2.199b)
They are both orthogonal with the internal unit normal n;:
Efnl =0 B*n; =0 (2.200)
The following relations are hold:

tr(I1" - 11°) = 2( B¢ EY — BYB®) (2.201a)

el KL TT8,, = 8F,*BY! (2.201D)

Now it is time to solve the second class constraints (2.190). Substituting (2.198)
in (2.190) and use (2.201b), we obtain:

E\"BY =0 (2.202)

One can use the Lorentz transformation to fix the 3-dimensional freedom in the

initial choice of the unit normal n; to set:
ElBY =0 (2.203)

this can be done by absorbing 3 components of the momentum II¢; to n;, Eqs

(2.202) and (2.203), imply:
E¢B" =0 (2.204)

both the electric E¢ and magnetic B® are degenerate one times in the diection
of ny, then one of them must be vanish. Now, let us try to achieve the inequality

in Eq. (2.190) by using (2.201a), we get:

E¢EY > BYBY (2.205)
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From (2.204) and (2.205), the only solution to (2.190) is to have:
B =0 (2.206)

Then after solving the second class constrains (2.190), the 18-components of the

momentum I1If; is constrained to just 12-components:
117, = 2E[“InJ] (2.207)

Next, we have to solve the remaining second class constraint (2.194a). It turns
out that the simplest way to solve it is by using part of the Gauss constraint
(2.194b) to gauge fix the internal vector n;. This gauge fixing further reduces the
momentum variables to just 9, and the momentum is now fully determined by the
nine components of E?. However, since we wish to gauge fix the internal vector ny,
we must also solve the electric part (boost part) of the Gauss constraint (since it

will be also second class), i.e., we must solve the 3 independent equations:
Gt =20 Grpmy =0 (2.208)

The remaining spactial Gauss constraints stay first class since its generated SO(3)
internal rotations will leave the gauge-fixed n! invariant. The 9 equations (2.194a)
and (2.208) reduce the independent components in w!” from 18 x co® to 9 x oo?.
To solve them, let us first define a field K!7 as a difference between the general

3d-Lorentz connection w!’ and the torsion free 3d-Lorentz connection '}/, we have:
wl? =TY[E] + K7 (2.209)

where the torsion free 3d-Lorentz connection I'’7 can be decomposed into electric

and magnetic parts via the densitized triad E{ by the following relation:
IV E] = 205 T 0l + BIV,EY — n/ V0! (2.210)

Let us decompose the internal 2-form indices of K!7 in terms of their electric

and magnetic parts:
K = oKln?l 4 dTMNE \iny (2.211)

67



Chapter 2. The Hamiltonian Formulations of General Relativity

the electric K é and magnetic K, fields are defined by:
K= ny KM (2.212a)
_ 1
Ko = §€IJMNK¢;]MTLN (2.212h)
they are both orthogonal with the internal uniot normal n;:
K'ny=0 K,n' =0 (2.213)
Substituting this decomposition in Eq. (2.194a) one can show:
MNLU Iy Koy B =0 (2.214)

For any fixed indices I,.J, the operator €N pn/ln; is degenerate one in their
free indices M, N and the only zero eigenvector is in the direction of the unit
normal n;, and since E¢ and K,; are orthogonal to n;, then the only possible

case to achieve the Eq. (2.194a) is:

K, E5 =0 (2.215)
Also substituting the decomposition (2.211) in Eq. (2.208) one find:
B KT — ¢ E¢KT =0 (2.216)
One can replace ¢* by its expression in (2.180a) to get:
E¢EY(EUKD -l ES, KM) =0 (2.217)

Since the densitized triad E? is degenerate one by the unit normal n;, then one can
has:
EUKD —plpe, KM =0 (2.218)
Now taking the trace of the this equation with respect to 7, one find:
E¢KI =0 (2.219)
putting this in Eq. (2.218), we get:

Ko B3 =0 (2.220)
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Finally, having together the two equation (2.215) and (2.220) we find:

KuE%=0 (2.221)

since the densitized triad EY is invertible (and must be non-zero), then the condition

for the 9 second class constraints (2.194a) and (2.208) to be satisfied is:

K, =0 (2.222)
hence, the condition for the connection K!7 has just an electric part (boost):
K = 2Knl (2.223)

And finally, after solving the second class constraints (2.190) with (2.194a), the
18-components of the Lorentz connection is constrained to just 9-components

per each space point coordinates:
wl! = TR+ 2Kn/ (2.224)

To summarize, we have now solved the 12 second class constraints (2.190) and
(2.194a) and eliminated the 3 first class constraints of (2.194b) by solving them
and fixing its corresponding gauge. The resulted dynamical variables are (E¢, K1).
Since they are both orthogonal to n! (which is gauge fixed), their internal indices
effectively take only the values ¢ = 1,2,3 is the internal sub-Minkowski space.
Thus, after eliminating the second class constraints, the ADM phase space I' 4ps

of the tetradic Palatini formulation is coordinatized by:
Lapu = [Ef(0), Ky (o)) (2.225)
The only non-vanishing fundamental Poisson bracket:
{Ei(0), K{(a)} = 6;6]6°(0, o) (2.226)

The remaining 7 x oo® first class constraints functions via the new canonical

variables of T'apas:

Gi(o; B! KY] i= e KIE™" =~ 0 (2.227a)
a g a i 7od q 3
H(o;E* K] := 2F'F°K'K! — —— 3R~ 0 2.227b
(U’ i a] [i~5] a"b (167TG)2 ( )
Hy(0; B}, K] = 4B}V K} = 0 (2.227¢)
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This result is just the ADM form of the constraints (2.104a,2.104b) for tetrad
gravity with three new constraints of Gauss law. Eqs. (2.227) are non-polynomial

in the canonical variables and the close relation to Yang-Mills theory is now lost.

2.7 Holst Formulation

The Holst action [46] is an equivalent formulation of the tetradic Palatini action
for General Relativity by adding a topological term part in the Lagrangian, it

is known by Nieh-Yan term:

P R oo e, T (2.228)
which does not affect on the classical equations of motion as long as there is no
torsion. We can now write down the Holst action, which is just the sum of half of

tetradic-Palatini action and the Nieh-Yan term. The Holst action is defined as:

1 1
Shostle, w] = e /M d*z eefe’, <5[IK5i] — Q,YEIJKL> F:,(/L[e, w]
_ 1 1 4 uvpo I
= 2St_p — 617Gy /M d*z € R, p0le, T (2.229)

with a real v called Immirzi parameter. If we impose the torsion free condition,
by using the first Bianchi identity and the symmetric property of the Riemann

tensor, one has:
" Rpole] =0 (2.230)

Thus, the Nieh-Yan term (the last term in Eq. (2.229)) does not alter the classical
equations of motion as long as there is no torsion. We now compute the equations
of motion for this action:

Variation the action over the co-tetrad w},:
I 5J L 1 > [k V]
OwSHolst = 0 < | 0(x 07 — 56 KL D“(eef eJ) =0 (2.231)
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Up to boundary term and we have used the covariant constancy of the /7., . We
can prove that the equation of motion derived from the variation with respect

to the connection is equivalent to:
Dyely =0 (2.232)

which is the torsion free condition, then we conclude that the Lorentz connection
can be uniquely determined by the tetrad and we write w!” = I'}/ where T'[” is
the internal Christoffel symbol associated to D,,.

Variation the action over the co-tetrad ei:

1
deSHoist =0 <:>G£[e,w] = et (Rw,[e, w] — qu,,R[e, w]>

1 1
~ 5 (eur et ] = Goucheef S [u]) = 0 (2:239)

when we impose the torsion free condition, the contributions of the Nieh-Yan
term in the equation (2.233) is zero by implying the first Bianchi identity of
the Riemann tensor. The remaining non-zero terms is just the tetradic Palatini
action and hence Eqgs. (2.231,2.233) of the Holst formulation are now equivalent

to Einstein’s equations in vacuum.

2.8 Hamiltonian Analysis of Holst Formulation

Since the Holst action (2.229) differs from the tetradic Palatini action (2.165) just
by the term of ((5[@((5{] — %el T ) instead of 5[IK(5£}. then one can perform a canonical
analysis step by step (Legendre tansform, classification of constraints, solving SCC)
as we did for the tetradic Palatini formulation. However, the difficulties in the
presence of second class constraints can get past them by choosing a partial gauge
fixing prior to performing the computation. We then fix the boost part of the
internal Lorentz SO(3,1) transformations by working on the so-called time gauge
n! = §f. Physically, it means that the 0™ frame field ey is a unit orthogonal to the
spacelike hyper-surface S; for any foliation parameter ¢ € R, then one has, ¢y = n.

With this time gauge fixing, the internal Minkowski symmetry SO(3, 1) are reduced
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to spatial sub-rotations SO(3) which leaves the unit normal n! invariant. By using
this time gauge, the splitting £ = e and the definition of time vector field 7 in
Eq. (2.83), it is then possible to rewrite the action (2.229) in terms of the new
variables [13, 14]:

The densitized triad:

E} = eel = §€¢jkeabcegel§ (2.234)
The Ashtekar-Barbero connection:
Al =T + K. (2.235)

where T is the SO(3) connection that induces the Levi-Civita connection:

) 1 . . 1. .
Lo = 5¢ = 3 rwlk (2.236)

and the electric part K! is defined in Eq. (2.212a), it can be related to the

extrinsic curvature as:
K! = Kqe® (2.237)

2.8.1 Hamiltonian analysis

Now, we write the foliated Holst action in terms of the new variables:

St B) = /]R dt /2 do B AL — AyD,E? — NH — N°H,|
1 .
- dt LAl AP, 0 2.238
87TG’}//]R Hol t[ a a z] ( )

Observing first that the new variables A’ and E® are canonically conjugate with
each other. Second, the Holst Lagrangian does not depend on the time derivative of
N, N® and A}). This confirms the status that the lapse function N, shift vector N*
and the time components of the Ashtekar-Barbero connection A} are non-dynamical
variables, they can be specified as arbitrary functions on R x ¥; they are only
Lagrange multipliers. By comparison with the ADM formulation, we expect that

the coefficients of N, N* and Aj will form the Hamiltonian, diffeomorphism and
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Gauss constraints respectively, they are polynomial constraints on the canonical

variables [A% (o), E¢(a)] as follows:

Gi(o; Al B i= D, E = 0,Ef + eiju AVE™* =~ 0 (2.239a)
H,(o; AL EY = FL,EP = 0 (2.239b)
. . E°E® 14~2 .
H(o; AL B = e ——t (Ffb - 2?}(@1{5}) ~ 0 (2.239¢)
det(E) g

where we introduce the covariant derivative D, associated with the Ashtekar-

Barbero connection A! and its associated curvature F}, as:
Fly = 20,45 + € AL A} (2.240)

The 18 x 0o® dimensional kinematical (unconstrained) phase space I' can be

then coordinatized as:
I =[A}(0), Ef(o)] (2.241)

The symplectic structure is expressed by the basic Poisson bracket relations between

the configuration variables and their conjugate momenta:

{Al(0), E2(0")} = 81G~6:0.6° (o, o) (2.242a)
{Al(e), Aj(a")} =0 (2.242b)
{Ei(0), Ej(0”)} =0 (2.242¢)

Then, the Eqgs. (2.239a,2.239b,2.239¢), are the 7 x oo® first class constraints;
They define 11 x 0o® dimensional constrained surface on the kinematical phase

space I', denoted by I'. as:
I.:={T|Gi(e) =0,H,(0) =0,H(or) =0} C T (2.243)

The Gauss constraint G; are corresponds to the internal symmetry of SO(3)
group; we expect that G; to be generators of SO(3) transformations. Indeed
this can be confirmed, if one computes the Poisson algebra of the smeared G;

with any phase space function.
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2.8.2 Constraint Algebra Analysis

By using the Poisson brackets 2.242, one can show all constraints are first class.
First class constraints generate gauge transformations on the constraint surface:
To see what the gauge transformations look like in our case, consider the smearing

of the Gauss constraints:
GIA] = / Boi(a)Gi(o) (2.244)
¥

where A’ is an arbitrary 3d- internal vector field on ¥. An explicit computa-

tion shows that:

{G[A], AL(a)} = YDA (2.245a)

{G[A], E} (o)} = ve,;" N E} (2.245b)

which means that the Gauss constraint (2.239a) is the generator of SO(3) internal
symmetry. To see it clearly, one has:

{GIM] G} = JG[[Ar, Ao (2.246)

which is the structure algebra of su(2). The same thing can be done with the
diffeomorphic and Hamiltonian constraints, they generate the Dif f(¥) group and
the time reparametrization respectively. Now we can count how many degrees of
freedom in the gravitational field: the constrained phase space I, has 11 x oco?
degrees of freedom, the first class constraints (2.239a,2.239h,2.239¢) generate 7 x 0o®
parameter set of gauge transformations on I',, then 7 x co® degrees of freedom
must be subtracted in order to fix the gauge. The remaining 4 x co® variables
define the reduced phase space I', = I',,s and as expected, they correspond to 2
degrees of freedom at each coordinate point o in configuration space. Therefore,
the Hamiltonian analysis of the Holst action lead to an emergence of Gauss law’s
constraints associated to SO(3) = SU(2)/z, internal symmetry like Yang-Mills

theories. Due to the algebra-isomorphism so(3) =, su(2), one can use the
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generators basis of su(2)-algebra rather than so(3)-algebra. This can be achieved

by equipping the internal indices of the connection with the Pauli matrices as,
Ay = Al (2.247)

where,

= l(l) (1]] - l(l) _oﬂ = l(l) _01] (2.248)
A suitable Legendre transformation of the phase space variables [A® (o), E#(o)] to
another canonical variables [h,[A], E;(S)], where h.[A] € SU(2) is the holonomy of
the connection A, along a curve v and FE;(S) € su(2) is the flux of the densitized
triad £ through a surface S. This step is very crucial to jump on the quantum
world, since the new phase space T'SU(2) = SU(2) x su(2) for each curve v and
surface S is easy to quantize and we have already know how its starting Hilbert
space can be constructed from a well-defined measure on SU(2). In the next,
we will discuss in detail these canonical transformation in order to develop the

theory of Loop Quantum Gravity.
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Loop Quantum Gravity

This chapter is based on papers in refs. [47, 48, 49, 50, 51, 52, 53] and textbooks
in refs. [4, 5, 6, 7, 8, 9, 10].

Loop Quantum Gravity is based on the formulation of general relativity in terms
of the Ashtekar-Barbero connection and the densitized triad in the language of the
intenral symmetry SU(2) (like Yang-Mills gauge theory), with Poisson brackets

(2.242) and the three sets of constraints:

G;=0 Gauss law
H,=0 Spatial diffeomorphism invariance
H=0 Hamiltonian constraint

The difference with a Yang-Mills theory is of course in the dynamics: In gauge
theory, after imposing the Gauss law, we have a physical Hamiltonian. Here

instead we still have a fully constrained system.

3.1 Quantization of the New Variables

We would like now to focus on quantating general relativity. There are two ways of
doing that: the first is to solve the classical constraints to obtain the reduced phase
space I',.q and then quantizing the result space by finding a representation of the
algebra of the observables which describes their dynamics. This procedure is usually

called reduced quantization, but it is very complicated to apply in GR since the
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constraints algebra is quite difficult. The second way is known as Dirac quantization
procedure [11, 12|, it consists on quantizing the whole kinematical phase space
I'kin by promoting the canonical variables to operators and also introducing a
suitable Hilbert space Hi,. Subsequently, one has to find the states ¥ € H,;,, that
are annihilated by the constraint opertors; they form the physical Hilbert space
space Hpnys. This is precisely what Wheeler and DeWitt did in quantizing ADM
formalism. In the next, we will follow the Dirac quantization procedure A formal

quantization of general relativity theory can be obtained following the basic steps:

e In order to introduce a suitable Hilbert space Hy;,, one has to define a
physical inner product, i.e., we need an invariant measure dA on the space
of smooth connections A modulo SU(2) x Dif f(X) transformations. Our

Hilbert space is the space of square integrable functionals:

Hyin = La[ A, 5A] (3.1)

o Promoting the canonical variable of the phase space 'y, to operators acting

on the Hilbert space Hy;,, with the Schrodinger representation:

A(x)V[A] = A (2)¥[A], (3.2a)
. . JU[A]
B¢ VAl = — - 2
@) (A) = ~isnGhy 3 (3.20)
which satisfies the canonical commutation relation,
(Al (@), ENa)| = i87Ghy620i6%(w, a'). (3.3)
o Impose the Gauss law constraint,
A ) )
Gi(z; A, —szGh’ya}\I/[A] =0 (3.4)
which selects the SU(2)-invariant states.
e Impose the Diffeomorphism invariance constraint,
H,(a; A —z'syrami}w] =0 (3.5)
a ) Y 5A

which selects the Dif f(3)-invariant states.
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o Impose the Hamiltonian constraint,
H(z; A —igwami]\ym] =0 (3.6)
Y 7 614

which selects the final physical Hilbert states Hpys.

For our case, however, step 1 of the above procedure poses a problem, since we
do not have a background metric (the metric is a fully dynamical quantity) at
disposal to define the integration measure JA (due to the background independent
nature of GR). Hence, we need to define a measure on the space of connections
without having to resort to a fixed background. The key to do this is the notion

of Holonomy Flux variables, which we introduce next.

Commutator.

(Al (@), EY(a)] w[A) = —iSWGHWAQ(m)éiq;EAl) + iswammf( ; <A;(a;)\1/[A])
b\ L b\ T
SA! ()

= i 8nGhy—
4L

U[A] = i87Ghy5.5:6% (x, a) U[A]

3.2 Holonomy, Flux variables

In this section we will take the main step needed to prepare loop quantum gravity;
one has to regularize the resulted Poisson algebra (3.3) using paths and surfaces
integrals (removing delta functions), as we did previously with the ADM variables.
This is necessary in order to proceed with the quantization. At this stage, the
different tensorial nature of A’ and E¢ plays a key role. Indeed, a brief look at

Eq. (2.234) shows that the densitized triad E¢ is really a 2-form:

)

1 .
Ef = §e“bcezjkeielj (3.7)
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Hence, one may smear it over a surface S to obtain the

flux E; over S (we will name the result as electric flux):

E* — B,(S) = /S do'do? n,E? (3.8)

. . b c .
in which n, = €422 22 is the normal to the surface and
doy Ooa

(01,092) are the parametrized coordinates of the surface.

The connection on the other hand is a 1-form, so it is

natural to smear it along a 1-dimensional path. Recall

Figure 3.1: The flux
of the densitized triad E{
through a given surface S.

that the connection A’ defines the notion of infinitesimally
parallel transport in the principal SU(2)-bundle over the
base 3d-space 3.

Consider a path 7 : [0,1] — ¥ and given a connection A’

we can associate to it an element of su(2) as: A, = A'T;

t(y)

where 7; are the generator of SU(2) (Pauli matrices).

Then we can integrate A, along v as a line integral,

Al / A= /0 s WA;(:E(V(S)M (3.9) 14

Next, we define the holonomy' of the connection A, along

v to be:

s(y)

h[A] == Pexp( / A) e SU(2) (3.10)
Y Figure 3.2: The line in-

tegral of the connection A

along a given curve .

where P is the path-ordered product. That is,

hofA] = i [lsi [T dsenAt) - AGse)) (31D

where {s, € [0,1]|n € N,sy = 1} is a decreasing sequence, we have used the
notation:

z(7(s)) = ~(s) (3.12)

Aey(s) = T )y, (3.13)

Tn the mathematical terminology, "holonomy" is often indicated by a parallel transport map,
while the "holonomy" name is used for describing a parallel transport map along a closed curve

(loop).
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Geometrical interpretation of connection and holonomy. If we consider an internal vector
field V', then one can parallelly transport it from a given coordinates point  to another
one x + € along an infinitesimal space shift € by using the connection as:

TosareV'i=Vi(z) - eijkeaAZL(w)Vk(a:) (3.14)

Whereas the parallel transport of an internal vector V* from a given point « to another
arbitrary point y (they are not necessarily close to each other) through the curve
v :10,1] — ¥ where 4(0) = x,~(1) = y can be done by using the holonomy map:

Tomsy V' = (hy[A])'; V7 (3.15)
More precisely, holonomy is the solution of the differential equation:

Dhas) — Ay (s) =0, hy(0) =1

where I is the unit element of SU(2). integrating the equation by iteration we have:
b (s) =I + /0 ds1 A(y(s1))hy (s1)
S S1
1+ [Cdsiat(s)|1+ [T dsaa(ris)h s2)

1 [CdsiAly(s0) + [ dsy [ dsaA(r(s0) Ay (v(52)

N s Sn
=3 [ oo [ donnAty(o0) - A (om0

s [ [ dsnanAly(or) - Aly(sxaa) (r(sw2)
=h(s; N) + Ry(s; N)

where {s, € [0,1]|n € N,s9 = s} is a decreasing sequence. h.(s;N) is the Nth of the
h~(s) series, R(s; N) is the Nth-rest To complete the proof, one needs to show that
the series h,(s) is well defined. Indeed, it converges where N — oo

]\l[z'_@OR,Y(s;N) =0
o (s) = i:j [ sy [ dswaatrn) - A i)

For further reference, let us also notice that the terms of the series can be written
as integrals over square domains (s1,...,8n, Snt1) € [0,#]""1, instead triangle domains
5§ < 851 < -+ < 8y < Spg1 < 0. This gives

=5 Lo[ [faaco)]

n=0

:Pezz:p( /0 | th(‘y(t)))
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the integral is expressed in terms of a path ordered product, denoted P(---) is defined
such that the quantities with larger values of s, appear on the left of quantities with

smaller values of s,,.

