Titre : |
Caractérisations des réactions interfaciales dans les couches minces métalliques binaires et multiples |
Type de document : |
texte imprimé |
Auteurs : |
Farida Kezai (Née Medjani) ; Univ. de Constantine, Éditeur scientifique ; Rachid Halimi, Directeur de thèse |
Année de publication : |
2007 |
Importance : |
89 f. |
Note générale : |
01 Disponible à la salle de recherche 02 Disponibles au magazin de la B.U.C. 01 CD |
Langues : |
Français (fre) |
Catégories : |
Français - Anglais Physique
|
Tags : |
Pulvérisation Morphologie Multicouches TiN/AlN Nanocomposite Propriétés structurales Résistivité électrique Nanodureté Sputtering Multilayers TiN/AlN Zr-Si-N Structural proprieties Morphology Electrical resistivity Nanohardness |
Index. décimale : |
530 Physique |
Résumé : |
DC reactive magnetron co-sputtering was used for the deposition of Zr-Si-N thin films and a multilayers TiN/AlN.
Si content (CSi) was varied by changing the power applied on the Si target, whereas that on Zr target was kept constant. Four series of samples have been deposited at various substrate temperatures: room temperature, 240 °C, 440 °C and 640 °C. The evolution of morphology,
crystalline structure, grain size and lattice constant has been investigated by X-ray diffraction analyses. Nanohardness, stress and resistivity measurements provide complementary information, which validate the proposed 3-step model for the film formation of the Zr-Si-N system deposited by reactive magnetron cosputtering. For low Si content the Si atoms substitute the Zr atoms in the ZrN lattice. Above the solubility limit, a nanocomposite film containing ZrN:Si nanocrystallites and amorphous SiNy is formed. Further increase of Si content results in a reduction of grain size (D), while the thickness of the SiNy layer at the crystallite surface remains constant. The increasing amount of the SiNy amorphous phase in the films is realized by increasing the surface to volume ratio of the crystallites. In this concentration range, the size of the crystallites in the Zr-Si-N films decreases according to the relationship CSi ~1/D. With
increasing the substrate temperature, the solubility limit of Si in ZrN decreases whereas the films’ global nitruration (CN /(CSi + CZr)) increases. The concentration dependence of the electrical resistivity is interpreted in terms of the variation of the SiNy layer thickness.
By controlling the thickness of individual layers (1-50 nm) and substrate bias (Vb = -25 V and V b = - 100V) two series of samples were prepared. The films were characterized using X-ray diffraction (DRX), cross-sectional electron microscopy (MET) and nanoindentation. The
measured hardness of multilayer films were found to be always higher than the rule of the mixture, but the magnitude of hardness enhancement was found to be dependent on the bilayer thickness and bias substrate. Decreasing progressively the layer thickness favors the alignment of
(0002) basal plan of w-AlN on (111) plane of TiN, and results in the development of strong (111) texture, prerequisite for stabilization of c-AlN and formation of epitaxial coherent structures. |
Diplôme : |
Doctorat |
En ligne : |
../theses/physique/KEZ5008.pdf |
Permalink : |
index.php?lvl=notice_display&id=3347 |
Caractérisations des réactions interfaciales dans les couches minces métalliques binaires et multiples [texte imprimé] / Farida Kezai (Née Medjani) ; Univ. de Constantine, Éditeur scientifique ; Rachid Halimi, Directeur de thèse . - 2007 . - 89 f. 01 Disponible à la salle de recherche 02 Disponibles au magazin de la B.U.C. 01 CD Langues : Français ( fre)
Catégories : |
Français - Anglais Physique
|
Tags : |
Pulvérisation Morphologie Multicouches TiN/AlN Nanocomposite Propriétés structurales Résistivité électrique Nanodureté Sputtering Multilayers TiN/AlN Zr-Si-N Structural proprieties Morphology Electrical resistivity Nanohardness |
Index. décimale : |
530 Physique |
Résumé : |
DC reactive magnetron co-sputtering was used for the deposition of Zr-Si-N thin films and a multilayers TiN/AlN.
Si content (CSi) was varied by changing the power applied on the Si target, whereas that on Zr target was kept constant. Four series of samples have been deposited at various substrate temperatures: room temperature, 240 °C, 440 °C and 640 °C. The evolution of morphology,
crystalline structure, grain size and lattice constant has been investigated by X-ray diffraction analyses. Nanohardness, stress and resistivity measurements provide complementary information, which validate the proposed 3-step model for the film formation of the Zr-Si-N system deposited by reactive magnetron cosputtering. For low Si content the Si atoms substitute the Zr atoms in the ZrN lattice. Above the solubility limit, a nanocomposite film containing ZrN:Si nanocrystallites and amorphous SiNy is formed. Further increase of Si content results in a reduction of grain size (D), while the thickness of the SiNy layer at the crystallite surface remains constant. The increasing amount of the SiNy amorphous phase in the films is realized by increasing the surface to volume ratio of the crystallites. In this concentration range, the size of the crystallites in the Zr-Si-N films decreases according to the relationship CSi ~1/D. With
increasing the substrate temperature, the solubility limit of Si in ZrN decreases whereas the films’ global nitruration (CN /(CSi + CZr)) increases. The concentration dependence of the electrical resistivity is interpreted in terms of the variation of the SiNy layer thickness.
By controlling the thickness of individual layers (1-50 nm) and substrate bias (Vb = -25 V and V b = - 100V) two series of samples were prepared. The films were characterized using X-ray diffraction (DRX), cross-sectional electron microscopy (MET) and nanoindentation. The
measured hardness of multilayer films were found to be always higher than the rule of the mixture, but the magnitude of hardness enhancement was found to be dependent on the bilayer thickness and bias substrate. Decreasing progressively the layer thickness favors the alignment of
(0002) basal plan of w-AlN on (111) plane of TiN, and results in the development of strong (111) texture, prerequisite for stabilization of c-AlN and formation of epitaxial coherent structures. |
Diplôme : |
Doctorat |
En ligne : |
../theses/physique/KEZ5008.pdf |
Permalink : |
index.php?lvl=notice_display&id=3347 |
|