République Algérienne Démocratique et Populaire Ministère de L'Enseignement Supérieur et de la Recherche Scientifique Université des Frères Mentouri Constantine1 Faculté des Sciences de la Terre, de la Géographie et de l'Aménagement du Territoire

Département des Sciences Géologiques

N° d'Ordre	•
Série	•

THESE

En vue de l'obtention du grade de DOCTEUR EN SCIENCES

OPTION: HYDROGEOLOGIE

Essais d'interprétation des anomalies hydrogéothermales de la région de Ghardaia, Algérie

Présentée par MIHOUB REDOUANE

JURY

Présidente	H. DIB	MCA, Université de Constantine 1	
Directeur de thèse	N.CHABOUR	Professeur, Université de Constantine 1	
Examinateur	M. R. MENANI	Professeur, Université de Batna 2	
Examinateur	A. DEMDOUM	Professeur, Université de Sétif	
Examinateur	N. BRINIS	MCA, Université de Batna 2	

Dédicaces

A mes parents;

Ma grande et ma petite famille

« Ma femme, sa famille et mes enfants »

A mes amis.

Remerciements

Au terme de ce travail, je tiens à exprimer mes très vifs remerciements à tous mes enseignants de la filière géologie de la Faculté des sciences de la terre, Université de Constantine, auxquels je dois beaucoup pour ma formation en géologie.

Je remercie particulièrement monsieur le Directeur de thèse Chabour Nabil, Professeur, à l'Université de Constantine 1, qui m'a fait profiter de ses connaissances et de son soutien moral et qui n'a pas hésité un seul instant à m'encourager et pour tous les conseils et l'aide précieux qu'il m'a apporté.

Mes vifs remerciements et mes respects les plus distingués vont à M^{eme} Dib Henia,

MCA, à l'Université de Constantine 1,

pour avoir accepté de juger ce travail et me faire l'honneur de présider mon Jury.

J'adresse mes sincères remerciements et ma profonde reconnaissance à Monsieur, Menani M^{ed} Redha, Professeur, à l'Université de Batna 2, pour avoir accepté d'examiner mon travail et de s'être déplacé pour faire partie du Jury de cette thèse.

Mes vifs remerciements vont également à Monsieur Demdoum Abdslam, Professeur, à l'Université de Sétif, d'avoir accepté de juger ce travail et de faire partie du Jury de cette thèse.

Mes vifs remerciements vont également à Monsieur Brinis Nafaa, MCA, à l'Université de Batna 2, d'avoir accepté de juger ce travail et de faire partie du Jury de cette thèse.

Par crainte d'avoir oublié quelqu'un, que tous ceux et toutes celles dont je suis redevable se voient ici vivement remerciés.

Nous tenons également à adresser nos vifs remerciements. Particulièrement celles et ceux qui ont travaillé jour et nuit pour venir à bout de toutes les tâches exigées. Nous nous excusons auprès de celles et ceux qui n'ont pas été cités.

ملخص

في جنوب الجزائر، يشكل التشكيل الجيولوجي (CI), احتياطي هام من المياه الحرارية. تحدد الدراسة أهم موارد الطاقة الحرارية الأرضية بالجيولوجية ,الهيدروجيولوجية والجيوكيميائية. يتم تقييم الأداء الحراري للموقع المدروس بالتفصيل ومقارنتها مع تلك المنجزة في مختلف الدراسات.

ومن خلال هذه الأطروحة، يقترح دراسة هذه الخزانات المائية في الموقع الصحراوي غرداية، الذي يقع في منطقة شبه جافه إلى جافه ، ووجودها ينطوي على تسجيل إمكانات التقلب المناخي على نطاق واسع، توضيح النظام الحراري للحوض من خلال إعادة تقييم درجات الحرارة العميقة.

وقد كشف هذا البحث عن فرضية مصدر حرارة هذه المياه وتظهر تقديرات درجة الحرارة العميقة السابقة عن وجود حالات شذوذ حرارية إيجابية ويتم رسم النتائج بطريقة منهجية، ويتيح تحليلها تسليط الضوء على السمات الرئيسية الهامة، ويعرض على نطاق واسع إمكانات كبيرة من الطاقة الحرارية الأرضية السطحية التي تميز الموقع وأخرى تتعلق بالشذوذ الحراري العميق.

في جنوب الموقع المدروس ، إن قيم التدفقات الحرارية، التدرجات الحرارية الأرضية و التوصيلية الحرارية تحدد وجود مصدر من أصل عميق.

وتبين در اسة كيمياء المياه أن النقاط الملحوظة تشهد على أصل عميق لهذه المياه . وتشهد القيم العالية نسبيا للتوصيل الكهربائي للمياه والتمعدن في الشمال والشمال الشرقي على إمدادات هامة من المياه المالحة.

وأخيرا، يمكن للتعميمات والنظم الحرارية المائية في مناطق الفيالق المرتبطة بالرواسب متباينة الخواص أن تفسر الشكل وتطور العمق وشدة المصادر الحرارية المحددة. من خلال كل ذلك خلصنا إلى أن سبب حرارة المياه (CI) في منطقة الدراسة هو العمق.

الكلمات الرئيسية: الجزائر، غرداية، هيدروغروثرمال، درجة الحرارة، تدفق، التدرج، العمق، كونتيننتال انتركالير (CI).

RESUME

Au Sud de l'Algérie, la formation géologique du Continental Intercalaire, constitue une importante réserve d'eau thermale. Une synthèse définissant les principales ressources géothermiques de la région à la base d'études géothermique, géologique, hydrogéologique et hydrogéochimique. L'évaluation des performances thermiques du site étudié sont analysées en détail et comparer à celles qui sont réalisées dans diverses études.

A travers cette thèse, on se propose d'étudier ces réservoirs dans le site saharien de Ghardaïa, situé dans une région semi-aride à aride et son existence implique un enregistrement du potentiel de la variabilité climatique à grande échelle, de présenter l'étude du régime thermique du Bassin à partir d'une réévaluation des températures profondes.

Cette recherche a en évidence dévoilé l'hypothèse adéquate aux réchauffements de ces eaux. Les précédentes estimations des températures profondes mettent en évidence des anomalies thermiques positives. Les résultats sont cartographiés de façon systématique, leur analyse permet de mettre en évidence d'importantes caractéristiques majeures, présentent à grande échelle un potentiel géothermiques surfacique important qui caractérise le site et un autre lié aux anomalies géothermiques profondes.

Au Sud du site étudié les valeurs des flux de chaleur, des gradients géothermiques, et des conductivités thermiques déterminent l'existence d'une anomalie d'origine profonde.

L'étude du chimisme de l'eau montre que les points observés témoignent d'une origine profonde de ces eaux. Les valeurs relativement élevées de la conductivité électrique de l'eau et de la minéralisation au Nord et au NE témoignent d'une importante interaction eau-roche.

Enfin, les circulations et les systèmes hydrothermaux dans les zones de faille associées à des sédiments anisotropes pourraient expliquer la forme, l'évolution en profondeur et l'intensité des anomalies thermiques identifiées. Cependant que la cause de réchauffement des eaux du Continental Intercalaire, dans la zone d'étude, est la profondeur.

Mots – **clés**: Algérie, Ghardaïa, hydrogeothermale, température, flux, gradient, profondeur, Continental Intercalaire (CI).

ABSTRACT

In southern Algeria, the geological formation of the Intercalary Continental constitutes an important reserve of thermal water. Syntheses are defining the main geothermal resources of the region at the basis of geothermal, geological, hydrogeological and geochemical studies. The evaluation of the thermal performance of the site studied is analyzed in detail and compared with those carried out in various studies.

Through this thesis, it is proposed to study these reservoirs in the Saharan site of Ghardaïa, located in a semi-arid to arid region and its existence implies a potential recording of the large-scale climatic variability, to present the study of the thermal regime of the Basin from a reassessment of deep temperatures.

This research has revealed the appropriate hypothesis for the warming of these waters.

Previous predictions of deep temperatures show positive thermal anomalies. The results are mapped in a systematic way, their analysis makes it possible to highlight important major features, present on a large scale a significant surface geothermal potential that characterizes the site and another related to deep geothermal anomalies.

To the south of the site studied, the values of the heat flux, the geothermal gradients, and the thermal conductivities determine the existence of an anomaly of deep origin. The study of the chemistry of water shows that the points observed testify to a deep origin of these waters. The relatively high values of the electrical conductivity of the water and of the mineralization in the North and NE point related to an important supply of saline waters.

Finally, circulations and hydrothermal systems in fault zones associated with anisotropic sediments could explain the shape, the depth evolution and the intensity of the thermal anomalies identified. However, the cause of warming of the Intercalary Continental waters in the study area is depth.

Key-words: Algeria, Ghardaïa, hydrogeothermal, temperature, flux, gradient, depth, Intercalary Continental (IC).

Communications et articles

1. Communications

- 23,24 et 25 février 2015. Potentiel Hydrogéothermal en question, région de Ghardaïa. Mihoub.R, Chabour. N, Chenini .N, Ghalemi.S, 12^{ème} Séminaire International sur la physique énergitique "SIPE 12", Université Tahri Mohammed -Béchar.
- 2. 14-15 décembre 2015. Influence géothermiques et des nappes d'eau potables, cas de la région de Ghardaïa, Mihoub.R, Chabour. N, Chenini .N, Ghalemi.S. Séminaire National sur la Mécatronique et les Énergies Renouvelables SNMER'15 El-Oued, Université Echahid Hamma Lakhdar -El Oued.
- 3. 03-05 Novembre 2015. La géothermie dans le Sahara algérien rôle, prospection et méthodologie. Cas de la région de Ghardaïa. S. Ghalmi, R. Mihoub, N. Chenini. Séminaire International sur la Geologie .Université kasdi Merbah -Ouargala.
- 4. 28-29 Novembre 2016. Applicatication de la geothermométrie chimiques, cas de Ghardaia ,Algerie .Mihoub R, Chabour. N, Chenini. N, Ghalmi .S .1er Séminaire National sur l'eau et l'environnement, SNEE 2016, Centre Universitaire A. Boussouf -Mila.
- 04-07, December 2017 .Heat flow, Temperatures, and thermal conductivities in the north Part of Algerian Sahara, case study Ghardaia, Algeria. Mihoub. R, Chabour.N, Bekouche S. M. A, Chenini. N, Ghalemi. S .5th International Renewable and Sustainable Energy Conference (Irsec2017), Tangier, Morocco.

2. Articles

- 1. Mihoub, R., Chabour, N., & Guermoui, M. (2016). Modeling soil temperature based on Gaussian process regression in a semi-arid-climate, case study Ghardaia, Algeria. *Geomechanics and Geophysics for Geo-Energy and Geo-Resources*, 2(4), 397-403.
- 2. Mihoub. R, Chabour.N, Bekouche S. M. A, Chenini. N, Ghalemi. S (2017). Heat flow, Temperatures, and thermal conductivities in the north Part of Algerian Sahara, case study Ghardaia. Proceedings IEEE.

LISTE DES FIGURES

Chapitre	1
CIICIPICIC	-

Fig.1	Relief et Délimitation de la zone d'étude	05
Fig.2	Vue panoramique de Ghardaïa, photo Google	06
Fig.3	Limite du Bassin versant dans le M'Zab	08
Fig.4	Oued M' Zab en crue 2008, photo Google	10
Fig.5	Barrage traditionnel, Ahbas, en crue (2008), photo Google	10
Fig.6	Formes géomorphologiques, d' après Fabre, 1976	11
Fig.7	Activité agricole et sols, ONT,(2010)	14
Chapitre 2		
Fig.8	Extrait de la carte géologique au 1 : 30 000 000 de l'USGS* (2002), Projection Robinson Word sur la zone du SASS, dans la région de Ghardaïa, (Jade Oriane Petersen, 2014)	16
Fig.9	Déformations intraplaques de la plate-forme saharienne au début du Permien. (Guiraud et al, 2005)	19
Fig.10	Schéma structurale de la Plate-forme saharienne, Caby 1989	23
Fig.11	Coupe géologique N-E dans la partie centrale de la zone d'étude (SCG, 1952;Gautier et Gouskouv, 1951)	24
Fig.12	Coupe SW-NE dans la partie centrale du Sahara (1:Mésozoïque, 2:Paléozoïque, 3:socle), Takheriste, 1990	25
Fig.13	Présentation générale des facies géologiques, (OSS ,2003), modifiée	26
Fig.14	Le Système Aquifère du Sahara Septentrional (SASS), (in Jade Oriane Petersen, 2014)	30
Fig.15	Variations des profondeurs en mètre des forages d'eaux exploitant le Continentale Intercalaire, dans le secteur d'étude	32
Fig.16	Corrélation lithostratigraphique à partir des forages d'eaux (Ghardaïa, Zelfana et Guerrara), log (ANRH) sans respect d'échelle	33
Fig.17	Carte piézométrique et principales directions d'écoulement (zones de recharge et d'exutoire majeures), région de Ghardaïa, (OSS, 2003)	38

Fig.18	Carte piézométrique de la région de Ghardaïa (données ANRH, 2011)	39
Chapitre 3		
Fig.19	Représentation graphique des températures des eaux en (°C) du	
	Continentale intercalaire	44
Fig.20	Représentation graphique des Conductivités des eaux en (mho/cm)	
	du Continentale Intercalaire	47
Fig.21	Représentation graphique du pH des eaux du Continentale	
	Intercalaire	49
Fig. 22	Représentation graphique des eaux sur le diagramme de Piper	54
Fig.23a	Représentation graphique sur le diagramme de Schoeller –Berkalof	<i></i>
F: 241	(forage 1-120)	55
Fig.24b	Représentation graphique sur le diagramme de Schoeller –Berkalof	56
	(forage121-223)	30
Fig.25	Diagramme binaire Na-Cl.	57
Fig.26	Diagramme binaire Ca/(HCO3+SO4) - (NaCl)	58
Fig.27	Diagramme binaire Ca-SO ₄	59
Fig.28	Diagramme binaire Ca-HCO ₃ +SO ₄	60
Fig.29	Diagramme binaire Ca-HCO ₃	61
Fig.30	Représentation graphique des indices de saturation des eaux	
	chlorurées sodiques et potassique	65
Chapitre 4		
Fig.31	Fig.3.7. Carte du gradient géothermique du Nord de l'Algérie (Kazi Tani,	
C	1986)	80
Fig.32	Isobathes du substratum à la base du Paléozoïque (Takheriste, 1990)	82

Fig.33	Schémas interprétatif illustrant les structures majeures de la	
	Plateforme Saharienne d'apres la gravimetrie ;(Takheriste ,1990),	
	modifiée	83
Fig.34	Quelques valeurs de la conductivité (λ) en fonction de la	
	température, Fourier, J. (1822)	84
Fig.35	Valeurs de la conductivité l [Wm ⁻¹ K ⁻¹] et de la diffusivité a [m ² s ⁻¹] pour des classes de matériaux, Fourier, J. (1822)	86
Fig.36	Variations des conductivités thermiques moyennes des roches(λ) en (Wm ⁻¹ °C ⁻¹),	88
Fig.37	Répartition du gradient géothermique moyen en (°C /km)	93
Fig.38	Répartition des températures moyennes à la surface du sol	96
Fig.39	Répartition des flux de chaleur moyen en (mW/m²)	100
Chapitre 5		
Fig.40	Gradient de température dans une direction D	105
Fig.41	Amplitude de variation de la température calculée à la profondeur	
	de $E=0$ m, $E=0.25$ m, $E=0.50$ m, $E=1$ m, $E=1.25$ m, $E=1.50$ m et	
	E= 2 m, dans la région de Ghardaïa, programme Matlab	111
Fig.42	Instrument de mesure. (Photo de l'unité de recherche en énergie renouvelable - URAER, Ghardaïa).	113
Fig.43	L'évolution quotidienne de la température du sol, programme Matlab.	114
Fig.44	Les valeurs prédites et mesurées de la température du sol programme	
8	Matlab	115
Fig.45	Coefficient de Corrélation, programme Matlab	115
Fig.46	Carte d'iso-profondeurs, en (mètre), des forages pétroliers	117
Fig.47	Situation des gisements d'Oued Noumer et Ait Kheir	118
Fig.48	Profils de variation des champs des températures à l'intérieur des sols	120
Fig.49	Variation du champ des températures en 3D, à (0 m) de profondeur	121

Fig.50	Variation du champ des températures en 3D, à (1000 m) de profondeur	122
Fig.51	Variation du champ des températures à (2000 m) de profondeur en 3D	122
Fig.52	Variation du champ des températures à (2600 m) de profondeur en 3D.	123
Fig.53	Représentation graphique, Forage pétrolier ATK1 bis	126
Fig.54	Représentation graphique, Forage pétrolier ONR03	127
Fig.55	Représentation graphique, Forage pétrolier SDA01	128
Fig.56	Représentation graphique, Forage pétrolier ATK 04	150
Fig.57	Représentation graphique, Forage pétrolier ATK 12	151
Fig.58	Représentation graphique, Forage pétrolier ATK 14	152
Fig.59	Représentation graphique, Forage pétrolier ATK 15	153
Fig.60	Représentation graphique, Forage pétrolier ATK 18	154
Fig.61	Représentation graphique Forage pétrolier ATK 20	155
Fig.62	Représentation graphique Forage pétrolier ATK 21	156
Fig.63	Représentation graphique Forage pétrolier ONR 07	157
Fig.64	Représentation graphique Forage pétrolier ONR 08	158
Fig.65	Représentation graphique Forage pétrolier ONR 09	159
Fig.66	Représentation graphique Forage pétrolier ONR11A	160
Fig.67	Représentation graphique Forage pétrolier ONR 05	161
Fig.68	Représentation graphique Forage pétrolier ATK 06	162
Fig.69	Représentation graphique Forage pétrolier ATK 24	163
Fig.70	Représentation graphique Forage pétrolier ATK 25	164
Fig.71	Représentation graphique Forage pétrolier ATK 27	165

LISTE DES TABLEAUX

Chapitre 2		_
Tableau n° 1	Aquifères et nappes dans le secteur d'étude, Ghardaïa (Forage NH2) Zelfana.	35
Chapitre 3		_
Tableau n° 2	Valeurs des Phase carbonatées, polymorphes et sulfures	62
Tableau n° 3	Valeurs des métaux lourds des eaux de l'Albien, dans la région de Ghardaïa	67
Tableau n° 4	Equation appliquées aux Géothermomètre silice	68
Tableau n° 5	Températures estimées par les géothermomètres silice en °C	69
Tableau n° 6	Géothermomètres Na/K en °C	70
Tableau n° 7	Températures estimées par les géothermomètres Na/K en °C	71
Tableau n° 8	Géothermomètres Na-K-Ca en °C.	71
Tableau n° 9	Age estime des eaux de l'Albien, dans la région de Ghardaïa	74
Chapitre 4		_
Tableau n° 10	Echantillons analysés dans les concentrations de radioactivité, CRS (1993)	90
Tableau n° 11	Estimations du flux de chaleur dans les régions continentales stables (Jaupart C et al)	98
Chapitre 5		
Tableau n° 12	Les propriétés physiques des calcaires et sable dans la région de Ghardaïa.	110

TABLE DES MATIERES

INTRODUCTION GENERALE	1
CHARTER 4 PRECENTATION CENERALE DE L	A ZONE DIEZUDE
CHAPITRE 1: PRESENTATION GENERALE DE L	
1.1 Géographie	
1.2 Climat	7
1.3 Réseau hydrographique	7
1.4 Occupation des sols	11
1.4.1 Les Hamadas	11
1.4.2 Les Garas.	12
1.4.3 Les Daya	12
1.4.4 Les Glacis.	12
1.4.5 Les Cônes d'éboulis	12
1.4.6 Glacis supérieurs	12
1.4.7 Glacis du golf de Guerrara (Amied)	13
1.4.8 Croûtes gréso-calcaires	13
1.4.9 Croûtes gypseuses.	13
1.5 Les gisements naturels.	14
CHAPITRE 2 : CADRE GEOLOGIQUE ET HYDROG	GEOLOGIQUE
2.1 Introduction.	16
2.2 Cadre géologique régionale	
2.3 Description des événements structuraux de la plate	-forme saharienne20
2.4 Cadre géologique locale	25
2.4.1 Description lithostratigraphique	

2.4.1.1 Secondaire	27
2.4.1.1.1 Trias	27
2.4.1.1.2 Jurassique	27
2.4.1.1.3 Crétacé	27
2.4.1.1.3.1 Néocomien	27
2.4.1.1.3.2 Barrémien	27
2.4.1.1.3.3 Aptien	27
2.4.1.1.3.4 Albien	27
2.4.1.1.3.5 Cénomanien	27
2.4.1.1.3.6 Turonien	28
2.4.1.1.3.7 Sénonien	28
2.4.1.2 Tertiaire	28
2.4.1.2.1 Eocène inférieur	28
2.4.1.2.2 Eocène moyen	28
2.4.1.2.3 Mio-Pliocène(Pontien)	28
2.4.1.3Quaternaire	28
2.5 CADRE HYDROGEOLOGIQUE	29
2.5.1 Description des aquifères	29
2.5.1.1 Définition	29
2.5.1.2 Limite des systèmes aquifères	30
2.5.1.3 Profondeurs du toit de l'Albien dans la région de Ghardaia	31
2.5.1.4 Aquifères et nappes du secteur	33
2.5.1.4.1 Aquifères du Cénozoïque	33
2.5.1.4.2 Aquifères du Mésozoïque	33
2.5.1.4.3 Les substratums et les toits des couches aquifères	36
2.5.1.5 Piézométrie	38

2.6 Conclusion	40
CHAPITRE 3 : HYDROGEOCHIMIE	
3.1 Introduction	43
3.2 Analyse chimique des eaux	
3.2.1Les paramètres physiques	43
3.2.1.1 La Température	
3.2.1.1.1 Définition de la thermalité	
3.2.1.1.2 Origine de la thermalité	
3.2.1.1.3 Perte de chaleur	
3.2.1.1.4 Classification thermique des eaux	45
3.2.1.2 Conductivité électrique	46
3.2.1.3 Le potentiel hydrogène pH	48
3.2.2 Les paramètres chimiques	50
3.2.2.1Les cations	50
3.2.2.2 Les anions	51
3.2.3 Etude des rapports caractéristiques	52
3.3Classification des eaux et Facies chimique	52
3.3.1 Formule caractéristique de STABLER	52
3.3.2 La classification de PIPER	53
3.3.3 Classification de SCHOELLER-BERKALOFF	54
3.4 Minéralisation des eaux	57
3.4.1 Diagrammes binaire	57
3.4.1.1Relation chlore – sodium	57
3.4.1.2 Relation calcium – sulfate	50
3.4.1.3 Relation calcium – bicarbonates	59

3.5 Indice de saturation	61
3.6 Les éléments traces	66
3.7 Géothermométrie	68
3.7.1 Géothermomètre silice	68
3.7.2 Géothermomètre Na/K	70
3.7.3 Géothermomètre Na-K-Ca	71
3.8 Hydrologie isotopique	72
3.9 Conclusion	74
HYDROGEOTHERMALES 4.1 Introduction	76
4.1 Introduction	76
4.2 Thermicité de la plate –forme saharienne	77
4.3 La géothermie	78
4.3.1 Principe de la géothermie	78
4.3.2 Anomalie géothermique en Algérie	79
4.3.2.1 Anomalie géothermique au Nord algérien	79
4.3.2.2 Anomalie géothermique au Sud algérien	80
4.4 Relation des conductivités thermiques avec les flux de chaleur	84
4.5 Rôle de la radioactivité avec les flux de chaleur	89
4.5.1 Radioactivité en Algérie	89
4.6 Le gradient géothermique	91
4.7 Détermination du flux de chaleur	94
4.8 Conclusion	101

CHAPITRE 5 : LES DONNEES DE TEMPERATURE DU SOUS-SOL

5.1 Introduction	103
5.2 Modes de transfert de chaleur	103
5.2.1 Notion de température	104
5.2.2 Notion de chaleur	105
5.2.3 Conduction	105
5.2.4 Rayonnement	106
5.2.5 Convection	106
5.3 Traitement des données de températures de l'Algérie de sud(Ghard	laïa) 107
5.3.1 Données de températures du proche sous –sol.	107
5.3.1.1 Exploitation des Températures du proche sous -sol (calcaire) à différen	tes
profondeur	110
5.3.1.2 Modélisation en processus Gaussien-Régression de la température	du
proche sous –sol en fonction des données climatiques	111
5.3.2 Données de températures du sous-sol profond	116
5.3.2.1 Profondeur des forages pétroliers	116
5.3.2.2 Le gradient géothermique dans la région de Ghardaïa, étude de cas de Zelfana (Gisements d'Oued Noumer et Ait al khir)	118
5.3.2.3 Circulations de fluides dans les zones de faille	119
5.3.2.4 Log de température	119
5.3.2.5 Log de gradient géothermique	123
5.4 Discussion des résultats et conclusion	129
CONCLUSION GENERALE	135
BIBLIOGRAPHIE	139
ANNEXE	150

INTRODUCTION GENERALE

Le monde connaît depuis plus d'un siècle un important développement économique résultant d'une croissance exceptionnelle des besoins énergétiques. L'énergie géothermique est considérée comme une ressource stratégique pour la possibilité de produire de l'énergie à la fois pour l'utilisation thermique directe et la production d'électricité mais sa caractéristique de réalimentation n'est reconnue que lorsqu'une exploitation correcte des réservoirs est effectuée. Le développement industriel, l'augmentation du parc automobile et la multiplication des équipements domestiques ont provoqué une augmentation importante de la demande énergétique. La croissance de la demande a été majoritairement couverte par l'utilisation de sources d'énergies fossiles.

En Algérie, le Sahara, qui recèle l'essentiel des ressources en hydrocarbures, est un désert formé de grandes étendues de dunes (Erg Oriental et Erg Occidental), de plaines caillouteuses (regs) et parsemé d'oasis, qui sont autant des centres urbains comme El Oued, Ghardaïa et Djanet.

Une attention particulière a été portée aux énergies de substitution renouvelables. Comme alternative à ces préoccupations, le développement et l'implémentation des énergies renouvelables est incontournable.

Des ressources énergétiques illimitées et abondamment disponibles existent et doivent être exploitées. Certaines, comme l'énergie éolienne et géothermale connaissent déjà un développement technique et commercial important. D'autres, comme l'énergie solaire et thermoélectrique, sont techniquement disponibles mais leur compétitivité économique n'est pas encore atteinte pour diverses considérations. Actuellement, il existe une volonté mondiale pour remédier à tous ces problèmes par le recours aux énergies renouvelables à grande échelle.

Ce travail de thèse se base sur des études passées et actuelles et sur des approches complémentaires dans des champs disciplinaires différents. Plusieurs études régionales ont abordé la géothermie en Algérie (Guigue, 1947 ; Cornet, 1964 ; Takherist, 1986, 1990 ; Kedaid et al, 1988 ; Bouchareb, 1993 ; Ouali, 2006 ; Saibi, 2009, etc...).

Nous interprétons dans cette thèse les anomalies hydrogeothermales en abordant les caractéristiques hydrogéochimiques, hydrogéologiques et géothermales dans un concept géologique du réservoir du Continentale Intercalaire « nappe albienne », dans la région de Ghardaïa, située au Nord du Sahara algérien. Nous cherchons également l'hypothèse adéquate aux réchauffements de ces eaux.

Les données utilisées au cours de la réalisation de cette thèse sont recueillies au niveau de la Société Nationale pour la Recherche, la Production, le Transport, la Transformation et la Commercialisation des Hydrocarbures (SONATRACH), de l' Unité de Recherche Appliquée en Energies Renouvelables (URAER), de l'Agence Nationale des Ressources Hydrauliques (ANRH), et de l'Algérienne des eaux (ADE), sises toutes à Ghardaïa.

Cette thèse qui décrit notre travail est structurée en cinq chapitres :

- ❖ Le premier chapitre établit une description générale de la région d'étude, Ghardaïa, des connaissances autour de la géographie, le climat et occupation des sols, et sur les gisements naturels.
- ❖ Le second chapitre est une description des formations géologiques du secteur, il mit en évidence le potentiel hydrogéologique.
- ❖ Le troisième chapitre se ramène à l'étude des caractéristiques géochimiques qui permettront alors d'établir les relations entre la composition chimique des eaux et celles des roches traversées. Une estimation des températures des eaux qui sera évaluée par des approches différentes, directes, en utilisant les méthodes géothermométriques et en considérant les indices de saturation de certains minéraux présents dans les roches des aquifères profonds.
- ❖ Le quatrième chapitre se rapporte à l'étude de l'origine des anomalies hydrogeothermales associées aux évènements structuraux en mettant en évidence les secteurs à forte anomalie géothermique. Nous contribuons à mettre en évidence les causes du réchauffement des eaux du Continentale Intercalaire (Albien) dans la région de Ghardaïa (Zelfana -Guerarra ...etc) avec les activités volcaniques récentes, à la proximité d'un batholite ou à la remontée du manteau. Nous rattacherons à ce chapitre l'énergie géothermique.

❖ Le cinquième chapitre est consacré au traitement des températures profondes et peu profondes recueillies au niveau des forages pétroliers et des données collectées par un appareillage de mesure. Elle nous guidera dans la validation de l'estimation du gradient géothermique et l'étude de cas de la zone de Zelfana. Cette compilation des températures permettra de mettre en évidence les potentialités de la zone d'étude qui seraient propices à l'exploitation géothermique de basse à moyenne enthalpie.

Finalement une conclusion générale contenant les interprétations et les perspectives envisagées terminera cette thèse.

CHAPITRE 1

PRESENTATION GENERALE DE LA ZONE
D'ETUDE

1.1 Géographie

Ghardaïa, située au Centre du Sahara Septentrional à 600 km au sud de la capitale Alger est considérée comme l'une des grandes oasis du Sahara Algérien, regroupant 13 communes amalgamées dans 9 Daïra, sa superficie est de 86 105 km².

Géographiquement elle est comprise entre 3°40′24″ longitude Est et de 32°29′27″ latitude Nord, (Figure. 1).Elle est limitée (ANDI, 2013):

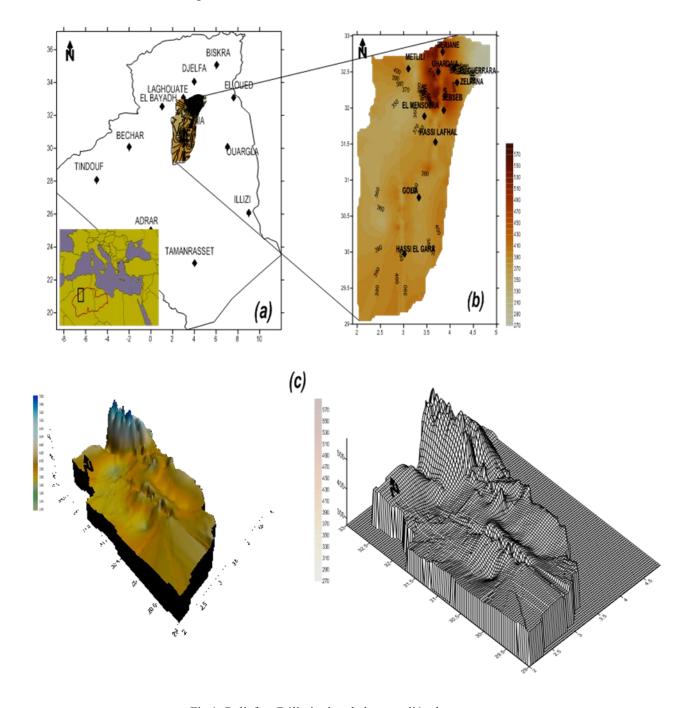


Fig.1: Relief et Délimitation de la zone d'étude.

(a) délimitation, (b) relief, (c) présentation en 3D

- Au Nord par les wilayas de Laghouat et de Djelfa;
- ♦ Au Sud par la wilaya de Tamanrasset;
- A l'Est par la wilaya d'Ouargla;
- ♦ A l'Ouest par les wilayas d'Adrar et d'El-Bayad.

Les escarpements rocheux et les oasis déterminent le paysage dans lequel sont localisées les villes de la pentapole du M'Zab (Figure.2) et autour duquel gravitent d'autres oasis: Berriane, El Guerrara, Zelfana, Metlili et beaucoup plus éloignées au sud les oasis de Hassi El Fhel et d'El Goléa (Fabre, 1976).

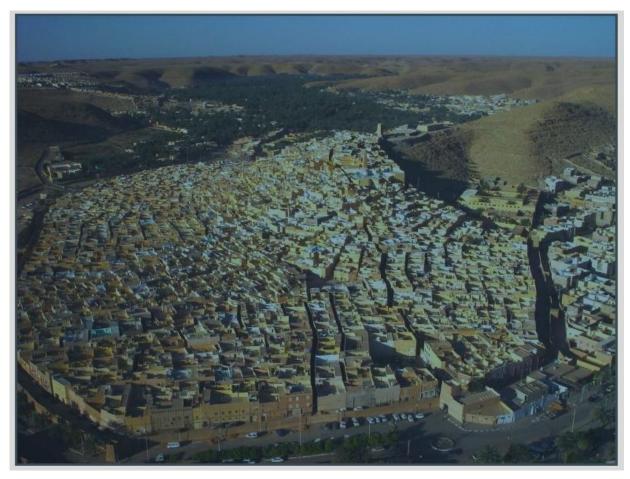


Fig.2: Vue panoramique de Ghardaïa, photo Google

Le relief de Ghardaïa est caractérisé au Nord par la présence d'une chaine de monticules rocailleuse appelée la Chabka et au Sud par un immense plateau hamada couvert de pierre. Les altitudes quant à elles sont relativement faibles, elles diminuent progressivement de l'amont vers l'aval. Ce relief très accidenté, surtout dans la partie Nord, entraine la formation de nombreuses vallées appelées dayates, très fertiles ou` coulent et se rejoignent une multitude d'Oueds (Fabre, 1976).

La population pour l'ensemble est estimée de 387 880 habitants, soit une densité de peuplement de 4,48 habitants/ km². (Direction de planification et de l'aménagement du territoire, 2008).

1.2 Climat

Le climat des zones sahariennes est continental désertique et se caractérise par de faibles températures hivernales, des températures estivales élevées, des vents de sable violents et une faible humidité. Les vents sont violents et fréquents du mois de Février au mois de Juin et occasionnent des tempêtes de sable. Du mois de Juin au mois de Septembre, le sirocco prédomine. On distingue deux saisons :

Une saison chaude et sèche (d'avril à septembre) et une autre tempérée (d'octobre à mars). On enregistre une moyenne annuelle de 25°C, avec une évaporation de l'ordre de 2000 mm par an et une faible hauteur de pluies avec une moyenne de précipitations de 60 mm/an, (ANRH, 2011).

1.3 Réseau hydrographique

Les cours d'eau très nombreux sont en crue en moyenne une fois tous les deux ans, l'érosion a pu parfois être assez poussée pour que l'oued débouche sur la bordure orientale du Grand Erg Occidental.

L'ensemble de ces oueds constitue le bassin versant de la dorsale du M'Zab (Figure.3), ils drainent en grande partie les eaux de la dorsale de l'Ouest vers l'Est, leur écoulement sont sporadiques et se manifestent à la suite des averses orageuses que connaît la région. Nous serons très succinct quant à l'étude des oueds situés au Sud et à l'Est, qui ne font d'ailleurs pas partie, à proprement parler, du M' Zab. Ils sont groupés sous les noms d'Oueds du plateau des Daïas orientales et d'Oueds de la Chebka méridionale. Leurs vallées sont de moins en moins actives au fur et à mesure que l'on se dirige vers le Sud par suite de leur ennoyage plus accentué par les sables et de la diminution de la pluviosité. Les écoulements accidentels ne dépassent pas l'oasis de Metlili, point où sont notées les crues. Cependant, ils peuvent, exceptionnellement, atteindre le bouchon de dunes de l'Areg Rhanem. Il est possible, toutefois, que des écoulements exceptionnels se produisent dans la vallée inférieure, jusqu'à la Daïa Ghemta, à 198 km de l'origine. En suivant la pente générale du terrain les plus connus sont (Baba Sy, 2005):

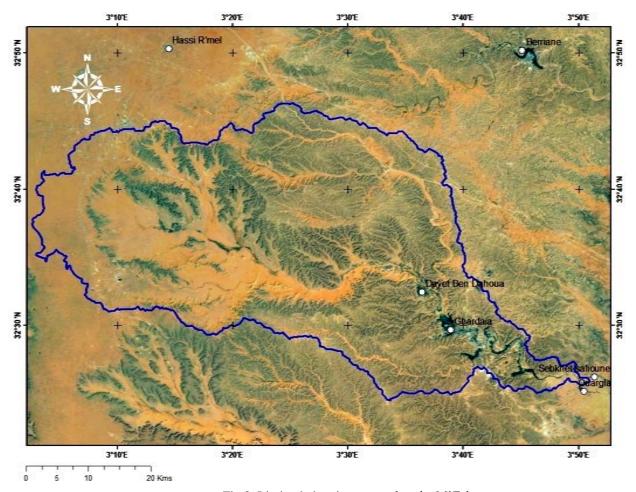


Fig.3: Limite du bassin versant dans le M'Zab

- ❖ Oued Zegrir : Limité à la hauteur de Guerrara, ce bassin couvre une superficie de 4100 km². Situé en majeure partie sur les affleurements du Miocène et du Pliocène continentaux, il est parsemé de nombreuses daïas, parfois drainées par des oueds. Ces derniers, par suite des phénomènes karstiques qui se produisent dans ces régions, disparaissent souvent avant d'atteindre leurs confluents avec le Zegrir ou son prolongement, le Zgag. Les limites N et S sont, de ce fait, peu précises. La longueur de l'artère maîtresse, en prenant pour origine la tête de l'O. Ajerma, atteint 270 km à la Daïa ben Feïlah, limite normale des grandes crues. Si l'on tient compte des écoulements exceptionnels qui empruntent la vallée de l'oued Zgag, celle-ci est portée à près de 300 km.
- ❖ Oued N'ssa: Le bassin du N'ssa, situé au S du précédent, présente une superficie de 7800 km² environ; les limites orientales sont peu précises par suite de la nature géologique de la région. L'artère maîtresse, longue de 320 km, part de la région de

Tilrempt, vers 750 m d'altitude, pour aboutir à la Sebkret Safioune, au N d'Ouargla, à la cote 107m.

- ❖ Oued M' Zab: La superficie du bassin du M'Zab est de 5000 km² environ. Ses contours sont imprécis dans la partie orientale. Limitée à Ghardaïa, point le plus bas généralement atteint par les crues, cette superficie se réduit à 1500 km². L'Oued. M'Zab coule sensiblement d'W en E sur 320 km de la région de Bohna Rouila, à 750 m d'altitude (où il prend sa source sous le nom d'Oued. El Abiod), à la Sebkret Safioune qui est à la cote 107 m.
- ❖ Oued Metlili: Le bassin du Metlili, limité à l'oasis du même nom, ne dépasse pas 400 km². Comme les précédents, il est mal délimité dans sa partie orientale, appartenant au domaine du Pliocène continental, par suite des caractéristiques très spéciales de cet étage géologique sous cette latitude. D'une longueur totale de 214 km, l'O. Metlili est barré à 134 km de son origine par le cordon dunaire de l'Areg Rhanem. Plus en aval, son lit est parsemé de daïas qui absorbent une partie des eaux de ruissellement dont la plus importante est la Daïa Ghemta.

En plus de ces oueds, il faut ajouter l'oued Rtem, parallèle à l'oued Ittel, à la limite nord de la dorsale mozabite. Les crues violentes de cet oued constituent une menace permanente pour la palmeraie de M'rara. Sur l'oued M'Zab, la totalité ou presque de l'eau est récupérée. De 1921 à 1950, la moitié des crues atteignant le premier barrage (Abbes Djdid) sont parvenues à Malika et seulement un quart ont franchi le barrage d'El Ateuf, plus en aval.

En moyenne, on peut compter sur deux jours de crue par an et les débits peuvent atteindre 300 m³/s pour de fortes crues (Figure.4 et 5). Une étude des crues de l'oued M' Zab (ANRH, 1994) a estimée les débits de crue décennale et centennale à 205 et 722 m³/s.

Fig.4: Oued M' Zab, en crue (2008), photo Google

Fig.5: Barrage traditionnel, Ahbas, en crue (2008), photo Google

1.4 Occupation des sols

Les zones sahariennes sont constituées d'immenses étendues impropres à l'agriculture (Fabre, 1976). Le plus souvent, dans ces régions, on appelle sol agricole, des zones constituées de couches sédimentaires superficielles dont la fertilité et le pouvoir de rétention en éléments fertilisants et en eau sont faibles. Les horizons de surface sont le plus souvent recouverts d'apports sableux éoliens, ou sont très argileux, ou encore encroutés ou salés (Figure.6). L'Agriculture ne peut se faire sans apports fréquents d'éléments fertilisants et d'eau et on distingue (Fabre ,1976):

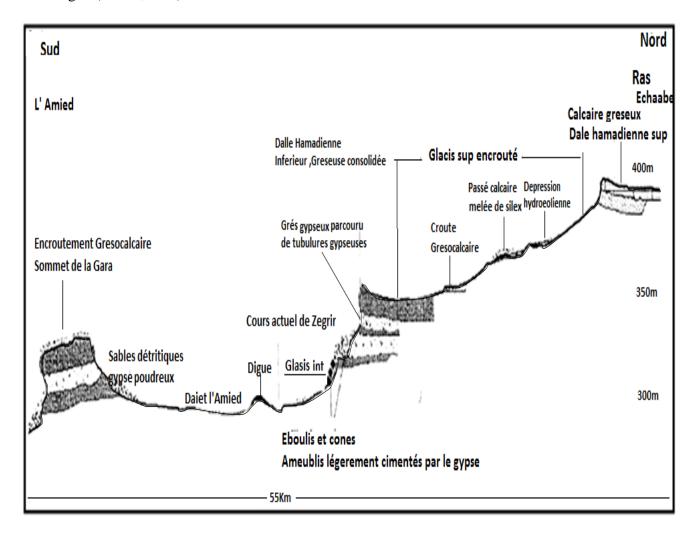


Fig. 6:Formes géomorphologiques, d'après Fabre, 1976

1.4.1 Les Hamadas

Ce sont des plateaux rocheux à topographie très monotone, souvent plate à perte de vue (Monod, 1992). D'après Aouam (2007), ils se définissent par des calcaires gréseux et des grés et se réduisent en deux dalles hamadiennes légèrement inclinées vers le Sud-est. Ces dernières

se terminent par des fronts aux talus entaillés dans des grés gypseux en pente forte et très tendues surplombes par des corniches abruptes. Ces dalles hamadiennes présentent une dénivellation de 75 m sur une distance qui varie de 2 à 3 Km.

1.4.2 Les Garas

Ce sont des buttes témoins en forme de champignon ; des plateaux tabulaires isolés par l'érosion et couronnées par une table de roche dure (Capot-Rey et al, 1963). Elles constituent un vrai piège de sables éoliens sur leurs versants Sud avec des dunes qui se sont formés à leurs dépends. Les garas de l'Amied présentent une altitude moyenne de 340m.

1.4.3 Les Dayas

Ce sont des petites dépressions circulaires, résultant de la dissolution locale des dalles calcaires ou siliceuses qui constituent les Hamadas (Ozenda, 1991). Elles présentent une évolution morphologique particulière de petite taille au stade naissant, elles s'accroissent avec le temps, devenant de plus en plus irrégulières et encaissées, (Des Dayas isolées sur le plateau et du Glacis, (Des Dayas liées aux réseaux d'Oued Zegrir, comme zones d'épandages fermées (Dayet Ben feilah à l'Est du Guerrara), ou possédant un exutoire prolongeant ainsi le lit d'oued (Dayet El Ameid).

1.4.4 Les Glacis

Ce sont des formes de relief non structural, consistant en une surface plane et peu inclinée (quelques degrés). La zone de Guerrara se caractérise par tout un système de glacis, qui s'emboitent dans les deux dalles Hamadiennes. Cependant ils sont interrompus parfois en endroit par les Dayas.

1.4.5 Les Cônes d'éboulis

Il s'agit des éboulis de pente qui ont été ameublies par le phénomène de gélifraction et de thermoclasties qu'ils ont subis. Le ruissellement a son tour leur a confère un aspect de cône d'éboulis complexe. Alors leur remplissage est essentiellement sablo-limoneux issu des formations gréseuses.

1.4.6. Glacis supérieurs

Les formations sont essentiellement sablo-limoneuses a graveleuses. Elles sont tapissées de couverture caillouteuse qui leurs confère un aspect de Reg. L'épaisseur est considérable

tandis que la couleur est blanche pale comme elle parait sur les images satellitaires (cailloutis calcaires).

1.4.7 Glacis du golf de Guerrara (Amied)

Les formations dépassent 14 m d'épaisseur avec une couleur rougeâtre. La texture est sablo-limoneuse et les surfaces sont légèrement parsemées de nodules de grés, mise a part les glacis de drain qui marquent une formation sablo-limoneuse mêlée à du gypse poudreux.

1.4.8 Croûtes gréso-calcaires

Elles sont situées au Nord de la palmeraie de Guerrara et également à Saguiet El Djanain. Elles sont constitues de nodules de grés cimentés par le calcaire. Elles sont d'une épaisseur variant de quelques centimètres à 1 mètre en aval des glacis supérieurs de Ras Echaabe.

1.4.9 Croûtes gypseuses

Elles se trouvent en dessous des dépôts sableux entrecroisées et grésifiées. Elles sont de couleur beige claire à l'affleurement et blanchâtre. On outre elles sont assez compactes à leurs parties supérieures, mais souvent pulvérulentes en dessous.

L'épaisseur de la formation varie de 25 cm à Saguiet El Djanain au Nord et 1m à Dayet ben Feileh au Sud-est.

L'agriculture oasienne représente la principale activité de la vallée, dont le sol est occupé en trois modes de culture (Figure. 7) :

- Culture des palmeraies en premier lieu (phoenicicultures) ;
- Culture des arbres fruitiers ;
- Culture maraîchère et fourragère.

Le système d'irrigation se fait par submersion traditionnelle (seguias), rare sont ceux pratiquant le mode d'aspersion et la goutte à goutte.

Les ressources en eau sont essentiellement constituées par les eaux souterraines :

Les nappes phréatiques et du complexe terminal peuvent être alimentées par les eaux de pluie; la nappe du continental intercalaire (Albien) est essentiellement fossile (Sanyal S K, 2005; Rybach L, 2003).



Fig. 7: Activité agricole et sols, ONT (2010)

1.5 Les gisements naturels

Dans la région de Ghardaïa il a été constaté 06 gisements et 35 indices de substances utiles, quelques grandes entreprises d'intérêt local et national de matériaux gypseux, chaux magnésiennes, carreaux de revêtement et de l'agrégat, quelques fours a chaux et une série de petites carrière artisanales de graviers, sables, pierres de constructions et d'agrégat. Les roches carbonatées largement répondus sur le territoire en question se présentent comme source de matière première suffisante pour la production de la chaux, de pierres de construction. Un potentiel dolomitique, sableux et réserves d'argiles importantes (ANDI, 2013).

D'autres activités portant notamment sur le négoce, l'artisanat des tapis, ainsi que des petites et moyennes industries (verres, textiles, agro-alimentaires, cosmétiques ...etc.). S'ajoute à cela le potentiel pétrolier et gazéifier, l'énergie solaire, éoliennes, géothermale et le patrimoine touristique.

CHAPITRE 2

CADRE GEOLOGIQUE ET HYDROGEOLOGIQUE

2.1 Introduction

La région de Ghardaïa (M'Zab), fait partie du grand domaine de la plateforme saharienne. De nombreux auteurs et chercheurs ont publié des travaux sur la géologie du Sahara, parmi eux nous citons : A. Cornet (1964); G. Busson (1967-70); Dubief (1968); Conrad (1969); J. Fabre (1976) et N. Chabour (1982). La dorsale du M'Zab (Figure.8) correspond aux affleurements des formations du Crétacé supérieur (Cénomano-turoniennes et sénoniennes), dessinant ainsi une lanière allongée sur une direction subméridienne, laquelle est entourée par des dépôts continentaux d'âge Mio-pliocène. Les immenses dunes de l'Erg occidental recouvrent, en grande partie, la dorsale au Sud-Ouest.

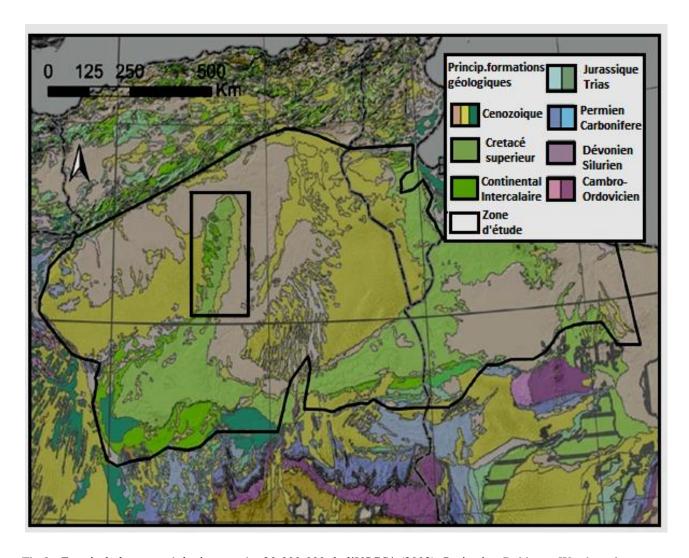


Fig.8 : Extrait de la carte géologique au 1 : 30 000 000 de l'USGS* (2002), Projection Robinson Word sur la zone du SASS, dans la région de Ghardaïa, (Jade Oriane Petersen, 2014)

2.2 Cadre géologique régionale

L'Algérie s'étend sur deux grands domaines opposés tant par leur histoire que par leur structure :

❖ au nord, le domaine alpin, tronçon de la Chaîne Alpine d' Afrique du Nord dont la structure majeure s'est édifiée au Tertiaire (Glangeaud, 1932 ; Saadallah, 1992). Le domaine tellien correspond à un *domaine* orogénique de collision des Maghrébides. Il est caractérisé par la présence d'un empilement de nappes de charriages auquel sont associés des bassins intra-montagneux (Caire, 1957 ; Mattauer, 1958 ; Piqué et al, 2002).

Les formations sédimentaires de couverture sont d'âge mésozoïque et cénozoïque et reposent sur un socle varisque impliqué dans le plissement. La déformation tangentielle de l'ensemble conduit à la mise en place des nappes de charriage et à un métamorphisme de haute-pression dans les zones internes (Wildi, 1983).

Le domaine des Hauts-Plateaux correspond à un domaine d'avant-pays qui forme l'équivalent en Algérie de la Meseta marocaine. Il chevauche le sillon tellien vers le Nord, selon une vergence opposée à celle reconnue dans le Sud du domaine tellien (Bracène et Frizon de Lamotte, 2002). Vers l'Ouest, le domaine des Hauts-Plateaux présente une déformation modérée de couverture décollée de son substratum au niveau des évaporites du Trias. Vers l'Est, la déformation est plus poussée ; c'est le cas au niveau du bassin du Hodna (Guiraud, 1973, 1975 ; Bracène et Frizon de Lamotte, 2002) où la tectonique en décollement conduit à un écaillage important de la couverture et à l'apparition du domaine subsident cénozoïque du bassin. Cette évolution structurale, couplée à la flexuration de la lithosphère sous-jacente, est celle d'un domaine d'avant-pays.

La flexure sud-atlasique marque la limite entre le domaine alpin plissé nord-algérien (domaine atlasique) et la plate-forme saharienne située au Sud. On considère classiquement cette structure comme un ensemble monoclinal d'avant-pays. Elle est en fait marquée par le chevauchement de l'Atlas saharien sur la plate-forme saharienne par l'intermédiaire de grands plis en rampes et duplex (Outtani et al, 1995). La flexure se scinde en deux segments qui prennent en pointe le massif alpin des Aurès vers l'Est.

❖ au sud, le domaine saharien, constitue un domaine cratonique stable depuis le Paléozoïque. On y rencontre des terrains très anciens, du Protérozoïque (Trompette, 1995) mis en place à l'Archéen et lors de l'orogenèse éburnéenne. Ces formations constituent de vieux boucliers stables, comme le bouclier Réguibat (Rocci et al, 1991). Le bouclier du

Hoggar, également très ancien, a subi, de surcroît, les effets de l'orogenèse panafricaine (Liégeois et al, 2003).

On reconnaît dans cette plate-forme plusieurs zones subsidentes qui ont conduit au développement d'importants bassins sédimentaires qui se développent entre les boucliers. Ces bassins sédimentaires sont caractérisés par des subsidences et des déformations variables et sont limités par des môles.

Dans la partie algérienne de la plate-forme, les bassins les plus importants sont ceux d'Illizi-Berkine à l'Est, d'Hassi Messaoud, d'Hassi R'mel, de l'Oued Mya au centre, et de Tindouf, de Béchar, de Reggane, d'Ahnet, Sbaâ, de Timimoun à l'Ouest. Les séries paléozoïques, discordantes sur le socle et qui forment le remplissage de ces bassins, ont des épaisseurs importantes, dépassant souvent les 8000 m (Aliev et al, 1971; Beuf et al, 1971; Fabre, 1976, 1988; Legrand, 1985).

Le Hoggar est un bombement d'échelle lithosphérique (Lesquer et al, 1988) associé à un point chaud (Aït Hamou et Dautria, 1994). L'activité magmatique a conduit, dès l'Eocène supérieur, à l'épanchement, à son sommet de trapps basaltiques à affinités tholéïtiques. Elle s'est poursuivie, entre le Miocène et le Quaternaire, par l'édification de plusieurs districts volcaniques alcalins à sa périphérie.

Ce bombement lithosphérique est associé à la présence d'un manteau supérieur de faible densité, en relation avec des phénomènes asthénosphériques susceptibles de s'accompagner d'une intense métasomatose (existence de kimberlites et de carbonatites) datant de la fin du secondaire-début tertiaire. Ces phénomènes accompagnent probablement un important étirement crustal (Dautria et Lesquer, 1989).

Le domaine de la plate-forme saharienne représente un grand bassin sédimentaire dont la zone la plus profonde est située dans la région des chotts (centre du bassin), il correspond à des immenses séries marines et continentales d'âge crétacé et tertiaire, reposant en discordance angulaire sur un socle d'âge primaire plissé et pénéplané. Au niveau du bouclier Targui, la chaîne Panafricaine est dominée par l'existence d'importants accidents subméridiens qui délimitent les principaux domaines structuraux suivants (Figure.9).

