Résultat de la recherche
20 recherche sur le tag
'Chaos' 




Titre : Chaos, stabilité et coexistence dans les systèmes dynamiques. Type de document : texte imprimé Auteurs : Lotfi Meddour, Auteur ; Elhadj Zeraoulia, Directeur de thèse Mention d'édition : 12/11/2020 Editeur : جامعة الإخوة منتوري قسنطينة Année de publication : 2020 Importance : 84 f. Format : 30 cm. Note générale : 1 copies imprimées disponibles
Langues : Français (fre) Catégories : Français - Anglais
MathématiquesTags : Mathématiques: Equations différentiels et ces applications Système de Lorenz transformation linéaire équivalence stabilité chaos Lorenz system linear scaling equivalence stability نظام لورينز التطبيق الخطي التكافؤ الاستقرار الفوضى Index. décimale : 510 Mathématiques Résumé :
The aim of the present work consists in a study of the equivalence of two chaotic dynamic systems and to examine and clarify the equivalence of the systems to the Lorenz system. For this purpose we had give several conditions for general forms of three-dimensional quadratic autonomous systems with two quadratic terms to be equivalent to the Lorenz system, as it has happened, for example, with the Chen and Lu systems that are particular cases of the Lorenz systme. By the results obtained in our work, we have distinguished three well-known systems
equivalent to the Lorenz system.
Diplôme : Doctorat en sciences En ligne : ../theses/math/MED7682.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=11516 Chaos, stabilité et coexistence dans les systèmes dynamiques. [texte imprimé] / Lotfi Meddour, Auteur ; Elhadj Zeraoulia, Directeur de thèse . - 12/11/2020 . - جامعة الإخوة منتوري قسنطينة, 2020 . - 84 f. ; 30 cm.
1 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
MathématiquesTags : Mathématiques: Equations différentiels et ces applications Système de Lorenz transformation linéaire équivalence stabilité chaos Lorenz system linear scaling equivalence stability نظام لورينز التطبيق الخطي التكافؤ الاستقرار الفوضى Index. décimale : 510 Mathématiques Résumé :
The aim of the present work consists in a study of the equivalence of two chaotic dynamic systems and to examine and clarify the equivalence of the systems to the Lorenz system. For this purpose we had give several conditions for general forms of three-dimensional quadratic autonomous systems with two quadratic terms to be equivalent to the Lorenz system, as it has happened, for example, with the Chen and Lu systems that are particular cases of the Lorenz systme. By the results obtained in our work, we have distinguished three well-known systems
equivalent to the Lorenz system.
Diplôme : Doctorat en sciences En ligne : ../theses/math/MED7682.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=11516 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité MED/7682 MED/7682 Thèse Bibliothèque principale Thèses Disponible
Titre : Chaos et synchronisation (généralisé) dans les systèmes dynamiques. Type de document : texte imprimé Auteurs : Ahlem Gasri, Auteur ; Elhadj Zeraoulia, Directeur de thèse Editeur : جامعة الإخوة منتوري قسنطينة Année de publication : 2018 Importance : 151 f. Format : 30 cm. Note générale : 2 copies imprimées disponibles
Langues : Français (fre) Catégories : Français - Anglais
MathématiquesTags : Chaos Erreur de synchronisation Stabilité de Lyapunov Synchronisation généralisée Synchronisation Projective SystËmes Dynamiques Vecteur de controle Synchronization Error Lyapunov Stability Generalized Synchronization Projective Synchronization Dynamical Systems Vector Controllers الفوضى خطأ المزامنة إستقرار ليابونوف المزامنة العامة المزامنة المتبادلة الأنظمة الديناميكية شعاع المراقبة Index. décimale : 510 Mathématiques Résumé : In recent years, chaos synchronization has been widely explored and studied because of its potential applications, such as in secure communication, chemical reactions, biological systems, information science. Thereby, a variety of approaches have been proposed for the synchronization of chaotic systems, such as complete synchronization, generalized synchronization and projective synchronization.
Recently, hybrid function projective synchronization (HFPS) for chaotic systems is extensively considered. On the other hand, studying the inverse problem of this scheme with produce, a new synchronization type called Inverse Hybrid Function Projective Synchronization (IHFPS), is an attractive and important idea. So, we introduce in this thesis the IHFPS for 5-D general class of chaotic systems in continuous-time. To achieve IHFPS, we use the lyapunov stability theory.