Let us list some of the main properties of the holonomy.

e The holonomy of the composition of two paths is the product of the holonomies

of each path,

h% [A] hvz [A] = h"/lﬁW2 [A] (3~ 16)

One can show from this:

hy 1 [A] = B2V A] (3.17)

o Under a local gauge transformations g(z) €SU(2), the holonomy transforms

hS[A] = g(s())h[Alg™" (£(7)) (3.18)

where s(y) and t(7) are respectively the source and target points of the line

v, respectively:

s(7) =~(0) (3.19a)

t(y) =~(1) (3.19b)

o Under the action of diffeomorphism, the holonomy transforms as:

o[ A) = B [ A (3.20)

In what follows, we are going to build a nice quantum representation of the
kinematical Hilbert space. To do that we introduce in first place the notion

of cylindrical functionals.
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3.3 The kinematical state space H;;,

3.3.1 Cylindrical functionals

A cylindrical functional is a functional of a field which only depend on cetain
components of the fields. In the case at hand, the field is the Ashtekar connection A’
and the cylindrical functions would be functionals that depend on the connection
only through holonomies h.[A] = Pexp ([, A) along some finite set of paths {e;}.
Consider a graph I', defined as a collection of oriented paths e C >, called,
links of graph meeting at most at their endpoints, called, nodes of graph. We
denote by L the total number of links in the graph. Therefore, a cylindrical

functional is a couple (T'; f) of:

e a graph I

Fi={e¢:[0,1] = %l=1,...,L} (3.21)
e a smooth complex-valued function f:
f:SU@2)F —C
(91,---,90) — f(91,---,91) (3.22)
and it is given by a functional of the connection through holonomy:
ViriplA] = flhe,[A]; - - e, [A]) = (AL ) € Cylr (3.23)

where C'ylr is the collection set of all cylindrical functionals through the graph T'.
Notice that, the function is a functional of the connection only on a subset points
I' C ¥ through holonomies as stated previously. Figure 3.3 provides a description

of a given graphs involved in the cylindrical functions.
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Figure 3.3: A particular graph: a collection of 12 ordered and oriented curves ' = {ej, ..., e12}.

3.3.2 Kinematical space

Having introduced the cylindrical functionals, we want to define an inner product on
it. Since the holonomy is an element of SU(2), the space of cylindrical functionals
Cylr can be converted into a Hilbert space if we equip it with an inner product
over the SU(2) space. As we already know, the integration over SU(2) is well-
defined, there is a unique gauge-invariant and normalized measure dugaq.-, called
the Haar measure on SU(2) [54, 55]. Using L copies of the Haar measure. Thus,
The switch from connection to holonomy variable is crucial in this respect. We

define the scalar product on Cylr as:

(T: foIT; fo) = /dL;LHaar P ) fohe, o i) (3.24)
SU(2)

where the bar sign denotes complex conjugation. With this scalar product, Cylr
turns into a Hilbert space Hr associated to the graph I'. we can now define
the kinematical Hilbert space as the direct sum over all such Hilbert spaces

for all possible graph,

Hiin = P Hr. (3.25)
rcxy
where
Hr = Ly[SU(2)*, d* tipraar] (3.26)

The Haar measure on SU(2).: Since the topology of SU(2) is isomorphic to the 3-
sphere S3, then the Haar measure on SU(2) is defined to be the restricted Euclidean
measure of R* on the hyper-surface S? ¢ R?%. it defines a unique gauge-invariant and
normalized measure dppqq, in which:
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o right and left invariant: Vg € SU(2) : dpugaar = d(9 - praar) = A(Haar - 9)
o normalized: fSU(Q) dpgear =1
The Euler angle parametrisation of SU(2) is defined by:
DY (1,0, ¢) := VIS 005 oIS

where
pel2m  Oeloxl  eloan]

In terms of these coordinates, the Haar measure reads:

1 21 T 47
AU Haar ‘= 7/ d / df d
/SU(Q) a 1672 Jo 4 0 0 ¢

The scalar product on Hy;, is easily induced from (3.24) in the following manner:
if f; and f, share the same graph, then (3.24) immediately applies. If they have
different graphs, say I'y and I's:

I i={e:[0,1] > Xl=1,...,L} (3.27a)
I'y .= {61 : [0, 1] — Ell :L1+1,...,L1+L2} (327b)

we consider a further graph I'y UT'y, then we extend f; and f5 trivially on I'y UT'

Su@2)litt: ¢ (3.28)
(91, 9r14Ls) — f1 (91, 9014L,) == fi(91,--.,91,)
(91 9r+L2) ¥ f3(91, - 901+Ls) = fo(9L141, - - - 911 +Lo)

Hence, the inner product between functionals of two different graphs on H,;, are

given by:
(U1; f1lT2s f2) == (T Uy [T U T f3) (3.29)

Equipped with such a scalar product, one is able to obtain the kinematical Hilbert
space Hpi,. The key result, due to Ashtekar and Lewandowski, is that one can
see the kinematical space as a Hilbert space of square integrable functionals on
the connection (the original canonical variable). To do that, we must extend

A to A such that Hj,, is isomorphic to some square integrable space over A.
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Therefore, (3.25) defines a Hilbert space over gauge connections A on X, i.e.(see

[56, 57| for details)
Hiin = L2[¢‘L dpar] (3.30)

where A is the extended space that contains distributions (it not necessarily
smooth connections) to our classical smooth connection space A. The integration
measure dpa; over the extended space of connections is called the Ashtekar-
Lewandowski measure. What (3.30) means is that (3.29) can be seen as an inner
product between cylindrical functionals of the connection with respect to the

Ashtekar-Lewandowski measure:

<F1; f1|F2; f2> = /AdMAL[A] ‘I’(Fl;fl)[A]‘I’(rg;fz)[A] (3'31)

Until now, the kinematical Hilbert space has been constructed without requiring a

background metric. As a conclusion, two important points need to be discussed:

o Loop quantum gravity is a continuous theory whose kinematical Hilbert space
is the direct continuous sum (3.25) of spaces (3.26) on a single graph I". This
continuous sum gives rise to the problem of non-separability of Hj;,, which
in turn does not allow us to define a countable quantum state basis for the
kinematical space Hyin>. The huge size of the starting Hilbert space Hpin
will turn out to be just a gauge: thanks to diffeomorphism invariance, the

physical Hilbert space will be separable.

e Due to the line functional property of the holonomy, each Hilbert space Hr
on a given graph I' captures only a finite number of degrees of freedom of

the theory.

Remarkably, the configuration space of Hr corresponds to SU(2)* which is L-
copies of compact lie groups, then the spectrum functional of Hr would be discrete.
The next step is to introduce a discrete orthogonal basis in the space Hr of

a given graph I

2A Hilbert space admits a countable orthonormal basis if and only if it is separable. Therefore,
Hilbert spaces are mostly assumed to be separable. a topological space is called separable if it
contains a countable, dense subset.
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3.3.3 An orthonormal basis

Thanks to the Peter-Weyl theorem [58], which states that a basis on the Hilbert
space Lo|G, dfigaqr] of square integrable functions on a compact group G is given by
the matrix elements of the unitary irreducible representation of the group. For the
case of SU(2), it can be easily find an orthonormal basis in Hr, denote by DY) (g),
called the Wigner D-matrices, they give the spin-(j) irreducible representation of
the group element g as well as it measures how the magnetic quantum direction

can be affected under a given rotation g € SU(2):

DY (g) = (glj,m,n) == (j,m| DY (g)|j,n) (3.32)

This will allow us to define an inner product, making use of the Haar measure

dpmaar:
Gl ooty = [ s DO (gD () = P2y
where the complex conjugate of the Wigner D-matrix
D" (g) = (=1)" "DV (g) (3.34)
The completeness relation is satisfied
> (254 D)|j,m,n)(j,m,n| =1 (3.35)

jmmn
given a function f € Ls[SU(2),dipaar], one can decompose f in terms of the

orthogonal basis (3.34) as:

flg) = {glf)
= > fimDV"(9) (3.36)
j7m7n
. 13 . .
forj—0,§,1,§,... mmn=—7,...,7

The inverse transform gives the coefficients f; by the relation:

=@+ [ dtnees D'O7(9)f(9) (337)
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Then any state vector |f) can be written in terms of the orthogonal basis el-

ements [j,m,n) as:

f) = Z fjrrrlLlja m, n> (338)

Jmn
with taking summation over all repeated indices. This immediately can be applied
for the kinematical space Hr on fixed graph I, since the latter is just a tensor
product of Ls[SU(2),ditpaar]. The orthogonal basis elements |I'; j;, my,ny) is a
tensor product of the states |j, m,n) over each path of the graph I':

T g0, mu, ) = exs i, ma,ma) @ -+ ® ler; o, mp, nr)

= |€1,. .. >€L;j17 . ,jL,ml, oo mp,nyg, ... ,TLL> (339)
It can be written in the connection representation |A) via the holonomy as:

(AIL; i, my, ) = (Aler, .. e iy -y Jo, Muy -, Mp, Ny, .. N)
= (hrlA]le1, ... er;J1y -y JL, Miy -y Mp, Ny, .o L)
<he1[ ”el;jlamlan1>"'<he1[A]|eL§jL7mLanL>

= DUIm (p [A])--- DUDTE (b, [A]) (3.40)

ni ny,

with tensor product of Wigner matrices. Then, any function ¥, pn[A] € Hr

can be decomposed as:

i p[A] = (AT f)

= Z Fiviomeme (AT di, mu, g

j17""jL
MY ey mry,
MNYyeeny ny,
= X gt DO (b [A]) - DU (e, [A]) (341
o
MY yeens nr,
ni...njy,

where the inverse transform gives the coefficients f, by the relation:

Ji--grmai..mpg,

L
Fivpmemy = H(sz' + 1)(T g, g, |15 f)

=1

= e ﬁ[?ﬂzﬂdh D ()| (s b)) (3.42)
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Then any state vector |I'; f) can be written in terms of the orthogonal basis

elements |I'; j;, my,ny) as:

T5f) = D figumemelTs g, ma, ng) (3.43)
JlsessJL
my,..., mp,
MY yeney ny,

Accordingly with the orthonormal basis (3.40), the kinematical Hilbert space
on a fixed graphcan be decomposed into a tensor product between irreduicible

representation and its dual for each link as:

Hp = @@( *(Jz Vl“(jl)> (3.44)

Ji =1
3.3.4 Holonomy-flux algebra

On this orthogonal basis (3.40), one can give a Schrodinger representation as (3.2)

for the holonomy-flux variables. The holonomy acts by multiplication:
EW[A]\II(F;J‘) [A] = hy [A]¥ (5 [A], (3.45a)

and the flux acts through the functional derivative:

oV (rplAl
0AL (z(a))

For simplicity, let us take the case of one smooth curve graph I' = {v: [0,1] — £}

Ewwmmm:—wmmyéwﬂﬁ% (3.45h)

with the wave functional W, [A] = f7 D) (h,), and consider a given 2d-surface

S intersects at most once with the curve v then the fluxes acts trivialy as:

20 1WA, S N Imy = 5(0)
. “SW\IJ [A]J” SN Imy = ~(1)
: i) v=7
Ks(V)Y s [A] W (s [ A my € (]0, 1[)
0, SNImy =10
(3.46)

Here Ji(j ) is the j-representation angular momentum of SU(2) symmetry. y; and
2 are the two new curves defined by the point at which the densitized triad

acts and the sign kg(7y) is defined by:
kg(7y) = sign(n.y*) = £1,0 (3.47)
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it depends on the relative orientation of v and S and it vanishes if v is tangential to
S at the intersection point. Now, it is time to write the resulting smeared algebra
between the two operator quantities El(S ) and ﬁv [A], that is called holonomy-flux
algebra: we will take the assumption that the surface S intersects with the curve
~ only at one point inside the curve, as well as the surface S and the curve vy

has the same orientation (kg(y) = 1), we get:

[Ei(S), BN i [A] = =(87CGM)* Ui [A)[ T, 7 | WplA] (348a)

[iLﬂ/ [A], Ej(s)]qj(’v;f) [A] = i87Ghy oy Tihoy W (551 [A] (3.48b)
[ [A], oy [A] W (. [A] = 0 (3.48c¢)

From (3.48a), we immediately find that two fluxes operators do not commute,

[E(S), Eh(S)NW i) [A] = —(87Ghy)? Wiy p[Alen' T .00 [A]

= —i8nGhry e Ey(S) W (. p)[A] (3.49)
Then one can write,
Ei(S) iEy(S Fy(S
? ( )72 k( ) :Eikll l( ) (350)
8tGhy 8nGhy 8tGhy

iE5;(S)

which indicates that e

is an su(2) generator algebra. Consider now the action

of the scalar product of two fluxes acting inside the link,

Ef(S)E(S)W () [A] = —(87GT)? (7, S)W (.0 [AJ6* JD TP, 1 [A]
= _(8776%’7)2 \Il(w;f) [A][_J(J + 1)H2j+1]\1](72;f) [A]

= (877Gh7)2j(j +1) Wisip) [A] (3.51)

On the right hand side, we see the appearance of the scalar contraction of algebra
generators, 5ikJi(j )J,ij ) = - J(7 4+ DIyj41. This scalar product is known as the
Casimir operator of the algebra®. Now, we have reached a stage of determining

the dynamics of the theory, one has to solve the quantum Einstein equations of

3The Casimir clearly commutes with all group elements.

89



Chapter 3. Loop Quantum Gravity

LQG (3.4,3.5,3.6) with the starting kinematical state ¥ € Hy;,; the quantum

reduction is consist of the following steps:

A A N

Hein M Ho M Hpifs _H\Ij_:(l_) Honys- (3.52)

as we saw that the physical Hilbert space H,pys is given by those states that are
annihilated by all Gauss, diffeomorphic and Hamiltonian constraints. In the next,

we will provide the procedure to solve these constraints.

3.4 Gauge invariance state space H,

The first step is to solve the quantum Gauss constraint, which are those states
in My, that are invariant under the action of SU(2) gauge transformation. The
space of all solutions define a new Hilbert space called the gauge invariance
space, denoted by Hg. Recalling from (3.18) how the holonmy transforms under

SU(2) gauge transformations:
he — hl, = g he g; " (3.53)
Similarly, the j-irreducible representation transforms as:

DY (he) — DY(h,) = DD (g, he g;7")
— DU (gs)-D(j) (he>D(j) (gt—l)_ (3.54)
From this it follows that, the SU(2) gauge transformations act only on the source
and target points of the links, namely on the nodes of a graph. Given a graph

I' = {¢;} with L links and N nodes. We say that a cylindrical functional fj is gauge

invariant under the action of SU(2) group at the nodes of the graph I if and only if:

fo(hy,... hr) = f0(981h’1gt_117 e ,gsLthil) € Cylr/SU(2) (3.55)

This property can be easily achieved by using the so-called group averaging method.
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3.4.1 Group averaging method

Given an arbitrary cylindrical functional f € Cuylr, since the Haar measure
is right and left multiplication invariant by any element of the group SU(2),

then the function:

N
fO(hb sy hL) = /SU(2) H dgn f(gﬁhlgz;l? s 795Ltht_L1) (356)
n=1

clearly satisfies the gauge-invariance condition (3.55). Before using this method to
solve the Gauss constraints, let us agree on some useful notations: for each node n,
we associates a valency number V,,; the number of the links whose intersect with
the node n at their endpoints where, V,, = O,, + I,,, it is the sum number of the
outgoing O,, and the incoming [,, links on the node n. There are two equivalent

ways to select the irreducible representation for the graph:
o We select a quantum number j;, [ = 1,..., L for each link index .

o We select a quantum number j,;, n=1,...,N,i=1,...,V, for each link

index ¢ intersects with the node index n.
one can see the equivalence by:
{jall=1,...,L} = {j(n7i)| n=1,...,N,i=1,...,V,} (3.57)

and

N
Y Va=2L (3.58)
n=1

Having made this notation, we write down the gauge-invariant wave functional in

the orthonormal basis (3.40) via the invariant cylindrical functional (3.56), one has:

N L
\I’(F;fo)[A] _ Z fd H Pt 1)-I(n,Va) . H D(Jz)(hel [A]) (3'59)
J1yeoJL n=1 =1
MY yeeny mrp,
MY seens ny,

where the sum over the magnetic number my, n; is implicitly implied. The projector

P, for each node n is define by the following integral:

On In
PIn1)--InVe) = dgn H D(jn,o)(gn) H D(.jn,On-Fi)(g;l) (3.60)
SU(2) o=1 i=1
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3.4.2 Spin network state

Since each node n of the graph intersects with V.- links of irreducible representation,
then the wave functional (3.59) must have a tensor product of V,,-copies of SU(2)-

representation at the node,

Vn Vi
H D) c ® V(j(n,z'))_ (3.61)
i=1 i=1

transforms non-trivially under gauge transformation and it is in general reducible,

one can decompose it into irreducible representations V(/me) as:

Va
R Vo) = @V Une) (3.62)
=1 o

Then, the projector in (3.60) selects the gauge-invariant part of (3.41), namely
it gives the singlet space for O-total irr-representations V(=) for some indices

k at each node n. That is,
(0n) .— @V(On,k) C @V(Jn,a) (3.63)
k o

Since P, is a projector from the space (3.62) to (3.63) at the node n, one can

decompose it in terms of a basis of V) as:
k

where {i,;} is the basis vector of V() and its {i} ,} dual basis at the node n.
Then the invariant wave functional (3.59) can be written as a linear combination of
products of representation matrices D(j)(he) contracted with the basis 4, ;. These
invariants vectors ,, = vkin,k € V) are called intertwiners and the signlet space
V) for the node n called the V,,-valent intertwiner space. As a final result,
the basis of Hy are the quantum states labelled by a graph I', a spin-j; of the
holonomy along each link e¢; and an intertwiner i,, for each node n, are called

spin network states, and are given by:

Wi [A] = (AL i, in)

= rL[ D (e, [A]) - ﬂ in (3.65)
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For simplicity of notation, the indices of the irr-matrices and of the interwiners
are hidden, their contraction can be easily reconstructed from the connectivity of
the graph. Then for each node n of valency V,,, the intertwiner state corresponds

to a singlet state which has a zero total irr-representation:

Va

S U9 =0 (3.66)

=1
which is known by the closure relation for each node n: the sum of all su(2)
irr-representation vectors sharing the same node must be vanish. We will take
advantage of this result later in section 4.3, which is similar to the closure condition
of the area-norm vectos of a any convex Euclidean polyedron with V,, faces. Then
we obtain the important result that the spin network states (3.65) form a complete

basis of the gauge invariance Hilbert space Hy and the quantum numbers of a

given spin network are (T'; j;,7,). They define the notion of quantum geometry.

3.4.3 Intertwiner space Hy,

The gauge invariant Hilbert space on a fixed graph can be decomposed into a

sum of the intertwiner spaces,

MY = Ly [SU(2)"/SU@2)Y, 4 tirraar (3.67)

= @@v@n) (3.68)

n

In other words, intertwiners are the building blocks of spin network states. We
will refer to them by Hy, . Thus, the intertwiner space corresponds to the node

n of valency V,,, is the singlet space of O-total irr-representation:
Vo
Hy, = inv [@ V(7<n’i>)1 =V (3.69)
i=1

As before, different graphs I' select different orthonormal basis ¥ (r,;, ;,)[A] for each

node n, thus Hy can be decomposed into a sum over spaces on a fixed graph as:

Ho=EP PR~V . (3.70)

rex 5 n
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D9 (h,,[A])

j4,1 i 1 DUe)(h, [A])

. Je Gia)
I3y = Do (he, MW
/ i — / - — . —
ﬁ; N / DU (h,, [4])
]2 DU (h,[A])
DUE)(heZ[AD

Figure 3.4: Description of an intertwiner state corresponds to a 6-valent node.

3.4.4 Loop Representation of H,

A particular class of gauge-invariant wave functionals are the Wilson loop variables
[17], which are the trace of holonomies (3.10) through given closed curves (loops)*.
If we consider a graph system contains only one loop « : [0,1] = ¥, a(0) = «(1),
the gauge-invariant Wilson loop is defined by the the cylindrical functional

(T; f) = (a;Tr). That is,

W,lA] = (Ala; Tr) (3.71)

= Tr [(ha[A])™,] (3.72)

It is clear that the Wilson loop solves the Gauss constraints (3.4). In terms of the
orthonormal basis (3.40), the Wilson loop is defined by the the pair (I'; j) = (a; )

with an invariant intertwiner J;,. That is,

1
WalA] = 07, (Ales 5, m, n) (3.73)

= 0 (halA])™ (3.74)

n

Checking the gauge invariance of the Wilson loops. Under local SU(2) gauge transfor-
mation ¢ : ¥ — SU(2) where g(a(0)) = g(a(1)) = go. According to the transformation

4For this reason, the name of loop in LQG theory has been taken [51].
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property (3.53), the Wilson loop transforms as:

o,
= 8" (hal A"
= WalA]

The important remark that we want to refer is that the spin network state (3.65) can
be decomposed into a finite linear combination of Wilson loop states representations,
and it can form a basis for the gauge invariant space Hy which minimize the degree
of completeness of the loop basis. The key idea of switching the basis from spin
network to loop state is coming from a corollary in a representation theory of Lie
group, any irr-representation j can be writen as a symmetrized tensor product

of 25 fundamental representations as:

2 q

Q5| =i (3.75)

i-1 2
sym

Therefore, any elements of V) can be written as symmetric complex tensors

with 2j spinor indices 0,1. The representation matrices in this basis can be

taken in the following simple form:

j)Al...Agj %)(Al

( (3)A425)
D! oy, =D () D () (3.76)

We have used the parentheses to indicate the complete symmetrization. Moreover,
in this basis the intertwiners are the combination of the two SU(2)-invariant tensors

05 and €4p. i.e., invariant under any g € SU(2) transformation:

(97)% 0L g = 6% (3.77a)
9% exL 9" = eun (3.77Db)
(g7")% " (g HN, =MV (3.77¢)
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From these, one can easily check:

9% exr = enun (7)) (3.78a)

L (g, = g e (3.78)

The basic role of the invariants d4, €45 and €2 are to link two curves state together
in just one curve state. For more detail, we shall consider the three cases of linking

two curves:

15" case: If we consider (v1;3) as incoming representation and (79; 5) as outgoing

1

representation. The graph: I' = {v1,72}. The irr-representations: j, = j, = 3.