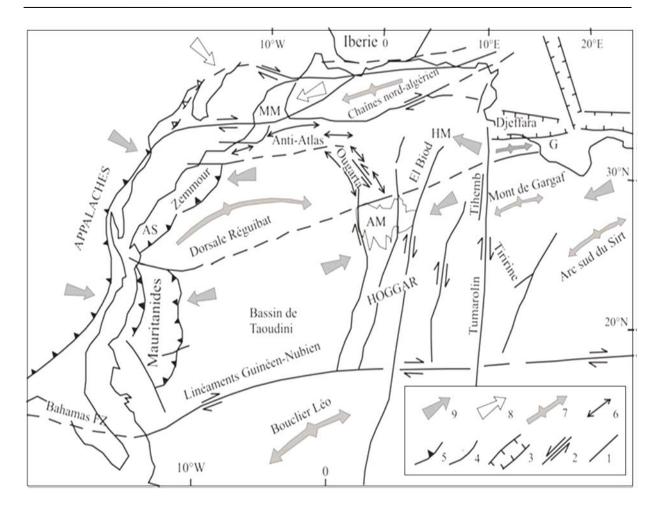


Fig.9: Déformations intraplaques de la plate-forme saharienne au début du Permien. (Guiraud et al, 2005). 1 Faille majeure, 2 Faille décrochante majeure, 3 Rift, 4 Contact anormal du Carbonifère terminal, 5 Contact anormal du Permien basal, 6 Chaînes du Carbonifère supérieur - Permien inférieur, 7 Chaîne de déformation majeure, 8 Direction de racourcissement du Carbonifère terminal, 9 Direction de racourcissement. AM Ahnet-Mouydir, AS Adrar Soutouf, HM Hassi Messaoud, MM Méséta marocaine

La structure actuelle de la plateforme saharienne est caractérisée par des dépressions qui définissent d'Ouest en Est de vastes synéclises. Celles-ci sont séparées par des dorsales, parfois complexes, constituées par une série de môles ou de hauts structuraux. On distingue notamment:

- la synéclise de Tindouf-Reggane, constituée par les deux dépressions du même nom, formées au cours du Paléozoïque sur la bordure nord-orientale du Craton Ouest-africain. Les séries paléozoïques y sont très développées, notamment à partir du Dévonien (plus de 6000 m);
- la chaîne à matériel paléozoïque plissé de l'Ougarta, à la limite entre le Craton Ouest-africain et la zone panafricaine;

- la synéclise ouest-algérienne, constituée par les dépressions de l'Ahnet et de Timimoun où le Mésozoïque est nettement moins développé que le Paléozoïque;
- -la dorsale d'Idjerane qui se continue au nord par celle du M'Zab (voûte d'Allal) et qui est délimitée par des fractures subméridiennes dont certaines constituent le prolongement de failles majeures affectant le rameau pharusien oriental de la chaîne Panafricaine;
- la synéclise centre-algérienne, comprenant les dépressions du Mouydir au sud et de l'Oued Mya au nord, ce dernier résultant essentiellement de l'histoire méso- cénozoïque;
- la dorsale complexe d'Amguid-El Biod au sud qui est relayée au nord par le môle de Messaoud et où le Paléozoïque est fortement réduit. Cette zone est délimitée par des failles subméridiennes majeures, notamment à l'ouest par l'accident du 4.50' qui sépare au sud deux compartiments différents de la chaîne panafricaine : le Pharusien à l'ouest et le Hoggar central à l'est (Caby et al, 1981);
- la synéclise est-algérienne qui comprend la terrasse structurale d'Illizi au sud et la, dépression de Ghadamès au nord, constituant le bassin carbonifère algéro-libyen; au nord, le bourrelet Rharbi-Berriane-Djerba de direction W-E, constitué d'un certain nombre de voûtes structurales;
- celles de Meharez, de Oued Namous et de Berriane, fortement érodées au Permocarbonifere, parfois jusqu'au socle rhyolitique précambrien, et formant le paléo-Anti Atlas;
- le système de sillons pré-atlasiques (sillon de Benoud à l'ouest et du Melrhir à l'est), compris entre le bourrelet précédent et l'Atlas Saharien, où la série sédimentaire est très épaisse (7000 m).

La tectonique du bassin est relativement stable et moins prononcée. Il était le siège de mouvements épirogéniques au cours du Crétacé et Tertiaire. La plate-forme se trouvait ainsi parfois immergée sur laquelle se déposait des formations marines carbonatées, et parfois émergée favorisant de dépôt continental détritique (Takherist, 1990).

2.3 Description des événements structuraux de la plate –forme saharienne

Les deux domaines ; saharien et atlasique, sont nettement séparés par un grand accident structural complexe dit flexure sud – Atlasique (Conrad, 1948). Le centre de la cuvette est occupé par les dunes du Grand Erg oriental. Par contre le Grand Erg occidental couvre en grandes parties ces bordures occidentales et sous ces dunes de sables le bassin correspond à un vaste bombement anticlinal à axe situé approximativement le long de la dorsale du M'Zab, c'est le domaine du Haut-Sahara (Flandrin, 1957).

Mise à part les affleurements localisés sur le plateau de Tademaït et de Tinrhert au Sud, et le versant occidental de la dorsale du M'Zab, le bassin du bas-Sahara à géologie assez simple, ses traits géologiques en détail ne sont connus que grâce aux sondages profonds de recherche et de prospection des hydrocarbures. Schématiquement, on observe un substratum de formation antécambrienne recouvert par des séries sédimentaires pelliculaires plus ou moins épaisses (Lelubre, 1952).

L'histoire géologique du Bassin du Sud présente au début de l'ère Primaire l'érosion et la désagrégation qui arase ce relief et le mue en une vaste pénéplaine. Avec l'ère Secondaire s'installe un régime continental qui dure jusqu'au Crétacé; l'érosion intense du massif central saharien et des grés primaires a dû fournir l'essentiel des dépôts énormes du continental intercalaire (Dutil, 1971).

Au Crétacé supérieur la mer a envahi le Nord du Sahara dont le lent affaissement se poursuivait. Ce nouveau régime marin permet alors les dépôts de calcaires dolomitiques et d'argiles plus ou moins gypseuses jusqu'à l'Eocène. Les argiles salines indiquent les hésitations de cette mer crétacée, le véritable régime marin étant représenté au Nord du M'Zab par le Cénomanien et le Turonien (Dutil, 1971).

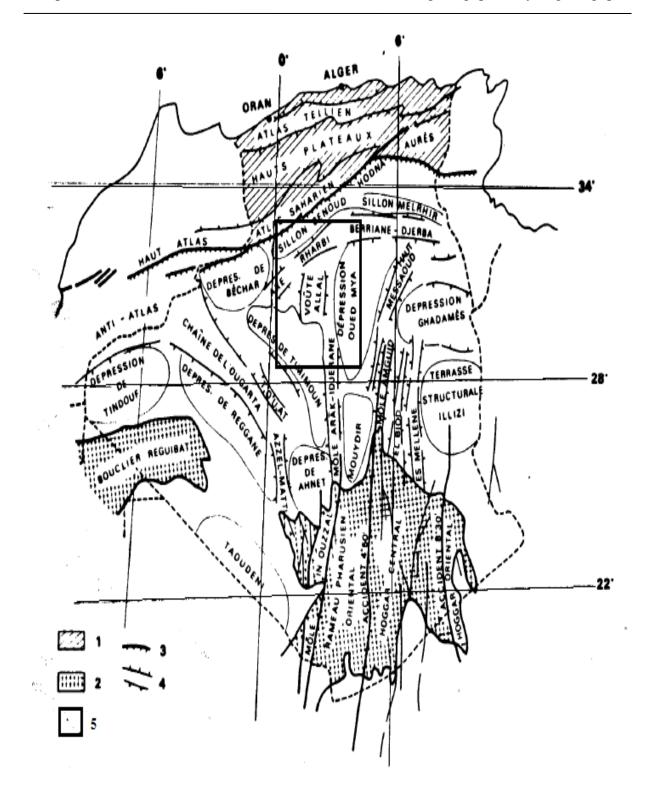
Au début de l'ère Tertiaire le mouvement de retrait de la mer crétacée s'est poursuivi et, à l'Eocène moyen, le M'Zab était émergé; seul, un golfe marin subsistait dans le sud constantinois.

A la fin de l'Eocène la mer s'est définitivement retirée de la plateforme saharienne et, dès lors, le régime continental installé a façonné progressivement l'aspect général actuel du désert (Dutil, 1971). La série Tertiaire se termine par des formations argilo-sableuses rouges, avec dépôts évaporitiques, puis par quelques bancs calcaires assez épais (Aumassip et al, 1972).

Au cours du Quaternaire la géomorphologie et la sédimentologie font état d'une aridification de plus en plus prononcée (Aumassip et al, 1972). Une croûte de grés conglomératique à ciment siliceux en forme la surface "cette période, d'abord nettement sub-aride atténuée, correspond vraisemblablement au Pliovillafranchien" (Aumassip et al, 1972; Rouvilois-Brigol, 1975).

C'est une phase tectonique légère qui détermine des reprises d'érosion locales suivies de dépôts évaporitiques puis calcaires (Aumassip et al, 1972).

Depuis le Villafranchien, des périodes humides alternant avec des périodes plus sèches ont contribués à façonner définitivement le paysage saharien actuel.


Le cadre climatique exact des évolutions, de caractères désertiques ou sub-désertiques, des phénomènes de creusement et d'érosion corrélatifs de phénomènes de remblaiement ont affecté l'ensemble des surfaces du désert, mais dans les limites permises par les niveaux de base progressivement établis.

Les dernières périodes arides ont alors simplement assuré le remaniement et la réorganisation des matériaux de surface avec la mise en place des sols actuels (Dutil, 1971). Le Villafranchien supérieur, correspond à un climat de type semi-aride dont les précipitations ont eu des effets accentués par la phase tectonique précédente.

Les failles de la dorsale d'Amguid (Figure.10) s'apparentent à un réseau orienté Nord-Sud qui traverse le massif précambrien du Hoggar et se prolonge vers le Nord en affectant la couverture sédimentaire primaire et secondaire.

Des écoulements entraînant une reprise d'érosion ont pu se produire, Le Pléistocène supérieur correspond au Sahara à une augmentation de précipitations sur les bordures septentrionales (Rognon, 1976). Le dernier (Holocène) optimum climatique est très bien documenté tout au long du Sahara (Pettit-Maire, 2002).

Les sédiments tertiaires et quaternaires masquent la continuité, vers le Nord, de ce réseau de failles qui semblent se prolonger en profondeur jusqu'à la fosse sud-atlasique. A l'endroit du réseau de failles de la dorsale d'Amguid, les séries géologiques mésozoïques (Crétacées) affichent dans les sondages des rejets verticaux de l'ordre de 300 à 400m.

1: domaine alpin; 2: socle précambrien; 3: flexure ou faille; 4: môle, horst ou haut structural; 5:zone d'étude.

Fig.10 : Schéma structurale de la Plate-forme saharienne, Caby 1989

Dans la cuvette de Oued Mya située à l'Ouest de ces failles, le substratum permien se situe à (-1170m) de profondeur et se présente comme un ancien haut-fond où les dépôts du Trias et du Jurassique sont absents (cas similaire au dôme de Malaab en Tunisie). Sur ce dôme, les séries continentales du CI accusent une nette réduction d'épaisseur. L'épaisseur du Crétacé inférieur semble être affectée par le jeu de ces failles, particulièrement la partie détritique des séries.

Le jeu vertical de ces failles se fait sentir dans les séries supérieures du Crétacé et affecte même l'épaisseur des calcaires sénoniens. Ce sont donc d'anciens accidents tectoniques régionaux qui ont continué à rejouer jusqu'aux époques récentes. Leur activité tardive est attestée par la subsidence qui a accompagné la sédimentation plio-quaternaire dans la gouttière Oued Maya-Oued Rhir. Ces accidents jouent probablement un rôle dans les écoulements souterrains, en facilitant les échanges verticaux entre le Continental intercalaire et les formations du Crétacé supérieur (Figure.11).

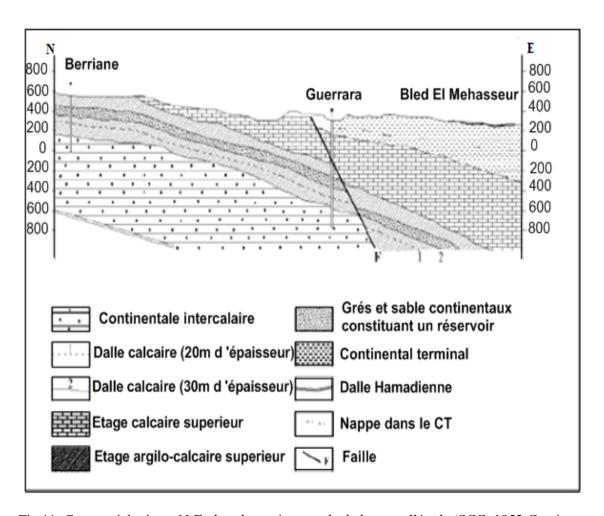


Fig.11: Coupe géologique N-E dans la partie centrale de la zone d'étude (SCG, 1952;Gautier et Gouskouv, 1951)

Le rôle hydrogéologique de la dorsale d'Amguid, dans la communication entre les nappes du Continental intercalaire et du Complexe terminal, est parmi les hypothèses qui reste à confirmer. Il est supposé, dans les études antérieures, que les failles à jeu vertical affectant, dans cette zone les séries secondaires et tertiaires.

En outre, des ondulations à grande ampleur de courbure ont été repérées dans le bassin du Sahara. La dorsale du M'Zab ; alignée en longue lanière et ayant une direction subméridienne, constitue un exemple (Figure.12).

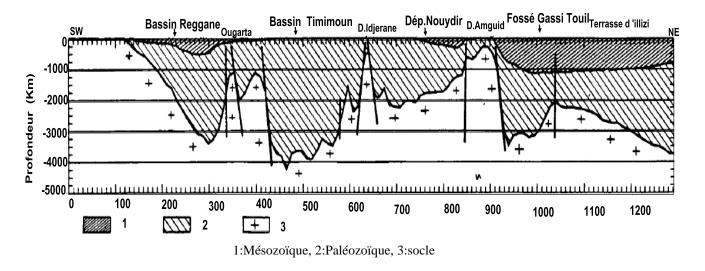


Fig.12: Coupe SW-NE dans la partie centrale du Sahara (Takherist, 1990)

Ces ondulations sont contemporaines à la formation de la chaine intracratonique de l'Atlas Saharien (J. Fabre, 1976), et paraissent comme l'écho en surface de re-jeux d'accidents du socle primaire (J. Fabre, 1976).

2.4 Cadre géologique locale

La dorsale du M'Zab présente une succession de formations géologiques allant du Trias au Quaternaire. Les assises carbonatées et marneuses du Crétacé supérieur s'épaississent et s'approfondissent progressivement vers l'Est, et se couvrent par des couches plus récentes d'âge Tertiaire (Mio-pliocène et Pontien) (J. Fabre, 1976). Le Quaternaire correspond au dépôt de recouvrement alluvionnaire de la plus part des vallées des oueds de la dorsale du M'Zab (Figure.13).

Fig. 13: Présentation générale des facies géologiques, (OSS, 2003 modifiée)

2.4.1 Description lithostratigraphique

2.4.1.1 Secondaire

2.4.1.1.1 Trias

Il correspond à des dépôts épais de grès perméables, surmontés par une puissante série salifère de sel gemme, d'anhydrite, de dolomite et d'argile (Chabour ,1982).

2.4.1.1.2 Jurassique

Ses limites inférieures et supérieures ne sont repérées que sur les diagraphies. Il est formé essentiellement de bancs de calcaires et de calcaires dolomitiques (Chabour ,1982).

2.4.1.1.3 Crétacé

Il correspond à une énorme série détritique fluvio-deltaïque de 200 à 1100 mètres de puissance. En partant des séries les plus anciennes, le Crétacé comprend (Chabour ,1982).

2.4.1.1.3.1 Néocomien

Correspond à des dépôts argileux rouges et verts à anhydrite à la base puis d'alternance de dolomite et d'argile.

2.4.1.1.3.2 Barrémien

Il est constitué par des grés rouges avec quelques intercalations argileuses.

2.4.1.1.3.3 Aptien

Il présente un facies un facies lagunaire avec intercalations marines ; argiles et marnes, anhydrites, calcaires dolomitiques et dolomies.

2.4.1.1.3.4 Albien

Il correspond à la masse gréso-argileuse comprise entre la barre aptienne et les argiles sus-jacentes attribuées au Cénomanien. Il est constitué en grande partie par des grés avec des intercalations d'argiles.

2.4.1.1.3.5 Cénomanien

Argiles dolomitiques grises à vert foncé avec des passés d'anhydrite massives de dolomies brunes et de calcaires argileux gris ou clair.

2.4.1.1.3.6 Turonien

Calcaires cristallins ; calcaires marneux et calcaires dolomitiques (Chabour ,1982). On note aussi des structures d'endokarst fossiles, occasionnant des pertes totales ou partielles de la boue lors de l'exécution des sondages hydrauliques (ANRH, 1994).

2.4.1.1.3.7 Sénonien

Les sédiments de cet étage présentent deux faciès bien individualisés, il s'agit d'un milieu lagunaire suivi d'un autre franchement marin (Chabour ,1982).

- ✓ Sénonien supérieur : Il est formé de calcaire marneux et argileux à la base.
- ✓ Sénonien inférieur : Il est représenté par de calcaires gris ou blanc alternant régulièrement avec des marnes grisâtres parfois gypseuses.

2.4.1.2 Tertiaire

2.4.1.2.1 Eocène inférieur

Succession de banc calcaire cristallins durs blancs ou gris ; decalcaire crayeux de dolomies argileuses et de marnes (Chabour ,1982).

2.4.1.2.2 Eocène moyen

Alternance d'argiles, de gypses, d anydrites et de calcaire dolomitiques.

2.4.1.2.3 Mio-Pliocène (Pontien)

Poudings, bancs de grés et argiles sableuse au pied de la chaine, passant à des couches rouges sableuses et gypseuses de quelques mètres d'épaisseurs dite « croute saharienne» (Chabour ,1982).

2.4.1.3 Quaternaire

Récent : cailloutis et éboulis aux pieds des montagnes, dunes de sable, alluvions sableuses et caillouteuses des lits actuels d'oueds (Chabour ,1982).

Moyen: calcareo –gypseux, travertins de sources; alluvions sableuses et argileuses.

Ancien: Poudingues: grés, dépôts sableux et argileux.

2.5 CADRE HYDROGEOLOGIQUE

La zone du Sahara et du Sahel, renferme de grands bassins sédimentaires qui couvrent chacun une superficie de plusieurs centaines de milliers de km². Ces bassins sont des réservoirs d'eau douce considérables. L'Observatoire du Sahara et du Sahel (OSS), crée en 1992 pour "suivre l'évolution et mieux protéger un milieu aride et fragile dont la dégradation ne cesse de s'accentuer" a produit plusieurs rapports s'inquiétant de l'exploitation de ces aquifères. Le SASS est particulièrement concerné par l'utilisation des ressources souterraines qu'il renferme, conditionnée à la faiblesse de son réseau hydrique de surface. Les prélèvements sont globalement passés de 15 m³ s⁻¹ à 80 m³ s⁻¹ entre 1950 et 2000 sur l'ensemble des forages dont le nombre a dépassé 8000 (OSS, 2002). Ces réserves qui participent à la dynamique des aquifères sont faiblement renouvelables. En effet, les eaux qui les constituent ont été emmagasinées depuis les périodes humides du quaternaire, il y a plus de 10 000 ans pour le CI, (Baba Sy, 2005). Elles sont caractérisées par des durées de renouvellement très grandes (des dizaines de milliers d'années) et des vitesses d'écoulement très lentes (moins d'un mètre par an). Cette dynamique, qui était plus forte lors des périodes humides avait permis des apports importants aux nappes, a été freinée, par la suite, par l'aridification progressive du climat depuis environ 4 000 ans (Margat, 1992).

2.5.1 Description des aquifères

2.5.1.1 Définition

Les descriptions très documentées (cartes, schéma, logs) des aspects stratigraphiques et géomorphologiques du Mésozoïque saharien produites par Busson (1967) et Conrad (1969). En 1972, dans un effort de synthèse, l'Organisation des Nations-Unies pour l'Education, la Science et la Culture (UNESCO) a regroupé cette matière abondante mais diffuse pour aboutir à l'"Etude des Ressources en Eau du Sahara Septentrional" (ERESS, 1972). Le terme continental intercalaire (CI) évoqué par Conrad en 1993, désigne la série de formations détritiques groupées du Crétacé inférieur intercalée entre deux séries marines; celle du Paléozoïque au-dessous, et la série du Crétacé supérieur au-dessus. La série marine de base du Paléozoïque achève l'orogenèse hercynienne, par contre la série marine du sommet résulte de la transgression de la mer Téthysienne au cours du Cénomanien.

Le terme du Complexe Terminal (CT) désigne l'ensemble peu homogène incluant les formations carbonatées du Crétacé supérieur et les dépôts sablo-gréseux du Tertiaire, principalement du Miocène (Busson, 1970; Fabre, 1976).

2.5.1.2 Limite des systèmes aquifères

La carte géologique de la plateforme nord saharienne indique d'importants affleurements Crétacés. Directement surmontées par les argiles de la transgression Cénomanienne, les formations du Continental Intercalaire (CI) s'étendent jusqu'en bordure de la plateforme, en une auréole continue d'El Goléa jusqu'à la limite sud de la Hamada El Hamra (Fabre, 1976) (Figure.14). Au Nord-Ouest, le CI affleure tout au long de l'Atlas Saharien, et au NE sur le Dahar et le Djebel Neffusa. Les affleurements du CI se situent majoritairement sur bordures du bassin, sous forme de reliefs montagneux, comme l'Atlas Algérien ou le Dahar Tunisien et de plateaux comme le Tinhert (Busson, 1967).

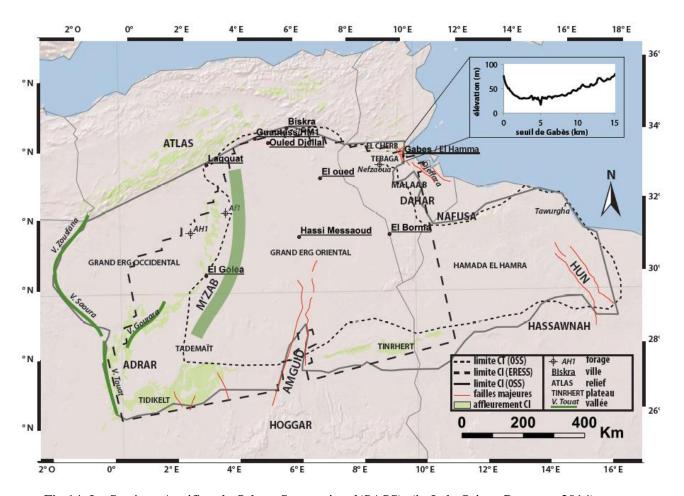


Fig.14: Le Système Aquifère du Sahara Septentrional(SASS), (in Jade Oriane Petersen, 2014)

Plus au Sud, le CI repose directement sur les formations marines du Paléozoïque, qui forment une ceinture continue de la frontière marocaine en limite NW du bassin, jusqu'à la ville de Hun en Lybie à l'extrême SE. Ces limites sont : l'Atlas Saharien au Nord Ouest; les affleurements paléozoïques de l'Ougarta à l'Ouest, des Tassilis et du Dj. Hassaouna au Sud,

la limite à eau saumâtre à l'Est du graben de Hun, les affleurements du CI sur le Dj. Nefussa et le Dahar au NE, enfin l'accident sud Atlasique au Nord, relayé vers le Golfe de Gabès par la faille d'EL Hamma.

Le complexe terminal sensu- stricto ne groupe pas à sa base les assises carbonatées lagunaires Sénono- turoniennes. La nappe du Complexe Terminal (CT) Algéro-tunisien regroupe, sous une même dénomination, plusieurs aquifères situés dans des formations géologiques différentes, qui font bien partie d'un même ensemble hydraulique.

Les intercommunications entre le Sénonien, l'Eocène et le Mio-Pliocène sont évidentes sur l'ensemble du Bassin, à l'exception de la région des Chotts où l'Eocène moyen et supérieur imperméables vient s'intercaler. La nappe turonienne est plus individualisée par suite de la couverture imperméable du Sénonien lagunaire, cependant, ses niveaux concordent avec ceux du Sénonien ou du Mio - Pliocène sur la bordure du bassin (OSS, 2005).

Les eaux du Continental Intercalaire sont, communément, appelées les eaux de l'Albien. Elles sont fossiles c'est-à-dire qu'elles sont faiblement alimentées par rapport à leur volume. La recharge actuelle de la nappe du Continental Intercalaire s'effectue principalement par infiltration des eaux de ruissellement des oueds qui descendent des massifs montagneux de l'Atlas saharien au Nord, des monts du Dahar à l'Est de la Tunisie et des Oueds de l'extrémité occidentale du Tademaït. Pendant les années exceptionnellement humides, une alimentation faible s'effectue directement par infiltration des précipitations sur les zones d'affleurement du réservoir et dans le grand Erg occidental (OSS, 2005).

2.5.1.3 Profondeurs du toit des aquifères dans la région de Ghardaïa

La carte des profondeurs du toit, tracée à partir des donnés de 223 forages d'eaux, montre que la profondeur du toit de la nappe de l'Albien est faible au sud, elle dévoile des valeurs inferieurs à 200 m, et supérieur à 500 m dans la partie centrale de la zone d'étude. Au Nord et au Nord-est du bassin, la couche de l'Albien s'approfondisse, dont les valeurs obtenus sont supérieur à 1000 m. Elle forme un bassin subsident à la limite de la flexure sud atlasique.

Les zones de l'Est, de centre et de nord du bassin, limitée par la courbe d'isoprofondeur (500 m) semble être la partie la plus intéressante du point de vue potentiel géothermale dans le secteur d'étude pour des éventuelles exploitations, elles présentent des profondeurs assez faible pour procurer la chaleur des eaux (Figure.15).

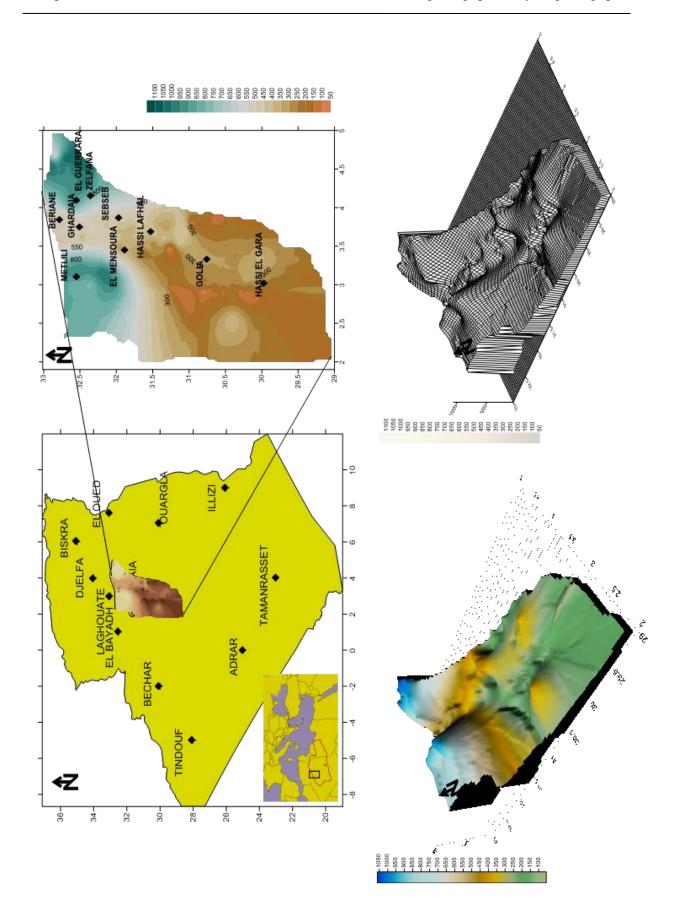


Fig.15 : Variations des profondeurs en mètre des forages d'eaux exploitant le Continentale Intercalaire, dans le secteur d'étude

2.5.1.4 Aquifères et nappes du secteur

Le Sahara Algérien a fait l'objet de nombreuses études hydrogéologiques à caractère générale et très localisé. Ces études ont révélé que pratiquement toutes les formations meubles et consolidées peuvent constituer de bons réservoirs. Du point de vue hydrogéologique, l'examen lithologique des couches géologiques a permis de retenir les descriptions suivantes (Figure.16, Tableau 1):

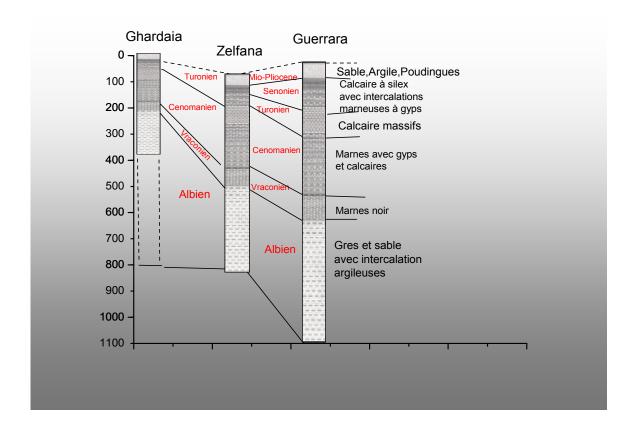


Fig.16 : Corrélation lithostratigraphique à partir des forages d'eaux (Ghardaïa, Zelfana et Guerrara), log (ANRH), sans respect d'échelle

2.5.1.4.1 Aquifères du Cénozoïque

Nappe du Mio-Pliocène (Surface - 109m)

Sable rosâtre à translucide, moyen, subarrondi à subanguleux, passant localement à grès blanc, fin à très fin, carbonaté, mal consolidé, avec niveaux de calcaire blanc, parfois gréseux.

2.5.1.4.2 Aquifères du Mésozoïque

Nappe du Sénonien Carbonaté (109m - 302m)

Calcaire dolomitique blanc, vacuolaire, avec des inclusions de silex brun à rosâtre, avec niveaux de marne, tendre, et passées de dolomie grise, dure.

Nappe du Turonien (772m - 864m)

Calcaire blanc à beige, microcristallin, localement crayeux, avec passées de marne gris vert, tendre à indurée.

Nappe de l'Albien (1003m - 1504m)

Alternance d'argile gris vert, parfois brun rouge, rarement grise, tendre à indurée, silteuse, légèrement dolomitique, et de grès gris à gris blanc, fin à très fin, mal consolidé. Passées de dolomie beige, microcristalline, dure.

Nappe de l'Aptien (1504m - 1532m)

Calcaire dolomitique beige à gris beige, microcristallin, dur, avec fines intercalations de marne gris vert à brun rouge, tendre à indurée.

Nappe du Barrémien (1532m - 1883m)

Grès gris à gris blanc, rougeâtre, fin à moyen, rarement grossier, mal consolidé, arrondi à subarrondi, argilo-carbonaté, avec passées à intercalations, d'argile rouge à rouge brique, tendre à indurée, silteuse à silto-sableuse, légèrement dolomitique. Rares passées de calcaire et dolomie beige à gris beige microcristallins, durs.

Nappe du Néocomien (1883m - 2044m)

Argiles gris vert, brun rouge, indurée, silteuse, avec niveaux de calcaire dolomitique, gris blanc à beige, cryptocristallin à microcristallin, dur, localement tendre, et de grès blanc à beige, très fin à fin, siliceux à silico-argileux, moyennement consolidé.

Nappe du Malm (2044m - 2263m)

Alternance de grès gris blanc à beige, parfois gris vert, très fin à fin, parfois moyen, siliceux à silico-argileux, moyennement consolidé, et d'argile gris vert, brune et brun rouge, indurée, silteuse. Passées irrégulières de calcaire dolomitique beige à gris beige, moyennement dur.

Nappe du Lias anhydritique (2537m - 2804m)

Anhydrite blanche, pulvérulente, massive, avec intercalations de calcaire et de dolomie beige à gris beige, moyennement durs, et passées d'argile grise à gris vert, localement gris foncé, tendre à indurée, légèrement dolomitique.

➤ Nappe du Lias Horizon "B" (2860m - 2889m)

Calcaire dolomitique gris clair à gris blanc, microcristallin, moyennement dur, avec passées d'argile brun rouge, silteuse, indurée. Niveaux d'anhydrite blanche, pulvérulente vers la base.

Tableau .1 : Aquifères et nappes dans le secteur d'étude Ghardaïa, (Forage NH2, Zelfana).

	AGE		ETAGES	STRATIG	LITHOLOGIE	INTERET HYDROGEOLOGIQUE	NAPPE
			SENONIEN		Calcaire à silex		N.Senonien
MESOZOIQUE			TURONIEN			Perméable Perméable	
	CRETACE				Dolomie	Perméable	N.Turonien
			CENOMANIEN		Argile dolomie anydrite	Imperméable	
			ALBIEN		Grés fin	Perméable	N.Albien
			APTIEN		Dolomie et marnes	Semi-Perméable	
			BARREMIEN		Grés carbonate	Perméable	N.Barrémien
			NEOCOMIEN		Grés, dolomie argile	Imperméable	
						Perméable	N.Néocomien
	JURASSIQUE		MALM		Grés carbonate, argile	Imperméable	
						Perméable	N.Malm
			DOGGER		Argile, carbonate	Imperméable	
			LIASMARNEUX		Marnes	Imperméable	
			LIASCARBONAT		Calcaire	Perméable Perméable	N.Lias .carb
			E				N.Lias .carb
			LIAS		Anhydrite	Imperméable	
			ANYDRITIQUE		Sel, argile	Imperméable	
			LIAS SALIFERE HORIZON B		Dolomie	Perméable	N. Lias dolom
			S1+S2		Sel ,anhydrite ,argile	Imperméable	
			S3		Sel massif	Imperméable	
			ARGILEUX SUP		Argile dolométique	Imperméable	
	TRIAS		S4		Sel massif	Imperméable	
			ARGILEUX INF		Argile	Imperméable	
		TRIAS ARGIIO-GRESFUX	GRES A		Argile silteuse	Imperméable	
					Gres argileux	Semi-perméable	
			ARGILES AB		Argile	Imperméable	
			GRES B		Grés argileux et microconglomératiques	Semi-perméable	
			ARGILES C		Argilesilteuse	Imperméable	
			GRES C		Gres argileux	Semi-perméable	
		TRI			Argile silteuse Grés argileux	Imperméable	
			INFERIEUR			Semi-perméable	
PALEOZOIQUE	ORDOVICIEN		GRES D'OUED SARET		Grés argileux	Semi-perméable	
			GRES D'OUED SARET		Argile	Imperméable	

2.5.1.4.3 Les substratums et les toits des couches aquifères

a) Toit du Turonien et substratum du Mio-pliocène

➤ Sénonien Anhydritique (302 - 512m)

Anhydrite blanche, massive, pulvérulente, parfois cristalline, dure, intercalée de calcaire dolomitique gris beige, dur, localement vacuolaire, d'argile gris beige, tendre à indurée, dolomitique. Traces de gypse translucide, fibreux.

> Sénonien salifère (512m - 772m)

Sel blanc à translucide, massif, avec passées d'anhydrite blanche, et d'argile brun rouge, dolomitique, tendre à indurée, salifère, avec un banc massif d'anhydrite blanche, pulvérulente, parfois cristalline, dure à la base, et intercalations irrégulières de calcaire dolomitique blanc, beige, moyennement dur.

b) Toit de l'Albien et substratum du Turonien

Cénomanien (864 - 1003m)

Il est constitué d'Argile gris vert, carbonatée, tendre à plastique, passant localement à argile grise à gris verdâtre et brun rouge, tendre à indurée.

Anhydrite blanche, pulvérulente, et cristalline, dure, avec intercalations de marne gris vert, tendre à indurée, avec passées de calcaire blanc à beige, cryptocristallin, et gris, argileux, moyennement, dur.

c) Toit du Lias et substratum du Malm

Dogger argileux (2263 - 2414m)

Argile versicolore à prédominance brun-rouge à brune, gris verdâtre, indurée, silteuse, par endroits silto-sableuse, localement anhydritique, avec passées de grès gris-blanc à beige et gris-vert, très fin à fin, argileux, mal consolidé à friable. Fines passées de calcaire beige microcristallin, tendre, argileux.

Dogger lagunaire (2414 - 2537m)

Argile brun rouge, grise à gris vert, indurée silteuse, légèrement dolomitique, avec intercalations d'anhydrite blanche, pulvérulente, et de calcaire gris à beige, tendre, argileux, localement dolomitique.

d) Toit du Trias et substratum du Dogger

➤ Lias salifère (2804 - 2860m)

Sel blanc translucide, massif, avec passées d'argile brun rouge, silteuse, indurée, localement anhydritique.

\triangleright Lias S1 + S2 (2889 - 3135m)

Sel blanc, massif, translucide, avec intercalations irrégulières d'anhydrite blanche, pulvérulente. Passées d'argile brun rouge et gris vert, indurée.

➤ Lias S3 (3135 - 3424m)

Sel blanc, massif, translucide, avec fines passées d'argile brun rouge, indurée, localement salifère.

➤ Lias argileux (3424 - 3489m)

Argile brune, parfois gris vert, tendre à indurée, localement salifère, avec passées de sel blanc, translucide. Traces d'anhydrite blanche.

e) Toit du Paléozoïque et substratum du Jurassique

> Trias S4 (3489 - 3555m)

Alternance d'argile brun rouge à gris vert, tendre plastique, parfois salifère, et de sel blanc translucide.

> Trias Argileux inférieur (3555 - 3574m)

Argile brun rouge, tendre à indurée, silteuse, localement salifère.

> Trias T2 (3574 - 3608m)

Argile brun rouge à gris vert, silteuse, indurée, avec passées de grès gris vert, très fin à fin, argileux, chloriteux, moyennement dur.

> Trias T1 (3608 - 3641m)

Argile brune à brun rouge, silteuse, tendre à indurée, avec passées de grès gris blanc.

f) Paléozoïque (Substratum du mésozoïque)

Dévonien inférieur (3800 - 3854m)

Argile grise à gris fonce, silteuse, micacée, indurée, avec traces à fines passées de grès gris vert, très fin, argileux, moyennement consolide.

> Silurien (3854 - 3938m)

Argile noire à gris noir, silteuse, micacée, indurée, légèrement carbonatée, avec traces de grès gris blanc, très fin, argileux, moyennement dur, devenant fin à moyen, siliceux, dur.

Ordovicien (3938-4149m)

Argile grise à gris fonce, indurée, silteuse, micacée, avec traces à très fines passées de grès blanc, translucide, fin à moyen, sub-arrondi à sub-anguleux, siliceux à silico-quartzitique.

2.5.1.5 Piézométrie

La piézométrie tient compte des contributions précédentes, de manière à présenter un schéma d'écoulements cohérent sur l'ensemble du bassin. L'écoulement des eaux provenant de l'Atlas saharien se divise selon deux principales directions d'écoulements (Figure. 17):

- une partie s'écoule vers le Sud et le Sud Ouest vers les exutoires qui jalonnent les régions du Touat-Gourara et du Tidikelt et vers les zones évaporatoires du grand Erg occidental.
- une autre partie s'écoule vers le Nord Est (Zone côtière tunisienne) par l'intermédiaire des failles d'El Hamma et de Médenine.

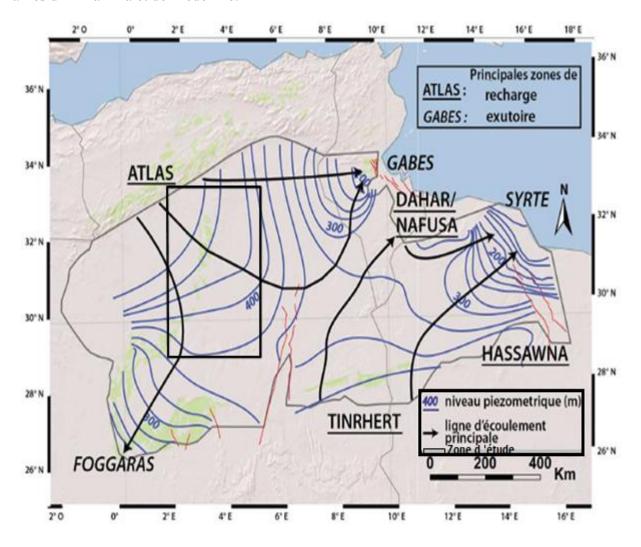


Fig.17: Carte piézométrique et principales directions d'écoulement (zones de recharge et d'exutoire majeures), région de Ghardaïa, (OSS, 2003)

Le système aquifère du Sahara septentrional représente une ressource en eau considérable. En effet l'exploitation d'un tel réservoir nous permettra de résoudre les problèmes d'eau, et de contribuer considérablement au développement des zones désertiques. Cependant cette exploitation doit être bien étudiée et maîtrisée afin d'éviter tout risque de déséquilibre dans la nappe.

La carte piézométrique de la figure 18 présente les lignes d'isovaleur de l'élévation de la nappe phréatique (isopièzes) de l'année 2011. L'intervalle entre les lignes isopièzes est de 5 mètres. Cette carte a été construite à partir des données de niveau d'eau de l'inventaire des points d'eaux établit par l'ANRH en 2011, ces points de mesures constitués par des forages captant les eaux du Continental Intercalaire (Albien).

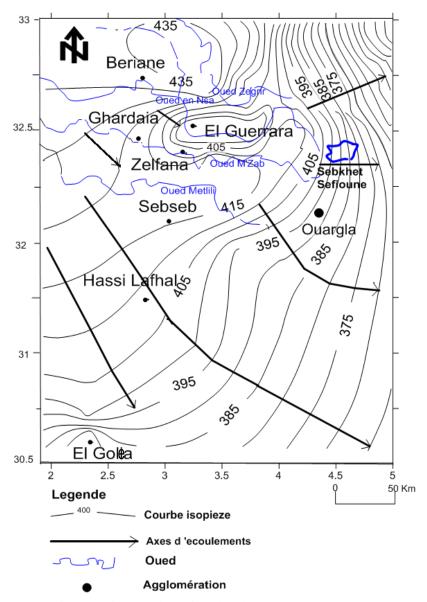


Fig. 18 : Carte piézométrique de la région de Ghardaïa (données ANRH, 2011)

Le réseau hydrographique est constitué par des rivières de directions ouest- est. La zone d'étude présente une topographie variée et marquée par ces rivières. Les altitudes les plus hautes sont à l'Est de la zone étudiée et sont supérieurs à 500 m. Les altitudes les plus basses se rencontrent au Sud de la zone étudiée et sont de 270 à 360 m. Dans l'ensemble, lorsqu'on parcourt la zone d'étude du Nord au Sud, les altitudes diminuent progressivement.

La direction d'écoulement des eaux souterraines dans un tel milieu est orthogonale aux lignes isopièzes, trois directions d'écoulement des eaux souterraines sont observées sur la carte :

- des directions nord ouest- sud est, qui caractérisent l'oust de la région d'étude ;
- des directions ouest- est, à l'extrême est de la zone d'étude;
- et des directions sud ouest -nord est ; à l'extrême nord-est de la région.

Les zones de dépression dans le nord-est et le sud, auprès de Zelfana et El Goléa, de la zone d'étude, sont probablement dues au nombre important des forages d'exploitation.

2.6 Conclusion

Le domaine de la plate-forme saharienne correspond à une immense assise de roches sédimentaires d'âge secondaire et tertiaire subhorizontale, reposant en discordance sur un socle primaire (Paléozoïque) fortement plissé et érodé au cours de l'orogenèse hercynienne.

L'ensemble de ces assises comble une vaste cuvette synclinale qui forme le bassin du bas-Sahara, ou bassin du Chaamba. Le bassin correspond à un vaste bombement anticlinal à axe situé approximativement le long de la dorsale du M'Zab. La stratigraphie de la dorsale du M'Zab présente une succession de formations géologiques allant du Trias au Quaternaire reposant sur les formations du paléozoïque. L'étude de la géologie a révélée aussi la présence de formations à de grande profondeur (3641 m – 3732 m) (SONATRACH, 2011) qui peuvent présenter un potentiel géothermiques important. L'observation lithologique permet donc de définir les formations du continentale gréso-argileuses du Crétacé inférieur (Néocomien, Barrémien et Albien).

La tectonique qui affecte les formations géologiques dévoile que la communication entre les aquifères du secteur d'étude, n'est pas à exclure, parmi les suppositions qui restent à confirmer dans les autres chapitres de cette étude. Il est aussi supposé, que des failles verticales touchent les séries secondaires et tertiaires.

Les eaux sont qualifiées de fossiles car on considère qu'elles se sont infiltrées dans le sol pendant la période holocène au Sahara, sous des conditions climatiques différentes de l'actuel et ont été stockées durant cette période. Les ressource en eaux souterraines non renouvelables impliquent que le taux moyen d'alimentation de l'aquifère soit très faible, mais en contre partie avec des réserves totales très importantes (plusieurs km³ souvent).

On parle de surexploitation lorsque les volumes exploités sur le long terme excèdent le renouvellement de la ressource, le niveau de la nappe baisse, les réserves diminuent avec des impacts environnementaux indésirables. Les résultats de la piézométrie obtenus ont montré des zones de dépression des eaux qui peuvent être dues à la surexploitation de la ressource dans certaines zones (Zelfana et El Goléa). Ces exploitations excessives provoquent des chutes de pression dans les zones artésiennes.

CHAPITRE 3

HYDROGEOCHIMIE

3.1 Introduction

En provenance de source, venant à l'émergence au sol ou le plus souvent de captages parfois très profonds, les eaux thermales ont de températures et surtout de compositions minérales très variables. Les sources ordinaires de bonne qualité ont une température constante égale à la température moyenne annuelle de l'air du lieu d'émergence (Dib, 1985).

Elles sont donc plus chaudes que l'air ambiant en hiver et plus fraîches en été. Les sources thermales ont, elles aussi, une température stable mais toujours supérieure à la température moyenne de l'air du lieu ou elles émergent. Elles ont fréquemment un goût parfois salé qui traduit la présence de substances dissoutes. Dans certaines localités où l'eau est chargée en calcaire, certaines sources prennent l'aspect de fontaines pétrifiantes. Les sources thermales sont parfois accompagnées de dégagements gazeux qui les font bouillonner, notamment d'anhydride carbonique, d'azote, d'hydrogène sulfuré, voire d'hélium ou de radon.

La présente étude concerne l'évaluation de la qualité physico-chimique des eaux souterraines fossiles du Continental Intercalaire. Pour ce faire, les paramètres physico-chimiques, mesurés au laboratoire, ont servi pour la caractérisation de ces eaux.

3.2 Analyse chimique des eaux

Les prélèvements ont été effectués en 2015 et réalisés au niveau des laboratoires de l'Algérienne des eaux de Ghardaïa et Ouargla. Un bilan ionique a été réalisé par chromatographie ionique et spectrométrie. Les ions dosés sont Ca²⁺, Mg²⁺, Na⁺ + K⁺, Cl⁻, SO₄ -2, HCO₃-, NO₃-, NH₄+ et PO₄ 3- ainsi que des métaux lourds. La mesure de la température, de la conductivité et du pH des solutions ont été réalisées au moment de l'analyse.

3.2.1 Les paramètres physiques

3.2.1.1 La Température

Ce paramètre joue un rôle très important dans la solubilité, la dissociation des sels dissous et influe sur l'activité biologique des organismes vivant dans l'eau. Les valeurs mesurées au niveau des points d'eau varient entre 24.1°C et 51°C (Figure.19).

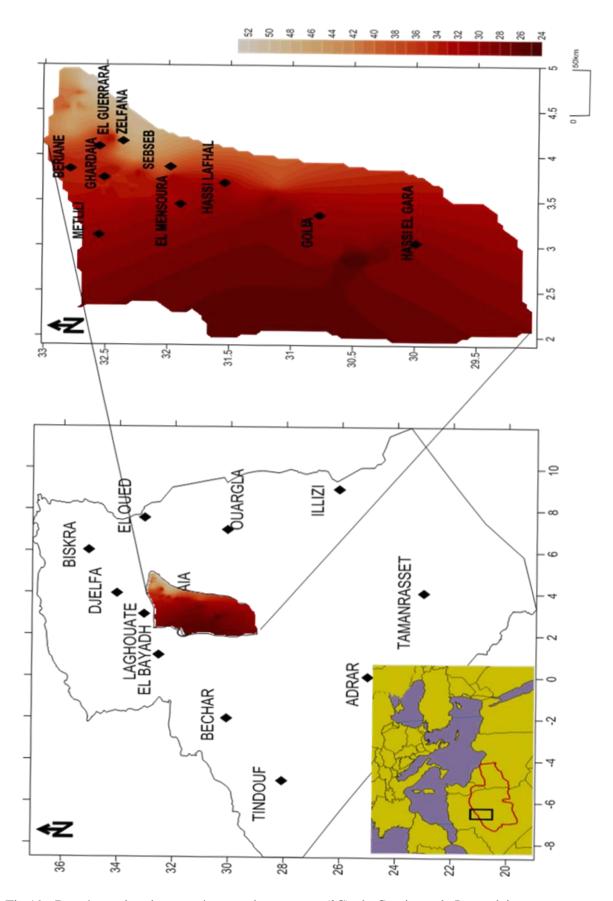


Fig.19: Représentation des températures des eaux, en (°C), du Continentale Intercalaire

3.2.1.1.1 Définition de la thermalité

Différentes définitions ont été données pour une eau thermale, nous retiendrons la définition de H. Schoeller qui considère comme thermales " les eaux dont la température à l'émergence est supérieure à la température moyenne annuelle de l'air plus 4°C au lieu de l'émergence."

3.2.1.1.2 Origine de la thermalité

La température augmente avec la profondeur. Une température élevée est donc, à priori, un indice d'origine profonde. On explique la relation entre la température et la profondeur par le terme de gradient géothermique (Takherist, 1990). Par définition le gradient géothermique (degré géothermique), est la profondeur de pénétration dans le sol, exprimée en mètres, nécessaire pour que la température augmente de 1°C chaque 33 m. Variable suivant les endroits et la profondeur.

Le gradient géothermique est fonction du flux de chaleur terrestre et de la conductibilité calorifique des roches (Takherist, 1990). Dans une région considérée; une valeur plus au moins élevée du gradient géothermique traduira l'intensité de ce flux de chaleur.

D'un autre coté, les mouvements orogéniques peuvent produire de l'énergie calorifique liée aux déformations mécaniques et surtout aux frottements qui s'effectuent le long de grands accidents (Fabre, 1988). Enfin les réactions physico-chimiques exothermiques résultant de la réduction des sulfates, de l'oxydation des sulfures de fer et de la transformation de l'anhydrite en gypse et la désintégration des minéraux radioactifs peuvent aussi engendrer une élévation considérable de la température des eaux (Haouchine, 2003).

3.2.1.1.3 Perte de chaleur

Il est important de signaler que la température mesurée à l'émergence n'est pas forcément représentative de la température réelle du griffon, un refroidissement des eaux thermales peut se produire au cours de leur remontée vers la surface par dégazage, échanges thermiques avec les parois du circuit hydrothermal, ou par mélange avec les eaux froides en surface ou en profondeur.

3.2.1.1.4 Classification thermique des eaux

Il existe plusieurs classifications des eaux selon leurs températures d'émergence P. Verdeil (1986), A. Issaâdi (1992), H. Dib (1985).

↓ Eaux hypothermales : ce sont des eaux dont la température à l'émergence est inférieure à celle de la partie supérieure de la zone d'homothermie ou à la température moyenne interannuelle du lieu d'émergence plus 4°C.

- **Laux métriothermales :** ce sont des eaux dont la température à l'émergence est inférieure à 30 °C mais supérieure à celle des eaux hypothermales. Elles représentent 15% de l'ensemble des eaux de la zone d'étude.
- **Laux mésothermales** : ce sont des eaux dont la température à l'émergence est entre 30 °C et 50 °C. La majorité des eaux de la région de Ghardaia se rangent dans cette catégorie. Elles représentent 78% de l'ensemble des eaux de la zone d'étude.
- **♣** Eaux hyperthermales : ce sont des eaux dont la température à l'émergence est supérieure à 50 °C et inférieure à 100 °C.

On constate que tous les points observés présentent des eaux mésothermales selon la classification utilisée. "Ces températures élevées témoignent d'une origine profonde de ces eaux». Ces valeurs caractérisent un thermalisme faible à moyen, également appelé thermalisme de basse enthalpie (Arnórsson, 2000).

3.2.1.2 Conductivité électrique

La conductivité électrique désigne la capacité de l'eau à conduire un courant électrique et elle est déterminée par la teneur en substances dissoutes, la charge ionique, la capacité d'ionisation, la mobilité et la température de l'eau. Par conséquent, elle renseigne sur le degré de minéralisation d'une eau. Elle est exprimée en µmhos/cm et corrigé à une température de 20°C. Elle permet une estimation de la minéralisation totale de l'eau (sels dissous, matières organiques).

Les conductivités mesurées au niveau des points d'eau montrent des valeurs comprises entre 0,259 mhos/cm et 3,730 mhos/cm. Ces conductivités traduisent une minéralité faible dans le sud à très importantes dans le nord et le nord-est de la région d'étude (Figure.20). Ces valeurs importantes semblent résulter du lessivage de la roche réservoir au sein de laquelle les eaux séjournaient." Les valeurs relativement élevées de la conductivité électrique de l'eau et de la minéralisation témoignent de l'interaction eau - roche et de la dissociation des sels dissous.».

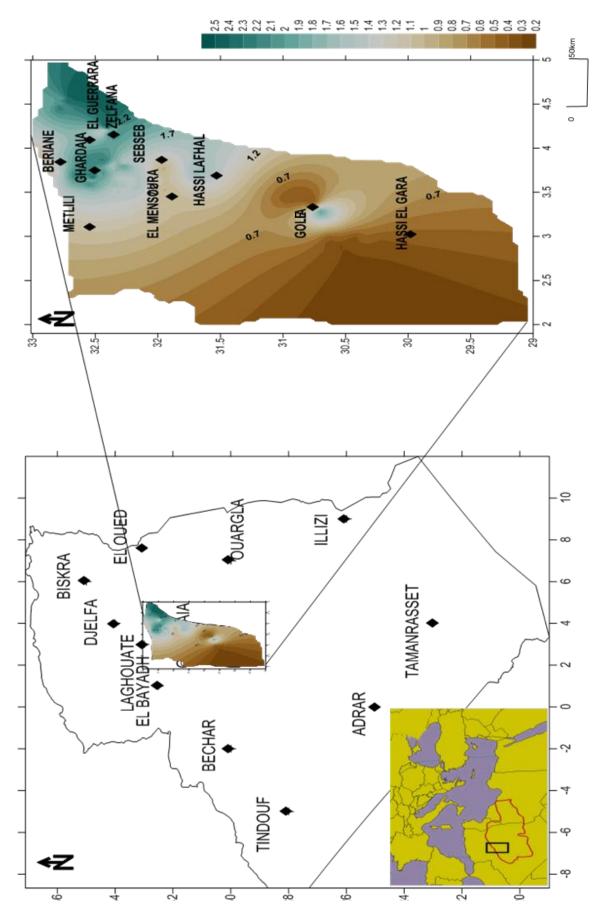


Fig. 20: Représentation des conductivités des eaux, en (mhos/cm), du Continentale Intercalaire

Les résultats sont classés selon la classification suivante (Dib.H, 1985):

♣ Si la conductivité est supérieure à 0,5 mhos/cm, la minéralisation est faible. Les échantillons analysés représentent 11% de l'ensemble des eaux.