More recently, new research has focused on studying the combination of several types of synchronization. Therefore, at the Örst, we constructed a new type of hybrid chaos synchronization based on the on coexistence of Generalized Synchronization (GS) and its inverse (IGS). By using Lyapunov stability theory and stability theory of linear continuous-time, some su¢ cient conditions are derived to prove the existence of (GS) and (IGS) between 3-D master system and 4-D slave hyperchaotic system in 3D and 4D, respectively. Secondly, we illustrate new schemes which prove the existence of the Full State Hybrid Function Projective Synchronization (FSHFPS) and its inverse (IFSHFPS) between a 3-D master system and a 4-D salve system in 4D and 3D, respectively. Some examples with numerical simulations allowed us to verify the e§ectiveness of the theoretical analyzes developed herein.
Diplôme : Doctorat en sciences En ligne : ../theses/math/GAS7312.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=10928 Chaos et synchronisation (généralisé) dans les systèmes dynamiques. [texte imprimé] / Ahlem Gasri, Auteur ; Elhadj Zeraoulia, Directeur de thèse . - جامعة الإخوة منتوري قسنطينة, 2018 . - 151 f. ; 30 cm.
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
MathématiquesTags : Chaos Erreur de synchronisation Stabilité de Lyapunov Synchronisation généralisée Synchronisation Projective SystËmes Dynamiques Vecteur de controle Synchronization Error Lyapunov Stability Generalized Synchronization Projective Synchronization Dynamical Systems Vector Controllers الفوضى خطأ المزامنة إستقرار ليابونوف المزامنة العامة المزامنة المتبادلة الأنظمة الديناميكية شعاع المراقبة Index. décimale : 510 Mathématiques Résumé : In recent years, chaos synchronization has been widely explored and studied because of its potential applications, such as in secure communication, chemical reactions, biological systems, information science. Thereby, a variety of approaches have been proposed for the synchronization of chaotic systems, such as complete synchronization, generalized synchronization and projective synchronization.
Recently, hybrid function projective synchronization (HFPS) for chaotic systems is extensively considered. On the other hand, studying the inverse problem of this scheme with produce, a new synchronization type called Inverse Hybrid Function Projective Synchronization (IHFPS), is an attractive and important idea. So, we introduce in this thesis the IHFPS for 5-D general class of chaotic systems in continuous-time. To achieve IHFPS, we use the lyapunov stability theory.
More recently, new research has focused on studying the combination of several types of synchronization. Therefore, at the Örst, we constructed a new type of hybrid chaos synchronization based on the on coexistence of Generalized Synchronization (GS) and its inverse (IGS). By using Lyapunov stability theory and stability theory of linear continuous-time, some su¢ cient conditions are derived to prove the existence of (GS) and (IGS) between 3-D master system and 4-D slave hyperchaotic system in 3D and 4D, respectively. Secondly, we illustrate new schemes which prove the existence of the Full State Hybrid Function Projective Synchronization (FSHFPS) and its inverse (IFSHFPS) between a 3-D master system and a 4-D salve system in 4D and 3D, respectively. Some examples with numerical simulations allowed us to verify the e§ectiveness of the theoretical analyzes developed herein.
Diplôme : Doctorat en sciences En ligne : ../theses/math/GAS7312.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=10928 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité GAS/7312 GAS/7312 Thèse Bibliothèque principale Thèses Disponible
Titre : Systemes dynamiques et Chaos : "Application à l’optimisation a l’aide d’algorithme Type de document : texte imprimé Auteurs : Tayeb Hamaizia, Auteur ; N. Hamri, Directeur de thèse Editeur : constantine [Algérie] : Université Constantine 1 Année de publication : 2013 Importance : 88 f. Format : 30 cm. Note générale : 2 copies imprimées disponibles Langues : Français (fre) Catégories : Français - Anglais
MathématiquesTags : chaos optimisation Optimization Index. décimale : 510 Mathématiques Résumé :
Chaos, typical phenomenon of nonlinear systems, is now widely studied, because of its properties and many potential applications. Indeed, there may be chaos in many phenomena physical , chemical, meteorological, demographic or economic and its characteristics are that we can consider using it for application. In recent years, growing interests from engineering have stimulated the studies of chaos control , chaos synchronization , and chaos optimization Chaos is a kind of characteristics of nonlinear systems, which is a bounded unstable dynamic behavior that exhibits sensitive dependence on initial conditions and includes infinite unstable periodic motions. Although it appears to be stochastic, it occurs in a deterministic nonlinear system under deterministic conditions.