The intertwiner matrice of incoming-outgoing indices: ;. The wave func-

tional is given by:

U ey, [A], = (AT, 1), = oy [A]y "% B[ AT (3.79)

n

Recall that W r,;, ) [A]™, is invariant under SU(2) transformation i.e., W(r; »[A]" =
Vi (AT

n?

we focus just on the transformation act at the node of magnetic

numbers (M, N) by an element g € SU(2) as:

\P(F;jz;i) [A/]WTLL = h% [A/]mM i

S

hao[AT (3.80)

n

@) iM% (DP(9)" AL,

L
()

[NIE

= ho, [A]" (D'

In order to have an invariant wave functional, then () in Eq. (3.80) must be equal
to 4% . The only intertwiner that satisfies this invariant property is 1™, = 6*% (see

that from Eq. (3.77a)). Therefore, the wave functional can be finally written as:

Ui (A" = ha A"y 0% ho A,

n

= [hn[A] - ho [A]]T,

n

= h”Yl five [A] o

n

(3.81)

Graphically,this result can be seen as follows:
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(htﬂ’z‘%)

Figure 3.5: Description of how 6 can eliminate a 2—valent node.

2"d case: If we consider (vy; %) and (7; %) are incoming representations. The
graph: T' = {71,72}. The irr-representation: j; = jo = 3. The intertwiner matrice

of two incoming indices: Y. The wave functional is:
U () [AI™" = (A 51, )™ = hoy [A]7y iYY hop[A]"y (3.82)

Recall that W(rj, ;y[A]™" is invariant under SU(2) transformation i.e., ¥ (pj, i [A]™" =
Uy, [A]™", we focus just on the transformation act at the node of magnetic

numbers (M, N) by an element g € SU(2) as:

iy [AT™ = B [y M B [ATy (3.83)
1 _ K 1 — L n
= h71[A]mK(D(§)(9 1)) M M (D(Q)(g 1)) Nh“rz[A] L

(%)
In order to have an invariant wave functional, then (x) in Eq. (3.83) must be equal

MN — §MN (see

to i®L. The only intertwiner that satisfies this invariant property is

that from Eq. (3.77b)). Therefore, the wave functional can be finally written as:

Uy [A]™ = hoy [A]yy € oy [A]"
= hoy [A]"y B [A)y €
[A]™ N (3.84)

- hnﬁv{ !

Graphically,this result can be seen as follows:
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. Nn (Ylﬂ}’il-%)

hY

€
%
W
A Y
\

\
N

N

Figure 3.6: Description of how €% can eliminate a 2—valent node.

3 case: If we consider (vi; %) and (7 %) are outgoing representations. The
graph: I' = {7, }. Te irr-representation: j; = jo = % The intertwiner matrice

of two outgoing indices: iy;y. The wave functional is:
U ey [Almn = (ATt D = oy [A]Y, i o [A]Y, (3.85)

Recall that W (rj, iy [A]nn is invariant under SU(2) transformation i.e., (p,;, 5 [Alpn =

U ry5,.0) [A']mn, we focus just on the transformation act at the node of magnetic

numbers (M, N) by an element g € SU(2) as:

U rig,) [ATmn = oy [ATY,,, inew By [ATY,, (3.86)
1 M 1 N
ho [T, (DD (g)) MY (DR (g)) " hoy[A),

(*)
In order to have an invariant wave functional, then (k) in Eq. (3.86) must be equal
to 1. The only intertwiner that satisfies this invariant property is iy n = eyn

(see that from Eq. (3.77¢)). Therefore, the wave functional can be finally written as:

U LA™ = ha, [AIM, enrn oy [A]Y

n

= ot b1 [AP% o, [A]Y

n

= emar ho1y, [AY (3.87)

n

Graphically,this result can be seen as follows:
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Figure 3.7: Description of how €);5 can eliminate a 2—valent node.

An immediate consequence of these results, two holonomies of two continuous links
are joined by the invariant tensors d and e depending on the orientations of the two
links. Then if we take for example the case of a three-valent node with incoming
irr-representations j, j* and outgoing j” (See Fig. 3.8), thus the intretwiner i,

can be decomposed into % irr-representations as follows:

. (Ml.‘.MQj)(Nl...NZj/) . M N, M.N. sMcy1 Maj <Ney1 NQj’
7 = sym |e - € ) R ) o
n (Ll..ALQj//) (M)%IN)(L) Ly a “Lat1 L2j//
(3.88)
where
a+b=2j" a+c=2j b+c=2j (3.89)

After we knew that the invariant intertwiners of the % irr-representation can cancel
the nodes of the graph by gluing together the links, then finally, we will obtain a
graph without any nodes, that means with loops. Therefore, the spin network is

equal to a linear combination of loop states that warp along the graph.

Figure 3.8: Decomposition of the 3—valent node of representations j, 7/ and j” to 0—valent
node.
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3.5 Applications: 3-valent and 4-valent nodes

Before we solve the broblem of 3-valent and 4-valent nodes, we are going to briefly

discuss the notion of Clebsch—Gordan coefficients.

3.5.1 Clebsch—Gordan coefficients

Recalling that, from Clebsch-Gordan theory [59] (or Addition of Angular Momen-
tum in some textbook [2]): the tensor product V1) @V (2) of two irr-representations
of the su(2)-lie algebra is reducible, one has to decompose it into a sum of
irreducible sub-spaces V) as:
Jitj2
V4%V R V2) — @ V) (390)
=172l
We will write the angular momentum state |.J, M)772 € V(/) corresponds to the
total angular momentum operator J = jl R1+1® fg as a linear combination
of reducible states {|j1,m1;j2, ms) € VU @ VU m; = —j;, ... jisi = 1,2} by
using the well-known Clebsch—Gordan coefficients:
o J1 J2
|, MYz = " " (i, ma; fo, malJ, M) 1, ma; ja, ma) (3.91)
mi1=—j1 me=—Jj2
where

CNi ™ = (j1, ma; ja, ma| J, M) (3.92)
are the Clebsch—Gordan coefficients; they can only be nonzero when:
M =my 4+ my (3.93)
and the Clebsch-Gordan conditions must hold (the triangle inequality):
Je{lir—Jals i —dol + 1,0 g1+ 2 — 1,51 + Ja} (3.94)
An important relation which is frequently used for J = 0 is:
(J1,m1; J2,m2]0,0) =4 Com

Jij2 mu—ﬂmm

Here, |0,0) is the zero angular momentum of J = M = 0 (singlet irreducible-state).

(3.95)
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3.5.2 Construction of the intertwiner basis of Hj

Wigner 3j-symbols: the Wigner 3j-symbols [60] are the coefficients in which the
addition of three angular momenta must give the singlet state. Equivalently, the
Wigner 3j-symbols are the unique intertwiner corresponds to the gauge-invariant
state of 3-valent node. To be more explicit, let us consider a graph of 3-valent
node: I' = {(e1;71), (e2;J2), (es;73)}, the intertwiner space Hs = V(© at the

gauge-invariant node is written by:
Hs = inv [V @ V) @ V03] (3.96)
is non-empty only if the Clebsch-Gordan conditions hold:
gz € {ljr — Jals [7r — Jol + 1,y gu + Ja + 11 + J2} (3.97)

It is obvious to see that dim(H3) = 1 and the unique intertwiner can be found

by writting the irreducible singlet |0,0)77255 € H; as a linear combination of

the reducible states {|ji,m1; j2, Mo js, ms) € @i, VU my = —jis,..., Jii =
2,3}, one has first:

J J3
’070>]1]2J3 = Z Z <Ja M;j3am3’070>“]7 M>]U2 X ‘j37m3>
M=—Jm3=—j3
J J3 ( )J M
= Z Z 5Jj36M7—m3
M=—J m3=—js v2J +
J3 (_1)j3+MS

= > te—j3, —m3)""* @ |j3, m3)
V25 +1
m3=—j3

= [T, M) @ | g, ms)
(3.98)

where in the first step we have applied (3.91), and in the second step we have
used (3.95). Now, we will repeat the same thing for the state |j3, —m3)/172 €
VUs)  one has:
J1 J2
|j3, —mg)?17? = Z Z (91, ma; Ja, ma|js, —ms)|j1, m1; J2, Ma) (3.99)
mi1=-—7J1ma2=-—72

Substituting this into Eq. (3.98), we finally get:

J3+ 3
|0,0)717238 = Z Z Z (J1, M3 g2, maljs, —ma3)|j1, ma; j2, ma; j3, ma3)

— ) 2] +1
mi=—ji1 me=—jz m3g=—j3

(3.100)
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Since we define the Wigner 3j-symbols to be the unique intertwiner corresponds

to the gauge-invariant state of 3-valent node, then we define:

ol ) L i) (3.101)
my Mo M3 _leamlaj%rnﬂj?), ms (

to be the Wigner 3j-symbols, It can be easily shown that the Wigner 3j-symbols

satisies the following permutation properties:

Juog2 Js\ _(J2 Js ogr\_(Js g g2 (3.102a)
mp Mg Mg my Mg My ms my Mma '

(]ﬁ J2 j3> = (—1)i+ietia (-72 7 j3> (3.102b)

myp Mz M3 Mg My M3
Then the irreducible singlet can be written as:

o J1 J2 J3 1 je Js
0,0p7172 = %~y H <m1 - )Ul,ml;j2,m2;j3,ms> (3.103)

mi=—j1 ma=—j2 m3=—j3 ms
projecting this basis into the connection representation to get tha gauge-invariant
wave functional. as a final conclusion of this result, the Wigner 3j-symbols is
only intertwiner can connect three irr-representation (See Fig. 3.9) if and only

if the triangle inequality (3.97) holds.

jz/ (e )
e

— -

J1
Figure 3.9: A 3-valent intertwiner state.

3.5.3 Construction of the intertwiner basis of 4

For the case of 4-valent node. Let us consider a graph of 4-valent node: I' =
{(e1;71), (e2;72), (e3;73), (e4; ja)}, the intertwiner space H, at the gauge-invariant

node is written by:
H, = inv |:V(j1) ® V(jz) ® V(js) ® V(Jﬂ} (3.104)
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one has to decompose the reducible representations into irreducible ones, and then

take the singlet irreducible spaces V(%) to be the generator spaces of H, as:

kmax

p vow (3.105)

k:kmin
If we use the recoupling channel {(j1, j2), (j3, ja)}, one has then the index k starts
from ki, to kpee in integer steps with,
kmin = maX(Ul - j2|7 |]3 - j4|> (3106)
kmax = min(jl =+ j27j3 + ]4) (3107)
It is obvious to see that the dimension d of the Hilbert space H,4 is finite and given by:

d = kmaz — Fmin + 1 (3.108)

In order to determine the intertwiner corresponds to the gauge-invariant state,
one has to write the irreducible-singlet state |0,0)/123/* € #, as a linear com-
bination of the reducible states{|j,, m1; jo, ma; js, ms; ja, ma) € Qf_, V| m; =

—Jiy- -y Jiyt = 1,2,3,4}, one has first:

|]<7> _ |0,0>{31j2j3j4

kook
= 5 S (ke ms b, n00)k [k, m)? @ [k, st
m=—kn=—Fk
ko K (—1)km 1)k m

5m . k‘ ]1j2® k, J3ja

m=—kn=—k

k ( 1)km

= ke, m)" 72 @ |k, —m)isIs 3.109
3 gl ) (3.109)
Now, we write
. J1 2
\k,m)92 = > 3" (G, mu; o, malk, m) |1, ma; ja, ma) (3.110a)
m1=—j1 me=—Jj2
Ja Ja

|k,—m>j3j4 = Z Z <j37m3;j47m4|k7_m>|j3am3;j4’m4> <31]‘0b)

m3=—j3 m4=—j4
substituting these in Eq. (3.1()9), we get:

km

k) = > Z m (71, ma; Jo, ma|k, m) (J3, ms; ja, malk, —m)

mi1,m2,m3,mM4 m=—k

[J1, 1) @ |j2,m2) ® |j3,m3) ® |ja, M) (3.111)
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Using the definition (3.101), one has:

<j1,m1;jz,m2|k,m>=(—1)"“+mv2k+1<‘“ /2 k) (3.112a)

myp Mo —M

| | o o
(s, mis; ja, malk, —m) = (=1)7" \/2/€+1<£3 7{;‘4 m) (3.112b)

substituting this in Eq. (3.111), we finally get the intertwiner basis state for

the 4-valent node as:

= s R E (s )

mi,me,m3,m4 m——k mp Mg —mMm m msg My

|1, m1) @ |2, M2) @ |3, m3) @ |Ja, Ma) (3.113)

where we have used the symmetry under even column-permutation of the Wigner
3j-symbols (3.102a). projecting this basis into the connection representation to
get tha gauge-invariant wave functional. as a final conclusion of this result, the
4-valent node can be docomposed into 3-valent 2 nodes (See Fig. 3.10) where the

virtual link of irr-representation k has been considered.

Figure 3.10: Decomposition of 4-valent intertwiner state.

3.6 Diff-invariance state space Hp;;

The next step in the Dirac program is to solve the spatial diffeomorphism constraints,
which are those states that are invariant under the action of Diff(X), The space
of all solutions define a new Hilbert space called a Diff-invariance space, denoted
by Hpirs. To that end, recalling from (3.20) how the holonomy transforms under
¢ € Diff(¥) diffeomorphism:

he[A] — hL[A] = ho[¢* A] = hyoe| A] (3.114)
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Since the Haar measure (also the Ashtekar-Lewandowski measure) is diffeomorphism
invariant then its action is well-defined and unitary. Since diffeomorphism group
Diff(X) is a non-compact group, then the diff-invariant states are not a subspace
in Ho. Think for instance the simple case of ordinary (free) quantum mechanics,
the wave function ¥ € Ly[R, dz| required to be invariant under translations which
is a non-compact group. Therefore, the result solution to Schrodinger equation
is a plane wave 1 (z) = Ae*® that is not a square integrable function for any
arbitrary constants k& and A, then ¢y ¢ Ly[R,dz]. It provide however a linear

functional ¢, —— Fi as following
.Fk . LQ[R,dI’] — C

VY — Fr—o(¥) := A/Rdx e*h(z) (3.115)

k=0

is the Fourier transform of ¢ evaluated in £ = 0. Similarly, we do the same thing
to solve the problem for the diffeomorphism constraint. The solution states can
be described in terms of linear functionals on Hg, and the scalar product must be
extended to the space of the solutions, denote H;, the space of all linear functionals
on Hy (the dual space of Hy) and then Hp;ss is the space of theses diff-invariant

elements of H;. It can be defined by the projection map Pp;ss as follows:

PDiff : 7‘[0 — 7‘[8

U — Ppifr¥ (3.116)
where for any V' € H,, one has:
(PoigsU) (W) = > (Up¥|¥) (3.117)
$E€DIff(3)

The sum is over all diffeomorphism ¢ € Diff(X) and it is always well-defined (finite).
This is the same technique (group averaging) as we done in Gauss constraints. To
be more explicit, we consider the case of states with fixed graphs. One can expand

the wave functionals into a finite linear combination of a spin networ basis states:

(W) = fU T gy, i) € He = [UgT) = fU) - |¢o Ty 57,i8) € Hyor  (3.118a)

1%

W) s= SO0 [T i) € M (3.118b)
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Then (3.117) will become
(P @) (W) = OO L0057 (@0 Tyl aflls i) (3.119)
$EDIff (%)

We divide the diffeomorphism into two different cases:

o The case of ¢ o I" # I': its has no contribution to the sum (3.119) since the

Heor and Hp are orthogonal and all inner product of that kind will vanish.

o The case of p oI =I": the diffeomorphism does not change the graph. In
general, tere are differences of orientation or ordering of links in the graph.
The (finite) discrete group of such symmetries, labelled by Gr = {gx, k =
1,..., K}, its cardinality K depend on the number of links and nodes and
their connection with each other. then the sum in (3.119) gives at most finite

and discrete multplicity of the group Gr, that is:
(Ppigs®)(W') = fO 003" gy < o0 (3.120)
k

it is worth to mention that each class of orientation and ordering can be
obtained via infinite number of different diffeomorphisms, the group of such
bad symmetries, labelled by TDiffr, one has to take a representative for each
equivalence class. That means, to avoid infinities in the sum (3.119), we will

restrict our diff-invariance symmetry Diff(X) to Diff(X) /TDiffr

Finally, the Diff-invariance Hilbert space Hp;s is defined to be the image of the
projector (3.116) with taking a sum over the restricted symmetry Diff(X)/TDiffp
rather than Diff(¥) itself:

Hpirr = Ppiss(Ho) (3.121)

The result of this procedure are spin network states defined on equivalence classes

of graphs under diffeomorphism symmetries, labelled by K,

K :={¢oT | ¢ € Diff(X)/TDiff} (3.122)
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These equivalence classes K are called knots, (See Fig. 3.11). The study of knots
is an interesting branch of mathematics. The Diff-invariant Hilbert space of loop
quantum gravity is spanned by knotted spin networks or s-knot states. Since the
space of knots is extremely discrete, then one can decompose our Diff-invariance

Hilbert space into a discrete sum over knots as following:

Hpisr = P Hk (3.123)
K

where,

HK = 'PDiff(er) (3.124)

Po T3 ) £ £
Diffeo %Céx @ 6;5 @ 7/\

Figure 3.11: in the left. A diffeomorphism preserves the knot-class of loops. in the right.
Classification of th first knots basis (without nodes), taken from Wikipedia.

Now, we want to show how the diffeomorphism invariance immediatly leads to

solve the diffeomorphic constraint, H,U = 0. One can show: for any W € Hy
HN(Ppigs¥) = Uy (Ppigs¥) — Ppigs¥ =0 (3.125)

where Udu is the diffeomorphism generated by the vector field A. We conclude
that the knotted spin network states solve the diffeomorphic constraints as well

as they satisfy the Gauss law.

3.7 Dynamics state space H,ps

Finally, the last step of Dirac program is to solve the Hamiltonian constraint, which

are those states in Hp;rr C H; that are invariant under the gauge transformation
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generated by the Hamiltonian constraints. Recalling that in real Ashtekar variables,
the smearing classical Hamiltonian constraint over a function N is given by:
3 iy BE] k L+9% i
H(N) = /d eNel L (F — 2~ LK K}
det(FE) Y
= H¥(N) =2 (1++*) T(N), (3.126)

where we introduced the shorthand notation H¥(N) and T'(N). As with the ADM
Hamiltonian constraint, this expression is non-linear, we still have the problem
of the non-polynomial term ﬁ(bﬂ). However, a trick due to Thiemann [61, 62]
allows us to rewrite the Hamiltonian constraints in terms of well-defined Poisson

brackets. Defining the volume V' of the 3d-space ¥ by:

V= /2 B (/det(E) (3.127)

One introduces the Gauss gauge invariant quantity:

K= / B KiE (3.128)
b

a1

we can use the classical brackets (3.3) to establish the following identities,

R X 4 2
Ez]k# _ 7€abc {14127 V} ’ (3129&)
det(E) 7
. 1 .-
Ki==-{A K}, 3.129b
L) (3.129)
_ 1 5
K — oy {7_[ (1), V}. (3.129¢)

Using these relations, one can rewrite the two terms in (3.126) in terms Poison
brackets as:
2 A _
HP(N) =~ / da Nes, Fiy {41,V (3.130a)
r‘Y

T(V) = = [ @t N {4, {170, VI {AL P ), VI {AL V)
(3.130b)

Since our goal is to quantize the Hamiltonian constraints, one has to rewrite

the connection and curvature in the expressions (3.130) in terms of holonomies
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and fluxes, so that we can turn them into operators. This requires a regular-
ization procedure as follows: we introduce a lattice regularization procedure by
assuming that the 3d-space Y has been divided into infinitesimal tetrahedra
A; and regularize the integrals as Riemann sum over the cells A;. For each
tetrahedron A pick a vertex and call v(A). Let eq(A), A =1,2,3 be three edges
started at v(A) and let esp(A) = ep(A) — ea(A). We now construct a loop
aij(A) = ea(A)teap(A)tes' (A). See the following figure.