- ♣ 0,5< conductivité < 1 mhos/cm, la minéralisation est moyenne. Les échantillons analysés représentent 10% de l'ensemble des eaux.
- ↓ 1 < conductivité < 1,5 mhos/cm, la minéralisation est moyenne élevée. Les échantillons analysés représentent 16% de l'ensemble des eaux.
- **↓** 1,5 < conductivité < 2 mhos/cm, la minéralisation est moyenne importante. Les échantillons analysés représentent 26% de l'ensemble des eaux de la zone d'étude.
- ♣ Conductivité >2 mhos/cm, la minéralisation est très importante. Les échantillons analysés représentent 38% de l'ensemble des eaux.

3.2.1.3 Le potentiel hydrogène pH

Le pH est une mesure de l'activité des ions H⁺ contenus dans une eau. C'est un paramètre physique qui détermine l'acidité ou l'alcalinité d'une eau. Les résultats des analyses chimiques indiquent des valeurs moyennes de pH légèrement basique, variant entre 7.50 et 8.1(Figure.21).

Parmi les explications de ces valeurs relativement élevées, on peut invoquer la possibilité qu'une fraction des dépôts meubles constituant l'aquifère provienne de roche calcareuse, ou encore que des intercalations de roche calcareuse se retrouvent préservés sous les dépôts aquifères. Cette deuxième possibilité est suggérée par la présence de quelques affleurements de calcaire qui ont résisté à l'érosion à l'intérieur de la région d'étude. Une eau en équilibre dans un environnement calcaire présente une valeur de pH d'environ 8.3 (Sigg, L., et al, 1994).

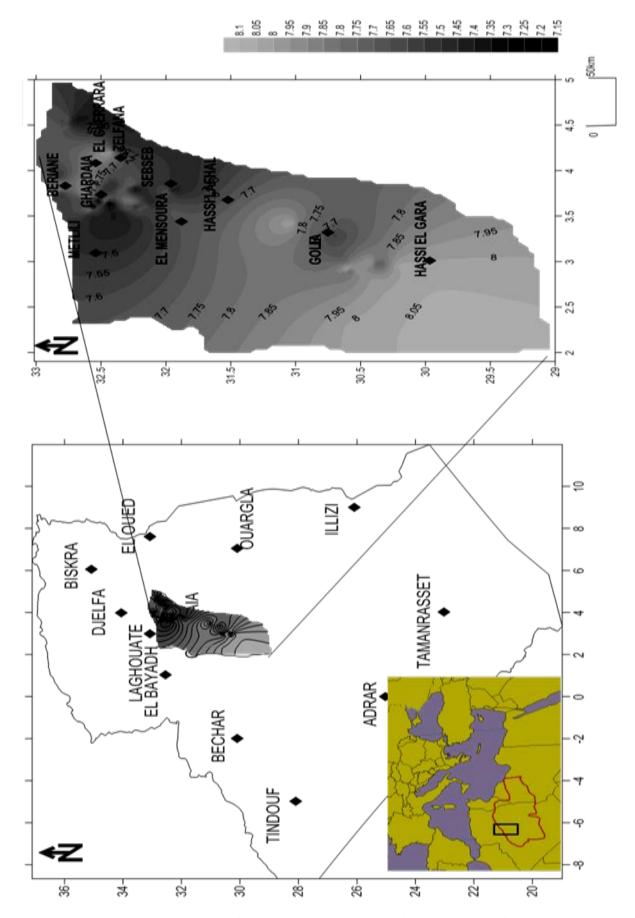


Fig.21 : Représentation du pH des eaux du Continentale Intercalaire

3.2.2. Les paramètres chimiques

3.2.2.1 Les cations

▶ Le calcium

Le calcium est généralement l'élément dominant des eaux potables et sa teneur varie essentiellement suivant la nature des terrains traversés (terrain calcaire ou gypseux) (Rodier., J, 2009). Les teneurs en calcium des eaux variaient de 25.65 mg/L et 208.41 mg/L. Les teneurs élevées en calcium pourraient être attribuées à la dissolution de la calcite ainsi que d'autres minéraux calciques tels que le gypse.

> Magnésium

La majorité des eaux naturelles contiennent généralement une petite quantité de magnésium, sa teneur dépend de la composition des roches sédimentaires rencontrées. Il provient de l'attaque par l'acide carbonique des roches magnésiennes et de la mise en solution du magnésium sous forme de carbonates et bicarbonates (Bermond., R, 1979). Les teneurs en magnésium variaient entre 4.86 mg/L et 116.64 mg/L. La source du magnésium semble être liée au contact des eaux avec les roches calcaires et dolomitiques.

> Sodium

Le sodium est un élément dit conservatif car une fois en solution, aucune réaction ne permet de l'extraire de l'eau souterraine. Les précipitations apportent une quantité de sodium minime dans l'eau souterraine, les teneurs anormalement élevées peuvent provenir du lessivage de sels, ou de la percolation à travers des terrains salés ou de l'infiltration d'eaux saumâtres. L'analyse des données a montré que les teneurs moyennes en sodium dans les eaux des points étudiés variaient de 37.27 mg/L et 430 mg/L.

> Potassium

Le potassium est généralement l'élément majeur le moins abondant dans les eaux après le sodium, le calcium et le magnésium ; il ne prend qu'exceptionnellement le troisième rang des cations. Le potassium se rencontre sous forme de chlorures doubles dans de nombreux minerais tels que la corrollite et la sylvinite. On le trouve également dans les cendres des végétaux sous forme de carbonate. Le potassium est un élément indispensable à la vie et notamment à la croissance des végétaux. L'agriculture, il est

utilisé comme engrais sous forme de sulfate de potassium, de chlorure de potassium, ou encore de nitrate de potassium. La teneur en potassium est presque constante dans les eaux naturelles. Sa concentration dans les points d'eau contrôlés variait entre 4.17 mg/L et 32 mg/L.

3.2.2.2 Les anions

> Les sulfates

Dans les conditions naturelles, les sulfates, forme de soufre dissous la plus répondue dans les eaux, ont essentiellement deux origines : géochimique et atmosphérique (Deliste C.E et al, 1977). L'oxydation des sulfures ainsi que la dégradation de la biomasse dans le sol constituent d'autres sources possibles. De nombreuses activités humaines et naturelles peuvent générer des apports de sulfates dans l'eau souterraine : application d'engrais sulfatés, précipitations chargées en dioxyde de soufre, etc...

Les valeurs des sulfates dans les eaux étudiées sont très variables, elles oscillaient entre 617,32 mg/L et 27mg/L. Les teneurs élevées au niveau des points d'eau semblent être liées à la formation salifère mise en contact avec le réservoir aquifère. Au contact du gypse, l'eau se charge en sulfates de calcium et devient dure et impropre à la consommation, les autres points contrôlés restent dans les normes recommandées.

> Les Bicarbonates

La teneur en bicarbonates dans les eaux souterraines dépend surtout de la présence des minéraux carbonatés dans le sol et l'aquifère, ainsi que la teneur en CO₂ de l'air et du sol dans le bassin d'alimentation (Matthess., G ,1994). Les teneurs en bicarbonates des points étudiés variaient globalement entre un minimum de 27.6 mg/L et un maximum de 346.48 mg/L. Les valeurs élevées sont dues vraisemblablement à la circulation de ces eaux dans le réservoir aquifère de nature calcaro-dolomitique.

> Chlorures

Les chlorures sont des anions inorganiques importants contenus en concentrations variables dans les eaux naturelles, généralement sous forme de sels de sodium (NaCl) et de potassium (KCl). Ils sont souvent utilisés comme un indice de pollution (Abdoulaye Demba N'diaye, 2014). Les chlorures existent dans toutes les eaux à des concentrations

très variables. L'origine peut être naturelle: Percolation à travers des terrains salés ; Infiltration des eaux marines dans les nappes phréatiques et profondes ; Effet de l'activité humaine ; Industries extractives et dérivées (soudières, salines, mines potasse, industries pétrolières...). Les teneurs en chlorures des échantillons d'eau analysés affichaient des valeurs oscillant entre 20.9 mg/L et 489.15 mg/L. Ces valeurs élevées pourraient être dues au contact des eaux avec des dépôts salifères.

Les résultats montrent aussi que les teneurs :

- des nitrates NO₃ oscillent entre 0.001 mg/L et 0.01 mg/L;
- des NH₄⁺ oscillent entre 0.175 mg/L et 0.001 mg/L;
- et des PO_4^{3-} oscillent entre 0.306 mg/L et 0.003 mg/L.

Ces teneurs sont faibles et ne dépassent pas le seuil fixé par l'OMS, pour tous les points d'eau de notre région d'étude.

3.2.3 Etude des rapports caractéristiques

Les résultats des rapports caractéristiques obtenus : rMg^{2+}/rNa^+ ; rCa^{2+}/rNa^+ ; rMg^{2+}/rCa^{2+} , sont inférieur à 1 au niveau de la plupart des points d'eaux analysées, cela traduit une prédominance du Na^+ sur les cations Ca^{2+} et Mg^{2+} et des cations Ca^{2+} sur les cations Mg^{2+} .

Les résultats des rapports caractéristiques obtenus : rSO₄ ²⁻ /r Cl⁻; rSO₄ ²⁻ /rHCO₃ -, rSO₄ ²⁻ /r Cl⁻, r Cl⁻/r HCO₃ - sont supérieur à 1 pour la majorité des points d'eaux, ce qui indique que les sulfates sont plus importants que les chlorures et les bicarbonates. Les teneurs en chlorures dominent les bicarbonates.

3.3 Classification des eaux et facies chimique

L'objectif principal d'une représentation graphique est de permettre une approche rapide des résultats analytiques en vue de caractériser facilement une eau, de suivre son évolution ou de la comparer à d'autres eaux de compositions physico-chimiques voisines ou de proximité géographique. Les deux graphiques, Schoeller-Berkaloff et Piper, sont les représentations des concentrations en ions majeurs les plus courantes.

3.3.1 Formule caractéristique de STABLER

Ce diagramme est très utile pour l'étude des équilibres carbonatés. Il permet de représenter très rapidement l'alcalinité, l'alcalinité résiduelle calcite et les alcalinités

résiduelles généralisées. On classe séparément les anions et les cations par ordre décroissant. La formule caractéristique selon STABLER permet de calculer le pourcentage de chaque ion par rapport à la concentration totale.

La formule est la suivante :
$$r\% = (100/c) * r$$

Avec : r : est la quantité en réaction de l'ion considéré en méq/l ;

c: la concentration totale.

Ces formules caractéristiques permettent de mettre en évidence les faciès chimiques des eaux. L'examen montre l'existence de trois types de famille :

- La famille des eaux chlorurées Elle englobe deux faciès, l'un chloruré calcique et l'autre chloruré magnésien. Elle représente 39 % de l'ensemble des échantillons.
- La famille des eaux sulfatées Elle représente 58% de l'ensemble des échantillons et montre le rôle dominant des sulfates. Cette famille d'eau est aussi à tendance sodique et calcique.
- La famille des eaux bicarbonatées Cette famille est représenté aussi par deux faciès : bicarbonatée sodique et calcique, elle ne représente que de 2 % de la totalité des points d'eaux.

3.3.2 Classification de PIPER

Le diagramme de Piper (Figure.22) permet de représenter le faciès chimique d'un ensemble d'échantillons d'eau. Il est composé de deux triangles permettant de représenter le faciès cationique et le faciès anionique et d'un losange synthétisant le faciès global. La représentation des analyses chimiques sur ce type de diagramme permet d'avoir une approche globale de la composition chimique des eaux souterraines. Ce diagramme montre que les eaux de la zone d'étude présentent trois familles de facies :

- Eaux chlorurées sodiques et potassiques (Na-K-Cl);
- Eaux sulfatées calciques, sodiques (Ca-Na-SO₄) et chlorurées calciques ;
- Eaux bicarbonaté calcique, sodiques et magnésiennes (HCO₃-Ca-Na-Mg).

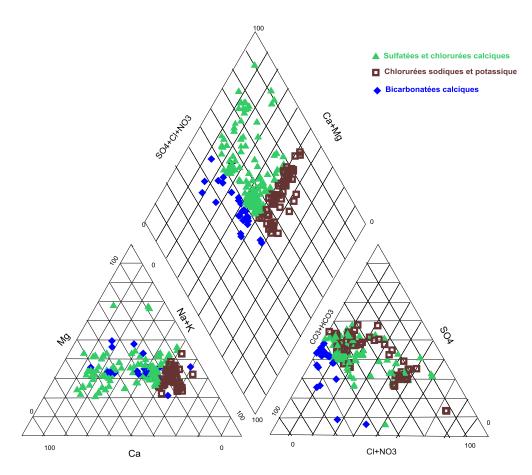


Fig.22: Représentation graphique des eaux sur le diagramme de Piper

3.3.3 Classification de SCHOELLER-BERKALOFF

Le diagramme de Schoeller-Berkaloff est une représentation graphique semilogarithmique : sur les axes des abscisses sont représentés les différents ions. Pour chacun des ions majeurs, la teneur réelle en mg/L est reportée sur l'axe des ordonnées, les points obtenus sont reliés par des segments de droites. L'allure graphique obtenue (Figure.23a et 24b) permet de visualiser le faciès de l'eau minérale concernée. L'analyse du diagramme de Schoeller-Berkaloff nous permet de conclure que les eaux de la nappe présentaient des profils identiques, à l'exception de quelques points d'eau dont la concentration en chlorures, potassium, sodium et calcium est plus remarquable par apport aux bicarbonates. Les points d'eau présentaient des teneurs importantes en chlorures, potassium et sodium. Elles sont dues à l'existence d'une source de sédiments salifères. Le diagramme de Schöeller permet d'obtenir la qualité chimique des eaux en utilisant les concentrations des ions majeurs. Un groupe d'eau de minéralisation variable mais dont les proportions sont les mêmes pour les éléments dissous, donnera une famille de lignes brisées parallèles entre elles. Lorsque les lignes se croisent, un changement de faciès chimique est mis en évidence. La représentation sur ce diagramme a permis d'identifier 03 grandes familles chimiques:

- eaux à facies sulfaté sodique et calcique (Na, Ca, SO4) ;
- eaux à facies chloruré calcique et sodique (Ca, Na, Cl) ;
- eaux à facies bicarbonaté calcique et sodique (Ca, Na, HCO₃).

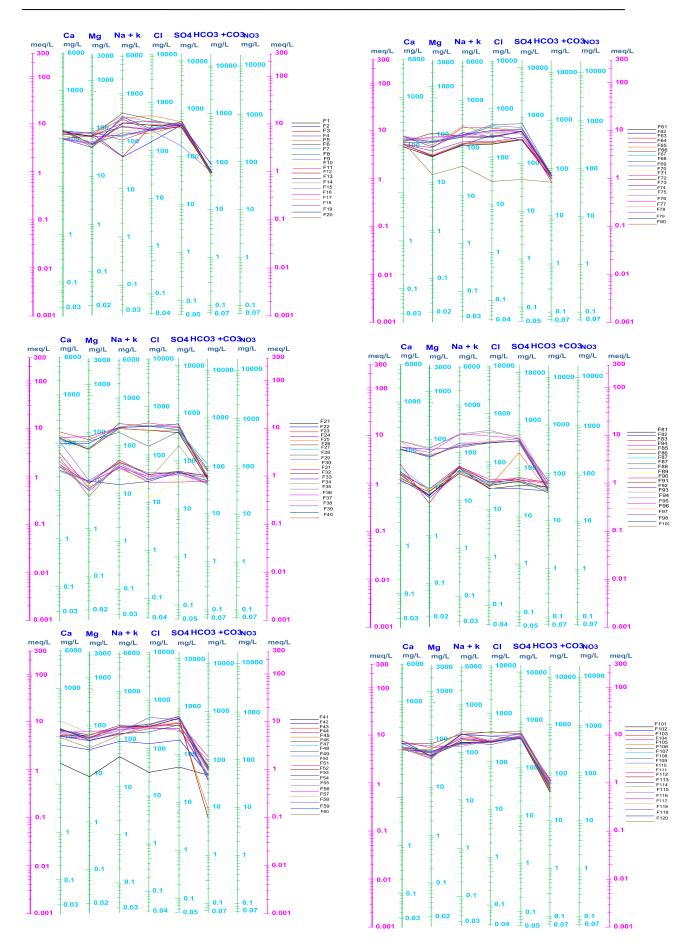


Fig. 23a: Représentation sur le diagramme de Schoeller –Berkalof (forage 1-120)

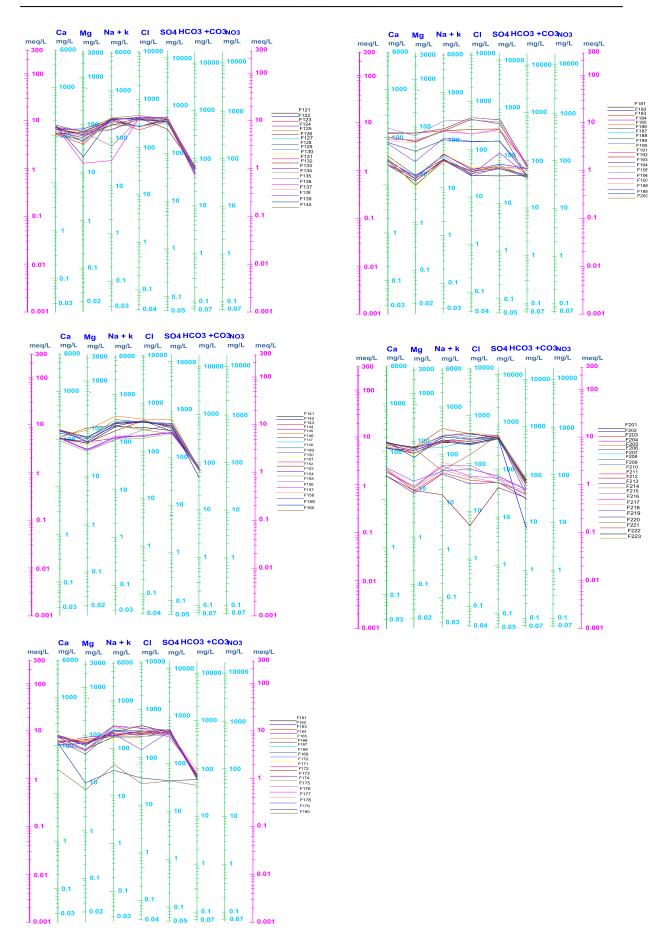


Fig.24b: Représentation sur le diagramme de Schoeller –Berkalof (forage121-223)

3.4. Minéralisation des eaux

3.4.1. Diagrammes binaires

3.4.1.1. Relation chlore - sodium

Les teneurs en chlore et en sodium des eaux thermales sont reportées dans le diagramme (Figure.25). Cette relation entre le Na⁺ et le Cl⁻ indique, pour toutes les eaux thermales, un enrichissement en sodium; ceci est surtout sensible pour les eaux du faciès Na-Cl provenant de la dissolution de la halite.

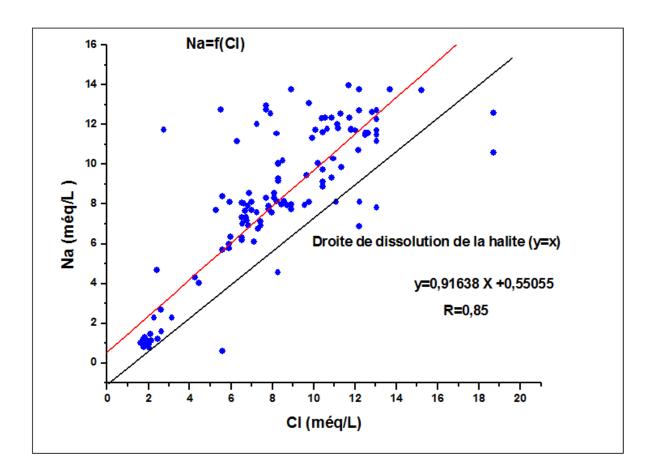


Fig.25: Diagramme binaire Na-Cl

Le report de tous les points d'eau sur le diagramme (Ca/(HCO3+SO4) - (NaCl)) (Figure. 26) montre que 35 % des points d'eau ont subi un échange de base entrainant un excès en Na⁺ et un déficit en Ca²⁺, 45 % des points présentent un déficit en Na⁺ et en Ca²⁺, et seulement 15 % des points présentent un excès en Ca²⁺ par rapport aux ions HCO^{3-} et SO_4^{2-} .

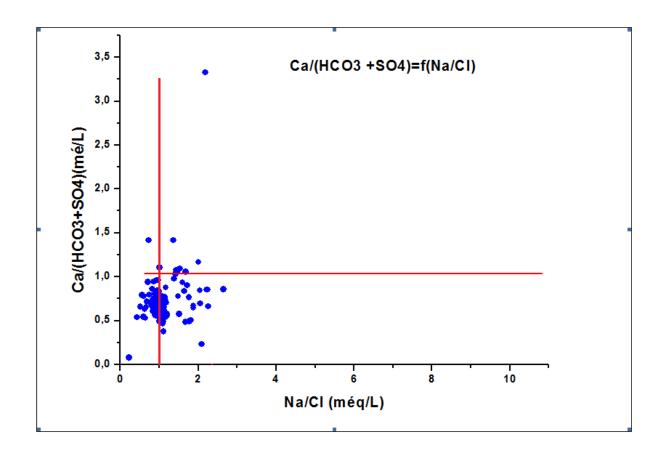


Fig.26: Diagramme binaire *Ca/(HCO3+SO4) - (NaCl)*

3.4.1.2 Relation calcium - sulfate

La dissolution des minéraux des évaporites dans les bassins sédimentaires constitue une source fréquente de salinité dans les eaux thermales étudiées Le gypse (CaSO₄·2H₂O) et la halite (NaCl) font partie des minéraux salifères les plus souvent impliqués dans les cas de salinisation par une réaction eau-roche.

En effet ces analyses ont mis en évidence l'existence des minéraux suivants : anhydrite (CaSO4), halite (NaCl), gypse (CaSO₄.2H₂O) et célestite (SrSO₄). La relation linéaire est mise en évidence (Figure.27) dont l'équation est $y = 0.13771 \, x + 1.74604$ avec un coefficient de corrélation de 0,46.

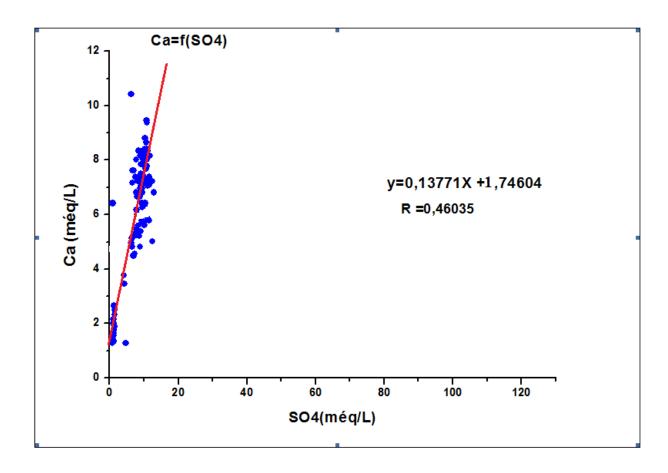


Fig.27: Diagramme binaire Ca-SO₄

La dissolution de la halite se traduit par une augmentation de la concentration en ions chlore (Cl $^{-}$) et sodium (Na $^{+}$), tandis que la dissolution du gypse conduit à une augmentation des ions calcium Ca $^{2+}$ et sulfate SO_4^{2-} . La saturation de ces sels dans la solution contrôle leurs concentrations maximales.

3.4.1.3 Relation calcium - bicarbonates

Les teneurs en Ca²⁺ et HCO₃ (Figure.28) reportées sur le diagramme Ca- HCO₃+SO₄, montrent que les points prélevés s'alignent avec la droite de dissolution du Ca²⁺, elles traduisent l'origine sulfatée des ions du calcium, tandis que, d'autres points gardent une concentration constante en HCO₃⁻.

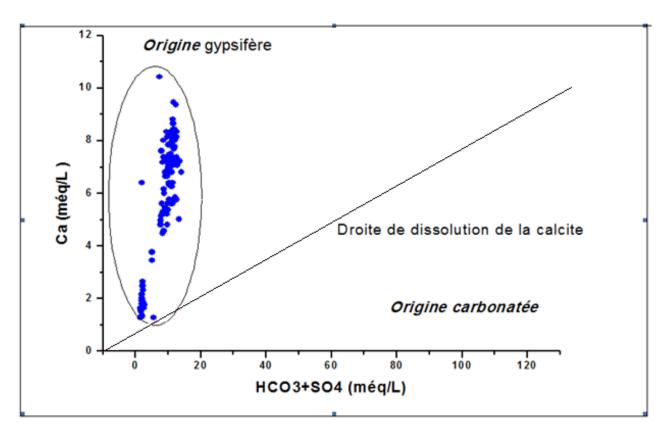


Fig. 28: Diagramme binaire *Ca-HCO*₃+*SO*₄

La figure 29 confirme cette tendance. En effet, pour ces derniers, le Ca²⁺ provient essentiellement de la dissolution des sulfates et n'est pas ou peu lié à la dissolution des carbonates.

La circulation des eaux en profondeur et leur contact avec des terrains argileux ou marneux et évaporitiques, conduit souvent à des échanges aboutissant parfois à un changement total dans le chimisme et de la minéralisation originelle de l'eau acquise dans le réservoir. Quelle que soit la teneur en Ca²⁺, ils montrent un excès du calcium suite à la dissolution du gypse.

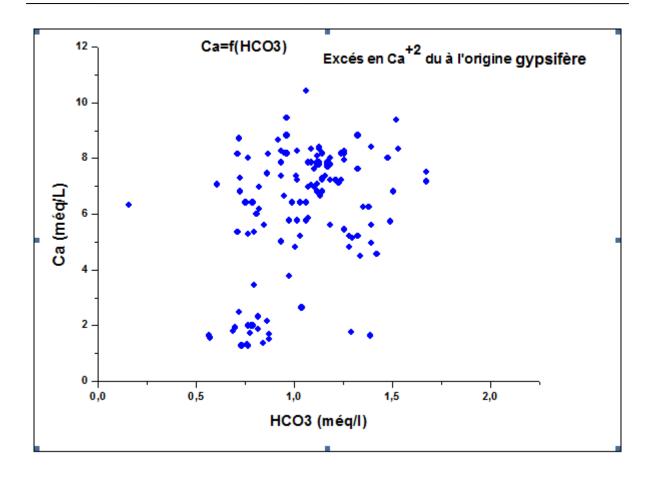


Fig. 29: Diagramme binaire Ca-HCO₃

3.5 Indice de saturation

L'analyse chimique d'une solution donne la concentration totale des éléments en solution, c'est-à-dire, des ions libres et des ions engagés dans les complexes. Les indices de saturation (IS) ainsi calculés pour les phases carbonatées (calcite, dolomite et barite), les polymorphes de la silice (calcédoine, quartz,), les sels, les sulfures ou sulfates (gypse, fluorite, celestite). Ces minéraux présents dans les roches des formations mésozoïques, soulignent l'importance des interactions entre l'eau et les carbonates d'une part et les évaporites d'autre part (Tableau 2). L'état de saturation des solutions a été déterminé grâce au calcul de l'indice de saturation (IS) : I.S < O, la solution est sous-saturée, I.S = O, la solution est à l'équilibre, I.S > O, la solution est sursaturée.

daia Ben Zelfana 1 Zelfana 8 Localité Bouheraoua Bensmara **Berriane** Laroui Guerrara Dahoua :Laameyed fedj Enaam 0,22 0,44 calcite -0,07 -0,120,12 0,23 0,32 0,49 dolomite -0,12-0,180,31 0,72 0,6 0,76 1,01 1,17 -0,8 -0,89 -0,83 -1,24 -1,03 -0,91 -0,97 -1,02 gypse -0.07-0,09 -0.14-0.11-0.1-0.12-0.1-0,07 quartz calcédoine -0,49 -0,5-0,54-0,53 -0,52-0,51-0,49 -0,47-1,49-1,19fluorite -1,09-1,18 -1,17-1,3-1,43-1,15barite 0,07 -0,02 0,1 -0,15 -0,13 -0,07 -0,07 -0,03 -0,93 -1,04 -0,95 -1,14 celestite -1,44-1,18-1,02-1,09

Tableau. 2: Valeurs des Phase carbonatées, polymorphes et sulfures.

En solution dans l'eau, les différents anions et cations ne sont pas seulement présents sous forme d'ions simples, mais également sous forme complexe. Les ions simples sont par exemple (Na⁺, K⁺, H+, Ca²⁺, Mg²⁺, Fe³⁺, Al³⁺, Cl⁻, SO₄²⁻, CO₃²⁻, OH⁻).

Les ions ou espèces aqueuses complexes sont représentés par des combinaisons entre ces différents ions simples. Le sodium, peut ainsi être inclus dans des formes complexes en solution, chargées ou non telles que :

NaCl, NaSO₄, Na₂SO₄, Na₂CO₃, NaCO₃, NaHCO₃, Na(OH), etc.

L'anion sulfate peut être lié à différents cations :

NaSO₄, Na₂SO₄, NaHSO₄, KSO₄, K₂SO₄, 4o, CaSO, MgSO₄, CaSO₄, KHSO₄ etc.

L'aluminium est présent en solution sous forme

Al $^{3+}$, AI $(OH)^{2+}$, Al $(OH)^{2+}$, AI $(OH)^{3+}$, etc.

Le fer est également présent sous les formes complexes du fer ferreux

Fe²⁺, Fe(OH), Fe(OH)₂, et sous les formes complexes du fer ferrique

Lorsqu'un minéral est en équilibre avec une solution, il existe une relation entre les activités des ions qui entrent dans la composition du minéral. L'équation qui établit cette relation est celle de la loi d'action de masse. Pour le gypse par exemple :

$$CaSO_{4}, 2H_{2}O (c) \rightleftarrows Ca^{2+}(aq) + SO_{4} = (aq) + 2H_{2}O \log K = \log \{Ca^{2+}\} + \log (SO_{4}^{2-}) + 2\log \{H_{2}O\} = -4,85 \text{ à } 25^{\circ}C$$

Le degré de saturation, de sous-saturation ou l'état d'équilibre d'une solution vis-à-vis d'un minéral n'est apprécié que si l'on peut comparer le produit de solubilité (Kps) au produit ionique (Q) des ions de référence dans la solution. Ainsi par exemple, pour le gypse :

 $\log Q = \log \{Ca^{2+}\} + \log \{SO_4^{2-}\} + 2 \log \{H_2O\} \text{ Si on a : }$

log Q = log Kps la solution est juste à saturation vis-à-vis du gypse

log Q < log Kps la solution est sous-saturée

log Q > log Kps la solution est sur-saturée.

Les produits de solubilité Kps sont des constantes connues. Les tests de saturation ne peuvent être conduits que si on est en mesure de calculer la distribution des espèces aqueuses complexes et l'activité des ions servant de référence dans une solution donnée.

Les activités des espèces carbonatées en solution sont fixées lorsqu'on connaît le pH et la pression partielle du gaz carbonique équilibrant.

D'autre part la relation d'équilibre entre calcite et solution peut s'écrire :

$$CaCO_3(c) + 2 H^+ \rightleftharpoons Ca^{2+} (aq) + CO_2 (g) + H_2O (liq)$$

Avec:

$$\log \{Ca^{2+}\} + \log fCO_2 - 2 \log \{H^+\} = +9.76 \text{ à } 25 \text{ °C}$$

Ici, la pression partielle du gaz carbonique intervient dans la définition du degré de saturation d'une solution vis-à-vis de la calcite.

Lorsqu'un minéral se trouve au contact d'une solution sous-saturée par rapport à ce minéral, (log Q <1ogKps) il se dissout jusqu'à ce que l'équilibre soit atteint. La composition chimique de la solution change au cours de la dissolution. Mais il faut considérer qu'à l'intérieur de la solution les équilibres entre différentes espèces aqueuses simples ou complexes sont respectés. On considère par exemple la dissolution de la calcite en présence de gaz carbonique, en réserve infinie et à fugacité constante, dans une solution sulfatée sodique. Les espèces aqueuses présentes sont les suivantes :

$$Ca^{2+}$$
, $CaCO_3$, $CaHCO_3^+$, $Ca(OH)^+$, $CaSO_4$, Na^+ , $NaCO_3^-$, $NaSO_4^-$, H_2CO_3 , HCO_3^- , CO_3^{2-} , SO_4^{2-} .

La calcite se dissout tant que l'équilibre n'est pas atteint et que $\log \{Ca^{2^+}\} + \log \{CO_3^{2^-}\} < -8,37$ (25 °C) ou que, ce qui revient au même $\log \{Ca^{2^+}\} + \log FCO_2 + \log \{H_2O\} - 2 \log \{H^+\} < +9,76$.

La dissolution de la calcite s'accompagne d'une augmentation des ions calcium, carbonate et bicarbonate et d'une diminution des ions H^+ dans la solution. La diminution des ions H^+ , autrement dit l'augmentation du pH, occasionne une augmentation relative de l'ion CO_3^{2-} par rapport à l'ion HCO_3^{-} , on obtient de ce fait une variation de distribution des espèces complexes y compris celles qui font intervenir le sulfate et le sodium. On aboutira ainsi à une

diminution de la concentration des ions SO_4^{2-} et Na^+ libres qui ne sont pourtant pas impliqués dans la dissolution de la calcite elle-même.

La dissolution d'un assemblage minéral ou la concentration d'une solution par évaporation aboutit à une augmentation de la quantité des éléments fournis ou présents dans la solution. A partir du moment où la solution en question devient saturée par rapport à un minéral, la précipitation de ce minéral se produit et les éléments qui le constituent sont extraits de la solution. Un compromis s'établit entre l'augmentation de la concentration des éléments due à la dissolution ou l'évaporation et la diminution de la concentration des éléments impliqués dans la précipitation. La concentration de ces éléments en solution peut cesser d'augmenter, diminuer ou augmenter moins rapidement qu'auparavant, au fur et à mesure que la précipitation s'accentue. On maintient toujours l'équilibre entre la solution et le minéral qui précipite et l'équilibre entre les espèces aqueuses présentes dans la solution. Ainsi, par exemple, une solution qui se concentre par évaporation, en étant en contact avec une atmosphère infinie de gaz carbonique à pression partielle constante, peut parvenir à saturation vis-à-vis de la calcite. On a dans ce cas (Droubi, 1976):

$$H_2O + CO_2 + Ca^{2+} + \rightleftharpoons 2H^+CaCO_3$$
 et log $fCO_2 + log \{Ca^{2+}\} + log \{H_2O\} - 2log \{H^+\} = +9.76 à 25 °C$.

Par évaporation le calcium tend à augmenter en solution, mais de la calcite précipite en consommant du calcium et libérant des ions H⁺. L'augmentation du calcium au cours de l'évaporation devient moins prononcée. Il peut se faire également qu'elle diminue. Mais, en tout cas la précipitation de la calcite, entraîne une modification de la composition de la solution.

Les formations détritiques, constituées d'évaporites telles que le gypse, l'anhydrite jalonnent les contacts tectoniques. Le quartz est omniprésent dans les roches. L'examen (Figure.30) montre que dans leur majorité, les eaux prélevées sont sursaturées vis-à-vis des dolomies et calcite. D'autres sont à l'équilibre avec les espèces carbonatées : calcite, dolomite et barite ainsi que le quartz et la calcédoine (valeurs comprises entre -1 et 1). Elles sont sous-saturées vis à vis des principales évaporites : gypse, celestite et fluorite, cet état de sursaturation vis à vis du calcium dans ces eaux traduit la présence de carbonates dans les aquifères.

Le cas du bassin est plus complexe. Dans une première étape, la teneur en calcium augmente plus rapidement. Une dissolution de calcite et dolomite dans les eaux, au nord et au nord est, qui sont sursaturées par rapport à ce minéral, l'excès en Ca²⁺ explique cet

enrichissement. Les teneurs en chlorure, calcium et l'alcalinité carbonatée des eaux de nappe souterraines augmentent depuis le Nord vers le centre du bassin.

Par ailleurs, à facteur de concentration égal, les eaux du centre sont sous-saturées et présentent des teneurs en calcium et une alcalinité carbonatée inférieures à celles du nord est (Zelfana et Guerrra), le cheminement des eaux au travers des horizons pédologiques qui s' approfondissent de plus en plus, la chaleur de ces eaux augmente, de ce fait ,elle conduit à leur enrichissement en gaz carbonique, ce qui accentue la dissolution du carbonate de calcium contenu dans la plupart des sols du bassin. Ceci explique en grande partie les différences de concentrations entre le nord est et le centre du bassin a cause de la différence de température des eaux et de profondeur de la couche réservoir.

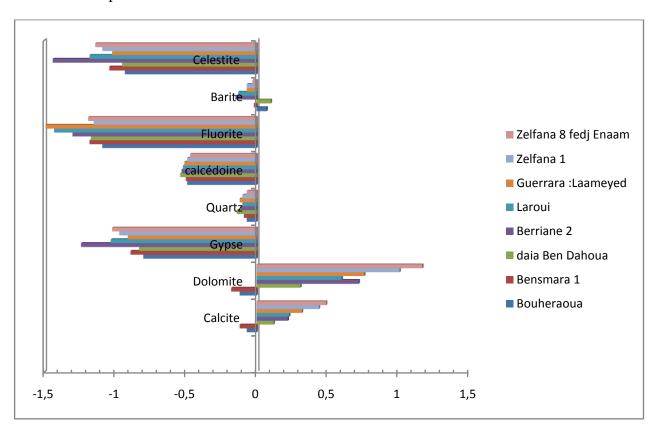


Fig.30: Représentation des indices de saturation des eaux chlorurées sodiques et potassique

La concentration des eaux entraîne la précipitation de la calcite. Alors que le calcium continue de croître mais moins rapidement que les chlorures. La dispersion de l'alcalinité carbonatée et de la teneur en calcium pour des facteurs de concentration assez voisins provient principalement de la variabilité spatiale du Ca²⁺ et accessoirement de l'hétérogénéité lithologique et des échanges avec le complexe argilo- gypseux et anhydrétique.

Conformément au concept d'alcalinité résiduelle appliqué à la précipitation de la calcite, une fois la saturation atteinte, on observe une augmentation des teneurs en calcium et une diminution de l'alcalinité carbonatée du nord vers le centre du bassin, (c'est pourquoi les eaux sont dures à très dures au nord et douces au centre et au sud).

Sur le site étudié, la formation de calcite se fait à partir de solutions sursaturées. Sur le bassin en particulier, la sursaturation augmente lorsque le CO₂ diminue. A l'opposé, l'eau souterraine apparaît localement sous-saturée par rapport à la calcite pour des CO₂ élevées. Les eaux souterraines sont donc localement sursaturées ou sous-saturées par rapport à la calcite. Dans les deux cas, un processus cinétique de précipitation ou de dissolution est probablement mis en jeu. Elles montrent aussi une sous- saturation en gypse et en celestite, et fluorite, surtout au nord et au nord est, dues principalement à l'équilibre atteint avec ces évaporites.

3.6 Les éléments traces

Les résultats des éléments traces SiO₂, Fe, Al, Sr, Ba et Li (Tableau 3), montre que les teneurs des différents éléments sont variables d'une émergence à une autre et sont généralement faibles à élevées. Les métaux les plus employés, se regroupent dans trois familles: Les alcalins et alcano-terreux : Rb, Sr, Li, Ba ; Les métaux de transition : Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, As, Sb ; Les métaux lourds : Zn, Cd, Pb, U.

➤ La silice

La silice est fréquente dans les sources thermales. Sa solubilité augmente avec la température et l'alcalinité de l'eau ; pour cela la teneur en silice dissoute d'une eau chaude à l'émergence peut être considérée comme indicateur de température en profondeur.

L'altération des roches à laquelle est attribuée la mise en solution de Na, K, Ca et Mg, provoque la libération de silice et c'est pourquoi toutes les eaux thermales contiennent de la silice en quantité variables. Les teneurs obtenues varient de 11.77 à 16.26 mg/l (à Beriane et Zelfana, respectivement).

➤ Le strontium

La limite inférieure du dosage du Strontium dans les eaux est de 0.25 mg/l. En dessous de cette limite, on considère que les eaux des sources ont une teneur nulle. Il est considéré comme un indicateur très utile pour la détermination de l'origine de la minéralisation

(Edmunds, W.M, 1980, 1995). Il est associé au réseau cristallin du gypse sous forme de célestite (SrSO4) et aussi dans la structure des minéraux argileux. Il constitue ainsi un bon marqueur de la présence des évaporites (Edmunds, W.M, 1980). L'origine de cet élément est souvent liée aux formations volcaniques et aux formations évaporitiques. Les valeurs oscilles entre 0.11160 à 0.2300 mg/l.

Le rapport Sr/Ca est caractéristique d'une eau evaporitique, s'il est supérieur à 1‰ (Meybeck, 1984), pour notre zone d'étude ce rapport est strictement supérieur à 1‰ confirmant ainsi la mise en solution d'évaporites (gypse et anhydrite).

➤ Le lithium

Le lithium est connu par son caractère d'indicateur de lithofaciès et du degré d'interaction eau-roche (Edmunds, W.M, 1980), il peut aussi renseigner sur le temps de séjour des eaux souterraines. Le rapport Li/Cl varie entre 1,07 * 10⁻⁴ et 9,68 * 10⁻⁴, étant supérieur à celui de l'eau de mer et qui est de l'ordre de 8,9 * 10⁻⁶, ce rapport confirme que le lithium présent dans ces eaux est indépendant des chlorures et que l'interaction des eaux avec la matrice rocheuse est sa source majeure. En effet la présence de cet élément serait liée à une diagenèse des minéraux argileux (Edmunds, W.M, 1980).

Tableau. 3: Valeurs des métaux lourds des eaux de l'Albien, dans la région de Ghardaïa.

Localité	Bouheraoua	Bensmara 1	daia Ben Dahoua	Berriane 2	Laroui	Guerrara :Laameyed	Zelfana 1	Zelfana 8 fedj Enaam
Mn	6	3	3	inf 3	12	8	6	11
F	880	820	870	840	640	640	950	940
Br	416	500	412	342	296	472	635	492
ı	111	99	118	89	57	82	82	86
Li	42	38	38	36	51	60	58	37
В	260	260	240	140	160	160	240	230
Al	5,5	9,4	6,5	infà1,6	infà1,6	1,4	6	infà1,6
Cr	21	34	39,1	55,8	74	46,9	19,2	17,5
СО	0,4	0,4	0,4	0,37	0,37	0,5	0,4	0,4
Ni	13,9	14,8	23,7	12,5	17,9	16,3	11,8	10,3
Cu	Infà5,5	5,6	infà5, 5	infà5,5	infà5, 5	infà5,5	infà5, 5	infà5,5
Zn	52,3	21,8	28,4	74,3	28,7	22,9	50,1	60,6
Ge	infà0,6	infà0,6	infà0,6	infà0,6	infà0,6	infà0,6	infà0,6	infà0,6
Rb	3,9	4,6	3,9	6,4	10,4	10,4	6,1	6,1
Sr	2510	2150	2250	1160	1800	2300	2190	1870
Мо	infà10	inf10	infà10	infà10	infà10	infà10	infà10	infà10
V	6,5	4,4	5,6	3,4	2,9	5,5	25,3	1,5
Cd	infà0,4	0,6	infà0,4	infà0,4	0,4	infà0,4	infà0,4	0,6
Ва	27,1	24,8	31	22,3	20,5	29,7	32,9	30,2
Pb	1,8	2,7	2,7	0,9	1,3	0,7	infà0,2	0,2

Valeurs exprimées en micro gramme /L

3.7 Géothermométrie

Dans le présent travail nous utiliseront les moyens d'estimation des températures en profondeur dits géothermomètres chimiques sur l'ensemble de quelques points de notre zone d'étude dont les paramètres dosées ont fait l'objet de nos recherches et interprétation.

3.7.1 Géothermomètre silice

La silice est l'un des constituants majeurs de l'écorce terrestre; omniprésente dans les roches magmatiques, elle entre également dans la composition d'un certain nombre de roches sédimentaires (argiles, marnes, grès...) (Tableau 4).

Tableau. 4 : Equation appliquées aux Géothermomètre silice

Nomenclature	Géothermomètre	Equation
T(1)	Quartz no steam loss (Fournier, 1977)	$T(^{\circ}C) = \frac{1309}{(5.19 - logX)} - 273.15$
T(2)	Quartz max steam loss (Fournier, 1973)	$T(^{\circ}C) = \frac{1522}{(5.75 - logX)} - 273.15$
T(3)	Quartz (Arnorsson, 1988)	$T(^{\circ}C) = -55.3 + 0.3659X - 5.3654 * 10^{-4}X^{2} + 5.5132$ $* 10^{-7}X^{3} + 74.360 \log X$
T(4)	Calcédoine (Arnorsson, 1983)	$T(^{\circ}C) = \frac{1112}{(4.91 - logX)} - 273.15$
T(5)	Quartz Sq(SiO2) (Fournier, 1973)	$T(^{\circ}C) = 12 * \sqrt{X}$
T(6)	Quartz (Fournier, Potter, 1982)	$T(^{\circ}C) = -42.198 + 0.2831X - 3.6686 * 10^{-4}X^{2} + 3.1665$ $* 10^{-7}X^{3} + 77.034 \log X$
T(7)	Quartz (Verma, 2000)	$T(^{\circ}C) = \frac{(-1117.3)}{(logX - 4.78)} - 273.15$
T(8)	Quartz (Gunnarsson, Arnorsson, 2000)	$log(\frac{10^{-3}X}{60.0843}) = -34.188 + \frac{197.44}{(T+273.15)} - 5.85$ $* 10^{-6} (T+273.15)^{2} + 12.245 * log(T+273.15)$

Apres l'application des six géothermomètres silice sur l'ensemble des points d'eaux de la zone d'étude, les températures calculées sont supérieur à celles mesurées, les résultats obtenus (Tableau 5) été insignifiants. C'est en raison des perturbations particulièrement chimiques qui peuvent avoir lieu dans le circuit hydrothermal (eaux fossiles du Continentale Intercalaire).

Tableau .5: Températures estimées par les géothermomètres silice en °C.

Localité	Bouheraoua	bensmara 1	daya ben dahou	berriane 2	Laroui	Guerrara Laa	Zelfana 1	Zelfana 8 fedj enaam
Na	242	198	229	137	155	232	315	252
K	9	10	8,2	12,5	17,7	19,1	11,5	10,8
Ca	180	163	160	97,2	133	164	163	133
Mg	78	75	70	41	61	69	64	55
SiO ₂	13,05	12,84	12,19	11,77	11,98	15,4	16,26	15,4
T1	-33,98	-33,77	-33,13	-32,7	-32,91	-36,34	-37,19	-36,34
T2	-9,56	-9,55	-9,53	-9,52	-9,52	-9,63	-9,66	-9,63
Т3	82,53	81,79	80,3	79,56	79,56	87,74	89,97	87,74
T4	19,48	18,71	17,18	16,43	16,43	24,97	27,39	24,97
Т5	43,35	42,99	41,91	41,16	41,54	47,1	48,39	47,1
Т6	46,94	46,11	44,39	43,5	43,56	52,97	55,52	52,97
Т7	31,29	30,46	28,82	28	28	37,21	39,81	37,21
Т8	46,94	41,91	24,97	52,97	48,39	16,43	44,39	47,1
T _{mesurée}	34,2	33,4	34,8	34,2	46,2	46,4	46,2	33,6

Na,K,Ca, et SIO₂ en mg/l, T en °C.

Rappelons que les géothermomètres chimiques ne permettent l'estimation de la température du fluide dans un réservoir, que si la concentration de la silice dissoute n'a pas subi de modification.

3.7.2 Géothermomètre Na/K

D.E. White (1970, 1965) puis A.J. Ellis (1970) ont mis empiriquement en évidence la relation entre le rapport Na/K et la température profonde de l'eau. Ils ont mis cette constatation en relation avec l'équilibre : NaAlSi3O8 + K+↔KalSi3O8 + Na+ L'équilibre s'écrit en effet :

$$K(T) = \frac{/Na^+/}{/K^+/}$$

Ce géothermomètre est généralement utilisé pour estimer les températures élevées des eaux qui résident longtemps à de grandes profondeurs. Le rapport Na/K (Tableau 6) dans ces eaux est uniquement gouverné par la vitesse relative de dissolution des feldspaths calcosodique et potassique.

Tableau .6 : Géothermomètres Na/K en °C.

Nomenclature	Géothermomètre	Equation
T(9)	Na-K (A.J.Elis)	$T = \frac{908}{(0.700 + \log \frac{Na}{K})} - 273.15$
T(10)	Na-K (R.O.Fournier)	$T = \frac{1217}{(1.483 + \log \frac{Na}{K})} - 273.15$
T(11)	Na-K (A.H.Trusdell,1976)	$T = \frac{856}{(0.85 + \log\frac{Na}{K})} - 273.15$
T(12)	Na-K (Arnorsson,1983)	$T = \frac{933}{(0.993 + \log\frac{Na}{K})} - 273.15$
T(13)	Na-K (Tonani, 1980)	$T = \frac{883}{(0.78 + \log\frac{Na}{K})} - 273.15$

Na et K sont exprimés en mg/l; T est exprimé en °C.

Apres l'application des quatre géothermomètres Na/K sur l'ensemble, on constate que ces géothermomètres ont donné des températures clairement supérieures à celles calculées par les géothermomètres silice (Tableau 7) où parfois elles dépassent les 100 °C.

Zelfana Zelfana 8 daya ben Guerrara Localité Bouheraoua bensmara 1 berriane 2 Laroui dahou fedj enaam Laa 198 229 232 315 252 Na 242 137 155 K 9 10 8,2 12,5 17,7 19,1 11,5 10,8 Ca 180 163 160 97,2 133 164 163 133 Mg 78 75 70 41 61 69 64 55 T9 1032,99 1033,99 1032,19 1036,49 1041,69 1043,09 1035,49 1034,79 T10 556,48 557,48 555,68 559,98 565,18 566,58 558,28 558,98 742,9 746,4 753 744,7 T11 743,9 742,1 751,6 745,4 T12 678,92 684,12 677,92 677,22 675,42 676,42 674,62 685,52 T13 867,9 868,9 867,1 871,4 876,6 878 870,4 869,7

26,25

-45,8

34,8

-93,54

-156,6

46,2

-81,5

-124,56

34,2

-39,38

-105,44

46,2

-89,7

-160,76

46,4

-42,1

-99,16

33,6

Tableau. 7: Températures estimées par les géothermomètres Na/K en °C.

Les résultats ainsi obtenus, nous conduisent de suggérer deux suppositions:

-3,23

-80,29

33,4

- soit ces températures sont représentatives de celles du réservoir très profond;
- soit ces températures sont sous estimées.

19,06

-60,99

34,2

Les géothermomètres T7 et T8 donnent des températures de valeurs rapprochées. L'écart entre les températures calculées avec les géothermomètres T7 et T8 et celles calculées avec les géothermomètres T9 et T10 est important.

3.7.3 Géothermomètre Na-K-Ca

T14

T14

b = 3/4

b=1/3

T_{mesurée}

Pour remédier à ces difficultés, R.O Fournier et A.H Truesdell (1973), ont proposé le géothermomètre Na-K-Ca, ces derniers ont fait intervenir en plus du sodium et du potassium, l'ion calcium provenant des plagioclases. Ce géothermomètre (Tableau 8) est applicable pour les eaux riches en calcium et dont les températures calculées par le géothermomètre Na/K sont anormalement élevées.

Tableau .8 : Géothermomètres Na-K-Ca en °C.

Nomencl	ature	Géothermomètre	Equation			
T(14	,	Na-K-Ca Fournier et Trusdell,(1973))	$T = \frac{1647}{\log(\frac{Na}{k}) + \beta(\log(\frac{\sqrt{Ca}}{Na}) + 2.06) + 2.47} - 273.15$			
			Na, K, et Ca en mg/l, T en °C.			

On essaye avec $\beta = 4/3$; si la température obtenue est supérieure à 100°C, on reprend le calcul pour $\beta = 1/3$.

De nature empirique, ce géothermomètre corrige effectivement souvent les températures extrêmement élevées trouvées pour les eaux très diluées.

Si avec $\beta = 4/3$, on obtient une température inférieure à 100°C, il est préférable de rejeter la température calculée par le Na/K. Mais l'inverse n'est pas vrai.

L'application des géothermomètres Na-K-Ca sur l'ensemble des points ($\beta = 4/3$) de la zone d'étude; a donné des températures clairement supérieures à celles mesurées (Tableau 7). Alors qu'avec $\beta = 1/3$ les valeurs se rapprochent.

3.8 Hydrologie isotopique

Les techniques isotopiques qui ont été appliquées en Algérie surtout durant les 15 dernières années ont contribué principalement à différencier plusieurs types d'eaux en présence dans les ensembles aquifères sahariens étudiés. Les caractéristiques hydrogéologiques et géochimiques globales des eaux du CI ont été bien établies par plusieurs auteurs.

La vapeur océanique, qui est le cas le plus répandu, donne des eaux de pluies dont l'excès en deutérium est de (+10). Pour le domaine oriental du bassin méditerranéen (+22) et pour les eaux souterraines fossiles (+5) (Edmunds et moulla, 1994).

Les isotopes les plus communément utilisés sont ceux qui font partie de la molécule d'eau à savoir : l'Oxygène-18 (¹⁸O), le Deutérium (²H) et le Tritium ou Hydrogène radioactif (³H), Les autres isotopes sont ceux de la forme dissoute : le Carbone-13 qui est stable (¹³C) et le Carbone-14 (¹⁴C) (Edmunds et moulla, 1994).

Les résultats sont exprimés en différence appelée communément (δ) de rapports isotopiques entre deux substances. Le δE s'exprime en pour mille (∞). Les teneurs en

 δ^{18} Omoy= - 8.4‰ (n=100) et en δ^{2} Hmoy= - 61‰ (n=70), attribue aux eaux de l'Albien un caractère très homogène (Edmunds et moulla, 1994).

La connaissance temporelle des variations de la teneur isotopique des eaux météoriques est nécessaire pour établir l'origine des eaux des formations qui ont pu être mélangées et/ou rechargées. D'autres réservoirs de mêmes dimensions sises en zones arides, montrent le même caractère homogène et appauvri en isotopes lourds. Ceci est directement lié aux conditions sous lesquelles ces nappes ont été rechargées (Edmunds et al, 2003).

Les eaux de l'Albien sont quasiment exemptes de tritium (Edmunds et al, 2003). Leurs activités en ¹⁴C varient entre 0 et 6 pmc dans la partie centrale de Ghardaia (Tableau 9) et entre 50 et 80 pmc au NW de Laghouat en Algérie et 50 pmc sur les monts du Dahar en Tunisie. Ces dernières valeurs élevées correspondent à des zones de recharge (Edmunds et al, 2003). D'un point de vue paléoclimatologique, les eaux de l'Albien seraient liées à la phase humide majeure de recharge du Pléistocène inférieur Entre la dorsale du M'Zab et la vallée de l'Oued Rhir, le temps de résidence calculé le long de cette direction d'écoulement varierait entre 50 et 600 ka (Edmunds et al, 2003).

