Résultat de la recherche
4 recherche sur le tag
'propagator' 




Titre : Integrale de chemin en mecanique quantique Type de document : texte imprimé Auteurs : Ilhem Leghrib, Auteur ; Baya Bentag, Directeur de thèse Editeur : constantine [Algérie] : Université Constantine 1 Année de publication : 2013 Importance : 79 f. Format : 30 cm. Note générale : 2 copies imprimées disponibles Langues : Français (fre) Catégories : Français - Anglais
PhysiqueTags : Intégrales de Chemin, Propagateur, Fonction de Green, Transformation Spatiale et Temporelle Fonctionnelle delta de Dirac Spectre d’énergie Fonctions d’onde Etats liés Path Integrals propagator Green’s function Spatial and Temporal transformations Delta Functional energy spectrum wave functions bound states تكامل المسالك الكمون الناشر طيف الطاقة دوال الموجة الحالات المترابطة دالة Green Index. décimale : 530 Physique Résumé : The purpose of this work is the study of some non-relativistic quantum mechanics systems in the context of Feynman path integral approach by using the coordinate time transformations technique and mathematical tools necessary to solve them as simple as possible. Whenever possible, the wave functions and the corresponding spectra are compared with those obtained in the framework of classical and quantum mechanics.
The second chapter is devoted to the study of the motion of a free particle but constrained to move on the conical surface by means of a constraint which represent the equation of the cone. We have adopted the mid-point principle and with suitable coordinate and time transformations, variables were separated, the spectrum and wave functions of bound states have been accurately deduced.
In the third chapter we have reconsidered the problem discussed above. This same particle is subjected to the action of an inverse quadratic oscillator. As the potential has a singularity at the origin, it seemed necessary to reject it at infinity by using a spatial transformation followed by a temporal one. Green's function of this problem is reduced to that associated to the Morse potential whose solution has long been known. The discrete spectrum and wave functions of bound states were obtained.
The fourth chapter deals with the study, in the phase space path integral approach, of two problems on a circle which are the singular oscillator and the singular Coulomb problems.
The technique used is based mainly on the delta functional and on the Hamiltonian formalism. The expression of the propagator of the singular oscillator has been developed with maximum detail and clarity. The discrete spectrum of the energy is exact and fully consistent with the literature. Through a duality transformation, we have established a relation-ship between the singular oscillator and the singular Coulomb systems. This link is at the origin of the similarity of the two propagators expressions form. For both problems, the propagator has been reduced to that of the well-known Pöschl-Teller problem discussed earlier in the context of the Schrödinger formulation and in the configuration space path integral. In other words, the duality transformation has allowed us and without making calculations to deduce the solutions of the singular Coulomb problem from those of singular oscillator one.Diplôme : Magistère En ligne : ../theses/physique/LEG6347.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=6317 Integrale de chemin en mecanique quantique [texte imprimé] / Ilhem Leghrib, Auteur ; Baya Bentag, Directeur de thèse . - constantine [Algérie] : Université Constantine 1, 2013 . - 79 f. ; 30 cm.
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
PhysiqueTags : Intégrales de Chemin, Propagateur, Fonction de Green, Transformation Spatiale et Temporelle Fonctionnelle delta de Dirac Spectre d’énergie Fonctions d’onde Etats liés Path Integrals propagator Green’s function Spatial and Temporal transformations Delta Functional energy spectrum wave functions bound states تكامل المسالك الكمون الناشر طيف الطاقة دوال الموجة الحالات المترابطة دالة Green Index. décimale : 530 Physique Résumé : The purpose of this work is the study of some non-relativistic quantum mechanics systems in the context of Feynman path integral approach by using the coordinate time transformations technique and mathematical tools necessary to solve them as simple as possible. Whenever possible, the wave functions and the corresponding spectra are compared with those obtained in the framework of classical and quantum mechanics.
The second chapter is devoted to the study of the motion of a free particle but constrained to move on the conical surface by means of a constraint which represent the equation of the cone. We have adopted the mid-point principle and with suitable coordinate and time transformations, variables were separated, the spectrum and wave functions of bound states have been accurately deduced.