Along the edge ec, the holonomies can be easily expressed in terms of connec-

tions as following:
heo ~ 1+ A, (3.131)

Along the loop a4p, the holonomies can be easily expressed in terms of cur-

vature as following:

1
ho,y, ~ 1+ §Fabejel]’3 (3.132)

XAB

The integrals can then be regularized by a Riemann sum as:

2
i = limy ST N Tr (Fop { A, V)
I
2 : ABC -1 -1
== lim 37 NPTy ((Pass = hary) he {hee, V) - (3.133)
I

Doing same thing for the second term (3.130b), but the regularization is so
complicated, we refer to the paper ref. [62]. Now, the quantization process is
very simple: by promoting holonomies and fluxes to opeartors and the Poisson

brackets to commutators, we get:

HE[N] = 2 lim S NPT ((hawy = haly,) heo [hee, V1) - (3.134)
I

Y A0 @AB
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This is a well-defined quantum operator whose action is complicated. Notice that
in the next, we will discuss the volume operator and its spectrum. We will make it
clear that the volume operator acts only on the nodes of the spin network states
and gives non-trivial spectrum only for a node of valency 4 and higher. Then from
the holonomy operators in HE [N], they modify the spin network by creating new
links of %—spin around the node in such a way the new nodes (intersecton of the new
links with the graph) are three-valents in order to have volume invariant state. See
the literature [4, 5] for more details. Generally, a formal solution of the Hamiltonian
constraint is a linear combination of spin networks with an arbitrary number of links
intersect with the links of the graph, and it has coefficients depend on the details

of the Hamiltonian constrant opertaor H and on the spins carried by the state ji,

= « +... 4+ w +...

This construction provides a new spin network state as the solution of the

Hamiltonian constraint.
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Geometrical applications of LQG

This chapter is based on refs. [18, 19, 20, 21, 22, 23, 24, 25, 26, 27| and [4, 47, 63,
64, 65].

Our next step is to develop a well-defined operators on the gauge invariant Hilbert
space Hy for promoting some geometrical quantity to the quantum level. It is
natural to ask what the quantum version of the geometric variables such as length,
area, volume, angle, etc. Such operators exist and are called geometrical operators.
In the next, we will provide the area and volume operator in LQG and their

spectra through a spin network state.

4.1 The area operator

The simplest geometric operator that can be constructed in loop quantum gravity
is the area operator, which is as manifested by its name, the operator that
measures quanta of area. Consider a surface S C ¥ that can be represented

by the coordinates pair (oq,09):
(01,09) —> (2%(01,02)) (4.1)

The area of the surface S can be given in terms of its normal n, and the

densitized triad EY,

A(S) ::/gdaldagy/EfEbinanb (4.2)
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where
oxb Ox°

a — €abe
80’1 80'2

n a,b=1,2,3 (4.3)

The area at classical level. We start from the 2-dimensional indeuced metric (z)qag on
the surface S in terms of the 3-dimensional metric g, on X

2) L al'b aﬂi‘c

qaﬁ T Qab 80'a 80'6

a,f=1,2

The standard definition of area in terms of the metric,

AS::/dd det(®@gq,
(S) ; o1dogy/det(Pgqap)
0z Oxb
—/daldag\Jdet (qabax 81‘) a,f=1,2

we have

0ol 0ol 802 00?2  Oo! Do? 0o? Dol
9z 9z 9z Hae
Ocl ol do? Ho?
_ 9 oz® 0z Oz Oz
94551 9ot o2 Do
ef oz 9z 0z Dzt
= 44" €cact fba 0ol dol D02 o2
= qq¢* neny

= e2eeeﬁn enf

= EfE nen;

dx® dx? Ax® OxP 9z dx®  Hx® HxP dxc Hx?
det 773 | = qabqcd

= 2qabQed

where we have used the definition of the normal (4.3), the definition of the densitized
triad (3.7) and the relation:

Ya[p9dlc = 5499 feaceebdf

To construct an operator version of (4.2), one has to quantize it canonically using

the quantization momenta rule (3.2b):

62

A5 AV (44)

A(S) = SWGhy/Sdaldag\l —NgNp

This expression poses a problem because there are two functional derivatives,

upon acting on a state will form 6d-Dirac delta function. four of them can be
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treated with the surface 2d-integration as well as the 2d-integral in the cylindrical
functional for each functional derivative in (4.4), and the other will remain in the
form of §*(0). This is an ill-defined quantity (infinities) which hinders the process
of quantizing. Moreover the presence of the square root further complicates the
situation. One way to solve this problem is by what is known as regularization; it
can be easily dealt with this problem if we regularize the expression for the area
in the following way: we consider a partition of the surface S in N 2-dimensional

small cells {S;,I = 1,...,N},

S:

=

St (4.5)

I=1

and write the integral as the limit of a Riemann sum,

A(S) = lim An(S), (4.6)

N—o0

where the Riemann sum can be expressed as

Z (S E(S)). (4.7)

Here N is the number of cells, and E;(Sy) is the flux of E; through the I-th cell.

Checking the limit of a Riemann sum. In the limit of infinitesimal cells we have that

Sr) :/S d01d02naEg%Eﬂ[na‘ISI
I

In that limit the definition of the area

S :/da dogy/ E¢EYn,n
) , don 21/ B b

N
= A}i_l)noozsl\/Eﬂ[Ebi‘Ina“nb‘l

= lim Z\/E ’1”0’151 Eb ‘Inb‘ISI)

N~>oo

Accordingly, we define the area operator as
A(S) = lim AN(S), (4.8)
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where in Ay(S) we simply replace the classical flux E;(S;) by the operator E;(S;).
This operator now acts on a generic spin network state Wr, where the graph I’
is generic and can intersect S many times. We already know that E;(S;)E"(S;)
gives zero if St is not intersected by any link of the graph. Therefore once the
partition is sufficiently fine so that each surface S; is punctured once and only once,
taking a further refinement has no consequences. Therefore, the limit amounts
to simply sum the contributions of the finite number of punctures p of S caused
by the links of I'. That is,
A(S ) Wp = hm Z SI Ei (S;) Ur = Z 8nGh|y|\/jp(jp + 1) ¥
peSNT

There are three key remarks to make to this formula:

o The spectrum of the area operator is completely known and the area can only
take up discrete values, with minimal excitation being proportional to the
squared Planck length L% = %! ~ 107%¢m?. Then the natural interpretation
one obtain is that spacetime itself is discrete, much like matter field in the

quantum scales.
o The spin network states are eigenstates of the area operator.

o In the classical theory, the value of the Immirzi parameter in the Holst action
did not affect the physical solutions. Instead in the quantum theory, (4.9)
suggests that the eigenvalue of the area depends on the value of the Immirzi

parameter.

4.2 The volume operator

The next geometric operator we will provide in loop quantum gravity is the volume
operator, it measures the quanta of volume. Given a region R C X, we can

classically define its volume as:

1 y
:/Rdgm\/‘g!eabce”kEfEng (4.10)
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where the quantity in absolute value can be recognized as the determinant of the
densitised triad, det(E?). To construct an operator version of (4.10), one has to

quantize it canonically using the quantization momenta rule (3.2b):

o 5
oy €abe€ I ————— (4.11)

VR::SGh3/2/d3 ,
(R):= (SnGR)"™ | wJ 31 SAI G A5 AR

This expression poses a problem because there are three functional derivatives,
upon acting on a state will form 9d-Dirac delta function. Six of them can be
treated with the volume 3d-integration as well the 1d-integral in the cylindrical
functional for each functional derivative in (4.11), and the other will remain in the
form of §3(0). This is an ill-defined quantity (infinities) which hinders the process
of quantizing. One way to solve this problem is by what is known as reqularization;
it is based on a given fluzization of the links with small surfaces around the region
R. Two distinct mathematically fluxizations of the volume measure have been
proposed in the literatur; one is due to Rovelli and Smolin Vxg, and the other to
Ashtekar and Lewandowski Var. Both of them act non-trivially only at the nodes

of a spin network state. Let us begin reviewing the construction by Vgzg.

4.2.1 Rovelli and Smolin volume operator

The fluxization due to Rovelli-Smolin [20] is reached as follows:

o Choosing the partition in which the nodes of I' can fall only in the interior

of cells and each cubic cell C; contains at most one node.

e In the case that the cell contains no node, then we assume that it contains

at most one link.

» we consider a partition of the surfaces dC} in cells S in which the links of T’
can intersect a surface S only in its interior and each cell S} is punctured

at most by one link.
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As we did for the area, the volume integral (4.10) can be approximated to a

limit of a Riemann sum,
Vrs(R) = lii%zljvol((}’[) (4.12)

where R = U;C;. Now, the only remaining step to be taken is to provide
a fluxization of the small e-cubic cells C;. To do so, consider the following
three-surfaces integral,

1 ..
W] = 7/ d20'1/ d20'2/ d20’3|€ZJ}€E;1(Ul)na(O’l)E]l?(O'Q)TLb(UQ)Eg(Ug)nc(o’g)}
48 Jac, ac; ac;
(4.13)

For each boundary surface C; of the small cubic cell Cy, the last quantitiy can

be approximated to a sum of small surfaces 0C; = U, S§, one has then:
W[ Z SI SI S’Y
48 B

1
© 48

_ 1
48

Z]]’3Ea|1na|1E |Inb|IEk|Inc|

(B mal157) (Bylim]r7) (Bl iml17)

afy

€I (ST E;(S7) Ex(S7) (4.14)

afy

where we have labeled the approximate value of any field ¢ at the small cell C'; by

the notation ¢|;. If we send the size of the cell € to 0, we will get:

Vas(R) = lim >~ /W (4.15)

Therefore, this fluxization allows us to rewrite (4.10) in terms of fluxes as follows:

Vrs(R) = lg%; 12 Z

0457

R (S E;(ST) Ex(S])] (4.16)

Finally, quantizing (4.16) gives the Rovelli-Smolin volume operator:

VRS = lim Z —

e—0 48

€ E;(S§) E; (S E(S))| (4.17)

a,Byy

We can directly use (3.46) to write the contributions of the finite number of
nodes inside a graph I' and the one point puncture of S& caused by the links

of ' to the volume operator. That is,

Vns(R)Ur = 3 J@”G’”) 3

Uk(](]a Jj B)Jéﬂ"/) \Ill" (418)

neRNT 48 a,B,y
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This is a well-defined volume operator, whose action spectrum is again discrete,

3/2

with minimal excitation proportional to (8wGhy)*/#. Moreover, the spin network

basis are not eigenstates of the volume operator (4.17).

Checking the limit of the Riemann sum (/.15). In the limit of infinitesimal cubic cells:

1 ” .
Wi ~ —/ d20'1/ d202/ d20'3lewkEf|1E§’\IE,;|1na(01)nb(0'2)nc(0'3)|
48 oCT aCT aCt ~— —

det(E{)|reabe
1
:det(Ef)\I—/ d20'1/ d20'2/ d203feabcna(al)nb(ag)nc(a;;ﬂ
48 Jac, aC; acy

If we divide the boundary surface cell 9C7 into its 6 square surfaces S, a = F1, F2, F3,
where the unit normal vector n is then its is obvious to see the orthonormality relations
n® . nf = §*% — §8 then we get:

 det(EP)[r

Wi 5 2 Inl (Pl x )]
B,y
48
= det(Ef)|1€6
= (vol(Cy))? (4.19)

The last sum is equal to 48, there are 48 terms in the sum, each term equal to 1 due to the
presence of the absolute value. The 48 terms come from the nature of o, 5,y = £1,£2, +3
and the presence of €%¢; they must be different in each term, this leads to 3! = 6 of
different permutations. And for each permutation there are 8 different terms due to the
presence of double parallel square surfaces (£) for the cubic cell.

4.2.2 Ashtekar and Lewandowski volume operator

The fluxization due to Ashtekar-Lewandowski [19] is reached as follows:

o Choosing the partition in which the nodes of I' can fall only in the interior

of cells and each cubic cell C; contains at most one node.

e In the case that the cell contains no node, then we assume that it contains

at most one link.

o Consider three surfaces S7,a = 1,2,3 to be any surfaces orthogonal to each
other inside the cube, in which every single node of the graph coincides with

the intersection point of the three surfaces inside the cube.
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This fluxization allows us to rewrite (4.10) in terms of fluxes as follows:

Var(R _hmz\/’e” €abeEi(S¢)E;(S%) Bk (SY) (4.20)

e—0

Finally, quantizing (4.20) gives the Ashtekar-Lewandowski volume operator:

(4.21)

e—0

VAL - hmz \/’ eiik 6abc z )EJ(S?)E]{(S?)

We can directly use (3.46) (the case where the surface intersects with the end points
of the link) to write the contributions of the finite number of nodes inside a graph I'
and the punctures p, of S¢ caused by the links of I" to the volume operator. That is,

(87rthy)36ijk Z i(ense! )J(]CH)J(]Q )J(] err)

neRNT

T (4.22)

! el
€ny€nyCn

The sum is over all possible triplet links e,, e}, e passing through the node n and

K(en, €, er) is the orientation function depends on the sign functions (3.47):

n’-n

K(€n, €, €,) = €abcliSg (671)"153( )HSC( ) (4.23)

This is a well-defined volume operator, whose action spectrum is again discrete,
with minimal excitation proportional to (87Ghy)%/2. Moreover, the spin network

basis are not eigenstates of the volume operator (4.21).

4.2.3 Discussion of the volume operators

Let us now study the action of the volume operators (4.17) and (4.21):

 The presence of the epsilon tensor €% in both volume operators (4.17) and
(4.21) requires all three fluxes to be different, this means that the volume
does not act on links. We thus obtain the important result that the volume

operator acts only on nodes of the graph (it acts on the intertwiners).

o The action of (4.17) and (4.21) on a single 3-valent node is zero due to the

presence of €% as well as the closure relation (3.66).

o Non-trivial contributions to the volume comes from nodes of valency 4 or

higher.
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o Both volume operators (4.17) and (4.21) act only on nodes of the graph;
their spectra are discrete with minimal excitations proportional to the Planck

length cube L%.

In loop quantum gravity, these results together with the discreteness of the area
operator show that the quantum space-geometry is discrete at the Plack scale. Each
spin network for a given graph I' describes a quantum geometry, where each face
dual to a link e; has an area proportional to the spin j;, and each region around a
node n has a volume determined by the intertwiner 7,, as well as the spins of the

link sharing the node, one has the following two key results:

link <— irr-representation «— face
node <+— intertwiner <— region

An important question is whether these spin network state for a given graph
I can be understood as some approximate description of smooth 3d-geometries
(63, 64]. In what follows, we would like to establish a connection between the
picture of the quantum degrees of freedom captured by an intertwiner space Hp

of F-valency and the polyhedral description.

4.3 Polyhedra Interpretation of Intertwiner State

This section is based on the papers [26, 27, 65].

Now we would like to have a classical picture of the quantum degrees of freedom
captured by the gauge SU(2)-invariant kinematical space H. Since the intertwiner
spaces (3.69) are the building blocks of HY, then we will keep our attention to
an intertwiner space of a single node. From the above discussion and the closure
relation (3.66) of the irr-representaion vectors at each node, a best visualizing
picture of an intertwiner of valency (V,, = F) is an F-faces convex Euclidean

polyhedron. In the next, we will study this correspondence in more details.
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4.3.1 Convex Euclidean polyhedron

A conver Fuclidean polyhedron is a convex region consists of set of points Pol

in 3d Euclidean space R3, which is:
Pol :={ZeR%fi; - Z<hsf=1,....,F} (4.24)

it can be seen as the intersection of F'— suitably half-spaces, where F' is the face
number of the polyhedron and {h} are the distances between the origin point and

the planes {S} with a unit normal {7i;}. These surfaces is defined by:
Sf = {fER3| ﬁf’fz hf} (4.25)

There is an important relation must be satisfied in terms of the areas {A} and

the unit normals {7i;}, called the closure condition:
F —
S Ay =0 (4.26)
F=1

A convex Euclidean polyhedron with areas and normals that satisies the closure
condition always exists and it is unique, up to rotations and translations. This

result is proved by Hermann Minkowski [66].

4.3.2 The space of polyhedra shapes (Kapovich-Millson
phase space)

The space of all convex Euclidean polyhedral shapes with faces of fixed areas
{Af}, f = 1,..., F satisfying the closure relation (4.26) is the

F
Spi={(fir, ... 7ir) € (S| 3 Asiiy = 0}/so@) (4.27)

=1

dim(Sp) = 2F —3 — 3 = 2(F — 3)

and is known as the Kapovich-Millson phase space [67]. One can canonically

coordinatized the Kapovich-Millson phase space by F' — 3 invariant! pairs (u,, 6,):

r41
Ky = |ﬁr| = Z Afﬁf (4'283)
=1
0, := arctan V('u:_l x M:) X (_lfr X ﬁ”*l)' (4.28b)
(/vbr—l X ,U"r) ' (,ur X Mr—&-l)

LA best coordinatization must be invariant under the action of 3d-rotation SO(3).

120



Chapter 4. Geometrical applications of LQG

with a symplectic structure on this spas as:

{,u'ru ‘97"} = Opp! (429)

This naturally arises from the well-known Lie-Poisson bracket by considering the
interpretation of each area vector /Yl = A;n; as a classical angular momentum

(see for more details [68]),

G of dg
, = E Ayp- = —
{f g}LP & f <8Af X 8Af>

Foo L 9f g
=S Al 4.
= oo (430

using this Lie-Poisson bracket, one can show the canonical coordinates of Sg satisfy
(4.29). The fact that the space of polyhedra shapes with faces of fixed areas form

a phase space will be important in the next where we discuss the relation between

quantum polyhedra and intertwiner states.

Lie-Poisson bracket on angular momentum space. The space of angular momentum is
constructed by 3d-vector J of fixed norm J2 = C2. It can be seen as a 2-sphere with
a radius C' > 0, (e.g. a dynamical system with spherically symmetric potential). We
consider the symplectic structure to be determined by the Lie-Poisson bracket as:

{(J7, P }pp =€, J* (4.31)

Then, this Lie-Poisson bracket induces a symplectic structure: a closed, nondegenerate,
differential 2-form for the angular momentum space:

wrLp = Eijkjidjj A dJk (4.32)

where if we refer {X;} to be the basis tangent vector in the angular momentum space,
in which {d.J'} is its dual (d.J*(X}) = &}), then (4.32) is well defined,

'IULP(XZ‘,XJ') = {Jj,Jj}LP (4.33)
Since the Lie-Poisson bracket between two functions f and g is determined by the
symplectic structure acting on their associated Hamiltonian vector field Xy and X

respectively, one has the following

{f,9}p = wip(Xy, Xy) (4.34)

In order to determine (4.34), we need to determine the Hamiltonian vector field X; and
X, in terms of the structure constant in (4.31) and the angular momentum J*. To do
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so, we use the relation between the variation df and X; = X}Xi:

wrp(Xy,-) = df
i of i
SXbwrp(Xi, X;) = o7 dJ'(X;)
f LP 19 8J7' J
Of si
k
@Xfezjkj aJl _]
o of
i gmn,_ 7k _ _jmn ~¥J
<:>Xf6 €ijrd =€ 9.7
25lm 67
mn OF
x|y =
& J 5.7
mn O
oX " ™ gy = I
< aJi
m 8f
SXFI Im, = S 55 Im
CQ
. . Of
i .~ 1y Y gk

where in the eighth step, we use the fact that all Hamiltonian vector field is restricted
to be tangent to the 2-sphere of radius |J|, then X%Ji = 0. Now, substituting this
result in formula (4.34)

{f9}p = wrp(Xy, Xy)
:’LULP(X}XZ,X;XJ)
= X XJwpp(X;, X;)
:X}Xjeijkjk
1 iq af l 1 jm 89 0 k
(02 lanJ><c2 nggm’ )E””“]
1 m l tn 7k af
C46 leJ nEijkd J" T (8J‘1> <8Jm>
— 1 iq jm L 1k 8f
_@6 l € neijk JJT an 8Jm
(07760 =07 Onkc)

1 L ym M4 l k (af)( >
= o T = T G ) \ggm
0 C

~ 7 (5) (o)

_ 17 (8f )
C? aJ  oJ
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4.3.3 Relation to loop quantum gravity

Let us consider the space of convex FEuclidean shapes Sr with faces of fixed areas
{Ar}. In view of the above discussion, the Lie-Poisson bracket structure for each
face f is defined on the 2-sphere szf embedding in the area 3d-space {A £} in which
we consider Ay ~ jr, which is the area spectum corresponds to a surface that is
intersected with only one link of a given graph. As is well known, the quantization of
the the 2-sphere is the irreducible representation space V). Thanks to Guillemin-

Sternberg’s theorem [69] which shows the commutativity of the following diagram,

F 9 Quantization F Gr)
& Sj; Qv
f=1 f=1
Symplectic reduction Quantum reduction
Sr _ Hr
Quantization

The quantization commutes with the reduction:

e One can reducing first the unconstrained phase space ®?:1 Sff by summing
area vectors to zero and up to rotations invariant, to end up with the
Kapovich-Millson phase space Sg, then canonically quantizing it by promoting
the canonical variables (4.28) to be well-defined operators acting on an

appropriate Hilbert space, which is the intertwiner space Hp.

e One can quantize first the unconstrained phase space ®]€:1 Sff and then
reducing it at the quantum level by solving Gauss constraints to end up with

the intertwiner space Hp.

The commutativity between quantization and reduction leads to an equivalence
between the quantum polyedra space and the intertwiner space. As a consequence
of this, intertwiners are the quantization of the Kapovich-Millson phase space; it
can be visualized as the state of a quantum polyhedron, and spin network state as

a collection of quantum polyhedra associated to each node. (See Fig. 4.1).
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A o
VaY)

Figure 4.1: Spin network states as a collection of quantum polyhedra associated to each node.
It is taken from [65].

