Catalogue des Mémoires de master
Détail de l'auteur
Auteur Wahiba Dekkiche |
Documents disponibles écrits par cet auteur (1)



Titre : Problém de cauchu pour une équation différentielle opérationnelle d'ordre Type de document : texte imprimé Auteurs : Wahiba Dekkiche, Auteur ; soumia chater, Auteur ; k Bessila, Directeur de thèse Editeur : CONSTANTINE [ALGERIE] : Université Frères Mentouri Constantine Année de publication : 2013 Importance : 28 f. Format : 30 cm. Note générale : Une copie electronique PDF disponible en BUC Langues : Français (fre) Catégories : Sciences Exactes:Mathématiques Tags : problËme de Cauchy problËme mal posÈ mÈthode valeurs quasilimites. Index. décimale : 510 Mathématiques Résumé : Ce travail, concerne lÃÈtude de là un des deux problËmes de Cauchy mal posÈs , ÈtudiÈs par N.I.Yurtchuk et M. Ababneh . Ce problËme dÃÈcrits par une
Èquation di§Èrentielle homogËne du premier ordre et ‡ un coe¢ cient opÈratoriel
auto-adjoint, non bornÈ, a un signe quelconque dÈÖni dans un espace de Hilbert.
N.I.Yurtchuk et M. Ababneh ont approximÈ ce problËme utilisant la mÈthode
valeur quasi-limite, ils ont obtenu une famille des problËmes bien posÈs dÈpend
dÃun petit paramËtre 2]0; 1[ .Diplome : Master 2 Permalink : https://bu.umc.edu.dz/master/index.php?lvl=notice_display&id=5548 Problém de cauchu pour une équation différentielle opérationnelle d'ordre [texte imprimé] / Wahiba Dekkiche, Auteur ; soumia chater, Auteur ; k Bessila, Directeur de thèse . - CONSTANTINE [ALGERIE] : Université Frères Mentouri Constantine, 2013 . - 28 f. ; 30 cm.
Une copie electronique PDF disponible en BUC
Langues : Français (fre)
Catégories : Sciences Exactes:Mathématiques Tags : problËme de Cauchy problËme mal posÈ mÈthode valeurs quasilimites. Index. décimale : 510 Mathématiques Résumé : Ce travail, concerne lÃÈtude de là un des deux problËmes de Cauchy mal posÈs , ÈtudiÈs par N.I.Yurtchuk et M. Ababneh . Ce problËme dÃÈcrits par une
Èquation di§Èrentielle homogËne du premier ordre et ‡ un coe¢ cient opÈratoriel
auto-adjoint, non bornÈ, a un signe quelconque dÈÖni dans un espace de Hilbert.
N.I.Yurtchuk et M. Ababneh ont approximÈ ce problËme utilisant la mÈthode
valeur quasi-limite, ils ont obtenu une famille des problËmes bien posÈs dÈpend
dÃun petit paramËtre 2]0; 1[ .Diplome : Master 2 Permalink : https://bu.umc.edu.dz/master/index.php?lvl=notice_display&id=5548 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MSMTH130029 MSMTH130029 Document électronique Bibliothèque principale Mémoires Disponible Documents numériques
![]()
texte intégreAdobe Acrobat PDF