Résultat de la recherche
3 recherche sur le tag
'Path integral' 




Etude complète de certains potentiels diatomiques déformés par l'intégrale de chemin de Feynman / Asma Khodja
![]()
Titre : Etude complète de certains potentiels diatomiques déformés par l'intégrale de chemin de Feynman Type de document : texte imprimé Auteurs : Asma Khodja, Auteur ; Larbi Guechi, Directeur de thèse Editeur : جامعة الإخوة منتوري قسنطينة Année de publication : 2018 Importance : 128 f. Format : 30 cm. Note générale : 2 copies imprimées disponibles
Langues : Français (fre) Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin propagateur fonction de Green potentiel de Rosen-Morse potentiel de Tietz potentiel de Tietz-Wei états liés Path integral propagator Green’s function Rosen-Morse potential Tietz potential Tietz-Wei potential bound states تكامل المسار الناشر دالة غرين كمون روزن-مورس كمون تياز كمون تياز-واي حالات مرتبطة Index. décimale : 530 Physique Résumé : This work is concerned with the use of the Feynman path integral formalism for the study of a set of quantum systems subjected to some spherically symmetric deformed diatomic potentials of interest in theoretical physics and in quantum chemistry.
In the framework of the nonrelativistic quantum mechanics, we first reviewed the problem of the improved radial Tietz potential that depends on the real parameter q of deformation. Next, we discussed again that of the
radial Tietz-Wei potential characterized by the real parameter of deformation - 1< <1. In all cases concerning the deformation parameter, the radial Green’s function in closed form, the energy spectrum and the wave functions of bound states are evaluated.
In the context of the relativistic quantum mechanics, the problems of a spinless relativistic particle in the presence of equal vector and scalar potentials, following the exact shape of the q-deformed radial Rosen-Morse
potential, the deformed radial Tietz-Wei potential and the deformed improved radial Tietz potential are reexamined. In the different cases, the radial Green function is constructed in closed form. The energy spectra and the wave functions are determined.
Diplôme : Doctorat En ligne : ../theses/physique/KHO7276.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10891 Etude complète de certains potentiels diatomiques déformés par l'intégrale de chemin de Feynman [texte imprimé] / Asma Khodja, Auteur ; Larbi Guechi, Directeur de thèse . - جامعة الإخوة منتوري قسنطينة, 2018 . - 128 f. ; 30 cm.
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin propagateur fonction de Green potentiel de Rosen-Morse potentiel de Tietz potentiel de Tietz-Wei états liés Path integral propagator Green’s function Rosen-Morse potential Tietz potential Tietz-Wei potential bound states تكامل المسار الناشر دالة غرين كمون روزن-مورس كمون تياز كمون تياز-واي حالات مرتبطة Index. décimale : 530 Physique Résumé : This work is concerned with the use of the Feynman path integral formalism for the study of a set of quantum systems subjected to some spherically symmetric deformed diatomic potentials of interest in theoretical physics and in quantum chemistry.
In the framework of the nonrelativistic quantum mechanics, we first reviewed the problem of the improved radial Tietz potential that depends on the real parameter q of deformation. Next, we discussed again that of the
radial Tietz-Wei potential characterized by the real parameter of deformation - 1< <1. In all cases concerning the deformation parameter, the radial Green’s function in closed form, the energy spectrum and the wave functions of bound states are evaluated.
In the context of the relativistic quantum mechanics, the problems of a spinless relativistic particle in the presence of equal vector and scalar potentials, following the exact shape of the q-deformed radial Rosen-Morse
potential, the deformed radial Tietz-Wei potential and the deformed improved radial Tietz potential are reexamined. In the different cases, the radial Green function is constructed in closed form. The energy spectra and the wave functions are determined.