The equivalence between convex Euclidean polyhedron and the intertwiner state
can be understood as following:

The closure condition: Z?:l fff =0 — Z?zl Ji(jf) =0

The area vector: Ay = A;ii; — E,(S7) = 8nyL% g7

The face area: Ay = \/A;- Ay — A = \/W— 8myLpy/Jr(dr + 1)
4.3.4 Fuzzy Geometry

This correspondence allows us to interpret each atom of space on a node as quantum
Euclidean polyhedra states and not a fixed one. Indeed, it offers infinite possible
Euclidean polyhedra shapes for the same intertwiner state. In fact, after restricting
the space of shapes of fixed areas to an arbitrary spectrum of the volume operator
we will obtain (2F — 7) dimensions surface of relevant shapes. It is called the

volume spectrum orbit and defined by:
Orbity = {(ur,0,) € Sp| V(As; pr,0,) =V} C Sp (4.35)

More precisely, Consider a polyhedron with F' faces, F edges and V vertices. The
Euler formula FF — E 4+ V = 2 must satisfy. For the dominant class of polyhedra
with all vertices 3-valent?, one has 2F = 3V, E = 3(F —2) and V = 2(F — 2).

2Dominant class shapes: set of polyhedra with all vertices 3-valent, this condition maximizes
both number of edges Eqr = 3(F — 2) and vertices Viq, = 2(F — 2). Subdominant classes are
special kinds with some zero-length edges and then fewer vertices.
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Thus, the geometry of a classical polyhedron with F' faces is determined by
3(F — 2) parameters, for instance, the F' = 3(F — 2) lengths of its edges. But the
corresponding quantum numbers that determine the quantum polyhedron states
are not 3(F — 2); they are only F' + 1: F for areas and one for volume. This

fuzziness of quantum geometry is caused by the following two reasons:

1. The non-commutativity of the electric fluxes components (3.50) is an intrinsic
feature of the kinematical quantum-geometry. It is different from the classical

geometry where all the geometrical quantities are commute.

2. The fact that we consider a single graph Hilbert space which captures only

finite degree of freedom number of the theory.

For instance if we take the case of 4-valent intertwiner with irr-representations
{jr. f = 1,2,3,4} to see the fuzziness of the quantum geometry. We have 2-d
space of tetrahedon shapes of fixed areas {Ay = 87vL%\/jf(jfr + 1), f = 1,2,3,4}.
restricting the volume variable to the spectrum of the volume operator through the
4-valent state, we obtain 1-d space of relevant shapes. Thus, we cannot identify
a 4-valent intertwiner with a fixed tetrahedron due to the non-commutativity

of the geometry.

Figure 4.2: The fuzziness of quantum geometry. For instance, a quantum tetrahedron state. It
is taken from [65]
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Chapter 5

A Curvature and edge length
Operators in LQG

This chapter is based on the the work in our publication [28]. Authors: N. Mebarki, O. Nemoul.
Article title: A curvature operator for a regular tetrahedron shape in LQG.

Journal reference: IJGMMP, Vol. 16, No. 06, 1950095 (2019).

A geometrical applications of loop quantum gravity is an important arena for
more understanding the interpretation of intertwiner states as well as obtaining a
nice semi-classical limit to the smooth picture of spacetime. A scalar curvature is
one of the most important geometrical quantity that can allow us to know which
kind of space at a given point. In what follows, we will try to introduce a notion of
scalar curvature operator associated to a fixed polyhedron shape in Loop Quantum
Gravity as well as the edge length operator. Then we will give a direct application
of these new operators on the 4-valent intertwiner state. A suggested introduction
to the curvature operator in terms of the length operator and the dihedral angles
was provided by using 3d- Regge calculus [70]. Moreover, there are three proposals
for length operator discussed in refs. [71, 72, 73].
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5.1 Motivation for a new scalar curvature mea-
sure

We would like to introduce new expression of scalar curvature measure in terms of
the well-known geometrical quantities (4.9,4.22). The 3d- Ricci scalar curvature in
a given point of the hyper-surface S; embedded in a smooth Riemannian manifold
M is technically determined by the measure of volume and boundary area of a
small neighborhood region around this point. It is obvious to observe that, doing
these measurements separately does not give enough geometrical informations of
the dynamical space in that region. Rather, it is mandatory to do this at the same
time in order to get the complete information. To be more explicit, let us consider

the simplest case of the 2-sphere S7,,) of radius 7(t) in 241 dimension (See Fig. 5.1).

Sg(t) = {(557%2’) € R?)l $2 —I— y2 + 22 — TQ(t)}

={(0,9) eR*0<O<m0<p<2r}U{N,S,} (5.1)
The spatial invariant interval of the 2-sphere St20 at a given time tg is:
ds? = r(t)? (d92 + sin2(9)d<,02)) (5.2)

where 7(tg) = ro. The 2d-Ricci scalar curvature R(ty) is a constant in the 2-sphere

Si and it can be written in terms of the curvature radius ry by the relation:

2
2
7o

R(to) = (5.3)

Now, we want to measure the 2d-Ricci scalar curvature at a time ¢y, this means
we need to determine the radius ro. To do so, we fix in S?, a geodesic disc D,(p)

of a radius a centering at a point p € STQO:

Da(m) = {p € 5%

o < a} cs (5.4)

where [,,, is the geodesic length in the 2-sphere Sfo between the points m and p.

The area A(rg,a) of the disc and its boundary curve length L(rg,a) are:

A(rg, a) = 277} (1 — cos (%)) (5.5a)
L(rg,a) = 27rg sz’n( ) (5.5b)

a
ro
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Given the pair (rg, a), one can determine the area of a disc and its boundary curve

length (A, L). It is easy to invert these two functions to obtain:

2(47A — L2
R(A, L) = (WAZ) (5.68)
A I ATTE
a(A, L) = mamtan(%) (5.6b)
7'(_ —

Accordingly to these result, the simultaneous measurement of the area and the
boundary curve length (A, L) can allows us to estimate the value of the 2d-
Ricci scalar curvature and the disc radius (R, a). In 241 dimension and for the
2-sphere shape, these two relations give us another way to measure the main
important geometrical quantity which is the value of the 2d-Ricci scalar curvature
R(ty) = R(A, L) as a function of the area measure A of a disc and its boundary curve
length L. Remarkably, this technique does not depend on the choice of the region
we chosen; one can use any shape of a region insted of the disc (5.4) and get the
same 2d-scalar curvature. Our job now is to generalize this technique for arbitrary
3-dimensional topological spaces. To get such a generalization, we try to find a
relation between the 3d- Ricci scalar curvature with the measurement of volume and
boundary area of an arbitrary small region. It was done by using small geodesic ball
[66], and for any arbitrary regular tetrahedron in a constant curvature spaces [29].

The curvature can be determined by inverting the resulting functions in all cases.

Figure 5.1: The geodesic disc D, (blue) and its boundary circle 9D, (green) in the 2-sphere
Sz . It is taken from [28].
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5.2 Strategy for defining a new scalar curvature
operator in LQG

In what follows, we will focus on introducing the notion of scalar curvature
and edge length operators by considering the generalization of the correspondence
between intertwiner state and quantum Euclidean polyhedra to a quantum geodesic
polyhedra (it is not necessary Fuclidean). The strategy is consisted of the

following items:

1. We will interpret the intertwiner state by a fixed polyhedron shape (even if

it doesn’t belong to the volume orbit (4.35) of Euclidean polyhedra shapes).

2. We will try to find out what kind of a curved space one must have in order

that this polyhedron grain be nicely consistent with the area and volume

spectra of LQG:

 Identifying the volume and areas operators of LQG with those of the

corresponding polyhedron in an arbitrary curved space.

o Inverting the resulting set of functions to end up to the classical formula

of scalar curvature and edge lengths related to a fixed polyhedron.

o Quantizing the resulting formula to obtain the quantum operators for

the 3d- scalar curvature and the edge lengths.

It is worth to mention that the classical consistency of the 3d- Ricci scalar curvature
measure as a function of the volume and boundary area measures is also well-defined
at the quantum level since the commutativity between their associated geometrical
operators is guaranteed in LQG! (there is no ordering problem of non-commutative
operators). Unfortunately, we cannot exactly calculate the volume and boundary
face area of a polyhedron in a general curved space, even if we make a perturbative
series expansion around the Euclidean measure for a small polyhedron as it was

mentioned for the small geodesic ball cases [74], we don’t have any guidance to

In LQG, the volume and area operators are commute.
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estimate the uncertainty of this expansion. This problem occurred due the arbitrary
degree of freedom of the considered general curved space. The solution is trivial; one
can just relax the degree of freedom to spaces with a constant scalar curvature. In
fact, a spin network state of a fixed graph induces naturally a discrete locally valued
function of the 3d- Ricci scalar curvature. The reason is that all quantum geometric
operators are not sensitive to all points inside the quantum atom of space; only
nodes and links represent the quanta of space and its boundary surface respectively.
Thus, each quantum atom of space corresponds to a constant 3d- Ricci scalar
curvature value, i.e. all points inside the quantum atom of space share the same
geometrical property. In the following, we will make our calculation concerning the
volume and boundary area of a polyhedron in a constant curvature Riemannian
manifolds. We remind that the Riemannian manifolds of a constant curvature can
be classified into the Euclidean (E®, R = 0), spherical (S2, R > 0) and hyperbolic
(H2, R < 0) geometries (other spaces that have a constant scalar curvature are
isometric to the one of these three classes by the Killing-Hopf theorem [75, 76]).
As a byproduct, the full expression of volume and boundary face area of a regular
tetrahedron in the 3-sphere S? and the 3-hyperbolic H? has been derived explicitly
in terms of the 3d- Ricci scalar curvature and the edge length in ref. [29]. In the
monochromatic 4-valent node example, we will be interested to study the possibility
of finding a correspondence with a regular geodesic tetrahedron. Applying the
3d- Ricci scalar curvature operator related to a regular tetrahedron region on the
intertwiner state for constructing a space of a constant curvature where one can

have the regular tetrahedron correspondence for any irreducible representation j.

5.3 Application: quantum tetrahedra

The quantum tetrahedra [77, 78, 79, 80, 81] is one of the most important topics
proposed in LQG. Our task now is to determine new curvature operator related to
a regular quantum tetrahedron acting on a monochromatic 4-valent intertwiner

(links with the same irr-representation j) by using the approach similar to the
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one mentioned previously. Before we do that, let us discuss the main ingredients

of the quantum tetrehadron state.

5.3.1 Area and volume operators in H,

The intertwiner space H,4 has been constructed in subsection 3.5.3. The remaining
steps are to introduce the appropriate area and volume operators such that the
convex Euclidean tetrahedron has been inspired from it. It was done in ref.
[77], we have then: The area operator corresponds to fth face of the quantum
tetrahedron acts trivially on H, (precisely acts trivially on the fth link of the

intertwiner state (3.113)):

Aslky = \[Ef - Ef |k) = 8nyLb\/j (G + 1) |k) (5.7)

The volume operator corresponds to quantum tetrahedron acts non-trivially on H4

(precisely acts non-trivially on the node of the intertwiner state (3.113)):

. V2 [ & 2,
Vik) = 5 |Ey - (Ba x E3)| k) (5.8)
due to the closure relation,
(El v By + By +E4) k) = 0 (5.9)

a moment of reflection allow us to see how can this operator coincides with the
Rovelli-Smolin operator (4.17) and the Ashtekar-Lewandowski operator (4.21). It
is worth to mention that the presence of the square root in the volume operator
(5.8) make a difficulty in computation of the spectrum. To overcome this problem,
it is useful to introduce the volume square operator Q Thus, one has to diagonalize

the volume matrix element by diagonalizing the matrix [Qx] of elements:

Qur = (K| Q) (5.10)
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One can show that (see for detail [27, 82, 83]) the matrix [Q ] is a d x d Hermitian

matrix and it can be written as:

0 iaq -+ - 0]
—ia; 0 das :
[Quil = 8my)°Ly | ¢+ —iay - : (5.11)
: 0 iag
0 e e —jag 0]

with the real parameter a; defined by:

. Nt R+EF2)i+ -k —+k+D)(Ge—n +k+1)
ap = 1Qy1k =
22k + 3
Vs +ia+k+2)(Gs+ja—k)(s—ja+k+1)(ja—js+k+1)
22k + 1

(5.12)

Since Q is a d x d Hermitian matrix, one has the following properties:
o Its spectrum is non-degenerate (it contains d distinct real eigenvalues).

o Its non-vanishing eigenvalues come always in pairs +¢q, then the volume

operator is twice degenerate.

o A vanishing eigenvalue is present only if the dimension d of the intertwiner

space H,4 is odd.

As a conclusion, one can introduce the eigenstates of the volume operator | £ ¢,
labeled by the eigenvalues 4+¢q of Q, which is a linear combination of the in-

tertwiner states:
Ny
| £q) =) Ciylk) (5.13)
k=1
The volume spectrum of the mixed intertwiner state | & ¢) is:
Viq)=/lall £ q) (5.14)

These are common eigenstates of both volume and area operators, then one has also:

Al q) = 8ty GG+ 1) | £ 9) (5.15)
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5.3.2 Example: a monochromatic 4-valent node in ’Hi

The gauge-invariant Hilbert space Hi of a monochromatic 4-valent node (the four
links with the same spin j), the intertwiner basis is {|k),k = 0,...,2j} with a
dimension 2j+1, we also label the common eigenstates of area and volume by |£q);.

We have then the following: the area operator gives the same quntity for any f-face,

Al £q); =8myLp i +1) | £ q); (5.16)

and the volume operator gives,

V£ q); = \/lall £ a); (5.17)

where the spectrum +¢ are the eigenvalues of the matrix element (5.11) for

d = 27 + 1, one can rewrite it in terms of components as:

Qun = =100 i1 + 1001y, , non' =1,...,2j+1 (5.18)

=

where a,, is given by substituting j; = jo = j3 = jy = j in Eq. (5.12):

1(n%— (25 +1))n?
S Gt 7 ) WL (5.19)
4 4n? — 1

In order to determine the volume spectrum for arbitrary irreducible representation
j, one has to compute the eigenvalues of Q of elements (5.18). This can be done
by using numerically method and the result is exhibited in Fig. 5.2.

25

204 * K % ¥ 4

Volume
*
*
*
*
*
*
*
H——H R RN

¥ K K KK KKK
* K K K K KKK
* K K K K K KKK

Irreducible representation j

Figure 5.2: The volume spectra of a monochromatic 4-valent node for irreducible representations

2,1,3,...,15}. We have taken the unit where 87yL% = 1. It is taken from [84].
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5.3.3 The space of equilateral tetrahedron shape S;!

The space of all convex, Euclidean, equilateral, tetrahedron shapes Si' with fixed

area norms A; = Ay = A3 = Ay = A satisfying the closure relation:

A+ A+ A5+ A, =0 (5.20)
is defined by,
4 —.
Sit = {(7ty, My, s, 7is) € (S*)*| D7ty = 0}/so) (5.21)
f=1
dim(S) =2x4-3-3=2 (5.22)

From the definition (4.28), the canonical coordinates (p, ¢) in that case are:

1= A, + A (5.23a)
I(A] x Ay) x (A3 x Ay)|
(Al X Ag) . (Ag X A4)

0 = arctan (5.23b)

It is obvious that

0<pu <24 —ggeg (5.24)

| X

All geometrical informations of an Euclidean equilateral tetrahedron with fiexed
faces area A can be constructed from its representation point (i, 6) € Si! , such

as the volume measure, one can easily show [27]:

V(A; 1, 0) = ?ﬁ/EJ Isin(6)] (4:;2 - 1) (5.25)

Notice that the volume function has a maximal value as it is shown in Fig. 5.3.

In fact, one has to solve the equations:

alu (;1,0,90) 60 (NO?QO)
It is easily to check that,
2V/3 T
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where

Vmaaz = V(A7 Ho, 00) = 23/2 3_7/4 A3/2 (528)

which is the expected Euclidean regular tetrahedron?.

Figure 5.3: The volume function in the the Kapovich-Millson phase space Sj* by taking the unit
area A = 1. The two red points in the top of the volume surface corrsponds to two symmetrical
regular tetrahedron shapes. It is taken from [28].

5.3.4 The relation between X7 and S

Each volume spectrum 4/|g| of the intertwiner space ”Hi corresponds to an orbit

in the Kapovich-Millson phase space Si' with A = 87yL%/j(j + 1):

Orbity = {(1,0) € S| V(A; 1,0) = \/]al} (5.29)

These volume orbits are the possible Euclidean equilateral tetrahedron shapes
corresponds to the intertwiner state | £ ¢); (See an example of j = 4 in Fig.
5.4). The regular tetrahedron is the only state that has the maximum volume
value. Therefore, the only intertwiner state corresponds to a unique equilateral

tetrahedron shape is the one that has a volume eigenvalue equal to the maximum

volume of the phase space Si' which is:

_ o 3/4
Vinaw = 2°/2 37487y L3)*? (3G + 1)) (5.30)

2The regular, convex, Euclidean tetrahedron is a tetrahedron whose 6-edges are equal in
length. Its volume is V = ga?’ and its face area A = %cﬂ in which a is the edges length. The
regular tetrahedron is special case of the equilateral tetrahedron corresponds to maximum volume
value with fixed face area.
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Figure 5.4: The Kapovich-Millson phase space S;'. The colored orbits are quantized levels of
the volume operator in the monochromatic 4-valent eigenstate with j = 4. We have taken the
unit where 87yL% = 1. It is taken from [28].

and it corresponds to the regular tetrahedron. In LQG, there is no quantum
regular tetrahedron corresponding to a monochromatic 4-valent node state, since
all quantum volume spectra are below the volume of a regular tetrahedron with
a face area A = 87yL%./j(j + 1) (See Fig. 5.5). Nonetheless, the existence of a
such regular tetrahedron correspondence is guaranteed if we look for them in the
space of equilateral tetrahedra shapes in a constant curvature space R [30]. In
what follows, we will try to find which constant of scalar curvature in which the

correspondence with a quantum regular tetrahedron existe.

Figure 5.5: Comparison of the regular Euclidean tetrahedron volume (dark line) with the LQG
volume spectra (dots) for the monochromatic 4-valent node state with different links color j. We
have taken the unit where 87yL% = 1. It is taken from [28].
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5.4 A curvature and edge length operators for a
regular quantum tetrahedron

Now, let us look for the 3d- Ricci scalar curvature value in which one can represent
the monochromatic 4-valent quanta of space as a regular tetrahedron in a constant
curvature space. In reference [29], the volume and the boundary face area of
a regular spherical and hyperbolic tetrahedron given as explicit functions of
the edge length a and the curvature radius r = \/% are shown to have the

following expressions:

_ 2.2 cos( & _
A(r,a) = €er [3 arccos (cos(;) n 1) w] (5.31a)

tan(z) tarctan(t)
Vir, :1233/ 5.31b
(ra) =12¢707 | B-2)V2 P (5.31b)
where
1 d-sph 3
)b | 3d-sphere qu (5.32)
V—1=1i, 3d-hyperbolic H?
The Euclidean case is well-defined in the limit r — oo (R — 0):
. V3
lim A(r,a) = TCLQ (5.33a)
. V2 4
lim V' (r,a) = 13 ¢ (5.33b)

which is the face area and volume of an Euclidean regular tetrahedron with an
edge length a. A direct application of the resulted formulas (5.31a,5.31b) in LQG
is to determine a 3d- scalar curvature of the quantum tetrahedron state such
that the monochromatic 4-valent intertwiner has an interpretation of a regular
tetrahedron state of a constant curvature space (not Euclidean). For each area and
volume spectra of the operators (5.16,5.17), inverting analytically these systems of
functions is not so simple instead, we can deal with it numerically and construct
the 3d- Ricci scalar curvature and the edge length spectra (See Figs. 5.6). In
Figs. 5.6a, 5.6b and 5.6¢, each curve with the same color corresponds to volume,

scalar curvature and edge length spectra of the same states.
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(b) The scalar curvature spectra
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(c) The edge length spectra

Figure 5.6: Colored lines of different spectra levels for volume 5.6a, scalar curvature 5.6b
and edge length 5.6¢ of a monochromatic 4-valent intertwiner for irreducible representations
{é, , 2, ...,10}. We have taken the unit where 87yL% = 1. We have used Maple to compute
the spectra and draw these graphs. It is taken from [28].
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From the the above figures 5.6, it is worth to shed light on the main follow-

ing conclusions:

1. The existence of a regular tetrahedron consistent with LQG data (volume
and area spectra) is guaranteed in the negative curvature regime, and then
one can represent the monochromatic 4-valent state by a regular hyperbolic

tetrahedron.

2. In general speaking, the 4-valent monochromatic state that has a biggest
volume represented by a regular tetrahedron in negative constant curvature
space is the closest to the Euclidean space with the smallest edge length and

vice versa.

