Catalogue des Mémoires de master

Titre : |
SARS-COV 2 Variants and Geo-localization Tracking : A New Deep-learning Approach. |
Type de document : |
texte imprimé |
Auteurs : |
Mohamed el Amine Sayad, Auteur ; Raid Serrar, Auteur ; H Chehili, Directeur de thèse |
Editeur : |
CONSTANTINE [ALGERIE] : Université Frères Mentouri Constantine |
Année de publication : |
2021 |
Importance : |
56 f. |
Format : |
30 cm. |
Note générale : |
Une copie electronique PDF disponible au BUC |
Langues : |
Anglais (eng) |
Catégories : |
Biologie:Biochimie et Biologie Cellulaire et Moléculaire
|
Tags : |
Deep learning detecting variants geographic preprocessing,Bioinformatics. |
Index. décimale : |
730 Biochimie et biologie cellulaire |
Résumé : |
On January 30, 2020, the World Health Organization declared the SARS-CoV-2
epidemic a public health emergency of international concern, detecting emerged variants and
tracking them geographically stays a big challenge for the scientific community due to the
massive increase in genomic data generated from extensive sequencing of the virus.
This study aims to propose two deep learning models with k-mer preprocessing that
can handle and analyze these data, to extract features to identify variants and geographic
patterns of their evolution. As a result, the first model exceeded state-of-the-art results while,
the second model achieved state-of-the-art results. |
Diplome : |
Master 2 |
Permalink : |
https://bu.umc.edu.dz/master/index.php?lvl=notice_display&id=15745 |
SARS-COV 2 Variants and Geo-localization Tracking : A New Deep-learning Approach. [texte imprimé] / Mohamed el Amine Sayad, Auteur ; Raid Serrar, Auteur ; H Chehili, Directeur de thèse . - CONSTANTINE [ALGERIE] : Université Frères Mentouri Constantine, 2021 . - 56 f. ; 30 cm. Une copie electronique PDF disponible au BUC Langues : Anglais ( eng)
Catégories : |
Biologie:Biochimie et Biologie Cellulaire et Moléculaire
|
Tags : |
Deep learning detecting variants geographic preprocessing,Bioinformatics. |
Index. décimale : |
730 Biochimie et biologie cellulaire |
Résumé : |
On January 30, 2020, the World Health Organization declared the SARS-CoV-2
epidemic a public health emergency of international concern, detecting emerged variants and
tracking them geographically stays a big challenge for the scientific community due to the
massive increase in genomic data generated from extensive sequencing of the virus.
This study aims to propose two deep learning models with k-mer preprocessing that
can handle and analyze these data, to extract features to identify variants and geographic
patterns of their evolution. As a result, the first model exceeded state-of-the-art results while,
the second model achieved state-of-the-art results. |
Diplome : |
Master 2 |
Permalink : |
https://bu.umc.edu.dz/master/index.php?lvl=notice_display&id=15745 |
|
Réservation
Réserver ce document
Exemplaires (1)
|
MSBIO210277 | MSBIO210277 | Document électronique | Bibliothèque principale | Mémoires | Disponible |
Documents numériques
texte intégreAdobe Acrobat PDF | | |