Diplôme : Doctorat En ligne : ../theses/physique/KHO7276.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10891 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité KHO/7276 KHO/7276 Thèse Bibliothèque principale Thèses Disponible
Titre : Etude de potentiels polyatomiques par l’intégrale de chemin Type de document : texte imprimé Auteurs : Abdellatif Kadja, Auteur ; Larbi Guechi, Directeur de thèse Editeur : جامعة الإخوة منتوري قسنطينة Année de publication : 2017 Importance : 92 f. Format : 30 cm. Note générale : 2 copies imprimées disponibles
Langues : Français (fre) Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin propagateur fonction de Green potentiel de
Rosen-Morse potentiel de Schiöberg potentiel de Hulthén potentiel de PöschlTeller états liés Path integral propagator Green’s function Rosen-Morse potential Schiöberg potential Hulthén potential Pöschl-Teller potential bound states تكامل المسار الناشر دالة غرٌن كمون روزن-مورس كمون شٌوبٌرغ كمون
هولتن كمون بوشل-تٌلر حالات مرتبطةIndex. décimale : 530 Physique Résumé : This work concerns a rigorous treatment by the Feynman path integral of a set
containing four spherically symmetric quantum systems studied in the past by
means of other ineffective methods.
In the framework of nonrelativistic quantum mechanics, the radial RosenMorse potential and the general Schiöberg potential characterized by a real
deformation parameter are re-examined by taking into consideration the Dirichlet
boundary conditions when formulating the path integral. In each case, the Green’s
function is built in closed form. The energy spectrum as well as the wave functions
corresponding to the bound states are obtained.
In the context of the relativistic quantum mechanics, we first considered the
problem of a Dirac particle placed in a vector q-deformed Hulthén potential. For
, The Green’s function associated with wave is constructed with the help of
a similarity transformation analog with that of Biedenharn and of a space-time
transformation, in addition to the choice of an adequate approximation to replace
the centrifugal potential term. We then discussed the problems of a Klein-Gordon
particle and a Dirac particle subjected in the same time to a vector potential and a
scalar potential of the modified Pöschl-Teller-type by considering the Dirichlet
boundary conditions. In each case, the Green’s function associated with -waves
( ) is calculated. The energy spectrum and the wave functions are deduced.
Diplôme : Doctorat En ligne : ../theses/physique/KAD7089.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10505 Etude de potentiels polyatomiques par l’intégrale de chemin [texte imprimé] / Abdellatif Kadja, Auteur ; Larbi Guechi, Directeur de thèse . - جامعة الإخوة منتوري قسنطينة, 2017 . - 92 f. ; 30 cm.
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin propagateur fonction de Green potentiel de
Rosen-Morse potentiel de Schiöberg potentiel de Hulthén potentiel de PöschlTeller états liés Path integral propagator Green’s function Rosen-Morse potential Schiöberg potential Hulthén potential Pöschl-Teller potential bound states تكامل المسار الناشر دالة غرٌن كمون روزن-مورس كمون شٌوبٌرغ كمون
هولتن كمون بوشل-تٌلر حالات مرتبطةIndex. décimale : 530 Physique Résumé : This work concerns a rigorous treatment by the Feynman path integral of a set
containing four spherically symmetric quantum systems studied in the past by
means of other ineffective methods.
In the framework of nonrelativistic quantum mechanics, the radial RosenMorse potential and the general Schiöberg potential characterized by a real
deformation parameter are re-examined by taking into consideration the Dirichlet
boundary conditions when formulating the path integral. In each case, the Green’s
function is built in closed form. The energy spectrum as well as the wave functions
corresponding to the bound states are obtained.
In the context of the relativistic quantum mechanics, we first considered the
problem of a Dirac particle placed in a vector q-deformed Hulthén potential. For
, The Green’s function associated with wave is constructed with the help of
a similarity transformation analog with that of Biedenharn and of a space-time
transformation, in addition to the choice of an adequate approximation to replace
the centrifugal potential term. We then discussed the problems of a Klein-Gordon
particle and a Dirac particle subjected in the same time to a vector potential and a
scalar potential of the modified Pöschl-Teller-type by considering the Dirichlet
boundary conditions. In each case, the Green’s function associated with -waves
( ) is calculated. The energy spectrum and the wave functions are deduced.