3. The lowest level value of the edges length (violet curve in Fig. 5.6¢) are

approximately the edges length of the Euclidean regular tetrahedron:

(A (3
m~(ﬁ) —(ﬁ) L (G +1)

N

(5.34)

4. For a generic spin value j ~ 1, we find that the regular tetrahedron solutions

of negative scalar curvature spectra are in the huge negative range:

R~ —711/% ~ —1070/y m™? (5.35)

5. In the semi-classical limit j > 1, the monochromatic 4-valent will be more
closer to be identified with the Euclidean regular tetrahedron, because all
scalar curvature spectra (See Fig. 5.6b) tend to zero as well as the edge
length spectra (See Fig. 5.6¢) tend asymptotically to the edge length of a
regular Euclidean tetrahedron given in (5.34). Accordingly, we are able to
have a good approximation of the volume and boundary face area functions

(5.31a,5.31b) around the zero constant curvature in the case of j > 1. In

fact, by expanding these two functions (5.31a,5.31b) with respect to the
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variable % , we obtain:
Alr,a) = \4f [1 - ( ‘;)2 L0 ((;)4)] (5.36a)
_ V2.

Lol By vo@@n)]

As we have previously said, the analytic inversion of the two functions (5.31a,5.31b)
is not analytically possible, instead of doing the exact inversion with respect to the
exact variables (r,a), we will use the good approximation functions (5.36a,5.36b)

with respect to the approximate variables (7, a) and write:

A(R,a) = \f” {1 4 1SR~ } (5.37a)
V(R,a) = \1/33 [1 + @Br } (5.37h)

where we have used the expression of 3d-Ricci scalar curvature in terms of the
curvature radius R = %. Inverting the two functions (5.37a,5.37b) for the
two variables (R, a), we obtain approximated formulas of the scalar curvature

as well as the edge length:

R(A,V) = 3;/;;:% [1 + éx] (5.38a)
A(A, V) = l4\3/§1 féjr/z (5.38D)
with
FHAV) = m 8 (5.39)
where
F(A,V) [718(}(14, V) m] (5.40)
and

1/3
G(A, V) = | —205335V/3V + 117y/—1265368v/3 4% + 9240075V2J (5.41)

Now, one has to quantize the 3d-Ricci scalar curvature and edge length functions

given in (5.38a,5.38b) by quantizing the area and volume operators to obtain
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quantum operators (5.16,5.17) that act on the intertwiner state | £ ¢); of monochro-

matic 4-valent node with a j-color:

R(AV) —s R(AV)| +q); = B (87WL JiG+1), \/>>|iq (5.42a)
LAY g, = <8mL JiG+1), \f>|iq (5.42b)

As the color j increases, the accuracy of these two operators (5.42a,5.42b) will be
very high and their behavior spectra for j > 1 in the semi-classical limit is well

known and it gives the Euclidean solution (See Table 5.1).

R(A, V)| £ ¢)js1 ~0 (5.43a)
Q(A, V) £ q)js1 ~ Lpj2| £ q)js1 (5.43b)

Table 5.1: Comparison of the approximated spectra of the two operators (R, 3) associated
to a regular quantum tetrahedron with their exact value (R,a) for the highest volume level
(violet curves in Fig. 5.6) of the monochromatic 4-valent intertwiner state for the irreducible
representation {1,2,3,...,10}. We have taken the unit where 87WL?3 =1.

J A Vinas R R OR% a a 0a%

1 1.414 0.620 -2.146 -1.418 34% 1.954 1.914 2.07%
2 2.449 1.425 -1.156 -0.782 32% 2.557 2.511 1.82%
3 3.464 2.444 -0.663 -0.478 28% 2.998 2.960 1.25%
4 4.472 3.641 -0,422 -0.320 24% 3.369 3.340 0.87%
5 5.477 4.990 -0.291 -0.229 21% 3.700 3.677 0.63%
6 6.481 6.476 -0.212 -0.172 19% 4.003 3.983 0.48%
7 7.483 8.086 -0.161 -0.134 17% 4.283 4.267 0.37%
8 8.485 9.812 -0.127 -0.107 15% 4.545 4.532 0.30%
9 9.487 11.646 -0.102 -0.088 14% 4.793 4.782 0.24%
10 10.488 13.583 -0.084 -0.073 13% 5.029 5.019 0.20%
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Conclusion

Loop Quantum gravity is a background-independent,nonperturbative quantum field
theory for describing the quantum structure of spacetime at the Planck scale. It is
based on canonically quantizing the Ashtekar-Barbero phase space variables of the
Holst action and then performing a suitable change of variables to the well-known
holonomy-flux variables. The starting kinematical Hilbert space has been shown
to be the space of all cylindrical wave functional through holonomies defined by
the su(2) connection along a system (graph) of smooth oriented paths (links). The
resulted algebra is very suitable for quantization since the invariant Haar measure
of the compact SU(2) lie group is already exists. The kinematical Hilbert space is
constructed thanks to Peter—Weyl theorem by using the orthonormal basis of SU(2)
irreducible representation. After we solved the Gauss constraints at the quantum
level, spin network arises as a the basis of SU(2) gauge invariant Hilbert space
represented by an intertwiners (signlet states) for each point of intersection paths
(node). We have also constructed well-defined geometrical operators: the area
and volume acting on links and nodes of smooth paths system respectively. The
spectrum of the area and volume operators was completely known and quantized.
We have obtained the notion of quantum geometry (I, j;,7,) described by the spin
network states where the intertwiner 7, assosiated to the node n is the quantum
number of the volume and the irreducible representation j; assosiated to the link ¢;
is the quantum number of the area. A beautiful interpretation of the intertwiners

in terms of the quantum Euclidean polyhedral has been discussed where we have
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shown that each F-valent intertwiner state corresponds to 2F'—5 dimensions surface
of relevant shapes in the space of polyhedra shapes. As anticipated, the main
physical implication of Loop Quantum Gravity is that spacetime is fundamentally

discrete and the minimal quanta of space is in the scale of the Planck length.

In the last, we have found a new approach of measuring the 3d- Ricci scalar
curvature value by measuring the volume of a region and its boundary area. We
have applied this technique in LQG, we sought to determine other possibilities
of the correspondence in the context of non-zero curvature quantum polyhedra
shapes (geodesic polyhedra) by acting the new proposal curvature operator on
the intertwiner state to find other polyhedra shapes possibilities in the non-zero
curvature regime. As a byproduct, we have studied the possibility of finding the
regular tetrahedron correspondence with the monochromatic 4-valent node in other
constant curvature spaces. It is shown that all quantum regular tetrahedron states
are in the negative scalar curvature regime; for 7 > 1 the scalar curvature spectrum
will be very close to the Euclidean regime. We conclude that the simultaneous
measure of the volume and the boundary area of the monochromatic 4-valent node
state allow us to estimate the appropriate case of a constant curvature space in

which this state can be interpreted as a regular tetrahedron.
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I. INTRODUCTION

In geometry, the calculation of volume and boundary face area of a curved polyhedron
(geodesic polyhedron') is one of the most difficult problems. In the case of spherical and
hyperbolic tetrahedra, a lot of efforts has been made by mathematicians for calculating the
volume and boundary face area: the volume formula are discussed by N. Lobachevsky and
L. Schlafli in refs [1] for an orthoscheme tetrahedron, by G. Martin in ref [2] for a regular
hyperbolic tetrahedron and by several authors in refs [3-9] for an arbitrary hyperbolic and
spherical tetrahedron. All these results are based on the Schlafli differential equation where
a unit sectional curvature was taken and they are given by a combination of dilogarithmic
or Lobachevsky functions in terms of the dihedral angles. In the present paper, the
volume and boundary face area of a regular spherical and hyperbolic tetrahedron are
explicitly recalculated in terms of the curvature radius r = \/% and the edge length
a. We directly perform the integration over the area and volume elements to end up
with simple formula for the boundary face area and volume of a regular tetrahedron in
a space of a constant scalar curvature R. This can be done by using the projection map
to the Cayley-Klein-Hilbert coordinates system (CKHcs) which maps a regular geodesic
tetrahedron T'(a) of an edge length a in the manifold of a constant curvature R to a regular
Euclidean tetrahedron T'(ap) of an edge length ag in the CKHcs. Then, one can express
the area and volume measure elements in terms of their Euclidean ones. A comparison
between the regular Euclidean, spherical and hyperbolic tetrahedron is studied and their
implications are discussed. In physics, a direct application of the volume and boundary
face area of a regular tetrahedron is essentially in loop quantum gravity (LQG) and Regge
calculus. In LQG, the Euclidean tetrahedron interpretation of a 4-valent intertwiner state
was shown in ref [10]. The main important feature of the formula which we are looking for
is to find another possible correspondence between the 4-valent intertwiner state with a
constant curvature regular tetrahedra shapes; this can be achieved by inverting the resulted
functions. Thus, one can obtain the scalar curvature measure for a regular tetrahedron
shape which allows us to know what kind of space in which the 4-valent intertwiner
state can be represented by a regular tetrahedron [11]. It is worth mentioning that the
idea supporting this new correspondence in the context of LQG with a non-vanishing
cosmological constant was initiated in refs [11-14]. In the context of Regge calculus, the
use of a constant curvature triangulation of spacetime was suggested in ref [15-17] and it
can be useful for constructing a quantum gravity version with a non-vanishing cosmological

!Geodesic polyhedron is the convex region enclosed by the intersection of geodesic surfaces. A geodesic
surface is a surface with vanishing extrinsic curvature and the intersection of two such surfaces is necessarily

a geodesic curve.
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constant. The paper is organized as follows: In section II, the volume and boundary face
area of a geodesic polyhedron in general curved space are discussed. In section III, we
give general integration formula of the volume and area for constant curvature spaces. In
section IV, an exact formula for regular spherical and hyperbolic tetrahedra is explicitly
derived as a function of the curvature radius and the edge length. Finally, in section V

we draw our conclusions.

II. VOLUME AND BOUNDARY FACE AREA OF A POLYHEDRON IN A
GENERAL CURVED SPACE

For any n-dimensional Riemannian manifold M equipped with an arbitrary metric g
and a coordinates chart {U C M, f}, one has to find another coordinates chart system
{U C M,Z}, such that the straight lines in the second are geodesics of the manifold
M. In other words, it maps the geodesic curves of the manifold in the first coordinates
system to the straight line in the second one. Such a coordinates system denoted by CKHcs
(Cayley-Klein-Hilbert coordinates system)? is very useful to calculate the volume and
boundary face area of a geodesic polyhedron (i.e. every geodesic polygons and polyhedrons
in the manifold maps to Euclidean polygons and polyhedrons in the CKHcs respectively).
Finding such coordinates system is not an easy task for general metric spaces because
it depends on the geometry itself and one has to solve a differential equation to find
the CKHcs. If we denote by ¢ the coordinates transformation between the first and the
CKHcs:

= oA (F) A=T1n, (1)

one can define the CKHcs by coordinates transformation that satisfying the following

differential equation (See Appendix A):
Vi Ve (F) =0, (2)
where
VvV =0, 3)

Eq. (2) holds for any vector field V' tangent to geodesic curves and Vy stands for the
covariant directional derivative along the vector field V' in the coordinates system {U, 5}
By knowing the metric in the first coordinates system, one can determine the corresponding

Christoffel symbols I"s and then solve the differential equation (2) to get the ideal frame

2It is usually known as the Klein projection.
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CKHcs for calculating the volume of a geodesic polyhedron Pol and its boundary face

area dPoly in an arbitrary n-dimensional Riemannian space:

/ dviem — / VIdet(g(@)) | dvFe, (4)
PolCUCM x(Pol)Cx(U)CR™

/ aafim — [ Jldettg@lara) | aa5e,  (5)
OPolycUCM z(OPoly)Cx(U)CR™

where dAJ}cE“C and dV % are the Euclidean face area and volume measures of a geodesic
polyhedron respectively, g(z) is the metric in the CKHcs, g(x)|gpo ; 1s the induced metric

in the geodesic surface OPoly.

X X
Rn ~—1 CKHes RM
(o] -
/;__/’/ ¢
geodesics geodesics

FIG. 1. The Cayley-Klein-Hilbert coordinates system (CKHcs).

IIT. VOLUME AND BOUNDARY FACE AREA OF A POLYHEDRON IN A 3D-
CONSTANT CURVATURE SPACE

Let X be a 3-sphere or 3-hyperbolic metric space. The metric of the S? and H? can be
combined in a unified expression and induced from the Euclidean Fuc* and the Minkowski

Mink* spaces respectively by using a compact form e such that:

1 for S3 c Euct
i for H? ¢ Mink*

Let us consider the cartesian coordinates chart for the two spaces Euc! and Mink*

X M — R3 x R )
m — XA(m) = (ml,xQ,x3,ex4) ’
where
R for Euct
GR = k) (8)
iR =1Im(C) for Mink*
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Basically, the metric of the Euc! and Mink* in this coordinates system is written as:
ds® = 6apd XAdX P = (d2')” + (d2?)” + (d2?)” + €2 (da?)®, 9)

In the spherical coordinates {Z} = {p, v, 6, ¢} one has:

_ AxB
p=0apXAXB X1 = 2os () sin (6) sin(ed)
Y = earctan OO+ (X2 (X5)7 2 : : ;
<7 X* = Bsin (¢) sin (0) sin(e)) (10)
0 — arctan <(X1);3+(XQ)2> X? = Leos (0) sin(e) ’
p = arctan (%) Xi=e peos ()
ds® = Edp® + p? [d?,b? + e%sin?(ex)) (d92 + Sin2(9)d802)] ) (11)

Now, we define the 3d- metric spaces S and H? as hyper-surfaces embedded in FEuc* and

Mink* respectively as:
X% = 64pXAXE = (er)?, (12)

where r is a positive real number known as the radius of curvature. Geodesics can be
obtained by the intersection of S? (or H?) surface with two distinct 3d- hypersurfaces

through the centre of the S? (or H?):
aAXA =0 ) (13)

Where a4 and ba are two non-collinear vectors of R x eR. After dividing Eq. (13) by

cos (ey), the geodesics satisfy:

aicos (@) sin (0) tan (ep) + agsin (p) sin (0) tan () + agcos (0) tan (ep) + a4 =0

b1 cos () sin () tan (eyp) + basin (@) sin (0) tan (eyp) + bscos (0) tan () +by =0
(14)

where ¢ # 7 is used in the case of the 3-sphere S3. Therefore, we can get from the
geodesic equations (14), the coordinates transformation to the CKHes {7} = {z,y,z}
that satisfying the differential equation condition (2) for both spherical and hyperbolic

cases:

1. For the spherical case S? (e=1= R = 1%) , the coordinates transformation to the
CKHcs and its inverse read:
s 2(US C S3) — 2(US € ) o5 z(UST C $3) — #(US? c $3)
(1,0, ) — (2,9, 2) (@,y,2) — (¥,0, )
(15)
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and are defined by

V@2 +y?+22

x =1 cos (p) sin (0) tan () ¥ = arctan T
y =1 sin () sin (0) tan () 0 = arctan <V xi”z) , (16)

z =1 cos () tan (V) o = arctan (%)
Notice that US? S3 is the top half 3-sphere divided by the hyper-surface of the

equation ¢ = Z%:

4y

HUS) = {(,6,¢) -4 €[0,5),0 € [0,7], ¢ € [0,27]}, (17)

2. For the hyperbolic case S2 (e =i = R = ;—26) , the coordinates transformation to

the CKHcs and its inverse read:

ops  H(UT C HY) — [-r,r]? oyt [P — 2(UT C HY)

, (18)
(©,0,9) — (z,y, 2) (z,y,2) — (0,0, 9)
and are defined by

x =71 cos (p) sin (0) tanh () Y = arctanh <\/m>

y =r sin(p) sin (0) tanh (1) 0 = arctan | ~ xiﬂﬂ) )
z =1 cos (0) tanh (¢)

¢ = arctan ()

(19)
Notice that, in order to get an isomorphism between the two coordinates systems,
we have to take the cubic interval [—r, r]® since tanh (¥)) is bounded by the interval
[—1,1]. Moreover, we have also considered the region U HY ¢ H? as the top sheet of

the 3d- spherical hyperboloid H3.

By using the compact form (6), one can unify the transformation between the two coor-

dinates charts for both spherical and hyperbolic cases:

/ 2+ 2+ 2
x = er cos (p) sin (0) tan (%) ¥ = e arctan <xﬂlfz>

y = er sin () sin () tan (%) 0 = arctan <@> , (20)
z = er cos (0) tan (%) o = arctan ()

The metric in the 3-sphere S? and 3-hyperbolic H? spaces is:
ds? = r? [dyp* + e*sin®(ey) (d6? + sin®(0)dy?)] | (21)

Using the differential form chain rule, one can write:

EQT‘I 627‘y 627"2’

d d
v Y @ T Enia

d 22
@A T @R & (22)

dp =

3Knowing that the biggest possible spherical tetrahedron is the half of 3-sphere S2.
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e —TE g YE g VTP (23)
Ve T e S P
do=——2 T dy, (24)

- dz +
22+ o2 x 22+ o2

Thus, the metric in the CKHcs becomes:

3 AgyB 2 3 de)?
ds? = gapdatda® = - Lz v v :L‘2 Laz (o) (do 2) ) (25)
€2r? + |7 €2r? + |7

The components of the metric elements read:

2r? (2r2+y2+22) — 72 ay — 272 az
(2r24a24+y2+22)°  (2r24a2+y2+422)°  (2r24+a24y2+22)°
. — €2 12 gy e2r? (62r2+x2+z2) — 27?2 yz (26)
9AB = (€2T2+12+y2+22)2 (62T2+z2+y2+z2)2 (62T2+z2+y2+z2)2 ’
— 272 gz - r?yz &r? (Erital+y?)
2

(212422 4y2+22)%  (2r2+a2+y2+22)%  (2r24+a24y2+22)

and the Jacobian J(Z)

’I“4
J(Z) = ldet (9(2)) | = ————3, (27)

2
<62r2 + |Z \2)
Finally, we can determine the volume of a geodesic polyhedron Pol and its boundary

face area OPol;:

1. For a spherical polyhedron (R = r%)

3 3
aay = [ dAE"C\/ det(g@Sho,) |, (28)
/8P0lfCUS§CS§ f +(8Pol; )R f | 8Polf)
s3 E r!
/ dvsr = / vt ——— (29)
PolcUS? CS3 z(Pol)CR? (7"2 + |a?\2)
2. For a hyperbolic polyhedron (R = =)

A’ :/ dAE“C\/det g(a) |2 ; 30
S ey ME @) 1 0
H} E rt
/ o QvE = / avhue——— (31)

PolcUH} CH3 z(Pol)CR? (77~2 + |:T:|2)

The induced Jacobian \/\det(g(x)ggpolf) | and \/\det(g(x)ggolf) | for both spherical and
hyperbolic respectively can be determined after restricting the metric in the boundary

surface area 0Poly.
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IV. APPLICATION: REGULAR TETRAHEDRON IN A CONSTANT
CURVATURE SPACE

Let T'(a) be a regular geodesic tetrahedron with an edge length a embedded in a
constant curvature 3d- space X, and {A’f}f - be normal areas vectors of T'(a). In
what follows, we will calculate the volume of a geodesic regular tetrahedron 7'(a) and its

boundary face area 0T'(a) ¢ in 3d- sphere 52 and Hyperbolic H? manifolds:

A% (r,a =/ dAE"C\/ det(g(x o) 32
FOD= [ oo™ [det(g(@)lora),)| (32)
rd
V¥ (r,a) = / R — (33)
x(T(a))CR? (627'2 + |§7'|2)

FIG. 2. A regular tetrahedron T'(ag) in R® (CKHcs).

The ignorance of how this new coordinates system CKHcs can map an Euclidean length
to spherical and hyperbolic length measures, one has to be careful in choosing the location
of the tetrahedron T'(a). From our choice in Fig. 2, it obvious to see that the image of
a regular geodesic tetrahedron T'(a) of an edge length @ in the manifold is an Euclidean

regular tetrahedron T'(ag) of a different edge length ag in the CKHcs:
z(T(a)) = T(ao), (34)

Our objective is to have an expression for the starting Euclidean length ag in terms
of the geodesic length a. In order to determine how this coordinates system measure
the length different from the original one, we have to consider two points M (z1,y1,21)
and My (29, Y2, 22) in the CKHcs where the corresponding geodesic line between them is

parameterized by:

y=ax+p (35)

)

z=7vx+9
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where
o= Y2 — Y1 = T2Y1 — T1Y2 7 (36)
T2 — T T2 — 1
y= Ro — 21 5= T221 — T122 (37)
To — X1 T — I
The geodesic length between M7 and My is:
o?+y2+1)z+aB+76 "
d (M1 Ms) =€ r arctan ( i ) ] ,
Ver? + 52+ 0% + (a2 +92) % + a20% + 9252 — 20876 ) |
(38)

Since d (M;Ms) depends strongly on the ending points, a special care has to be done in
the location of the Euclidean regular tetrahedron in the CKHcs as it is shown in Fig. 2.