Tableau .9 : Age estimé des eaux de l'Albien, dans la région de Ghardaïa.

Localité	C14 %	Age des eaux	δ ¹³ C	δ ¹⁸ O	δ ² H	
		(ans)	(per mil)	(per mil)	(per mil)	
El Goléa	32	2990				CONRAD et FONTES, 1972
Berriane	1.3	30883				GONFIANTINI et al, 1974
Guerrara 2	1.7	28547				GONFIANTINI et al, 1974
Melika	2.5	25189				GONFIANTINI et al, 1974
Hassi Fahl	0.9	34084				GONFIANTINI et al, 1974
El Goléa	32.0	2990				GONFIANTINI et al, 1974
Bensmara 1	0.9	34084	-7,84	-8,6	-64	EDMUNDS et al, 2003
Daia Ben	1.6	29075	-7,69	-8,5	-63	EDMUNDS et al, 2003
Dahoua						
Berriane 2	0.5	39202	-8,63	-8,1	-59	EDMUNDS et al, 2003
Hassi Ben	3.7	21775				EDMUNDS et al, 2003
Abdelleh 3						
Zelfana I	1.6	29075	-7,5	-7,9	-60	EDMUNDS et al, 2003
M'RARA MR3	0.5	39202				EDMUNDS et al, 2003
Bouheraoua				-8,3	-68	EDMUNDS et al, 2003
Zelfana 8 fedj					-63	EDMUNDS et al, 2003
enaam						
Laroui				-8,4	-61	EDMUNDS et al, 2003
Guerrara 2				-8,3	-60	EDMUNDS et al, 2003

L'étude des variations climatiques et leurs impacts sur la recharge des nappes sahariennes a révélé que les conditions climatiques anciennes, plus humides, seraient responsables de ces stocks d'eau dans les couches aquifères, étendues et épaisses, des nappes sahariennes. Les âges des eaux de l'Albien sont déterminés par l'activité en ¹⁴C.

Si l'on admet que ces dernières appartiennent bien à la catégorie des « eaux fossiles », l'anomalie des âges s'explique parfaitement :

L'évolution des prélèvements par forages indique un peu partout des tendances de stabilisation au cours des années 50, 60 et 70, puis une brusque accélération au cours des années 80. La répartition spatiale des âges au ¹⁴C révèle qu'aux zones de recharge les eaux sont jeunes, témoignant d'une alimentation actuelle (Edmunds et al, 2003). Les âges évoluent des zones de recharge vers les exutoires où les eaux sont plus anciennes indiquant une convergence vers ces derniers. De l'ordre de 500 ans près des aires d'alimentation possible, ces âges atteignent jusqu'à 40000 ans aux zones d'exutoires situées à 500 km des zones de recharge (Babasy, 2005).

3.9 Conclusion

L'observation générale de l'interaction eau –roche sur l'effet chimique des eaux permet de déterminer les points suivants :

Les valeurs des températures des eaux au niveau des points d'eau varient entre 24.1°C vers le sud et 51°C vers le nord, dont la classification dévoile des eaux d'origine profondes.

Les conductivités des eaux traduisent une minéralité faible plus au sud à très importantes vers le nord de la zone d'étude, ces teneurs importantes au nord affirment une dissociation importante des sels. Ces eaux sont soussaturées vis à vis des principales évaporites : gypse, celestite et fluorite, l'état de sursaturation vis à vis du calcium dans ces eaux traduit la présence de carbonates dans les aquifères. L'étude révèle aussi que le Ca²⁺ provient essentiellement de la dissolution des sulfates et n'est pas ou peu lié à la dissolution des carbonates. Pour les nitrates et les PO₄ -3, l'examen montre que les teneurs sont faibles et ne dépassent pas le seuil fixé par l'OMS.

Les diagrammes de piper et schoeller montrent le fort contraste de la minéralisation et des facies chimiques qui existes entre les eaux de la zone d'étude et dévoilent dans l'ensemble 03 types de familles de facies :

- eaux à facies sulfaté sodique et calcique parfois potassique ;
- eaux à facies chloruré calcique et sodique et sulfatées classiques ;
- eaux à facies bicarbonaté calcique et sodique parfois magnésienne.

L'étude montre aussi que ces eaux confirment ainsi la mise en solution d'évaporites (gypse et anhydrite). Les températures des eaux estimées à partir des géothermomètres peuvent décrire un mélange des eaux profondes, en vue de leurs valeurs élevées.

CHAPITRE 4

ORIGINE ET TRAITEMENT DES ANOMALIES HYDROGEOTHERMALES

4.1 Introduction

Les distributions de la température à l'intérieur de la lithosphère affectent une large variété de propriétés physiques, des processus de densité, propriétés électriques, magnétiques et de nombreuses propriétés sismiques.

Nous rattacherons à ce chapitre l'énergie géothermique qui est souvent considérée comme renouvelable; elle n'est pas dérivée de l'énergie solaire seulement, mais aussi de la chaleur dégagée par la croûte terrestre, grâce aux radioéléments naturels qu'elle contient, aux activités volcaniques récentes, à la proximité d'un batholite ou à la remontée du manteau. Ces anomalies sont à l'origine d'anomalies positives, dans ce cas, le gradient géothermique et le flux de chaleur particulièrement existeront et seront élevés (Takherist, 1994). Il est bien connu que, de l'occurrence d'un système géothermique nécessite une source de chaleur et d'un fluide pour transférer la chaleur.

À ce jour, le plus souvent cités, les profils de température pour la lithosphère, en particulier dans la littérature pétrologique sont ceux publiés par Clark et Ringwood en 1964. La popularité de longue date de Clark et Ringwood est d'autant plus remarquable que leur travaux datent d'avant l'acceptation générale de la tectonique des plaques et l'expansion de la mer à la fin des années 60. La découverte de l'écoulement de chaleur linéaire en 1968, est en relation avec la production de chaleur. En outre, à cette époque il n'y avait que 73 mesures du flux continental pour servir de modèle de contraintes et de fournir des informations sur l'état thermique de la lithosphère continentale; le nombre correspondant à la fin de 1984, à 6 000 observations. Bien que l'état d'équilibre unique de la géothermie océanique de Clark et Ringwood en 1964, a dû être abandonné au profit d'une famille de géothermie transitoire, liée à l'âge de l'océan, et compatible avec le modèle d'expansion du fond de la mer (Sclater et Franch, 1971).

Certains paramètres utilisés par ces auteurs, en particulier, la conductivité thermique à haute température ont été établi par des expériences ultérieures (Schatz et Simmons, 1972). Heureusement, les calculs géothermiques ne sont pas totalement dépendants d'un seul paramètre, et donc par l'intermédiaire d'utilisation de contraintes imposées sur la température élevée par des considérations non pas d'une nature purement thermique, (Clark et Ringwood, 1964).

Les modélisations de la géothermie lithosphérique ont apporté par d'autres au cours de la dernière décennie et sont démontrées par (Blackwell, 1982; Roy et al. 1972; et Lachenbruch Sass, 1977; Pollack et Chapman, 1977; Roy et al, 1981; Rybach et Cermak, 1982). D'une importance particulière, et de compilation de propriétés thermophysiques et géothermiques considérables. Ces informations géologiques vont être corrélées avec les données thermiques, afin de comprendre comment s'installent les anomalies thermiques positives et négatives ainsi que leur comportement spatial.

Les ressources de vapeur à haute température et haute pression sont essentiellement exploitées pour produire de l'électricité. Une vingtaine de pays (USA, Philippines, Mexique, Italie, Nouvelle- Zélande, Indonésie, Japon, Islande, etc.) totalisent une puissance installée plus de 8 000 mW électriques (Vuataz, 2005). En revanche, les ressources à moyenne ou basse température servent pour des usages directs, en majorité le chauffage de bâtiments et de serres, mais aussi la pisciculture et les usages associés au thermalisme et à l'industrie.

Près de 60 pays (USA, Chine, Islande, Turquie, Suisse, Allemagne, Canada, Suède, France, Hongrie, Japon, Italie, Nouvelle-Zélande, etc.) totalisent une puissance installée plus de 16 000 mW (Vuataz, 2005). Le gradient géothermique varie de quelques degrés à quelques dizaines de degrés par 100 m. Il n'en reste pas moins que cette énergie n'est mobilisable que grâce à des structures géologiques favorables, ce qui explique le bilan modeste de son utilisation : 5000 mW dans le monde pour produire de l'électricité et autant pour le chauffage des bâtiments. On doit en effet distinguer entre la géothermie de haute énergie, généralement utilisée pour la production électrique et la géothermie de basse et moyenne énergie dans laquelle on utilise directement la chaleur sans autre transformation.

4.2 Thermicité de la plate –forme saharienne

D'importants flux de chaleur ont été mis en évidence, dans le sud algérien, par des études sur les anomalies de chaleurs régionales, sur leur évolution au cours du temps (Makhous et Galushkin, 2003). Les flux de chaleur mesurés dans les forages de la plate-forme saharienne, en Algérie, témoignent d'un régime de chaleur élevé de la lithosphère (Lesquer et al, 1988, 1990).

Au niveau de la plateforme nord-occidentale, dans le Hoggar, des flux de chaleur caractéristiques dépassant 80 mW/m⁻² (Lesquer et al, 1988, 1990). Cependant, les flux

peuvent atteindre 100 à 120 mW/m⁻² dans la plate-forme méridionale à proximité et au niveau du bouclier du Hoggar (Lesquer et al 1988, 1990).

Cette anomalie de chaleur s'oriente perpendiculairement à l'ancienne suture panafricaine. Elle est interprétée comme le résultat d'un rajeunissement thermique du socle associé au magmatisme cénozoïque, et qui s'accompagne également pendant la même période d'une surrection du massif en régime transpressif pouvant être liée à un grand décrochement dextre nord-sud qui recoupe la plate-forme (Takherist et Lesquer, 1989 ; Lesquer et al, 1990 ; Lucazeau et al, 1990).

Les modèles proposés par Makhous et Galushkin (2003) permettent de reconstituer l'histoire thermique des parties septentrionale et orientale de la plate-forme saharienne, en Algérie.

Entre le Cambrien et le Dévonien, les flux de chaleur en surface devaient atteindre 85 mW/m⁻² ce qui correspond à une épaisseur lithosphérique de l'ordre de 30 km (Takherist, 1990).

La lithosphère devait être plus épaisse et atteint 50 à 70 km vers le sud. L'évolution du flux de chaleur au cours du temps n'était vraisemblablement pas liée à un simple refroidissement de la lithosphère, mais à des réactivations tectoniques jusqu'à la fin du Silurien (Takherist, 1990).

Du Dévonien au Permien, l'extension lithosphérique se réduit fortement. Une influence de chaleur croissante est liée à l'importante dénudation crustale par érosion au cours de cette période.

Une épaisseur lithosphérique d'environ 35 km au début du Permien existait dans le bassin d'Illizi et pouvant atteindre une soixantaine de kilomètres à la fin du Permien (Makhous et Galushkin, 2003). Pendant le Trias des circulations hydrothermales auraient contribué de manière importante à un refroidissement conduisant à un épaississement de la lithosphère jusqu'à 100 km à la fin du Crétacé (Takherist, 1990).

4.3 La géothermie

4.3.1 Principe de la géothermie

Le principe consiste à extraire l'énergie géothermique contenue dans le sol pour l'utiliser sous forme de chauffage ou pour la transformer en électricité. Le réservoir est un système fermé avec réduction de l'alimentation naturelle. L'observation des réservoirs utilisés

pour produire de l'énergie montre que la pression et la température diminuent continuellement avec le temps, surtout dans les systèmes qui sont fermées ou avec de petites nappes. Le potentiel de production est, par conséquent, souvent limitée par le manque d'eau plutôt que d'un manque d'énergie thermique (Barelli A et all, 2010).

Il existe un flux de chaleur naturel à la surface du globe, mais il est si faible qu'il ne peut être directement capté. En réalité on exploite la chaleur accumulée, stockée dans certaines parties du sous sol (nappes d'eau). On distingue trois types de géothermie:

- la géothermie privilégiée avec des sources hydrothermales très chaudes, ou forage très profond. C'est la seule forme d'énergie géothermique qui permet de produire de l'électricité à partir de 150 °C, soit directement à partir de gisements de vapeur ou d'eau chaude, ou après injection d'eau en profondeur et récupération de chaleur ;
- la géothermie de basse énergie, cas de la région d'étude de Ghardaïa, géothermie des nappes profondes (entre quelque centaines et plusieurs milliers de mètre), les températures sont situées entre 30 et 100 °C. Principale utilisation : les réseaux de chauffage urbaine;
- la géothermie de très basse énergie : géothermie de faible profondeur, les températures sont comprises entre 10 et 30°C. Elle est utilisée principalement pour les chauffages et la climatisation.

4.3.2 Anomalie géothermique en Algérie

4.3.2.1 Anomalie géothermique au Nord algérien

La carte (Figure 31) du gradient géothermique établie par N. KaziTani, (1974); A. Issaâdi et F.Z Haouchine, (1994) à l'aide des diagraphies thermométriques continues et des relevés de températures donne une approche globale du gradient géothermique de l'Algérie du Nord.

- à l'Est, un gradient qui évolue entre 2,68 °C/100 m et 4,22 °C/100 m;
- au centre, au droit de la zone bibanique un gradient supérieur à 5 °C/100 m;
- à l'Ouest, le manque de données n'a pas permis à ces deux auteurs d'apporter les précisions souhaitées.

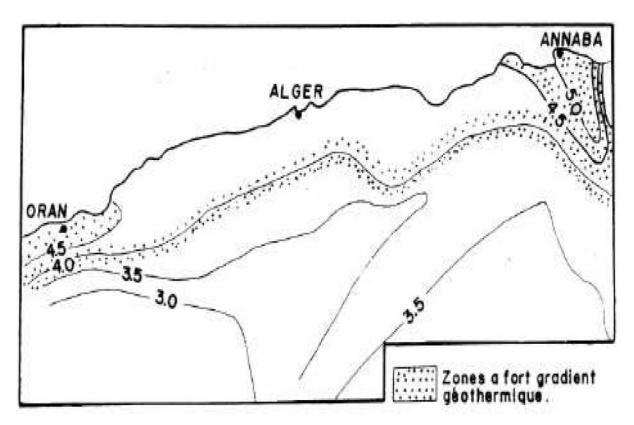


Fig.31 : Carte du gradient géothermique du Nord de l'Algérie (Kazi Tani, 1986).

4.3.2.2 Anomalie géothermique au Sud algérien

La détermination du flux de chaleur montre que l'ensemble de la plateforme saharienne est caractérisé par un flux géothermique relativement élevé de 82 mW.m-² (Takherist, 1990). Les valeurs maximales entre 90 à 130 mW.m-², sont observées au sud dans les régions d'Illizi, d'In Salah et de Tindouf, elles définissent un axe d'anomalie globalement E-W qui semble marquer l'ensemble du Nord-ouest de l'Afrique.

D'après Takherist (1990), les principaux domaines gravimétriques des bassins sahariens sur la base de la géométrie et de l'amplitude des anomalies de Bouguer sont six domaines:

Domaine de Reggane-Azzel Matti ; Domaine de Timimoun-Ahnet ; Domaine de Rharbi-Berriane ; Domaine médian du Mouydir-Oued Mya (dont notre région d'étude fait partie); Domaine du Nord-Est Saharien ; Domaine oriental d'Illizi.

Le domaine Mouydir- Oued Mya qui apparaît comme une structure majeure au centre de l'Algérie est constitué par un ensemble d'anomalies positives et négatives étroites et linéaires qui, par endroits, semblent être affectées par des directions transverses NE-SW. Entre les latitudes 26° et 29°N, on note l'apparition d'un sillon négatif bordé par deux chapelets d'anomalies positives (Takherist, 1990).

Ces anomalies sont dans le prolongement de celles qui caractérisent au sud la partie centrale de la chaîne pharusienne.

La limite occidentale de ce domaine correspond à la faille d'Idjerane qui pourrait ainsi se continuer jusqu'à El Goléa au sud de Ghardaïa. Quant à la limite orientale, elle coïncide par endroit seulement avec des failles de moindre importance.

Le chapelet d'anomalies positives occidentales peut être associé à la dorsale d'Idjerane. Le chapelet oriental se situe quant à lui dans l'axe central des dépressions du Mouydir au sud et de l'Oued Mya au nord (Figure.32).

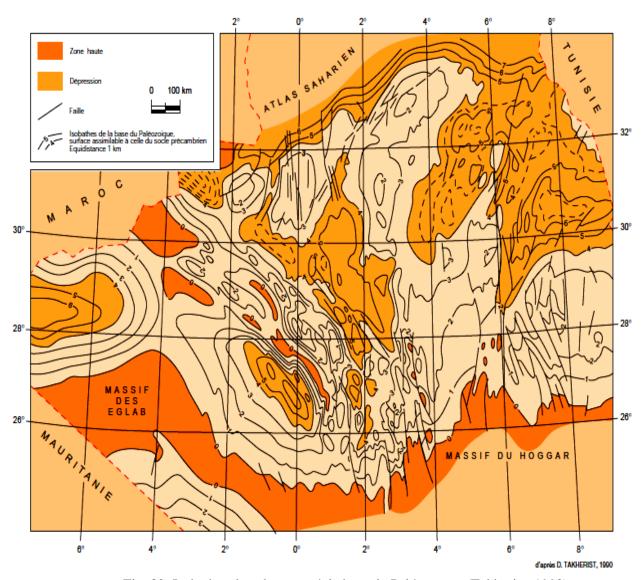


Fig. 32: Isobathes du substratum à la base du Paléozoïque (Takherist, 1990)

Au Crétacé supérieur un basculement du bassin vers le sud-est et une remarquable inversion de la subsidence qui affecte les zones peu subsidentes (môle d'El Biod) (Takherist, 1990).

L'étude gravimétrique (Figure.33) montre que toute la région est caractérisée par un écart à l'isostasie maximal, dans la partie sud du domaine de 50 à 60 mgals. Cet écart à l'isostasie peut témoigner, en l'absence de soulèvement topographique actuel, de l'existence d'une anomalie négative de grande longueur d'onde d'origine profonde (Takherist, 1990).

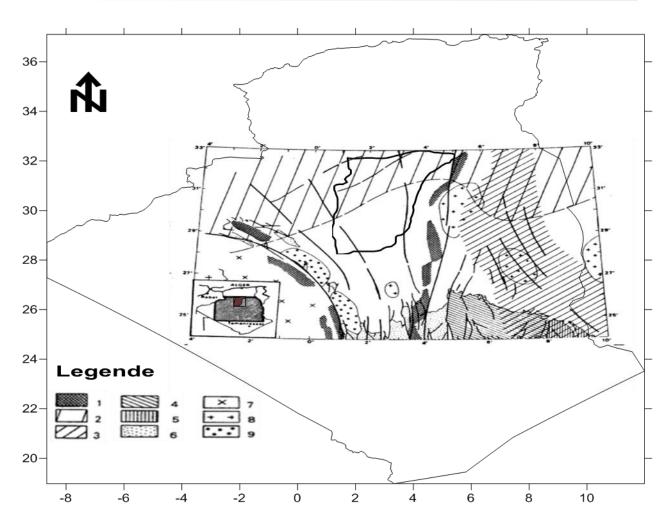


Fig.33: Schémas interprétatif illustrant les structures majeures de la Plateforme Saharienne d'apres la gravimétrie 1 : zone de suture ; 2 : zone remobilisée par la tectonique hercynienne ; 3 : zone affectée par la distension au Crétacé inferieur ; 4 : Hoggar Central ; 5 : Hoggar Oriental ; 6 : Pharusien ; 7 : Craton Ouestafricain ; 8 : granites ; 9 : molasses précambriennes ; Takherist, 1990, modifiée.

Par ailleurs, l'étude des ondes de surface (Hadiouche et Jobert, 1989), indique l'existence d'une anomalie de vitesses dans le manteau supérieur caractérisant l'ensemble de la plateforme saharienne. L'analyse des xénolites de péridotites du volcanisme récent d'Illizi montre la présence d'un manteau supérieur fortement métasomatisé et allégé, associée à l'anomalie thermique.

Selon les travaux géophysiques (Lesquer et al 1988, 1989), il semblerait cependant que ce bombement ne soit pas associé à un gradient géothermique anormal comme le suggèrent les mesures du flux thermique actuel, alors, qu'il était plus important dans le passé, et qu'il serait à l'origine de l'intumescence thermique de cette région.

La corrélation entre les résultats de ces trois études, montre que, toute la zone est caractérisée par la présence d'un manteau supérieur anormal. La zone de suture est également

définie par un chapelet d'anomalies gravimétriques positives associées aux massifs basiques qui la jalonnent (Bayer et Lesquer, 1978).

4.4 Relation des conductivités thermiques avec les flux de chaleur

Le coefficient (λ) représente la " conductivité thermique" ou, par raccourci, "conductivité". La conductivité thermique (λ) mesure l'aptitude des roches au transfert de chaleur par conduction. (λ) s'exprime en W.m⁻¹K⁻¹ou W.m⁻¹°C⁻¹ (Fourier, 1822).

Dans de nombreux cas, (λ) peut être considéré comme constant (pour un milieu donné) dans un large intervalle de température (Figure.34).

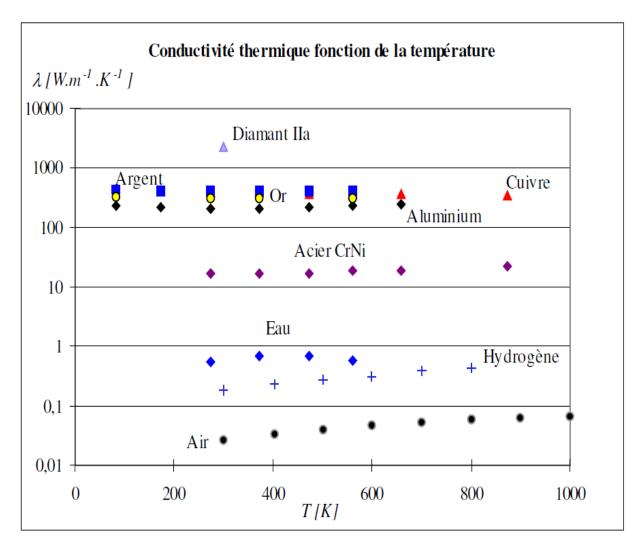


Fig.34: Quelques valeurs de la conductivité thermique (λ) en fonction de la température, Fourier, J. (1822)

Elle influe directement sur la configuration des isochaleurs. Leur évaluation peut être réalisée par deux approches différentes.

- Mesure directe par la méthode de l'aiguille chauffante en laboratoire pour quelques échantillons.
- Estimation à partir de la composition minéralogique, en tenant compte de la porosité.

Les métaux sont les matériaux ayant la plus forte conductivité thermique. La conductivité thermique et la conductivité électrique sont très liées. La conductivité thermique (λ) résulte de 2 mécanismes : le mouvement des électrons et les interactions dans le réseau cristallin (λp) . Le premier terme noté (le)est relié à la conductivité électrique: $\lambda = \lambda e + \lambda p$ Dans les métaux (conducteurs électriques) le terme (λe) est prépondérant à température supérieure à l'ambiance, (λ) est lié à (λe) par la loi de Wiedemann Franz :

 $\lambda e = L_0 \sigma_e T$; L_0 désignant le nombre de Lorentz $L0 = 2,45 \ 10^{-8} \ \text{W}\Omega^{-1} \ \text{K}^{-2}$ et $\lambda \approx \lambda e$.

La conductivité dépend de la température et pour l'essentiel des métaux, c'est une fonction décroissante. En première approximation, on écrit que : $\lambda = \lambda_0 (1 + \beta T)$ Dans le cas fréquent d'alliages, l'addition d'un élément modifie notablement le réseau cristallin et donc la conductivité. Ainsi, seulement 0,4 % d'arsenic dans le cuivre fait baisser la valeur de (λ) de 40 %.

Pour les non métaux, le terme prépondérant est (λp) , les matériaux les plus conducteurs sont donc ceux qui sont les plus cristallisés (ainsi une vitro-céramique est un verre pourvu d'une structure cristalline ; sa conductivité est plus élevée que celle du verre amorphe). On notera à ce propos la conductivité du diamant : 2300 W.m⁻¹K⁻¹ à 300 K. La porosité fait diminuer la conductivité (milieu poreux équivalent). Pour les composés organiques, la présence d'halogène fait baisser (λ).

Pour les liquides, la conductivité est nettement plus faible que pour les solides (à l'exception du mercure qui est métallique). Ainsi, à la température de solidification le rapport des conductivités solides sur liquide est de l'ordre de 1,3. L'eau a une conductivité voisine de 1 W.m⁻¹K⁻¹.

Pour les gaz, la conductivité est très faible (à même température et basse pression, 10 à 100 fois plus faible que celle du liquide). Ce sont donc de très bons isolants (le vide étant l'isolant absolu). C'est pourquoi beaucoup d'isolants sont constitués de gaz enfermé dans des alvéoles. C'est le cas des mousses isolantes (polyuréthanne, polystyrène expansé). Il faut que

les alvéoles ou compartiments soient de faible dimension, sinon il se crée des mouvements de convection qui "conduisent" la chaleur.

Dans beaucoup d'applications courantes, on considère λ , ρ , c indépendants de la température (au besoin en adoptant une valeur moyenne), si bien que (λ) sort du signe divergence. Alors, les caractéristiques du milieu - conductivité, masse volumique et chaleur massique n'interviennent que par le groupement $\lambda/\rho c = a$, dénommé **diffusivité**, qui s'exprime en m²s⁻¹. La figure 35, présente les valeurs de la diffusivité pour quelques corps : La diffusivité $a = \lambda/\rho c$ est de l'ordre de : 10^{-5} m²s⁻¹ pour les gaz, 10^{-7} m²s⁻¹ pour les liquides, 10^{-5} m²s⁻¹ pour les solides (Fourier, 1822).

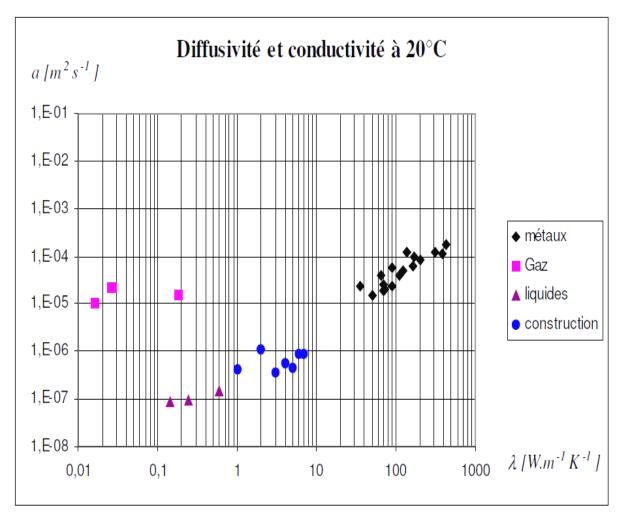


Fig.35: Valeurs de la conductivité en [Wm⁻¹K⁻¹] et de la diffusivité en [m²s⁻¹] pour des classes de matériaux, Fourier, J. (1822)

Contrairement à la conductivité, les valeurs de la diffusivité sont relativement proches ; en particulier quand on compare les gaz et les métaux. Ceci est du au fait que de fortes valeurs de (λ) s'accompagnent de fortes valeurs de (ρ) et inversement.

La conductivité à température ambiante pour les Métaux solides est de 10 à 400 W.m⁻¹K⁻¹; pour les solides non métalliques est de 1 à 10 W.m⁻¹K⁻¹; pour les liquides est de 0,1 à 1 W.m⁻¹K⁻¹; pour les Gaz est de 0,01 à 0,03 W.m⁻¹K⁻¹ et pour les isolants est de 0,01 à 0,05 W.m⁻¹K⁻¹.

La conductivité thermique des roches de la croûte inférieure est limitée à une gamme étroite par les valeurs moyennes données par Cermak & Rybach en 1982, pour les diorites de 2,91W m ⁻¹ K⁻¹, pour les granodiorites de 2,65W m ⁻¹ K⁻¹, pour le gabbro de 2,63 W m ⁻¹ K⁻¹, pour l'amphibolite de 2,46 W m ⁻¹ K⁻¹ et pour les gneiss de 2,44 W m ⁻¹ K⁻¹. La conductivité d'une roche est fonction de la conductivité de la matrice solide et celle du fluide qu'elle contient, les valeurs, dans la zone de Ghardaïa, oscillent entre 2,4 et 3,65 Wm⁻¹°C⁻¹.

La carte des conductivités thermiques moyennes (Figure.36) des roches, montre que la répartition des roches, contenant des matériaux conductrices de chaleur, caractérise surtout la partie sud de la région d'étude. Par comparaison avec la carte géologique (chapitre 2), qui illustre la répartition des formations géologiques dans la zone d'étude. On distingue :

Dans la partie orientale de la zone d'étude (El Mansoura) et plus au Nord Est (vers Touggourt), les valeurs des conductivités thermiques sont supérieures à 3,60 Wm⁻¹°C⁻¹, sont en relation avec la répartition des matériaux conducteurs de chaleur, par leurs épaisseurs et caractéristiques thermiques. Ces derniers témoignant des valeurs des flux de chaleur élevées, peuvent être attribué aux matériaux du grand erg occidental et oriental, qui comporte des matériaux salins déposés au dessus des assises carbonatées et marneuses du Crétacé supérieur qui s'épaississent et s'approfondissent progressivement vers l'Est, et remontent et s'amincissent vers le sud de la région de Ghardaïa.

Le reste de la région d'étude se caractérise par des valeurs faibles à moyennes, elles oscillent entre 2,4 et 2,95 Wm⁻¹°C⁻¹, peuvent être en relation avec les matériaux de faibles conductances de chaleur des calcaires du Turonien, déposés sur les formations du Cénomanien, qui affleurent sur toute la partie centrale de la région d'étude.

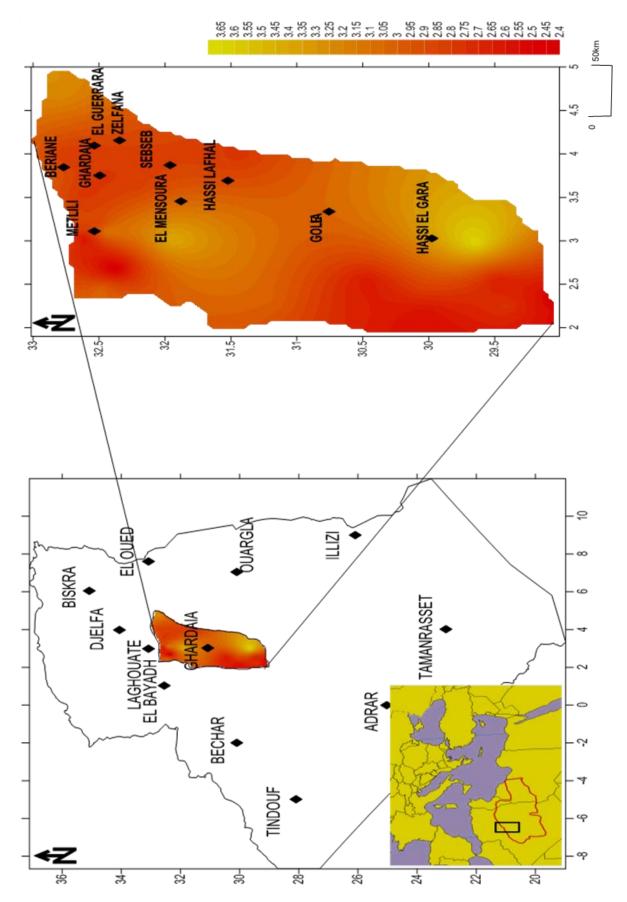


Fig.36: Variations des conductivités thermiques moyennes des roches (λ) en (Wm⁻¹°C⁻¹)

4.5 Rôle de la radioactivité avec les flux de chaleur

Les radio-éléments (U, Th, et K) présents dans les couches externes de la Terre constituent une source de chaleur qu'ils produisent à la suite de leur désintégration. Ces radio-éléments sont surtout concentrés dans la croûte supérieure.

Le flux de chaleur est d'autant plus élevé que la lithosphère est jeune et que la croûte est amincie et enrichie en radio-éléments. Vitorello et Pollack (1980), proposent de distinguer trois composantes du flux de chaleur de surface:

- une composante d'origine crustale, associée à la production de chaleur à partir de la désintégration des radio-éléments;
- une composante transitoire en liaison avec les événements tectoniques récents; la constante de temps serait de 300 Ma (Sclater et al, 1980).
- une composante mantellique d'origine profonde, associée à la radioactivité dans le manteau inférieur et au noyau. Une bonne connaissance de la distribution des concentrations en radio-éléments (U, Th, et K) dont la variabilité latérale est importante permet d'accéder à la composante d'origine profonde.

Richardson, en 1975, évoque quant à lui l'existence d'un aspect transitoire lié à l'érosion superficielle et à la mobilité des radio-éléments, particulièrement l'uranium.

4.5.1 Radioactivité en Algérie

Un programme national pour l'environnement a été réalisé par le centre de radioprotection et de sureté (CRS), au cours de l'année 1993, afin de déterminer le contenu des radionucléides naturels et artificiels dans les (15 cm) de la couche supérieure du sol, sur tout le territoire Algérien.

L'objectif principal était d'établir un niveau de référence radioactive dans l'ensemble du territoire. Les éléments ¹³¹I, ¹³⁴Cs et ¹³⁷Cs ont été détectés dans la plupart des échantillons analysés. Des échantillons de sol ont été analysés par comptage direct par la spectrométrie gamma (Tableau10).

Tableau.10: Echantillons analysés dans les concentrations de radioactivité, CRS (1993).

localisation	²²⁴ Ra	²¹⁴ Pb	²¹⁴ Bi	²²⁸ Ac	²¹² Pb	$^{40}{ m K}$	¹³⁷ Cs
Adrar	19-129	6 et 34	10 et 22	7 et 19	2-et 10	74-438	/
Chlef	29-56	26-35	18-26	16-32	17-31	83-541	6-7
Laghouat	6 et 60	5 et 37	2 et 20	2 et 30	3-et 30	35-712	3-25
Oum el bouaghi	53-60	23-35	22-27	21-45	20-25	193-273	1-3
Batna	39-45	29-30	18-18	19-21	18-19	334-348	13-26
Bejaia	42-63	33-37	22-31	17-33	19-37	222-328	1-27
Biskra	5 et 80	9et 30	6 et 23	5 et 23	3-et 22	68-293	0,1-24
Bechar	5 et 84	2 et 48	9 et 31	23-60	8-et 52	53-903	0,6-6
Blida	57-73	39-52	13-32	nov-47	12-et 38	189-626	0,2-7
Bouira	39-64	28-34	16-22	16-30	14-28	263-314	5-16
Tamenrasset	8 et70	30-107	17-65	23-144	11-et 69	397-965	0,1-15
Tebessa	39-63	19-28	19-26	21-27	8-et 38	261-324	8-11
Telemcene	20-109	8 et 31	5et 29	21-43	7-et 60	262-643	11-24
Tiaret	20-109	19-35	12 et 55	14-61	16-32	303-1150	5-19
Tiziouzou	52-107	43-52	24-32	37-50	41-et 69	234-579	7-41
Alger	11 et 35	24-35	14-24	13-29	2- et 24	198-422	2-7
Djelfa	17-61	17-44	8 et 18	10 et 33	7-et 32	215-506	0,2-15
Jijel	44-93	34-55	20-31	19-25	24-30	221-356	1,9
Setif	35-112	13-39	18-35	19-33	22-38	175-358	5-12
Saida	27-28	9 et 14	8et 25	9 et 20	5-et17	245-257	3-16
Skikda	58-124	32-82	26-53	5-et 57	23-54	564-833	9-12
Sidi Bel abbes	42-47	22-23	20-24	28-31	6- et 31	528-608	0,5-1
Annaba	76-82	41-42	24-26	42-48	35-43	435-437	10-16
Guelma	28-55	20-24	15-25	12 et 47	19-59	191-363	0,3-2
Constantine	27-52	18-31	17-24	20-23	12 et-34	174-536	4-34
Media	67-84	36-81	22-55	26-46	29-39	331-710	5-11
Mostaghanem	31	13	11	12	14	219	10
Msila	11 et 78	13-56	6 et 34	6 et 46	7-et 44	91-316	1-36
Mscara	12 et 52	10 et 23	9 et 23	10 et 26	3- et 37	199-514	0,5- 36
Ouargla	23-51	4 et 30	4 et 26	7 et 84	2-et 97	181-482	0,4-12
Oran	36-55	10 et19	9 et 20	26-28	24-29	467-482	5-9
El Bayedh	nov-36	oct-29	5 et 21	5 et 22	5-et 22	97-290	2-13
Illizi	17-176	17-107	7 et 64	11 et 88	13-97	82-777	0,3-13
Bourjbouareridj	46-49	27-27	17-19	13-16	11- et 14	132-150	5-9
Boumerdes	30-62	13-36	9 et 22	7-et 39	16-55	156-509	0,6-24
El Taref	37-48	26-28	18-19	17-23	13-19	118-150	10-11
Tindouf	27	19	11	12	15	378	/
Tissemsilt	48	24	16	28	30	453	8
El oued	18-42	05 et 10	5et 11	5 et 13	7-et 15	93-392	4-16
Khenchela	44-57	27-35	23-24	23	4 et 36	235-303	2-6
Souk ahrasse	36-127	15-47	16-43	19-50	33-46	234-1405	1-10

Valeur exprimées en Bq Kg ⁻¹ masse sèche

❖ Suite to	ableau 10						
localisation	²²⁴ Ra	²¹⁴ Pb	²¹⁴ Bi	²²⁸ Ac	²¹² Pb	$^{40}\mathrm{K}$	¹³⁷ Cs
Tipaza	20-56	5 et 36	7 et 34	6 et 31	14-31	67-422	2-6
Mila	/	/	/	/	/	/	/
Ain Defla	76-107	50-52	29-41	43-48	46-47	609	13-15
Naama	18-55	8 et 49	8 et29	8et 36	3-et 23	148-689	0,5-14
Temouchent	25-37	10 et-14	10 et 12	21-24	6 et 33	301-412	4-16
Ghardaia	8et 74	12et 57	8 et 34	7 et 25	5et 24	93-376	6-43
Relizane	45-51	21-27	22-23	22-29	21-25	469-585	1-15

Valeur exprimées en Bq Kg ⁻¹ masse sèche

Les radionucléides émetteurs gamma résultant de la désintégration radioactive de ²³⁸ U et ²³² Th ,⁴⁰K et ¹³⁷Cs ont été détectés dans la plupart des échantillons analysés.

Les concentrations de radioactivité sont représentées en (Bq kg -1 de masse sèche), les concentrations des échantillons de sol, dans la région de Ghardaïa, des ²²⁴Ra varient de 8 à 74, des ²¹⁴Pb de 12 à 57, des ²¹⁴Bi de 8 à 34, des ²¹²Pb de 7 à 25, des ²²⁸Ac de 5 à 24, des ⁴⁰K de 93 à 376 et des ¹³⁷Cs de 6 à 43. Ces valeurs radioactives élevées, dans la zone d'étude, témoignent d'un sol contaminé agissant sur les valeurs des flux de chaleur obtenus.

4.6 Le gradient géothermique

L'historique sur le développement de la géologie révèle que le refroidissement et le réchauffement de la Terre ont toujours été une question fondamentale (Birch, 1965; 1824; Holmes, Fourier, 1915; Joly, 1909; Mc Donald, 1959; Strutt, 1906; Thomson, 1864; Urey, 1964).

L'avis de Hutton est qu'il n'y a pas de début ou de fin de temps géologique, le débat d'aujourd'hui sur le retour en temps des plaques tectoniques peut être imaginé, éventuellement des arguments se résument à des déclarations sur l'évolution thermique de notre planète.

En général la chaleur et la température adaptée ne sont pas suffisantes pour l'exploitation géothermique. La disponibilité de liquides, des eaux profondes ou la vapeur saturée sont également nécessaire.

La température à moins de 10 m de la surface du sol est affectée par les variations de température saisonnières. Tendis qu'à 50-100 m de profondeur l'écoulement de l'eau

souterraine contrôle la température, le gradient géothermique des régions de bouclier et des bassins sédimentaires est généralement entre 15 et 30 °C / Km.

De fortes valeurs sont présentés dans les régions tectoniquement actives de $45\,^{\circ}C$ / Km, le gradient géothermique est plus élevé de $10\,^{\circ}C$ par 100 mètres en Alsace et même exceptionnellement $100\,^{\circ}C$ par 100 mètres à Larderello, Italie, seulement $1\,^{\circ}C$ par 100 mètres près de Padoue (Garibaldi , 2010).

L'effet du flux géothermique et son expression dans le gradient géothermique se retrouvent à des profondeurs excédant généralement 100 m.

La température des roches augmente en moyenne de 1 °C tous les 30 mètres de profondeur: c'est le gradient géothermique terrestre moyen. L'équation pour la détermination des gradients géothermiques est la suivante :

$$G = dT/dZ$$

Où les températures sont exprimées en degrés Celsius et la profondeur est exprimée en mètres et le gradient thermique est en degrés Celsius par kilomètre (°C/km).

La carte du gradient géothermique moyen (Figure.37), montre que les valeurs oscilles entre 21°C /Km et 41°C /Km dans la région de Ghardaïa.

Les valeurs les plus élevées sont au sud de la zone d'étude à El Goléa, elles oscillent entre 38°C /Km à 41°C /Km et déterminent probablement l'existence d'une anomalie profonde qui émet de la chaleur, contrairement à la partie occidentale et septentrionale dont les valeurs sont faible et oscillent entre 21 °C /Km et 25 °C /Km.

Le reste de la zone d'étude présente des valeurs moyennes qui oscilles entre 25 °C $^{\prime}$ C /Km et 30°C /Km.

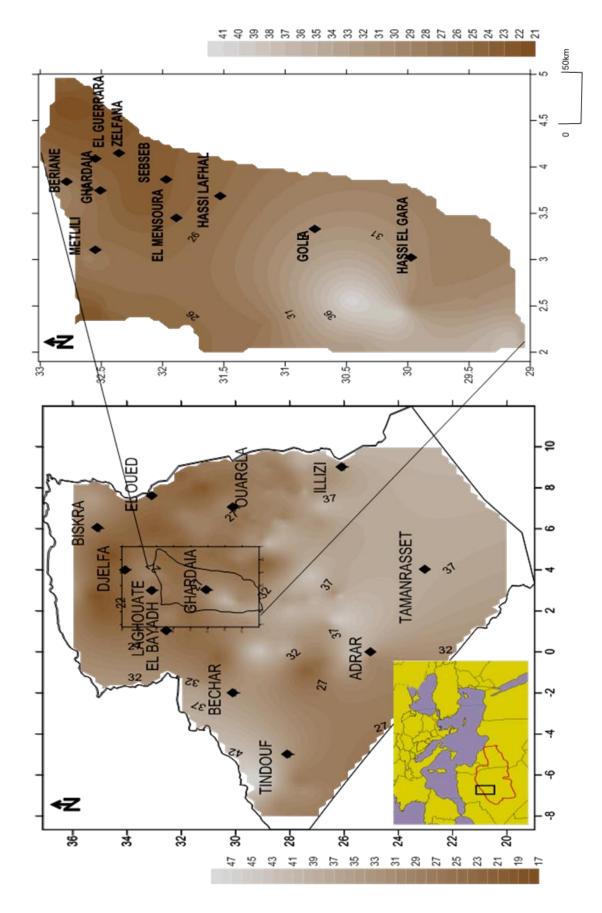


Fig.37: Répartition du gradient géothermique moyen en (°C /km)

4.7 Détermination du flux de chaleur

Certains auteurs (Birch et al, 1968 ; Lachenbruch, 1970 ; Roy et al, 1968) ont mis en évidence une importante relation empirique entre le flux de chaleur et la production de chaleur dans les roches superficielles. Cette relation, observée dans des domaines affectés aussi bien par des tectoniques diverses que d'âges variés, permet de distinguer une composante d'origine profonde appelée flux réduit, à partir du flux de surface. Le flux de chaleur dépend aussi de l'épaisseur de la croûte. Il est plus élevé au niveau des zones à croûte amincie (Cermak, 1977).

Les transferts thermiques se font selon trois modes principaux :

- ✓ la conduction qui consiste en une propagation de l'agitation moléculaire sans transport de matière ;
- ✓ la convection où la chaleur est véhiculée par transfert de matière ;
- ✓ le rayonnement dans le vide, par ondes électromagnétiques.

Dans l'hypothèse de la seule conduction, le flux de chaleur est défini par le produit :

Où K représente la conductivité thermique du milieu et T la température.

Il est donc indispensable de mentionner les formules de passage :

```
Energie 1 kcal = 4, 18 kJ

1 thermie = 1000 kcal = 4180 kJ

1 BTU = 1,055 kJ

1 kWh = 3600 kJ

Puissance 1 kcal/h = 1,16 W

(Heat transfer rate) 1 BTU/h = 0, 2929 W

1 cheval vapeur (horse power) = 0,746 kW

1 BTU.ft<sup>-2</sup>h<sup>-1</sup> = 3,1525 W.m<sup>-2</sup>

Chaleur spécifique 1 BTU.lb-1°F-1 = 4,184 kJ.kg<sup>-1</sup>K<sup>-1</sup>

(Specific heat) 1 cal.g<sup>-1</sup>°C<sup>-1</sup> = 4,184 kJ.kg<sup>-1</sup>K<sup>-1</sup>

Conductivité1 BTUft<sup>-1</sup>h-1°F<sup>-1</sup> = 1, 73 W. m<sup>-1</sup>K<sup>-1</sup>

Conductance 1 BTU.ft<sup>-2</sup>h<sup>-1</sup>°F<sup>-1</sup> = 5, 6745 W.m<sup>-2</sup>.K<sup>-1</sup>
```

Température le Kelvin K est l'échelle thermodynamique de référence

Fahrenheit: x °F correspond à (x - 32)/1,8 °C

Celsius : $x \, ^{\circ}C = (x - 273,15) \, K$

Rankine : $x \circ R = (x/1.8) \text{ K}$ (même graduation que °F)

C'est une échelle absolue $0 \text{ K} = 0 \text{ }^{\circ}\text{R}$

Viscosité dynamique 1 Poiseuille = 1 Pa.s = 1 kg.m⁻¹s⁻¹

1 centipoise = 0,001 Pa.s soit encore 10 centipoise = 0,01 Pa.s = un centième de Poiseuille

Viscosité cinématique 1 centistockes = 1.10⁻⁶ m²s⁻¹

Il n'est pas possible d'observer les processus thermiques qui se déroulent au sein de la croûte terrestre et dans le manteau sous-jacent. Néanmoins, grâce à l'étude des dégagements thermiques à la surface de notre planète. La carte (Figure.38) montre une répartition des températures moyennes à la surface du sol, tracée à partir des données des stations météorologiques dans la région et celles satellitaire de l'agence canadienne mondiale des météo (Reste-screen).

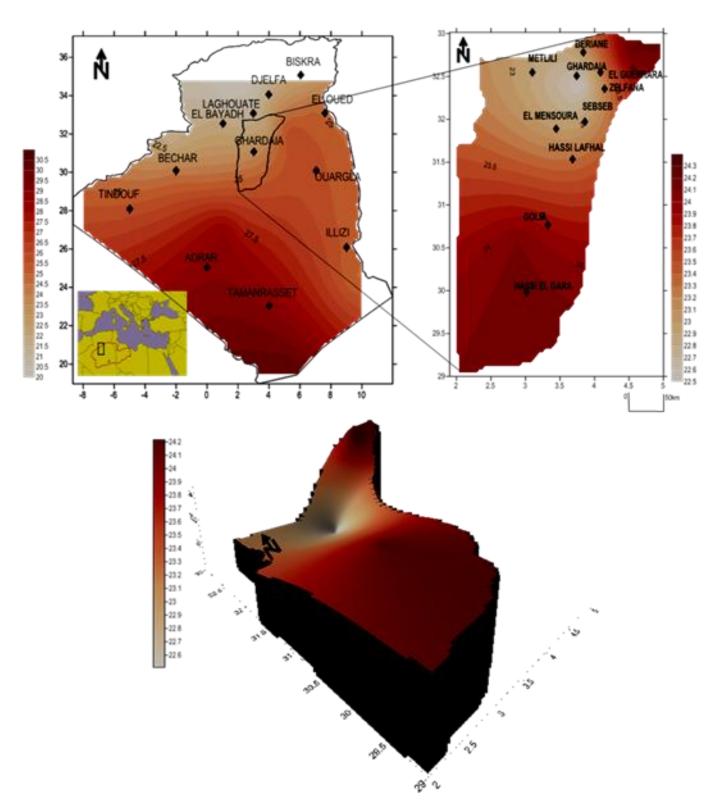


Fig. 38: Répartition des températures moyennes à la surface du sol

Cette carte montre formellement que les températures surfaciques moyennes

des sols sont supérieures à 24 °C au sud de la région d'étude, entre 23 °C et 24°C dans la partie centrale et présente des valeurs inferieurs à 23 °C dans le Nord. Elles augmentent de nouveau vers le Nord-est de la zone d'étude et enregistrent des valeurs de 24°C. Ces variations sont liées étroitement aux champs de variation des flux de chaleur surfaciques, à la répartition lithologie, à la conductivité thermique des sols dans la zone d'étude et à l'influence thermique du rayonnement solaire sur l'interface sol.

Il y a un flux de chaleur, appelé flux géothermique, à travers la croûte terrestre (continentale et marine) causé par la chaleur transférée du manteau à la base de la croûte terrestre ainsi que par la désintégration des matériaux radioactifs contenus dans la croûte.

Le flux de chaleur montre le comportement général suivant :

- ✓ le flux diminue avec l'âge géologique à cause de la désintégration du matériel radioactif impliqué.
- ✓ le flux est maximal à la surface de la terre et diminue avec la profondeur à cause de la réduction de la quantité de matériel radioactif sous-jacent.
- ✓ le flux varie géographiquement mais relativement uniforme sur de vastes étendues.

Pour la majorité des problèmes d'intérêt, compte tenu des faibles profondeurs et de l'étendu restreinte des études hydrogéologique, même régionales, le flux de chaleur pourra être considérée constant à la fois en fonction de la profondeur et sur l'ensemble de la région d'étude considérée. Pour les continents, le flux géothermique moyen varie entre $40 \ mW/m^2$ dans les cratons stables et $70 \ mW/m^2$ dans les provinces tectonique tertiaires.

Pour que ce flux se fasse vers la surface de la terre, ceci implique forcement que la température est plus élevée en profondeur qu'à la surface de la terre. Compte tenu du temps généralement très long pendant lequel le flux de chaleur s'est maintenu pratiquement constant dans une région donnée, les conditions de transfert de chaleur du flux peuvent généralement être considérées en régime permanent (Tableau 11).

Tableau.11: Estimations du flux de chaleur dans les régions continentales stables (Jaupart C et al, 1987).

Location	Flux(mW m ⁻²)	Référence
NorwegianShield	11 ^a	Swanberg et al. (1974) and Pinet and Jaupart (1987)
BalticShield	7–15 ^a	Kukkonen and Peltonen (1999)
Siberian craton	10–12 ^a	Duchkov (1991)
DharwarCraton (India)	11 ^a	Roy and Rao (2000)
Kapuskasing (Canadian Shield)	11–13 ^a	Ashwal et al. (1987) and Pinetet al. (1991)
Grenville (CanadianShield)	13 ^a	Pinet et al. (1991)
Abitibi (CanadianShield)	10–14 ^a	Guillou et al. (1994)
Trans-Hudson orogen (Canadian Shield)	11–16 ^b	Rolandone et al. (2002)
Slave province (Canada)	12–24 ^c	Russell et al. (2001)
Vredefort (SouthAfrica)	18 ^a	Nicolaysen et al. (1981)
Kalahari Craton (SouthAfrica)	17–25°	Rudnick and Nyblade (1999)

^a Estimer à partir de flux de chaleur et la production de chaleur crustale. ^bEstimer à partir de la condition de non fusion dans la croûte inférieure au moment de la stabilisation.

^cEstimer sur geothermobarometry de xénolites mantelliques.

La carte en isobathes tracée par Takherist en 1990, montre qu'au niveau de la courbe (500), les formations de la base du Mésozoïque au sud de Ghardaïa précisément à El Goléa, remontent vers la surface.

Cette remontée peut être probablement l'une des causes principales des valeurs élevées des flux de chaleurs obtenus, elle met en évidence une anomalie profonde au sud de la région d'étude.

La chaleur est originairement transmise de proche en proche à travers les roches de la croûte terrestre par conduction thermique.

Il est donc assez facile de corréler les mesures du flux de chaleur avec les phénomènes géologiques profonds.

Nous avons saisi l'opportunité de l'existence de nombreux forages pétroliers pour établir une détermination des flux de chaleur en Algérie et particulièrement à Ghardaïa.

Le flux de chaleur dans la zone d'étude, Ghardaïa, varie de 62 mW/m² à 108 mW/ m². Les valeurs des flux de chaleur les plus élevées sont de 72 à 108 mW/m², elles caractérisent les zones peu profondes du sud de la région d'étude (El Goléa et Hassi El Gara).

Les valeurs des flux de chaleur les plus faibles sont inferieures à 72 mW/m² et déterminent les parties centrale, occidentale et orientale profondes de la zone d'étude (Figure.39).

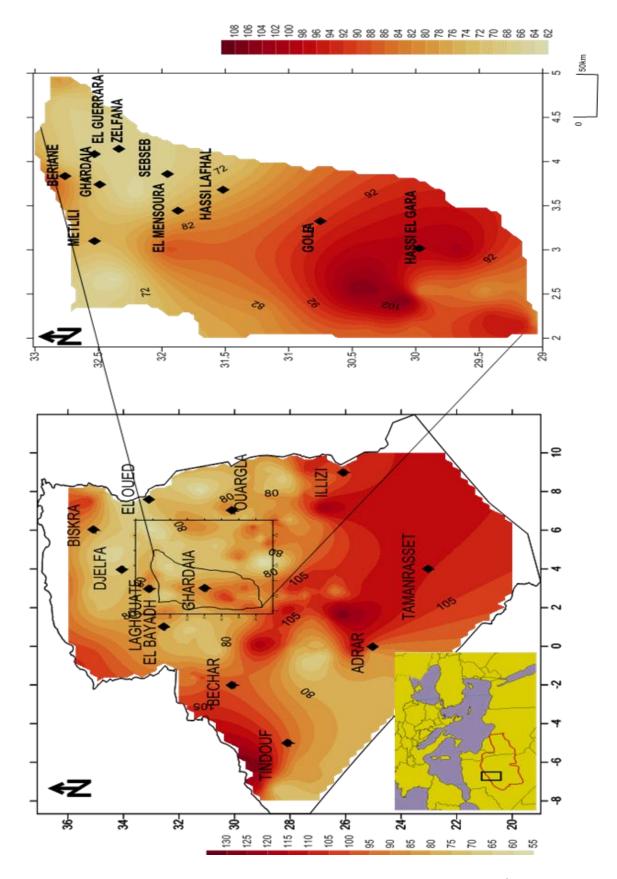


Fig. 39: Répartition des flux de chaleur moyen en (mW/m²)

4.8 Conclusion

Les flux de chaleur mesurés dans les forages de la plate-forme témoignent d'un régime thermique élevé de la lithosphère. Ces flux sont en relation avec les anomalies géologiques profondes. Ils varient de 62 mW/m² à 108 mW/ m², dans la zone d'étude, les valeurs les plus élevées caractérisent le sud. Alors que les valeurs les plus faibles déterminent les parties centrale, occidentale et orientale profondes de la zone d'étude.