Diplôme : Doctorat En ligne : ../theses/physique/KAD7089.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10505 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité KAD/7089 KAD/7089 Thèse Bibliothèque principale Thèses Disponible
Titre : Integrale de chemin et probleme dependant du temps. Type de document : texte imprimé Auteurs : Nedjma Bouchemla, Auteur ; Lyazid Chetouani, Directeur de thèse Editeur : جامعة الإخوة منتوري قسنطينة Année de publication : 2018 Importance : 89 f. Format : 30 cm. Note générale : 2 copies imprimées disponibles
Langues : Français (fre) Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin Transformation spatio-temporelle Transformations canoniques généralisées systèmes dépendants du temps Path Integral Space-time transformation Generalized Canonical Transformations time dependant systems تكامل المسار التحويل المكاني -الزماني ، التحولات القانونية المعممة الانظمة المتعلقة بالزمن Index. décimale : 530 Physique Résumé : We know that the path integral formulation is currently a modern way of comprehension and analysis of the physical phenomena since the only tools necessary to this formalism are the usual rudiments of the classical mechanics such as the action and trajectory, we want to test the simplicity of this formulation, on two problems: The first concerns quantum systems with variable mass and potential (depending solely on the position), and the second one with the quantum systems with variable mass and variable potential both dependent on time in addition to position. For the first problem a hermetic form is chosen for the Hamiltonian operator, and after construction of the propagator and application of a space-time transformation, the Green function is obtained. Particular masses were also considered, which made it possible to make comparison with other results obtained differently. For the second problem depends on time, the Green function is also obtained, first by construction and then by a combination of
canonical transformation and point transformation and finally for a choice of particular (nonquadratic) forms for the potential V and for the mass m, the dissipative system is then reduced to the conservative one. Note that this problem has been considered in two different ways by the Hamiltonian formulation (canonical transformation) and Lagrange formulation. The results obtained differ in both cases. Further clarification on the procedure will be needed.
Diplôme : Doctorat en sciences En ligne : ../theses/physique/BOU7335.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10985 Integrale de chemin et probleme dependant du temps. [texte imprimé] / Nedjma Bouchemla, Auteur ; Lyazid Chetouani, Directeur de thèse . - جامعة الإخوة منتوري قسنطينة, 2018 . - 89 f. ; 30 cm.
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin Transformation spatio-temporelle Transformations canoniques généralisées systèmes dépendants du temps Path Integral Space-time transformation Generalized Canonical Transformations time dependant systems تكامل المسار التحويل المكاني -الزماني ، التحولات القانونية المعممة الانظمة المتعلقة بالزمن Index. décimale : 530 Physique Résumé : We know that the path integral formulation is currently a modern way of comprehension and analysis of the physical phenomena since the only tools necessary to this formalism are the usual rudiments of the classical mechanics such as the action and trajectory, we want to test the simplicity of this formulation, on two problems: The first concerns quantum systems with variable mass and potential (depending solely on the position), and the second one with the quantum systems with variable mass and variable potential both dependent on time in addition to position. For the first problem a hermetic form is chosen for the Hamiltonian operator, and after construction of the propagator and application of a space-time transformation, the Green function is obtained. Particular masses were also considered, which made it possible to make comparison with other results obtained differently. For the second problem depends on time, the Green function is also obtained, first by construction and then by a combination of
canonical transformation and point transformation and finally for a choice of particular (nonquadratic) forms for the potential V and for the mass m, the dissipative system is then reduced to the conservative one. Note that this problem has been considered in two different ways by the Hamiltonian formulation (canonical transformation) and Lagrange formulation. The results obtained differ in both cases. Further clarification on the procedure will be needed.
Diplôme : Doctorat en sciences En ligne : ../theses/physique/BOU7335.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10985 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité BOU/7335 BOU/7335 Thèse Bibliothèque principale Thèses Disponible