One can check that:

1 ago
21/€2T2_~_§ ’

In order to obtain a geodesic edge length a, one has to solve Eq. (39) for the unknown ag

a = 2er arctan (39)

and get:

2 t
€ rtan (5 ’ (40)

1. For the spherical case S? (e=1= R = T%) , one has:

1
a=2r arctan | z —— , (41)

2
2 4 %
T+ 3

In this case, one can check that the regular tetrahedron has a maximal edge amqx

(for agp — oo) given by:

Umaz = 2 arctan (\/5) T, (42)

2. For the hyperbolic case S? (e =i = R = =9) , one has:

r

1
a = 2r arctanh T (43)

Due to the compactness property (see Eq. (18)) of the coordinates chart, the initial
value of the Euclidean length ag must be bounded ag < %\/6 r . However, a has no

upper bound.
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IV.1. Boundary area of a regular tetrahedron in S? and H}

The faces area of a geodesic regular tetrahedron of an edge length a are all equal
(A? (r,a) = A¥ (r,a) , Vf = ﬁ) . In fact, the geodesic surface of the S? and H3 are por-
tions of the great 2-dimensional spheres S? and hyperbolic H? respectively. Accordingly,
we expect to obtain the same area expression of the spherical and hyperbolic trigonometry.
Due to the symmetric property of the constant curvature spaces, we restrict ourselves to

ag /2

geodesic triangle face 9T(a); = P12 P (See Fig. 2) in the geodesic surface 2 = =f¢/3

2,2 [.2,.2 ag?
€Er e“rs 4+ -
24 (44)

372"
(22 402+ 42+ %)

2,2 /2,2 | ao®
e“r €“re +
24 (45)

2\3/2”7
22+ a2 +y? + “2%)

(with dz = 0). Then the induced Jacobian:

\/|d€t ‘P1P2P3)| =

The boundary face area is:

A% (r,a) = / dA?“C
Py P, P3CR3 (

with
3
Z eijkA}dxj Adzk (46)
i,5k=1

1
AEuczi
dAy 5

where AZJ} is the i component of the normal area vector /Yf. The integral in Eq. (45)
is in general very hard to evaluate. To do so, one has to make a series expansion of the
Jacobian J(Z) given in (27) with respect to the coordinates variables {Z#} and then easily

perform the integration over one of the faces P; P P3, we get the following expression:

\/g 1 a2 1 a4 583 a 6
A¥(r.a) = e’ +3(5) T50'e) T 2oz
27 a8 23  q.10 1418693  a 12 a 14
& & s o A7
+604800(er) *+ 360600 e+ T30767azes00 o) T OUG) )b (41

Using the symmetry of the triangle faces of a regular tetrahedron, the exact formula of

the boundary face area reads:

— 3zt Y0 f“” 272y e2r? + w’
A% (r,a (ag)) = 2 ) (48)
fao 3/2
(62r2+:v2+y + 4 )

Straightforward but tedious calculations (See Appendix B) give the following analytical
expression of the boundary face area A* (r,a) of a regular spherical and hyperbolic tetra-

hedron with an edge length a in the curved space 3 of a constant curvature R = %

A% (rya) = &2 (3 arccos <COZ(()Z(;3L1> - w) : (49)

It is easy to check that the expansion of the resulted formula (49) in terms of the 5 variable

is exactly the one in Eq. (47) and thus ensuring the correctness of the integration.
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1. For the spherical case S2 (e=1= R = 7%) , one has:

A5 (r,q) = 12 (3 arccos <L(_)> - 7r> : (50)

cos(%) + 1

As it is expected, it is the familiar expression of the regular spherical triangle embed-
cos(%)

cos(%)+1

which is the cosine rule formula for spherical trigonometry. We can check that the

ded in the 2-sphere S? where the dihedral angle is defined by © = arccos (

boundary area AS? for the maximal edge length anme, in Eq. (42) corresponds to an
3
upper bound Af,{az = 7r2. The boundary area of a regular spherical tetrahedron is

always greater than the boundary area of a regular Euclidean one.

2. For the hyperbolic case S? (e =i = R = =) , one has:

A™ (1,q) = 2 <7T _ 3arccos (%)) : (51)

As it is expected, it is the familiar expression of the regular hyperbolic triangle

embedded in the 2-hyperbolic H? where the dihedral angle is defined by © =

cosh($)

m) which is the cosine rule formula for hyperbolic trigonometry.

arccos (
Notice that in this case, there is no upper bound and for a given pair (r,a). The
boundary area of a regular hyperbolic tetrahedron is always smaller than the bound-

ary area of a regular Euclidean one.

3. For the Euclidean case Euc® (R = 0) , one has:

Abue? (r,a) = lim A* (r,a) = ?a{ (52)

=00

The Euclidean limit is well-defined.

FIG. 3. : Function surface of the boundary face area for spherical (green), Euclidean (blue) and

hyperbolic (red) regular tetrahedra.
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IV.2. Volume of a regular tetrahedron in S3 and H3

The volume V* of a regular spherical and hyperbolic tetrahedron is:

r

VE(r,a(ag)) = / dvFue ) (53)

2

T(ao)CR3 (627,2 n |§:’|2)
Since the integration is very hard to deal with, it is better to make again a series expansion
of the Jacobian J(&) given in (27) in terms of the coordinates variables {Z} and then easily

perform the integration to end up with:

5 f 2 23 a2 3727 a4 124627 a6
Vira) = U+ 5000 537605 + 7rataa0 o)

20283401 (£)8+ LT00653069_ @ 10 LGLONOAISO 12 o et
5449973760 \er’ | 17003918131200 ' er 8161880702976000 ' er s
(54)

Using the symmetry of the regular tetrahedron, the exact expression of the volume of a

regular spherical and hyperbolic tetrahedron is:

V™ (r,a (ag)) 2/ f /a(;)d _ﬁﬁﬁg@d rt (55)
rafag) =2 [ dz L y 5,
=g 0 o (627"2+|§:'|2)
where
a(z):%\/éz % (56)

Which can be rewritten in the following integral form (See Appendix C) as

tan(52;) t arctan (t)
e r,a:123r3/ ap —reretanty 57
=12 2° | S 657)

Notice that this integral has no analytic formula (we can carry the integration by using
numerical methods) and can be expressed in terms of some special functions like the
dilogarithm Lis(2), the Clausen of order 2 Cly (p) or the digamma W (z). It is easy to
check that the expansion of the resulted formula (57) in terms of the 5. variable is exactly

the one in Eq. (54) and thus ensuring the correctness of the integration.

1. For the spherical case S? (e=1= R = T%) , one has:

tan(3) t arctan (t)
VS (r,a :12r3/ dt — 58
(r,a) | B )i P (58)

The volume for a maximal edge length VS (r, amaz) (as it is expected) is half of

the 3-dimensional cubic hyperarea of 3-sphere of radius r :
VS (7) Gmag) = 7275 = fArea (53 C ]R4) (59)

Notice that for a given pair (r,a) the volume of a regular spherical tetrahedron is

always greater than the regular Euclidean one.
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2. For the hyperbolic case S? (e =i = R = ;—26) , one has:

tanh(3;) t arctanh (t)
VH (ra) = 12 7“3/ gy —reennt® 60
) 0 B+E2)V2+ P2 (60)

has an upper bound :

lim V7 (r,a) = 1.0149416064096536250 ° , (61)

a—00

= tmfes (¢1)] 2 =2 (0 (3) - 57) 7 = (3)? . @

Notice that for a given pair (r,a) the volume of a regular hyperbolic tetrahedron is

always smaller than the regular Euclidean one.

3. For the Euclidean case Euc® (R = 0) , one has:

v Buc® (r,a) = lim V¥ (r,a) = Qag’, (63)

r—00 12

The Euclidean limit is well-defined.

FIG. 4. Function surface of regular tetrahedron volume for spherical (green), Euclidean (blue) and

hyperbolic (red) cases.

IV.3. The volume-area ratio function

We define the volume-area ratio function VRA™ for a regular geodesic tetrahedron as:

VE

VRA®(r,a) = 09 (64)

(A% (r,a))

It is obvious that the VRA* for a regular Euclidean tetrahedron is a constant:

2

VRAP™ = lim VRA(r,a) = Ls =0.4136, (65)
700 \/5 2
12( )
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Corollary IV.0.1 according to the useful inequality
VRA® (r,a) < VRAP™ (r,q) < VRAS (r,a), (66)

the VRA® function allows us to know what kind of geometry inside the regular geodesic

tetrahedron: (see Fig. 5)

VRA¥(r,a) > 0.4136 S3
VRA*(r,a) = 0.4136 Euc® (67)
VRA* (r,a) < 0.4136 H?

FIG. 5. The volume-area ratio function for spherical (green), Euclidean (blue) and hyperbolic

(red) cases.

IV.4. The volume function in terms of scalar curvature and area

From the area formula (49), one can express the edge length a by:

a(A,R) = <7r — arccos ( (" + g%g) )) er, (68)

sin(Z= + 547) +1

substitute it in Eq. (57) to get a volume function in terms of the 3d- Ricci scalar curvature

and boundary face area of a regular tetrahedron:

VE=VZ(R,a(R,A)) =V>(R,A), (69)

Corollary IV.0.2 the volume of a reqular geodesic tetrahedron for a fixed boundary area

satisfies the following inequality
Forany Ri,Ry€R if Ry <Ry then VZ¥(Ry,A) <V*(Ry,A), (70)

this results from the fact that the function V> increases with respect to R for a fized

area norm A (see Fig. 6).
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FIG. 6. The volume function in terms of scalar curvature R and area A for spherical (right) and

hyperbolic (left) regular tetrahedron.

V. CONCLUSION

In this paper, we explicitly derived the boundary face area and volume of a regular
spherical and hyperbolic tetrahedron in terms of the curvature radius (or the scalar cur-
vature) and the edge length. We have directly performed the integration over the area
and volume elements by using the Cayley-Klein-Hilbert coordinates system (CKHces) to
end up with simple formula given in Eqs. (49,57). A comparison between the Euclidean,
spherical and hyperbolic cases is studied and their implications are discussed. It is shown
that the volume function of a regular geodesic tetrahedron for a fixed boundary face area

is a strictly increasing in the scalar curvature interval.

Appendix A: Proof of the relation (2)

The geodesics in the CKHes {U C M, Z} are straight lines, one has:

The condition
Mao(x)iPi¢ =0, (A2)

must be hold, which implies:

8@B(i') 8900(:%) I 2J
Do) ——2 5 =0, A3
BC( ) afi:l 85)J ( )
Under the transformation (1), the Christoffel symbols transform as:
837 9zK 92"
0z” 929 0’ 0a"”

o’ 0z 0ot -,
I'go(x) = %—Bax—cﬁﬁx(@ -

By substituting it in Eq. (A3), one can obtain the transformation condition Eq. (2) to
the ideal CKHcs frame.
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Appendix B: Proof of the area formula

The boundary face area (P PoPs) of a regular spherical and hyperbolic tetrahedron of
an edge length a is given by an integral form in Eq. (48). For simplicity, we drop the
triangle face Py PoPs to II(P; P2 P3) in the XY -plane (since the area of a fixed triangle is
the same wherever its location inside the constant curvature manifold). In this case, the

induced Jacobian can be written as:

3,.3
\/|d€t(9($)|H(P1P2P3))| = (212 +;2T+ y2)3/2’ (B1)
The boundary face area is given by:
A* (r,a) = 2/(120 dx DA dy < (B2)
’ 0 —v3ag (2r2 + 22 + )%/
where one can check the starting Euclidean length ag in this case is given by:
ag = 2er tan(%) ) (B3)
1— 1 tan(5%)2
Performing the Integral over y variable, one get:
—\/§z+@ 33
=8ag dy (2r2 + 22 4 ¢2)%/2 B
Sr3(—V3z + @) N 637“3@ (B4)

(e2r2 + 902)\/62r2 a2 4 (—Br 4+ B2 (202 4 g2)y €22 4 g2 4 %

Let us preform the second integral over the x variable. By integrating each term separately,

one has:
Q0 3,.3 V3a
—+/ 3z + 2% F .
ti(z) = / " da SV ) = %r? arctan(w)v
0 (e2r? + $2)\/€27’2 + 22+ (—V3z + 7‘/33%)2 (ag, ;)
(B5)
where
3 2 2
F(ap,r;x) = —\3[\/627“2 + 422 — 2za0 + %(ezﬂ + %)(_52702 + %)
5¢2r2 g2 adz 2a2e2ry
oo B e S 2808
and
3 2 2
G(ap,r;7) = ET;[\/G%J + 422 — 2za9 + %(EQTQ + %)(m + %)
n 2a(2)e7"3:2 n €drd 4@%637’3 aéer 437312 (BT)
27 3 27 81 3 7
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0 3,.3 V/3ag
2 e’rY —=~=
to(x) = / dx 6 = = e?r? arctan ( - ;LOI > 2) ,
0 (292 + z2)4/e?r2 + 22 + 28 er/12€2r2 + 1222 + a?
(B8)
Adding the two terms together, we obtain:
A (r,a) = 2(ts (@) + ta (@) [ 55" =
2¢%2 arctan( 9aZer(3a% — V3ag\/9e2r2 + 3aZ + 18€%r?) ) (B9)

3ad — 63ade2r? — 216agrt + v/31/9¢2r2 + 3a2(18a3e?r? + 144rt — af)

When we replace ag given in Eq. (B3), we get the area function formula of Eq. (49).

Appendix C: Proof of the volume formula

The volume of a regular spherical and hyperbolic tetrahedron of an edge length a is
given by an integral form in Eq. (55). Using the integration by shell method (taking the

sum of parallel triangles of constant z). Performing the Integral over the y variable, one

get:
— VBB A
—V3a(z) dy ( )2 2 =
—% (627"2 + 22 +y2 + 57 )
4 2v2(=3z+a(2))
39V3 1 (—32 + a(2)) +24\/(73 r* arctan <\/24x2+24€2r2+a(z)2)
(321’2 — 16a(z)x + 8€%r? + 3a(z)2) (241”2 + 24€2r? + a(z)2) (24x2 + 24€2r2 + oz(z)Q)
4 V2a(z)
+ 48v/3 rta(z) +24\/€ rorden <\/2412+24€2T2+a(z)2>
(24352 + 24€2r2 + 3a(z)2) (241‘2 + 24€2r2 + a(z)Q) (241,2 T 24272 4 a(z)Q) 2 ,
(C1)

Now, let us focus on the second integral over the = variable. By integrating each term

separately, one has:

( 32v3 ! (=3z+a(2)) -
@)= /d (32952 —16a(z)z + 8e2r? + 3a(z)2) (24:1:2 +24e%r? 4 a(z)Q)

8z —2
—6v3 7 In (32102 — 16a(2)x + 8€*r? + 304(2)2) 8V3 r'a(z)arctan <¢%>

2
72e%r? + 1la(z) (7222 + 110(2)?) 1672 4 20(2)°
6v3 rt 't In (24902 + 24€%r? + a(z)Z) 48V/3 rla(z)arctan (M)
+ . + :
726212 + 1la(z) (72621”2 + lla(z)Q) \/144627"2 + 6a(z)?
(C2)
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24+/6 r* arctan ( 2V2(—3eta(z) )

(24:1;2 + 24€2r2 + oz(z)Q)
A —
48v/6 r44/8¢2r2 + a(z)? arctan (m> 6v3 rt In (24x2 + 24€%r? + a(z)Q)
(24627“2 + a(z)z) (72627“2 + 11a(z)2) (72627"2 + 11a(z)2)
2
6v3 rt in (96302 — 48a(2)x + 24€r? + 9a(z)2) 24v2 arctan ( 24\5/2?21@@)2)
+ —
(72627‘2 + lla(z)g) (72627’2 + 11a(z)2) 246212 4 a(z)?
4 2v2(=3z+a(2))
24\/6 rxarctan (\/243:2+2452r2+a(z)2> (03)

(24621"2 + oz(z)Q) \/241:2 + 24272 + a(z)?
Ty (2) / dz 18V3 ra(2)
L (7) = -
(24302 + 24€2r2 + 3a(z)2) (243:2 + 24€2r2 + a(z)2)

6v2 r* arctan (W) 2+/6 r* arctan (W>

24€2r2+a(z) 8e2r2+a(z)>

- ’ (04)
a(2)4/24€2r2 4 a(z)? a(2)1/8€2r2 + a(z)?

24\/6 7"4 arctan < V2 (z) )
2 22 2
Y ( ) / \/24x +24e2r2+a(z)

3
(24x2 + 24€2r? + a(z)2) ’

616 744 /8€2r2 + a(z)2 arctan (MQI> 24v/6 r*z arctan < V2a(z) )

8e2r2+a(z)2 V2422 424e2r2 o (z)?
<24627’2 + a(z)Q) (24627'2 + a(z)Q) \/24x2 + 24€2r2 + a(z2)?
6v2 rt arctan <2422\/§$()2)
_ e“r“+al(z 7 (05)

a(2)1/24e212 + a(z)?

Adding all four terms together, we obtain:

2N (2)+ T (2)+ T (z2)+ 1y (m))ﬁig(z)/Q
r* a(z) arctan _ VBax) , 06
- VBT aret <\/m) (C6)

(24€2r2+a(2)?)y/8e2r2 +a(z)?
Making the following change of variable in the third integral over z:
VG
8er? + a(z)?

When we replace ag given in Eq. (40), we get the volume function formula of Eq. (57).
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An alternative approach introducing a 3-dimensional (3D) Ricci scalar curvature quan-
tum operator given in terms of volume and area as well as new edge length operators
is proposed. An example of monochromatic 4-valent node intertwiner state (equilat-
eral tetrahedra) is studied and the scalar curvature measure for a regular tetrahedron
shape is constructed. It is shown that all regular tetrahedron states are in the negative
scalar curvature regime and for the semi-classical limit the spectrum is very close to the
Euclidean regime.
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1. Introduction

Loop Quantum Gravity (LQG) [1, 2] is a background-independent quantum field
theory, it has been described as the best way to build a consistent quantum ver-
sion of General Relativity. Canonically, it is based on the implementation of the
Holst action [3] and the Ashtekar—Barbero variables (the configuration variable is
the real su(2) connection A’ (z) and its canonical conjugate is the gravitational
electric field E]b(x) with a real Immirzi parameter v [4, 5] by the Dirac quanti-
zation procedure [6]. In order to construct the starting kinematical Hilbert space,
one has to use the well-known representation of the holonomy-flux algebra [7]: it
is represented by the space of all cylindrical wave functionals through holonomies
defined by the su(2) connection along a system of smooth oriented paths and flux
variables as the smeared electric field along the dual surface for each path. Due
to the background-independent property of LQG, it was possible to use Wilson
loops [8] which are the natural gauge invariant holonomy of the gauge connection

fCorresponding author.
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as a basis for the gauge invariant Hilbert space [9]. Another useful basis state of
the quantum geometry known as the Penrose’s spin networks is frequently used
[10]. Spin network arises as a generalization of Wilson loops necessary to deal with

“nodes” which are represented by a space of intertwin-

mutually intersecting loops
ers at each node [11]. One can construct well-defined operators such as the area
and volume acting on links and nodes, respectively, of smooth paths system [12].
The fuzziness and discreteness property of space [13-15] is predicted. A beautiful
interpretation of the intertwiners in terms of quantum Euclidean polyhedra [16, 17]
naturally arises. In this work, we construct a new geometrical information from
LQG spin network based on the polyhedra interpretation of spin network states,
which is the value of the 3D Ricci scalar curvature and the edge length as a function
of volume and boundary areas operators. A suggested introduction to the curva-
ture operator in terms of the length operator and the dihedral angles was provided
by using 3D Regge calculus [18]. Moreover, there are three proposals for length
operators discussed in [9, 20, 21]. The main idea of our work comes from the deter-
mination of the volume and the boundary area of a fixed region in a Riemannian
manifold as a function of the 3d scalar curvature inside that region as well as its
parameterization. One can invert these functions to get the explicit formula of the
3d scalar curvature in terms of volume and boundary area of a fixed region. Sim-
ilar idea can be done using a geodesic polyhedron shape® [28]. One can use the
new proposed scalar curvature operator related to a fixed polyhedron measure and
try to determine the curvature in which the intertwiner state is represented. This
geometrical approach can be considered as a natural arena for considering LQG
including a cosmological constant. in the case A # 0, The SU(2) gauge invariant
is still representing the kinematical space of LQG (since the cosmological constant
just appears in the Hamiltonian constraint). Thus, one can describe the intertwiner
state by a curved chunk of a curved polyhedron and then the main feature of our
proposed curvature operator is to determine in a straightforward manner which
curvature value can an intertwiner state interpret as a fixed geodesic polyhedron.
Moreover, a proposal to introduce a non-vanishing cosmological constant in LQG
is to work with the g-deformed U, (su(2)) rather than the su(2) itself [11, 22-25]
and the use of curvature tetrahedron was suggested in [26]. In our approach, an
example of such a monochromatic 4-valent node state was studied in detail and its
associated Kapovich-Millson phase space (i.e. the space of all equilateral Euclidean
tetrahedron shapes) was constructed. Moreover, we will show the absence of a reg-
ular Euclidean tetrahedron from the volume orbit of relevant shapes in that phase
space, instead of this it is possible to find a regular tetrahedron correspondence in
the context of a nonzero curvature tetrahedron. It is worth to mention that the

aGeodesic polyhedron is the convex region enclosed by the intersection of geodesic surfaces. A
geodesic surface is a surface with vanishing extrinsic curvature and the intersection of two such
surfaces is necessarily a geodesic curve.
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phase space of curved tetrahedron shapes idea has been initiated in [27]. In our
present paper, full expressions of volume and boundary face area of a regular tetra-
hedron in a constant curvature space (in terms of the scalar curvature and the edge
length [28]) are explicitly derived then inverted to get the exact form of the 3D
Ricci scalar curvature and the edge length. At the quantum level, we obtain two
well-defined operators acting on the monochromatic 4-valent nodes state. Their
spectra show that all quantum atoms of space can be represented by chunks of
regular hyperbolic tetrahedron of a negative curvature R ~ —(87Gh~)~ 1. It also
produces the Euclidean regular tetrahedron R ~ 0 in the semi-classical limit 7 > 1
(7 is links color). The importance of this mathematical model was investigated by
the authors of [32]. In what follows, we will work in a unit, where 87Ghy = 1.
The paper is organized as follows: In Sec. 2, we give a motivation for a new scalar
curvature measure. In Sec. 3, a strategy of defining new curvature operator in
LQG is presented. In Sec. 4, a 3d Ricci scalar curvature and edge length opera-
tors are constructed for a regular tetrahedron state. Finally in Sec. 5, we draw our
conclusions.