D'autre part, les conductivités thermiques confirment ces valeurs élevées des flux de chaleur au sud et indiquent des formations, particulièrement, conductrices de chaleurs.

La thermicité de la plate forme saharienne, la variation des conductivités thermiques des roches et des flux de chaleur, montrent que le potentiel de l'énergie géothermique est très important.

Le gradient géothermique montre des valeurs importantes au sud de la région d'étude, elles oscillent entre 38°C /Km et 41°C /Km et persuadent probablement l'existence d'une anomalie profonde.

La limite occidentale de ce domaine correspond à la faille d'Idjerane qui pourrait ainsi se continuer jusqu'à El Goléa, au sud de Ghardaïa, entre les latitudes 26° et 29°N, on signale l'apparition d'un sillon. En outre, la remontée de la base du mésozoïque dans le sud, ne témoignent qu'à la puissante tectonique qui a affectée les couches profondes est qui serait à l'origine de cette thermicité actuelle.

LES DONNEES DE TEMPERATURE DU SOUS-SOL

5.1 Introduction

L'augmentation de la température avec la profondeur exprime le gradient ou degré géothermique. Ce gradient dépend surtout de la profondeur de la source d'énergie, de la nature et de l'épaisseur des terrains et du fluide éventuel transporteur de chaleur initiant un système de convection. Les études de flux de chaleur ont donné un aperçu de l'histoire thermique, de la géodynamique du bassin sédimentaire, de l'hydrodynamique du bassin et de la température du réservoir généralement acquise au cours de l'histoire géologique. Certaines régions de la terre sont favorisées en termes du sol et haute température du fluide à une profondeur relativement faible. Ces zones sont considérées comme des "champs géothermiques" et "systèmes hydrothermaux". Ils ont été des cibles pour le développement de la géothermie pour des fins de production d'énergie.

Plusieurs explorations, développement, et évaluation des forages forés dans le secteur d'étude de Ghardaïa, depuis la découverte du pétrole (la plupart pour hydrocarbures), sont de profondeur généralement inférieure à 4500 m. Ces grandes profondeurs nécessitent une évaluation précise de la température. Nous évaluons les gradients thermiques et les variations des températures dans la région. La connaissance des gradients thermiques, de la température et du régime d'écoulement de chaleur dans une zone peuvent être utilisées pour prédire le régime thermique associé à ces réservoirs plus profonds.

5.2 Modes de transfert de chaleur

Le flux de chaleur naturelle semble être un élément clé. Il consiste à estimer à la fois la convection et la conduction de la chaleur des composants naturels d'écoulement de la terre à la surface. Le flux de chaleur naturelle d'un système géothermique est la combinaison des deux (par exemple, par advection, la décharge du liquide à partir de sources chaudes naturelles et les parties conductrices). Il donne une indication claire non seulement de l'énergie stockée, mais aussi sur la recharge thermique du réservoir. On distingue trois mécanismes d'échange de chaleur entre les milieux matériels, par conduction, par rayonnement et par convection (Franco, A., Donatini, F., 2017).

5.2.1 Notion de température

L'unité de température est définie officiellement comme suit :

"Le Kelvin (K) est la fraction 1/273,16 de la température thermodynamique du point triple de l'eau". On utilise fréquemment la température Celsius1 définie par la différence T- T_0 entre deux températures thermodynamiques T et T_0 avec $T_0 = 273,15$ K. Une différence de température peut s'exprimer soit en Kelvins, soit en degrés Celsius (Franco, A., Donatini, F., 2017).

En rétrospective, on pourrait dire qu'une tout aussi dommageable lacune était le manque de données. Kelvin a confirmé que le flux de chaleur varie en grandes quantités à la surface de la Terre, il n'a pas préconisé un simple uniforme model pour l'ensemble de la planète.

On dit qu'à l'instant t la température d'un corps est uniforme si, en cet instant, tous les appareils de mesure indiquent la même valeur T quelle que soit leur position. Elle est constante si T est indépendante de l'instant d'observation. Si ces deux conditions ne sont pas réalisées, la température est une fonction T(x,y,z,t) des coordonnées du repère d'espacetemps. A l'intérieur d'un corps homogène, on peut donc définir à chaque instant t des surfaces isothermes caractérisées par T(x,y,z,t) = cste (Franco, A., Donatini, F., 2017).

Les grandes variations latérales des flux de chaleur qui se produisent sur terre fournissent de l'information sur les mécanismes de refroidissement et des sources de chaleur qui sont aussi importantes que la moyenne mondiale.

Le gradient géothermique représente l'augmentation de la température avec la profondeur. En certains points du globe, et notamment dans les régions volcaniques, qui correspondent à des intrusions de magma dans la croûte terrestre, en relation avec la magnitude du flux géothermique et la conductivité thermique du matériel terrestre traversé par ce flux, tel que spécifié par la loi de Fourier de la conduction thermique.

La dérivabilité de la fonction T permet de définir en chaque point M et à chaque instant t un vecteur gradient de température ∇T (Figure.40), normal en M à la surface isotherme, et dont les composantes sont en coordonnées cartésiennes $(\frac{\partial T}{\partial X}, \frac{\partial T}{\partial v}, \frac{\partial T}{\partial z})$

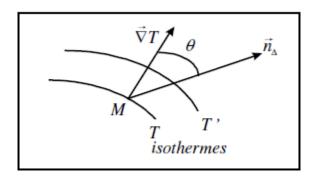


Fig. 40: Gradient de température dans une direction D

On définit également le gradient de température dans une direction D, comme le produit scalaire: ∇T . $n\Delta = //\nabla T$ //.cos Θ (Franco, A., Donatini, F., 2017).

5.2.2 Notion de chaleur

Entre deux instants t et t', l'interaction étudiée s'accompagne d'un échange de chaleur ∂Q , on appelle flux thermique moyen la quantité $\partial Q/(t-t')$ et, par un passage à la limite, on peut définir :

- un flux thermique (c'est une puissance) instantanée en Watts [W],
- ramenée à l'unité de surface on parle de **densité de flux thermique [W/m²].** On nomme flux-mètre l'appareil de mesure correspondant.

En l'absence de précision, le terme gradient désigne celui dans la direction normale à une surface.

5.2.3 Conduction

C'est une transmission de chaleur dans la masse d'un milieu matériel, les zones chaudes cèdent de la chaleur à celles qui le sont moins. La chaleur est transmise, suite à une différence de température, d'une molécule à l'autre sans déplacement de matière. C'est le cas lorsqu'on chauffe l'extrémité d'une barre. Au plan corpusculaire, l'interprétation est la suivante : une zone chaude est occupée par des particules à vitesse élevée, par définition même de la température. Le mouvement brownien fait constamment passer des particules d'une zone à l'autre ; mais entre zones à températures inégales, les particules ont des énergies cinétiques différentes ; le brassage a pour effet de transférer de l'énergie cinétique d'agitation, des zones chaudes vers celles qui le sont moins. La manifestation macroscopique en est un transfert de chaleur. C'est donc un mécanisme de chocs qui intervient.

5.2.4 Rayonnement

C'est une **transmission d'énergie à distance**, entre deux corps séparés ou non par un milieu matériel (transformation d'énergie thermique d'un émetteur en énergie électromagnétique, propagation, transformation partielle en énergie thermique sur un corps récepteur). C'est le cas de l'énergie qui nous vient du soleil. L'interprétation physique est la suivante : tout corps émet des particules désignées par "photons"; ceux-ci se déplacent à la vitesse de la lumière et transportent une énergie fonction de leur "longueur d'onde" .Un corps C émettant des photons dans toutes les directions possibles, certains d'entre eux sont reçus par l'autre corps C' et éventuellement absorbés, en tout ou partie. Bien entendu, le corps C'émet aussi des photons dont certains seront reçus et absorbés par C. Le bilan net se traduit par un échange d'énergie entre C et C'.

5.2.5 Convection

C'est le phénomène observé entre un fluide en mouvement et une paroi, phénomène principal dans la plupart des échangeurs de chaleur. L'énergie est transmise par un déplacement de matière (mouvement de fluide) dans le milieu. La cause profonde est encore une **agitation des particules fluides**, mais à une échelle beaucoup moins microscopique. Les parcelles de matière au contact de la paroi (chaude par exemple) s'échauffent par conduction ; le mouvement du fluide reporte ces parcelles dans la masse où elles cèdent par mélange une partie de la chaleur reçue ; d'autres les remplacent à la paroi et ainsi de suite.

Quant au mouvement du fluide, il peut avoir deux causes. Ou bien il est imposé de l'extérieur par une machine (pompe, ventilateur, compresseur) ; c'est la **convection forcée**. Ou bien le contact du fluide avec la paroi plus chaude ou plus froide crée des différences de masse volumique, génératrices de mouvement au sein du fluide ; c'est la **convection naturelle**. Rigoureusement, même en convection forcée, les différences de densité créent un écoulement parasite, en général insignifiant par rapport à l'écoulement principal. On parle de **convection mixte** quand les deux phénomènes ont de l'importance.

5.3 Traitement des données de températures de l'Algérie de sud (Ghardaïa)

5.3.1 Données de températures du proche sous -sol

La détermination de la température en profondeur du sol nécessite la connaissance de la nature du sol. Les calcaires du Turonien sont les plus prédominants dans le centre et l'est de Ghardaïa, tandis que, la partie ouest est caractérisée par les formations sableuses du Miopliocene.

Les affleurements Quaternaires caractérisent la partie sud-est de la région. Il est donc important d'étudier l'influence de la température sur ces formations en quelques mètres de profondeur de la surface du sol, sur le déphasage et la profondeur de pénétration du signal de la température. Représenter les caractéristiques des températures pour le proche sous-sol est basé sur deux types de sol (sable et calcaire). Le domaine des premières centaines de mètres est en revanche le lieu de processus plus complexes puisqu'il fait intervenir les échanges thermiques entre l'atmosphère et le sous-sol, mais aussi les transferts de chaleur associés aux variations de topographie ou au régime hydrologique régional. En outre, les variations des conditions thermiques en surface (présence d'un lac, différences d'ensoleillement, etc) peuvent engendrer des perturbations discernables en profondeur. Les variations périodiques des flux radiatifs à la surface du sol déterminent des fluctuations de température en profondeur qui sont réglées par l'équation générale de la chaleur (Frédéric Chabert, 1980).

$$xCP\frac{d\theta}{dt} = \gamma x \frac{d2\theta}{dx^2} + \gamma y \frac{d2\theta}{dy^2} + \gamma z \frac{d2\theta}{dz^2} + \omega.$$
 (1).

où θ représente la variation de la température dans le sol

χ représente la densité

Cp représente la chaleur spécifique

T représente le temps

 λx , λy , λz représentent la capacité thermique dans les trois directions de l'espace

représente la chaleur produite ou perdue au sein de la roche ω (habituellement $\omega=0).$

Si l'on considère que la densité, la capacité calorifique et la conductivité thermique sont constantes et identiques en tout point du sol, l'équation s'écrit (Frédéric Chabert, 1980):

$$\frac{d\theta}{dt} = \frac{\gamma}{xCp} \frac{d2\theta}{dx^2}.$$
 (2).

E définit la profondeur en prenant la surface comme origine

 $\frac{\gamma}{xCp}$ Représente la diffusivité thermique du sol .On pose $\propto = \frac{\gamma}{xCp}$

On obtient une solution particulière de l'équation (2) si l'on suppose que la température du sol à une profondeur infinie est égale à la moyenne des variations de la température extérieure (Frédéric Chabert, 1980).

$$\theta(\infty,t)=0 \qquad (3).$$

On admet que la température de l'air à la surface du sol varie de façon sinusoïdale, avec une période T et une amplitude A. Au temps t_I , la température de l'air sera déterminée par l'équation (Frédéric Chabert, 1980):

Au même temps t_1 , la température du sol à une profondeur E sera déterminée par une équation de la forme suivante (Frédéric Chabert, 1980) :

$$\theta(E,t1) = \theta m + Aa.\cos(\omega t 1 - \emptyset)....(5).$$

avec

$$\omega = \frac{2\pi}{T}$$
 pulsation du phénomène de période T

 θm température moyenne du sol au cours d'une période de variation (supposée la même à toutes les profondeurs)

A amortissement de l'amplitude

 ϕ déphasage (retard) de l'onde thermique

Nous avons vu que θm peut être assimilé à la moyenne annuelle des températures de l'air. L'amortissement et le déphasage sont donnés par les relations suivantes (Frédéric Chabert, 1980):

$$a = \theta . E \sqrt{\frac{\pi}{\alpha T}}$$

$$\emptyset = E \sqrt{\frac{\pi}{\alpha T}}$$

Les variations dépendent donc des propriétés thermiques du sol, de la périodicité du phénomène considéré et de la profondeur.

T période en heures

 α diffusivité thermique du sol en m²/h

Le déphasage $E\sqrt{\frac{\pi}{\alpha T}}$ est exprimé en radians.

Pour obtenir sa valeur en heure, il faut multiplier le résultat par $\frac{T}{2\pi}$ soit

$$\emptyset = \frac{T}{2\pi} \cdot E \sqrt{\frac{\pi}{\alpha T}} - \frac{1}{2} E \sqrt{\frac{T}{\alpha \pi}}...$$
 (6).

L'équation de la variation de la température dans le sol devient alors :

Cette variation a une longueur d'onde de $2\sqrt{\pi\alpha T}$.

À une profondeur équivalente à cette longueur d'onde, le déphasage est d'une période entière $\phi = T$ et la température est pratiquement stabilisée à la moyenne annuelle des températures de l'air extérieur (Frédéric Chabert, 1980).

Les caractéristiques spatiales et temporelles des transferts de chaleur dans la Terre dépendent des propriétés thermiques des roches. Par exemple, la constante de temps de diffusion donne un ordre de grandeur sur la durée nécessaire pour qu'une perturbation thermique soit ressentie à une certaine distance. Cette constante dépend de la diffusivité thermique des roches, qui reste identique pour la plupart des roches. La valeur de la diffusivité étant très faible (10⁻⁶ m²/s), les transferts de chaleur par conduction sont lents. Une perturbation thermique met 10.000 ans à parcourir 1 km, ou 1 million d'années à parcourir 10 km. Contrairement à la diffusivité thermique, la conductivité thermique et la production de chaleur varient selon le

type de roche. Cette formule permet, lorsqu'on en connaît les paramètres (Tableau 12), de déterminer la température des sols à différentes profondeurs pour chaque saison.

Tableau.12. Les propriétés physiques des calcaires et sable dans la région de Ghardaïa.

Nature de sol	Masse volumique	Diffusivité thermique	Capacité
	(kg/m^3)	(m^2/s)	calorifique
			(J.kg/°C)
Calcaire	2044	$8,39 \times 10^{-7}$	1000
Sable	1780	3.76×10^{-7}	1390

5.3.1.1 Exploitation des températures du proche sous -sol (calcaire) à différentes Profondeur

L'amplitude du signal de la température décroit quand la profondeur augmente. L'équation de la variation de la température dans le sol devient alors :

$$\theta_{soil} = \theta m day 1 + \sum_{j=1}^{N=1} A_{day 1} \cdot \left[\sin(\frac{2\pi}{T} (day 1) t (day 1) - E \sqrt{\frac{\pi}{\alpha T}} (day 1)) \right] \dots (8).$$

$$\theta_{soil} = \theta m day 1061 + \sum_{j=1061}^{N=1061} A_{day 1061} \cdot \left[\sin(\frac{2\pi}{T} (day 1061) t (day 1061) - E \sqrt{\frac{\pi}{\alpha T}} (day 1061)) \right] \dots (9).$$

Au-delà d'une distance égalant quatre fois la profondeur de pénétration, la température du sol se stabilise aux alentours de la température moyenne annuelle du sol en surface (Figure.41).

La fluctuation de la température à la profondeur de deux mètres présente l'intervalle de température de confort thermique pour notre zone d'étude.

Les résultats ont montré que l'étude de la nature du sol est très essentielle pour la détermination de la température en profondeur. Le sol calcaire présente une grande sensibilité aux variations climatiques annuelles en comparaison avec un sol sableux.

La nature du sol semble ne pas avoir un effet sur la température moyenne de la surface du sol, alors qu'elle a une influence remarquable sur le déphasage. A titre d'exemple, pour une profondeur de 2 m, le déphasage est de 60 jours pour le sable, tandis qu'il est moins de 40 jours pour le calcaire.

Il y a lieu de constater également que le déphasage est inversement proportionnel à la diffusivité thermique du sol. En d'autres termes, plus celle-ci est grande, plus le déphasage est petit.

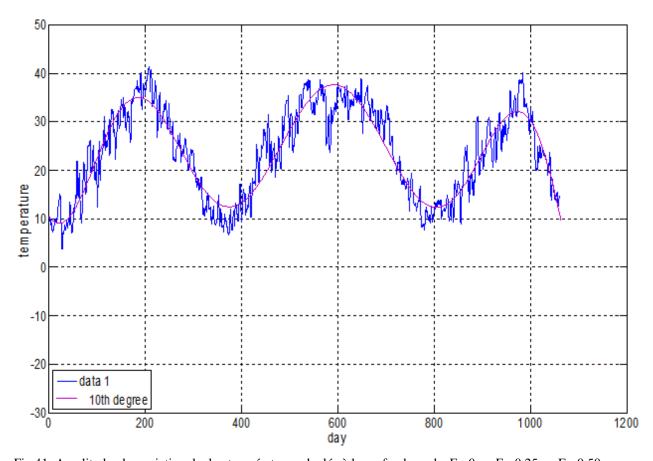


Fig.41: Amplitude de variation de la température calculée à la profondeur de E=0 m, E=0.25 m, E=0.50m, E=1 m, E=1.25m, E=1.50 m et E=2 m, dans la région de Ghardaïa, programme Matlab.

5.3.1.2 Modélisation en processus Gaussien-Régression de la température du proche sous –sol en fonction des données climatiques

Le gisement solaire est un ensemble de données décrivant l'évolution du rayonnement solaire disponible au cours d'une période donnée et son influence sur la température du sol. Il est utilisé dans des domaines aussi variés que l'agriculture, la météorologie, les applications énergétiques et la sécurité publique. Dans les systèmes d'exploitation de l'énergie solaire, le besoin de données d'insolation est d'une importance capitale aussi bien dans la conception et

le développement de ces systèmes que dans l'évaluation de leurs performances. L'existence d'une solide et fiable base de données est une nécessité pour au moins la survie économique des installations de collection et de conversion de l'énergie solaire. Bien qu'il existe un réseau de stations d'évaluation du gisement solaire, le nombre de ces stations est très limité.

En Algérie, seules sept stations assurent depuis 1970 la mesure de la composante globale et diffuse du rayonnement solaire. Le nombre de ces stations étant insuffisant et c'est pour cela que divers modèles ont été proposés pour estimer le gisement solaire à une échelle locale ou régionale. Ces modèles s'étendent des codes de calcul les plus complexes et les plus sophistiqués aux simples relations empiriques.

Le choix du modèle est dicté par la nature des données et par la précision recherchée. Les différentes composantes du rayonnement solaire sont déterminées sur l'ensemble du site de Ghardaïa. Pour ce faire, nous avons procédé, d'une part à une validation expérimentale des modèles de cette station sur les mesures effectuées par la station radiométrique. D'autre part, nous avons utilisé des modèles plus simples et mieux adaptés pour l'estimation en particulier des températures du sol.

Les données expérimentales utilisées dans ce travail (rayonnement solaire, température, etc.), ont été recueillies à l'unité de recherche appliquée en énergies renouvelables, (URAER) sis à Ghardaïa. Les données sont enregistrées toutes les 5 min avec une haute précision par une station radiométrique installée (Figure.42).

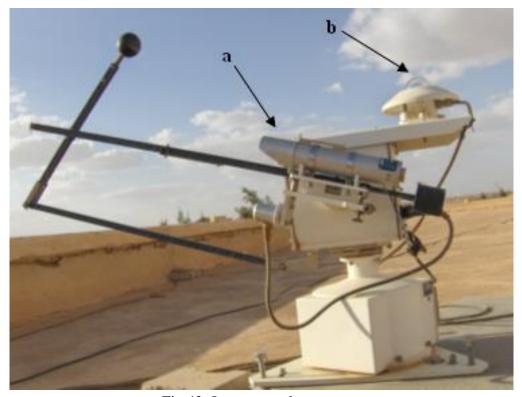


Fig.42: Instrument de mesure. Photo de l'unité de recherche en énergie renouvelable - URAER, Ghardaïa, (a): Pyrheliometer , (b): pyranometer

Dans ce travail nous présentons l'application de processus Gaussien de régression (GPR) pour la modélisation de la température quotidienne moyenne (MDSR). Une série de mesures d'insolation journalière enregistrée sur la station entre 2005 et 2008, soit durant 3 années de mesures, a été utilisée pour l'ajustement du modèle utilisé. Des données de température et d'humidité relative enregistrées ont été utilisées pour l'ajustement du modèle par ciel clair, dans un climat semi- aride.

La base de données utilisée est constituée. Des composantes suivantes :

- l'irradiation directe à incidence normale ;
- l'irradiation diffuse reçue sur plan horizontal;
- l'irradiation globale reçue sur plan horizontal;
- l'irradiation globale reçue par un plan vertical orienté Sud ;
- l'irradiation globale reçue par un plan vertical orienté Est ;
- l'irradiation globale reçue par un plan vertical orienté Ouest.
- la température de l'air, l'humidité ...etc .

Le rayonnement solaire global quotidien (GSR), varie entre un minimum de 607 Wh/m²/jour et un maximum de 7574 Wh/m²/jour et la moyenne annuelle GSR est d'environ 5656 Wh/m²/jour. Pour la modélisation des températures du sol, seulement la température de l'air en entrée qui est prise en considération. Dans cette section, nous allons présenter l'application de GPR pour la modélisation à l'aide de MDSR, MDAT comme entrée et MDST en sortie (Figure.43).

Habituellement, la mesure de ces quantités physiques comprend des formules qui décrivent mathématiquement les relations entre les paramètres de l'entrée et ceux de la sortie.

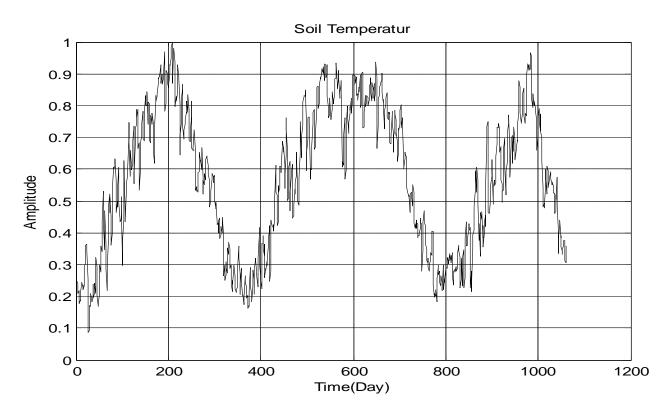


Fig.43: L'évolution quotidienne de la température du sol, programme Matlab

La base de données expérimentale utilisée dans le cadre de cette étude contient 1061 jours de mesure. Pour la formation du modèle GPR. Le premier sous-ensemble contient 560 jours d'observations et le second (501 jours) pour tester le modèle. Le modèle GPR basé sur la température de l'air en entrée produit une haute précision et les valeurs prévues de MDST sont similaires aux valeurs mesurées et que la température de l'air comme entrée atteint des performances dues à sa forte corrélation avec la température du sol (Figure.44).

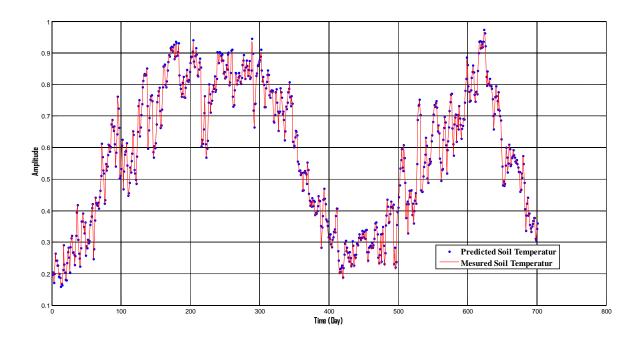


Fig.44: Les valeurs prédites et mesurées de la température du sol, programme Matlab

Le GPR est un modèle basé sur la température moyenne de l'air (MAT) en entrée, à donner des résultats précis en termes d'erreur. Les valeurs obtenues de ces indicateurs sont :

- l'erreur de justesse absolue moyenne MABE(0,0021) ;
- -l'erreur quadratique moyenne MAE (0,5036);
- -l'erreur relative RMSE (0,0029);
- -et le coefficient de corrélation (100 %).

Ce qui montre que le GPR est hautement qualifié pour des estimations en climat semiaride et aride (Figure.45).

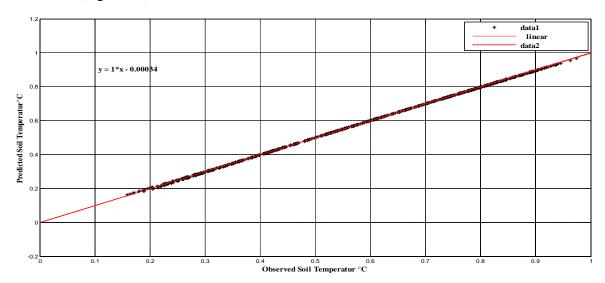


Fig.45: Coefficient de Corrélation, programme Matlab

A travers cette expérimentation, nous avons tenté de démontrer l'influence thermique du modèle solaire sur le sol. Le résultat obtenu est très satisfaisant, la forte corrélation entre l'entrée et la sortie et la bonne précision du GPR pour la modélisation des pas, de relation linéaire entre le sol et la température de l'air, comparativement à d'autres modèles récents, tels que les réseaux de neurones (Dreyfus, 2002) et machines à vecteurs de support (Ramona, 2010).

Maintenant que nous avons toutes les informations concernant l'avant et la priori hiérarchique, pour un nouveau point x, la valeur de la variable ciblé peut être prévue comme l'expression qui en résulte.

Cette validation expérimentale nous a permis de nous affranchir sur le degré de précision. Si par ciel clair, la précision est acceptable, par ciel moyen les modèles de densités de probabilité ainsi que la formulation du diffus introduisent une erreur d'estimation non négligeable. L'avantage de l'approche utilisée est qu'elle permet de générer, grâce à un modèle probabiliste, les différentes composantes de l'irradiation solaire sur les plans intéressant.

5.3.2 Données de températures du sous-sol profond

5.3.2.1 Profondeur des forages pétroliers

L'analyse de près des forages pétroliers a permis de dresser une carte d'iso-profondeur (Figure.46). Cette carte montre que la profondeur du gisement est très grande à l'extrême Est de la zone d'étude (vers Touggourt), elle présente des valeurs supérieur à 4500 m, elle est moyenne à faible au centre, au nord, et au sud, elle oscille entre 1500 et 3000 m. Ces variations impliquent que les formations anciennes du Mésozoïque, s'approfondissent, dans la partie occidentale, et s'approchent de la surface, dans le Sud de la région d'étude.

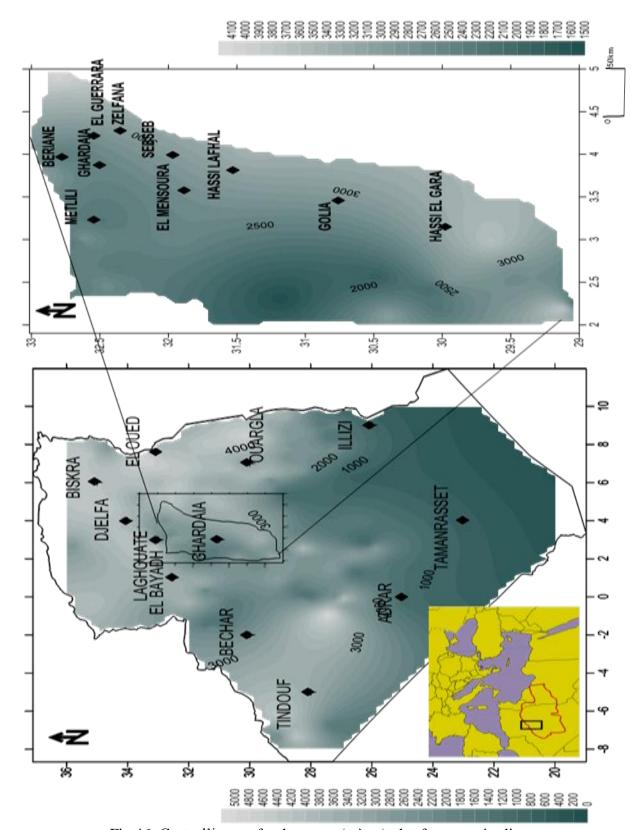


Fig.46: Carte d'iso-profondeurs, en (mètre), des forages pétroliers

5.3.2.2 Le gradient géothermique dans la région de Ghardaïa, étude de cas de Zelfana (Gisements d'Oued Noumer et Ait kheir)

Les gisements pétroliers et gazéifier sont situés dans le Sahara septentrional entre les champs de Hassi R'mel, Haoud Berkaoui et Hassi Messaoud (Figure.47). Localisés sur des fermetures structurales plus ou moins faillées, ces gisements produisent du gaz et du pétrole à partir des réservoirs appartenant au trias argilo-gréseux anti-salifère considéré d'âge Trias supérieur.

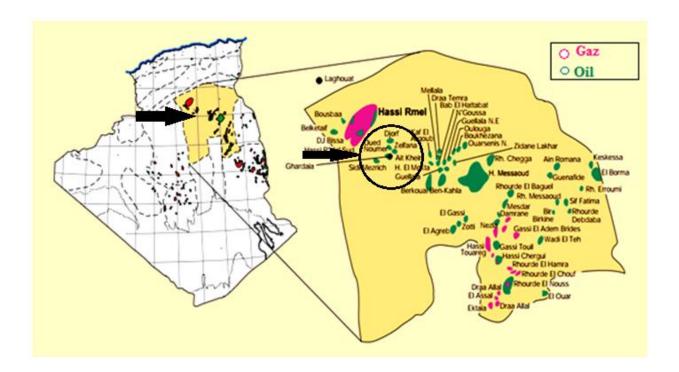


Fig.47: Situation des gisements d'Oued Noumer et Ait Kheir

L'ensemble des gisements sont situés sur la partie septentrionale de la plate-forme saharienne, quelque 150-200 km au SE de la flexure Sud-Atlasique qui sépare le domaine atlasique du domaine saharien. Les réservoirs productifs de ces gisements sont représentés par des dépôts estuariens de climat aride ou semi-aride appartenant à la partie basale des séries Mésozoïque (Trias argilo-gréseux) et reposent en discordance sur des terrains argilo-gréseux ordoviciens. La chaleur peut se manifester lors de la déformation des roches, des plissements et des soulèvements. Elle se manifeste aussi lors des séismes qui correspondent à une libération brutale d'énergie mécanique. Cette dernière dissipée sous forme de chaleur,

représente une énergie bien inférieure au flux géothermique moyen, mais dont il faut tenir compte dans un bilan thermique global.

5.3.2.3 Circulations de fluides dans les zones de failles

La définition d'un système géothermal a évolué depuis les années 1970-1980. Auparavant, toute notion de géothermie impliquait non seulement une source de chaleur, mais aussi la présence de fluides, et celle d'un milieu poreux ou fracturé permettant la circulation hydrothermale. Depuis les avancées technologiques permettant la création de fractures, l'injection et le pompage de fluides, il est possible d'envisager toute source de chaleur accessible comme une ressource géothermale potentielle

Les fluides sont un des facteurs principaux contrôlant les phénomènes de rupture le long des failles suite à des variations de pression ou de température en interagissant avec les roches de la croûte. Les fluides sont présents dans la plupart des formations géologiques dès lors qu'ils sont perméables, comme le témoignent des phénomènes tels que les fumeroles volcaniques, les gisements métallifères, l'hydrothermalisme. La croûte terrestre se déforme sous des contraintes tectoniques générées par les mouvements de plaques. L'apparition de failles en est la manifestation la plus importante.

L'étude des failles est indispensable afin de comprendre la rhéologie de la croûte et concerne de nombreux domaines d'application (sismologie, volcanisme, réservoirs pétroliers ou géothermiques fracturés...). D'autre part, dans les bassins sédimentaires, l'activité tectonique joue un rôle primordial dans l'enfouissement et la circulation des fluides. La compréhension du comportement des fluides dans les zones de faille (traiter dans le chapitre 2) ainsi que le comportement des failles lors d'une circulation de fluides est également primordiale pour toute étude de géothermie profonde, non seulement pour l'évaluation des températures profondes mais également en termes d'aléa lors de l'exploitation de réservoirs géothermiques potentiels.

5.3.2.4 Log de température

Les logs de température ont été mesurés dans les forages (ATK, SDA, ONR), qui ont été effectués en janvier 2011 par l'E N S P-SONATRACH (voir figure.56 au.71 en annexe). Les figures montrent des logs de température sélectionnés, représentant la température dans

un état stable, après que les effets de forage se soient dissipés (températures réelles des roches traversées par le forage). Ces profils mettent en évidence un gradient de température qui augmente au fur et à mesure avec la profondeur.

Les enregistrements débutent par des valeurs de températures élevées à la surface du sol (voir figure.48 à 51), elles oscillent entre 20°C et 40°C horizontalement, et témoignent d'un flux de chaleur élevé. La température au fond des puits varie d'un forage à un autre, selon la profondeur de fond atteint et oscillent entre 78°C et 84 °C.

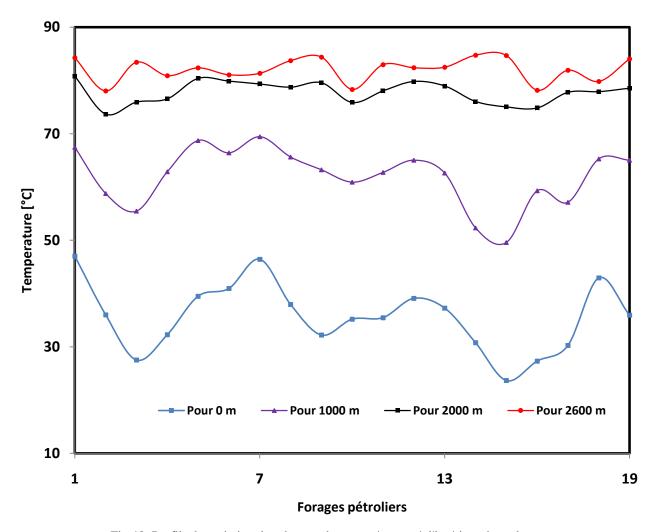


Fig.48: Profils de variation des champs des températures à l'intérieur des sols

L'efficacité d'un transfert thermique au travers d'un matériau chauffé à sa base et refroidi à son sommet est d'autant plus grande que la différence de température qui s'établit entre sa base et son sommet est faible (mais que la différence de température est forte entre le fond du récipient chauffé et l'eau et entre l'eau et l'atmosphère). Les profils des champs des

températures des forages pétroliers, mettent en évidence des arguments importants : la variation lithologique, l'épaisseur de la couche sédimentaire et les circulations des fluides dans les sols.

Pour 0m (à la surface du sol), le profil obtenus (Figure.49), témoignent de l'hétérogénéité du milieu. Les variations sont importantes et les points des températures s'élargissent sur une gamme de 27°C au 49°C. Elles indiquent des sédiments de potentiel thermique intéressant et flux de chaleur surfacique importants.

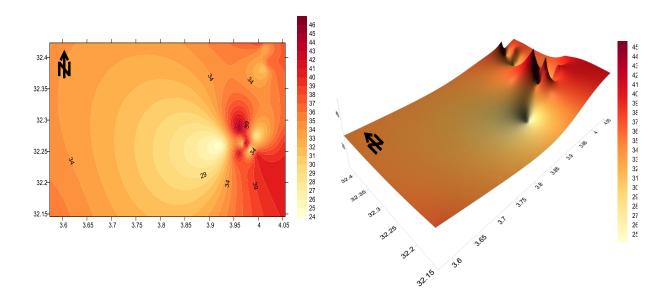


Fig.49: Variation du champ des températures en 3D, à (0 m) de profondeur

pour 1000m, la variation du profil obtenu est intéressante (Figure.50), en vue de l'espace de variations des champs des températures. Elles oscillent entre 49°C et 68°C, en relation avec l'hétérogénéité de la séquence sédimentaire et aux circulations des eaux chaudes. Cette profondeur corresponde à la superposition des couches du Crétacé inferieur du CI, qui présentent des épaisseurs importantes.

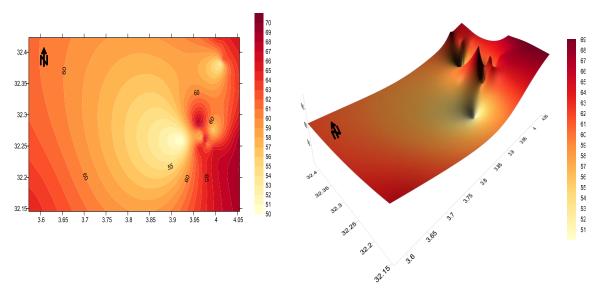


Fig.50: Variation du champ des températures en 3D, à (1000 m) de profondeur

Pour 2000m et 2600m, les profils (Figure.51 et 52) sont presque identiques et présentent des intervalles d'espaces étroites de variations des champs des températures. Elles peuvent être dues à l'épaisseur de la séquence sédimentaire des couches du secondaire (Jurassique et Trias). Elles renferment des matériaux salines et présentent des températures qui oscilles entre 72°C et 85°C de point de vue caractéristiques thermiques et conductivité thermique, se sont des réservoirs géothermiques profonds importants.

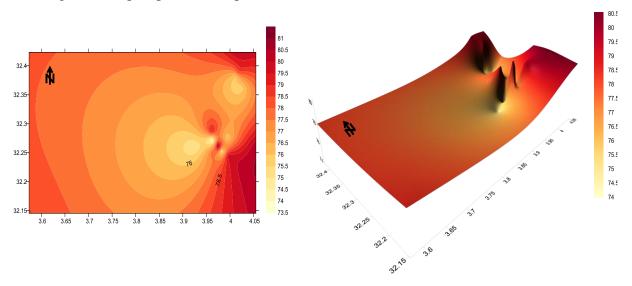


Fig.51: Variation du champ de la température en 3D, à (2000 m) de profondeur

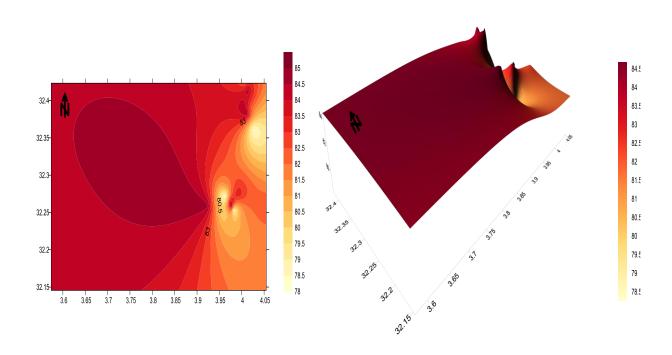


Fig.52: Variation du champ de la température en 3D, à (2600 m) de profondeur

Les couches sédimentaires entre 0-500m et 500m-1000m, qui sont attribuées aux formations du Crétacé sup (Turonien et Sénonien), présentent des espaces importantes des champs de variation des températures et vairées régulièrement entre 35°C et 55°C, en relation avec l'homogénéité du milieu. L'intérêt géothermique et hydrogéologique de ces couches est important en vue de leur profondeur d'exploitation.

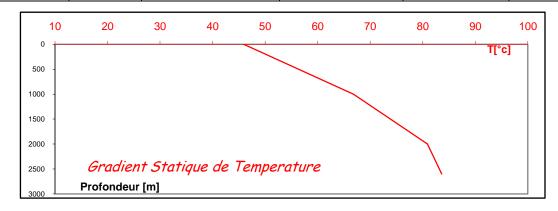
Les profils de température des forages (voir Figure.56 à 71 en annexe) montrent, les mêmes résultats, de petites perturbations peuvent être remarquées sur les courbes, à environ 1000 et 2000 m de profondeur. Les enregistrements présentent des valeurs autour de 56°C et 80°C. Cela pourrait s'expliquer par la présence d'aquifères à ce niveau, avec un mouvement lent de l'eau que l'on attribue aux eaux du Continentale Intercalaire. Par conséquent dans l'intervalle de profondeur entre 2000 et 3000 m, les profiles se fixent au niveau de la valeur 84°C et correspondent à la température de la roche traversée et à l'homogénéité de ce milieu.

5.3.2.5 Log de gradient géothermique

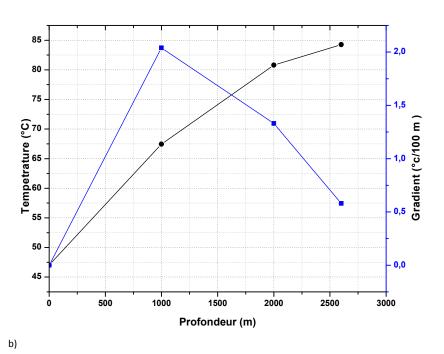
La Terre libère de la chaleur d'origine profonde. De nombreuses manifestations à la surface du globe attestent de la présence de matériaux chauds en profondeur. C'est le cas des sources hydrothermales qui libèrent des fluides chauds. L'augmentation de la température

avec la profondeur est une réalité bien connue des mineurs : plus une mine est profonde, plus il y fait chaud. Le gradient et le flux géothermiques mesurent cette libération d'énergie.

Lorsqu'on analyse la variation de la température avec la profondeur, il est nécessaire de préciser le domaine de profondeur considéré. En effet, à l'échelle de la croûte, la production de chaleur des roches tend à courber le géotherme vers le bas (le gradient est plus fort vers la surface), mais à l'échelle du kilomètre, cette courbure n'est pas perceptible. L'allure linéaire du géotherme est généralement obtenue au-dessous de 300m, mais le domaine des premières centaines de mètres est en revanche le lieu de processus plus complexes puisqu'il fait intervenir les échanges thermiques entre l'atmosphère et le sous-sol, mais aussi les transferts de chaleur associés aux variations de topographie ou au régime hydrologique régional. D'autres processus peuvent également perturber le géotherme. Localement, de brusques augmentations ou diminutions de la température peuvent être reliées à des écoulements de fluide dans des failles qui recoupent le forage. Les écoulements de grande échelle, associés à une topographie importante, peuvent aussi perturber le signal thermique d'équilibre.

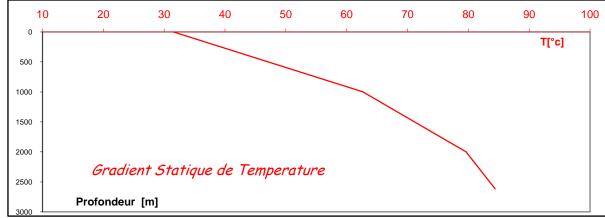

Des forages permettent de mesurer l'élévation de température avec la profondeur, ou gradient géothermique : sa valeur est en moyenne de 3°C pour 100 m, soit 30°C par km. Une telle mesure permet d'évaluer le transfert d'énergie thermique de la profondeur vers la surface. Il dépend du gradient géothermique mais aussi de la conductivité thermique des roches. La façon la plus simple de mesurer le gradient géothermique est d'enregistrer la variation de la température avec la profondeur dans un forage. Les profils (Figure.56 au 71 en annexe) montrent que la température augmente quasi-linéairement lorsqu'on s'enfonce à une profondeur de 3000 m. En moyenne la température augmente de 85 °C/km dans ces forages. Les logs de gradient géothermique enregistrent des valeurs avec quelques variations évidentes entre 1000 et 2000 m de profondeur.

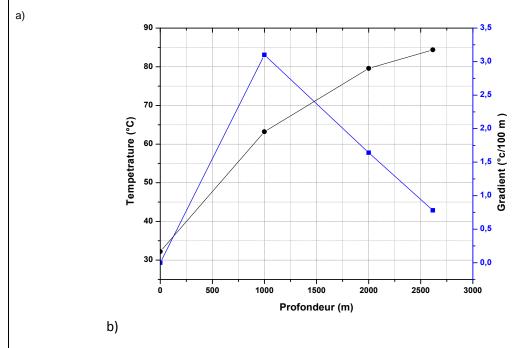
Les gradients sont de 2 à 3°C/100 m. Ils montrent clairement qu'il existe relativement de petites variations dans le gradient de température avec la profondeur. Les logs du gradient géothermique nous ont permis d'identifier 03 intervalles où le gradient géothermique est pratiquement variable. Chaque intervalle représente une valeur de gradient géothermique 1000m, 2000m, 3000m d'une manière décroissante. Les figures représentent des logs des gradients géothermiques qui débutent toute par une valeur de 2°C/100m à la profondeur 1000m dont les températures enregistrées à ce niveau oscillent entre 50 et 60°C, puis


décroissent au niveau de la profondeur 2000m dont la valeur correspondante est de 1°C/100m. Cependant qu'au niveau de la profondeur 3000m la valeur du gradient géothermique est de 0,5°C/100m, cette brusque diminution est liée principalement au passage à des couches qui ne possèdent pas des circulations d'eaux et par conséquent un milieu d'interaction chimique eau - sol peu important, les valeurs obtenues dans ce cas représentent celles réelle de l'encaissant (roche). Nous pouvons dire à ce stade que les logs du gradient géothermique et de température sont modérément stables et croissent au niveau de la profondeur 1000m, l'anomalie existe. La variation de la température en fonction de la profondeur dépend du mode de transfert de chaleur. En régime conductif, la température augmente régulièrement avec la profondeur alors que dans un milieu en convection thermique, les mouvements du fluide tendent à homogénéiser les températures. En revanche, au niveau des limites inférieure et supérieure du fluide en convection, qui sont appelées « couches limites », le transfert de chaleur s'effectue par conduction. Le transfert thermique s'accompagnant de la mise en mouvement de la matière. Elle se met en place lorsque le matériau a le comportement d'un fluide et que, du fait d'un apport énergétique supérieur à ce qu'il peut évacuer par conduction, le matériau situé à la base s'échauffe, devient moins dense que le reste du matériau situé audessus et entame son ascension. Dans le même temps, les matériaux plus froids et plus denses situés près de la surface de refroidissement du système ont tendance à descendre vers le fond. Dans un système conductif chauffé à sa base et refroidi à son sommet, le transfert thermique s'organise par transmission d'une agitation moléculaire de proche en proche sans déplacement du matériau. Dans un tel milieu, l'augmentation de la température avec la profondeur est quasi-constante. En convection, la température est relativement homogène dans le matériau étudié, sauf près de ses surfaces d'échauffement et de refroidissement de sorte qu'entre ces deux secteurs, le gradient géothermique y est relativement faible. La convection est donc plus efficace dans l'organisation d'un transfert thermique que la conduction.

ATK # 1bis X= 3°58'26" /Y=32°15'47"

ENSP		Company:	SONATRACH/DP/ONR		
<u> </u>		Champ:	Aït el khir		
· ·		Well:	ATK # 1bis		
		Test:	PFS	Date :	11/01/2012
		GRADIENTS STATIQUES			
		JAUGE N°	E2343 TOP		
Prof (Depth)	Température	Pression	Gradient	Gradient	
(m)	(°c)	(psi)	(*c/100m)	(psi/m)	
0	47,04	2131,78	0,00	0,00	
1000	67,46	2713,89	2,04	0,58	
2000	80,80	4162,22	1,33	1,45	
2600	84,27	5174,24	0,58	1,69	

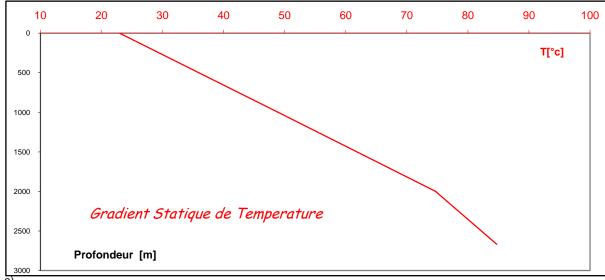


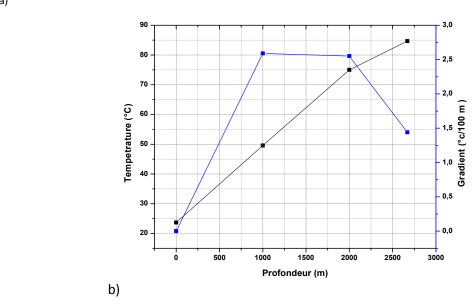


- Fig .53: Représentation graphique a) Températures en fonction de la profondeur b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ATK1 bis

\bullet ONR # 03X= 4°00'47" /Y = 32°24'54"

	EN	N S P	Co	ompany :		SONATRACH	/DP/ONR		
			Cl	namp :		O.NOUMEUR			
			W	ell:		ONR # 03			
			Т	est:		PFS		Date:	17/12/2011
		GRADIENTS STATIQ	<u>UES</u>						
		JAUGE N°		E2343 TO	Ρ				
Depth	Temperature	Pression		Gradient		Gradient			
(m)	(°c)	(psi)		(°c/100m))	(psi/m)			
0	32,21	3237,790		0,00		0,00			
1000	63,21	3610,846		3,10		0,37			
2000	79,58	4431,775		1,64		0,82			
2616	84,39	4919,457		0,78		0,79			
	10 20	30	40	50	60	70	80	٩n	100


- Fig.54: Représentation graphique


 a) Températures en fonction de la profondeur

 b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ATK ONR 03

SDA # 01 X=3°55'24" /Y= 32°15'33"

	ENS	P	Company:		SONA	TRACH/DP/	ONR		
			Champ:		O.NOU	JMEUR			
			Well:		SDA#	01			
			Test:		PFS			Date:	19/12/2011
		GRADIENTS STA	ATIQUES _						
		JAUGE N	1°	E2343 TOP					
Depth	Temperature	Pression		Gradient		Gradient			
(m)	(°c)	(psi)		(°c/100m)		(psi/m)			
0	23,67	902,905		0,00		0,00			
1000	49,57	2344,594	4	2,59		1,44			
2000	75,02	3772,510)	2,55		1,43			
2670	84,68	4921,863	3	1,44		1,72			

- Fig.55: Représentation graphique
 a) Températures en fonction de la profondeur
 - b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier SDA 01

5.4 Discussion des résultats et conclusion

Ce travail de thèse visait

- 1) à mettre en évidence les zones du secteur d'étude de l'Est où les températures des eaux sont suffisamment élevées (supérieur à 40°C) à des profondeurs excédant les 1000m; dans un contexte géothermiques (flux de chaleur et gradient géothermique) moyen à faible.
- 2) à faire le lien entre les anomalies thermiques mises en évidence, la géologie régionale et locale ainsi que les circulations de fluides en profondeur dans le volet hydrogéologique et hydrogéochimique, afin de chercher la source de ce thermalisme.

Dans un premier temps, nous avons exploité les données des forages pétrolières et forages d'eaux, afin de créer une base de données mesurées dans ces forages. Nous avons réalisé des cartes thermiques (flux de chaleur, gradient de températures, conductivité thermique...etc). Cette cartographie a mis en évidence une série d'anomalies thermiques qui varient dans l'espace à travers la région d'étude en fonction de la profondeur ainsi que des profils thermique (de Températures) à différentes profondeurs, correspondant, à la lithologie et aux structures tectoniques majeures de la région.

D'importants flux de chaleur ont été mis en évidence par des études sur les anomalies de chaleur régionales, sur leur évolution au cours du temps. La précision des cartes des températures a été nettement améliorée et comparée à celles précédemment établies. Les valeurs maximales de 90 à 130 mW. m⁻² sont observées au sud dans les régions d'Illizi, d'In Salah et de Tindouf où elles définissent un axe d'anomalie globalement E-W qui semble marquer l'ensemble du Nord-ouest de l'Afrique, signalé par plusieurs auteurs.

Les systèmes hydrothermaux se focalisent quant à eux dans la région Est et ne présentent pas des liens importants avec les flux de chaleur là où ils sont importants, mais ils sont, parfaitement, en relation avec les roches perméables ou fracturées. Les eaux qui circulent en profondeur acquièrent leur température et composition chimique continuellement pendant les transites (interaction entre les fluides et les roches encaissantes). La physique et la chimie des fluides est donc un des principaux centre d'intérêt, notamment en sédimentologie, en magmatologie, en tectonique ou en géothermie, sont donc très utiles pour retracer les propriétés initiales du fluide. Les propriétés physico-chimiques des eaux traitées dans ce volet, témoignent d'une très forte interaction eau- roche.

Les températures des eaux montrent une origine profonde de ces eaux et dépendantes de la température du milieu encaissant. Ces réservoirs se situent en grande partie dans les bassins sédimentaires. L'anomalie régionale visible sur les précédentes compilations existe bien, mais sa forme, ses températures internes et son évolution dans l'espace en fonction de la profondeur sont différentes.

Entre les latitudes 26° et 29° N, on note l'apparition d'un sillon. D'autre part, La limite occidentale de ce domaine correspond à la faille d'Idjerane qui pourrait ainsi se continuer jusqu'à El Goléa au Sud de Ghardaïa. Quant à la limite orientale, elle coïncide par endroit seulement avec des failles de moindre importance.

Le gradient moyen varie de 2 à 4°C/100m dans le Bassin, et enregistre au sud de la région d'étude, auprès d'El Goléa, des valeurs de 4.19°C/100 m. Les valeurs des gradients à différentes tranches de profondeur montrent que celui-ci est variable verticalement sur une même zone. Les gradients géothermiques obtenues à partir des forages pétroliers, dans la zone de Zelfana au NE de Ghardaïa (Les gisements pétroliers d' Oued Noumer, Ait kheir, Makouda, Sidi Mezghich et Djorf), dévoilent une probabilité de l'existence d'une anomalie, des valeurs qui oscilles entre 0 et 2.50 °C/100 m avec des températures entre 20°C et 85°C au niveau des profondeurs correspondantes des couches internes. Les profils toujours 03 phases de changement au niveau des profondeurs des températures présentent respectivement de 0 à 1000m (formations géologiques du Crétacé sup), de 1000 à 2000m (formations géologiques du Crétacé inf) et de 2000 à 2600m (formations géologiques du Jurassique et Trias). Ces phases sont dues probablement au changement lithologique ou peut être à l'existence de failles. La valeur la plus élevée du gradient géothermique est enregistrée entre les niveaux des profondeurs 1000m et 2000m, correspondant aux valeurs des températures des couches inferieur du Continentale Intercalaire, elles indiquent températures entre 68°C et 80°C, liées probablement à la circulation des eaux chaudes à l'intérieur de ces couches.

