Catalogue des Mémoires de master

Titre : |
Problème Aux Valeurs Propres Pour Une Équation Différentielle Fractionnaire |
Type de document : |
texte imprimé |
Auteurs : |
Chaima Abbaz, Auteur ; Amina Zerouata, Auteur ; N Abada, Directeur de thèse |
Editeur : |
CONSTANTINE [ALGERIE] : Université Frères Mentouri Constantine |
Année de publication : |
2018 |
Importance : |
59 f. |
Format : |
30 cm. |
Note générale : |
Une copie electronique PDF disponible au BUC. |
Langues : |
Français (fre) |
Catégories : |
Sciences Exactes:Mathématiques
|
Index. décimale : |
510 Mathématiques |
Résumé : |
Dans ce travail, nous étudions un problème aux valeurs propres pour une équation
dié- rentielle fractionnaire non linéaire de la forme :
D0+α = λf(u(t)) 0 < t < 1
u(0) = u(1) = u0(0) = u0(1) = 0
O 3 < α ≤ 4un nombre réel, D0 α+ est la dérivée fractionnaire au sens de
Riemann-Liouville, λ est un paramètre positive et f : [0, +∞) → [0, +∞) est un
fonction continue.
Par les propriétés de la fonction de Green (G(t,s) > 0) et le théorème de
point xe du Guo-Krasnosel'skii sur les cônes, des intervalles de valeurs propres
du problème aux limites d'une équation diérentielle fractionnaire non linéaire
sont considérés, certaines conditions sussantes pour l'existence d'au moins une
ou deux solutions positives pour un problème aux limites sans établies, aussi des
conditions de non existence de valeurs propres sans données. |
Diplome : |
Master 2 |
Permalink : |
https://bu.umc.edu.dz/master/index.php?lvl=notice_display&id=10580 |
Problème Aux Valeurs Propres Pour Une Équation Différentielle Fractionnaire [texte imprimé] / Chaima Abbaz, Auteur ; Amina Zerouata, Auteur ; N Abada, Directeur de thèse . - CONSTANTINE [ALGERIE] : Université Frères Mentouri Constantine, 2018 . - 59 f. ; 30 cm. Une copie electronique PDF disponible au BUC. Langues : Français ( fre)
Catégories : |
Sciences Exactes:Mathématiques
|
Index. décimale : |
510 Mathématiques |
Résumé : |
Dans ce travail, nous étudions un problème aux valeurs propres pour une équation
dié- rentielle fractionnaire non linéaire de la forme :
D0+α = λf(u(t)) 0 < t < 1
u(0) = u(1) = u0(0) = u0(1) = 0
O 3 < α ≤ 4un nombre réel, D0 α+ est la dérivée fractionnaire au sens de
Riemann-Liouville, λ est un paramètre positive et f : [0, +∞) → [0, +∞) est un
fonction continue.
Par les propriétés de la fonction de Green (G(t,s) > 0) et le théorème de
point xe du Guo-Krasnosel'skii sur les cônes, des intervalles de valeurs propres
du problème aux limites d'une équation diérentielle fractionnaire non linéaire
sont considérés, certaines conditions sussantes pour l'existence d'au moins une
ou deux solutions positives pour un problème aux limites sans établies, aussi des
conditions de non existence de valeurs propres sans données. |
Diplome : |
Master 2 |
Permalink : |
https://bu.umc.edu.dz/master/index.php?lvl=notice_display&id=10580 |
|
Réservation
Réserver ce document
Exemplaires (1)
|
MSMTH180031 | MSMTH180031 | Document électronique | Bibliothèque principale | Mémoires | Disponible |
Documents numériques
texte integréAdobe Acrobat PDF | | |