The combination of optimization methods and fundamentals of chaotic systems are important issues in nonlinear science , has attracted interests from various fields in recent years and has received much attention in the literature. Chaotic optimization is a new stochastic optimization algorithm, which directly utilizes chaotic variables to search the optimal solution. The sensitive dependence on initial conditions and intrinsic stochastic property of chaos make chaotic optimization to obtain the global optimal solution more possible than the method having been adopted before. It can more easily
escape from local minima than other stochastic algorithms. For this thesis, we seek original contributions on any aspect related to optimization methods with utilization of concepts of chaotic time series, attractors, Lyapunov exponents. These algorithms permitted to find with certitude a near neighborhood of the global optimum.Diplôme : Doctorat en sciences En ligne : ../theses/math/HAM6335.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=6306 Systemes dynamiques et Chaos : "Application à l’optimisation a l’aide d’algorithme [texte imprimé] / Tayeb Hamaizia, Auteur ; N. Hamri, Directeur de thèse . - constantine [Algérie] : Université Constantine 1, 2013 . - 88 f. ; 30 cm.
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
MathématiquesTags : chaos optimisation Optimization Index. décimale : 510 Mathématiques Résumé :
Chaos, typical phenomenon of nonlinear systems, is now widely studied, because of its properties and many potential applications. Indeed, there may be chaos in many phenomena physical , chemical, meteorological, demographic or economic and its characteristics are that we can consider using it for application. In recent years, growing interests from engineering have stimulated the studies of chaos control , chaos synchronization , and chaos optimization Chaos is a kind of characteristics of nonlinear systems, which is a bounded unstable dynamic behavior that exhibits sensitive dependence on initial conditions and includes infinite unstable periodic motions. Although it appears to be stochastic, it occurs in a deterministic nonlinear system under deterministic conditions.
The combination of optimization methods and fundamentals of chaotic systems are important issues in nonlinear science , has attracted interests from various fields in recent years and has received much attention in the literature. Chaotic optimization is a new stochastic optimization algorithm, which directly utilizes chaotic variables to search the optimal solution. The sensitive dependence on initial conditions and intrinsic stochastic property of chaos make chaotic optimization to obtain the global optimal solution more possible than the method having been adopted before. It can more easily
escape from local minima than other stochastic algorithms. For this thesis, we seek original contributions on any aspect related to optimization methods with utilization of concepts of chaotic time series, attractors, Lyapunov exponents. These algorithms permitted to find with certitude a near neighborhood of the global optimum.Diplôme : Doctorat en sciences En ligne : ../theses/math/HAM6335.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=6306 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité HAM/6335 HAM/6335 Thèse Bibliothèque principale Thèses Disponible
Titre : Analyse du chaos dans un système d’équations différentielles fractionnaires Type de document : texte imprimé Auteurs : Tarek Houmor, Auteur ; N. Hamri, Directeur de thèse Editeur : constantine [Algérie] : Université Constantine 1 Année de publication : 2014 Importance : 136 f. Format : 30 cm. Note générale : 2 copies imprimées disponibles
Langues : Français (fre) Catégories : Français - Anglais
MathématiquesTags : Dérivées d’ordre fractionnaire Chaos Exposants de Lyapounov Fer à cheval
topologique Test 0-1 Synchronisation du chaos Fractional-order derivatives Lyapounov exponent Topological horseshoe 0-1 test Chaos synchronization مشتقات ذات رتبة كسرية الفوضى قوى ليابونوف الحدوة الطوبولوجية الإختبار
1-0 التزامنIndex. décimale : 510 Mathématiques Résumé : In this thesis, we focus on the differential equations of fractional order systems exhibiting chaotic dynamics. Particular attention has been paid to a nonlinear system of fractional differential equations modeling the phenomenon of nuclear magnetic resonance : the Bloch system. A qualitative analysis of the dynamics of this system has been made, including some basic properties : bifurcations, periodic windows and routes to chaos. These properties were analyzed numerically by bifurcation diagram, phase portraits and Lyapunov exponents .
The chaotic behavior of this system was confirmed by the existence of a positive Lyapunov exponent.
On the other hand, the topological horseshoe was found, rigorously proving the chaotic nature of our system for certain parameter values, this method is considered as an excellent substitute for the Lyapunov spectrum method, less reliable numerically.
0-1 test provides a simple and efficient criterion for the distinction chaotic solutions of regular
orbits, we have successfully applied this test in our work.