In the third chapter we have reconsidered the problem discussed above. This same particle is subjected to the action of an inverse quadratic oscillator. As the potential has a singularity at the origin, it seemed necessary to reject it at infinity by using a spatial transformation followed by a temporal one. Green's function of this problem is reduced to that associated to the Morse potential whose solution has long been known. The discrete spectrum and wave functions of bound states were obtained.
The fourth chapter deals with the study, in the phase space path integral approach, of two problems on a circle which are the singular oscillator and the singular Coulomb problems.
The technique used is based mainly on the delta functional and on the Hamiltonian formalism. The expression of the propagator of the singular oscillator has been developed with maximum detail and clarity. The discrete spectrum of the energy is exact and fully consistent with the literature. Through a duality transformation, we have established a relation-ship between the singular oscillator and the singular Coulomb systems. This link is at the origin of the similarity of the two propagators expressions form. For both problems, the propagator has been reduced to that of the well-known Pöschl-Teller problem discussed earlier in the context of the Schrödinger formulation and in the configuration space path integral. In other words, the duality transformation has allowed us and without making calculations to deduce the solutions of the singular Coulomb problem from those of singular oscillator one.Diplôme : Magistère En ligne : ../theses/physique/LEG6347.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=6317 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité LEG/6347 LEG/6347 Thèse Bibliothèque principale Thèses Disponible
Titre : Treatment of quantum motions by path integral approach. Type de document : texte imprimé Auteurs : Badri Berrabah, Auteur ; Baya Bentag, Directeur de thèse Mention d'édition : 18/03/2020 Editeur : جامعة الإخوة منتوري قسنطينة Année de publication : 2020 Importance : 85 f. Format : 30 cm. Note générale : Doctorat 3éme CYCLE LMD.
1 copies imprimées disponibles
Langues : Anglais (eng) Catégories : Français - Anglais
PhysiqueTags : physique: Physique Théorique Intégral de chemin Propagateur Espace de configuration Espace des phases Transformations canoniques Transformations temporelles Systèmes dépendant du temps Masse
dépendante du temps Masse dépendante de la position Oscillateur harmonique dépendant du
temps Potentiel de Coulomb Monopôle magnétique Spectre d’énergie Fonctions d'onde "
Path integral Propagator Configuration space Phase space Canonical transformations Time transformations Time-dependent systems Time-dependent mass Positiondependent mass Time-dependent harmonic oscillator Coulomb potential Magnetic monopole Energy spectrum Wave functions سعة احتمال النتقال فضاء الحداثيات فضاء الطور النظمة المعتمدة على الزمن المتذبذب التوافقي المعتمد على الزمن تكامل المسالك كمون كولومب الكتلة المعتمدة على الزمن طيف الطاقة ودوال الموجة الكتلة المتعلقة بالموضع أحادي القطب المغناطيسيIndex. décimale : 530 Physique Résumé : This thesis is devoted to the study of non-relativistic quantum systems with explicitly time and position-time dependent coefficients in the framework of the Feynman's path integrals formalism. We have presented a systematic method for constructing the propagator of time-dependent systems in both configuration and phase spaces. As application, we have considered the problem of harmonic oscillator with both mass and frequency being arbitrary functions of time. The treatment has been based on the use of explicitly time-dependent coordinate transformations as well as of time transformations, which permit to reduce the propagator to that with constant mass and frequency. We have illustrated the general result by choosing some models of varying mass and frequency. On the other hand, we have extended the space-time transformations technique to bring the problem of a particle with time-dependent mass moving in two- dimensional space and subjected to Coulomb plus inverse quadratic potential to a stationary problem. Then, polar coordinates were adequate for evaluating the Green's function and exactly deducing the discrete spectrum energy levels and the relating wave functions. We have been also interested in developing a systematic procedure to study one-dimensional path integral in phase space for a class of position-time dependent masses and time dependent potentials. Thanks to an explicitly time dependent canonical transformation, we have been able to absorb the time dependence of the Hamiltonian. As application, we have considered two different mass distributions each associated with a chosen potential so that the corresponding path integral have been exactly solved. We have also obtained exact propagators for a particle confined in infinite square well and further subjected to some potentials. The Green's function have been constructed for each situation thanks to an appropiate point canonical transformation. Finally, we have found the path integral solution for an electrically charged particle in orbit around a dyon. Judicious regulating functions have permitted to express the promotor as a product of two partial kernels that are the problems of Morse and Pöschl-Teller potentials. Diplôme : Doctorat En ligne : ../theses/physique/BER7654.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=11488 Treatment of quantum motions by path integral approach. [texte imprimé] / Badri Berrabah, Auteur ; Baya Bentag, Directeur de thèse . - 18/03/2020 . - جامعة الإخوة منتوري قسنطينة, 2020 . - 85 f. ; 30 cm.
