Titre : |
Contribution au diagnostic de la machine asynchrone en temps réel |
Type de document : |
texte imprimé |
Auteurs : |
Mohamed Amine Moussa, Auteur ; Abdelmalek Khezzar, Directeur de thèse |
Editeur : |
جامعة الإخوة منتوري قسنطينة |
Année de publication : |
2018 |
Importance : |
142 f. |
Format : |
30 cm. |
Note générale : |
2 copies imprimées disponibles
|
Langues : |
Français (fre) |
Catégories : |
Français - Anglais Electro-technique
|
Tags : |
Machine asynchrone Diagnostic en temps réel harmoniques d’espace cassure de barre déséquilibre d’alimentation excentricité transformée de Fourier DFT glissante ZoomFFT Goertzel algorithmes de MUSIC algorithmes Zoom-MUSIC Ondelettes Fuite des lobes latéraux Online asynchronous machine diagnostics Space harmonics Bar faults Power imbalance Eccentricity Fourier Transform Sliding DFT FFT Zoom MUSIC algorithms Zoom-MUSIC algorithms Wavelets Side lobes leakage |
Index. décimale : |
622 Electro-Technique |
Résumé : |
The reliability and availability of electromechanical systems are increasingly required in the industrial sector. Unexpected shutdown in the electrical machine can lead to unplanned costly shutdowns and damage to equipment or even danger to people. Electrical machines are basic elements in many electrical systems and among all types of motors, induction motors are an important part of many industrial processes because of their advantages : simple construction, robustness and high performance. The variety of measured physical quantities makes it possible to analyze the defects of electrical machines differently, as it appeared in the works of this thesis where the techniques of the analysis of the stator current, the analysis of the Park vector and the mechanical vibration analysis are used. The signal approach is well chosen with the default that suits it, as well as the choice of the diagnostic algorithm and on which it is developed, adapted and implemented. The data processing taken from the various measured signals requires prior processing in order to make a decision on the healthy or faulty cases of electrical machines. The diversification of the signal processing methods usually used for the diagnosis of defects in the asynchronous machine was one of the subjects of this thesis. From the Fourier transform and its derivatives, the DFT, the sliding DFT, the Zoom-FFT and Goertzel, to the algorithms of MUSIC, Zoom-MUSIC and the Wavelets, a survey that was necessary to conclude on the possibilities of these methods to be considered for an online diagnosis. To achieve the diagnostic online goal, the exploitation of the lateral lobe leakage phenomenon when applying the sliding DFT is presented as a new method, the bar breakage and eccentricity defects are considered as typical cases to show the virtue of the advanced study.
|
Diplôme : |
Doctorat |
En ligne : |
../theses/electrotec/MOU7319.pdf |
Format de la ressource électronique : |
pdf |
Permalink : |
index.php?lvl=notice_display&id=10969 |
Contribution au diagnostic de la machine asynchrone en temps réel [texte imprimé] / Mohamed Amine Moussa, Auteur ; Abdelmalek Khezzar, Directeur de thèse . - جامعة الإخوة منتوري قسنطينة, 2018 . - 142 f. ; 30 cm. 2 copies imprimées disponibles
Langues : Français ( fre)
Catégories : |
Français - Anglais Electro-technique
|
Tags : |
Machine asynchrone Diagnostic en temps réel harmoniques d’espace cassure de barre déséquilibre d’alimentation excentricité transformée de Fourier DFT glissante ZoomFFT Goertzel algorithmes de MUSIC algorithmes Zoom-MUSIC Ondelettes Fuite des lobes latéraux Online asynchronous machine diagnostics Space harmonics Bar faults Power imbalance Eccentricity Fourier Transform Sliding DFT FFT Zoom MUSIC algorithms Zoom-MUSIC algorithms Wavelets Side lobes leakage |
Index. décimale : |
622 Electro-Technique |
Résumé : |
The reliability and availability of electromechanical systems are increasingly required in the industrial sector. Unexpected shutdown in the electrical machine can lead to unplanned costly shutdowns and damage to equipment or even danger to people. Electrical machines are basic elements in many electrical systems and among all types of motors, induction motors are an important part of many industrial processes because of their advantages : simple construction, robustness and high performance. The variety of measured physical quantities makes it possible to analyze the defects of electrical machines differently, as it appeared in the works of this thesis where the techniques of the analysis of the stator current, the analysis of the Park vector and the mechanical vibration analysis are used. The signal approach is well chosen with the default that suits it, as well as the choice of the diagnostic algorithm and on which it is developed, adapted and implemented. The data processing taken from the various measured signals requires prior processing in order to make a decision on the healthy or faulty cases of electrical machines. The diversification of the signal processing methods usually used for the diagnosis of defects in the asynchronous machine was one of the subjects of this thesis. From the Fourier transform and its derivatives, the DFT, the sliding DFT, the Zoom-FFT and Goertzel, to the algorithms of MUSIC, Zoom-MUSIC and the Wavelets, a survey that was necessary to conclude on the possibilities of these methods to be considered for an online diagnosis. To achieve the diagnostic online goal, the exploitation of the lateral lobe leakage phenomenon when applying the sliding DFT is presented as a new method, the bar breakage and eccentricity defects are considered as typical cases to show the virtue of the advanced study.
|
Diplôme : |
Doctorat |
En ligne : |
../theses/electrotec/MOU7319.pdf |
Format de la ressource électronique : |
pdf |
Permalink : |
index.php?lvl=notice_display&id=10969 |
|