Finally, the method of non-linear control was extended to realize the identical synchronization of two fractional Bloch systems. The results were proven analytically using stability conditions for fractional systems. A numerical simulation was performed to validate the results.Diplôme : Doctorat en sciences En ligne : ../theses/math/HOU6606.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=9719 Analyse du chaos dans un système d’équations différentielles fractionnaires [texte imprimé] / Tarek Houmor, Auteur ; N. Hamri, Directeur de thèse . - constantine [Algérie] : Université Constantine 1, 2014 . - 136 f. ; 30 cm.
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
MathématiquesTags : Dérivées d’ordre fractionnaire Chaos Exposants de Lyapounov Fer à cheval
topologique Test 0-1 Synchronisation du chaos Fractional-order derivatives Lyapounov exponent Topological horseshoe 0-1 test Chaos synchronization مشتقات ذات رتبة كسرية الفوضى قوى ليابونوف الحدوة الطوبولوجية الإختبار
1-0 التزامنIndex. décimale : 510 Mathématiques Résumé : In this thesis, we focus on the differential equations of fractional order systems exhibiting chaotic dynamics. Particular attention has been paid to a nonlinear system of fractional differential equations modeling the phenomenon of nuclear magnetic resonance : the Bloch system. A qualitative analysis of the dynamics of this system has been made, including some basic properties : bifurcations, periodic windows and routes to chaos. These properties were analyzed numerically by bifurcation diagram, phase portraits and Lyapunov exponents .
The chaotic behavior of this system was confirmed by the existence of a positive Lyapunov exponent.
On the other hand, the topological horseshoe was found, rigorously proving the chaotic nature of our system for certain parameter values, this method is considered as an excellent substitute for the Lyapunov spectrum method, less reliable numerically.
0-1 test provides a simple and efficient criterion for the distinction chaotic solutions of regular
orbits, we have successfully applied this test in our work.
Finally, the method of non-linear control was extended to realize the identical synchronization of two fractional Bloch systems. The results were proven analytically using stability conditions for fractional systems. A numerical simulation was performed to validate the results.Diplôme : Doctorat en sciences En ligne : ../theses/math/HOU6606.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=9719 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité HOU/6606 HOU/6606 Thèse Bibliothèque principale Thèses Disponible Documents numériques
![]()
texte intégreAdobe Acrobat PDF
Titre : Contribution à l'étude et à la classi cation du chaos dans les systèmes dynamiques Type de document : texte imprimé Auteurs : Okba Zehrour, Auteur ; Elhadj Zeraoulia, Directeur de thèse Editeur : Constantine : Université Mentouri Constantine Année de publication : 2013 Importance : 114 f. Format : 30 cm. Note générale : Doctorat en sciencese
2 copies imprimées disponiblesLangues : Français (fre) Catégories : Français - Anglais
MathématiquesTags : chaos les systèmes dynamiques Index. décimale : 510 Mathématiques Diplôme : Doctorat en sciences En ligne : ../theses/math/ZEH6336.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=6305 Contribution à l'étude et à la classi cation du chaos dans les systèmes dynamiques [texte imprimé] / Okba Zehrour, Auteur ; Elhadj Zeraoulia, Directeur de thèse . - Constantine : Université Mentouri Constantine, 2013 . - 114 f. ; 30 cm.
Doctorat en sciencese
2 copies imprimées disponibles
Langues : Français (fre)
Catégories : Français - Anglais
MathématiquesTags : chaos les systèmes dynamiques Index. décimale : 510 Mathématiques Diplôme : Doctorat en sciences En ligne : ../theses/math/ZEH6336.pdf Format de la ressource électronique : Permalink : https://bu.umc.edu.dz/md/index.php?lvl=notice_display&id=6305 Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité ZEH/6336 ZEH/6336 Thèse Bibliothèque principale Thèses Disponible PermalinkPermalinkPermalinkPermalinkPermalinkPermalinkPermalinkPermalinkAnalyse des systèmes dynamiques non linéaires à comportement chaotique et leur contr?le par la méthode Ott-grebogi-yorke / Abdelkrim Boukabou
PermalinkMéthodes de controle des systèmes chaotiques d'ordre élevé et leur application pour la synchronisation / Abdelkrim Boukabou
![]()
PermalinkPermalinkPermalinkPermalinkPermalinkSystemes dynamiques et modeles d’evaluation des actifs naturels et environnementaux / Wahiba Khellaf
![]()
Permalink