Doctorat 3éme CYCLE LMD.
1 copies imprimées disponibles
Langues : Anglais (eng)
Catégories : Français - Anglais
PhysiqueTags : physique: Physique Théorique Intégral de chemin Propagateur Espace de configuration Espace des phases Transformations canoniques Transformations temporelles Systèmes dépendant du temps Masse
dépendante du temps Masse dépendante de la position Oscillateur harmonique dépendant du
temps Potentiel de Coulomb Monopôle magnétique Spectre d’énergie Fonctions d'onde "
Path integral Propagator Configuration space Phase space Canonical transformations Time transformations Time-dependent systems Time-dependent mass Positiondependent mass Time-dependent harmonic oscillator Coulomb potential Magnetic monopole Energy spectrum Wave functions سعة احتمال النتقال فضاء الحداثيات فضاء الطور النظمة المعتمدة على الزمن المتذبذب التوافقي المعتمد على الزمن تكامل المسالك كمون كولومب الكتلة المعتمدة على الزمن طيف الطاقة ودوال الموجة الكتلة المتعلقة بالموضع أحادي القطب المغناطيسيIndex. décimale : 530 Physique Résumé : This thesis is devoted to the study of non-relativistic quantum systems with explicitly time and position-time dependent coefficients in the framework of the Feynman's path integrals formalism. We have presented a systematic method for constructing the propagator of time-dependent systems in both configuration and phase spaces. As application, we have considered the problem of harmonic oscillator with both mass and frequency being arbitrary functions of time. The treatment has been based on the use of explicitly time-dependent coordinate transformations as well as of time transformations, which permit to reduce the propagator to that with constant mass and frequency. We have illustrated the general result by choosing some models of varying mass and frequency. On the other hand, we have extended the space-time transformations technique to bring the problem of a particle with time-dependent mass moving in two- dimensional space and subjected to Coulomb plus inverse quadratic potential to a stationary problem. Then, polar coordinates were adequate for evaluating the Green's function and exactly deducing the discrete spectrum energy levels and the relating wave functions. We have been also interested in developing a systematic procedure to study one-dimensional path integral in phase space for a class of position-time dependent masses and time dependent potentials. Thanks to an explicitly time dependent canonical transformation, we have been able to absorb the time dependence of the Hamiltonian. As application, we have considered two different mass distributions each associated with a chosen potential so that the corresponding path integral have been exactly solved. We have also obtained exact propagators for a particle confined in infinite square well and further subjected to some potentials. The Green's function have been constructed for each situation thanks to an appropiate point canonical transformation. Finally, we have found the path integral solution for an electrically charged particle in orbit around a dyon. Judicious regulating functions have permitted to express the promotor as a product of two partial kernels that are the problems of Morse and Pöschl-Teller potentials. Diplôme : Doctorat En ligne : ../theses/physique/BER7654.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=11488 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité BER/7654 BER/7654 Thèse Bibliothèque principale Thèses Disponible Etude complète de certains potentiels diatomiques déformés par l'intégrale de chemin de Feynman / Asma Khodja
![]()
Titre : Etude complète de certains potentiels diatomiques déformés par l'intégrale de chemin de Feynman Type de document : texte imprimé Auteurs : Asma Khodja, Auteur ; Larbi Guechi, Directeur de thèse Editeur : جامعة الإخوة منتوري قسنطينة Année de publication : 2018 Importance : 128 f. Format : 30 cm. Note générale : 2 copies imprimées disponibles
Langues : Français (fre) Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin propagateur fonction de Green potentiel de Rosen-Morse potentiel de Tietz potentiel de Tietz-Wei états liés Path integral propagator Green’s function Rosen-Morse potential Tietz potential Tietz-Wei potential bound states تكامل المسار الناشر دالة غرين كمون روزن-مورس كمون تياز كمون تياز-واي حالات مرتبطة Index. décimale : 530 Physique Résumé : This work is concerned with the use of the Feynman path integral formalism for the study of a set of quantum systems subjected to some spherically symmetric deformed diatomic potentials of interest in theoretical physics and in quantum chemistry.