Concernant les zones potentiellement intéressantes pour des températures de 85°C, se sont celles atteintes à 2,5km de profondeur (formations du Jurassique et Trias). Ces températures sont suffisantes pour une exploitation en géothermie moyenne à basse énergie à des profondeurs qui entrent dans les gammes ciblées par ce domaine.

Au sujet de l'apparition des anomalies, les variations de températures en profondeur peuvent être dues à de nombreux effets agissant à différentes échelles. Comme le montrent les modèles thermiques, les anomalies régionales verticales semblent être partiellement liées à une remontée de la base du mésozoïque et à une grande épaisseur de sédiments. Par contre les anomalies à une échelle horizontale d'une centaine de kilomètres semblent se faire par l'intermédiaire de sédiment.

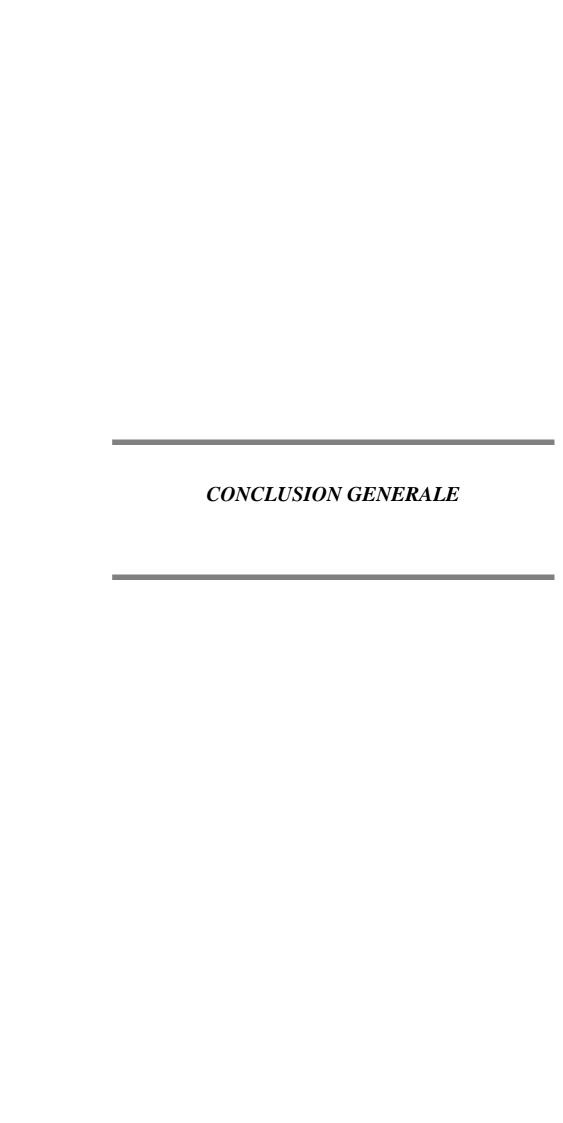
L'interprétation des anomalies séparées par quelques dizaines de kilomètres doit tenir compte de phénomènes plus locaux. Elles peuvent par exemple s'expliquer par la présence d'épaisses séries sédimentaires isolantes.

Nous avons illustré les variations de température locales, celles observées au niveau de Zelfana, au NE de la zone d'étude, où la chaleur semble être (ou avoir été) transportée le long de la couche aquifères ou le long des failles. Les failles agissent comme des conduits pour les fluides depuis des profondeurs de plusieurs kilomètres jusqu'en surface.

L'étude montre que des anomalies de plusieurs dizaines de degrés peuvent facilement apparaître au sein des zones de faille, en particulier lorsque l'on tient compte des variations latérale et verticale de la perméabilité. Les circulations hydrothermales pourraient favoriser les migrations des anomalies observées sur les cartes et profils thermiques.

Il est possible que de petites hétérogénéités entrainent des contrastes de propriétés thermiques significatifs. Cela peut être le cas des formations salifères qui sont d'excellents conducteurs et qui sont nombreux dans le Bassin. Ces formations sont cependant à des profondeurs dépassant largement celles que nous avons investies dans cette étude. Afin de tenir compte des interactions entre sédiments poreux, la carte des conductivités moyennes des roches montre que la répartition des roches conductrices de chaleur caractérise surtout la partie Sud (Hassi El gara), de la région d'étude, ce qui a engendré des valeurs élevées des flux de chaleurs. La conductivité thermique décroît avec l'augmentation de la porosité et que de la relation entre la conductivité thermique et porosité est proche de l'équation empirique de la moyenne harmonique. Dans le cas de Sud de la zone d'étude, entourée de part et d'autre de sédiments, les anomalies thermiques générées par les circulations hydrothermales sont plus grandes dans 1'Est et le NE que dans le cas de sud. Nous citons également le rôle de la compaction sur les propriétés thermiques des sédiments. Les sédiments argileux peuvent générer des contrastes locaux des transferts thermiques verticaux. Les anomalies de température se diffusent latéralement avec le temps, créant des zones anormales de plusieurs

kilomètres de large jusqu'à ce qu'une augmentation de la perméabilité déclenche une nouvelle mise en place de la convection. Les anomalies que nous montrons sur les cartes de températures profondes peuvent donc être dues à des circulations ayant cessé il y a plusieurs milliers d'années. Celles-ci subissent également des migrations au cours du temps. Le rôle de la convection n'exclue pas l'effet probable de circulations à grande échelle au sein des aquifères qui peut être à l'origine d'anomalies thermiques plus larges. La convection peut intervenir de deux manières au sein de ces réservoirs : en convection libre (guidée par une différence de températures) et en convection forcée (différence de pression). La région présente également des couches renfermant des quantités plus ou moins importantes de sel, caractérisé par de fortes valeurs de conductivité thermique.


Cette étude tient compte d'une décroissance permanente de la production de chaleur crustale due à un épisode d'extension. Ces auteurs concluent sur le fait que l'amincissement d'une croute précédemment épaissie est responsable d'une augmentation globale du flux de chaleur à l'échelle de la lithosphère. L'anomalie thermique positive du Sud peut être due à des phénomènes géologiques de sub-surface ou à des processus à plus grande échelle, crustale et lithosphérique (épaisseur des sédiments, remontée des formations géologiques ; conductivité thermique et flux mantellique). La carte des profondeurs des forages pétroliers présente des profondeurs qui oscillent entre 1500m et 4100m. Ces forages qui captent le gisement pétrolier au niveau de la base des couches du mésozoïque, montrent clairement que ces couches s'approchent à la surface au sud de la région d'étude et s' approfondissent de plus en plus au NE, hypothèse à travers laquelle en constate l'existence d'une anomalie, et concorde parfaitement avec les valeurs obtenus des flux et gradient jugées élevées au sud (Hassi el Gara) et faible à moyennes au centre à l'Est et au NE de la zone d'étude.

Les valeurs des températures des eaux obtenues oscillent entre 24°C et 51°C ne correspondent pas parfaitement avec des anomalies profondes (batholite, roches chaudes ...etc). Ces températures acquises par les eaux de l'Albien, en relation parfaite avec la profondeur de la couche réservoir. Les valeurs des profondeurs du toit (voir carte des profondeurs forages d'eaux), montrent au Sud (El Goléa) de la zone d'étude, des profondeurs faibles avec un toit de l'Albien plus proche de la surface du sol. Cependant que les valeurs des flux de chaleurs et du gradient géothermiques enregistrées sont élevées. Les températures des eaux obtenues, au NE de la zone d'étude (Zelfana), sont élevées, elles témoignent des eaux thermales, dont la température dépasse les 40°C (voir carte température des eaux), par

contre les flux de chaleurs et les gradients géothermiques obtenus sont faibles à moyennes. Cependant que la profondeur du toit de la couche réservoir de l'Albien est grande.

Partant de ces dernières données, nous affirmons que l'hypothèse de réchauffement des eaux du Continental Intercalaire « nappe Albien », dans la région de Ghardaïa, est en relation avec la profondeur (notion du gradient géothermique) de la couche réservoir non à un batholite profond. L'hypothèse de circulation des eaux chaudes profondes persiste est donc le mélange d'eaux aussi affirme une anomalie positive. Contrairement aux valeurs des flux et gradient dans la partie sud de Ghardaïa qui sont en relation directe avec la remontée des formations anciennes (base du mésozoïque), à l'épaisseur des sédiments conductrice de la chaleur et à l'amincissement de la lithosphère.

D'un point de vue industriel, ce travail représente la première étape d'exploration d'une étude de potentiel géothermique. Une fois les températures du sous-sol connues, des études socio- économiques et géologiques à l'échelle des réservoirs pourraient compléter ce travail afin de déterminer les ressources géothermiques exploitables dans le Bassin du Sud et l'Est. Les températures du sous- sol témoignent d'un potentiel élevé en tenant compte des défis et des opportunités offertes par l'exploitation de la géothermie surfacique et profonde, il apparaît comme une priorité, notamment afin d'intégrer dès que possible l'exploitation des ressources géothermiques de très grande profondeur dans la planification future. En vue de l'importance des aquifères du Paléozoïques et Précambrien et de leur intérêt géothermale.

CONCLUSION GENERALE

L'étude est fondée sur des données de géologie, d'hydrogéochimie (sol et eau) et de la prospection géothermique, qui se base fondamentalement sur la détermination duflux de chaleur et du gradient géothermique, qui sont nécessaires pour l'évaluation du potentielthermique des réservoirs poreux ou fracturés, et pour envisager les anomalies qui dépendent des variations des températures.

La profondeur du toit de l'Albien augmente au centre et à l'Est et atteint des valeurs supérieures à 1100m, par contre, au Sud elleest inférieure à 100m.

Les couches profondes salines, imperméables, du Crétacé supérieures et inferieur (Jurassique et Trias), ne constituent pas une importance du point vue géologique et hydrogéologique, mais l'importance est mise en évidence, dans l'intérêt géothermique, pour leurs caractéristiques thermiques et transfert de chaleur.

Cette étude a révélé certaines variations régionales dans le gradient géothermique et tendances de flux de chaleur. En générale, les variations de flux de chaleur correspondent étroitement aux variations des gradients géothermiques et contrairement aux variations de la chaleur des eaux profondes du Continental Intercalaire. La remontée des couches profondes de la base du mésozoïque dans le Sud de la zone d'étude a grandement influencé les gradients thermiques et les variations des flux de chaleur. Les valeurs des flux de chaleur, augmentent au Sud à "El Goléa" jusqu'à atteindre une valeur de 108 mW/km⁻². Elles diminuent au centre de la région d'étude et oscillent entre 62 mW/km⁻²et 70 mW/km⁻².Les changements temporels, dans les gradients thermiques et l'écoulement de chaleur sont liéesà l'activité tectonique, à l'épaisseur et à la composition de la séquence sédimentaire. Une comparaison des flux de chaleur et des gradients géothermiques avec la répartition des sédiments, montre que les zones, où la circulation de la chaleur est grande, correspond aux zones du Sud de la région d'étude, qui se caractérisent par des conductivités thermiques élevéesdes roches. De même les zones où les flux de chaleur et des gradients thermiques faibles coïncident parfaitement avec des valeurs des conductivités thermiques faibles. Par conséquent, ceci signifie que les variations lithologiques et les conductivités thermiques ont une très grande influence sur les variations des champs thermiques dans la zone d'étude.La conductivité thermique des roches est clairement influencée par la porosité et l'épaisseur de la couche sédimentaire.

Les variations géothermiquesdans la région de Ghardaïaseraient, principalement, d'origine tectonique et sedimentologique pour les flux de chaleur, chimiqueset exclusivement à l'effet de la profondeur pour les gradients géothermiques.

L'hydrogéochimie des eaux du Continental Intercalaire indique des interactions eauroche à forte température avec mise en solution de minéraux et montre l'existence de trois types de famille des facies :

- 1. 1a famille des eaux chlorurées qui englobe les faciès, chloruré calcique et chloruré magnésien et représente 39 % de l'ensemble des échantillons ;
- 2. la famille des eaux sulfatéesmontre le rôle dominant des sulfates, d'où l'individualisation de ce type de famille est aussi à tendance sodique et calcique et présente 58% de l'ensemble des échantillons ;
- 3. la famille des eaux bicarbonatéessodique et calcique, ne représente que 2 % de la totalité des points d'eaux.

Les indices de saturationsoulignent l'importance des interactions entre l'eau et les carbonates d'une part et les évaporites d'autre part.Les eaux de la région présentent des teneurs faibles en HCO₃⁻. Le Ca²⁺ provient essentiellement de la dissolution des sulfates et n'est pas ou peu lié à la dissolution des carbonates.La circulation des eaux en profondeur et leur contact avec des terrains argileux ou marneux et évaporitiques, conduit souvent à des échanges aboutissant,parfois, à un changement total dans le chimismeet de la minéralisation originelle de l'eau acquise dans le réservoir.

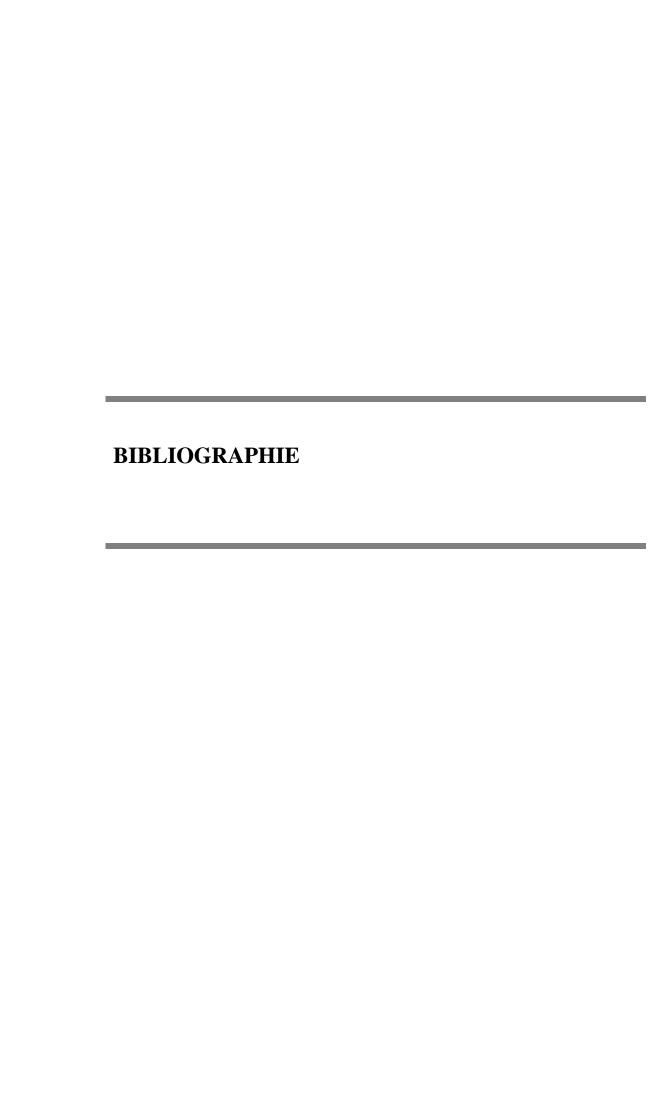
L'étude des variations climatiques et leurs impacts sur la recharge des nappes sahariennes a révéléque les conditions climatiques anciennes, plus humides, seraient responsables de ces stocks d'eau dans les couches aquifères, étendues et épaisses des nappes sahariennes. Les âges des eaux du CI sont déterminés par l'activité en C ¹⁴. Si l'on admet que ces dernières appartiennent bien à la catégorie des « eaux fossiles », l'anomalie des âges s'explique parfaitement : le CI est ici « rechargé », non pas par des eaux actuelles mais par les eaux anciennes.

Du point de vu hydrodynamique, le tracé des lignes d'écoulement deseaux du CI, élaboréà partir des donnéespiézométriques montre :

- des axes d'écoulement de direction Ouest-Est ;
- des zones de dépression, qui s'expliquent par l'exploitation irrégulière et abusive de la nappe.

La minéralisationtémoignedes eaux salines au Nord du bassin, due principalement à l'importance de l'interaction eau-roche.

Les températures des eaux profondes varient de 41°C à 51°C dans le NE, de 30°C à l'Ouest et au Centre et ne sont de 24°C seulement dans le Sud de Ghardaïa, à El Goléa.


Le gradient géothermique de la section profonde, dans le Sud de la zone d'étude, présente une valeur moyenne de 4.5° C/ km. Dans l'Est de la région (Zelfana) la valeur est de 2.9° C/km seulement.

La région de Ghardaïa s'étend sur une superficie de 86105 km². Alors, que la durée de la radiation solaire quotidienne est de 8378 Wh / m², équivalent à 14 heures et 08 minutes. Les flux d'énergie surfaciques sont importants. L'évaluation montre clairementque le potentiel de la géothermie est très important. Les perspectives d'exploitation de ce potentiel sont très encourageantes, puisque d'une part les techniques de faible profondeur représentent un marché en plein essor, profitant d'un sous-sol favorable, et d'autre part les structures géologiques profondes présentent un potentiel réel, que des investigations complémentaires permettront de mieux évaluer.

Dans les bassins sahariens, à couverture sédimentaire d'âge paléozoïque ou plus récent, le substratum n'a été reconnuque par de rares sondages, notamment dans les régions d'Illizi et de l'Ahnet. Les épaisseurs des séries sont de 1000 à 8000 m, leur nature, les déformations tectoniques et la subsidence, ont modelé la Plate-forme saharienne en un certain nombre de bassins répartis dans la province occidentale, la province orientale et la province triasique. Du point de vue pétrolier, on distingue quatre provinces plus ou moins maturés:

- ➤ le Sahara Est, à gisements connus d'huile et de gaz, recèle encore un bon potentiel de découvertes;
- ➤ le Sahara Central, considéré comme gazifière (gisements d'importance variable) mais où de récentes découvertes d'huile permettent d'espérer d'autres développements;
- ➤ le Sahara Ouest est surtout considéré à gaz, mais ses ressources demeurent pratiquement inconnues;

Pour conclure, nous avons consolidé ces bases géologiques,hydrogéologiques et géochimiques existantes sur le CI. Nous avons interprété de nouvelles données et hypothèsesde travail. Les résultats obtenus ont été associé avec l'aspect géothermiquede la région, il a été misen évidence, que la profondeur serait à l'origine de réchauffement des eaux du Continentales Intercalaire. Enfin, compte tenu des enjeux et des perspectives offertes par l'exploitation de la géothermie profonde, il apparaît comme priorité d'apprendre les techniques modernes d'exploration y compris, afin d'intégrer dès que possible l'exploitation des ressources géothermiques de grande profondeur.

- ADE. (2015). Algérienne des eaux, rapport interne d'analyse des eaux, willayas de Ghardaïa.
- Abdoulaye Demba N'diaye, KhadijettouMint Mohamed Salem, Mohamed Brahim El Kory, Mohamed Ould Sid' Ahmed OuldKankou, Michel Baudu. (2014). Contribution à l'étude de l'évolution Spatio-temporelle de la qualité physicochimique de l'Eau de la Rive droite du fleuve Sénégal, J. Mater. Environ. Sci. 5 (1) 320-329.
- Aït-Hamou, F., &Dautria, J. M. (1994). Le magmatisme cénozoïque du Hoggar: une synthèse des données disponibles. Mise au point sur l'hypothèse d'un point chaud. Bulletin du Service Géologique de l'Algérie, 5(1), 49-68.
- Aliev, M., Ait Laoussine, N., Avrov, V., Aleksine, G., Barouline, G., Lakov-lev, B., &Medvedev, E. (1971). Structures géologiques et perspectives en pétrole et en gaz du Sahara Algérien. Sonatrach éditions.
- ANDI. (2013). Agence Nationale de Développement de l'Investissement, investissement in Algeria 2013.
- ANRH. (2006). Agence nationale des ressources hydrauliques, Inventaire des points d'eaux de la willaya de Ghardaïa, Algérie. Document interne.
- ANRH. (2011). Agence nationale des ressources hydrauliques, Inventaire des points d'eaux de la willaya de Ghardaïa, Algérie. Document interne.
- Anonyme. (1987). La nappe du Continental Intercalaire, Sahara, Sud Algérie. Bull. BRGM, Section 3: hydro. Géolog. Ing. Vol.3, Num. 11, pp. 97,101.
- Arnórsson, S.(2000). The quartz and Na/K geothermometers. I. New thermodynamic calibration. In Proceedings of the World Geothermal Congress 2000, Kyushu-Tohoku, Japan (pp. 929-934).
- Aumassip, G., Dagorne, A., Estorges, P., Lefevre-Witier, P., Mahrour, F., Nesson, C., & Trecolle, G. (1972). Aperçu sur l'évolution du paysage quaternaire et le peuplement de la région d'Ouargla. Libyca, xx, 223.
- Baba-Sy, O.(2005). Recharge et paléorecharge du système aquifère du Sahara septentrional. Th. Doct., Université Tunis El Manar. FST Tunis, Tunisie, 277p.
- Barelli, A., Ceccarelli, A., Dini, I., Fiordelisi, A., Giorgi, N., andLovari, F.(2010). A review of the Mt.Amiata geothermal system, Italy. Proceedings of World Geothermal Congress, Bali, Indonesia.
- Bayer, R., & Lesquer, A. (1978). Les anomalies gravimétriques de la bordure orientale du craton ouest africain; géométrie d'une suture pan-africaine. Bulletin de la société Géologique de France, 7(6), 863-876.
- Bel, F., & Cuche, D. (1969). Mise au point des connaissances sur la nappe du Complexe Terminal. Projet ERESS; Ouargla.

- Bermond, R., et Perrdon, C. (1979). Paramètres de la qualité des eaux. Ministère de l'environnement Paris, 259.
- Beuf, S. (1971). Les grès du Paléozoïque inférieur au Sahara: sédimentation et discontinuités; évolution structurale d'un craton. Editions Technip.
- Birch, F., Roy, R.F., Decker E.R. (1968). Heat flow and thermal history in New England and New York. Studies of Appalachian Geology, E. An. Zen. Ed. Interscience, New York, p. 437-451.
- Blackwell, D. D., Bowen, R. G., Hull, D. A., Riccio, J., & Steele, J. L. (1982). Heat flow, arc volcanism, and subduction in northern Oregon. *Journal of Geophysical Research: Solid Earth*, 87(B10), 8735-8754.
- Bouchareb Haouchine, F.Z. (1993). Apport de la géothermométrie et des données de forage profonds à l'identification des réservoirs géothermiques de l'Algérie du nord. Mémoire de Magister, Université des Sciences et de la Technologie Houari Boumediene, Alger, 105p.
- Bracène, R., & de Lamotte, D. F. (2002). The origin of intra plate deformation in the Atlas system of western and central Algeria: from Jurassic rifting to Cenozoic–Quaternary inversion. Tectono physics, 357(1), 207-226.
- Bullard, E.C. (1940). The crust by the inequalities of height. Mont. Nat. Astr. Soc. Geophys. Suppl. 4, p. 300-362.
- Busson, G. (1971). Principes, méthodes et résultats d'une étude stratigraphique du Mésozoïque saharien. Universite de Paris.
- Busson, G. (1970). Le Mésozoïque Saharien. 2. Essai de synthèse des données des sondages algéro-tunisiens: 2. Éd. du Centre National de la Recherche Scientif.
- Busson, G. (1998). Sedimentary dynamics of the epi continental platform: middle Cretaceous of the Algero–Tunisian Sahara. In: Dynamics and Methods of Study of Sedimentary Basins, Chapter 8.Association of French Sedimentologists, Oxford and IBH Publishing Co. Pvt. And Editions Technip, Paris, pp. 111–128.
- Busson, G., Burollet, P.F. (1973). La Limite Permien-Trias sur la Plate-forme Saharienne (Algérie, Tunisie, Libye). In: Logan, A., Hill, L.V. (Eds.), the Permian an Triassic System sand their Mutual Boundary, vol. 2. Memoir Canadian Society of Petroleum Geologists, pp.74–88.
- Busson, G. (1967). Le Mésozoïque Saharien Ire partie : l'extrême-Sud tunisien. Publ. du centre de Rech.sur les zones arides, C.N.R.S. Paris, série géologie, n°8,194 p., 18 fig., 4 tabl.,3pl.h.t. En noir, 4pl.h.t en couleurs.
- Caby, R. (1989). Precambrian terranes of Benin-Nigeria and northeast Brazil and the Late Proterozoic south Atlantic fit. Geological Society of America Special Papers, 230, 145-158.

- Caby, R., Bertrand, J. M. L., & Black, R. (1981). Pan-African ocean closure and continental collision in the Hoggar-Iforas segment, central Sahara. Developments in Precambrian Geology, 4, 407-434.
- Caby, R. (1989). Precambrian terranes of Benin-Nigeria and northeast Brazil and the Late.
- Caire, A. J. (1957). Etude géologique de la région des Biban (Algérie) (Vol. 1). Service de la carte géologique de l'Algérie.
- Capot-Rey, R., & Cornet, A. (1963). Blaudin de Thé B. Glossaire des principaux termes géographiques et hydrogéologiques sahariens, 1042.
- Centre de radioprotection et de sureté (CRS). (1993). 02 Bd F. Fanon, B.P. 399 Alger-Gare, Algérie, document interne.
- Cermak, V. (1977).Geothermal models of the Bohemian Massif (Variscan) and the west ernarpathians (alpine), and their mutual relation. Tectonophysics, v. 41, p. 127-137.
- Chabour, N., Benali, A. Dj. (1983). Etude hydrogéologique de nappes superposées dans la région de Ouled Djellal (Willaya de Biskra). Mémoire de fin d'étude d'ingénieur d'état en hydrogéologie, p 27-30.
- Chery, J., Lucazeau, F., Daignieres, M., &Vilotte, J. P. (1990). The deformation of continental crust in extensional zones: a numerical approach. The potential of deep seismic profiling or hydrocarbon exploration: Paris, Editions Technip, 35-44.
- Conrad, G., Marce, A., & Olive, P. (1975). Mise en évidence, par le tritium, de la recharge actuelle des nappes libres de la zone aride Saharienne (Algérie). Journal of Hydrology, 27(3-4), 207-224.
- Conrad, J. (1969). L'évolution continentale post hercynienne du Sahara Algérien (Saoura, Erg-Chèche, Tanezrouft, Ahnet, Mouydir). Ed. C.N.R.S. (C.R.Z.A.). Service Géologique 10, P 1 -127.
- Conrad, J. (1972). Distension jurassique et tectonique eo-crétacé sur le Nord-Ouest de la plate forme africaine (bassin de Reggan, Sahara Central). Comptes Rendus Académie Sciences, Paris 274, 2423-2426.
- Conrad, J. (1973). Les grandes lignes stratigraphiques et Sédimentologique du Carbonifère de l'Ahnet Mouydir (Sahara central algérien). IFP Revue, vol. XXVIII, pp. 3–18. n°1.
- Conrad, M. (1981). La part des déformations post-hercyniennes et de la néotectonique dans la structuration du Sahara central algérien, un domaine relativement mobile de la plate-forme africaine. C. R. Acad. Sci., Paris, 292, II, pp. 1058-1056.
- Conrad, J. (1984). Les séries carbonifères du Sahara central algérien. Stratigraphie, sédimentation, évolution structurale. Th. Doc., Aix Marseille III Univ., France, 359 p.

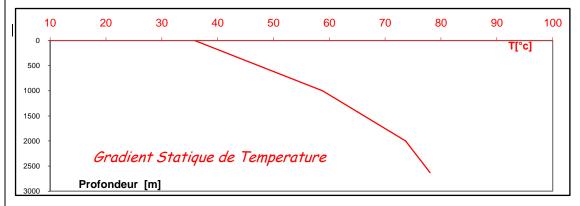
- Conrad, J., Lemosquet, Y. (1984). Du craton vers sa marge: évolution sédimentaire et structurale du bassin Ahnet-Timimoun-Bechar (Sahara Algérien) au cours du Carbonifère. données paléoclimatiques. Bull. Soci. Geol. France, Serie 7, 26 (6).987-994.
- Conrad, J., Massa, D., Weyant, M.(1986). Late Devonian regression and Ear Carboniferous transgression on the Northern African Platform. Annales de la Socie" te" Côte, M. (1996). Pays, paysages, paysans d'Algérie. CNRS Editions.
- Conrad, G., & Fontes, J. C. (1972). Circulations, aires et périodes de recharge dans les nappes aquifères du Nord-Ouest saharien: Données isotopiques (180, 13C, 14C). CR Acad. Sc, 275,165-168. Proterozoic south Atlantic fit. Geological Society of America Special Papers, 230, 145-158.
- Cornet, A. (1964). Introduction à l'hydrogéologie saharienne. Revue de géographie physique et de géologie dynamique(2), Vol. 6, N°1, pp. 5-72.
- Cornet, A. (1964). Introduction à l'hydrogéologie saharienne. Rev Géogr Phys et Géol Dyn, 6(1), 5-72.
- Cornet, A., &Gouskov, N. (1952). Les eaux du Crétacé inférieur continental dans le Sahara Algérien (nappe dite" Albienne").
- Dautria, J. M., &Lesquer, A. (1989). An example of the relationship between rift and dome: recent geodynamic evolution of the Hoggar swell and of its nearby regions (Central Sahara, Southern Algeria and Eastern Niger). Tectonophysics, 163(1-2), 45-61.
- Deliste C.E.et Schmidt J.W. (1977). The effects of sulphur on water and aquatic life in Canada. Dans: Sulphur and its inorganic derivatives in the Canadian environnement, NRCC No. 15015, comité associé sur les critères scientifique concernant l'état de l'environnement, conseil national de recherches du Canada, Ottawa.
- Dib, A. H. (1985). Le thermalisme de l'Est algérien. Thèse de Doctorat troisième cycle. IST.USTHB. Alger. 281 pages.
- Dreyfus, G., Martinez, J. M., Samuelides, M., Gordon, M. B., Badran, F., Thiria, S., & Hérault, L. (2002). Réseaux de neurones-Méthodologie et applications.
- Droubi, A., Cheverry, C., Fritz, B., & Tardy, Y. (1976). Géochimie des eaux et des sels dans les sols des polders du lac Tchad: Application d'un modèle thermodynamique de simulation de l'évaporation. *Chemical Geology*, 17, 165-177.
- Dubief, J. (1968). Le climat du Sahara (2 tomes). Institut Recherche Sahara, Alger (Memhs).
- Durand-Delga, M. (1956). L'évolution de l'Archipel de la Galite au Néogène et au Quaternaire. Comptes Rendus de l'Académie de Sciences Paris, 243, pp.507-509.
- Durand -Delga, M. (1969). Mise au point sur la structure du nord-est de la Berbérie. Publ. Serv. Carte géol. Algérie, N.S., Bull. Soc. Géol. Fr., (7), XIII, pp. 328-337.

- Dutil, P. (1971). Contribution à L'étude Des Sols Et Des Paléosols Sahariens (Doctoral dissertation, Thèse d'état de l'Université de Strasbourg).
- Edmunds, W.M. & Walton, N.R.G. (1980). A geochemical and isotopic approach to recharge evaluation in semi-arid zones, past and present. pp. 47-68. in "Arid Zone Hydrology, investigations with isotope techniques". IAEA Vienne.254.
- Edmunds, W.M. & Gaye, C.B. (1994) .Estimating the spatial variability of recharge in the Sahelusing chloride. J. Hydrol, 156, 47-59.
- Edmunds, W.M., Shand, P., Guendouz, A.H., Moulla, A.S., Mamou, A., Zouari, K.(1997). Recharge characteristics and groundwater quality of the Grand Erg Oriental Basin, Final report. EC (Avicenne) Contract CT93AVI0015, BGS Technical report WD/97/46R, Hydrogeology Series, 87p.
- Edmunds, W.M., Gunedouz, A.H., Mamou, A., Moula, A., Shands, P., and Zouari, K.(2003). Groundwater evolution in the continental intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Applied Geochemistry 18; pp. 805-822.
- Edmunds, W. M., & Walton, N. R. G. (1980). A geochemical and isotopic approach to recharge evaluation in semi-arid zones, past and present. Arid-zone hydrology, investigation with isotope techniques. International Atomic Energy Agency, Vienna, 47-68.
- Edmunds, W. M., Guendouz, A. H., Mamou, A., Moulla, A., Shand, P., &Zouari, K. (2003). Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Applied Geochemistry, 18(6), 805-822.
- Fabre J., Kazi-Tani N. (1987). Part de l'héritage dans la déformation Phanérozoïque du Sahara Central et Occidental (inédit).
- Fabre, J. (1988). Les séries Paléozoïques d' Afrique: une approche. Journal Africain Earth Sciences 7 (1), p. 1-40.
- Fabre, J. (2005). Géologie du Sahara occidental et central. Musée royal de l'Afrique centrale-Belgique. Géoscience, p. 1-572.
- Fabre, J. (1988). Les séries Paléozoïques d'Afrique: une approche. Journal of African Earth Sciences (and the Middle East), 7(1), 1-40.
- Fabre, J. (1976).Introduction à la géologie du Sahara Algérien et des régions voisines. Soc. Nat. Ed. SNED. Alger, 142p. 163 fig., 4tabl. 4 pl.
- Flandrin, J. (1957). Le pétrole et l'eau dans le Sahara septentrional algérien. Revue de géographie de Lyon, 32(4).
- Fontaine, J. (1976). L'évolution de la population du Sahara algérien de 1954.
- Fournier, R. O., & Truesdell, A. H. (1973). An empirical Na, K, Ca geothermometer for natural waters. Geochimica et Cosmochimica Acta, 37(5), 1255-1275.

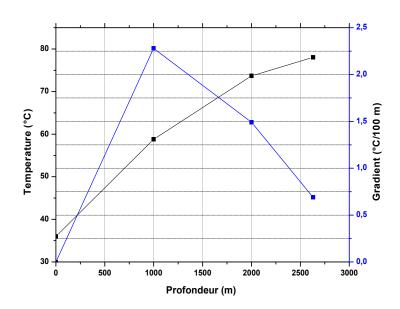
- Fourier, J. (1822). Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils.
- Franco, A., &Donatini, F.(2017). Methods for the estimation of the energy stored in geothermal reservoirs. In Journal of Physics: Conference Series Vol. 796, No. 1, p. 012025. IOP Publishing.
- Frédéric Chabert. (1980). Environnement thermique des structures semi-enterrées. Extrait de la thèse de Frédéric Chabert « Habitat enterré ». Unité Pédagogique d'Architecture Groupe ABC.
- Garibaldi, C. (2010). Détermination des températures profondes du Bassin du Sud-Est de la France et relations entre anomalies thermiques, géologie et circulations hydrothermales par modélisation 3D (Doctoral dissertation, Université Nice Sophia Antipolis).
- Gautier, G., & Gousgov, M. (1951). Le forage de Guerrara. Deuxième sondage d'étude et premier grand sondage d'exploitation de la nappe Albienne jaillissant dans le Bas-Sahara. Terre et Eaux. Alger, 38-42.
- Glangeaud, L. (1932). Etude géologique de la région littorale de la province d'Alger. Imprimerie de l'Université Y. Cadoret.
- Gonfiantini, R., Conrad, G., Fontes, J. C., Sauzay, G., & Payne, B. R. (1974). Etude isotopique de la nappe du continental intercalaire et de ses relations avec les autres nappes du Sahara septentrional. Isotope techniques in ground water hydrology, 1, 227-241.
- Guendouz, A. (1985). Contribution à l'étude géochimique et isotopique des nappes profondes du Sahara Nord-Est Septentrional (Algérie). Thèse de troisième cycle présentée à l'université de Paris –Sud, le 18/07/1985, 243p.
- Guendouz, A., Moulla A.S., Edmunds, W.M., Zouari, K., Shands, P., and Mmamou, A. (2003). Geochemical and isotopic evolution of water in the complex terminal aquifer in Algerian Sahara. Hydogeology Journal. 11. 483-495.
- Guiraud, R., Bosworth, W., Thierry, J., &Delplanque, A. (2005). Phanerozoic geological evolution of Northern and Central Africa: an overview. Journal of African Earth Sciences, 43(1), 83-143.
- Guiraud, R. (1977). La néotectonique des régions ouest-constantinoises. Bulletin de laSociété Géologique de France, 7(3), 645-650.
- Hadiouche, O., Jobert, N., & Montagner, J. P. (1989). Anisotropy of the African continent inferred from surface waves. Physics of the earth and planetary interiors, 58(1), 61-81.
- Kappelmeyer, O., Haenel, R. (1974). Geothermics with special reference to application. Geoexploration Monograph Ser. 1, n°4, Gebruder Borntraeger, Berlin-Stuttgart, 238 p.
- Kaya, E., Zarrouk, S. J., and O'Sullivan, M. J. (2011). Reinjection in geothermal fields: A review of worldwide experience. Renewable and Sustainable EnergyReviews 15, 47–68.
- Kazi-Tani, N. (1986). Evolution géodynamique de la bordure nord-africaine : le domaine intraplaque nord-algérien. Approche méga séquentielle. Thèse Doc. -Sci., Univ. Pau, 784p.

- Kedaid, F. Z., Rezig, M., Abouriche, M., & Fekraoui, A. (1988). Carte géothermique Préliminaire du Nord de l. *Algérie au 1/100000*.
- Lachenbruch, A.H. (1970). Crustal temperatures and heat production implications of the linear heat flow relation. J. Geophys. Res., v. 75, p. 3291-3300.
- Legrand, M., &Delmas, R. J. (1985). Spatial and temporal variations of snow chemistry in Terre Adelie (East Antarctica). Annals of Glaciology, 7(1), 20-25.
- Lelubre, M. (1952). Recherche sur la géologie de l'Ahaggar centrale est occidental (Sahara central). Bull Serv. Carte Géol., Algérie, (2), Stratigr., descriptions région, 22 t.1 : 354 p, t. 2.
- Lelubre, M. (1969). Chronologie du Précambrien au Sahara central. Geol. Assoc. Can. Spec. Pap., 5, 27-32.
- Lesquer, A., Takherist, D., Dautria, J. M., &Hadiouche, O. (1990).Geophysical and petrological evidence for the presence of an "anomalous" upper mantle beneath the Sahara basins (Algeria). Earth and Planetary Science Letters, 96(3-4), 407-418.
- Lesquer, A., Bourmatte, A., &Dautria, J. M. (1988). Deep structure of the Hoggardomaluplift (central Sahara, south Algeria) from gravity, thermal and petrological data. Tectonophysics, 152(1-2), 71-87.
- Liégeois, J. P., Latouche, L., Boughrara, M., Navez, J., & Guiraud, M. (2003) .LATE Ameta craton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3), 161-190.
- Lucazeau, F. (1979). Phénomènes de perturbations thermiques dues à des circulations karstiques dans la région de Montpellier. D.E.A., U.S.T.L. Montpellier.
- Lucazeau, F., Ben Dhia, H. (1989). Preliminary heat flow density data from Tunisia and Pelagiansea. Can. J. Earth Sci., v. 26, p. 993-1000.
- Makhous, M., &Galushkin, Y. I. (2003). Burial history and thermal evolution of the northern and eastern Saharan basins. AAPG bulletin, 87(10), 1623-1651.
- Margat, J.,&Saad K. F. (1982). L'utilisation des ressources en eau souterraine non renouvelables pour le développement. 4eme conférence internationale sur la planification et la gestion des eaux. Marseille.
- Margat, J., &Saad K. F.(1984). Les nappes souterraines profondes : des mines d'eau sous les déserts Unesco ; Nature et Ressources Vol. XX, n°2, avril-juin 1984.
- Margat, J. (1985). Hydrologie et ressources en eau des zones arides. Bull. Soc. Géol. France, (8), t. 1, n°7, pp.1009-1020.
- Margat, J. (1990). Les gisements d'eau souterraine. La recherche n°221. mai, 1990.
- Margat, J. (1992). Les eaux fossiles. Afrique contemporaine, N°161 (Spécial) 1er trimestre.

- Mattauer, M. (1958). Présence de brèche à cailloux noirs et de calcaires lacustres dans le Kimméridgien du Jura central. R. Soc. géol. De France, 6, 47-49.
- Matthess G. Geol. Mijinbouw. (1994). In Forstner U ET Wittmann GTW Metal pollution in the Aquatic Environment, 355-359.
- Meybeck, M. (1984). Les fleuves et le cycle géochimique des éléments (Doctoral dissertation).
- Monod, T. (1992). Du désert. Science et changements planétaires/Sécheresse, 3(1), 7-24.
- OSS.(2002). Système Aquifère du Sahara Septentrional : De la concertation à la gestion commune d'un bassin aquifère transfrontière. Projet SASS. Rapport interne. Tunis, Tunisie.58p.
- OSS.(2003a) . Système Aquifère du Sahara Septentrional. Volume 2 : Hydrogéologie. Projet SASS. Rapport interne. Coupes. Planches. Annexes. Tunis, Tunisie. 275p.
- OSS. (2003b). Système Aquifère du Sahara Septentrional. Volume 4 : Modèle Mathématique. Projet SASS ; Rapport interne. Annexes. Tunis, Tunisie. 229p.
- Outtani, F., Addoum, B., Mercier, E., de Lamotte, D. F., & Andrieux, J. (1995). Geometry and kinematics of the south Atlas front, Algeria and Tunisia. Tectonophysics, 249(3), 233-248.
- Ozenda, P., & Borel, J. L. (1991). Les conséquences [écologiques] possibles des changements climatiques dans l'Arc alpin. ICALPE [Centre international pour l'environnement alpin].
- Petersen, J. O. (2014). Traçage isotopique (36CI, 4He, 234U) et modélisation hydrogéologique du Système Aquifère du Sahara Septentrional. Application à la recharge Quaternaire du Continental Intercalaire (Doctoral dissertation, Aix-Marseille).
- Petit-Maire, et all. (2002). Sahara: sous le sable des lacs: un voyage dans le temps. CNRS.
- Pollack, H. N., & Chapman, D. S. (1977). Mantle heat flow. Earth and Planetary Science Letters, 34(2), 174-184.
- Ramona, M. (2010). Classification automatique de flux radiophoniques par Machines à Vecteurs de Support (Doctoral dissertation, Télécom Paris Tech).
- Rocci, J. D., Quelly, M., Hallett, R., & Moore, N. W. (1991). U.S. Patent No. 5,058,198. Washington, DC: U.S. Patent and Trademark Office.
- Rodier J. et al. (2009). L'analyse de l'eau, 9e édition. DUNOD (éditeur), Paris, France. 1579.
- Rouvilois-Brigol, M. (1975). Le pays d'Ouargla (Sahara Algérien). Variation et organisation milieu. Khyam. 367p.
- Roy, R.F., Blackwell, D.D., Birch, F. (1968). Heat generation of plutonic rocks and continental heat flow plovinces. Earth Plan. Sci. Lett., 5, p. 1-12.


- Rybach, L. (2003). Geothermal energy sustainability and environment. Geothermics 32,463-470.
- Saadallah, A. (1992). Le cristallin de la grande Kabylie (Algérie): sa place dans la chaine des Maghrébides. Thesed'Etat, Univ. USTHB Alger, 2.
- Sanyal, S K. (2005). Sustainability and renewability of geothermal power capacity, Proceedings of the World Geothermal Congress, Antalya, Turkey.
- Saibi, H. (2009). Geothermal resources in Algeria. Renewable and Sustainable Energy Reviews,13, pp. 2544 -2552.
- Savornin, M. J. (1915). Les pycnodontes Eocène de l'Algérie. Comptes Rendus, Associa.
- Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching; an explanation of the post-Mid-Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research, 85(B7), 3711-3739.
- Sigg, L., Stumm, W., & Behra, P. (1994). Chimie des milieux aquatiques: chimie des eaux naturelles et des interfaces dans l'environnement. Masson.
- Sonatrach. (1979). Rapport de fin de sondage et d'implantation HTG-1.Rapport interne,SH/EXP.
- Sonatrach&Schlumberger . (2005).Geology of Algeria.Algeria Well Evaluation Conference WEC), Document Sonatrach, Division Exploration, 103 p., www.memalgeria.org/fr/hydrocarbures/w1_0.pdf [accédé en 2010].
- Sonatrach.(1979). Rapports de fin de sondage et d'implantation SER-1. Rapport interne, SH/EXP.
- Smedley, P. L., Edmunds, W. M., West, J. M., Gardner, S. J., &Pelig-Ba, K. B. (1995). Vulnerability of shallow groundwater quality due to natural geochemical environment. 2, health problems related to groundwater in the Obuasi and Bolgatangaareas, Ghana.
- Takherist, D. (1986). Etude géothermique et gravimétrique dans les bassins sédimentaires de l'Ahnet, du Mouydir et d'Illizi. DEA -Université des sciences et des techniques de la langue doc Montpellier.
- Takherist, D. (1990). Structure crustale, subsidence mésozoïque et flux de chaleur dans les bassins nord sahariens (Algérie) apport de la gravimétrie et des données de puits. Thèse de doctorat- Académie de Montpellier.
- Trompette, J. L. (1995). Contribution de la calorimétrie à l'étude de l'interaction tensio actif cationique-solide divisé (Doctoral dissertation).
- UNESCO. (1972). Etude des ressources en eau du Sahara Septentrional (ERESS-1972). Rapport UNESCO.

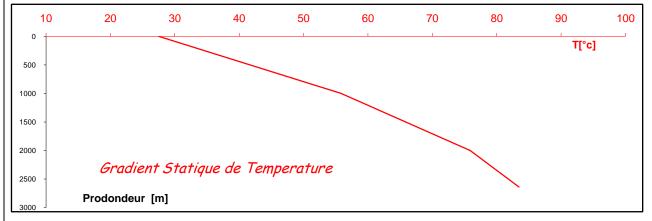
- Vasseur, G., Lucazeau, F. (1982). Some aspects of heat flow in France. Geothermics, 6: 79-89
- Vasseur, G., Lucazeau F. (1983). Bounds on paleotemperature and paleoclimatic corrections. Zentralban fur Geologieund Palaontologieteil I. Alignemeineangewandte. Regionale und Historisch Geologie, 1/2, 17-24.
- Vasseur, G., Lucazeau, F., Bayer, R. (1985). The problem of heat flow density determinations from inaccurate data. Tectonophysics, v. 121, p. 25-34.
- Vitorello, I., & Pollack, H. N. (1980). On the variation of continental heat flow with age and the thermal evolution of continents. Journal of Geophysical Research: Solid Earth, 85(B2), 983-995.
- Vuataz, F. D. (2005). L'énergie géothermique. Bulletin SEV/AES, 15, 25-31.
- Wildi, W. (1983). La chaîne tello-rifaine (Algérie, Maroc, Tunisie): structure, stratigraphie et évolution du Trias au Miocène. Revue de géographie physique et de géologie dynamique, 24 (3), 201-297.



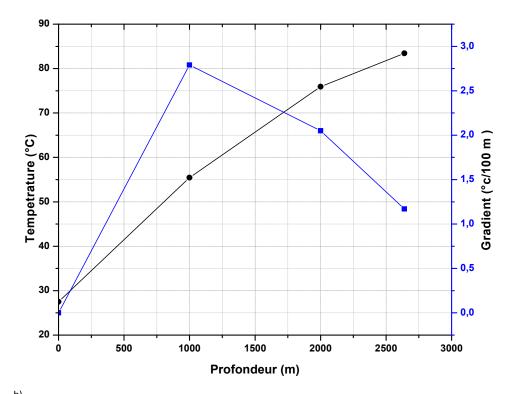
ATK # 04 X=3°57'45"/ Y=32°16'18"

	E	N S P	Company:	SONATRACH/DP/ONR		
			Champ:	Aït el khir		
			Well:	ATK # 04		
			Test:	PFS	Date:	24/12/2011
		<u>GRADIENTS</u>				
		STATIQUES				
		JAUGE N°	E2343 TOP			
Depth	Temperature	Pression	Gradient	Gradient		
(m)	(°c)	(psi)	(°c/100m)	(psi/m)		
0	36,00	2748,039	0,00	0,00		
1000	58,79	3006,301	2,28	0,26		
2000	73,69	3262,086	1,49	0,26		
2630	78,04	3424,357	0,69	0,26		

a)

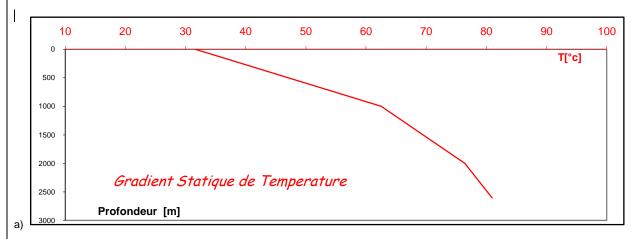


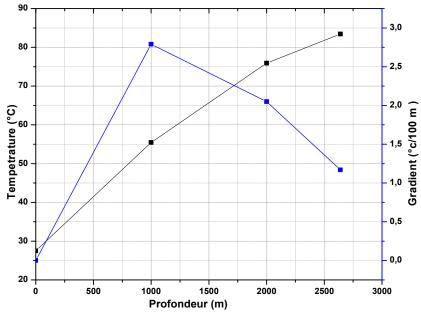
b)


- Fig.56: Représentation graphique a) Températures en fonction de la profondeur
- b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ATK 04

ATK # 12X=3°59'38"/Y= 32°16'30"

	ΕN	N S P	Company:	SONATRACH/DP/ONR		
			Champ:	O.NOUMEUR		
			Well:	ATK # 12		
			Test:	PFS	Date :	20/12/2011
		GRADIENTS STATIQUES				
		JAUGE N°	E2343 TOP			
Depth	Temperature	Pression	Gradient	Gradient		
(m)	(°c)	(psi)	(°c/100m)	(psi/m)		
0	27,52	1776,660	0,00	0,00		
1000	55,46	2800,075	2,79	1,02		
2000	75,93	3710,503	2,05	0,91		
2640	83,42	4494,580	1,17	1,23	•	


- Fig .57: Représentation graphique

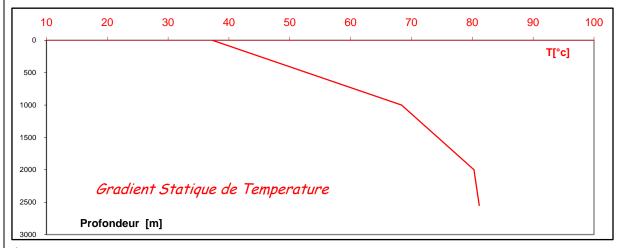

 a) Températures en fonction de la profondeur

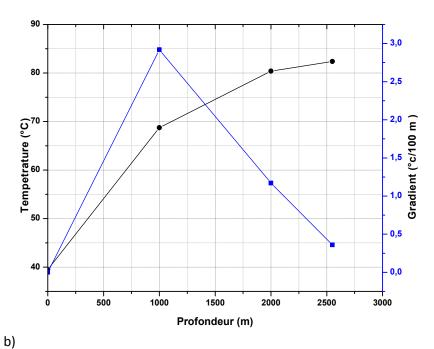
 b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ATK 12

ATK # 14X= 3°58'40"/ Y= 32°14'47"

	ENSP		Company:		SON	ATRACH/DP/0	ONR		
			Champ:		Aït el	khir			
			Well:		ATK	# 14			
			Test:		PFS			Date:	27/12/2011
		JAUGE N°		E2343 TOP					
Depth	Temperature	Pression		Gradient		Gradient			
(m)	(°c)	(psi)		(°c/100m)		(psi/m)			
0	32,28	2286,995		0,00		0,00			
1000	62,86	2499,022		3,06	•	0,21	•	•	
2000	76,53	2709,178		1,37	•	0,21	•	•	
2604	80,88	2839,696		0,72	•	0,22	•	•	

b)

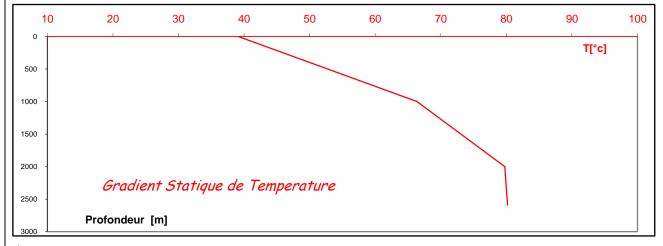

Fig. 58: Représentation graphique


a) Températures en fonction de la profondeur

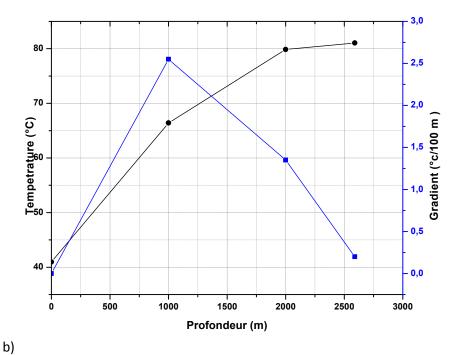
b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ATK 14

ATK # 15X= 4°03'18 » /Y= 32°15'47 »

	EN	SP	Company	y:	SONATRACH/E	P/ONR		
			Champ:		Aït el khir			
			Well:		ATK # 15			
			Test:		PFS		Date:	08/01/2012
		GRADIENTS STATIQ	<u>UES</u>					
		JAUGE N°		E2343 TOP				
Depth	Temperature	Pression		Gradient	Gradient			
(m)	(°c)	(psi)		(°c/100m)	(psi/m)			
0	39,50	4327,41		0,00	0,00			
1000	68,72	4699,20		2,92	0,37			•
2000	80,39	5061,35		1,17	0,36			
2550	82,37	5255,81		0,36	0,35			

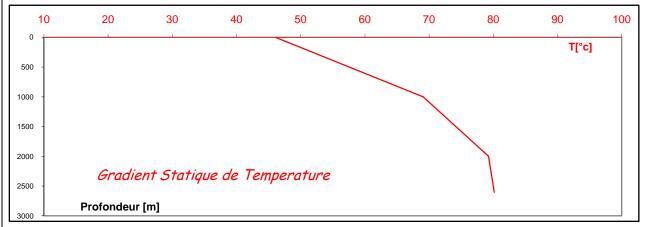

- Fig.59: Représentation graphique

 a) Températures en fonction de la profondeur

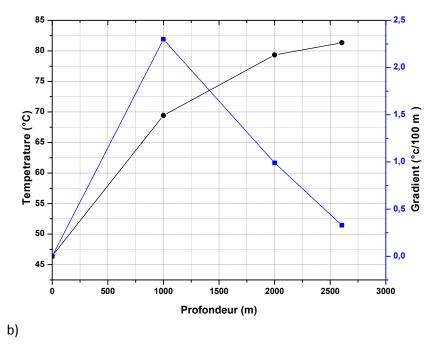

 b) Gradient géothermiques en fonction de la profondeur, Forage pétrolier ATK 15

ATK # 18 X= 3°59'46"/ Y= 32°14'43"

	EN	I S P	Company:	SONATRACH/DP/O	NR		
			Champ:	Aït el khir			
			Well:	ATK # 18			
			Test:	PFS		Date :	04/01/2012
		GRADIENTS STATIQUES					
		JAUGE N°	E2343 TOP				
Depth	Temperature	Pression	Gradient	Gradient			
(m)	(°c)	(psi)	(°c/100m)	(psi/m)			
0	40,95	3209,13	0,00	0,00			
1000	66,41	3606,90	2,55	0,40			
2000	79,87	4462,30	1,35	0,86			
2590	81,05	5021,24	0,20	0,95			