2. Motivation for a 2D Scalar Curvature

The 2D Ricci scalar curvature in some point of the 2D hypersurface ¥; embedded
in a smooth 3D Riemannian manifold M is technically determined by the measure
of volume and boundary area of a neighborhood region around this point. Doing it
separately does not give enough geometrical informations of the space. Rather, it
is mandatory to do this at the same time in order to get the complete information.
To be more explicit, let us consider the simplest case of the 2-sphere Sfo of radius
r(t) n (see Fig. 1). The spatial

ds2ls, = r(t)(d6” + sin®(p)). (1)

At t = typ, we want to measure the 2D Ricci scalar curvature R;, such that
r(to) = ro. This means we have to measure the radius ro (because Ry, = %). To
0

do so, we fix a region D,(p) of a geodesic disc with a radius a centering at a point

Du(p) =1{q € Sr2~0 | lpg < a}, (2)

where [, is the geodesic length of the SEO space between the points p and ¢g. The
area of the disc A(rg,a) and its boundary curve length L(rg,a) are

A(ro, a) = 2712 (1 - cos<%>), (3)

L(ro,a) = 27ro sin (ﬁ) (4)

o
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Fig. 1. (Color online) The geodesic disc D, (blue) and its boundary circle 9D, (green) in the
2-sphere S?O.

Given the pair (rg,a), one can determine the area of a disc and its boundary curve
length (A, L). It is easy to invert these two functions to obtain

Ry4,0) = 2 = 222D, ®

A Lv4rA — L?
CL(A, L) == m arctan m .

Thus, The simultaneous measurement of the area and the boundary curve length of

(6)

a geodesic disc can allow us to estimate the value of the 2D Ricci scalar curvature
(R, = %) and the disc radius a.
0

In 241 dimension and for the 2-sphere case, these two relations give us another
way to measure the main important geometrical quantity which is the value of
the 2D Ricci scalar curvature Ry, (A, L) as a function of the area measure and its
boundary curve length of a disc. Remarkably, this technique does not depend on the
choice of the region; one can choose any shape of a region and get the same 2D scalar
curvature. But how can we generalize this technique for arbitrary 3D topological
spaces? To get such a generalization, we try to find a relationship between the 3D
Ricci scalar curvature with the measurement of volume and boundary area of an
arbitrary region. It was done by using small geodesic ball [29], and for any arbitrary
regular tetrahedron in a constant curvature spaces [28] which is the relevant one.
The curvature can be determined by inverting the resulting functions in all cases.
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3. Strategy for Defining a New Curvature Operator in LQG

In LQG, the SU(2) invariant Hilbert space at each F-valent node is the intertwiner
space Hp = inv(VU) ®-.. VUr)), Since the geometry is a genuine quantum theory,
the finer details of the geometrical picture remain unclear. A suggested solution of
the quantum picture came in the proposal that vertices correspond to polyhedra
in flat space. In fact, there is a close correspondence between the intertwiner space
Hr and the quantization of the Kapovich—Millson phase space Sg, i.e. the space of
all Euclidean polyhedron shapes with fixed F-areas norms {A; ~ j¢}, f=1,...,F.
This correspondence allows us to interpret each atom of space on a node (vol-
ume eigenstate) as quantum Euclidean polyhedra states. It offers infinite possible
Euclidean polyhedra shapes for the same intertwiner state. In fact, after restricting
the space of shapes of fixed areas Ay to a spectrum of volume operator, we will
obtain 2F —5 dimensions hyper-surface of relevant shapes (since the Sp phase space
has 2F — 6 dimensions). Now, it is legitimate to ask the following question:

e Can we find other polyhedra shape possibilities in the nonzero curvature regime?
For instance, the absence of the regular Euclidean tetrahedron correspondence
with the monochromatic 4-valent node intertwiners (except for the semiclassical
limit, the state is really regular tetrahedron) means that there is no regular
tetrahedron belonging to the volume orbits in the space of equilateral tetrahedra
shapes; can we find this correspondence in the context of nonzero curvature
spaces?

In what follows, we will interpret the intertwiner state by a fixed polyhedron
shape (even if it doesn’t belong to the volume orbit of Euclidean polyhedra shapes)
and try to find out what kind of a curved space one must have in order that this
polyhedron grain is nicely consistent with the area and volume spectra of LQG.
The task now is to determine new curvature operator related to a fixed polyhedron
shape by using the approach similar to the one mentioned previously consisting in
identifying the volume and areas operators of LQG with those of the corresponding
polyhedron in an arbitrary curved space and inverting the resulting set of functions
to end up to the classical and quantum formula of scalar curvature related to a fixed
polyhedron. It is worth to mention that the classical consistency of the 3D Ricci
scalar curvature measure as a function of the volume and boundary area mea-
sures is also well-defined at the quantum level since the commutativity between
their associated geometrical operators is guaranteed in LQG. Unfortunately, we
cannot exactly calculate the volume and boundary face area of a polyhedron in
a general curved space, even if we make a perturbative series expansion around
the Euclidean measure for a small polyhedron as it was mentioned for the small
geodesic ball cases [29], we don’t have any guidance to estimate the uncertainty of
this expansion. The first problem occurred due to the arbitrary degree of freedom
of the considered general curved space. The solution is trivial; one can just relax
the degree of freedom to spaces with a constant scalar curvature (one degree of
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freedom). In fact, a spin network state of a fixed graph (dual to a fixed discretiza-
tion) induces naturally a discrete locally valued function of the 3D Ricci scalar
curvature. The reason is that all quantum geometric operators are not sensitive to
all points inside the quantum atom of space; only nodes and links represent the
quanta of space and its boundary surface, respectively. Thus, each quantum atom
of space corresponds to a constant 3D Ricci scalar curvature value, i.e. all points
inside the quantum atom of space share the same geometrical property. In the fol-
lowing, we will make our calculation concerning the volume and boundary area of
a polyhedron in a constant curvature Riemannian manifold. We remind that the
Riemannian manifolds of a constant curvature can be classified into the Euclidean
(E3, R = 0), spherical (5%, R > 0) and hyperbolic (H?, R < 0) geometries (other
spaces that have a constant curvature are isometric to one of these three classes
by the Killing—Hopf theorem [30, 31]). As a byproduct, the full expression of vol-
ume and boundary face area of a regular tetrahedron in the 3-sphere S3 and the
3-hyperbolic H? has been derived explicitly in terms of the 3D Ricci scalar curva-
ture and the edge length in [28]. In the monochromatic 4-valent node example, we
will be interested to study the possibility of finding a correspondence with a regular
geodesic tetrahedron. Applying the 3D Ricci scalar curvature operator related to
a regular tetrahedron region on the intertwiner state for constructing a space of a
constant curvature where one can have the regular tetrahedron correspondence for
any irreducible representation j. Finally, since the semiclassical intertwiner state
is identical with the regular tetrahedron, a crucial test of this 3D scalar curva-
ture is to re-find the regular tetrahedron in the semiclassical limit as we really
expect.

4. Application: A Monochromatic 4-Valent Node State
4.1. Quantum equilateral Fuclidean tetrahedron

The corresponding system of a monochromatic 4-valent intertwiner node is an equi-
lateral Euclidean tetrahedron (tetrahedron with faces of equal areas, see Fig. 2) and
the main ingredients that comprise this system can be summarized as follows.

Fig. 2. Descriptions of the classical geometry of an equilateral Euclidean tetrahedron.
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4.1.1. The intertwiner space Hy

In LQG, the SU(2) invariant Hilbert space of a monochromatic 4-valent node (j; =
j2 = js = ja = j) is the intertwiner space H4 = inv(VW) @ VU @ V) @ V0)) with
a dimension 35 4+ 1. There are two well-defined geometric operators acting on the
gauge invariant intertwiner state {|z(‘7))}, K=0,...,2j5:

The area operator acts trivially on the links as

Af’i&?) _ (J) /5G + 1) ]Z(j) (7)

The volume operator acts nontrivially on the node [17]

R 2
V]iiY \/|E1 (B2 x B)lli)) = \ﬂ ). (8)

We have to diagonalize the volume matrix element by diagonalizing the matrix
[Q% | of elements

i = (5 101iY) (9)
with
0 ial 0
—ial 0
QL= i : , (10)
0 | 0 ia2j+1
—1a254-1 0
where
n?n?— (2 +1)2
ap = — , n=1,...,27+1. 11
1 —— J (11)

4.1.2. The Kapovich—Millson phase space Sy

The space of all Euclidean equilateral tetrahedron [17] shapes with fixed area norms
Ay =Ay =A3 = Ay = A= /25 + 1, satisfying the closure relation:

e e
A1+ As+As+As= 0. (12)

The phase space canonical coordinates are

S Ay x Ag) - Agx Al)
X . X
p=|A1+ Ay q=arccos =22 022U (13)
|A1XA2||A3><A4|
It is obvious that
0<p<24 gqug (14)
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Fig. 3. The volume function in the Kapovich-Millson phase space Sy.

All geometrical informations of a Euclidean equilateral tetrahedron can be con-
structed from its representation point (p,q) € Sy, such as the volume

Vidima) = SV IAr (ax dal = S flnl (5 - 1) o)
D, q) = — . X = sin ———1].
p,q /3 1 2 3 302 q D2

Notice that the volume function has a maximal value as it is shown in Fig. 3. In
fact, one has to solve the equations

3V(gl;p7 q) _0 6’V(gl;p, q) . (16)
p (Po,90) q (Po,90)
It is easy to check that
2v/3 T
=—A =+— 1
Po 3 qo 27 ( 7)

where

Vinax = V(A; po, qo) = 2%/737 /4 43/ (18)

which is the expected Euclidean regular tetrahedron.

4.1.3. The correspondence Hy <> Sy

Each volume spectrum (8) of the intertwiner space H4 corresponds to an orbit in the
Kapovich—Millson phase space S4. These volume orbits are the possible Euclidean
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Fig. 4. The Kapovich—Millson phase space S4. The colored orbits are quantized levels of the volume
operator in the monochromatic 4-valent eigenstate of j = 4.

equilateral tetrahedron shapes of the volume eigenstate with a fixed face area norm
A=/j(j+1) (see Fig. 4).

The regular tetrahedron is the only state that has the maximum volume value.
Therefore, the only atom of space state that corresponds to a unique equilateral

tetrahedron shape is the one that has a volume eigenvalue equal to the maximum
volume of the phase space Sy

VmaX - 23/23_7/4(j(j + 1))3/4 (]‘9)

and it corresponds to the regular tetrahedron. In LQG, there is no quantum regular
tetrahedron corresponding to a monochromatic 4-valent node state, since all quan-
tum volume spectra are below the volume of a regular tetrahedron with a face area
A=/j(j+1) (see Fig. 5). The existence of such a regular tetrahedron solution is

guaranteed by the correspondence of the 4-valent node intertwiner space H4 with
a constant curvature R tetrahedron shape.

4.2. Ricci scalar curvature and edge length operators for regular
tetrahedron state

Now, let us look for the 3D Ricci scalar curvature value in which one can represent
the monochromatic 4-valent quanta of space as a regular tetrahedron in a constant
curvature space. In [28], the volume and the boundary face area of a regular spher-
ical and hyperbolic tetrahedron given as explicit functions of the edge length a and
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Fig. 5. Comparison of the regular Euclidean tetrahedron volume (dark line) with the LQG volume
spectra (dots) for the monochromatic 4-valent node state with different links color j.

the radius r = % are shown to have the following expressionsP:
2.2 cos ()
A(r,a) = €r* | 3arccos| ——— | — 7 (20)
cos (%) +1
tan(5&) t arctan(t)
Vir,a) = 1263r3/ dt , 21
where
1 for S3,
€= (22)
i for H3.

The Euclidean case is well defined in the limit » — oo. A direct application of the
resulted formulas (20), (21) in LQG is to find a 3D scalar curvature of the quantum
atom of space such that the monochromatic 4-valent node has an interpretation
of a regular tetrahedron in a constant curvature space. For each area and volume
spectra of the operators (7), (8), inverting analytically these systems of functions is
not so simple, instead we can deal with it numerically and construct the 3D Ricci
scalar curvature and the edge length spectra. From the above Fig. 6, it is worth

PNotice that the geodesic surfaces of the S2 and H? are portions of the great 2-dimensional
spheres Sz and hyperbolic Hg , respectively. Indeed, the area expression (20) of a regular triangle

is a combination of the area formula given by the dihedral angle © and the cosine rule cos(©) =
cos(Z)

Cos(ﬁ in the context of spherical and hyperbolic trigonometry.
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shedding light on the following main conclusions:

(1) The existence of a regular tetrahedron consistent with LQG data (volume and
area spectra) is guaranteed in the negative curvature regime, and then one can
represent the monochromatic 4-valent state by a regular hyperbolic tetrahe-
dron.

(2) In general, the 4-valent monochromatic state that has a biggest volume rep-
resented by a regular tetrahedron in negative constant curvature space is

16

14

12

10

(b) The curvature spectrum

Fig. 6. (Color online) Colored lines of different spectra levels for volume (a), scalar curvature (b)
and edge length (c) of a monochromatic 4-valent intertwiner.
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(c) The edge length spectrum

Fig. 6. (Continued)

the closest to the Euclidean space with the smallest edge length and vice
versa.

(3) The lowest level value of the edges length (violet curve in Fig. 6(c)) is approx-
imately the edges length of the Euclidean regular tetrahedron with a face area

A=/j(j+1)
Y %: G+ 1) :
ammw(—\/g> <—\/§ > ) (23)

(4) For a generic spin value j ~ 1, we find that the regular tetrahedron solutions
of negative scalar curvature spectra are in the range

R~ —(87Ghy) ™t ~ =10 /ym~2. (24)

(5) In the semi-classical limit 7 > 1, the new operators worked perfectly as we
had hoped, the monochromatic 4-valent will be more closer to be identified
with the Euclidean regular tetrahedron, because all scalar curvature spectra
vanish as well as the edge length spectra tend asymptotically to the edge length
of a regular Euclidean tetrahedron given in (23) (see Figs. 6(b) and 6(c)).
Accordingly, we are able to have a good approximation of the volume and
boundary face area functions (20), (21) around the zero constant curvature in
the case of j > 1. In fact, by expanding these two functions (20), (21) with

respect to the variable £, we obtain:

A(r,a) = */Tgcﬂ {1+ é <§)2+o<(§)4)} (25)
V(r,a) = \f—fa?’ {1 + % (g)2 +O ((%)4” (26)
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As we have previously said, the analytic inversion of the two functions (20), (21)
is not analytically possible, instead of doing the exact inversion with respect to the
exact variables (r,a), we will use the good approximation functions (25), (26) with
respect to the approximate variables (7, a) and write

A(F,a) = ?zﬂ [1 + %x] (27)
V (7, a) = gai‘* {1 + %x] (28)

where

e (L) SR 29)

Inverting the two functions (27), (28) for the two variables R and &, we obtain
approximated formulas of the scalar curvature as well as the edge length:

R(A,V) = ?’2—?5: (1 + %) (30)

1/2
4/3 A
a(A, V)= | — - , 31
(A, V) <3 H%) (31)
where
_ 434
The function F' is defined by
2
|G V) 23v34
F(A,V) = | == A (33)

and

G(A, V) = (—205335v3V + 117\/ 9240075V2 — 1265368v/343)1/3. (34)

Now, one has to quantize the 3D Ricci scalar curvature and edge length functions
given in (30), (31) by quantizing the area and volume operators to obtain quantum
operators that act on the state of monochromatic 4-valent node quantum atom of
space (the volume eigenstate):

R(A, V) = R(A, 1), (35)
a(A, V) = a(A, V). (36)

As the color j increases, the accuracy of these two operators (35), (36) will be very
high and their behavior spectra for j — oo in the semi-classical limit is well known
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Table 1. Comparison of the approximated spectra of the two operators (R, fl)
associated to a regular tetrahedron with their exact value (R, a) for the highest
volume level (violet curve in Fig. 6(a)) of the monochromatic 4-valent node state
for 5 =1,...,10.

j A Vinax R R SR (%) a a da (%)
1 1.414  0.620 —2.146 —1.418 34 1.954 1.914  2.07
2 2.449 1425 —1.156 —0.782 32 2.557 2.511 1.82
3 3.464  2.444 —0.663 —0.478 28 2.998  2.960 1.25
4 4472  3.641 —0,422 —0.320 24 3.369 3.340  0.87
5 5.477  4.990 —0.291 —0.229 21 3.700 3.677  0.63
6 6.481  6.476 —0.212 —0.172 19 4.003 3.983  0.48
7 7.483  8.086 —0.161 —0.134 17 4.283  4.267  0.37
8 8.485  9.812 —0.127 —0.107 15 4545 4532 0.30
9 9.487 11.646 —0.102 —0.088 14 4793  4.782  0.24
10 10.488 13.583 —0.084 —0.073 13 5.029 5.019  0.20

and it gives the Euclidean solution (see Table 1)

R(A, VDY = ROWGG + 10, Vi) i) ~ (37)

j—o0 j—00

o 1/2

a(A V)Y = a(VG(G + 1), Vie) i) ~ (—) i), (38)
Jj—o0 j—o0 \/g j—o0

5. Conclusion

We have found an alternative approach of measuring the 3D Ricci scalar curvature
value by measuring the volume of a region and its boundary area. We have applied
this technique in LQG and the main feature of our proposed curvature operator is to
determine in a straightforward manner at which curvature value can an intertwiner
state be interpreted as a geodesic polyhedron. As a byproduct, we have studied the
possibility of finding the regular tetrahedron corresponding with the monochromatic
4-valent node in nonzero constant curvature spaces. It is shown that all regular
tetrahedron states are in the negative scalar curvature regime; for 5 > 1, the scalar
curvature spectrum will be very close to the Euclidean regime, as we have expected.
We conclude that the simultaneous measure of the volume and the boundary area
of the monochromatic 4-valent node state allows us to estimate the appropriate case
of a constant curvature space in which this state can be interpreted as a regular
tetrahedron.
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Résumé

Gravitation quantique a boucles et ses applications géométriques

La Gravitation quantique a boucles (LQG) est une théorie des champs quantique de la
géométrie elle-méme, non perturbatif et indépendante du fond. Elle est basee sur
I'implémentation quantique de la relativité générale (RG) a l'aide de programme de
quantification de Dirac. L'espace cinématique de Hilbert est construit par des
fonctionnelles d'onde cylindriques a travers des holonomies définies par la connexion
su(2) le long d'un systeme des trajectoires orientées. L'espace de Hilbert invariant par la
jauge est l'espace noyau des contraintes de Gauss; il est construit par I'état de réseau de
spin qui est un ensemble des courbes orientées, un nombre de spin a chaque courbe et
un intertwiner invariant a chaque nceud. Les opérateurs d’aire et du volume dans LQG
sont fournis. A partir de leur spectre quantique, la propriété de I’espace est mystérieuse
et discontinu; il est démontré que 1’espace-temps est fondamentalement discret a
I’échelle de la longueur de Planck. Une belle interprétation de l'atome de 1’espace en

termes de polyédre Euclidien quantique est fournie.

Dans cette thése, une approche alternative introduisant un opérateur de courbure scalaire
3d-Ricci donnée en termes de volume et d’aire ainsi qu'un nouvel opérateur de longueur
est proposée. Un exemple d'état d’intertwiner de nceud monochromatique a 4 valences
(tétraédres équilatéraux) est étudié et la mesure de courbure scalaire pour une forme de
tétraedre régulier est construite. Nous montrons que tous les états de tétraedre réguliers
sont dans le régime de courbure scalaire négatif et que pour la limite semi-classique le

spectre est trés proche du régime Euclidien.

Mots clés: Gravitation quantique a boucles, Tétraédres quantiques, Opérateur de

courbure, Opérateur de longueur.



Abstract

Loop Quantum Gravity is a non-perturbative, background-independent and quantum
field theory of geometry itself. It is based on the quantum implementation of General
relativity (GR) by using Dirac quantization program. The kinematical Hilbert space is
constructed by cylindrical wave functionals through holonomies defined by the su(2)
connection along a system of smooth oriented paths. The gauge invariant Hilbert space
is the kernel space of the Gauss constraints; it is constructed by the spin network state
which is a collection of oriented curves, a spin number at each curve and an invariant
intertwiner at each node. The area and volume operators in LQG has been provided.
From their quantum spectrum, the fuzziness and discreteness property of space is
predicted; it is shown that spacetime is fundamentally discrete and at the scale of the
Planck length. A beautiful interpretation of the space atom in terms of the quantum

Euclidean polyhedral is provided.

In this thesis, an alternative approach introducing a 3d- Ricci scalar curvature operator
given in terms of volume and boundary area as well as new edge length operator is
proposed. An example of monochromatic 4-valent node intertwiner state (equilateral
tetrahedra) is studied and the scalar curvature measure for a regular tetrahedron shape is
constructed. We show that all regular tetrahedron states are in the negative scalar
curvature regime and for the semi-classical limit the spectrum is very close to the

Euclidean regime.

Key words: Loop Quantum Gravity, Quantum tetrahedra, Curvature operator, Edge

length operator.
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