In the framework of the nonrelativistic quantum mechanics, we first reviewed the problem of the improved radial Tietz potential that depends on the real parameter q of deformation. Next, we discussed again that of the
radial Tietz-Wei potential characterized by the real parameter of deformation - 1< <1. In all cases concerning the deformation parameter, the radial Green’s function in closed form, the energy spectrum and the wave functions of bound states are evaluated.
In the context of the relativistic quantum mechanics, the problems of a spinless relativistic particle in the presence of equal vector and scalar potentials, following the exact shape of the q-deformed radial Rosen-Morse
potential, the deformed radial Tietz-Wei potential and the deformed improved radial Tietz potential are reexamined. In the different cases, the radial Green function is constructed in closed form. The energy spectra and the wave functions are determined.
Diplôme : Doctorat En ligne : ../theses/physique/KHO7276.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10891 Etude complète de certains potentiels diatomiques déformés par l'intégrale de chemin de Feynman [texte imprimé] / Asma Khodja, Auteur ; Larbi Guechi, Directeur de thèse . - جامعة الإخوة منتوري قسنطينة, 2018 . - 128 f. ; 30 cm.
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin propagateur fonction de Green potentiel de Rosen-Morse potentiel de Tietz potentiel de Tietz-Wei états liés Path integral propagator Green’s function Rosen-Morse potential Tietz potential Tietz-Wei potential bound states تكامل المسار الناشر دالة غرين كمون روزن-مورس كمون تياز كمون تياز-واي حالات مرتبطة Index. décimale : 530 Physique Résumé : This work is concerned with the use of the Feynman path integral formalism for the study of a set of quantum systems subjected to some spherically symmetric deformed diatomic potentials of interest in theoretical physics and in quantum chemistry.
In the framework of the nonrelativistic quantum mechanics, we first reviewed the problem of the improved radial Tietz potential that depends on the real parameter q of deformation. Next, we discussed again that of the
radial Tietz-Wei potential characterized by the real parameter of deformation - 1< <1. In all cases concerning the deformation parameter, the radial Green’s function in closed form, the energy spectrum and the wave functions of bound states are evaluated.
In the context of the relativistic quantum mechanics, the problems of a spinless relativistic particle in the presence of equal vector and scalar potentials, following the exact shape of the q-deformed radial Rosen-Morse
potential, the deformed radial Tietz-Wei potential and the deformed improved radial Tietz potential are reexamined. In the different cases, the radial Green function is constructed in closed form. The energy spectra and the wave functions are determined.