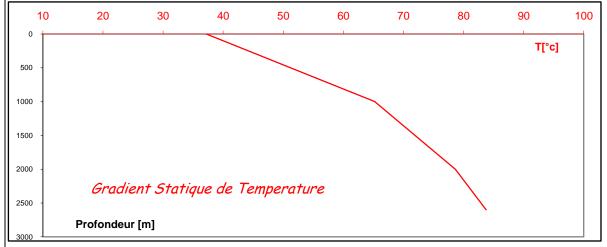

- Fig. 60: Représentation graphique

 a) Températures en fonction de la profondeur


 b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ATK 18

❖ ATK # 20 X=3°57'40 »/Y= 32°17'09 »

	EN	N S P	Company:	SONATRACH/	DP/ONR		
			Champ:	Aït el khir			
			Well:	ATK # 20			
			Test:	PFS		Date:	02/01/2012
		GRADIENTS STATIQUES					
		JAUGE N°	E2343 TOP				
Depth	Temperature	Pression	Gradient	Gradient			
(m)	(°c)	(psi)	(°c/100m)	(psi/m)			
0	46,44	2324,17	0,00	0,00			
1000	69,43	2562,63	2,30	0,24			
2000	79,33	2811,11	0,99	0,25			
2605	81,33	2951,14	0,33	0,23			


a)

- Fig.61: Représentation graphique
 a) Températures en fonction de la profondeur
 - Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ATK 20

***** ATK # 21 X= 3°58'46"/ Y= 32°15'21"

	EN	N S P	Company :	SONATRACH	/DP/ONR		
			Champ:	Aït el khir			
		7	Well:	ATK # 21			
		-	Test:	PFS		Date :	23/12/2011
		GRADIENTS STATIQUES			-		
		JAUGE N°	E2343 TOP				
Depth	Temperature	Pression	Gradient	Gradient			
(m)	(°c)	(psi)	(°c/100m)	(psi/m)			
0	37,95	4381,622	0,00	0,00			
1000	65,63	4712,743	2,77	0,33		•	
2000	78,74	5031,629	1,31	0,32		•	
2600	83,70	5219,715	0,83	0,31		•	

a)

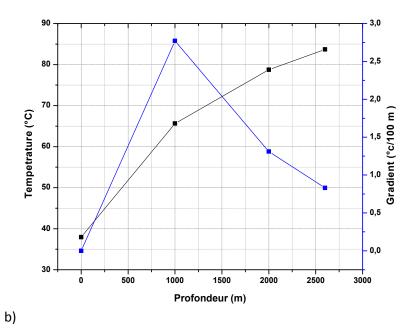
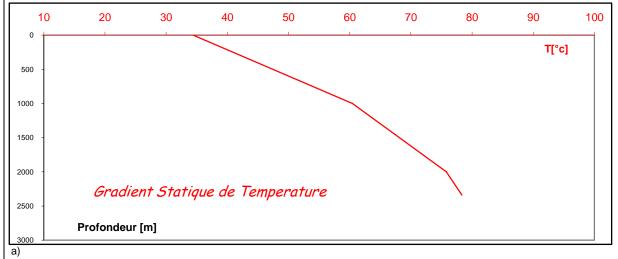



Fig.62: Représentation graphique

- a) Températures en fonction de la profondeur
- b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ATK 21

ONR # 07 X= 4°01'33" /Y= 32°21'42"

	EN	N S P	Client:	SONATRACH/DP/ONR		
			Champ:	O.NOUMEUR		
			Well:	ONR # 07		
			Γest :	PFS	Date :	12-12-11
		GRADIENTS STATIQUES				
		JAUGE N°	E2343 TOP			
Depth	Temperature	Pression	Gradient	Gradient		
(m)	(°c)	(psi)	(°c/100m)	(psi/m)		
0	35,18	2300,901	0,00	0,00		
1000	60,90	2537,356	2,57	0,24		
2000	75,86	2787,025	1,50	0,25		
2340	78,30	2873,176	0,72	0,25		

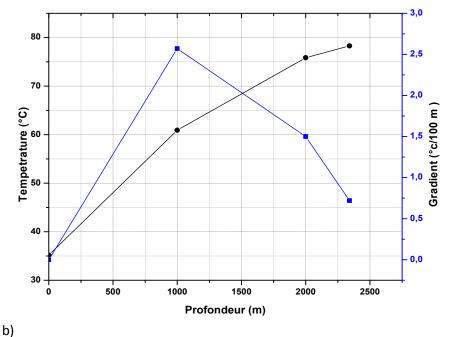
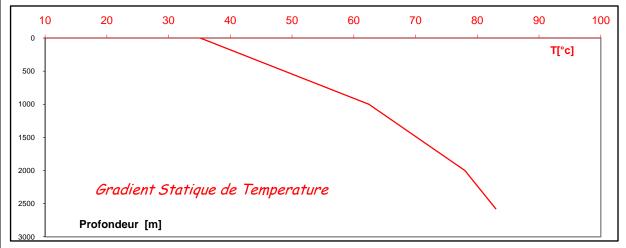
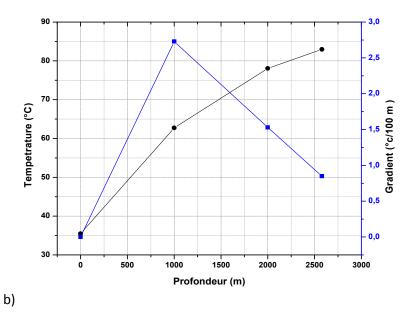
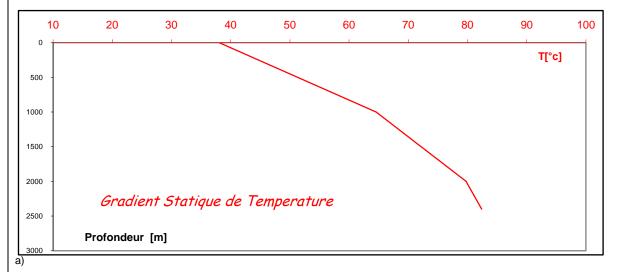



Fig.63: Représentation graphique


- Températures en fonction de la profondeur Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ONR 07

ONR # 08Bis X=4°00'58" /Y=32°23'11"

	EN	N S P	Company:	SONATRACH/DP/ONR		
			Champ:	O.NOUMEUR		
			Well:	ONR # 08Bis		
			Test:	PFS	Date:	14/12/2011
		GRADIENTS STATIQUES				
		JAUGE N°	E2343 TOP			
Depth	Temperature	Pression	Gradient	Gradient		
(m)	(°c)	(psi)	(°c/100m)	(psi/m)		
0	35,47	2662,770	0,00	0,00		
1000	62,73	2953,344	2,73	0,29		
2000	78,05	3512,395	1,53	0,56		
2578	82,96	3990,600	0,85	0,83		



- Fig.64: Représentation graphique a) Températures en fonction de la profondeur
 - Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ONR 08 BIS

ONR # 09 X= 4°00'21"/ Y=32°25'24"

	EN	T S P	Company :	SONATRACH/DI	P/ONR		
			Champ:	O.NOUMEUR			
		V	Well:	ONR # 09			
		7	Test:	PFS		Date:	16/12/2011
		GRADIENTS STATIQUES			•		
		JAUGE N°	E2343 TOP				
Depth	Temperature	Pression	Gradient	Gradient			
(m)	(°c)	(psi)	(°c/100m)	(psi/m)			
0	39,09	3145,546	0,00	0,00			
1000	65,04	3502,194	2,60	0,36			
2000	79,80	4230,038	1,48	0,73			
2400	82,38	4706,819	0,65	1,19			

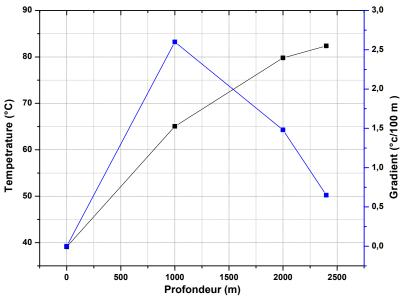
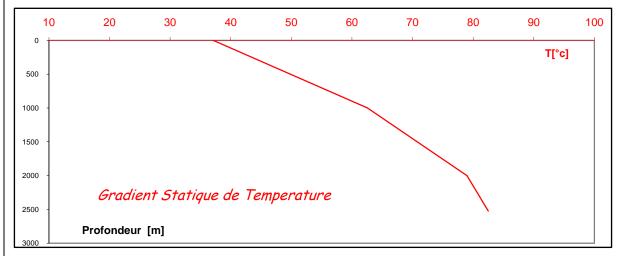


Fig.65: Représentation graphique

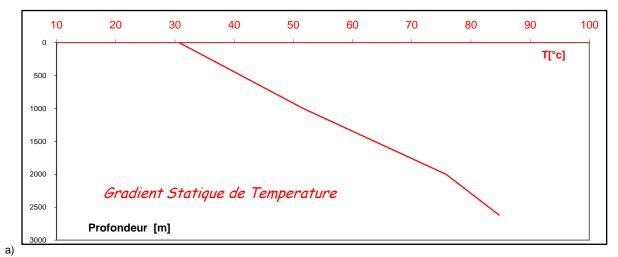

a) Températures en fonction de la profondeur

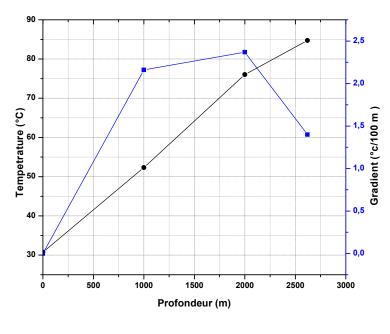
b)

b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ONR 09

❖ ONR # 11A X= 4°01′22″/Y= 32°23′40″

ENSP		Company :	SONATRACH/DP/ONR			
			Champ:	O.NOUMEUR		
		V	Well:	ONR # 11A		
			Test:	PFS	Date:	15/12/2011
		GRADIENTS STATIQUES				
		JAUGE N°	E2343 TOP			
Depth	Temperature	Pression	Gradient	Gradient		
(m)	(°c)	(psi)	(°c/100m)	(psi/m)		
0	37,27	2870,358	0,00	0,00		
1000	62,61	3190,133	2,53	0,32	•	
2000	78,96	3640,786	1,64	0,45		
2525	82,49	4061,160	0,67	0,80		

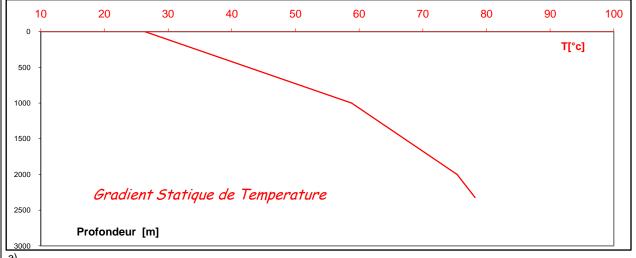

Fig.66: Représentation graphique

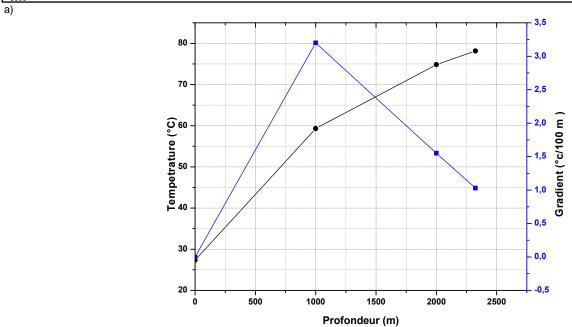
- a) Températures en fonction de la profondeur
- b) Gradient géothermiques en fonction de la profondeur et la temperature, Forage pétrolier ONR 11 A

ONR # 05 X= 4°00'48" / Y =32°22'60"

ENSP		Company:	SONATRACH/DP/ONR			
			Champ:	O.NOUMEUR		
			Well:	ONR # 05		
			Test:	PFS	Date :	31/12/2011
		GRADIENTS STATIQUES				
		JAUGE N°	E2343 TOP			
Depth	Temperature	Pression	Gradient	Gradient		
(m)	(°c)	(psi)	(°c/100m)	(psi/m)		
0	30,76	0,000	0,00	0,00		
1000	52,33	1619,586	2,16	1,62		
2000	76,04	3340,931	2,37	1,72		
2620	84,74	4407,787	1,40	1,72		

b)


Fig .67: Représentation graphique

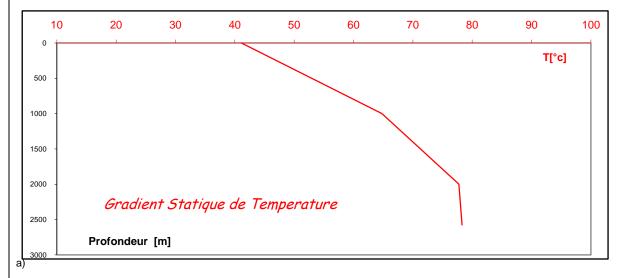

a) Températures en fonction de la profondeur

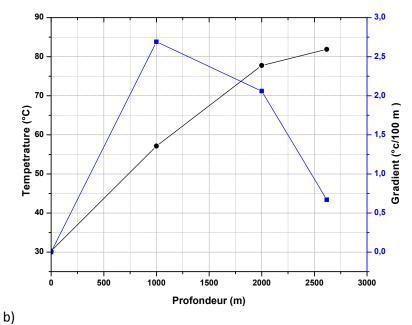
b) Gradient géothermiques en fonction de la profondeur et la temperature, Forage pétrolier ONR 05

ATK # 06 X= 3°58'53" / Y=32°15'16"

ENSP		Company: Champ: Well:		SONATRAC	SONATRACH/DP/ONR Aït el khir			
				Aït el khir				
				ATK # 06				
			Test:		PFS		Date:	29/12/2011
		JAUGE N°		E2343				
Depth	Temperature	Pression		Gradient		Gradient		
(m)	(°c)	(psi)		(°c/100m)		(psi/m)		
0	27,32	2152,991		0,00		0,00		
1000	59,30	2818,555		3,20		0,67		
2000	74,83	3899,339		1,55		1,08		
2324	78,17	4459,103		1,03		1,73		

b)

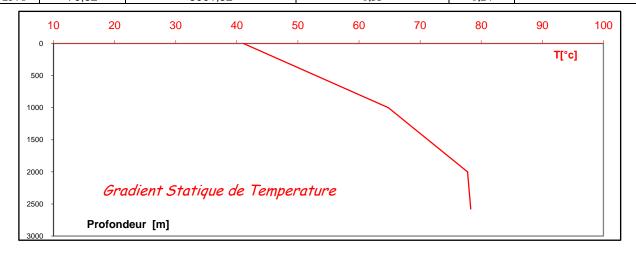

Fig.68: Représentation graphique


a) Températures en fonction de la profondeur

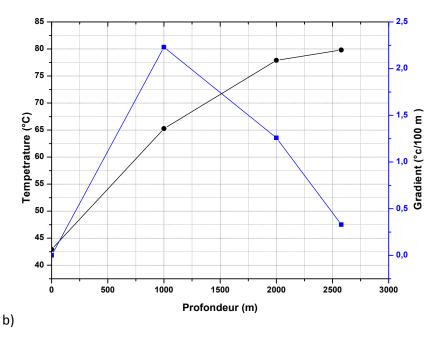
b) Gradient géothermiques en fonction de la profondeur et la température, Forage pétrolier ATK 06

ATK # 24 X=3°58'07" /Y=32°15'46

	EN	I S P C	ompany :	SONATRACH/DP/ONI	R	
		C	hamp :	Aït el khir		
		V	Vell:	ATK # 24		
		T	Test: PFS		Date :	03/01/2012
		GRADIENTS STATIQUES				
		JAUGE N°	E2343 TOP			
Depth	Temperature	Pression	Gradient	Gradient		
(m)	(°c)	(psi)	(°c/100m)	(psi/m)		
0	30,25	2943,95	0,00	0,00		
1000	57,12	3222,79	2,69	0,28		
2000	77,76	3477,68	2,06	0,25		
2618	81,90	3624,10	0,67	0,24		


- Fig.69: Représentation graphique

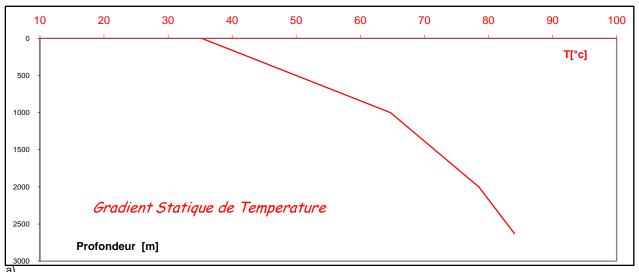
 a) Températures en fonction de la profondeur

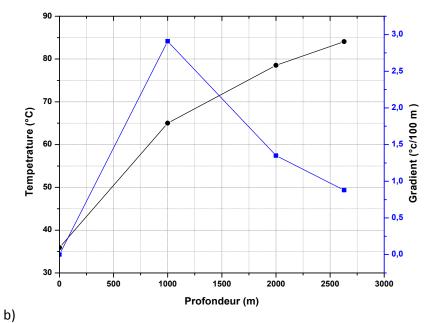

 b) Gradient géothermiques en fonction de la profondeur et la température Forage pétrolier ATK 24

ATK # 25 X= 3°57'41"/ Y= 32°14'57"

	EN	N S P	Company:		SONATRACH	/DP/ONR		
			Champ:		Aït el khir			
			Well:		ATK # 25			
			Test:		PFS		Date :	09/01/2012
		GRADIENTS STATIQUES	<u>S</u>					
		JAUGE N°		E2343 TOP				
Depth	Temperature	Pression		Gradient	Gradient			
(m)	(°c)	(psi)		$(^{\circ}c/100m)$	(psi/m)			
0	42,94	2387,65		0,00	0,00			
1000	65,28 2625,79			2,23	0,24	•		
2000	77,89 2863,50			1,26	0,24	•		
2578	79,82	3001.82		0,33	0,24	•		

- Fig.70: Représentation graphique


 a) Températures en fonction de la profondeur


 b) Gradient géothermiques en fonction de la profondeur et température Forage pétrolier ATK 25

*

ATK # 27 $X = 3^{\circ}34'26''/ Y = 32^{\circ}8'44''$

	Εl	N S P	Company :	SONATRACH/DP/ONR		
			Champ:	O.NOUMEUR		
		V	Vell:	ATK # 27		
		Т	est:	PFS	Date :	21/12/2011
		GRADIENTS STATIQUES				
		JAUGE N°	E2343 TOP			
Depth	Temperature	Pression	Gradient	Gradient		
(m)	(°c)	(psi)	(°c/100m)	(psi/m)		
0	35,94	4426,039	0,00	0,00		
1000	65,02	4768,050	2,91	0,34		
2000	78,54	5101,150	1,35	0,33		
2630	84,06	5309,341	0,88	0,33		

- Fig.71: Représentation graphique

 a) Températures en fonction de la profondeur

 b) Gradient géothermiques en fonction de la profondeur et température Forage pétrolier ATK 27

Tableau : Eléments physico-chimiques

		T° C	рН	Cd µmhos _{/cm}	Ca ²⁺ mg/l	Mg ²⁺ mg/l	Na+ mg/l	K+ mg/l	CI- mg/I	SO ₄ ²⁻ mg/l	HCO ₃ - mg/l
valeur	min	24,12	6,7	259	25,65	4,86	37,27	4,17	20,9	37	27,6
	max	51	8.83	3730	208,41	116,64	430	32	489,25	617,32	346,48
					me/l	me/l	me/l	me/l	me/l	me/l	me/l
				min	1,28	0,40	1,62	0,10	0,59	0,77	0,15
		valeu	r	max	10,42	9,72	18,69	0,82	13,97	12,86	1,97

Tableau : Eléments traces

		NO ₃ mg/l	NO ₂ mg/l	Fe ²⁺ mg/l	NH ₄ [†] mg/l	PO ₄ ³⁻ mg/l
valeur	min	0	0	0	0	0
	max	18,5	0,513	0,189	0,175	0,306

 $Tableau: Temp\'eratures\ calcul\'ees\ \grave{a}\ 0m,\ 0.25m,\ 0.5m,\ 1m,\ 1.25m,\ 1.50m\ et\ 2m.$

N°	l i	Tsol °C surf	Tsol °C 0,25 m	Tsol °C 0,5m	Tsol °C 1m	Tsol °C 1,25m	Tsol °C 1,50m	Tsol °C 2m
01	1	9,25114528	9,25000039	9,25	9,25	9,25	9,25	9,25
02	2	10,4219319	10,42	10,42	10,42	10,42	10,42	10,42
03	3	10,0030856	10,42	10,42	10,42	10,42	10,42	10,42
04	4	9,53440353	9,53	9,53	9,53	9,53	9,53	9,53
05	5	8,68619	8,68	8,68	8,68	8,68	8,68	8,68
06	6	9,07704391	9,07	9,07	9,07	9,07	9,07	9,07
07	7	7,60996596	7,6	7,6	7,6	7,6	7,6	7,6
08	8	7,39170431	7,38	7,38	7,38	7,38	7,38	7,38
09	9	7,8624134	7,85	7,85	7,85	7,36	7,85	7,85
10	10	7,64417948	7,63	7,63	7,63	7,63		
11	11	8,82337399	8,81	8,81	8,81	8,81	7,63 8,81	7,63
12		·	•					8,81
13	12 13	9,86260648	9,85	9,85	9,85	9,85	9,85	9,85
14		10,1331234	10,12	10,12	10,12	10,12	10,12	10,12
	14	9,46557196	9,45	9,45	9,45	9,45	9,45	9,45
15	15	9,71609656	9,7	9,7	9,7	9,7	9,7	9,7
16	16	9,16855347	9,15	9,15	9,15	9,15	9,15	9,15
17	17	9,61849958	9,6	9,6	9,6	9,6	9,6	9,6
18	18	10,8163672	10,8	10,8	10,8	10,8	10,8	10,8
19	19	12,3733147	12,36	12,36	12,36	12,36	12,36	12,36
20	20	12,6134195	12,6	12,6	12,6	12,6	12,6	12,6
21	21	13,5118734	13,5	13,5	13,5	13,5	13,5	13,5
22	22	15,0189905	15,01	15,01	15,01	15,01	15,01	15,01
23	23	15,0792657	15,07	15,07	15,07	15,07	15,07	15,07
24	24	14,2715923	14,26	14,26	14,26	14,26	14,26	14,26
25	25	10,5536609	10,53	10,53	10,53	10,53	10,53	10,53
26	26	4,8807709	4,83	4,83	4,83	4,83	4,83	4,83
27	27	3,58032747	3,52	3,52	3,52	3,52	3,52	3,52
28	28	3,80117779	3,74	3,74	3,74	3,74	3,74	3,74
29	29	4,86669528	4,81	4,81	4,81	4,81	4,81	4,81
30	30	7,10541963	7,06	7,06	7,06	7,06	7,06	7,06
31	31	6,96771523	6,92	6,92	6,92	6,92	6,92	6,92
32	1	7,55581174	7,51	7,51	7,51	7,51	7,51	7,51
33	2	8,7106556	8,67	8,67	8,67	8,67	8,67	8,67
34	3	7,6580342	7,61	7,61	7,61	7,61	7,61	7,61
35	4	7,62961285	7,58	7,58	7,58	7,58	7,58	7,58
36	5	8,35646217	8,31	8,31	8,31	8,31	8,31	8,31
37	6	9,85876175	9,82	9,82	9,82	9,82	9,82	9,82
38	7	8,02120664	7,97	7,97	7,97	7,97	7,97	7,97
39	8	8,67818375	8,63	8,63	8,63	8,63	8,63	8,63
40	9	9,64319638	9,6	9,6	9,6	9,6	9,6	9,6
41	10	10,0020062	9,96	9,96	9,96	9,96	9,96	9,96
42	11	8,66195516	8,61	8,61	8,61	8,61	8,61	8,61
43	12	9,55696723	9,51	9,51	9,51	9,51	9,51	9,51
44	13	13,4550047	13,43	13,43	13,43	13,43	13,43	13,43
45	14	12,2321263	12,2	12,2	12,2	12,2	12,2	12,2
46	15	9,29210863	9,24	9,24	9,24	9,24	9,24	9,24
47	16	8,26120783	8,2	8,2	8,2	8,2	8,2	8,2
48	17	6,99330343	6,92	6,92	6,92	6,92	6,92	6,92
49	18	7,43089099	7,36	7,36	7,36	7,36	7,36	7,36

50	19	8,69142093	8,63	8,63	8,63	8,63	8,63	8,63
51	20	10,5677865	10,52	10,52	10,52	10,52	10,52	10,52
52	21	12,4158163	12,38	12,38	12,38	12,38	12,38	12,38
53	22	11,5027195	11,46	11,46	11,46	11,46	11,46	11,46
54	23	12,9437166	12,91	12,91	12,91	12,91	12,91	12,91
55	24	14,9127687	14,89	14,89	14,89	14,89	14,89	14,89
56	25	14,1474525	14,12	14,12	14,12	14,12	14,12	14,12
57	26	14,6251638	14,6	14,6	14,6	14,6	14,6	14,6
58	27	18,1693282	18,16	18,16	18,16	18,16	18,16	18,16
59	28	22,0008094	22	22	22	22	22	22
60	1	17,7511864	17,74	17,74	17,74	17,74	17,74	17,74
61	2	14,3286783	14,3	14,3	14,3	14,3	14,3	14,3
62	3	14,6272756	14,6	14,6	14,6	14,6	14,6	14,6
63	4	19,5256688	19,52	19,52	19,52	19,52	19,52	19,52
64	5	15,1250718	15,1	15,1	15,1	15,1	15,1	15,1
65	6	13,2381153	13,2	13,2	13,2	13,2	13,2	13,2
66	7	11,8498013	11,8	11,8	11,8	11,8	11,8	11,8
67	8	9,07737228	9	9	9	9	9	9
68	9	9,63255494	9,56	9,56	9,56	9,56	9,56	9,56
69	10	12,1989016	12,15	12,15	12,15	12,15	12,15	12,15
70	11	15,8329163	15,81	15,81	15,81	15,81	15,81	15,81
71	12	20,0747467	20,07	20,07	20,07	20,07	20,07	20,07
72	13	21,6215031	21,62	21,62	21,62	21,62	21,62	21,62
73	14	19,1876518	19,18	19,18	19,18	19,18	19,18	19,18
74	15	21,2721404	21,27	21,27	21,27	21,27	21,27	21,27
75	16	18,7096511	18,7	18,7	18,7	18,7	18,7	18,7
76	17	15,2486514	15,22	15,22	15,22	15,22	15,22	15,22
77	18	14,9610479	14,93	14,93	14,93	14,93	14,93	14,93
78	19	16,5807013	16,56	16,56	16,56	16,56	16,56	16,56
79	20	19,6565724	19,65	19,65	19,65	19,65	19,65	19,65
80	21	22,3007091	22,3	22,3	22,3	22,3	22,3	22,3
81	22	25,1410503	25,14	25,14	25,14	25,14	25,14	25,14
82	23	24,9508185	24,95	24,95	24,95	24,95	24,95	24,95
83	24	25,3013066	25,3	25,3	25,3	25,3	25,3	25,3
84	25	25,1210583	25,12	25,12	25,12	25,12	25,12	25,12
85	26	26,2331765	26,23	26,23	26,23	26,23	26,23	26,23
86	27	23,4100141	23,41	23,41	23,41	23,41	23,41	23,41
87	28	20,7038601	20,7	20,7	20,7	20,7	20,7	20,7
88	29	19,2787254	19,27	19,27	19,27	19,27	19,27	19,27
89	30	20,6341342	20,63	20,63	20,63	20,63	20,63	20,63
90	31	20,0061467	20	20	20	20	20	20
91	1	22,3007976	22,3	22,3	22,3	22,3	22,3	22,3
92	2	25,2112882	25,21	25,21	25,21	25,21	25,21	25,21
93	3	23,6400015	23,64	23,64	23,64	23,64	23,64	23,64
94	4	20,4249819	20,42	20,42	20,42	20,42	20,42	20,42
95	5	18,3936018	18,38	18,38	18,38	18,38	18,38	18,38
96	6	18,0158072	18	18	18	18	18	18
97	7	18,3341777	18,32	18,32	18,32	18,32	18,32	18,32
98	8	21,3525782	21,35	21,35	21,35	21,35	21,35	21,35
99	9	20,0066932	20	20	20	20	20	20
100	10	12,3273882	12,26	12,26	12,26	12,26	12,26	12,26
101	11	14,5140373	14,47	14,47	14,47	14,47	14,47	14,47

102	12	15,7729038	15,74	15,74	15,74	15,74	15,74	15,74
103	13	18,2156364	18,2	18,2	18,2	18,2	18,2	18,2
104	14	23,7400131	23,74	23,74	23,74	23,74	23,74	23,74
105	15	26,0031979	26	26	26	26	26	26
106	16	19,3300564	19,32	19,32	19,32	19,32	19,32	19,32
107	17	18,017385	18	18	18	18	18	18
108	18	22,1811091	22,18	22,18	22,18	22,18	22,18	22,18
109	19	22,8503059	22,85	22,85	22,85	22,85	22,85	22,85
110	20	23,1201234	23,12	23,12	23,12	23,12	23,12	23,12
111	21	24,1401772	24,14	24,14	24,14	24,14	24,14	24,14
112	22	24,560551	24,56	24,56	24,56	24,56	24,56	24,56
113	23	25,0011692	25	25	25	25	25	25
114	24	29,3393502	29,32	29,32	29,32	29,32	29,32	29,32
115	25	31,0325863	31	31	31	31	31	31
116	26	28,4641298	28,45	28,45	28,45	28,45	28,45	28,45
117	27	23,9600846	23,96	23,96	23,96	23,96	23,96	23,96
118	28	27,3887215	27,38	27,38	27,38	27,38	27,38	27,38
119	29	25,3819649	25,38	25,38	25,38	25,38	25,38	25,38
120	30	24,7808769	24,78	24,78	24,78	24,78	24,78	24,78
121	1	24,9311185	24,73	24,78	24,73	24,93	24,93	24,78
122	2	25,5524036	25,55	25,55	25,55	25,55		25,55
123	3	·	25,55	25,55	25,55	25,55	25,55 27	25,55
124	4	27,0073083	28,57	28,57	28,57	28,57	28,57	
125	5	28,5856759 30,4799238	30,45	30,45	30,45	30,45	30,45	28,57 30,45
126	6	22,9902262	22,99	22,99	22,99	22,99	22,99	22,99
127	7	24,3203474	24,32	24,32	24,32	24,32	24,32	24,32
128	8	28,3646948	28,35	28,35	28,35	28,35	28,35	28,35
129	9	30,2385834	30,21	30,21	30,21	30,21	30,21	30,21
130	10	30,8038272	30,77	30,77	30,77	30,77	30,77	30,77
131	11	32,6940541	32,64	32,64	32,64	32,64	32,64	32,64
132	12	31,7436755	31,7	31,7	31,7	31,7	31,7	31,7
133	13	32,6542213	32,6	32,6	32,6	32,6	32,6	32,6
134	14	28,7175581	28,7	28,7	28,7	28,7	28,7	28,7
135	15	27,6309898	27,62	27,62	27,62	27,62	27,62	27,62
136	16	28,3754788	28,36	28,36	28,36	28,36	28,36	28,36
137	17	26,5359213	26,53	26,53	26,53	26,53	26,53	26,53
138	18	22,1913361	22,19	22,19	22,19	22,19	22,19	22,19
139	19	24,7609531	24,76	24,76	24,76	24,76	24,76	24,76
140	20	26,8674452	26,86	26,86	26,86	26,86	26,86	26,86
141	21	28,3255812	28,31	28,31	28,31	28,31	28,31	28,31
142	22	29,3329967	29,31	29,31	29,31	29,31	29,31	29,31
143	23	30,8367179	30,8	30,8	30,8	30,8	30,8	30,8
144	24	32,4247207	32,37	32,37	32,37	32,37	32,37	32,37
145	25	29,8073518	29,78	29,78	29,78	29,78	29,78	29,78
146	26	28,9605415	28,94	28,94	28,94	28,94	28,94	28,94
147	27	28,5173917	28,5	28,5	28,5	28,5	28,5	28,5
148	28	29,7774991	29,75	29,75	29,75	29,75	29,75	29,75
149	29	32,2640881	32,21	32,21	32,21	32,21	32,21	32,21
150	30	34,4854559	34,4	34,4	34,4	34,4	32,21	34,4
151	31	33,3185762	33,25	33,25	33,25	33,25	33,25	33,25
152	1	33,2580487	33,19	33,19	33,19	33,19	33,19	33,19
153		·						
	2	33,1670923	33,1	33,1	33,1	33,1	33,1	33,1

154							T .	
155	3	34,995317	34,9	34,9	34,9	34,9	34,9	34,9
156	4	30,768181	30,73	30,73	30,73	30,73	30,73	30,73
157	5	32,4685099	32,41	32,41	32,41	32,41	32,41	32,41
	6	33,7061436	33,63	33,63	33,63	33,63	33,63	33,63
158	7	33,422275	33,35	33,35	33,35	33,35	33,35	33,35
159	8	29,556905	29,53	29,53	29,53	29,53	29,53	29,53
160	9	28,7401592	28,72	28,72	28,72	28,72	28,72	28,72
161	10	28,327141	28,31	28,31	28,31	28,31	28,31	28,31
162	11	30,0317281	30	30	30	30	30	30
163	12	31,9433979	31,89	31,89	31,89	31,89	31,89	31,89
164	13	30,7797957	30,74	30,74	30,74	30,74	30,74	30,74
165	14	32,207256	32,15	32,15	32,15	32,15	32,15	32,15
166	15	30,9520445	30,91	30,91	30,91	30,91	30,91	30,91
167	16	28,8113128	28,79	28,79	28,79	28,79	28,79	28,79
168	17	27,3410761	27,33	27,33	27,33	27,33	27,33	27,33
169	18	25,6032188	25,6	25,6	25,6	25,6	25,6	25,6
170	19	26,7780724	26,77	26,77	26,77	26,77	26,77	26,77
171	20	30,356231	30,32	30,32	30,32	30,32	30,32	30,32
172	21	33,7210527	33,64	33,64	33,64	33,64	33,64	33,64
173	22	34,4941095	34,4	34,4	34,4	34,4	34,4	34,4
174	23	33,8131076	33,73	33,73	33,73	33,73	33,73	33,73
175	24	34,4439075	34,35	34,35	34,35	34,35	34,35	34,35
176	25	34,7292016	34,63	34,63	34,63	34,63	34,63	34,63
177	26	36,1257695	36	36	36	36	36	36
178	27	36,8408293	36,7	36,7	36,7	36,7	36,7	36,7
179	28	36,7391551	36,6	36,6	36,6	36,6	36,6	36,6
180	29	36,6885448	36,55	36,55	36,55	36,55	36,55	36,55
181	30	37,148813	37	37	37	37	37	37
182	1	37,0572952	36,91	36,91	36,91	36,91	36,91	36,91
183	2	38,521179	38,34	38,34	38,34	38,34	38,34	38,34
184	3	36,6903234	36,55	36,55	36,55	36,55	36,55	36,55
185	4	36,1290669	36	36	36	36	36	36
186	5	37,2943254	37,14	37,14	37,14	37,14	37,14	37,14
187	6	36,9880116	36,84	36,84	36,84	36,84	36,84	36,84
188	7	35,9668942	35,84	35,84	35,84	35,84	35,84	35,84
189	8	36,6617778	36,52	36,52	36,52	36,52	36,52	36,52
190	9	37,1529318	37	37	37	37	37	37
191	10	40,2296259	40	40	40	40	40	40
192	11	35,4988882	35,38	35,38	35,38	35,38	35,38	35,38
193 194	12	32,4665845	32,4	32,4	32,4	32,4	32,4	32,4
194	13	33,5641254	33,48	33,48	33,48	33,48	33,48	33,48
195	14	35,3468217	35,23	35,23	35,23	35,23	35,23	35,23
196	15	37,8413519	37,67	37,67	37,67	37,67	37,67	37,67
197	16	37,3912259	37,23	37,23	37,23	37,23	37,23	37,23
198	17	36,6448009	36,5	36,5	36,5	36,5	36,5	36,5
200	18	36,2873992	36,15	36,15	36,15	36,15	36,15	36,15
	19	35,4299344	35,31	35,31	35,31	35,31	35,31	35,31
201	20	35,7977181	35,67	35,67	35,67	35,67	35,67	35,67
202	21	37,3829645	37,22	37,22	37,22	37,22	37,22	37,22
203	22	38,5723174	38,38	38,38	38,38	38,38	38,38	38,38
204	23	38,3983514	38,21	38,21	38,21	38,21	38,21	38,21
205	24	39,3638191	39,15	39,15	39,15	39,15	39,15	39,15

206	25	40.0839969	39,85	39,85	39,85	39,85	39.85	39,85
207	26	40,8463255	40,59	40,59	40,59	40,59	40,59	40,59
208	27	41,4962542	41,22	41,22	41,22	41,22	41,22	41,22
209	28	41,1977989	40,93	40,93	40,93	40,93	40,93	40,93
210	30	36,1374798	36	36	36	36	36	36
211	31	40,6733028	40,42	40,42	40,42	40,42	40,42	40,42
212	1	40,7459148	40,49	40,49	40,49	40,49	40,49	40,49
213	2	38,9152534	38,71	38,71	38,71	38,71	38,71	38,71
214	3	37,2949208	37,13	37,13	37,13	37,13	37,13	37,13
215	4	33,1001683	33,02	33,02	33,02	33,02	33,02	33,02
216	5	34,3730035	34,27	34,27	34,27	34,27	34,27	34,27
217	6	33,7517405	33,66	33,66	33,66	33,66	33,66	33,66
218	7	33,8028138	33,71	33,71	33,71	33,71	33,71	33,71
219	8	34,9038626	34,79	34,79	34,79	33,71	34,79	34,79
220	17					•	·	·
221	18	36,4877872 38,5380872	36,34 38,34	36,34 38,34	36,34 38,34	36,34 38,34	36,34 38,34	36,34
222	19		·	·	•		·	38,34
223	20	36,918185 36,5294219	36,76 36,38	36,76 36,38	36,76 36,38	36,76 36,38	36,76 36,38	36,76 36,38
224	21	ŕ						
225	22	33,3252102	33,24	33,24	33,24	33,24	33,24	33,24
226		26,7692281	26,76	26,76	26,76	26,76	26,76	26,76
227	23	29,4411055	29,41	29,41	29,41	29,41	29,41	29,41
228	24	30,8984531	30,85	30,85	30,85	30,85	30,85	30,85
229	25	34,0997145	34	34	34	34	34	34
	26	34,1915793	34,09	34,09	34,09	34,09	34,09	34,09
230	27	35,4060581	35,28	35,28	35,28	35,28	35,28	35,28
231	28	35,9785921	35,84	35,84	35,84	35,84	35,84	35,84
232	29	30,341661	30,3	30,3	30,3	30,3	30,3	30,3
233	30	28,7746767	28,75	28,75	28,75	28,75	28,75	28,75
234	31	29,4212065	29,39	29,39	29,39	29,39	29,39	29,39
235	1	30,0381516	30	30	30	30	30	30
236	2	30,746982	30,7	30,7	30,7	30,7	30,7	30,7
237	3	31,4161603	31,36	31,36	31,36	31,36	31,36	31,36
238	4	32,3096617	32,24	32,24	32,24	32,24	32,24	32,24
239	5	32,1979672	32,13	32,13	32,13	32,13	32,13	32,13
240	6	33,7647605	33,67	33,67	33,67	33,67	33,67	33,67
241	7	32,3708264	32,3	32,3	32,3	32,3	32,3	32,3
242	8	33,9483438	33,85	33,85	33,85	33,85	33,85	33,85
243	9	34,5908759	34,48	34,48	34,48	34,48	34,48	34,48
244	10	32,6963092	32,62	32,62	32,62	32,62	32,62	32,62
245	11	32,3202394	32,25	32,25	32,25	32,25	32,25	32,25
246	12	28,724493	28,7	28,7	28,7	28,7	28,7	28,7
247	13	28,4116286	28,39	28,39	28,39	28,39	28,39	28,39
248	14	29,998096	29,96	29,96	29,96	29,96	29,96	29,96
249	15	31,6907061	31,63	31,63	31,63	31,63	31,63	31,63
250	16	33,7552612	33,66	33,66	33,66	33,66	33,66	33,66
251	17	27,6151366	27,6	27,6	27,6	27,6	27,6	27,6
252	18	27,6151441	27,6	27,6	27,6	27,6	27,6	27,6
253	19	27,5144057	27,5	27,5	27,5	27,5	27,5	27,5
269	20	27,3029072	27,29	27,29	27,29	27,29	27,29	27,29
270	21	27,3935472	27,38	27,38	27,38	27,38	27,38	27,38
271	22	28,9063822	28,88	28,88	28,88	28,88	28,88	28,88

		ı						
272	23	30,0792203	30,04	30,04	30,04	30,04	30,04	30,04
273	24	27,3129945	27,3	27,3	27,3	27,3	27,3	27,3
274	25	22,1818591	22,18	22,18	22,18	22,18	22,18	22,18
275	26	22,5909326	22,59	22,59	22,59	22,59	22,59	22,59
276	27	21,9624879	21,96	21,96	21,96	21,96	21,96	21,96
277	28	22,3015559	22,3	22,3	22,3	22,3	22,3	22,3
278	29	21,8428696	21,84	21,84	21,84	21,84	21,84	21,84
279	30	24,1402903	24,14	24,14	24,14	24,14	24,14	24,14
280	1	24,5007891	24,5	24,5	24,5	24,5	24,5	24,5
281	2	24,5809331	24,58	24,58	24,58	24,58	24,58	24,58
282	3	25,1823977	25,18	25,18	25,18	25,18	25,18	25,18
283	4	27,1720447	27,16	27,16	27,16	27,16	27,16	27,16
284	5	25,9050501	25,9	25,9	25,9	25,9	25,9	25,9
285	6	26,0657715	26,06	26,06	26,06	26,06	26,06	26,06
286	7	24,8114136	24,81	24,81	24,81	24,81	24,81	24,81
287	8	25,8146627	25,81	25,81	25,81	25,81	25,81	25,81
288	9	27,6655594	27,65	27,65	27,65	27,65	27,65	27,65
289	10	23,8900876	23,89	23,89	23,89	23,89	23,89	23,89
290	11	21,6236337	21,62	21,62	21,62	21,62	21,62	21,62
291	12	23,4900085	23,49	23,49	23,49	23,49	23,49	23,49
292	13	22,8804674	22,88	22,88	22,88	22,88	22,88	22,88
293	14	23,9301119	23,93	23,93	23,93	23,93	23,93	23,93
294	15	24,3605643	24,36	24,36	24,36	24,36	24,36	24,36
295	16	23,4600147	23,46	23,46	23,46	23,46	23,46	23,46
296	17	24,8715499	24,87	24,87	24,87	24,87	24,87	24,87
297	18	26,1059337	26,1	26,1	26,1	26,1	26,1	26,1
298	19	26,598466	26,59	26,59	26,59	26,59	26,59	26,59
299	20	26,3772672	26,37	26,37	26,37	26,37	26,37	26,37
300	21	25,4532568	25,45	25,45	25,45	25,45	25,45	25,45
301	22	24,7512699	24,75	24,75	24,75	24,75	24,75	24,75
302	23	24,2103652	24,21	24,21	24,21	24,21	24,21	24,21
303	24	23,5000068	23,5	23,5	23,5	23,5	23,5	23,5
304	25	20,021931	20,01	20,01	20,01	20,01	20,01	20,01
305	26	20,0119878	20	20	20	20	20	20
306	27	20,8171764	20,81	20,81	20,81	20,81	20,81	20,81
307	28	20,9166624	20,91	20,91	20,91	20,91	20,91	20,91
308	29	22,0222783	22,02	22,02	22,02	22,02	22,02	22,02
309	30	23,58	23,58	23,58	23,58	23,58	23,58	23,58
310	31	24,3505433	24,35	24,35	24,35	24,35	24,35	24,35
311	1	24,0001597	24	24	24	24	24	24
312	2	23,1501753	23,15	23,15	23,15	23,15	23,15	23,15
313	3	23,8200511	23,82	23,82	23,82	23,82	23,82	23,82
314	4	24,1002451	24,1	24,1	24,1	24,1	24,1	24,1
315	5	23,300075	23,3	23,3	23,3	23,3	23,3	23,3
316	6	20,7773059	20,77	20,77	20,77	20,77	20,77	20,77
317	7	19,823122	19,81	19,81	19,81	19,81	19,81	19,81
318	8	19,7436661	19,73	19,73	19,73	19,73	19,73	19,73
319	9	20,618128	20,61	20,61	20,61	20,61	20,61	20,61
320	10	17,9593275	17,93	17,93	17,93	17,93	17,93	17,93
321	11	17,6229133	17,59	17,59	17,59	17,59	17,59	17,59
322	12	17,850392	17,82	17,82	17,82	17,82	17,82	17,82
323	13	16,5359638	16,49	16,49	16,49	16,49	16,49	16,49

		I						
324	14	18,1571291	18,13	18,13	18,13	18,13	18,13	18,13
325	15	18,5334443	18,51	18,51	18,51	18,51	18,51	18,51
326	16	17,6325533	17,6	17,6	17,6	17,6	17,6	17,6
327	17	15,8352711	15,78	15,78	15,78	15,78	15,78	15,78
328	18	16,3579389	16,31	16,31	16,31	16,31	16,31	16,31
329	19	16,7922427	16,75	16,75	16,75	16,75	16,75	16,75
330	20	17,3850901	17,35	17,35	17,35	17,35	17,35	17,35
331	21	16,5057405	16,46	16,46	16,46	16,46	16,46	16,46
332	22	18,5727999	18,55	18,55	18,55	18,55	18,55	18,55
333	23	16,4956993	16,45	16,45	16,45	16,45	16,45	16,45
334	24	13,5322137	13,44	13,44	13,44	13,44	13,44	13,44
335	25	11,0341153	10,89	10,89	10,89	10,89	10,89	10,89
336	26	12,394057	12,28	12,28	12,28	12,28	12,28	12,28
337	27	11,7475045	11,62	11,62	11,62	11,62	11,62	11,62
338	28	10,3592353	10,2	10,2	10,2	10,2	10,2	10,2
339	29							
340		11,0427147	10,9	10,9	10,9	10,9	10,9	10,9
341	30	12,8244757	12,72	12,72	12,72	12,72	12,72	12,72
342	1	12,0597528	11,94	11,94	11,94	11,94	11,94	11,94
343	2	11,3547189	11,22	11,22	11,22	11,22	11,22	11,22
-	3	12,6668597	12,56	12,56	12,56	12,56	12,56	12,56
344	4	14,6215998	14,55	14,55	14,55	14,55	14,55	14,55
345	5	13,7953318	13,71	13,71	13,71	13,71	13,71	13,71
346	6	15,3205018	15,26	15,26	15,26	15,26	15,26	15,26
347	7	14,4833092	14,41	14,41	14,41	14,41	14,41	14,41
348	8	11,959834	11,84	11,84	11,84	11,84	11,84	11,84
349	9	11,9889238	11,87	11,87	11,87	11,87	11,87	11,87
350	10	12,3806587	12,27	12,27	12,27	12,27	12,27	12,27
351	11	12,3607628	12,25	12,25	12,25	12,25	12,25	12,25
352	12	9,83648431	9,67	9,67	9,67	9,67	9,67	9,67
353	13	8,91923	8,73	8,73	8,73	8,73	8,73	8,73
354	14	10,4020723	10,25	10,25	10,25	10,25	10,25	10,25
355	15	9,83513212	9,67	9,67	9,67	9,67	9,67	9,67
356	16	11,8201285	11,7	11,7	11,7	11,7	11,7	11,7
357	17	12,4570428	12,35	12,35	12,35	12,35	12,35	12,35
358	18	11,0262768	10,89	10,89	10,89	10,89	10,89	10,89
359	19	9,73560325	9,57	9,57	9,57	9,57	9,57	9,57
360	20	9,2373463	9,06	9,06	9,06	9,06	9,06	9,06
361	21	8,82718446	8,64	8,64	8,64	8,64	8,64	8,64
362	22	8,85586319	8,67	8,67	8,67	8,67	8,67	8,67
363	23	9,1771778	9	9	9	9	9	9
364	24	9,47919161	9,31	9,31	9,31	9,31	9,31	9,31
365	25	10,4265099	10,28	10,28	10,28	10,28	10,28	10,28
366	26	12,0224454	11,91	11,91	11,91	11,91	11,91	11,91
367	27	14,8437467	14,78	14,78	14,78	14,78	14,78	14,78
368	28	13,2588932	13,17	13,17	13,17	13,17	13,17	13,17
369	29	11,2469012	11,12	11,12	11,12	11,12	11,12	11,12
370	30	8,5486716	8,36	8,36	8,36	8,36	8,36	8,36
371	31	10,0323493	9,88	9,88	9,88	9,88	9,88	9,88
372	1	11,863211	11,75	11,75	11,75	11,75	11,75	11,75
373	2	11,9707203	11,86	11,86	11,86	11,86	11,86	11,86
374	3	10,0698474	9,92	9,92	9,92	9,92	9,92	9,92
375	4	8,29171669	8,1	8,1	8,1	8,1	8,1	8,1
0.5	7	0,23171009	0,1	0,1	0,1	0,1	0,1	υ, ι

270	_						T	
376	5	8,25199376	8,06	8,06	8,06	8,06	8,06	8,06
377	6	8,56346867	8,38	8,38	8,38	8,38	8,38	8,38
378	7	7,266143	7,05	7,05	7,05	7,05	7,05	7,05
379	8	8,36688667	8,18	8,18	8,18	8,18	8,18	8,18
380	9	10,9870196	10,86	10,86	10,86	10,86	10,86	10,86
381	10	10,0854725	9,94	9,94	9,94	9,94	9,94	9,94
382	11	10,1142532	9,97	9,97	9,97	9,97	9,97	9,97
383	12	9,4679343	9,31	9,31	9,31	9,31	9,31	9,31
384	13	9,49662489	9,34	9,34	9,34	9,34	9,34	9,34
385	14	8,01103494	7,82	7,82	7,82	7,82	7,82	7,82
386	15	8,40069916	8,22	8,22	8,22	8,22	8,22	8,22
387	16	7,88255518	7,69	7,69	7,69	7,69	7,69	7,69
388	17	6,73124601	6,51	6,51	6,51	6,51	6,51	6,51
389	18	7,13957515	6,93	6,93	6,93	6,93	6,93	6,93
390	20	6,94368836	6,73	6,73	6,73	6,73	6,73	6,73
391	21	8,9245742	8,76	8,76	8,76	8,76	8,76	8,76
392	22	12,109871	12,01	12,01	12,01	12,01	12,01	12,01
393	23	9,59824824	9,45	9,45	9,45	9,45	9,45	9,45
394	24	8,5702957	8,4	8,4	8,4	8,4	8,4	8,4
395	25	7,64136541	7,45	7,45	7,45	7,45	7,45	7,45
396	26	7,55258452	7,36	7,36	7,36	7,36	7,36	7,36
397	27	9,80117039	9,66	9,66	9,66	9,66	9,66	9,66
398	28	11,1638355	11,05	11,05	11,05	11,05	11,05	11,05
399	29	11,752689	11,65	11,65	11,65	11,65	11,65	11,65
400	30	10,5050777	10,38	10,38	10,38	10,38	10,38	10,38
401	31	8,55477925	8,39	8,39	8,39	8,39	8,39	8,39
402	1	11,8199558	11,72	11,72	11,72	11,72	11,72	11,72
403	2	12,990492	12,91	12,91	12,91	12,91	12,91	12,91
404	3	13,3250509	13,25	13,25	13,25	13,25	13,25	13,25
405	4	11,1008719	10,99	10,99	10,99	10,99	10,99	10,99
406	5	11,208359	11,1	11,1	11,1	11,1	11,1	11,1
407	6	10,8442528	10,73	10,73	10,73	10,73	10,73	10,73
408	7	9,49913413	9,36	9,36	9,36	9,36	9,36	9,36
409	8	10,6858232	10,57	10,57	10,57	10,57	10,57	10,57
410	9	13,332483	13,26	13,26	13,26	13,26	13,26	13,26
411	10	16,3754857	16,34	16,34	16,34	16,34	16,34	16,34
412	11	17,3463821	17,32	17,32	17,32	17,32	17,32	17,32
413	12	12,7890289	12,71	12,71	12,71	12,71	12,71	12,71
414	13	11,0068904	10,9	10,9	10,9	10,9	10,9	10,9
415	14	10,3281259	10,21	10,21	10,21	10,21	10,21	10,21
416	15	9,31619241	9,18	9,18	9,18	9,18	9,18	9,18
417	16	11,6740131	11,58	11,58	11,58	11,58	11,58	11,58
418	17	15,2159069	15,17	15,17	15,17	15,17	15,17	15,17
419	18	15,2057281	15,16	15,16	15,16	15,16	15,16	15,16
420	19	16,2151022	16,18	16,18	16,18	16,18	16,18	16,18
421	20	14,4734267	14,42	14,42	14,42	14,42	14,42	14,42
422	21	13,6432561	13,58	13,58	13,58	13,58	13,58	13,58
423	22	15,0660536	15,02	15,02	15,02	15,02	15,02	15,02
424	23	10,7543396	10,65	10,65	10,65	10,65	10,65	10,65
425	24	11,9254466	11,84	11,84	11,84	11,84	11,84	11,84
426	25	11,7179275	11,63	11,63	11,63	11,63	11,63	11,63
427	26	12,762524	12,69	12,69	12,69	12,69	12,69	12,69
7=7	20	12,102324	12,09	12,09	12,09	12,09	12,09	12,09

	1	T					Ι	1
428	27	12,3082288	12,23	12,23	12,23	12,23	12,23	12,23
429	28	12,6430954	12,57	12,57	12,57	12,57	12,57	12,57
430	1	14,7175396	14,67	14,67	14,67	14,67	14,67	14,67
431	2	15,221951	15,18	15,18	15,18	15,18	15,18	15,18
432	3	15,8258191	15,79	15,79	15,79	15,79	15,79	15,79
433	4	16,9261494	16,9	16,9	16,9	16,9	16,9	16,9
434	5	17,4817875	17,46	17,46	17,46	17,46	17,46	17,46
435	6	10,2934139	10,19	10,19	10,19	10,19	10,19	10,19
436	7	11,5835302	11,5	11,5	11,5	11,5	11,5	11,5
437	8	15,3191422	15,28	15,28	15,28	15,28	15,28	15,28
438	9	18,305786	18,29	18,29	18,29	18,29	18,29	18,29
439	10	17,5703435	17,55	17,55	17,55	17,55	17,55	17,55
440	11	17,4311267	17,41	17,41	17,41	17,41	17,41	17,41
441	12	17,2720544	17,25	17,25	17,25	17,25	17,25	17,25
442	13	17,639392	17,62	17,62	17,62	17,62	17,62	17,62
443	14	16,8645877	16,84	16,84	16,84	16,84	16,84	16,84
444	15	18,3845737	18,37	18,37	18,37	18,37	18,37	18,37
445	16	19,220169	19,21	19,21	19,21	19,21	19,21	19,21
446	17	21,2129707	21,21	21,21	21,21	21,21	21,21	21,21
447	18	25,4217578	25,42	25,42	25,42	25,42	25,42	25,42
448	19	23,7000068	23,7	23,7	23,7	23,7	23,7	23,7
449	20	21,9314043	21,93	21,93	21,93	21,93	21,93	21,93
449	21	21,4922298	21,49	21,49	21,49	21,49	21,49	21,49
450	22	17,5583927	17,54	17,54	17,54	17,54	17,54	17,54
451	23	17,9956643	17,98	17,98	17,98	17,98	17,98	17,98
452	24	22,770328	22,77	22,77	22,77	22,77	22,77	22,77
453	25	21,8814219	21,88	21,88	21,88	21,88	21,88	21,88
454	26	22,4206574	22,42	22,42	22,42	22,42	22,42	22,42
455	27	23,9200538	23,92	23,92	23,92	23,92	23,92	23,92
456	28	25,3013963	25,3	25,3	25,3	25,3	25,3	25,3
457	29	25,1711806	25,17	25,17	25,17	25,17	25,17	25,17
458	30	24,4203243	24,42	24,42	24,42	24,42	24,42	24,42
459	31	24,9808956	24,98	24,98	24,98	24,98	24,98	24,98
460	1	27,9687158	27,96	27,96	27,96	27,96	27,96	27,96
461	2	28,5410153	28,53	28,53	28,53	28,53	28,53	28,53
462	3	27,6473264	27,64	27,64	27,64	27,64	27,64	27,64
463	4	27,1154753	27,11	27,11	27,11	27,11	27,11	27,11
464	5	27,7174139	27,71	27,71	27,71	27,71	27,71	27,71
465	6	25,3613572	25,36	25,36	25,36	25,36	25,36	25,36
466	7	22,4005979	22,4	22,4	22,4	22,4	22,4	22,4
467	8	24,2701975	24,27	24,27	24,27	24,27	24,27	24,27
468	9	26,6739575	26,67	26,67	26,67	26,67	26,67	26,67
469	10	31,5659971	31,54	31,54	31,54	31,54	31,54	31,54
470	11	30,0569081	30,04	30,04	30,04	30,04	30,04	30,04
471	12	27,5161739	27,51	27,51	27,51	27,51	27,51	27,51
472	13	20,8529599	20,85	20,85	20,85	20,85	20,85	20,85
473	14	21,1922407	21,19	21,19	21,19	21,19	21,19	21,19
474	15	22,1208275	22,12	22,12	22,12	22,12	22,12	22,12
475	16	25,1909801	25,19	25,12	25,12	25,19	25,19	25,12
476	17	25,1909801	25,19	25,19	25,19	25,19	25,19	25,19
477	18	19,4363918	19,43	19,43	19,43	19,43	19,43	19,43
478								
4/6	19	21,7512294	21,75	21,75	21,75	21,75	21,75	21,75

479	20	23,9700534	23,97	23,97	23,97	23,97	23,97	23,97
480	21	24,3802242	24,38	24,38	24,38	24,38	24,38	24,38
481	22	24,4602677	24,46	24,46	24,46	24,46	24,46	24,46
482	23	25,5112764	25,51	25,51	25,51	25,51	25,51	25,51
483	24	22,5803427	22,58	22,58	22,58	22,58	22,58	22,58
484	25	18,5485024	18,54	18,54	18,54	18,54	18,54	18,54
485	26	18,8773105	18,87	18,87	18,87	18,87	18,87	18,87
486	27	20,2935134	20,29	20,29	20,29	20,29	20,29	20,29
487	28	22,3105175	22,31	22,31	22,31	22,31	22,31	22,31
488	29	21,6611603	21,66	21,66	21,66	21,66	21,66	21,66
489	30	23,1200666	23,12	23,12	23,12	23,12	23,12	23,12
490	1	24,1200866	24,12	24,12	24,12	24,12	24,12	24,12
491	2	27,0635901	27,06	27,06	27,06	27,06	27,06	27,06
492	3	26,612672	26,61	26,61	26,61	26,61	26,61	26,61
493	4	21,9907294	21,99	21,99	21,99	21,99	21,99	21,99
494	5	21,5112115	21,51	21,51	21,51	21,51	21,51	21,51
495	6	20,6523781	20,65	20,65	20,65	20,65	20,65	20,65
496	7	20,1531944	20,15	20,15	20,15	20,15	20,15	20,15
497	8	23,7100041	23,71	23,71	23,71	23,71	23,71	23,71
498	9	27,0230682	27,02	27,02	27,02	27,02	27,02	27,02
499	10	30,3516207	30,34	30,34	30,34	30,34	30,34	30,34
500	11	31,1040419	31,09	31,09	31,09	31,09	31,09	31,09
501	13	26,4319743	26,43	26,43	26,43	26,43	26,43	26,43
502	14	27,583807	27,58	27,58	27,58	27,58	27,58	27,58
503	15	29,2073504	29,2	29,2	29,2	29,2	29,2	29,2
504	16	30,6413029	30,63	30,63	30,63	30,63	30,63	30,63
505	17	32,788756	32,77	32,77	32,77	32,77	32,77	32,77
506	18	33,6719731	33,65	33,65	33,65	33,65	33,65	33,65
507	19	34,3644612	34,34	34,34	34,34	34,34	34,34	34,34
508	20	34,5245469	34,5	34,5	34,5	34,5	34,5	34,5
509	21	34,3431169	34,32	34,32	34,32	34,32	34,32	34,32
510	22	34,4228253	34,4	34,4	34,4	34,4	34,4	34,4
511	23	35,2758118	35,25	35,25	35,25	35,25	35,25	35,25
512	24	30,3283567	30,32	30,32	30,32	30,32	30,32	30,32
513	25	24,7502426	24,75	24,75	24,75	24,75	24,75	24,75
514	26	27,1622147	27,16	27,16	27,16	27,16	27,16	27,16
515	27	28,8045636	28,8	28,8	28,8	28,8	28,8	28,8
516	28	31,1893631	31,18	31,18	31,18	31,18	31,18	31,18
517	29	31,6602005	31,65	31,65	31,65	31,65	31,65	31,65
518	30	31,7801379	31,77	31,77	31,77	31,77	31,77	31,77
519	31	30,9679313	30,96	30,96	30,96	30,96	30,96	30,96
520	1	24,3300779	24,33	24,33	24,33	24,33	24,33	24,33
521	2	23,6200002	23,62	23,62	23,62	23,62	23,62	23,62
522	3	25,1002967	25,1	25,1	25,1	25,1	25,1	25,1
523	4	24,8702044	24,87	24,87	24,87	24,87	24,87	24,87
524	5	25,5004336	25,5	25,5	25,5	25,5	25,5	25,5
525	6	27,9421374	27,94	27,94	27,94	27,94	27,94	27,94
526	7	30,8957186	30,89	30,89	30,89	30,89	30,89	30,89
527	8	31,7167088	31,71	31,71	31,71	31,71	31,71	31,71
528	9	32,2772474	32,27	32,27	32,27	32,27	32,27	32,27
529	10	32,7475882	32,74	32,74	32,74	32,74	32,74	32,74
530	11	29,6831572	29,68	29,68	29,68	29,68	29,68	29,68

				1	1		1	
531	12	27,5112237	27,51	27,51	27,51	27,51	27,51	27,51
532	13	27,8313313	27,83	27,83	27,83	27,83	27,83	27,83
533	14	29,892716	29,89	29,89	29,89	29,89	29,89	29,89
534	15	32,7652833	32,76	32,76	32,76	32,76	32,76	32,76
535	16	35,5081205	35,5	35,5	35,5	35,5	35,5	35,5
536	17	35,5674046	35,56	35,56	35,56	35,56	35,56	35,56
537	18	35,7468065	35,74	35,74	35,74	35,74	35,74	35,74
538	19	33,1136746	33,11	33,11	33,11	33,11	33,11	33,11
539	20	32,79296	32,79	32,79	32,79	32,79	32,79	32,79
540	21	33,5929393	33,59	33,59	33,59	33,59	33,59	33,59
541	22	34,9530731	34,95	34,95	34,95	34,95	34,95	34,95
542	23	36,0328219	36,03	36,03	36,03	36,03	36,03	36,03
543	24	36,9422558	36,94	36,94	36,94	36,94	36,94	36,94
544	25	36,761228	36,76	36,76	36,76	36,76	36,76	36,76
545	26	37,840305	37,84	37,84	37,84	37,84	37,84	37,84
546	27	37,6591933	37,66	37,66	37,66	37,66	37,66	37,66
547	28	37,9879985	37,99	37,99	37,99	37,99	37,99	37,99
548	29	37,4170871	37,42	37,42	37,42	37,42	37,42	37,42
549	30	37,9656978	37,97	37,97	37,97	37,97	37,97	37,97
550	1	38,2942917	38,3	38,3	38,3	38,3	38,3	38,3
551	2	36,4247312	36,43	36,43	36,43	36,43	36,43	36,43
552	3	36,7435001	36,75	36,75	36,75	36,75	36,75	36,75
553	4	38,6302378	38,64	38,64	38,64	38,64	38,64	38,64
554	5	38,4791947	38,49	38,49	38,49	38,49	38,49	38,49
555	6	36,8804048	36,89	36,89	36,89	36,89	36,89	36,89
556	7	37,3087251	37,32	37,32	37,32	37,32	37,32	37,32
557	8	38,475487	38,49	38,49	38,49	38,49	38,49	38,49
558	9	34,3417854	34,35	34,35	34,35	34,35	34,35	34,35
559	10	33,1230356	33,13	33,13	33,13	33,13	33,13	33,13
560	11	32,6133066	32,62	32,62	32,62	32,62	32,62	32,62
561	12	31,574404	31,58	31,58	31,58	31,58	31,58	31,58
562	13	31,923517	31,93	31,93	31,93	31,93	31,93	31,93
563	14	33,350575	33,36	33,36	33,36	33,36	33,36	33,36
564	15	34,0984594	34,11	34,11	34,11	34,11	34,11	34,11
565	16	31,4931265	31,5	31,5	31,5	31,5	31,5	31,5
566	17	31,422907	31,43	31,43	31,43	31,43	31,43	31,43
567	19	32,719899	32,73	32,73	32,73	32,73	32,73	32,73
568	20	34,2755257	34,29	34,29	34,29	34,29	34,29	34,29
569	21	35,0127323	35,03	35,03	35,03	35,03	35,03	35,03
570	22	33,5961969	33,61	33,61	33,61	33,61	33,61	33,61
571	23	33,4759847	33,49	33,49	33,49	33,49	33,49	33,49
572	24	33,7247004	33,74	33,74	33,74	33,74	33,74	33,74
547	25	34,7507512	34,77	34,77	34,77	34,77	34,77	34,77
548	26	35,9256352	35,95	35,95	35,95	35,95	35,95	35,95
549	27	36,6716455	36,7	36,7	36,7	36,7	36,7	36,7
550	28	36,7503437	36,78	36,78	36,78	36,78	36,78	36,78
551	29	37,3564942	37,39	37,39	37,39	37,39	37,39	37,39
552	30	38,7978125	38,84	38,84	38,84	38,84	38,84	38,84
553	31	36,0807034	36,11	36,11	36,11	36,11	36,11	36,11
554	1	35,3532594	35,38	35,38	35,38	35,38	35,38	35,38
555	2	36,8052716	36,84	36,84	36,84	36,84	36,84	36,84
556	3	37,778843	37,82	37,82	37,82	37,82	37,82	37,82

557	4	36,9624693	37	37	37	37	37	37
558	21	34,305295	34,33	34,33	34,33	34,33	34,33	34,33
559	22	34,1852314	34,21	34,21	34,21	34,21	34,21	34,21
560	23	35,0502935	35,08	35,08	35,08	35,08	35,08	35,08
561	24	35,9744572	36,01	36,01	36,01	36,01	36,01	36,01
562	25	36,4706369	36,51	36,51	36,51	36,51	36,51	36,51
563	26	35,286809	35,32	35,32	35,32	35,32	35,32	35,32
564	27	25,1294118	25,13	25,13	25,13	25,13	25,13	25,13
565	28	25,9585798	25,96	25,96	25,96	25,96	25,96	25,96
566	29	25,459096	25,46	25,46	25,46	25,46	25,46	25,46
567	30	27,3362987	27,34	27,34	27,34	27,34	27,34	27,34
568	31	29,4607234	29,47	29,47	29,47	29,47	29,47	29,47
569	1	31,6421864	31,66	31,66	31,66	31,66	31,66	31,66
570	2	25,3691126	25,37	25,37	25,37	25,37	25,37	25,37
571	3	23,6299994	23,63	23,63	23,63	23,63	23,63	23,63
572	4	24,7795871	24,78	24,78	24,78	24,78	24,78	24,78
573	5	25,7885684	25,79	25,79	25,79	25,79	25,79	25,79
574	6	30,7943535	30,81	30,81	30,81	30,81	30,81	30,81
575	7	33,1320358	33,16	33,16	33,16	33,16	33,16	33,16
576	8	31,8685987	31,89	31,89	31,89	31,89	31,89	31,89
577	9	29,5288102	29,54	29,54	29,54	29,54	29,54	29,54
578	10	30,6439427	30,66	30,66	30,66	30,66	30,66	30,66
579	11	31,0119292	31,03	31,03	31,03	31,03	31,03	31,03
600	12	32,1853583	32,21	32,21	32,21	32,21	32,21	32,21
601	13	33,0297942	33,06	33,06	33,06	33,06	33,06	33,06
602	14	32,5921099	32,62	32,62	32,62	32,62	32,62	32,62
603	15	34,1609178	34,2	34,2	34,2	34,2	34,2	34,2
604	16	32,2036911	32,23	32,23	32,23	32,23	32,23	32,23
605	17	32,4418024	32,47	32,47	32,47	32,47	32,47	32,47
606	18	33,8515221	33,89	33,89	33,89	33,89	33,89	33,89
607	19	37,2407761	37,31	37,31	37,31	37,31	37,31	37,31
608	20	37,210117	37,28	37,28	37,28	37,28	37,28	37,28
609	21	35,8823431	35,94	35,94	35,94	35,94	35,94	35,94
610	22	37,2279918	37,3	37,3	37,3	37,3	37,3	37,3
611	23	37,1083063	37,18	37,18	37,18	37,18	37,18	37,18
612	24	36,7511644	36,82	36,82	36,82	36,82	36,82	36,82
613	25	36,1465571	36,21	36,21	36,21	36,21	36,21	36,21
614	26	36,927461	37	37	37	37	37	37
615	27	36,2043313	36,27	36,27	36,27	36,27	36,27	36,27
616	28	34,5498752	34,6	34,6	34,6	34,6	34,6	34,6
617	29	34,7474093	34,8	34,8	34,8	34,8	34,8	34,8
618	30	33,9243676	33,97	33,97	33,97	33,97	33,97	33,97
619	1	34,0823978	34,13	34,13	34,13	34,13	34,13	34,13
620	2	35,6265452	35,69	35,69	35,69	35,69	35,69	35,69
621	3	35,0122269	35,07	35,07	35,07	35,07	35,07	35,07
622	4	36,9104105	36,99	36,99	36,99	36,99	36,99	36,99
623	5	37,1861309	37,27	37,27	37,27	37,27	37,27	37,27
624	6	32,9995277	33,04	33,04	33,04	33,04	33,04	33,04
625	7	33,3757371	33,42	33,42	33,42	33,42	33,42	33,42
626	8	34,5834802	34,64	34,64	34,64	34,64	34,64	34,64
627	9	37,4292542	37,52	37,52	37,52	37,52	37,52	37,52
628	10	37,5467301	37,64	37,64	37,64	37,64	37,64	37,64
<u> </u>	ΙV	31,3401301	31,04	31,04	31,04	31,04	37,04	31,04

629 11 31,5197407 31,55 31,55 31,55 31,55 630 12 30,2882119 30,31 30,31 30,31 30,31 631 13 30,4370031 30,46 30,46 30,46 30,46 632 14 32,3717364 32,41 32,41 32,41 32,41 633 15 34,5694848 34,63 34,63 34,63 34,63 634 16 34,5491288 34,61 34,61 34,61 34,61 635 17 33,1235585 33,17 33,17 33,17 33,17 636 18 33,6181093 33,67 33,67 33,67 33,67 637 19 34,0133972 34,07 34,07 34,07 34,07 638 20 34,5567358 34,62 34,62 34,62 34,62 639 21 34,2299312 34,29 34,29 34,29 640 22 33,4183296 <	31,55 30,31 30,46 32,41 34,63 34,61 33,17 33,67 34,07 34,62 34,29 33,47	31,55 30,31 30,46 32,41 34,63 34,61 33,17 33,67 34,07 34,02 34,29
631 13 30,4370031 30,46 30,46 30,46 30,46 30,46 632 14 32,3717364 32,41 32,41 32,41 32,41 32,41 633 15 34,5694848 34,63 34,63 34,63 34,63 634 16 34,5491288 34,61 34,61 34,61 34,61 635 17 33,1235585 33,17 33,17 33,17 33,17 636 18 33,6181093 33,67 33,67 33,67 33,67 637 19 34,0133972 34,07 34,07 34,07 34,07 638 20 34,5567358 34,62 34,62 34,29 34,29 639 21 34,2299312 34,29 34,29 34,29	30,46 32,41 34,63 34,61 33,17 33,67 34,07 34,62 34,29 33,47	30,46 32,41 34,63 34,61 33,17 33,67 34,07 34,62
632 14 32,3717364 32,41 32,41 32,41 32,41 32,41 633 15 34,5694848 34,63 34,63 34,63 34,63 34,63 634 16 34,5491288 34,61 34,61 34,61 34,61 635 17 33,1235585 33,17 33,17 33,17 33,17 636 18 33,6181093 33,67 33,67 33,67 33,67 637 19 34,0133972 34,07 34,07 34,07 34,07 638 20 34,5567358 34,62 34,62 34,62 34,29 639 21 34,2299312 34,29 34,29 34,29 34,29	32,41 34,63 34,61 33,17 33,67 34,07 34,62 34,29 33,47	32,41 34,63 34,61 33,17 33,67 34,07 34,62
633 15 34,5694848 34,63 34,63 34,63 34,63 34,63 634 16 34,5491288 34,61 34,61 34,61 34,61 34,61 635 17 33,1235585 33,17 33,17 33,17 33,17 636 18 33,6181093 33,67 33,67 33,67 33,67 637 19 34,0133972 34,07 34,07 34,07 34,07 638 20 34,5567358 34,62 34,62 34,62 34,62 34,29 639 21 34,2299312 34,29 34,29 34,29 34,29	34,63 34,61 33,17 33,67 34,07 34,62 34,29 33,47	34,63 34,61 33,17 33,67 34,07 34,62
634 16 34,5491288 34,61 34,61 34,61 34,61 34,61 635 17 33,1235585 33,17 33,17 33,17 33,17 636 18 33,6181093 33,67 33,67 33,67 33,67 637 19 34,0133972 34,07 34,07 34,07 34,07 638 20 34,5567358 34,62 34,62 34,62 34,29 639 21 34,2299312 34,29 34,29 34,29 34,29	34,61 33,17 33,67 34,07 34,62 34,29 33,47	34,61 33,17 33,67 34,07 34,62
635 17 33,1235585 33,17 33,17 33,17 33,17 636 18 33,6181093 33,67 33,67 33,67 33,67 637 19 34,0133972 34,07 34,07 34,07 34,07 638 20 34,5567358 34,62 34,62 34,62 34,62 639 21 34,2299312 34,29 34,29 34,29 34,29	33,17 33,67 34,07 34,62 34,29 33,47	33,17 33,67 34,07 34,62
636 18 33,6181093 33,67 33,67 33,67 33,67 637 19 34,0133972 34,07 34,07 34,07 34,07 638 20 34,5567358 34,62 34,62 34,62 34,62 639 21 34,2299312 34,29 34,29 34,29 34,29	33,67 34,07 34,62 34,29 33,47	33,67 34,07 34,62
637 19 34,0133972 34,07 34,07 34,07 34,07 638 20 34,5567358 34,62 34,62 34,62 34,62 34,62 639 21 34,2299312 34,29 34,29 34,29 34,29	34,07 34,62 34,29 33,47	34,07 34,62
638 20 34,5567358 34,62 34,62 34,62 34,62 639 21 34,2299312 34,29 34,29 34,29	34,62 34,29 33,47	34,62
639 21 34,2299312 34,29 34,29 34,29 34,29 34,29	34,29 33,47	•
21 01,220012 01,20 01,20 01,20	33,47	34,29
640 22 33,4183296 33,47 33,47 33,47 33,47		
	00.00	33,47
641 23 33,1803798 33,23 33,23 33,23 33,23	33,23	33,23
642 24 33,9416434 34 34 34 34	34	34
643 25 35,5611545 35,64 35,64 35,64 35,64	35,64	35,64
644 26 36,1622437 36,25 36,25 36,25 36,25	36,25	36,25
645 27 36,8613186 36,96 36,96 36,96 36,96	36,96	36,96
646 28 34,8979142 34,97 34,97 34,97 34,97	34,97	34,97
647 29 33,8403495 33,9 33,9 33,9 33,9 33,9	33,9	33,9
648 30 35,2520473 35,33 35,33 35,33 35,33	35,33	35,33
649 31 36,1586429 36,25 36,25 36,25 36,25 36,25	36,25	36,25
650 1 35,4382397 35,52 35,52 35,52 35,52	35,52	35,52
651 2 34,2138418 34,28 34,28 34,28 34,28	34,28	34,28
652 3 34,9339291 35,01 35,01 35,01 35,01	35,01	35,01
653 4 36,0770055 36,17 36,17 36,17 36,17	36,17	36,17
654 5 33,8074302 33,87 33,87 33,87 33,87	33,87	33,87
655 6 34,0143723 34,08 34,08 34,08 34,08 34,08	34,08	34,08
656 7 34,8724842 34,95 34,95 34,95 34,95	34,95	34,95
657 8 38,8858155 39,03 39,03 39,03 39,03	39,03	39,03
658 9 36,9888194 37,1 37,1 37,1 37,1	37,1	37,1
659 10 29,7465526 29,77 29,77 29,77 29,77	29,77	29,77
660 11 27,5900513 27,6 27,6 27,6 27,6	27,6	27,6
661 12 30,5595098 30,59 30,59 30,59 30,59	30,59	30,59
662 13 30,6187766 30,65 30,65 30,65 30,65	30,65	30,65
663 14 34,1882424 34,26 34,26 34,26 34,26 34,26	34,26	34,26
664 15 34,5033758 34,58 34,58 34,58 34,58	34,58	34,58
665 16 35,429128 35,52 35,52 35,52 35,52	35,52	35,52
666 17 35,6352986 35,73 35,73 35,73 35,73	35,73	35,73
667 18 35,9692877 36,07 36,07 36,07 36,07	36,07	36,07
668 19 36,2243921 36,33 36,33 36,33 36,33	36,33	36,33
669 20 36,6169639 36,73 36,73 36,73 36,73	36,73	36,73
670 21 37,4805358 37,61 37,61 37,61 37,61	37,61	37,61
671 22 34,8841724 34,97 34,97 34,97 34,97	34,97	34,97
672 23 33,5134554 33,58 33,58 33,58 33,58	33,58	33,58
673 24 34,0357756 34,11 34,11 34,11 34,11	34,11	34,11
674 25 33,01924 33,08 33,08 33,08 33,08	33,08	33,08
675 26 30,1901595 30,22 30,22 30,22 30,22	30,22	30,22
676 27 30,199899 30,23 30,23 30,23 30,23	30,23	30,23
677 28 32,5837911 32,64 32,64 32,64 32,64	32,64	32,64
678 29 33,4519587 33,52 33,52 33,52 33,52	33,52	33,52
679 30 34,309078 34,39 34,39 34,39 34,39	34,39	34,39
680 31 34,8599863 34,95 34,95 34,95 34,95	34,95	34,95

604	_							
681	1	34,337747	34,42	34,42	34,42	34,42	34,42	34,42
682	2	31,7030427	31,75	31,75	31,75	31,75	31,75	31,75
683	3	31,4160901	31,46	31,46	31,46	31,46	31,46	31,46
684	4	32,2459446	32,3	32,3	32,3	32,3	32,3	32,3
685	5	32,3740351	32,43	32,43	32,43	32,43	32,43	32,43
686	6	32,0873801	32,14	32,14	32,14	32,14	32,14	32,14
687	7	32,2846157	32,34	32,34	32,34	32,34	32,34	32,34
688	8	28,3633049	28,38	28,38	28,38	28,38	28,38	28,38
689	9	28,1745267	28,19	28,19	28,19	28,19	28,19	28,19
690	10	29,1868017	29,21	29,21	29,21	29,21	29,21	29,21
691	11	32,1157057	32,17	32,17	32,17	32,17	32,17	32,17
692	12	32,4510441	32,51	32,51	32,51	32,51	32,51	32,51
693	13	30,7316136	30,77	30,77	30,77	30,77	30,77	30,77
694	14	29,582884	29,61	29,61	29,61	29,61	29,61	29,61
695	15	27,0807817	27,09	27,09	27,09	27,09	27,09	27,09
696	16	29,4438959	29,47	29,47	29,47	29,47	29,47	29,47
697	18	29,6320601	29,66	29,66	29,66	29,66	29,66	29,66
698	19	32,6269646	32,69	32,69	32,69	32,69	32,69	32,69
699	20	32,1235862	32,18	32,18	32,18	32,18	32,18	32,18
700	21	31,3926814	31,44	31,44	31,44	31,44	31,44	31,44
701	22	29,3045819	29,33	29,33	29,33	29,33	29,33	29,33
702	23	29,6215537	29,65	29,65	29,65	29,65	29,65	29,65
703	24	28,5507038	28,57	28,57	28,57	28,57	28,57	28,57
704	25	25,8559648	25,86	25,86	25,86	25,86	25,86	25,86
705	26	27,0604932	27,07	27,07	27,07	27,07	27,07	27,07
706	27	30,2744592	30,31	30,31	30,31	30,31	30,31	30,31
707	28	29,9477364	29,98	29,98	29,98	29,98	29,98	29,98
708	29	30,778545	30,82	30,82	30,82	30,82	30,82	30,82
709	30	32,0916823	32,15	32,15	32,15	32,15	32,15	32,15
710	1	32,5450072	32,61	32,61	32,61	32,61	32,61	32,61
711	2	33,3228465	33,4	33,4	33,4	33,4	33,4	33,4
712	3	31,4792606	31,53	31,53	31,53	31,53	31,53	31,53
713	4	30,3031896	30,34	30,34	30,34	30,34	30,34	30,34
714	5	31,5776022	31,63	31,63	31,63	31,63	31,63	31,63
715	6	30,6391035	30,68	30,68	30,68	30,68	30,68	30,68
716	7	25,666456	25,67	25,67	25,67	25,67	25,67	25,67
717	8	24,9584534	24,96	24,96	24,96	24,96	24,96	24,96
718	9	25,1380154	25,14	25,14	25,14	25,14	25,14	25,14
719	10	26,2441514	26,25	26,25	26,25	26,25	26,25	26,25
720	11	27,0798502	27,09	27,09	27,09	27,09	27,09	27,09
721	12	26,9505588	26,96	26,96	26,96	26,96	26,96	26,96
722	13	26,5426901	26,55	26,55	26,55	26,55	26,55	26,55
723	14	23,0998038	23,1	23,1	23,1	23,1	23,1	23,1
724	15	22,7494166	22,75	22,75	22,75	22,75	22,75	22,75
725	16	21,8575027	21,86	21,86	21,86	21,86	21,86	21,86
726	17	21,9076383	21,91	21,91	21,00	21,91	21,91	21,00
727	18	21,2855533	21,29	21,91	21,91	21,29	21,29	21,91
728	19	21,5765962	21,58	21,58	21,58	21,58	21,58	21,58
729	20	21,5765523	21,57	21,57	21,57	21,57	21,57	21,58
730	21							
731		19,1735514	19,19	19,19	19,19	19,19	19,19	19,19
732	22	19,2541005	19,27	19,27	19,27	19,27	19,27	19,27
/32	23	21,656827	21,66	21,66	21,66	21,66	21,66	21,66

			1	1				
733	24	21,8674747	21,87	21,87	21,87	21,87	21,87	21,87
734	25	21,596608	21,6	21,6	21,6	21,6	21,6	21,6
735	26	21,3657653	21,37	21,37	21,37	21,37	21,37	21,37
736	27	20,12973	20,14	20,14	20,14	20,14	20,14	20,14
737	28	22,9296278	22,93	22,93	22,93	22,93	22,93	22,93
738	29	21,9376466	21,94	21,94	21,94	21,94	21,94	21,94
739	30	18,7800383	18,8	18,8	18,8	18,8	18,8	18,8
740	31	17,8515559	17,88	17,88	17,88	17,88	17,88	17,88
741	1	17,2249547	17,26	17,26	17,26	17,26	17,26	17,26
742	2	17,6493832	17,68	17,68	17,68	17,68	17,68	17,68
743	3	17,1135574	17,15	17,15	17,15	17,15	17,15	17,15
744	4	18,2047066	18,23	18,23	18,23	18,23	18,23	18,23
745	5	17,1437352	17,18	17,18	17,18	17,18	17,18	17,18
746	6	17,9016696	17,93	17,93	17,93	17,93	17,93	17,93
747	7	17,7197731	17,75	17,75	17,75	17,75	17,75	17,75
748	8	15,9285462	15,98	15,98	15,98	15,98	15,98	15,98
749	9	16,2121674	16,26	16,26	16,26	16,26	16,26	16,26
750	10	16,1715463	16,22	16,22	16,22	16,22	16,22	16,22
751	11	16,455072	16,5	16,5	16,5	16,5	16,5	16,5
752	12	17,1330963	17,17	17,17	17,17	17,17	17,17	17,17
753	13	18,4666768	18,49	18,49	18,49	18,49	18,49	18,49
754	14	17,8911129	17,92	17,92	17,92	17,92	17,92	17,92
755	15	17,8304441	17,86	17,86	17,86	17,86	17,86	17,86
756	16	14,4559299	14,53	14,53	14,53	14,53	14,53	14,53
757	17	11,5415276	11,67	11,67	11,67	11,67	11,67	11,67
758	18	14,2930246	14,37	14,37	14,37	14,37	14,37	14,37
759	19	15,8362348	15,89	15,89	15,89	15,89	15,89	15,89
760	20	18,0423381	18,07	18,07	18,07	18,07	18,07	18,07
761	21	19,4545752	19,47	19,47	19,47	19,47	19,47	19,47
762	22	18,1735439	18,2	18,2	18,2	18,2	18,2	18,2
763	23	17,3852721	17,42	17,42	17,42	17,42	17,42	17,42
764	24	15,3285457	15,39	15,39	15,39	15,39	15,39	15,39
765	25	15,0847996	15,15	15,15	15,15	15,15	15,15	15,15
766	26	14,4954203	14,57	14,57	14,57	14,57	14,57	14,57
767	27	12,9683982	13,07	13,07	13,07	13,07	13,07	13,07
768	28	12,9172932	13,02	13,02	13,02	13,02	13,02	13,02
769	29	12,7132298	12,82	12,82	12,82	12,82	12,82	12,82
770	30	13,3144928	13,41	13,41	13,41	13,41	13,41	13,41
771	1	12,0292271	12,15	12,15	12,15	12,15	12,15	12,15
772	2	11,5898193	11,72	11,72	11,72	11,72	11,72	11,72
773	3	12,5903102	12,7	12,7	12,7	12,7	12,7	12,7
774	4	12,9471366	13,05	13,05	13,05	13,05	13,05	13,05
775	5	13,6806202	13,77	13,77	13,77	13,77	13,77	13,77
776	6	14,0266188	14,11	14,11	14,11	14,11	14,11	14,11
777	7	13,6397061	13,73	13,73	13,73	13,73	13,73	13,73
778	8	15,8348961	15,89	15,89	15,89	15,89	15,89	15,89
779	9	16,8178736	16,86	16,86	16,86	16,86	16,86	16,86
780	10	16,7874589	16,83	16,83	16,83	16,83	16,83	16,83
781	12	11,0568724	11,2	11,2	11,2	11,2	11,2	11,2
782	13	9,78663475	9,96	9,96	9,96	9,96	9,96	9,96
783	14	8,20506056	8,42	8,42	8,42	8,42	8,42	8,42

785		Į.						
	16	8,27672709	8,49	8,49	8,49	8,49	8,49	8,49
	18	8,84185054	9,04	9,04	9,04	9,04	9,04	9,04
	19	9,12928292	9,32	9,32	9,32	9,32	9,32	9,32
	20	7,54573885	7,78	7,78	7,78	7,78	7,78	7,78
	21	8,82094085	9,02	9,02	9,02	9,02	9,02	9,02
792	22	10,5748542	10,73	10,73	10,73	10,73	10,73	10,73
<u> </u>	23	12,0782466	12,2	12,2	12,2	12,2	12,2	12,2
	24	12,4968048	12,61	12,61	12,61	12,61	12,61	12,61
	25	11,0762539	11,22	11,22	11,22	11,22	11,22	11,22
796	26	11,5569208	11,69	11,69	11,69	11,69	11,69	11,69
797	27	10,8612163	11,01	11,01	11,01	11,01	11,01	11,01
	28	10,1748851	10,34	10,34	10,34	10,34	10,34	10,34
799	29	9,69290688	9,87	9,87	9,87	9,87	9,87	9,87
800	30	10,9532089	11,1	11,1	11,1	11,1	11,1	11,1
801	31	10,1235068	10,29	10,29	10,29	10,29	10,29	10,29
802	1	9,08721302	9,28	9,28	9,28	9,28	9,28	9,28
803	2	9,31306846	9,5	9,5	9,5	9,5	9,5	9,5
804	3	12,4148303	12,53	12,53	12,53	12,53	12,53	12,53
805	4	11,8019789	11,93	11,93	11,93	11,93	11,93	11,93
806	5	9,13848056	9,33	9,33	9,33	9,33	9,33	9,33
807	6	10,5640074	10,72	10,72	10,72	10,72	10,72	10,72
808	7	10,1746594	10,34	10,34	10,34	10,34	10,34	10,34
809	8	10,6049878	10,76	10,76	10,76	10,76	10,76	10,76
810	9	12,0574249	12,18	12,18	12,18	12,18	12,18	12,18
811	10	12,0267947	12,15	12,15	12,15	12,15	12,15	12,15
812	11	11,9042155	12,03	12,03	12,03	12,03	12,03	12,03
813	12	12,8536689	12,96	12,96	12,96	12,96	12,96	12,96
814	13	13,3532726	13,45	13,45	13,45	13,45	13,45	13,45
815	14	12,8537217	12,96	12,96	12,96	12,96	12,96	12,96
816	15	12,5782852	12,69	12,69	12,69	12,69	12,69	12,69
817	16	12,8639892	12,97	12,97	12,97	12,97	12,97	12,97
818	17	13,8423295	13,93	13,93	13,93	13,93	13,93	13,93
819	18	13,3941956	13,49	13,49	13,49	13,49	13,49	13,49
820	19	12,9151134	13,02	13,02	13,02	13,02	13,02	13,02
821	20	13,6998879	13,79	13,79	13,79	13,79	13,79	13,79
822	21	12,7112123	12,82	12,82	12,82	12,82	12,82	12,82
823	22	13,8629001	13,95	13,95	13,95	13,95	13,95	13,95
824	23	13,9647483	14,05	14,05	14,05	14,05	14,05	14,05
825	24	10,9641607	11,11	11,11	11,11	11,11	11,11	11,11
826	25	9,80665677	9,98	9,98	9,98	9,98	9,98	9,98
827	26	10,9336549	11,08	11,08	11,08	11,08	11,08	11,08
828	27	11,5372347	11,67	11,67	11,67	11,67	11,67	11,67
829	28	11,6906547	11,82	11,82	11,82	11,82	11,82	11,82
830	29	11,8133805	11,94	11,94	11,94	11,94	11,94	11,94
831	30	11,5068831	11,64	11,64	11,64	11,64	11,64	11,64
832	31	12,2323395	12,35	12,35	12,35	12,35	12,35	12,35
833	1	11,5480067	11,68	11,68	11,68	11,68	11,68	11,68
834	2	11,8955551	12,02	12,02	12,02	12,02	12,02	12,02
835	3	12,7734788	12,88	12,88	12,88	12,88	12,88	12,88
836	4	13,9248662	14,01	14,01	14,01	14,01	14,01	14,01
837	5	14,8300303	14,9	14,9	14,9	14,9	14,9	14,9
838	6	14,9520241	15,02	15,02	15,02	15,02		15,02

839	7	14,291403	14,37	14,37	14,37	14,37	14,37	14,37
840	8	13,3550355	13,45	13,45	13,45	13,45	13,45	13,45
841	9	10,2189823	10,38	10,38	10,38	10,38	10,38	10,38
842	10	9,46065017	9,64	9,64	9,64	9,64	9,64	9,64
843	11	10,5265979	10,68	10,68	10,68	10,68	10,68	10,68
844	12	11,3656481	11,5	11,5	11,5	11,5	11,5	11,5
845	13	13,3454472	13,44	13,44	13,44	13,44	13,44	13,44
846	14	9,67692638	9,85	9,85	9,85	9,85	9,85	9,85
847	15	13,3966372	13,49	13,49	13,49	13,49	13,49	13,49
849	16	14,3634932	14,44	14,44	14,44	14,44	14,44	14,44
850	17	11,7854908	11,91	11,91	11,91	11,91	11,91	11,91
851	18	9,34982755	9,53	9,53	9,53	9,53	9,53	9,53
852	19	10,7943913	10,94	10,94	10,94	10,94	10,94	10,94
853	20	14,5367639	14,61	14,61	14,61	14,61	14,61	14,61
854	21	15,9173636	15,97	15,97	15,97	15,97	15,97	15,97
856	22	18,042438	18,07	18,07	18,07	18,07	18,07	18,07
857	23	17,0518376	17,09	17,09	17,09	17,09	17,09	17,09
858	24	14,8826646	14,95	14,95	14,95	14,95	14,95	14,95
859	25	15,0249466	15,09	15,09	15,09	15,09	15,09	15,09
860	26	16,1103929	16,16	16,16	16,16	16,16	16,16	16,16
861	27	17,0318784	17,07	17,07	17,07	17,07	17,07	17,07
862	28	17,7497921	17,78	17,78	17,78	17,78	17,78	17,78
863	1	17,0522573	17,09	17,09	17,09	17,09	17,09	17,09
864	2	16,8904532	16,93	16,93	16,93	16,93	16,93	16,93
865	3	17,3254683	17,36	17,36	17,36	17,36	17,36	17,36
866	4	9,35432589	9,53	9,53	9,53	9,53	9,53	9,53
867	5	11,5746471	11,7	11,7	11,7	11,7	11,7	11,7
868	6	8,87317245	9,06	9,06	9,06	9,06	9,06	9,06
869	7	9,63208956	9,8	9,8	9,8	9,8	9,8	9,8
870	8	14,6303987	14,7	14,7	14,7	14,7	14,7	14,7
871	9	16,3647137	16,41	16,41	16,41	16,41	16,41	16,41
872	10	16,9417111	16,98	16,98	16,98	16,98	16,98	16,98
873	11	18,3764598	18,4	18,4	18,4	18,4	18,4	18,4
874	12	19,9283942	19,94	19,94	19,94	19,94	19,94	19,94
875	13	22,1983284	22,2	22,2	22,2	22,2	22,2	22,2
876	14	23,2799191	23,28	23,28	23,28	23,28	23,28	23,28
877	15	24,698922	24,7	24,7	24,7	24,7	24,7	24,7
878	16	22,2685044	22,27	22,27	22,27	22,27	22,27	22,27
879	17	21,8674626	21,87	21,87	21,87	21,87	21,87	21,87
880	18	25,2077279	25,21	25,21	25,21	25,21	25,21	25,21
881	19	23,5099952	23,51	23,51	23,51	23,51	23,51	23,51
882	20	20,2807083	20,29	20,29	20,29	20,29	20,29	20,29
883	21	15,5861262	15,64	15,64	15,64	15,64	15,64	15,64
884	22	17,4482789	17,48	17,48	17,48	17,48	17,48	17,48
885	23	17,7413024	17,77	17,77	17,77	17,77	17,77	17,77
886	24	13,5054601	13,59	13,59	13,59	13,59	13,59	13,59
887	25	17,4283452	17,46	17,46	17,46	17,46	17,46	17,46
888	26	19,2039709	19,22	19,22	19,22	19,22	19,22	19,22
889	27	18,3471891	18,37	18,37	18,37	18,37	18,37	18,37
890	28	19,1939947	19,21	19,21	19,21	19,21	19,21	19,21
891	29	19,2947653	19,31	19,31	19,31	19,31	19,31	19,31
892	30	15,942065	15,99	15,99	15,99	15,99	15,99	15,99

893	31	17,5097305	17,54	17,54	17,54	17,54	17,54	17,54
894	1	14,7971449	14,86	14,86	14,86	14,86	14,86	14,86
895	2	16,4991542	16,54	16,54	16,54	16,54	16,54	16,54
896	3	17,9037694	17,93	17,93	17,93	17,93	17,93	17,93
897	4	18,8719802	18,89	18,89	18,89	18,89	18,89	18,89
898	5	17,4698341	17,5	17,5	17,5	17,5	17,5	17,5
899	6	22,7494339	22,75	22,75	22,75	22,75	22,75	22,75
900	7	28,5002966	28,52	28,52	28,52	28,52	28,52	28,52
901	8	30,4021177	30,44	30,44	30,44	30,44	30,44	30,44
902	9	30,4813679	30,52	30,52	30,52	30,52	30,52	30,52
903	10	31,1140766	31,16	31,16	31,16	31,16	31,16	31,16
904	11	29,1847707	29,21	29,21	29,21	29,21	29,21	29,21
905	12	19,2753459	19,29	19,29	19,29	19,29	19,29	19,29
906	13	19,0740103	19,09	19,09	19,09	19,09	19,09	19,09
907	14	19,0942132	19,11	19,11	19,11	19,11	19,11	19,11
908	15	21,145344	21,15	21,15	21,15	21,15	21,15	21,15
909	16	22,3387876	22,34	22,34	22,34	22,34	22,34	22,34
910	17	22,9196555	22,92	22,92	22,92	22,92	22,92	22,92
911	18	24,0198532	24,02	24,02	24,02	24,02	24,02	24,02
912	19	26,1747965	26,18	26,18	26,18	26,18	26,18	26,18
913	20	25,1780423	25,18	25,18	25,18	25,18	25,18	25,18
914	21	20,8241839	20,83	20,83	20,83	20,83	20,83	20,83
915	22	20,2817159	20,29	20,29	20,29	20,29	20,29	20,29
916	23	22,5992629	22,6	22,6	22,6	22,6	22,6	22,6
917	24	23,4399841	23,44	23,44	23,44	23,44	23,44	23,44
918	25	22,8095477	22,81	22,81	22,81	22,81	22,81	22,81
919	26	23,0698012	23,07	23,07	23,07	23,07	23,07	23,07
920	27	25,7465018	25,75	25,75	25,75	25,75	25,75	25,75
921	28	26,5136004	26,52	26,52	26,52	26,52	26,52	26,52
922	29	28,2438384	28,26	28,26	28,26	28,26	28,26	28,26
923	30	29,2462129	29,27	29,27	29,27	29,27	29,27	29,27
924	1	30,4451758	30,48	30,48	30,48	30,48	30,48	30,48
925	2	30,2473245	30,28	30,28	30,28	30,28	30,28	30,28
926	3	30,7226537	30,76	30,76	30,76	30,76	30,76	30,76
927	4	30,9207369	30,96	30,96	30,96	30,96	30,96	30,96
928	5	30,1091371	30,14	30,14	30,14	30,14	30,14	30,14
929	6	27,0613203	27,07	27,07	27,07	27,07	27,07	27,07
930	7	27,8171876	27,83	27,83	27,83	27,83	27,83	27,83
931	8	26,7628246	26,77	26,77	26,77	26,77	26,77	26,77
932	9	23,4799922	23,48	23,48	23,48	23,48	23,48	23,48
933	10	22,9397088	22,94	22,94	22,94	22,94	22,94	22,94
934	11	20,51346	20,52	20,52	20,52	20,52	20,52	20,52
935	12	21,968194	21,97	21,97	21,97	21,97	21,97	21,97
936	13	22,1185221	22,12	22,12	22,12	22,12	22,12	22,12
937	14	25,976072	25,98	25,98	25,98	25,98	25,98	25,98
938	15	27,4895628	27,5	27,5	27,5	27,5	27,5	27,5
939	16	28,8908007	28,91	28,91	28,91	28,91	28,91	28,91
940	17	28,1955998	28,21	28,21	28,21	28,21	28,21	28,21
941	18	25,2082327	25,21	25,21	25,21	25,21	25,21	25,21
942	19	21,5372175	21,54	21,54	21,54	21,54	21,54	21,54
943	20	24,5693583	24,57	24,57	24,57	24,57	24,57	24,57
944	21	25,736947	25,74	25,74	25,74	25,74	25,74	25,74

945	22	27,5496758	27,56	27,56	27,56	27,56	27,56	27,56
946	24	30,8060331	30,84	30,84	30,84	30,84	30,84	30,84
947	25	31,8061957	31,85	31,85	31,85	31,85	31,85	31,85
948	26	31,9252024	31,97	31,97	31,97	31,97	31,97	31,97
949	27	27,4504945	27,46	27,46	27,46	27,46	27,46	27,46
950	28	25,3779737	25,38	25,38	25,38	25,38	25,38	25,38
951	29	23,8499561	23,85	23,85	23,85	23,85	23,85	23,85
952	30	27,9680133	27,98	27,98	27,98	27,98	27,98	27,98
953	31	28,8726541	28,89	28,89	28,89	28,89	28,89	28,89
954	1	29,2502167	29,27	29,27	29,27	29,27	29,27	29,27
955	2	25,6573827	25,66	25,66	25,66	25,66	25,66	25,66
956	3	27,7594283	27,77	27,77	27,77	27,77	27,77	27,77
957	4	29,1513061	29,17	29,17	29,17	29,17	29,17	29,17
958	5	27,2917883	27,3	27,3	27,3	27,3	27,3	27,3
959	6	30,3428079	30,37	30,37	30,37	30,37	30,37	30,37
960	7	28,7343588	28,75	28,75	28,75	28,75	28,75	28,75
961	8	27,8593149	27,87	27,87	27,87	27,87	27,87	27,87
962	9	26,1063178	26,11	26,11	26,11	26,11	26,11	26,11
963	10	27,3418757	27,35	27,35	27,35	27,35	27,35	27,35
964	11	27,7401347	27,75	27,75	27,75	27,75	27,75	27,75
965	12	28,6752953	28,69	28,69	28,69	28,69	28,69	28,69
966	13	28,5759778	28,59	28,59	28,59	28,59	28,59	28,59
967	14	30,7413344	30,77	30,77	30,77	30,77	30,77	30,77
968	15	32,2878805	32,33	32,33	32,33	32,33	32,33	32,33
969	16	33,8023315	33,86	33,86	33,86	33,86	33,86	33,86
970	17	36,508245	36,6	36,6	36,6	36,6	36,6	36,6
971	18	35,5718163	35,65	35,65	35,65	35,65	35,65	35,65
972	19	32,8537938	32,9	32,9	32,9	32,9	32,9	32,9
973	20	32,2004547	32,24	32,24	32,24	32,24	32,24	32,24
974	21	30,8819229	30,91	30,91	30,91	30,91	30,91	30,91
975	22	31,0508654	31,08	31,08	31,08	31,08	31,08	31,08
976	23	32,3798804	32,42	32,42	32,42	32,42	32,42	32,42
977	24	33,9447555	34	34	34	34	34	34
978	25	34,7365336	34,8	34,8	34,8	34,8	34,8	34,8
979	26	35,5377168	35,61	35,61	35,61	35,61	35,61	35,61
980	27	34,6586075	34,72	34,72	34,72	34,72	34,72	34,72
981	28	31,7966628	31,83	31,83	31,83	31,83	31,83	31,83
982	29	30,9137294	30,94	30,94	30,94	30,94	30,94	30,94
983	30	32,104808	32,14	32,14	32,14	32,14	32,14	32,14
984	1	32,1944225	32,23	32,23	32,23	32,23	32,23	32,23
985	2	31,86742	31,9	31,9	31,9	31,9	31,9	31,9
986	3	34,8303941	34,89	34,89	34,89	34,89	34,89	34,89
987	4	37,12432	37,21	37,21	37,21	37,21	37,21	37,21
988	5	38,5759437	38,68	38,68	38,68	38,68	38,68	38,68
989	6	38,6165101	38,72	38,72	38,72	38,72	38,72	38,72
990	7	37,7393177	37,83	37,83	37,83	37,83	37,83	37,83
991	8	38,5792927	38,68	38,68	38,68	38,68	38,68	38,68
992	9	38,2152381	38,31	38,31	38,31	38,31	38,31	38,31
993	10	37,8608355	37,95	37,95	37,95	37,95	37,95	37,95
994	11	38,533317	38,63	38,63	38,63	38,63	38,63	38,63
995	12	40,0637397	40,18	40,18	40,18	40,18	40,18	40,18
996	13	39,6212602	39,73	39,73	39,73	39,73	39,73	39,73
		00,0212002	55,75	55,75	55,75	55,75	35,75	55,75

	1						I	
997	14	37,9835216	38,07	38,07	38,07	38,07	38,07	38,07
998	15	34,0946408	34,14	34,14	34,14	34,14	34,14	34,14
999	16	32,9445072	32,98	32,98	32,98	32,98	32,98	32,98
1000	17	34,7698805	34,82	34,82	34,82	34,82	34,82	34,82
1001	7	33,1736847	33,21	33,21	33,21	33,21	33,21	33,21
1002	8	33,1443779	33,18	33,18	33,18	33,18	33,18	33,18
1003	9	33,8196872	33,86	33,86	33,86	33,86	33,86	33,86
1004	10	32,9566762	32,99	32,99	32,99	32,99	32,99	32,99
1005	11	32,857824	32,89	32,89	32,89	32,89	32,89	32,89
1006	12	32,5900828	32,62	32,62	32,62	32,62	32,62	32,62
1007	13	31,2287698	31,25	31,25	31,25	31,25	31,25	31,25
1008	14	29,0493228	29,06	29,06	29,06	29,06	29,06	29,06
1009	15	27,3350505	27,34	27,34	27,34	27,34	27,34	27,34
1010	16	29,3185851	29,33	29,33	29,33	29,33	29,33	29,33
1011	17	31,5084964	31,53	31,53	31,53	31,53	31,53	31,53
1012	18	32,8808299	32,91	32,91	32,91	32,91	32,91	32,91
1013	19	31,598679	31,62	31,62	31,62	31,62	31,62	31,62
1014	20	30,962226	30,98	30,98	30,98	30,98	30,98	30,98
1015	21	29,867328	29,88	29,88	29,88	29,88	29,88	29,88
1016	22	32,1070337	32,13	32,13	32,13	32,13	32,13	32,13
1017	23	29,7382453	29,75	29,75	29,75	29,75	29,75	29,75
1018	24	29,0807871	29,09	29,09	29,09	29,09	29,09	29,09
1019	25	28,482813	28,49	28,49	28,49	28,49	28,49	28,49
1020	26	25,9982886	26	26	26	26	26	26
1021	27	22,4496288	22,45	22,45	22,45	22,45	22,45	22,45
1022	28	19,9663041	19,97	19,97	19,97	19,97	19,97	19,97
1023	29	20,4572901	20,46	20,46	20,46	20,46	20,46	20,46
1024	30	19,8862841	19,89	19,89	19,89	19,89	19,89	19,89
1025	1	20,1468517	20,15	20,15	20,15	20,15	20,15	20,15
1026	2	22,5797359	22,58	22,58	22,58	22,58	22,58	22,58
1027	3	24,9195435	24,92	24,92	24,92	24,92	24,92	24,92
1028	4	23,6099998	23,61	23,61	23,61	23,61	23,61	23,61
1029	5	21,6390718	21,64	21,64	21,64	21,64	21,64	21,64
1030	6	22,8098559	22,81	22,81	22,81	22,81	22,81	22,81
1031	7	25,279326	25,28	25,28	25,28	25,28	25,28	25,28
1032	8	24,6897202	24,69	24,69	24,69	24,69	24,69	24,69
1033	9	22,5097414	22,51	22,51	22,51	22,51	22,51	22,51
1034	10	22,6798212	22,68	22,68	22,68	22,68	22,68	22,68
1035	11	23,5299994	23,53	23,53	23,53	23,53	23,53	23,53
1036	12	23,7099968	23,71	23,71	23,71	23,71	23,71	23,71
1037	13	24,5897959	24,59	24,59	24,59	24,59	24,59	24,59
1038	14	23,9299766	23,93	23,93	23,93	23,93	23,93	23,93
1039	15	23,59	23,59	23,59	23,59	23,59	23,59	23,59
1040	16	23,0999563	23,1	23,1	23,1	23,1	23,1	23,1
1041	17	22,9299227	22,93	22,93	22,93	22,93	22,93	22,93
1042	18	23,2499804	23,25	23,25	23,25	23,25	23,25	23,25
1043	19	22,749882	22,75	22,75	22,75	22,75	22,75	22,75
1044	20	22,2797211	22,28	22,28	22,28	22,28	22,28	22,28
1045	21	21,7394611	21,74	21,74	21,74	21,74	21,74	21,74
1046	22	21,7194685	21,72	21,72	21,72	21,72	21,72	21,72
1047	23	19,0669972	19,07	19,07	19,07	19,07	19,07	19,07
1048	24	19,3574688	19,36	19,36	19,36	19,36	19,36	19,36

1049	25	21,4894018	21,49	21,49	21,49	21,49	21,49	21,49
1050	26	20,9490921	20,95	20,95	20,95	20,95	20,95	20,95
1051	27	23,8299925	23,83	23,83	23,83	23,83	23,83	23,83
1052	28	22,7299125	22,73	22,73	22,73	22,73	22,73	22,73
1053	29	20,2387223	20,24	20,24	20,24	20,24	20,24	20,24
1054	30	16,7749684	16,78	16,78	16,78	16,78	16,78	16,78
1055	31	13,8803078	13,89	13,89	13,89	13,89	13,89	13,89
1056	1	15,9242822	15,93	15,93	15,93	15,93	15,93	15,93
1057	2	17,4865812	17,49	17,49	17,49	17,49	17,49	17,49
1058	3	18,2775662	18,28	18,28	18,28	18,28	18,28	18,28
1059	4	15,9452823	15,95	15,95	15,95	15,95	15,95	15,95
1060	5	16,1958891	16,2	16,2	16,2	16,2	16,2	16,2
1061	6	14,88	14,88	14,88	14,88	14,88	14,88	14,88