Diplôme : Doctorat En ligne : ../theses/physique/KHO7276.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10891 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité KHO/7276 KHO/7276 Thèse Bibliothèque principale Thèses Disponible
Titre : Etude de potentiels polyatomiques par l’intégrale de chemin Type de document : texte imprimé Auteurs : Abdellatif Kadja, Auteur ; Larbi Guechi, Directeur de thèse Editeur : جامعة الإخوة منتوري قسنطينة Année de publication : 2017 Importance : 92 f. Format : 30 cm. Note générale : 2 copies imprimées disponibles
Langues : Français (fre) Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin propagateur fonction de Green potentiel de
Rosen-Morse potentiel de Schiöberg potentiel de Hulthén potentiel de PöschlTeller états liés Path integral propagator Green’s function Rosen-Morse potential Schiöberg potential Hulthén potential Pöschl-Teller potential bound states تكامل المسار الناشر دالة غرٌن كمون روزن-مورس كمون شٌوبٌرغ كمون
هولتن كمون بوشل-تٌلر حالات مرتبطةIndex. décimale : 530 Physique Résumé : This work concerns a rigorous treatment by the Feynman path integral of a set
containing four spherically symmetric quantum systems studied in the past by
means of other ineffective methods.
In the framework of nonrelativistic quantum mechanics, the radial RosenMorse potential and the general Schiöberg potential characterized by a real
deformation parameter are re-examined by taking into consideration the Dirichlet
boundary conditions when formulating the path integral. In each case, the Green’s
function is built in closed form. The energy spectrum as well as the wave functions
corresponding to the bound states are obtained.
In the context of the relativistic quantum mechanics, we first considered the
problem of a Dirac particle placed in a vector q-deformed Hulthén potential. For
, The Green’s function associated with wave is constructed with the help of
a similarity transformation analog with that of Biedenharn and of a space-time
transformation, in addition to the choice of an adequate approximation to replace
the centrifugal potential term. We then discussed the problems of a Klein-Gordon
particle and a Dirac particle subjected in the same time to a vector potential and a
scalar potential of the modified Pöschl-Teller-type by considering the Dirichlet
boundary conditions. In each case, the Green’s function associated with -waves
( ) is calculated. The energy spectrum and the wave functions are deduced.
Diplôme : Doctorat En ligne : ../theses/physique/KAD7089.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10505 Etude de potentiels polyatomiques par l’intégrale de chemin [texte imprimé] / Abdellatif Kadja, Auteur ; Larbi Guechi, Directeur de thèse . - جامعة الإخوة منتوري قسنطينة, 2017 . - 92 f. ; 30 cm.
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
PhysiqueTags : Intégrale de chemin propagateur fonction de Green potentiel de
Rosen-Morse potentiel de Schiöberg potentiel de Hulthén potentiel de PöschlTeller états liés Path integral propagator Green’s function Rosen-Morse potential Schiöberg potential Hulthén potential Pöschl-Teller potential bound states تكامل المسار الناشر دالة غرٌن كمون روزن-مورس كمون شٌوبٌرغ كمون
هولتن كمون بوشل-تٌلر حالات مرتبطةIndex. décimale : 530 Physique Résumé : This work concerns a rigorous treatment by the Feynman path integral of a set
containing four spherically symmetric quantum systems studied in the past by
means of other ineffective methods.
In the framework of nonrelativistic quantum mechanics, the radial RosenMorse potential and the general Schiöberg potential characterized by a real
deformation parameter are re-examined by taking into consideration the Dirichlet
boundary conditions when formulating the path integral. In each case, the Green’s
function is built in closed form. The energy spectrum as well as the wave functions
corresponding to the bound states are obtained.
In the context of the relativistic quantum mechanics, we first considered the
problem of a Dirac particle placed in a vector q-deformed Hulthén potential. For
, The Green’s function associated with wave is constructed with the help of
a similarity transformation analog with that of Biedenharn and of a space-time
transformation, in addition to the choice of an adequate approximation to replace
the centrifugal potential term. We then discussed the problems of a Klein-Gordon
particle and a Dirac particle subjected in the same time to a vector potential and a
scalar potential of the modified Pöschl-Teller-type by considering the Dirichlet
boundary conditions. In each case, the Green’s function associated with -waves
( ) is calculated. The energy spectrum and the wave functions are deduced.
Diplôme : Doctorat En ligne : ../theses/physique/KAD7089.pdf Format de la ressource électronique : Permalink : index.php?lvl=notice_display&id=10505 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité KAD/7089 KAD/7089 Thèse Bibliothèque principale Thèses Disponible